]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
[PATCH] S2io: Timer based slowpath handling
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4
LT
1/************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
20346722
K
29 * rx_ring_num : This can be used to program the number of receive rings used
30 * in the driver.
31 * rx_ring_len: This defines the number of descriptors each ring can have. This
1da177e4
LT
32 * is also an array of size 8.
33 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 34 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 35 * Tx descriptors that can be associated with each corresponding FIFO.
1da177e4
LT
36 ************************************************************************/
37
38#include <linux/config.h>
39#include <linux/module.h>
40#include <linux/types.h>
41#include <linux/errno.h>
42#include <linux/ioport.h>
43#include <linux/pci.h>
1e7f0bd8 44#include <linux/dma-mapping.h>
1da177e4
LT
45#include <linux/kernel.h>
46#include <linux/netdevice.h>
47#include <linux/etherdevice.h>
48#include <linux/skbuff.h>
49#include <linux/init.h>
50#include <linux/delay.h>
51#include <linux/stddef.h>
52#include <linux/ioctl.h>
53#include <linux/timex.h>
54#include <linux/sched.h>
55#include <linux/ethtool.h>
56#include <linux/version.h>
57#include <linux/workqueue.h>
58
1da177e4
LT
59#include <asm/system.h>
60#include <asm/uaccess.h>
20346722 61#include <asm/io.h>
1da177e4
LT
62
63/* local include */
64#include "s2io.h"
65#include "s2io-regs.h"
66
67/* S2io Driver name & version. */
20346722
K
68static char s2io_driver_name[] = "Neterion";
69static char s2io_driver_version[] = "Version 1.7.7";
1da177e4 70
5e25b9dd
K
71static inline int RXD_IS_UP2DT(RxD_t *rxdp)
72{
73 int ret;
74
75 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
76 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
77
78 return ret;
79}
80
20346722 81/*
1da177e4
LT
82 * Cards with following subsystem_id have a link state indication
83 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
84 * macro below identifies these cards given the subsystem_id.
85 */
86#define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \
87 (((subid >= 0x600B) && (subid <= 0x600D)) || \
88 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0
89
90#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
91 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
92#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
93#define PANIC 1
94#define LOW 2
95static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
96{
97 int level = 0;
20346722
K
98 mac_info_t *mac_control;
99
100 mac_control = &sp->mac_control;
101 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
1da177e4 102 level = LOW;
fe113638 103 if (rxb_size <= MAX_RXDS_PER_BLOCK) {
1da177e4
LT
104 level = PANIC;
105 }
106 }
107
108 return level;
109}
110
111/* Ethtool related variables and Macros. */
112static char s2io_gstrings[][ETH_GSTRING_LEN] = {
113 "Register test\t(offline)",
114 "Eeprom test\t(offline)",
115 "Link test\t(online)",
116 "RLDRAM test\t(offline)",
117 "BIST Test\t(offline)"
118};
119
120static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
121 {"tmac_frms"},
122 {"tmac_data_octets"},
123 {"tmac_drop_frms"},
124 {"tmac_mcst_frms"},
125 {"tmac_bcst_frms"},
126 {"tmac_pause_ctrl_frms"},
127 {"tmac_any_err_frms"},
128 {"tmac_vld_ip_octets"},
129 {"tmac_vld_ip"},
130 {"tmac_drop_ip"},
131 {"tmac_icmp"},
132 {"tmac_rst_tcp"},
133 {"tmac_tcp"},
134 {"tmac_udp"},
135 {"rmac_vld_frms"},
136 {"rmac_data_octets"},
137 {"rmac_fcs_err_frms"},
138 {"rmac_drop_frms"},
139 {"rmac_vld_mcst_frms"},
140 {"rmac_vld_bcst_frms"},
141 {"rmac_in_rng_len_err_frms"},
142 {"rmac_long_frms"},
143 {"rmac_pause_ctrl_frms"},
144 {"rmac_discarded_frms"},
145 {"rmac_usized_frms"},
146 {"rmac_osized_frms"},
147 {"rmac_frag_frms"},
148 {"rmac_jabber_frms"},
149 {"rmac_ip"},
150 {"rmac_ip_octets"},
151 {"rmac_hdr_err_ip"},
152 {"rmac_drop_ip"},
153 {"rmac_icmp"},
154 {"rmac_tcp"},
155 {"rmac_udp"},
156 {"rmac_err_drp_udp"},
157 {"rmac_pause_cnt"},
158 {"rmac_accepted_ip"},
159 {"rmac_err_tcp"},
7ba013ac
K
160 {"\n DRIVER STATISTICS"},
161 {"single_bit_ecc_errs"},
162 {"double_bit_ecc_errs"},
1da177e4
LT
163};
164
165#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
166#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
167
168#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
169#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
170
25fff88e
K
171#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
172 init_timer(&timer); \
173 timer.function = handle; \
174 timer.data = (unsigned long) arg; \
175 mod_timer(&timer, (jiffies + exp)) \
176
20346722 177/*
1da177e4
LT
178 * Constants to be programmed into the Xena's registers, to configure
179 * the XAUI.
180 */
181
182#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
183#define END_SIGN 0x0
184
185static u64 default_mdio_cfg[] = {
186 /* Reset PMA PLL */
187 0xC001010000000000ULL, 0xC0010100000000E0ULL,
188 0xC0010100008000E4ULL,
189 /* Remove Reset from PMA PLL */
190 0xC001010000000000ULL, 0xC0010100000000E0ULL,
191 0xC0010100000000E4ULL,
192 END_SIGN
193};
194
195static u64 default_dtx_cfg[] = {
196 0x8000051500000000ULL, 0x80000515000000E0ULL,
197 0x80000515D93500E4ULL, 0x8001051500000000ULL,
198 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
199 0x8002051500000000ULL, 0x80020515000000E0ULL,
200 0x80020515F21000E4ULL,
201 /* Set PADLOOPBACKN */
202 0x8002051500000000ULL, 0x80020515000000E0ULL,
203 0x80020515B20000E4ULL, 0x8003051500000000ULL,
204 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
205 0x8004051500000000ULL, 0x80040515000000E0ULL,
206 0x80040515B20000E4ULL, 0x8005051500000000ULL,
207 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
208 SWITCH_SIGN,
209 /* Remove PADLOOPBACKN */
210 0x8002051500000000ULL, 0x80020515000000E0ULL,
211 0x80020515F20000E4ULL, 0x8003051500000000ULL,
212 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
213 0x8004051500000000ULL, 0x80040515000000E0ULL,
214 0x80040515F20000E4ULL, 0x8005051500000000ULL,
215 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
216 END_SIGN
217};
218
20346722 219/*
1da177e4
LT
220 * Constants for Fixing the MacAddress problem seen mostly on
221 * Alpha machines.
222 */
223static u64 fix_mac[] = {
224 0x0060000000000000ULL, 0x0060600000000000ULL,
225 0x0040600000000000ULL, 0x0000600000000000ULL,
226 0x0020600000000000ULL, 0x0060600000000000ULL,
227 0x0020600000000000ULL, 0x0060600000000000ULL,
228 0x0020600000000000ULL, 0x0060600000000000ULL,
229 0x0020600000000000ULL, 0x0060600000000000ULL,
230 0x0020600000000000ULL, 0x0060600000000000ULL,
231 0x0020600000000000ULL, 0x0060600000000000ULL,
232 0x0020600000000000ULL, 0x0060600000000000ULL,
233 0x0020600000000000ULL, 0x0060600000000000ULL,
234 0x0020600000000000ULL, 0x0060600000000000ULL,
235 0x0020600000000000ULL, 0x0060600000000000ULL,
236 0x0020600000000000ULL, 0x0000600000000000ULL,
237 0x0040600000000000ULL, 0x0060600000000000ULL,
238 END_SIGN
239};
240
241/* Module Loadable parameters. */
242static unsigned int tx_fifo_num = 1;
243static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
244 {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
245static unsigned int rx_ring_num = 1;
246static unsigned int rx_ring_sz[MAX_RX_RINGS] =
247 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
20346722
K
248static unsigned int rts_frm_len[MAX_RX_RINGS] =
249 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
5e25b9dd 250static unsigned int use_continuous_tx_intrs = 1;
1da177e4
LT
251static unsigned int rmac_pause_time = 65535;
252static unsigned int mc_pause_threshold_q0q3 = 187;
253static unsigned int mc_pause_threshold_q4q7 = 187;
254static unsigned int shared_splits;
255static unsigned int tmac_util_period = 5;
256static unsigned int rmac_util_period = 5;
257#ifndef CONFIG_S2IO_NAPI
258static unsigned int indicate_max_pkts;
259#endif
260
20346722 261/*
1da177e4 262 * S2IO device table.
20346722 263 * This table lists all the devices that this driver supports.
1da177e4
LT
264 */
265static struct pci_device_id s2io_tbl[] __devinitdata = {
266 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
267 PCI_ANY_ID, PCI_ANY_ID},
268 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
269 PCI_ANY_ID, PCI_ANY_ID},
270 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
271 PCI_ANY_ID, PCI_ANY_ID},
272 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
273 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
274 {0,}
275};
276
277MODULE_DEVICE_TABLE(pci, s2io_tbl);
278
279static struct pci_driver s2io_driver = {
280 .name = "S2IO",
281 .id_table = s2io_tbl,
282 .probe = s2io_init_nic,
283 .remove = __devexit_p(s2io_rem_nic),
284};
285
286/* A simplifier macro used both by init and free shared_mem Fns(). */
287#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
288
289/**
290 * init_shared_mem - Allocation and Initialization of Memory
291 * @nic: Device private variable.
20346722
K
292 * Description: The function allocates all the memory areas shared
293 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
294 * Rx descriptors and the statistics block.
295 */
296
297static int init_shared_mem(struct s2io_nic *nic)
298{
299 u32 size;
300 void *tmp_v_addr, *tmp_v_addr_next;
301 dma_addr_t tmp_p_addr, tmp_p_addr_next;
302 RxD_block_t *pre_rxd_blk = NULL;
20346722 303 int i, j, blk_cnt, rx_sz, tx_sz;
1da177e4
LT
304 int lst_size, lst_per_page;
305 struct net_device *dev = nic->dev;
306#ifdef CONFIG_2BUFF_MODE
20346722 307 u64 tmp;
1da177e4
LT
308 buffAdd_t *ba;
309#endif
310
311 mac_info_t *mac_control;
312 struct config_param *config;
313
314 mac_control = &nic->mac_control;
315 config = &nic->config;
316
317
318 /* Allocation and initialization of TXDLs in FIOFs */
319 size = 0;
320 for (i = 0; i < config->tx_fifo_num; i++) {
321 size += config->tx_cfg[i].fifo_len;
322 }
323 if (size > MAX_AVAILABLE_TXDS) {
324 DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ",
325 dev->name);
326 DBG_PRINT(ERR_DBG, "exceeds the maximum value ");
327 DBG_PRINT(ERR_DBG, "that can be used\n");
328 return FAILURE;
329 }
330
331 lst_size = (sizeof(TxD_t) * config->max_txds);
20346722 332 tx_sz = lst_size * size;
1da177e4
LT
333 lst_per_page = PAGE_SIZE / lst_size;
334
335 for (i = 0; i < config->tx_fifo_num; i++) {
336 int fifo_len = config->tx_cfg[i].fifo_len;
337 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
20346722
K
338 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
339 GFP_KERNEL);
340 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
341 DBG_PRINT(ERR_DBG,
342 "Malloc failed for list_info\n");
343 return -ENOMEM;
344 }
20346722 345 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
346 }
347 for (i = 0; i < config->tx_fifo_num; i++) {
348 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
349 lst_per_page);
20346722
K
350 mac_control->fifos[i].tx_curr_put_info.offset = 0;
351 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 352 config->tx_cfg[i].fifo_len - 1;
20346722
K
353 mac_control->fifos[i].tx_curr_get_info.offset = 0;
354 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 355 config->tx_cfg[i].fifo_len - 1;
20346722
K
356 mac_control->fifos[i].fifo_no = i;
357 mac_control->fifos[i].nic = nic;
358 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS;
359
1da177e4
LT
360 for (j = 0; j < page_num; j++) {
361 int k = 0;
362 dma_addr_t tmp_p;
363 void *tmp_v;
364 tmp_v = pci_alloc_consistent(nic->pdev,
365 PAGE_SIZE, &tmp_p);
366 if (!tmp_v) {
367 DBG_PRINT(ERR_DBG,
368 "pci_alloc_consistent ");
369 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
370 return -ENOMEM;
371 }
372 while (k < lst_per_page) {
373 int l = (j * lst_per_page) + k;
374 if (l == config->tx_cfg[i].fifo_len)
20346722
K
375 break;
376 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 377 tmp_v + (k * lst_size);
20346722 378 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
379 tmp_p + (k * lst_size);
380 k++;
381 }
382 }
383 }
1da177e4
LT
384
385 /* Allocation and initialization of RXDs in Rings */
386 size = 0;
387 for (i = 0; i < config->rx_ring_num; i++) {
388 if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) {
389 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
390 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
391 i);
392 DBG_PRINT(ERR_DBG, "RxDs per Block");
393 return FAILURE;
394 }
395 size += config->rx_cfg[i].num_rxd;
20346722 396 mac_control->rings[i].block_count =
1da177e4 397 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
20346722
K
398 mac_control->rings[i].pkt_cnt =
399 config->rx_cfg[i].num_rxd - mac_control->rings[i].block_count;
1da177e4 400 }
20346722
K
401 size = (size * (sizeof(RxD_t)));
402 rx_sz = size;
1da177e4
LT
403
404 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
405 mac_control->rings[i].rx_curr_get_info.block_index = 0;
406 mac_control->rings[i].rx_curr_get_info.offset = 0;
407 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 408 config->rx_cfg[i].num_rxd - 1;
20346722
K
409 mac_control->rings[i].rx_curr_put_info.block_index = 0;
410 mac_control->rings[i].rx_curr_put_info.offset = 0;
411 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 412 config->rx_cfg[i].num_rxd - 1;
20346722
K
413 mac_control->rings[i].nic = nic;
414 mac_control->rings[i].ring_no = i;
415
1da177e4
LT
416 blk_cnt =
417 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
418 /* Allocating all the Rx blocks */
419 for (j = 0; j < blk_cnt; j++) {
420#ifndef CONFIG_2BUFF_MODE
421 size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
422#else
423 size = SIZE_OF_BLOCK;
424#endif
425 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
426 &tmp_p_addr);
427 if (tmp_v_addr == NULL) {
428 /*
20346722
K
429 * In case of failure, free_shared_mem()
430 * is called, which should free any
431 * memory that was alloced till the
1da177e4
LT
432 * failure happened.
433 */
20346722 434 mac_control->rings[i].rx_blocks[j].block_virt_addr =
1da177e4
LT
435 tmp_v_addr;
436 return -ENOMEM;
437 }
438 memset(tmp_v_addr, 0, size);
20346722
K
439 mac_control->rings[i].rx_blocks[j].block_virt_addr =
440 tmp_v_addr;
441 mac_control->rings[i].rx_blocks[j].block_dma_addr =
442 tmp_p_addr;
1da177e4
LT
443 }
444 /* Interlinking all Rx Blocks */
445 for (j = 0; j < blk_cnt; j++) {
20346722
K
446 tmp_v_addr =
447 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 448 tmp_v_addr_next =
20346722 449 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 450 blk_cnt].block_virt_addr;
20346722
K
451 tmp_p_addr =
452 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 453 tmp_p_addr_next =
20346722 454 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
455 blk_cnt].block_dma_addr;
456
457 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
20346722 458 pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD
1da177e4
LT
459 * marker.
460 */
461#ifndef CONFIG_2BUFF_MODE
462 pre_rxd_blk->reserved_2_pNext_RxD_block =
463 (unsigned long) tmp_v_addr_next;
464#endif
465 pre_rxd_blk->pNext_RxD_Blk_physical =
466 (u64) tmp_p_addr_next;
467 }
468 }
469
470#ifdef CONFIG_2BUFF_MODE
20346722 471 /*
1da177e4
LT
472 * Allocation of Storages for buffer addresses in 2BUFF mode
473 * and the buffers as well.
474 */
475 for (i = 0; i < config->rx_ring_num; i++) {
476 blk_cnt =
477 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
20346722 478 mac_control->rings[i].ba = kmalloc((sizeof(buffAdd_t *) * blk_cnt),
1da177e4 479 GFP_KERNEL);
20346722 480 if (!mac_control->rings[i].ba)
1da177e4
LT
481 return -ENOMEM;
482 for (j = 0; j < blk_cnt; j++) {
483 int k = 0;
20346722 484 mac_control->rings[i].ba[j] = kmalloc((sizeof(buffAdd_t) *
1da177e4
LT
485 (MAX_RXDS_PER_BLOCK + 1)),
486 GFP_KERNEL);
20346722 487 if (!mac_control->rings[i].ba[j])
1da177e4
LT
488 return -ENOMEM;
489 while (k != MAX_RXDS_PER_BLOCK) {
20346722 490 ba = &mac_control->rings[i].ba[j][k];
1da177e4 491
20346722 492 ba->ba_0_org = (void *) kmalloc
1da177e4
LT
493 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
494 if (!ba->ba_0_org)
495 return -ENOMEM;
20346722 496 tmp = (u64) ba->ba_0_org;
1da177e4 497 tmp += ALIGN_SIZE;
20346722 498 tmp &= ~((u64) ALIGN_SIZE);
1da177e4
LT
499 ba->ba_0 = (void *) tmp;
500
20346722 501 ba->ba_1_org = (void *) kmalloc
1da177e4
LT
502 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
503 if (!ba->ba_1_org)
504 return -ENOMEM;
20346722 505 tmp = (u64) ba->ba_1_org;
1da177e4 506 tmp += ALIGN_SIZE;
20346722 507 tmp &= ~((u64) ALIGN_SIZE);
1da177e4
LT
508 ba->ba_1 = (void *) tmp;
509 k++;
510 }
511 }
512 }
513#endif
514
515 /* Allocation and initialization of Statistics block */
516 size = sizeof(StatInfo_t);
517 mac_control->stats_mem = pci_alloc_consistent
518 (nic->pdev, size, &mac_control->stats_mem_phy);
519
520 if (!mac_control->stats_mem) {
20346722
K
521 /*
522 * In case of failure, free_shared_mem() is called, which
523 * should free any memory that was alloced till the
1da177e4
LT
524 * failure happened.
525 */
526 return -ENOMEM;
527 }
528 mac_control->stats_mem_sz = size;
529
530 tmp_v_addr = mac_control->stats_mem;
531 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
532 memset(tmp_v_addr, 0, size);
1da177e4
LT
533 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
534 (unsigned long long) tmp_p_addr);
535
536 return SUCCESS;
537}
538
20346722
K
539/**
540 * free_shared_mem - Free the allocated Memory
1da177e4
LT
541 * @nic: Device private variable.
542 * Description: This function is to free all memory locations allocated by
543 * the init_shared_mem() function and return it to the kernel.
544 */
545
546static void free_shared_mem(struct s2io_nic *nic)
547{
548 int i, j, blk_cnt, size;
549 void *tmp_v_addr;
550 dma_addr_t tmp_p_addr;
551 mac_info_t *mac_control;
552 struct config_param *config;
553 int lst_size, lst_per_page;
554
555
556 if (!nic)
557 return;
558
559 mac_control = &nic->mac_control;
560 config = &nic->config;
561
562 lst_size = (sizeof(TxD_t) * config->max_txds);
563 lst_per_page = PAGE_SIZE / lst_size;
564
565 for (i = 0; i < config->tx_fifo_num; i++) {
566 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
567 lst_per_page);
568 for (j = 0; j < page_num; j++) {
569 int mem_blks = (j * lst_per_page);
20346722
K
570 if (!mac_control->fifos[i].list_info[mem_blks].
571 list_virt_addr)
1da177e4
LT
572 break;
573 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
574 mac_control->fifos[i].
575 list_info[mem_blks].
1da177e4 576 list_virt_addr,
20346722
K
577 mac_control->fifos[i].
578 list_info[mem_blks].
1da177e4
LT
579 list_phy_addr);
580 }
20346722 581 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
582 }
583
584#ifndef CONFIG_2BUFF_MODE
585 size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
586#else
587 size = SIZE_OF_BLOCK;
588#endif
589 for (i = 0; i < config->rx_ring_num; i++) {
20346722 590 blk_cnt = mac_control->rings[i].block_count;
1da177e4 591 for (j = 0; j < blk_cnt; j++) {
20346722
K
592 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
593 block_virt_addr;
594 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
595 block_dma_addr;
1da177e4
LT
596 if (tmp_v_addr == NULL)
597 break;
598 pci_free_consistent(nic->pdev, size,
599 tmp_v_addr, tmp_p_addr);
600 }
601 }
602
603#ifdef CONFIG_2BUFF_MODE
604 /* Freeing buffer storage addresses in 2BUFF mode. */
605 for (i = 0; i < config->rx_ring_num; i++) {
606 blk_cnt =
607 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
1da177e4
LT
608 for (j = 0; j < blk_cnt; j++) {
609 int k = 0;
20346722
K
610 if (!mac_control->rings[i].ba[j])
611 continue;
1da177e4 612 while (k != MAX_RXDS_PER_BLOCK) {
20346722 613 buffAdd_t *ba = &mac_control->rings[i].ba[j][k];
1da177e4
LT
614 kfree(ba->ba_0_org);
615 kfree(ba->ba_1_org);
616 k++;
617 }
20346722 618 kfree(mac_control->rings[i].ba[j]);
1da177e4 619 }
20346722
K
620 if (mac_control->rings[i].ba)
621 kfree(mac_control->rings[i].ba);
1da177e4 622 }
1da177e4
LT
623#endif
624
625 if (mac_control->stats_mem) {
626 pci_free_consistent(nic->pdev,
627 mac_control->stats_mem_sz,
628 mac_control->stats_mem,
629 mac_control->stats_mem_phy);
630 }
631}
632
20346722
K
633/**
634 * init_nic - Initialization of hardware
1da177e4 635 * @nic: device peivate variable
20346722
K
636 * Description: The function sequentially configures every block
637 * of the H/W from their reset values.
638 * Return Value: SUCCESS on success and
1da177e4
LT
639 * '-1' on failure (endian settings incorrect).
640 */
641
642static int init_nic(struct s2io_nic *nic)
643{
644 XENA_dev_config_t __iomem *bar0 = nic->bar0;
645 struct net_device *dev = nic->dev;
646 register u64 val64 = 0;
647 void __iomem *add;
648 u32 time;
649 int i, j;
650 mac_info_t *mac_control;
651 struct config_param *config;
652 int mdio_cnt = 0, dtx_cnt = 0;
653 unsigned long long mem_share;
20346722 654 int mem_size;
1da177e4
LT
655
656 mac_control = &nic->mac_control;
657 config = &nic->config;
658
5e25b9dd 659 /* to set the swapper controle on the card */
20346722 660 if(s2io_set_swapper(nic)) {
1da177e4
LT
661 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
662 return -1;
663 }
664
665 /* Remove XGXS from reset state */
666 val64 = 0;
667 writeq(val64, &bar0->sw_reset);
1da177e4 668 msleep(500);
20346722 669 val64 = readq(&bar0->sw_reset);
1da177e4
LT
670
671 /* Enable Receiving broadcasts */
672 add = &bar0->mac_cfg;
673 val64 = readq(&bar0->mac_cfg);
674 val64 |= MAC_RMAC_BCAST_ENABLE;
675 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
676 writel((u32) val64, add);
677 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
678 writel((u32) (val64 >> 32), (add + 4));
679
680 /* Read registers in all blocks */
681 val64 = readq(&bar0->mac_int_mask);
682 val64 = readq(&bar0->mc_int_mask);
683 val64 = readq(&bar0->xgxs_int_mask);
684
685 /* Set MTU */
686 val64 = dev->mtu;
687 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
688
20346722
K
689 /*
690 * Configuring the XAUI Interface of Xena.
1da177e4 691 * ***************************************
20346722
K
692 * To Configure the Xena's XAUI, one has to write a series
693 * of 64 bit values into two registers in a particular
694 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
695 * which will be defined in the array of configuration values
696 * (default_dtx_cfg & default_mdio_cfg) at appropriate places
697 * to switch writing from one regsiter to another. We continue
1da177e4 698 * writing these values until we encounter the 'END_SIGN' macro.
20346722
K
699 * For example, After making a series of 21 writes into
700 * dtx_control register the 'SWITCH_SIGN' appears and hence we
1da177e4
LT
701 * start writing into mdio_control until we encounter END_SIGN.
702 */
703 while (1) {
704 dtx_cfg:
705 while (default_dtx_cfg[dtx_cnt] != END_SIGN) {
706 if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
707 dtx_cnt++;
708 goto mdio_cfg;
709 }
710 SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt],
711 &bar0->dtx_control, UF);
712 val64 = readq(&bar0->dtx_control);
713 dtx_cnt++;
714 }
715 mdio_cfg:
716 while (default_mdio_cfg[mdio_cnt] != END_SIGN) {
717 if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
718 mdio_cnt++;
719 goto dtx_cfg;
720 }
721 SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt],
722 &bar0->mdio_control, UF);
723 val64 = readq(&bar0->mdio_control);
724 mdio_cnt++;
725 }
726 if ((default_dtx_cfg[dtx_cnt] == END_SIGN) &&
727 (default_mdio_cfg[mdio_cnt] == END_SIGN)) {
728 break;
729 } else {
730 goto dtx_cfg;
731 }
732 }
733
734 /* Tx DMA Initialization */
735 val64 = 0;
736 writeq(val64, &bar0->tx_fifo_partition_0);
737 writeq(val64, &bar0->tx_fifo_partition_1);
738 writeq(val64, &bar0->tx_fifo_partition_2);
739 writeq(val64, &bar0->tx_fifo_partition_3);
740
741
742 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
743 val64 |=
744 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
745 13) | vBIT(config->tx_cfg[i].fifo_priority,
746 ((i * 32) + 5), 3);
747
748 if (i == (config->tx_fifo_num - 1)) {
749 if (i % 2 == 0)
750 i++;
751 }
752
753 switch (i) {
754 case 1:
755 writeq(val64, &bar0->tx_fifo_partition_0);
756 val64 = 0;
757 break;
758 case 3:
759 writeq(val64, &bar0->tx_fifo_partition_1);
760 val64 = 0;
761 break;
762 case 5:
763 writeq(val64, &bar0->tx_fifo_partition_2);
764 val64 = 0;
765 break;
766 case 7:
767 writeq(val64, &bar0->tx_fifo_partition_3);
768 break;
769 }
770 }
771
772 /* Enable Tx FIFO partition 0. */
773 val64 = readq(&bar0->tx_fifo_partition_0);
774 val64 |= BIT(0); /* To enable the FIFO partition. */
775 writeq(val64, &bar0->tx_fifo_partition_0);
776
5e25b9dd
K
777 /*
778 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
779 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
780 */
781 if (get_xena_rev_id(nic->pdev) < 4)
782 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
783
1da177e4
LT
784 val64 = readq(&bar0->tx_fifo_partition_0);
785 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
786 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
787
20346722
K
788 /*
789 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
790 * integrity checking.
791 */
792 val64 = readq(&bar0->tx_pa_cfg);
793 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
794 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
795 writeq(val64, &bar0->tx_pa_cfg);
796
797 /* Rx DMA intialization. */
798 val64 = 0;
799 for (i = 0; i < config->rx_ring_num; i++) {
800 val64 |=
801 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
802 3);
803 }
804 writeq(val64, &bar0->rx_queue_priority);
805
20346722
K
806 /*
807 * Allocating equal share of memory to all the
1da177e4
LT
808 * configured Rings.
809 */
810 val64 = 0;
20346722 811 mem_size = 64;
1da177e4
LT
812 for (i = 0; i < config->rx_ring_num; i++) {
813 switch (i) {
814 case 0:
20346722
K
815 mem_share = (mem_size / config->rx_ring_num +
816 mem_size % config->rx_ring_num);
1da177e4
LT
817 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
818 continue;
819 case 1:
20346722 820 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
821 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
822 continue;
823 case 2:
20346722 824 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
825 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
826 continue;
827 case 3:
20346722 828 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
829 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
830 continue;
831 case 4:
20346722 832 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
833 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
834 continue;
835 case 5:
20346722 836 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
837 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
838 continue;
839 case 6:
20346722 840 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
841 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
842 continue;
843 case 7:
20346722 844 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
845 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
846 continue;
847 }
848 }
849 writeq(val64, &bar0->rx_queue_cfg);
850
20346722 851 /*
5e25b9dd
K
852 * Filling Tx round robin registers
853 * as per the number of FIFOs
1da177e4 854 */
5e25b9dd
K
855 switch (config->tx_fifo_num) {
856 case 1:
857 val64 = 0x0000000000000000ULL;
858 writeq(val64, &bar0->tx_w_round_robin_0);
859 writeq(val64, &bar0->tx_w_round_robin_1);
860 writeq(val64, &bar0->tx_w_round_robin_2);
861 writeq(val64, &bar0->tx_w_round_robin_3);
862 writeq(val64, &bar0->tx_w_round_robin_4);
863 break;
864 case 2:
865 val64 = 0x0000010000010000ULL;
866 writeq(val64, &bar0->tx_w_round_robin_0);
867 val64 = 0x0100000100000100ULL;
868 writeq(val64, &bar0->tx_w_round_robin_1);
869 val64 = 0x0001000001000001ULL;
870 writeq(val64, &bar0->tx_w_round_robin_2);
871 val64 = 0x0000010000010000ULL;
872 writeq(val64, &bar0->tx_w_round_robin_3);
873 val64 = 0x0100000000000000ULL;
874 writeq(val64, &bar0->tx_w_round_robin_4);
875 break;
876 case 3:
877 val64 = 0x0001000102000001ULL;
878 writeq(val64, &bar0->tx_w_round_robin_0);
879 val64 = 0x0001020000010001ULL;
880 writeq(val64, &bar0->tx_w_round_robin_1);
881 val64 = 0x0200000100010200ULL;
882 writeq(val64, &bar0->tx_w_round_robin_2);
883 val64 = 0x0001000102000001ULL;
884 writeq(val64, &bar0->tx_w_round_robin_3);
885 val64 = 0x0001020000000000ULL;
886 writeq(val64, &bar0->tx_w_round_robin_4);
887 break;
888 case 4:
889 val64 = 0x0001020300010200ULL;
890 writeq(val64, &bar0->tx_w_round_robin_0);
891 val64 = 0x0100000102030001ULL;
892 writeq(val64, &bar0->tx_w_round_robin_1);
893 val64 = 0x0200010000010203ULL;
894 writeq(val64, &bar0->tx_w_round_robin_2);
895 val64 = 0x0001020001000001ULL;
896 writeq(val64, &bar0->tx_w_round_robin_3);
897 val64 = 0x0203000100000000ULL;
898 writeq(val64, &bar0->tx_w_round_robin_4);
899 break;
900 case 5:
901 val64 = 0x0001000203000102ULL;
902 writeq(val64, &bar0->tx_w_round_robin_0);
903 val64 = 0x0001020001030004ULL;
904 writeq(val64, &bar0->tx_w_round_robin_1);
905 val64 = 0x0001000203000102ULL;
906 writeq(val64, &bar0->tx_w_round_robin_2);
907 val64 = 0x0001020001030004ULL;
908 writeq(val64, &bar0->tx_w_round_robin_3);
909 val64 = 0x0001000000000000ULL;
910 writeq(val64, &bar0->tx_w_round_robin_4);
911 break;
912 case 6:
913 val64 = 0x0001020304000102ULL;
914 writeq(val64, &bar0->tx_w_round_robin_0);
915 val64 = 0x0304050001020001ULL;
916 writeq(val64, &bar0->tx_w_round_robin_1);
917 val64 = 0x0203000100000102ULL;
918 writeq(val64, &bar0->tx_w_round_robin_2);
919 val64 = 0x0304000102030405ULL;
920 writeq(val64, &bar0->tx_w_round_robin_3);
921 val64 = 0x0001000200000000ULL;
922 writeq(val64, &bar0->tx_w_round_robin_4);
923 break;
924 case 7:
925 val64 = 0x0001020001020300ULL;
926 writeq(val64, &bar0->tx_w_round_robin_0);
927 val64 = 0x0102030400010203ULL;
928 writeq(val64, &bar0->tx_w_round_robin_1);
929 val64 = 0x0405060001020001ULL;
930 writeq(val64, &bar0->tx_w_round_robin_2);
931 val64 = 0x0304050000010200ULL;
932 writeq(val64, &bar0->tx_w_round_robin_3);
933 val64 = 0x0102030000000000ULL;
934 writeq(val64, &bar0->tx_w_round_robin_4);
935 break;
936 case 8:
937 val64 = 0x0001020300040105ULL;
938 writeq(val64, &bar0->tx_w_round_robin_0);
939 val64 = 0x0200030106000204ULL;
940 writeq(val64, &bar0->tx_w_round_robin_1);
941 val64 = 0x0103000502010007ULL;
942 writeq(val64, &bar0->tx_w_round_robin_2);
943 val64 = 0x0304010002060500ULL;
944 writeq(val64, &bar0->tx_w_round_robin_3);
945 val64 = 0x0103020400000000ULL;
946 writeq(val64, &bar0->tx_w_round_robin_4);
947 break;
948 }
949
950 /* Filling the Rx round robin registers as per the
951 * number of Rings and steering based on QoS.
952 */
953 switch (config->rx_ring_num) {
954 case 1:
955 val64 = 0x8080808080808080ULL;
956 writeq(val64, &bar0->rts_qos_steering);
957 break;
958 case 2:
959 val64 = 0x0000010000010000ULL;
960 writeq(val64, &bar0->rx_w_round_robin_0);
961 val64 = 0x0100000100000100ULL;
962 writeq(val64, &bar0->rx_w_round_robin_1);
963 val64 = 0x0001000001000001ULL;
964 writeq(val64, &bar0->rx_w_round_robin_2);
965 val64 = 0x0000010000010000ULL;
966 writeq(val64, &bar0->rx_w_round_robin_3);
967 val64 = 0x0100000000000000ULL;
968 writeq(val64, &bar0->rx_w_round_robin_4);
969
970 val64 = 0x8080808040404040ULL;
971 writeq(val64, &bar0->rts_qos_steering);
972 break;
973 case 3:
974 val64 = 0x0001000102000001ULL;
975 writeq(val64, &bar0->rx_w_round_robin_0);
976 val64 = 0x0001020000010001ULL;
977 writeq(val64, &bar0->rx_w_round_robin_1);
978 val64 = 0x0200000100010200ULL;
979 writeq(val64, &bar0->rx_w_round_robin_2);
980 val64 = 0x0001000102000001ULL;
981 writeq(val64, &bar0->rx_w_round_robin_3);
982 val64 = 0x0001020000000000ULL;
983 writeq(val64, &bar0->rx_w_round_robin_4);
984
985 val64 = 0x8080804040402020ULL;
986 writeq(val64, &bar0->rts_qos_steering);
987 break;
988 case 4:
989 val64 = 0x0001020300010200ULL;
990 writeq(val64, &bar0->rx_w_round_robin_0);
991 val64 = 0x0100000102030001ULL;
992 writeq(val64, &bar0->rx_w_round_robin_1);
993 val64 = 0x0200010000010203ULL;
994 writeq(val64, &bar0->rx_w_round_robin_2);
995 val64 = 0x0001020001000001ULL;
996 writeq(val64, &bar0->rx_w_round_robin_3);
997 val64 = 0x0203000100000000ULL;
998 writeq(val64, &bar0->rx_w_round_robin_4);
999
1000 val64 = 0x8080404020201010ULL;
1001 writeq(val64, &bar0->rts_qos_steering);
1002 break;
1003 case 5:
1004 val64 = 0x0001000203000102ULL;
1005 writeq(val64, &bar0->rx_w_round_robin_0);
1006 val64 = 0x0001020001030004ULL;
1007 writeq(val64, &bar0->rx_w_round_robin_1);
1008 val64 = 0x0001000203000102ULL;
1009 writeq(val64, &bar0->rx_w_round_robin_2);
1010 val64 = 0x0001020001030004ULL;
1011 writeq(val64, &bar0->rx_w_round_robin_3);
1012 val64 = 0x0001000000000000ULL;
1013 writeq(val64, &bar0->rx_w_round_robin_4);
1014
1015 val64 = 0x8080404020201008ULL;
1016 writeq(val64, &bar0->rts_qos_steering);
1017 break;
1018 case 6:
1019 val64 = 0x0001020304000102ULL;
1020 writeq(val64, &bar0->rx_w_round_robin_0);
1021 val64 = 0x0304050001020001ULL;
1022 writeq(val64, &bar0->rx_w_round_robin_1);
1023 val64 = 0x0203000100000102ULL;
1024 writeq(val64, &bar0->rx_w_round_robin_2);
1025 val64 = 0x0304000102030405ULL;
1026 writeq(val64, &bar0->rx_w_round_robin_3);
1027 val64 = 0x0001000200000000ULL;
1028 writeq(val64, &bar0->rx_w_round_robin_4);
1029
1030 val64 = 0x8080404020100804ULL;
1031 writeq(val64, &bar0->rts_qos_steering);
1032 break;
1033 case 7:
1034 val64 = 0x0001020001020300ULL;
1035 writeq(val64, &bar0->rx_w_round_robin_0);
1036 val64 = 0x0102030400010203ULL;
1037 writeq(val64, &bar0->rx_w_round_robin_1);
1038 val64 = 0x0405060001020001ULL;
1039 writeq(val64, &bar0->rx_w_round_robin_2);
1040 val64 = 0x0304050000010200ULL;
1041 writeq(val64, &bar0->rx_w_round_robin_3);
1042 val64 = 0x0102030000000000ULL;
1043 writeq(val64, &bar0->rx_w_round_robin_4);
1044
1045 val64 = 0x8080402010080402ULL;
1046 writeq(val64, &bar0->rts_qos_steering);
1047 break;
1048 case 8:
1049 val64 = 0x0001020300040105ULL;
1050 writeq(val64, &bar0->rx_w_round_robin_0);
1051 val64 = 0x0200030106000204ULL;
1052 writeq(val64, &bar0->rx_w_round_robin_1);
1053 val64 = 0x0103000502010007ULL;
1054 writeq(val64, &bar0->rx_w_round_robin_2);
1055 val64 = 0x0304010002060500ULL;
1056 writeq(val64, &bar0->rx_w_round_robin_3);
1057 val64 = 0x0103020400000000ULL;
1058 writeq(val64, &bar0->rx_w_round_robin_4);
1059
1060 val64 = 0x8040201008040201ULL;
1061 writeq(val64, &bar0->rts_qos_steering);
1062 break;
1063 }
1da177e4
LT
1064
1065 /* UDP Fix */
1066 val64 = 0;
20346722 1067 for (i = 0; i < 8; i++)
1da177e4
LT
1068 writeq(val64, &bar0->rts_frm_len_n[i]);
1069
5e25b9dd
K
1070 /* Set the default rts frame length for the rings configured */
1071 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1072 for (i = 0 ; i < config->rx_ring_num ; i++)
1073 writeq(val64, &bar0->rts_frm_len_n[i]);
1074
1075 /* Set the frame length for the configured rings
1076 * desired by the user
1077 */
1078 for (i = 0; i < config->rx_ring_num; i++) {
1079 /* If rts_frm_len[i] == 0 then it is assumed that user not
1080 * specified frame length steering.
1081 * If the user provides the frame length then program
1082 * the rts_frm_len register for those values or else
1083 * leave it as it is.
1084 */
1085 if (rts_frm_len[i] != 0) {
1086 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1087 &bar0->rts_frm_len_n[i]);
1088 }
1089 }
1da177e4 1090
20346722 1091 /* Program statistics memory */
1da177e4 1092 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1093
20346722 1094 /*
1da177e4
LT
1095 * Initializing the sampling rate for the device to calculate the
1096 * bandwidth utilization.
1097 */
1098 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1099 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1100 writeq(val64, &bar0->mac_link_util);
1101
1102
20346722
K
1103 /*
1104 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1105 * Scheme.
1106 */
20346722
K
1107 /*
1108 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1109 * 250 interrupts per sec. Continuous interrupts are enabled
1110 * by default.
1111 */
1112 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) |
1113 TTI_DATA1_MEM_TX_URNG_A(0xA) |
1114 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd
K
1115 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1116 if (use_continuous_tx_intrs)
1117 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1118 writeq(val64, &bar0->tti_data1_mem);
1119
1120 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1121 TTI_DATA2_MEM_TX_UFC_B(0x20) |
5e25b9dd 1122 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1123 writeq(val64, &bar0->tti_data2_mem);
1124
1125 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1126 writeq(val64, &bar0->tti_command_mem);
1127
20346722 1128 /*
1da177e4
LT
1129 * Once the operation completes, the Strobe bit of the command
1130 * register will be reset. We poll for this particular condition
1131 * We wait for a maximum of 500ms for the operation to complete,
1132 * if it's not complete by then we return error.
1133 */
1134 time = 0;
1135 while (TRUE) {
1136 val64 = readq(&bar0->tti_command_mem);
1137 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1138 break;
1139 }
1140 if (time > 10) {
1141 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1142 dev->name);
1143 return -1;
1144 }
1145 msleep(50);
1146 time++;
1147 }
1148
1149 /* RTI Initialization */
1150 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) |
1151 RTI_DATA1_MEM_RX_URNG_A(0xA) |
1152 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1153 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1154
1155 writeq(val64, &bar0->rti_data1_mem);
1156
1157 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1158 RTI_DATA2_MEM_RX_UFC_B(0x2) |
1159 RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80);
1160 writeq(val64, &bar0->rti_data2_mem);
1161
1162 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD;
1163 writeq(val64, &bar0->rti_command_mem);
1164
20346722 1165 /*
5e25b9dd
K
1166 * Once the operation completes, the Strobe bit of the
1167 * command register will be reset. We poll for this
1168 * particular condition. We wait for a maximum of 500ms
1169 * for the operation to complete, if it's not complete
1170 * by then we return error.
1da177e4
LT
1171 */
1172 time = 0;
1173 while (TRUE) {
1174 val64 = readq(&bar0->rti_command_mem);
20346722 1175 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1da177e4
LT
1176 break;
1177 }
1178 if (time > 10) {
1179 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1180 dev->name);
1181 return -1;
1182 }
1183 time++;
1184 msleep(50);
1185 }
1186
20346722
K
1187 /*
1188 * Initializing proper values as Pause threshold into all
1da177e4
LT
1189 * the 8 Queues on Rx side.
1190 */
1191 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1192 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1193
1194 /* Disable RMAC PAD STRIPPING */
20346722 1195 add = (void *) &bar0->mac_cfg;
1da177e4
LT
1196 val64 = readq(&bar0->mac_cfg);
1197 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1198 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1199 writel((u32) (val64), add);
1200 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1201 writel((u32) (val64 >> 32), (add + 4));
1202 val64 = readq(&bar0->mac_cfg);
1203
20346722
K
1204 /*
1205 * Set the time value to be inserted in the pause frame
1da177e4
LT
1206 * generated by xena.
1207 */
1208 val64 = readq(&bar0->rmac_pause_cfg);
1209 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1210 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1211 writeq(val64, &bar0->rmac_pause_cfg);
1212
20346722 1213 /*
1da177e4
LT
1214 * Set the Threshold Limit for Generating the pause frame
1215 * If the amount of data in any Queue exceeds ratio of
1216 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1217 * pause frame is generated
1218 */
1219 val64 = 0;
1220 for (i = 0; i < 4; i++) {
1221 val64 |=
1222 (((u64) 0xFF00 | nic->mac_control.
1223 mc_pause_threshold_q0q3)
1224 << (i * 2 * 8));
1225 }
1226 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1227
1228 val64 = 0;
1229 for (i = 0; i < 4; i++) {
1230 val64 |=
1231 (((u64) 0xFF00 | nic->mac_control.
1232 mc_pause_threshold_q4q7)
1233 << (i * 2 * 8));
1234 }
1235 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1236
20346722
K
1237 /*
1238 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1239 * exceeded the limit pointed by shared_splits
1240 */
1241 val64 = readq(&bar0->pic_control);
1242 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1243 writeq(val64, &bar0->pic_control);
1244
1245 return SUCCESS;
1246}
1247
20346722
K
1248/**
1249 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1250 * @nic: device private variable,
1251 * @mask: A mask indicating which Intr block must be modified and,
1252 * @flag: A flag indicating whether to enable or disable the Intrs.
1253 * Description: This function will either disable or enable the interrupts
20346722
K
1254 * depending on the flag argument. The mask argument can be used to
1255 * enable/disable any Intr block.
1da177e4
LT
1256 * Return Value: NONE.
1257 */
1258
1259static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1260{
1261 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1262 register u64 val64 = 0, temp64 = 0;
1263
1264 /* Top level interrupt classification */
1265 /* PIC Interrupts */
1266 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1267 /* Enable PIC Intrs in the general intr mask register */
1268 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1269 if (flag == ENABLE_INTRS) {
1270 temp64 = readq(&bar0->general_int_mask);
1271 temp64 &= ~((u64) val64);
1272 writeq(temp64, &bar0->general_int_mask);
20346722 1273 /*
1da177e4 1274 * Disabled all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1275 * interrupts for now.
1276 * TODO
1da177e4
LT
1277 */
1278 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
20346722 1279 /*
1da177e4
LT
1280 * No MSI Support is available presently, so TTI and
1281 * RTI interrupts are also disabled.
1282 */
1283 } else if (flag == DISABLE_INTRS) {
20346722
K
1284 /*
1285 * Disable PIC Intrs in the general
1286 * intr mask register
1da177e4
LT
1287 */
1288 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1289 temp64 = readq(&bar0->general_int_mask);
1290 val64 |= temp64;
1291 writeq(val64, &bar0->general_int_mask);
1292 }
1293 }
1294
1295 /* DMA Interrupts */
1296 /* Enabling/Disabling Tx DMA interrupts */
1297 if (mask & TX_DMA_INTR) {
1298 /* Enable TxDMA Intrs in the general intr mask register */
1299 val64 = TXDMA_INT_M;
1300 if (flag == ENABLE_INTRS) {
1301 temp64 = readq(&bar0->general_int_mask);
1302 temp64 &= ~((u64) val64);
1303 writeq(temp64, &bar0->general_int_mask);
20346722
K
1304 /*
1305 * Keep all interrupts other than PFC interrupt
1da177e4
LT
1306 * and PCC interrupt disabled in DMA level.
1307 */
1308 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1309 TXDMA_PCC_INT_M);
1310 writeq(val64, &bar0->txdma_int_mask);
20346722
K
1311 /*
1312 * Enable only the MISC error 1 interrupt in PFC block
1da177e4
LT
1313 */
1314 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1315 writeq(val64, &bar0->pfc_err_mask);
20346722
K
1316 /*
1317 * Enable only the FB_ECC error interrupt in PCC block
1da177e4
LT
1318 */
1319 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1320 writeq(val64, &bar0->pcc_err_mask);
1321 } else if (flag == DISABLE_INTRS) {
20346722
K
1322 /*
1323 * Disable TxDMA Intrs in the general intr mask
1324 * register
1da177e4
LT
1325 */
1326 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1327 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1328 temp64 = readq(&bar0->general_int_mask);
1329 val64 |= temp64;
1330 writeq(val64, &bar0->general_int_mask);
1331 }
1332 }
1333
1334 /* Enabling/Disabling Rx DMA interrupts */
1335 if (mask & RX_DMA_INTR) {
1336 /* Enable RxDMA Intrs in the general intr mask register */
1337 val64 = RXDMA_INT_M;
1338 if (flag == ENABLE_INTRS) {
1339 temp64 = readq(&bar0->general_int_mask);
1340 temp64 &= ~((u64) val64);
1341 writeq(temp64, &bar0->general_int_mask);
20346722
K
1342 /*
1343 * All RxDMA block interrupts are disabled for now
1344 * TODO
1da177e4
LT
1345 */
1346 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1347 } else if (flag == DISABLE_INTRS) {
20346722
K
1348 /*
1349 * Disable RxDMA Intrs in the general intr mask
1350 * register
1da177e4
LT
1351 */
1352 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1353 temp64 = readq(&bar0->general_int_mask);
1354 val64 |= temp64;
1355 writeq(val64, &bar0->general_int_mask);
1356 }
1357 }
1358
1359 /* MAC Interrupts */
1360 /* Enabling/Disabling MAC interrupts */
1361 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1362 val64 = TXMAC_INT_M | RXMAC_INT_M;
1363 if (flag == ENABLE_INTRS) {
1364 temp64 = readq(&bar0->general_int_mask);
1365 temp64 &= ~((u64) val64);
1366 writeq(temp64, &bar0->general_int_mask);
20346722
K
1367 /*
1368 * All MAC block error interrupts are disabled for now
1da177e4
LT
1369 * except the link status change interrupt.
1370 * TODO
1371 */
1372 val64 = MAC_INT_STATUS_RMAC_INT;
1373 temp64 = readq(&bar0->mac_int_mask);
1374 temp64 &= ~((u64) val64);
1375 writeq(temp64, &bar0->mac_int_mask);
1376
1377 val64 = readq(&bar0->mac_rmac_err_mask);
1378 val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT);
1379 writeq(val64, &bar0->mac_rmac_err_mask);
1380 } else if (flag == DISABLE_INTRS) {
20346722
K
1381 /*
1382 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1383 */
1384 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1385 writeq(DISABLE_ALL_INTRS,
1386 &bar0->mac_rmac_err_mask);
1387
1388 temp64 = readq(&bar0->general_int_mask);
1389 val64 |= temp64;
1390 writeq(val64, &bar0->general_int_mask);
1391 }
1392 }
1393
1394 /* XGXS Interrupts */
1395 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1396 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1397 if (flag == ENABLE_INTRS) {
1398 temp64 = readq(&bar0->general_int_mask);
1399 temp64 &= ~((u64) val64);
1400 writeq(temp64, &bar0->general_int_mask);
20346722 1401 /*
1da177e4 1402 * All XGXS block error interrupts are disabled for now
20346722 1403 * TODO
1da177e4
LT
1404 */
1405 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1406 } else if (flag == DISABLE_INTRS) {
20346722
K
1407 /*
1408 * Disable MC Intrs in the general intr mask register
1da177e4
LT
1409 */
1410 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1411 temp64 = readq(&bar0->general_int_mask);
1412 val64 |= temp64;
1413 writeq(val64, &bar0->general_int_mask);
1414 }
1415 }
1416
1417 /* Memory Controller(MC) interrupts */
1418 if (mask & MC_INTR) {
1419 val64 = MC_INT_M;
1420 if (flag == ENABLE_INTRS) {
1421 temp64 = readq(&bar0->general_int_mask);
1422 temp64 &= ~((u64) val64);
1423 writeq(temp64, &bar0->general_int_mask);
20346722 1424 /*
5e25b9dd 1425 * Enable all MC Intrs.
1da177e4 1426 */
5e25b9dd
K
1427 writeq(0x0, &bar0->mc_int_mask);
1428 writeq(0x0, &bar0->mc_err_mask);
1da177e4
LT
1429 } else if (flag == DISABLE_INTRS) {
1430 /*
1431 * Disable MC Intrs in the general intr mask register
1432 */
1433 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1434 temp64 = readq(&bar0->general_int_mask);
1435 val64 |= temp64;
1436 writeq(val64, &bar0->general_int_mask);
1437 }
1438 }
1439
1440
1441 /* Tx traffic interrupts */
1442 if (mask & TX_TRAFFIC_INTR) {
1443 val64 = TXTRAFFIC_INT_M;
1444 if (flag == ENABLE_INTRS) {
1445 temp64 = readq(&bar0->general_int_mask);
1446 temp64 &= ~((u64) val64);
1447 writeq(temp64, &bar0->general_int_mask);
20346722 1448 /*
1da177e4 1449 * Enable all the Tx side interrupts
20346722 1450 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1451 */
1452 writeq(0x0, &bar0->tx_traffic_mask);
1453 } else if (flag == DISABLE_INTRS) {
20346722
K
1454 /*
1455 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1456 * register.
1457 */
1458 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1459 temp64 = readq(&bar0->general_int_mask);
1460 val64 |= temp64;
1461 writeq(val64, &bar0->general_int_mask);
1462 }
1463 }
1464
1465 /* Rx traffic interrupts */
1466 if (mask & RX_TRAFFIC_INTR) {
1467 val64 = RXTRAFFIC_INT_M;
1468 if (flag == ENABLE_INTRS) {
1469 temp64 = readq(&bar0->general_int_mask);
1470 temp64 &= ~((u64) val64);
1471 writeq(temp64, &bar0->general_int_mask);
1472 /* writing 0 Enables all 8 RX interrupt levels */
1473 writeq(0x0, &bar0->rx_traffic_mask);
1474 } else if (flag == DISABLE_INTRS) {
20346722
K
1475 /*
1476 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1477 * register.
1478 */
1479 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1480 temp64 = readq(&bar0->general_int_mask);
1481 val64 |= temp64;
1482 writeq(val64, &bar0->general_int_mask);
1483 }
1484 }
1485}
1486
5e25b9dd 1487static int check_prc_pcc_state(u64 val64, int flag, int rev_id)
20346722
K
1488{
1489 int ret = 0;
1490
1491 if (flag == FALSE) {
5e25b9dd
K
1492 if (rev_id >= 4) {
1493 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1494 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1495 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1496 ret = 1;
1497 }
1498 } else {
1499 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1500 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1501 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1502 ret = 1;
1503 }
20346722
K
1504 }
1505 } else {
5e25b9dd
K
1506 if (rev_id >= 4) {
1507 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1508 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1509 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1510 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1511 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1512 ret = 1;
1513 }
1514 } else {
1515 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1516 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1517 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1518 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1519 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1520 ret = 1;
1521 }
20346722
K
1522 }
1523 }
1524
1525 return ret;
1526}
1527/**
1528 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4
LT
1529 * @val64 : Value read from adapter status register.
1530 * @flag : indicates if the adapter enable bit was ever written once
1531 * before.
1532 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1533 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1534 * differs and the calling function passes the input argument flag to
1535 * indicate this.
20346722 1536 * Return: 1 If xena is quiescence
1da177e4
LT
1537 * 0 If Xena is not quiescence
1538 */
1539
20346722 1540static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1da177e4
LT
1541{
1542 int ret = 0;
1543 u64 tmp64 = ~((u64) val64);
5e25b9dd 1544 int rev_id = get_xena_rev_id(sp->pdev);
1da177e4
LT
1545
1546 if (!
1547 (tmp64 &
1548 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1549 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1550 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1551 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1552 ADAPTER_STATUS_P_PLL_LOCK))) {
5e25b9dd 1553 ret = check_prc_pcc_state(val64, flag, rev_id);
1da177e4
LT
1554 }
1555
1556 return ret;
1557}
1558
1559/**
1560 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1561 * @sp: Pointer to device specifc structure
20346722 1562 * Description :
1da177e4
LT
1563 * New procedure to clear mac address reading problems on Alpha platforms
1564 *
1565 */
1566
20346722 1567void fix_mac_address(nic_t * sp)
1da177e4
LT
1568{
1569 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1570 u64 val64;
1571 int i = 0;
1572
1573 while (fix_mac[i] != END_SIGN) {
1574 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1575 udelay(10);
1da177e4
LT
1576 val64 = readq(&bar0->gpio_control);
1577 }
1578}
1579
1580/**
20346722 1581 * start_nic - Turns the device on
1da177e4 1582 * @nic : device private variable.
20346722
K
1583 * Description:
1584 * This function actually turns the device on. Before this function is
1585 * called,all Registers are configured from their reset states
1586 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1587 * calling this function, the device interrupts are cleared and the NIC is
1588 * literally switched on by writing into the adapter control register.
20346722 1589 * Return Value:
1da177e4
LT
1590 * SUCCESS on success and -1 on failure.
1591 */
1592
1593static int start_nic(struct s2io_nic *nic)
1594{
1595 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1596 struct net_device *dev = nic->dev;
1597 register u64 val64 = 0;
20346722
K
1598 u16 interruptible;
1599 u16 subid, i;
1da177e4
LT
1600 mac_info_t *mac_control;
1601 struct config_param *config;
1602
1603 mac_control = &nic->mac_control;
1604 config = &nic->config;
1605
1606 /* PRC Initialization and configuration */
1607 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1608 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1609 &bar0->prc_rxd0_n[i]);
1610
1611 val64 = readq(&bar0->prc_ctrl_n[i]);
1612#ifndef CONFIG_2BUFF_MODE
1613 val64 |= PRC_CTRL_RC_ENABLED;
1614#else
1615 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1616#endif
1617 writeq(val64, &bar0->prc_ctrl_n[i]);
1618 }
1619
1620#ifdef CONFIG_2BUFF_MODE
1621 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1622 val64 = readq(&bar0->rx_pa_cfg);
1623 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1624 writeq(val64, &bar0->rx_pa_cfg);
1625#endif
1626
20346722 1627 /*
1da177e4
LT
1628 * Enabling MC-RLDRAM. After enabling the device, we timeout
1629 * for around 100ms, which is approximately the time required
1630 * for the device to be ready for operation.
1631 */
1632 val64 = readq(&bar0->mc_rldram_mrs);
1633 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1634 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1635 val64 = readq(&bar0->mc_rldram_mrs);
1636
20346722 1637 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
1638
1639 /* Enabling ECC Protection. */
1640 val64 = readq(&bar0->adapter_control);
1641 val64 &= ~ADAPTER_ECC_EN;
1642 writeq(val64, &bar0->adapter_control);
1643
20346722
K
1644 /*
1645 * Clearing any possible Link state change interrupts that
1da177e4
LT
1646 * could have popped up just before Enabling the card.
1647 */
1648 val64 = readq(&bar0->mac_rmac_err_reg);
1649 if (val64)
1650 writeq(val64, &bar0->mac_rmac_err_reg);
1651
20346722
K
1652 /*
1653 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
1654 * it.
1655 */
1656 val64 = readq(&bar0->adapter_status);
20346722 1657 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
1658 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1659 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1660 (unsigned long long) val64);
1661 return FAILURE;
1662 }
1663
1664 /* Enable select interrupts */
1665 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
5e25b9dd 1666 RX_MAC_INTR | MC_INTR;
1da177e4
LT
1667 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1668
20346722 1669 /*
1da177e4 1670 * With some switches, link might be already up at this point.
20346722
K
1671 * Because of this weird behavior, when we enable laser,
1672 * we may not get link. We need to handle this. We cannot
1673 * figure out which switch is misbehaving. So we are forced to
1674 * make a global change.
1da177e4
LT
1675 */
1676
1677 /* Enabling Laser. */
1678 val64 = readq(&bar0->adapter_control);
1679 val64 |= ADAPTER_EOI_TX_ON;
1680 writeq(val64, &bar0->adapter_control);
1681
1682 /* SXE-002: Initialize link and activity LED */
1683 subid = nic->pdev->subsystem_device;
1684 if ((subid & 0xFF) >= 0x07) {
1685 val64 = readq(&bar0->gpio_control);
1686 val64 |= 0x0000800000000000ULL;
1687 writeq(val64, &bar0->gpio_control);
1688 val64 = 0x0411040400000000ULL;
20346722 1689 writeq(val64, (void __iomem *) ((u8 *) bar0 + 0x2700));
1da177e4
LT
1690 }
1691
20346722
K
1692 /*
1693 * Don't see link state interrupts on certain switches, so
1da177e4
LT
1694 * directly scheduling a link state task from here.
1695 */
1696 schedule_work(&nic->set_link_task);
1697
1da177e4
LT
1698 return SUCCESS;
1699}
1700
20346722
K
1701/**
1702 * free_tx_buffers - Free all queued Tx buffers
1da177e4 1703 * @nic : device private variable.
20346722 1704 * Description:
1da177e4 1705 * Free all queued Tx buffers.
20346722 1706 * Return Value: void
1da177e4
LT
1707*/
1708
1709static void free_tx_buffers(struct s2io_nic *nic)
1710{
1711 struct net_device *dev = nic->dev;
1712 struct sk_buff *skb;
1713 TxD_t *txdp;
1714 int i, j;
1715 mac_info_t *mac_control;
1716 struct config_param *config;
1ddc50d4 1717 int cnt = 0, frg_cnt;
1da177e4
LT
1718
1719 mac_control = &nic->mac_control;
1720 config = &nic->config;
1721
1722 for (i = 0; i < config->tx_fifo_num; i++) {
1723 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
20346722 1724 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
1da177e4
LT
1725 list_virt_addr;
1726 skb =
1727 (struct sk_buff *) ((unsigned long) txdp->
1728 Host_Control);
1729 if (skb == NULL) {
1ddc50d4
K
1730 memset(txdp, 0, sizeof(TxD_t) *
1731 config->max_txds);
1da177e4
LT
1732 continue;
1733 }
1ddc50d4
K
1734 frg_cnt = skb_shinfo(skb)->nr_frags;
1735 pci_unmap_single(nic->pdev, (dma_addr_t)
1736 txdp->Buffer_Pointer,
1737 skb->len - skb->data_len,
1738 PCI_DMA_TODEVICE);
1739 if (frg_cnt) {
1740 TxD_t *temp;
1741 temp = txdp;
1742 txdp++;
1743 for (j = 0; j < frg_cnt; j++, txdp++) {
1744 skb_frag_t *frag =
1745 &skb_shinfo(skb)->frags[j];
1746 pci_unmap_page(nic->pdev,
1747 (dma_addr_t)
1748 txdp->
1749 Buffer_Pointer,
1750 frag->size,
1751 PCI_DMA_TODEVICE);
1752 }
1753 txdp = temp;
1754 }
1da177e4 1755 dev_kfree_skb(skb);
1ddc50d4 1756 memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
1da177e4
LT
1757 cnt++;
1758 }
1759 DBG_PRINT(INTR_DBG,
1760 "%s:forcibly freeing %d skbs on FIFO%d\n",
1761 dev->name, cnt, i);
20346722
K
1762 mac_control->fifos[i].tx_curr_get_info.offset = 0;
1763 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
1764 }
1765}
1766
20346722
K
1767/**
1768 * stop_nic - To stop the nic
1da177e4 1769 * @nic ; device private variable.
20346722
K
1770 * Description:
1771 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
1772 * function does. This function is called to stop the device.
1773 * Return Value:
1774 * void.
1775 */
1776
1777static void stop_nic(struct s2io_nic *nic)
1778{
1779 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1780 register u64 val64 = 0;
1781 u16 interruptible, i;
1782 mac_info_t *mac_control;
1783 struct config_param *config;
1784
1785 mac_control = &nic->mac_control;
1786 config = &nic->config;
1787
1788 /* Disable all interrupts */
1789 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
5e25b9dd 1790 RX_MAC_INTR | MC_INTR;
1da177e4
LT
1791 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
1792
1793 /* Disable PRCs */
1794 for (i = 0; i < config->rx_ring_num; i++) {
1795 val64 = readq(&bar0->prc_ctrl_n[i]);
1796 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
1797 writeq(val64, &bar0->prc_ctrl_n[i]);
1798 }
1799}
1800
20346722
K
1801/**
1802 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 1803 * @nic: device private variable
20346722
K
1804 * @ring_no: ring number
1805 * Description:
1da177e4
LT
1806 * The function allocates Rx side skbs and puts the physical
1807 * address of these buffers into the RxD buffer pointers, so that the NIC
1808 * can DMA the received frame into these locations.
1809 * The NIC supports 3 receive modes, viz
1810 * 1. single buffer,
1811 * 2. three buffer and
1812 * 3. Five buffer modes.
20346722
K
1813 * Each mode defines how many fragments the received frame will be split
1814 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
1815 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
1816 * is split into 3 fragments. As of now only single buffer mode is
1817 * supported.
1818 * Return Value:
1819 * SUCCESS on success or an appropriate -ve value on failure.
1820 */
1821
20346722 1822int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
1823{
1824 struct net_device *dev = nic->dev;
1825 struct sk_buff *skb;
1826 RxD_t *rxdp;
1827 int off, off1, size, block_no, block_no1;
1828 int offset, offset1;
1829 u32 alloc_tab = 0;
20346722 1830 u32 alloc_cnt;
1da177e4
LT
1831 mac_info_t *mac_control;
1832 struct config_param *config;
1833#ifdef CONFIG_2BUFF_MODE
1834 RxD_t *rxdpnext;
1835 int nextblk;
20346722 1836 u64 tmp;
1da177e4
LT
1837 buffAdd_t *ba;
1838 dma_addr_t rxdpphys;
1839#endif
1840#ifndef CONFIG_S2IO_NAPI
1841 unsigned long flags;
1842#endif
1843
1844 mac_control = &nic->mac_control;
1845 config = &nic->config;
20346722
K
1846 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
1847 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4
LT
1848 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
1849 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
1850
1851 while (alloc_tab < alloc_cnt) {
20346722 1852 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 1853 block_index;
20346722 1854 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
1da177e4 1855 block_index;
20346722
K
1856 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1857 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4
LT
1858#ifndef CONFIG_2BUFF_MODE
1859 offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
1860 offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
1861#else
1862 offset = block_no * (MAX_RXDS_PER_BLOCK) + off;
1863 offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1;
1864#endif
1865
20346722 1866 rxdp = mac_control->rings[ring_no].rx_blocks[block_no].
1da177e4
LT
1867 block_virt_addr + off;
1868 if ((offset == offset1) && (rxdp->Host_Control)) {
1869 DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name);
1870 DBG_PRINT(INTR_DBG, " info equated\n");
1871 goto end;
1872 }
1873#ifndef CONFIG_2BUFF_MODE
1874 if (rxdp->Control_1 == END_OF_BLOCK) {
20346722 1875 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 1876 block_index++;
20346722
K
1877 mac_control->rings[ring_no].rx_curr_put_info.
1878 block_index %= mac_control->rings[ring_no].block_count;
1879 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1880 block_index;
1da177e4
LT
1881 off++;
1882 off %= (MAX_RXDS_PER_BLOCK + 1);
20346722 1883 mac_control->rings[ring_no].rx_curr_put_info.offset =
1da177e4
LT
1884 off;
1885 rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2);
1886 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
1887 dev->name, rxdp);
1888 }
1889#ifndef CONFIG_S2IO_NAPI
1890 spin_lock_irqsave(&nic->put_lock, flags);
20346722 1891 mac_control->rings[ring_no].put_pos =
1da177e4
LT
1892 (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off;
1893 spin_unlock_irqrestore(&nic->put_lock, flags);
1894#endif
1895#else
1896 if (rxdp->Host_Control == END_OF_BLOCK) {
20346722 1897 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 1898 block_index++;
20346722
K
1899 mac_control->rings[ring_no].rx_curr_put_info.block_index
1900 %= mac_control->rings[ring_no].block_count;
1901 block_no = mac_control->rings[ring_no].rx_curr_put_info
1902 .block_index;
1da177e4
LT
1903 off = 0;
1904 DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n",
1905 dev->name, block_no,
1906 (unsigned long long) rxdp->Control_1);
20346722 1907 mac_control->rings[ring_no].rx_curr_put_info.offset =
1da177e4 1908 off;
20346722 1909 rxdp = mac_control->rings[ring_no].rx_blocks[block_no].
1da177e4
LT
1910 block_virt_addr;
1911 }
1912#ifndef CONFIG_S2IO_NAPI
1913 spin_lock_irqsave(&nic->put_lock, flags);
20346722 1914 mac_control->rings[ring_no].put_pos = (block_no *
1da177e4
LT
1915 (MAX_RXDS_PER_BLOCK + 1)) + off;
1916 spin_unlock_irqrestore(&nic->put_lock, flags);
1917#endif
1918#endif
1919
1920#ifndef CONFIG_2BUFF_MODE
1921 if (rxdp->Control_1 & RXD_OWN_XENA)
1922#else
1923 if (rxdp->Control_2 & BIT(0))
1924#endif
1925 {
20346722 1926 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4
LT
1927 offset = off;
1928 goto end;
1929 }
1930#ifdef CONFIG_2BUFF_MODE
20346722
K
1931 /*
1932 * RxDs Spanning cache lines will be replenished only
1933 * if the succeeding RxD is also owned by Host. It
1934 * will always be the ((8*i)+3) and ((8*i)+6)
1935 * descriptors for the 48 byte descriptor. The offending
1da177e4
LT
1936 * decsriptor is of-course the 3rd descriptor.
1937 */
20346722 1938 rxdpphys = mac_control->rings[ring_no].rx_blocks[block_no].
1da177e4
LT
1939 block_dma_addr + (off * sizeof(RxD_t));
1940 if (((u64) (rxdpphys)) % 128 > 80) {
20346722 1941 rxdpnext = mac_control->rings[ring_no].rx_blocks[block_no].
1da177e4
LT
1942 block_virt_addr + (off + 1);
1943 if (rxdpnext->Host_Control == END_OF_BLOCK) {
1944 nextblk = (block_no + 1) %
20346722
K
1945 (mac_control->rings[ring_no].block_count);
1946 rxdpnext = mac_control->rings[ring_no].rx_blocks
1da177e4
LT
1947 [nextblk].block_virt_addr;
1948 }
1949 if (rxdpnext->Control_2 & BIT(0))
1950 goto end;
1951 }
1952#endif
1953
1954#ifndef CONFIG_2BUFF_MODE
1955 skb = dev_alloc_skb(size + NET_IP_ALIGN);
1956#else
1957 skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4);
1958#endif
1959 if (!skb) {
1960 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
1961 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
1962 return -ENOMEM;
1963 }
1964#ifndef CONFIG_2BUFF_MODE
1965 skb_reserve(skb, NET_IP_ALIGN);
1966 memset(rxdp, 0, sizeof(RxD_t));
1967 rxdp->Buffer0_ptr = pci_map_single
1968 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
1969 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE);
1970 rxdp->Control_2 |= SET_BUFFER0_SIZE(size);
1971 rxdp->Host_Control = (unsigned long) (skb);
1972 rxdp->Control_1 |= RXD_OWN_XENA;
1973 off++;
1974 off %= (MAX_RXDS_PER_BLOCK + 1);
20346722 1975 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
1da177e4 1976#else
20346722 1977 ba = &mac_control->rings[ring_no].ba[block_no][off];
1da177e4 1978 skb_reserve(skb, BUF0_LEN);
689be439
DM
1979 tmp = ((unsigned long) skb->data & ALIGN_SIZE);
1980 if (tmp)
1981 skb_reserve(skb, (ALIGN_SIZE + 1) - tmp);
1da177e4
LT
1982
1983 memset(rxdp, 0, sizeof(RxD_t));
1984 rxdp->Buffer2_ptr = pci_map_single
1985 (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4,
1986 PCI_DMA_FROMDEVICE);
1987 rxdp->Buffer0_ptr =
1988 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
1989 PCI_DMA_FROMDEVICE);
1990 rxdp->Buffer1_ptr =
1991 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
1992 PCI_DMA_FROMDEVICE);
1993
1994 rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4);
1995 rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN);
1996 rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */
1997 rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */
1998 rxdp->Host_Control = (u64) ((unsigned long) (skb));
1999 rxdp->Control_1 |= RXD_OWN_XENA;
2000 off++;
20346722 2001 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
1da177e4 2002#endif
5e25b9dd 2003 rxdp->Control_2 |= SET_RXD_MARKER;
20346722 2004
1da177e4
LT
2005 atomic_inc(&nic->rx_bufs_left[ring_no]);
2006 alloc_tab++;
2007 }
2008
2009 end:
2010 return SUCCESS;
2011}
2012
2013/**
20346722 2014 * free_rx_buffers - Frees all Rx buffers
1da177e4 2015 * @sp: device private variable.
20346722 2016 * Description:
1da177e4
LT
2017 * This function will free all Rx buffers allocated by host.
2018 * Return Value:
2019 * NONE.
2020 */
2021
2022static void free_rx_buffers(struct s2io_nic *sp)
2023{
2024 struct net_device *dev = sp->dev;
2025 int i, j, blk = 0, off, buf_cnt = 0;
2026 RxD_t *rxdp;
2027 struct sk_buff *skb;
2028 mac_info_t *mac_control;
2029 struct config_param *config;
2030#ifdef CONFIG_2BUFF_MODE
2031 buffAdd_t *ba;
2032#endif
2033
2034 mac_control = &sp->mac_control;
2035 config = &sp->config;
2036
2037 for (i = 0; i < config->rx_ring_num; i++) {
2038 for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) {
2039 off = j % (MAX_RXDS_PER_BLOCK + 1);
20346722
K
2040 rxdp = mac_control->rings[i].rx_blocks[blk].
2041 block_virt_addr + off;
1da177e4
LT
2042
2043#ifndef CONFIG_2BUFF_MODE
2044 if (rxdp->Control_1 == END_OF_BLOCK) {
2045 rxdp =
2046 (RxD_t *) ((unsigned long) rxdp->
2047 Control_2);
2048 j++;
2049 blk++;
2050 }
2051#else
2052 if (rxdp->Host_Control == END_OF_BLOCK) {
2053 blk++;
2054 continue;
2055 }
2056#endif
2057
2058 if (!(rxdp->Control_1 & RXD_OWN_XENA)) {
2059 memset(rxdp, 0, sizeof(RxD_t));
2060 continue;
2061 }
2062
2063 skb =
2064 (struct sk_buff *) ((unsigned long) rxdp->
2065 Host_Control);
2066 if (skb) {
2067#ifndef CONFIG_2BUFF_MODE
2068 pci_unmap_single(sp->pdev, (dma_addr_t)
2069 rxdp->Buffer0_ptr,
2070 dev->mtu +
2071 HEADER_ETHERNET_II_802_3_SIZE
2072 + HEADER_802_2_SIZE +
2073 HEADER_SNAP_SIZE,
2074 PCI_DMA_FROMDEVICE);
2075#else
20346722 2076 ba = &mac_control->rings[i].ba[blk][off];
1da177e4
LT
2077 pci_unmap_single(sp->pdev, (dma_addr_t)
2078 rxdp->Buffer0_ptr,
2079 BUF0_LEN,
2080 PCI_DMA_FROMDEVICE);
2081 pci_unmap_single(sp->pdev, (dma_addr_t)
2082 rxdp->Buffer1_ptr,
2083 BUF1_LEN,
2084 PCI_DMA_FROMDEVICE);
2085 pci_unmap_single(sp->pdev, (dma_addr_t)
2086 rxdp->Buffer2_ptr,
2087 dev->mtu + BUF0_LEN + 4,
2088 PCI_DMA_FROMDEVICE);
2089#endif
2090 dev_kfree_skb(skb);
2091 atomic_dec(&sp->rx_bufs_left[i]);
2092 buf_cnt++;
2093 }
2094 memset(rxdp, 0, sizeof(RxD_t));
2095 }
20346722
K
2096 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2097 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2098 mac_control->rings[i].rx_curr_put_info.offset = 0;
2099 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2100 atomic_set(&sp->rx_bufs_left[i], 0);
2101 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2102 dev->name, buf_cnt, i);
2103 }
2104}
2105
2106/**
2107 * s2io_poll - Rx interrupt handler for NAPI support
2108 * @dev : pointer to the device structure.
20346722 2109 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2110 * during one pass through the 'Poll" function.
2111 * Description:
2112 * Comes into picture only if NAPI support has been incorporated. It does
2113 * the same thing that rx_intr_handler does, but not in a interrupt context
2114 * also It will process only a given number of packets.
2115 * Return value:
2116 * 0 on success and 1 if there are No Rx packets to be processed.
2117 */
2118
20346722 2119#if defined(CONFIG_S2IO_NAPI)
1da177e4
LT
2120static int s2io_poll(struct net_device *dev, int *budget)
2121{
2122 nic_t *nic = dev->priv;
20346722 2123 int pkt_cnt = 0, org_pkts_to_process;
1da177e4
LT
2124 mac_info_t *mac_control;
2125 struct config_param *config;
20346722
K
2126 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
2127 u64 val64;
2128 int i;
1da177e4 2129
7ba013ac 2130 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2131 mac_control = &nic->mac_control;
2132 config = &nic->config;
2133
20346722
K
2134 nic->pkts_to_process = *budget;
2135 if (nic->pkts_to_process > dev->quota)
2136 nic->pkts_to_process = dev->quota;
2137 org_pkts_to_process = nic->pkts_to_process;
1da177e4
LT
2138
2139 val64 = readq(&bar0->rx_traffic_int);
2140 writeq(val64, &bar0->rx_traffic_int);
2141
2142 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2143 rx_intr_handler(&mac_control->rings[i]);
2144 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2145 if (!nic->pkts_to_process) {
2146 /* Quota for the current iteration has been met */
2147 goto no_rx;
1da177e4 2148 }
1da177e4
LT
2149 }
2150 if (!pkt_cnt)
2151 pkt_cnt = 1;
2152
2153 dev->quota -= pkt_cnt;
2154 *budget -= pkt_cnt;
2155 netif_rx_complete(dev);
2156
2157 for (i = 0; i < config->rx_ring_num; i++) {
2158 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2159 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2160 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2161 break;
2162 }
2163 }
2164 /* Re enable the Rx interrupts. */
2165 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
7ba013ac 2166 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2167 return 0;
2168
20346722 2169no_rx:
1da177e4
LT
2170 dev->quota -= pkt_cnt;
2171 *budget -= pkt_cnt;
2172
2173 for (i = 0; i < config->rx_ring_num; i++) {
2174 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2175 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2176 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2177 break;
2178 }
2179 }
7ba013ac 2180 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2181 return 1;
2182}
20346722
K
2183#endif
2184
2185/**
1da177e4
LT
2186 * rx_intr_handler - Rx interrupt handler
2187 * @nic: device private variable.
20346722
K
2188 * Description:
2189 * If the interrupt is because of a received frame or if the
1da177e4 2190 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2191 * called. It picks out the RxD at which place the last Rx processing had
2192 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2193 * the offset.
2194 * Return Value:
2195 * NONE.
2196 */
20346722 2197static void rx_intr_handler(ring_info_t *ring_data)
1da177e4 2198{
20346722 2199 nic_t *nic = ring_data->nic;
1da177e4 2200 struct net_device *dev = (struct net_device *) nic->dev;
20346722 2201 int get_block, get_offset, put_block, put_offset, ring_bufs;
1da177e4
LT
2202 rx_curr_get_info_t get_info, put_info;
2203 RxD_t *rxdp;
2204 struct sk_buff *skb;
20346722
K
2205#ifndef CONFIG_S2IO_NAPI
2206 int pkt_cnt = 0;
1da177e4 2207#endif
7ba013ac
K
2208 spin_lock(&nic->rx_lock);
2209 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2210 DBG_PRINT(ERR_DBG, "%s: %s going down for reset\n",
2211 __FUNCTION__, dev->name);
2212 spin_unlock(&nic->rx_lock);
2213 }
2214
20346722
K
2215 get_info = ring_data->rx_curr_get_info;
2216 get_block = get_info.block_index;
2217 put_info = ring_data->rx_curr_put_info;
2218 put_block = put_info.block_index;
2219 ring_bufs = get_info.ring_len+1;
2220 rxdp = ring_data->rx_blocks[get_block].block_virt_addr +
1da177e4 2221 get_info.offset;
20346722
K
2222 get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
2223 get_info.offset;
2224#ifndef CONFIG_S2IO_NAPI
2225 spin_lock(&nic->put_lock);
2226 put_offset = ring_data->put_pos;
2227 spin_unlock(&nic->put_lock);
2228#else
2229 put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
2230 put_info.offset;
2231#endif
5e25b9dd
K
2232 while (RXD_IS_UP2DT(rxdp) &&
2233 (((get_offset + 1) % ring_bufs) != put_offset)) {
20346722
K
2234 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2235 if (skb == NULL) {
2236 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2237 dev->name);
2238 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2239 spin_unlock(&nic->rx_lock);
20346722 2240 return;
1da177e4 2241 }
20346722
K
2242#ifndef CONFIG_2BUFF_MODE
2243 pci_unmap_single(nic->pdev, (dma_addr_t)
2244 rxdp->Buffer0_ptr,
2245 dev->mtu +
2246 HEADER_ETHERNET_II_802_3_SIZE +
2247 HEADER_802_2_SIZE +
2248 HEADER_SNAP_SIZE,
2249 PCI_DMA_FROMDEVICE);
1da177e4 2250#else
20346722
K
2251 pci_unmap_single(nic->pdev, (dma_addr_t)
2252 rxdp->Buffer0_ptr,
2253 BUF0_LEN, PCI_DMA_FROMDEVICE);
2254 pci_unmap_single(nic->pdev, (dma_addr_t)
2255 rxdp->Buffer1_ptr,
2256 BUF1_LEN, PCI_DMA_FROMDEVICE);
2257 pci_unmap_single(nic->pdev, (dma_addr_t)
2258 rxdp->Buffer2_ptr,
2259 dev->mtu + BUF0_LEN + 4,
2260 PCI_DMA_FROMDEVICE);
2261#endif
2262 rx_osm_handler(ring_data, rxdp);
2263 get_info.offset++;
2264 ring_data->rx_curr_get_info.offset =
1da177e4 2265 get_info.offset;
20346722
K
2266 rxdp = ring_data->rx_blocks[get_block].block_virt_addr +
2267 get_info.offset;
2268 if (get_info.offset &&
2269 (!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
2270 get_info.offset = 0;
2271 ring_data->rx_curr_get_info.offset
2272 = get_info.offset;
2273 get_block++;
2274 get_block %= ring_data->block_count;
2275 ring_data->rx_curr_get_info.block_index
2276 = get_block;
2277 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2278 }
1da177e4 2279
20346722 2280 get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
1da177e4 2281 get_info.offset;
20346722
K
2282#ifdef CONFIG_S2IO_NAPI
2283 nic->pkts_to_process -= 1;
2284 if (!nic->pkts_to_process)
2285 break;
2286#else
2287 pkt_cnt++;
1da177e4
LT
2288 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2289 break;
20346722 2290#endif
1da177e4 2291 }
7ba013ac 2292 spin_unlock(&nic->rx_lock);
1da177e4 2293}
20346722
K
2294
2295/**
1da177e4
LT
2296 * tx_intr_handler - Transmit interrupt handler
2297 * @nic : device private variable
20346722
K
2298 * Description:
2299 * If an interrupt was raised to indicate DMA complete of the
2300 * Tx packet, this function is called. It identifies the last TxD
2301 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2302 * DMA'ed into the NICs internal memory.
2303 * Return Value:
2304 * NONE
2305 */
2306
20346722 2307static void tx_intr_handler(fifo_info_t *fifo_data)
1da177e4 2308{
20346722 2309 nic_t *nic = fifo_data->nic;
1da177e4
LT
2310 struct net_device *dev = (struct net_device *) nic->dev;
2311 tx_curr_get_info_t get_info, put_info;
2312 struct sk_buff *skb;
2313 TxD_t *txdlp;
1da177e4 2314 u16 j, frg_cnt;
1da177e4 2315
20346722
K
2316 get_info = fifo_data->tx_curr_get_info;
2317 put_info = fifo_data->tx_curr_put_info;
2318 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2319 list_virt_addr;
2320 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2321 (get_info.offset != put_info.offset) &&
2322 (txdlp->Host_Control)) {
2323 /* Check for TxD errors */
2324 if (txdlp->Control_1 & TXD_T_CODE) {
2325 unsigned long long err;
2326 err = txdlp->Control_1 & TXD_T_CODE;
2327 DBG_PRINT(ERR_DBG, "***TxD error %llx\n",
2328 err);
2329 }
1da177e4 2330
20346722
K
2331 skb = (struct sk_buff *) ((unsigned long)
2332 txdlp->Host_Control);
2333 if (skb == NULL) {
2334 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2335 __FUNCTION__);
2336 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2337 return;
2338 }
2339
2340 frg_cnt = skb_shinfo(skb)->nr_frags;
2341 nic->tx_pkt_count++;
2342
2343 pci_unmap_single(nic->pdev, (dma_addr_t)
2344 txdlp->Buffer_Pointer,
2345 skb->len - skb->data_len,
2346 PCI_DMA_TODEVICE);
2347 if (frg_cnt) {
2348 TxD_t *temp;
2349 temp = txdlp;
2350 txdlp++;
2351 for (j = 0; j < frg_cnt; j++, txdlp++) {
2352 skb_frag_t *frag =
2353 &skb_shinfo(skb)->frags[j];
2354 pci_unmap_page(nic->pdev,
2355 (dma_addr_t)
2356 txdlp->
2357 Buffer_Pointer,
2358 frag->size,
2359 PCI_DMA_TODEVICE);
1da177e4 2360 }
20346722 2361 txdlp = temp;
1da177e4 2362 }
20346722
K
2363 memset(txdlp, 0,
2364 (sizeof(TxD_t) * fifo_data->max_txds));
2365
2366 /* Updating the statistics block */
20346722
K
2367 nic->stats.tx_bytes += skb->len;
2368 dev_kfree_skb_irq(skb);
2369
2370 get_info.offset++;
2371 get_info.offset %= get_info.fifo_len + 1;
2372 txdlp = (TxD_t *) fifo_data->list_info
2373 [get_info.offset].list_virt_addr;
2374 fifo_data->tx_curr_get_info.offset =
2375 get_info.offset;
1da177e4
LT
2376 }
2377
2378 spin_lock(&nic->tx_lock);
2379 if (netif_queue_stopped(dev))
2380 netif_wake_queue(dev);
2381 spin_unlock(&nic->tx_lock);
2382}
2383
20346722 2384/**
1da177e4
LT
2385 * alarm_intr_handler - Alarm Interrrupt handler
2386 * @nic: device private variable
20346722 2387 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 2388 * complete, this function is called. If the interrupt was to indicate
20346722
K
2389 * a loss of link, the OSM link status handler is invoked for any other
2390 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
2391 * and a H/W reset is issued.
2392 * Return Value:
2393 * NONE
2394*/
2395
2396static void alarm_intr_handler(struct s2io_nic *nic)
2397{
2398 struct net_device *dev = (struct net_device *) nic->dev;
2399 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2400 register u64 val64 = 0, err_reg = 0;
2401
2402 /* Handling link status change error Intr */
2403 err_reg = readq(&bar0->mac_rmac_err_reg);
2404 writeq(err_reg, &bar0->mac_rmac_err_reg);
2405 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2406 schedule_work(&nic->set_link_task);
2407 }
2408
5e25b9dd
K
2409 /* Handling Ecc errors */
2410 val64 = readq(&bar0->mc_err_reg);
2411 writeq(val64, &bar0->mc_err_reg);
2412 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2413 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
2414 nic->mac_control.stats_info->sw_stat.
2415 double_ecc_errs++;
5e25b9dd
K
2416 DBG_PRINT(ERR_DBG, "%s: Device indicates ",
2417 dev->name);
2418 DBG_PRINT(ERR_DBG, "double ECC error!!\n");
2419 netif_stop_queue(dev);
2420 schedule_work(&nic->rst_timer_task);
2421 } else {
7ba013ac
K
2422 nic->mac_control.stats_info->sw_stat.
2423 single_ecc_errs++;
5e25b9dd
K
2424 }
2425 }
2426
1da177e4
LT
2427 /* In case of a serious error, the device will be Reset. */
2428 val64 = readq(&bar0->serr_source);
2429 if (val64 & SERR_SOURCE_ANY) {
2430 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2431 DBG_PRINT(ERR_DBG, "serious error!!\n");
2432 netif_stop_queue(dev);
2433 schedule_work(&nic->rst_timer_task);
2434 }
2435
2436 /*
2437 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2438 * Error occurs, the adapter will be recycled by disabling the
20346722 2439 * adapter enable bit and enabling it again after the device
1da177e4
LT
2440 * becomes Quiescent.
2441 */
2442 val64 = readq(&bar0->pcc_err_reg);
2443 writeq(val64, &bar0->pcc_err_reg);
2444 if (val64 & PCC_FB_ECC_DB_ERR) {
2445 u64 ac = readq(&bar0->adapter_control);
2446 ac &= ~(ADAPTER_CNTL_EN);
2447 writeq(ac, &bar0->adapter_control);
2448 ac = readq(&bar0->adapter_control);
2449 schedule_work(&nic->set_link_task);
2450 }
2451
2452 /* Other type of interrupts are not being handled now, TODO */
2453}
2454
20346722 2455/**
1da177e4 2456 * wait_for_cmd_complete - waits for a command to complete.
20346722 2457 * @sp : private member of the device structure, which is a pointer to the
1da177e4 2458 * s2io_nic structure.
20346722
K
2459 * Description: Function that waits for a command to Write into RMAC
2460 * ADDR DATA registers to be completed and returns either success or
2461 * error depending on whether the command was complete or not.
1da177e4
LT
2462 * Return value:
2463 * SUCCESS on success and FAILURE on failure.
2464 */
2465
20346722 2466int wait_for_cmd_complete(nic_t * sp)
1da177e4
LT
2467{
2468 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2469 int ret = FAILURE, cnt = 0;
2470 u64 val64;
2471
2472 while (TRUE) {
2473 val64 = readq(&bar0->rmac_addr_cmd_mem);
2474 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2475 ret = SUCCESS;
2476 break;
2477 }
2478 msleep(50);
2479 if (cnt++ > 10)
2480 break;
2481 }
2482
2483 return ret;
2484}
2485
20346722
K
2486/**
2487 * s2io_reset - Resets the card.
1da177e4
LT
2488 * @sp : private member of the device structure.
2489 * Description: Function to Reset the card. This function then also
20346722 2490 * restores the previously saved PCI configuration space registers as
1da177e4
LT
2491 * the card reset also resets the configuration space.
2492 * Return value:
2493 * void.
2494 */
2495
20346722 2496void s2io_reset(nic_t * sp)
1da177e4
LT
2497{
2498 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2499 u64 val64;
5e25b9dd 2500 u16 subid, pci_cmd;
1da177e4
LT
2501
2502 val64 = SW_RESET_ALL;
2503 writeq(val64, &bar0->sw_reset);
2504
20346722
K
2505 /*
2506 * At this stage, if the PCI write is indeed completed, the
2507 * card is reset and so is the PCI Config space of the device.
2508 * So a read cannot be issued at this stage on any of the
1da177e4
LT
2509 * registers to ensure the write into "sw_reset" register
2510 * has gone through.
2511 * Question: Is there any system call that will explicitly force
2512 * all the write commands still pending on the bus to be pushed
2513 * through?
2514 * As of now I'am just giving a 250ms delay and hoping that the
2515 * PCI write to sw_reset register is done by this time.
2516 */
2517 msleep(250);
2518
2519 /* Restore the PCI state saved during initializarion. */
2520 pci_restore_state(sp->pdev);
20346722 2521
1da177e4
LT
2522 s2io_init_pci(sp);
2523
2524 msleep(250);
2525
20346722
K
2526 /* Set swapper to enable I/O register access */
2527 s2io_set_swapper(sp);
2528
5e25b9dd
K
2529 /* Clear certain PCI/PCI-X fields after reset */
2530 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
2531 pci_cmd &= 0x7FFF; /* Clear parity err detect bit */
2532 pci_write_config_word(sp->pdev, PCI_COMMAND, pci_cmd);
2533
2534 val64 = readq(&bar0->txpic_int_reg);
2535 val64 &= ~BIT(62); /* Clearing PCI_STATUS error reflected here */
2536 writeq(val64, &bar0->txpic_int_reg);
2537
2538 /* Clearing PCIX Ecc status register */
2539 pci_write_config_dword(sp->pdev, 0x68, 0);
2540
20346722
K
2541 /* Reset device statistics maintained by OS */
2542 memset(&sp->stats, 0, sizeof (struct net_device_stats));
2543
1da177e4
LT
2544 /* SXE-002: Configure link and activity LED to turn it off */
2545 subid = sp->pdev->subsystem_device;
2546 if ((subid & 0xFF) >= 0x07) {
2547 val64 = readq(&bar0->gpio_control);
2548 val64 |= 0x0000800000000000ULL;
2549 writeq(val64, &bar0->gpio_control);
2550 val64 = 0x0411040400000000ULL;
20346722 2551 writeq(val64, (void __iomem *) ((u8 *) bar0 + 0x2700));
1da177e4
LT
2552 }
2553
2554 sp->device_enabled_once = FALSE;
2555}
2556
2557/**
20346722
K
2558 * s2io_set_swapper - to set the swapper controle on the card
2559 * @sp : private member of the device structure,
1da177e4 2560 * pointer to the s2io_nic structure.
20346722 2561 * Description: Function to set the swapper control on the card
1da177e4
LT
2562 * correctly depending on the 'endianness' of the system.
2563 * Return value:
2564 * SUCCESS on success and FAILURE on failure.
2565 */
2566
20346722 2567int s2io_set_swapper(nic_t * sp)
1da177e4
LT
2568{
2569 struct net_device *dev = sp->dev;
2570 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2571 u64 val64, valt, valr;
2572
20346722 2573 /*
1da177e4
LT
2574 * Set proper endian settings and verify the same by reading
2575 * the PIF Feed-back register.
2576 */
2577
2578 val64 = readq(&bar0->pif_rd_swapper_fb);
2579 if (val64 != 0x0123456789ABCDEFULL) {
2580 int i = 0;
2581 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
2582 0x8100008181000081ULL, /* FE=1, SE=0 */
2583 0x4200004242000042ULL, /* FE=0, SE=1 */
2584 0}; /* FE=0, SE=0 */
2585
2586 while(i<4) {
2587 writeq(value[i], &bar0->swapper_ctrl);
2588 val64 = readq(&bar0->pif_rd_swapper_fb);
2589 if (val64 == 0x0123456789ABCDEFULL)
2590 break;
2591 i++;
2592 }
2593 if (i == 4) {
2594 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2595 dev->name);
2596 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2597 (unsigned long long) val64);
2598 return FAILURE;
2599 }
2600 valr = value[i];
2601 } else {
2602 valr = readq(&bar0->swapper_ctrl);
2603 }
2604
2605 valt = 0x0123456789ABCDEFULL;
2606 writeq(valt, &bar0->xmsi_address);
2607 val64 = readq(&bar0->xmsi_address);
2608
2609 if(val64 != valt) {
2610 int i = 0;
2611 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
2612 0x0081810000818100ULL, /* FE=1, SE=0 */
2613 0x0042420000424200ULL, /* FE=0, SE=1 */
2614 0}; /* FE=0, SE=0 */
2615
2616 while(i<4) {
2617 writeq((value[i] | valr), &bar0->swapper_ctrl);
2618 writeq(valt, &bar0->xmsi_address);
2619 val64 = readq(&bar0->xmsi_address);
2620 if(val64 == valt)
2621 break;
2622 i++;
2623 }
2624 if(i == 4) {
20346722 2625 unsigned long long x = val64;
1da177e4 2626 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 2627 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
2628 return FAILURE;
2629 }
2630 }
2631 val64 = readq(&bar0->swapper_ctrl);
2632 val64 &= 0xFFFF000000000000ULL;
2633
2634#ifdef __BIG_ENDIAN
20346722
K
2635 /*
2636 * The device by default set to a big endian format, so a
1da177e4
LT
2637 * big endian driver need not set anything.
2638 */
2639 val64 |= (SWAPPER_CTRL_TXP_FE |
2640 SWAPPER_CTRL_TXP_SE |
2641 SWAPPER_CTRL_TXD_R_FE |
2642 SWAPPER_CTRL_TXD_W_FE |
2643 SWAPPER_CTRL_TXF_R_FE |
2644 SWAPPER_CTRL_RXD_R_FE |
2645 SWAPPER_CTRL_RXD_W_FE |
2646 SWAPPER_CTRL_RXF_W_FE |
2647 SWAPPER_CTRL_XMSI_FE |
2648 SWAPPER_CTRL_XMSI_SE |
2649 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
2650 writeq(val64, &bar0->swapper_ctrl);
2651#else
20346722 2652 /*
1da177e4 2653 * Initially we enable all bits to make it accessible by the
20346722 2654 * driver, then we selectively enable only those bits that
1da177e4
LT
2655 * we want to set.
2656 */
2657 val64 |= (SWAPPER_CTRL_TXP_FE |
2658 SWAPPER_CTRL_TXP_SE |
2659 SWAPPER_CTRL_TXD_R_FE |
2660 SWAPPER_CTRL_TXD_R_SE |
2661 SWAPPER_CTRL_TXD_W_FE |
2662 SWAPPER_CTRL_TXD_W_SE |
2663 SWAPPER_CTRL_TXF_R_FE |
2664 SWAPPER_CTRL_RXD_R_FE |
2665 SWAPPER_CTRL_RXD_R_SE |
2666 SWAPPER_CTRL_RXD_W_FE |
2667 SWAPPER_CTRL_RXD_W_SE |
2668 SWAPPER_CTRL_RXF_W_FE |
2669 SWAPPER_CTRL_XMSI_FE |
2670 SWAPPER_CTRL_XMSI_SE |
2671 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
2672 writeq(val64, &bar0->swapper_ctrl);
2673#endif
2674 val64 = readq(&bar0->swapper_ctrl);
2675
20346722
K
2676 /*
2677 * Verifying if endian settings are accurate by reading a
1da177e4
LT
2678 * feedback register.
2679 */
2680 val64 = readq(&bar0->pif_rd_swapper_fb);
2681 if (val64 != 0x0123456789ABCDEFULL) {
2682 /* Endian settings are incorrect, calls for another dekko. */
2683 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2684 dev->name);
2685 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2686 (unsigned long long) val64);
2687 return FAILURE;
2688 }
2689
2690 return SUCCESS;
2691}
2692
2693/* ********************************************************* *
2694 * Functions defined below concern the OS part of the driver *
2695 * ********************************************************* */
2696
20346722 2697/**
1da177e4
LT
2698 * s2io_open - open entry point of the driver
2699 * @dev : pointer to the device structure.
2700 * Description:
2701 * This function is the open entry point of the driver. It mainly calls a
2702 * function to allocate Rx buffers and inserts them into the buffer
20346722 2703 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
2704 * Return value:
2705 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2706 * file on failure.
2707 */
2708
20346722 2709int s2io_open(struct net_device *dev)
1da177e4
LT
2710{
2711 nic_t *sp = dev->priv;
2712 int err = 0;
2713
20346722
K
2714 /*
2715 * Make sure you have link off by default every time
1da177e4
LT
2716 * Nic is initialized
2717 */
2718 netif_carrier_off(dev);
7ba013ac 2719 sp->last_link_state = 0; /* Unkown link state */
1da177e4
LT
2720
2721 /* Initialize H/W and enable interrupts */
2722 if (s2io_card_up(sp)) {
2723 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
2724 dev->name);
20346722
K
2725 err = -ENODEV;
2726 goto hw_init_failed;
1da177e4
LT
2727 }
2728
2729 /* After proper initialization of H/W, register ISR */
20346722 2730 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
1da177e4
LT
2731 sp->name, dev);
2732 if (err) {
1da177e4
LT
2733 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
2734 dev->name);
20346722 2735 goto isr_registration_failed;
1da177e4
LT
2736 }
2737
2738 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
2739 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
20346722
K
2740 err = -ENODEV;
2741 goto setting_mac_address_failed;
1da177e4
LT
2742 }
2743
2744 netif_start_queue(dev);
2745 return 0;
20346722
K
2746
2747setting_mac_address_failed:
2748 free_irq(sp->pdev->irq, dev);
2749isr_registration_failed:
25fff88e 2750 del_timer_sync(&sp->alarm_timer);
20346722
K
2751 s2io_reset(sp);
2752hw_init_failed:
2753 return err;
1da177e4
LT
2754}
2755
2756/**
2757 * s2io_close -close entry point of the driver
2758 * @dev : device pointer.
2759 * Description:
2760 * This is the stop entry point of the driver. It needs to undo exactly
2761 * whatever was done by the open entry point,thus it's usually referred to
2762 * as the close function.Among other things this function mainly stops the
2763 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
2764 * Return value:
2765 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2766 * file on failure.
2767 */
2768
20346722 2769int s2io_close(struct net_device *dev)
1da177e4
LT
2770{
2771 nic_t *sp = dev->priv;
1da177e4
LT
2772 flush_scheduled_work();
2773 netif_stop_queue(dev);
2774 /* Reset card, kill tasklet and free Tx and Rx buffers. */
2775 s2io_card_down(sp);
2776
20346722 2777 free_irq(sp->pdev->irq, dev);
1da177e4
LT
2778 sp->device_close_flag = TRUE; /* Device is shut down. */
2779 return 0;
2780}
2781
2782/**
2783 * s2io_xmit - Tx entry point of te driver
2784 * @skb : the socket buffer containing the Tx data.
2785 * @dev : device pointer.
2786 * Description :
2787 * This function is the Tx entry point of the driver. S2IO NIC supports
2788 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
2789 * NOTE: when device cant queue the pkt,just the trans_start variable will
2790 * not be upadted.
2791 * Return value:
2792 * 0 on success & 1 on failure.
2793 */
2794
20346722 2795int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2796{
2797 nic_t *sp = dev->priv;
2798 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
2799 register u64 val64;
2800 TxD_t *txdp;
2801 TxFIFO_element_t __iomem *tx_fifo;
2802 unsigned long flags;
2803#ifdef NETIF_F_TSO
2804 int mss;
2805#endif
2806 mac_info_t *mac_control;
2807 struct config_param *config;
1da177e4
LT
2808
2809 mac_control = &sp->mac_control;
2810 config = &sp->config;
2811
20346722 2812 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 2813 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 2814 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 2815 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
2816 dev->name);
2817 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
2818 dev_kfree_skb(skb);
2819 return 0;
1da177e4
LT
2820 }
2821
2822 queue = 0;
1da177e4 2823
20346722
K
2824 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
2825 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
2826 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
2827 list_virt_addr;
2828
2829 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4
LT
2830 /* Avoid "put" pointer going beyond "get" pointer */
2831 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
2832 DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n");
2833 netif_stop_queue(dev);
2834 dev_kfree_skb(skb);
2835 spin_unlock_irqrestore(&sp->tx_lock, flags);
2836 return 0;
2837 }
2838#ifdef NETIF_F_TSO
2839 mss = skb_shinfo(skb)->tso_size;
2840 if (mss) {
2841 txdp->Control_1 |= TXD_TCP_LSO_EN;
2842 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
2843 }
2844#endif
2845
2846 frg_cnt = skb_shinfo(skb)->nr_frags;
2847 frg_len = skb->len - skb->data_len;
2848
1da177e4
LT
2849 txdp->Buffer_Pointer = pci_map_single
2850 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
20346722 2851 txdp->Host_Control = (unsigned long) skb;
1da177e4
LT
2852 if (skb->ip_summed == CHECKSUM_HW) {
2853 txdp->Control_2 |=
2854 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
2855 TXD_TX_CKO_UDP_EN);
2856 }
2857
2858 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 2859
1da177e4
LT
2860 txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
2861 TXD_GATHER_CODE_FIRST);
2862 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2863
2864 /* For fragmented SKB. */
2865 for (i = 0; i < frg_cnt; i++) {
2866 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2867 txdp++;
2868 txdp->Buffer_Pointer = (u64) pci_map_page
2869 (sp->pdev, frag->page, frag->page_offset,
2870 frag->size, PCI_DMA_TODEVICE);
2871 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
2872 }
2873 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
2874
2875 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 2876 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
2877 writeq(val64, &tx_fifo->TxDL_Pointer);
2878
fe113638
K
2879 wmb();
2880
1da177e4
LT
2881 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
2882 TX_FIFO_LAST_LIST);
20346722 2883
1da177e4
LT
2884#ifdef NETIF_F_TSO
2885 if (mss)
2886 val64 |= TX_FIFO_SPECIAL_FUNC;
2887#endif
2888 writeq(val64, &tx_fifo->List_Control);
2889
1da177e4 2890 put_off++;
20346722
K
2891 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
2892 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
2893
2894 /* Avoid "put" pointer going beyond "get" pointer */
2895 if (((put_off + 1) % queue_len) == get_off) {
2896 DBG_PRINT(TX_DBG,
2897 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
2898 put_off, get_off);
2899 netif_stop_queue(dev);
2900 }
2901
2902 dev->trans_start = jiffies;
2903 spin_unlock_irqrestore(&sp->tx_lock, flags);
2904
2905 return 0;
2906}
2907
25fff88e
K
2908static void
2909s2io_alarm_handle(unsigned long data)
2910{
2911 nic_t *sp = (nic_t *)data;
2912
2913 alarm_intr_handler(sp);
2914 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
2915}
2916
1da177e4
LT
2917/**
2918 * s2io_isr - ISR handler of the device .
2919 * @irq: the irq of the device.
2920 * @dev_id: a void pointer to the dev structure of the NIC.
2921 * @pt_regs: pointer to the registers pushed on the stack.
20346722
K
2922 * Description: This function is the ISR handler of the device. It
2923 * identifies the reason for the interrupt and calls the relevant
2924 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
2925 * recv buffers, if their numbers are below the panic value which is
2926 * presently set to 25% of the original number of rcv buffers allocated.
2927 * Return value:
20346722 2928 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
2929 * IRQ_NONE: will be returned if interrupt is not from our device
2930 */
2931static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
2932{
2933 struct net_device *dev = (struct net_device *) dev_id;
2934 nic_t *sp = dev->priv;
2935 XENA_dev_config_t __iomem *bar0 = sp->bar0;
20346722 2936 int i;
fe113638 2937 u64 reason = 0, val64;
1da177e4
LT
2938 mac_info_t *mac_control;
2939 struct config_param *config;
2940
7ba013ac 2941 atomic_inc(&sp->isr_cnt);
1da177e4
LT
2942 mac_control = &sp->mac_control;
2943 config = &sp->config;
2944
20346722 2945 /*
1da177e4
LT
2946 * Identify the cause for interrupt and call the appropriate
2947 * interrupt handler. Causes for the interrupt could be;
2948 * 1. Rx of packet.
2949 * 2. Tx complete.
2950 * 3. Link down.
20346722 2951 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
2952 */
2953 reason = readq(&bar0->general_int_status);
2954
2955 if (!reason) {
2956 /* The interrupt was not raised by Xena. */
7ba013ac 2957 atomic_dec(&sp->isr_cnt);
1da177e4
LT
2958 return IRQ_NONE;
2959 }
2960
1da177e4
LT
2961#ifdef CONFIG_S2IO_NAPI
2962 if (reason & GEN_INTR_RXTRAFFIC) {
2963 if (netif_rx_schedule_prep(dev)) {
2964 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
2965 DISABLE_INTRS);
2966 __netif_rx_schedule(dev);
2967 }
2968 }
2969#else
2970 /* If Intr is because of Rx Traffic */
2971 if (reason & GEN_INTR_RXTRAFFIC) {
fe113638
K
2972 /*
2973 * rx_traffic_int reg is an R1 register, writing all 1's
2974 * will ensure that the actual interrupt causing bit get's
2975 * cleared and hence a read can be avoided.
2976 */
2977 val64 = 0xFFFFFFFFFFFFFFFFULL;
2978 writeq(val64, &bar0->rx_traffic_int);
20346722
K
2979 for (i = 0; i < config->rx_ring_num; i++) {
2980 rx_intr_handler(&mac_control->rings[i]);
2981 }
1da177e4
LT
2982 }
2983#endif
2984
20346722
K
2985 /* If Intr is because of Tx Traffic */
2986 if (reason & GEN_INTR_TXTRAFFIC) {
fe113638
K
2987 /*
2988 * tx_traffic_int reg is an R1 register, writing all 1's
2989 * will ensure that the actual interrupt causing bit get's
2990 * cleared and hence a read can be avoided.
2991 */
2992 val64 = 0xFFFFFFFFFFFFFFFFULL;
2993 writeq(val64, &bar0->tx_traffic_int);
2994
20346722
K
2995 for (i = 0; i < config->tx_fifo_num; i++)
2996 tx_intr_handler(&mac_control->fifos[i]);
2997 }
2998
2999 /*
3000 * If the Rx buffer count is below the panic threshold then
3001 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
3002 * else schedule a tasklet to reallocate the buffers.
3003 */
3004#ifndef CONFIG_S2IO_NAPI
3005 for (i = 0; i < config->rx_ring_num; i++) {
20346722 3006 int ret;
1da177e4
LT
3007 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3008 int level = rx_buffer_level(sp, rxb_size, i);
3009
3010 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3011 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3012 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3013 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3014 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3015 dev->name);
3016 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3017 clear_bit(0, (&sp->tasklet_status));
7ba013ac 3018 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3019 return IRQ_HANDLED;
3020 }
3021 clear_bit(0, (&sp->tasklet_status));
3022 } else if (level == LOW) {
3023 tasklet_schedule(&sp->task);
3024 }
3025 }
3026#endif
3027
7ba013ac 3028 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3029 return IRQ_HANDLED;
3030}
3031
7ba013ac
K
3032/**
3033 * s2io_updt_stats -
3034 */
3035static void s2io_updt_stats(nic_t *sp)
3036{
3037 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3038 u64 val64;
3039 int cnt = 0;
3040
3041 if (atomic_read(&sp->card_state) == CARD_UP) {
3042 /* Apprx 30us on a 133 MHz bus */
3043 val64 = SET_UPDT_CLICKS(10) |
3044 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3045 writeq(val64, &bar0->stat_cfg);
3046 do {
3047 udelay(100);
3048 val64 = readq(&bar0->stat_cfg);
3049 if (!(val64 & BIT(0)))
3050 break;
3051 cnt++;
3052 if (cnt == 5)
3053 break; /* Updt failed */
3054 } while(1);
3055 }
3056}
3057
1da177e4 3058/**
20346722 3059 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
3060 * @dev : pointer to the device structure.
3061 * Description:
20346722 3062 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
3063 * structure and returns a pointer to the same.
3064 * Return value:
3065 * pointer to the updated net_device_stats structure.
3066 */
3067
20346722 3068struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4
LT
3069{
3070 nic_t *sp = dev->priv;
3071 mac_info_t *mac_control;
3072 struct config_param *config;
3073
20346722 3074
1da177e4
LT
3075 mac_control = &sp->mac_control;
3076 config = &sp->config;
3077
7ba013ac
K
3078 /* Configure Stats for immediate updt */
3079 s2io_updt_stats(sp);
3080
3081 sp->stats.tx_packets =
3082 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
3083 sp->stats.tx_errors =
3084 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3085 sp->stats.rx_errors =
3086 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3087 sp->stats.multicast =
3088 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 3089 sp->stats.rx_length_errors =
20346722 3090 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
3091
3092 return (&sp->stats);
3093}
3094
3095/**
3096 * s2io_set_multicast - entry point for multicast address enable/disable.
3097 * @dev : pointer to the device structure
3098 * Description:
20346722
K
3099 * This function is a driver entry point which gets called by the kernel
3100 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
3101 * called to set/reset promiscuous mode. Depending on the deivce flag, we
3102 * determine, if multicast address must be enabled or if promiscuous mode
3103 * is to be disabled etc.
3104 * Return value:
3105 * void.
3106 */
3107
3108static void s2io_set_multicast(struct net_device *dev)
3109{
3110 int i, j, prev_cnt;
3111 struct dev_mc_list *mclist;
3112 nic_t *sp = dev->priv;
3113 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3114 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3115 0xfeffffffffffULL;
3116 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3117 void __iomem *add;
3118
3119 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3120 /* Enable all Multicast addresses */
3121 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3122 &bar0->rmac_addr_data0_mem);
3123 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3124 &bar0->rmac_addr_data1_mem);
3125 val64 = RMAC_ADDR_CMD_MEM_WE |
3126 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3127 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3128 writeq(val64, &bar0->rmac_addr_cmd_mem);
3129 /* Wait till command completes */
3130 wait_for_cmd_complete(sp);
3131
3132 sp->m_cast_flg = 1;
3133 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3134 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3135 /* Disable all Multicast addresses */
3136 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3137 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
3138 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3139 &bar0->rmac_addr_data1_mem);
1da177e4
LT
3140 val64 = RMAC_ADDR_CMD_MEM_WE |
3141 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3142 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3143 writeq(val64, &bar0->rmac_addr_cmd_mem);
3144 /* Wait till command completes */
3145 wait_for_cmd_complete(sp);
3146
3147 sp->m_cast_flg = 0;
3148 sp->all_multi_pos = 0;
3149 }
3150
3151 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
3152 /* Put the NIC into promiscuous mode */
3153 add = &bar0->mac_cfg;
3154 val64 = readq(&bar0->mac_cfg);
3155 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
3156
3157 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3158 writel((u32) val64, add);
3159 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3160 writel((u32) (val64 >> 32), (add + 4));
3161
3162 val64 = readq(&bar0->mac_cfg);
3163 sp->promisc_flg = 1;
3164 DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n",
3165 dev->name);
3166 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
3167 /* Remove the NIC from promiscuous mode */
3168 add = &bar0->mac_cfg;
3169 val64 = readq(&bar0->mac_cfg);
3170 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
3171
3172 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3173 writel((u32) val64, add);
3174 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3175 writel((u32) (val64 >> 32), (add + 4));
3176
3177 val64 = readq(&bar0->mac_cfg);
3178 sp->promisc_flg = 0;
3179 DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n",
3180 dev->name);
3181 }
3182
3183 /* Update individual M_CAST address list */
3184 if ((!sp->m_cast_flg) && dev->mc_count) {
3185 if (dev->mc_count >
3186 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
3187 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
3188 dev->name);
3189 DBG_PRINT(ERR_DBG, "can be added, please enable ");
3190 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
3191 return;
3192 }
3193
3194 prev_cnt = sp->mc_addr_count;
3195 sp->mc_addr_count = dev->mc_count;
3196
3197 /* Clear out the previous list of Mc in the H/W. */
3198 for (i = 0; i < prev_cnt; i++) {
3199 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3200 &bar0->rmac_addr_data0_mem);
3201 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 3202 &bar0->rmac_addr_data1_mem);
1da177e4
LT
3203 val64 = RMAC_ADDR_CMD_MEM_WE |
3204 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3205 RMAC_ADDR_CMD_MEM_OFFSET
3206 (MAC_MC_ADDR_START_OFFSET + i);
3207 writeq(val64, &bar0->rmac_addr_cmd_mem);
3208
3209 /* Wait for command completes */
3210 if (wait_for_cmd_complete(sp)) {
3211 DBG_PRINT(ERR_DBG, "%s: Adding ",
3212 dev->name);
3213 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
3214 return;
3215 }
3216 }
3217
3218 /* Create the new Rx filter list and update the same in H/W. */
3219 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
3220 i++, mclist = mclist->next) {
3221 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
3222 ETH_ALEN);
3223 for (j = 0; j < ETH_ALEN; j++) {
3224 mac_addr |= mclist->dmi_addr[j];
3225 mac_addr <<= 8;
3226 }
3227 mac_addr >>= 8;
3228 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
3229 &bar0->rmac_addr_data0_mem);
3230 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 3231 &bar0->rmac_addr_data1_mem);
1da177e4
LT
3232 val64 = RMAC_ADDR_CMD_MEM_WE |
3233 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3234 RMAC_ADDR_CMD_MEM_OFFSET
3235 (i + MAC_MC_ADDR_START_OFFSET);
3236 writeq(val64, &bar0->rmac_addr_cmd_mem);
3237
3238 /* Wait for command completes */
3239 if (wait_for_cmd_complete(sp)) {
3240 DBG_PRINT(ERR_DBG, "%s: Adding ",
3241 dev->name);
3242 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
3243 return;
3244 }
3245 }
3246 }
3247}
3248
3249/**
20346722 3250 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
3251 * @dev : pointer to the device structure.
3252 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 3253 * Description : This procedure will program the Xframe to receive
1da177e4 3254 * frames with new Mac Address
20346722 3255 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
3256 * as defined in errno.h file on failure.
3257 */
3258
3259int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
3260{
3261 nic_t *sp = dev->priv;
3262 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3263 register u64 val64, mac_addr = 0;
3264 int i;
3265
20346722 3266 /*
1da177e4
LT
3267 * Set the new MAC address as the new unicast filter and reflect this
3268 * change on the device address registered with the OS. It will be
20346722 3269 * at offset 0.
1da177e4
LT
3270 */
3271 for (i = 0; i < ETH_ALEN; i++) {
3272 mac_addr <<= 8;
3273 mac_addr |= addr[i];
3274 }
3275
3276 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
3277 &bar0->rmac_addr_data0_mem);
3278
3279 val64 =
3280 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3281 RMAC_ADDR_CMD_MEM_OFFSET(0);
3282 writeq(val64, &bar0->rmac_addr_cmd_mem);
3283 /* Wait till command completes */
3284 if (wait_for_cmd_complete(sp)) {
3285 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
3286 return FAILURE;
3287 }
3288
3289 return SUCCESS;
3290}
3291
3292/**
20346722 3293 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
3294 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
3295 * @info: pointer to the structure with parameters given by ethtool to set
3296 * link information.
3297 * Description:
20346722 3298 * The function sets different link parameters provided by the user onto
1da177e4
LT
3299 * the NIC.
3300 * Return value:
3301 * 0 on success.
3302*/
3303
3304static int s2io_ethtool_sset(struct net_device *dev,
3305 struct ethtool_cmd *info)
3306{
3307 nic_t *sp = dev->priv;
3308 if ((info->autoneg == AUTONEG_ENABLE) ||
3309 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
3310 return -EINVAL;
3311 else {
3312 s2io_close(sp->dev);
3313 s2io_open(sp->dev);
3314 }
3315
3316 return 0;
3317}
3318
3319/**
20346722 3320 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
3321 * @sp : private member of the device structure, pointer to the
3322 * s2io_nic structure.
3323 * @info : pointer to the structure with parameters given by ethtool
3324 * to return link information.
3325 * Description:
3326 * Returns link specific information like speed, duplex etc.. to ethtool.
3327 * Return value :
3328 * return 0 on success.
3329 */
3330
3331static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
3332{
3333 nic_t *sp = dev->priv;
3334 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
3335 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
3336 info->port = PORT_FIBRE;
3337 /* info->transceiver?? TODO */
3338
3339 if (netif_carrier_ok(sp->dev)) {
3340 info->speed = 10000;
3341 info->duplex = DUPLEX_FULL;
3342 } else {
3343 info->speed = -1;
3344 info->duplex = -1;
3345 }
3346
3347 info->autoneg = AUTONEG_DISABLE;
3348 return 0;
3349}
3350
3351/**
20346722
K
3352 * s2io_ethtool_gdrvinfo - Returns driver specific information.
3353 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
3354 * s2io_nic structure.
3355 * @info : pointer to the structure with parameters given by ethtool to
3356 * return driver information.
3357 * Description:
3358 * Returns driver specefic information like name, version etc.. to ethtool.
3359 * Return value:
3360 * void
3361 */
3362
3363static void s2io_ethtool_gdrvinfo(struct net_device *dev,
3364 struct ethtool_drvinfo *info)
3365{
3366 nic_t *sp = dev->priv;
3367
3368 strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name));
3369 strncpy(info->version, s2io_driver_version,
3370 sizeof(s2io_driver_version));
3371 strncpy(info->fw_version, "", 32);
3372 strncpy(info->bus_info, pci_name(sp->pdev), 32);
3373 info->regdump_len = XENA_REG_SPACE;
3374 info->eedump_len = XENA_EEPROM_SPACE;
3375 info->testinfo_len = S2IO_TEST_LEN;
3376 info->n_stats = S2IO_STAT_LEN;
3377}
3378
3379/**
3380 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 3381 * @sp: private member of the device structure, which is a pointer to the
1da177e4 3382 * s2io_nic structure.
20346722 3383 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
3384 * dumping the registers.
3385 * @reg_space: The input argumnet into which all the registers are dumped.
3386 * Description:
3387 * Dumps the entire register space of xFrame NIC into the user given
3388 * buffer area.
3389 * Return value :
3390 * void .
3391*/
3392
3393static void s2io_ethtool_gregs(struct net_device *dev,
3394 struct ethtool_regs *regs, void *space)
3395{
3396 int i;
3397 u64 reg;
3398 u8 *reg_space = (u8 *) space;
3399 nic_t *sp = dev->priv;
3400
3401 regs->len = XENA_REG_SPACE;
3402 regs->version = sp->pdev->subsystem_device;
3403
3404 for (i = 0; i < regs->len; i += 8) {
3405 reg = readq(sp->bar0 + i);
3406 memcpy((reg_space + i), &reg, 8);
3407 }
3408}
3409
3410/**
3411 * s2io_phy_id - timer function that alternates adapter LED.
20346722 3412 * @data : address of the private member of the device structure, which
1da177e4 3413 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
3414 * Description: This is actually the timer function that alternates the
3415 * adapter LED bit of the adapter control bit to set/reset every time on
3416 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
3417 * once every second.
3418*/
3419static void s2io_phy_id(unsigned long data)
3420{
3421 nic_t *sp = (nic_t *) data;
3422 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3423 u64 val64 = 0;
3424 u16 subid;
3425
3426 subid = sp->pdev->subsystem_device;
3427 if ((subid & 0xFF) >= 0x07) {
3428 val64 = readq(&bar0->gpio_control);
3429 val64 ^= GPIO_CTRL_GPIO_0;
3430 writeq(val64, &bar0->gpio_control);
3431 } else {
3432 val64 = readq(&bar0->adapter_control);
3433 val64 ^= ADAPTER_LED_ON;
3434 writeq(val64, &bar0->adapter_control);
3435 }
3436
3437 mod_timer(&sp->id_timer, jiffies + HZ / 2);
3438}
3439
3440/**
3441 * s2io_ethtool_idnic - To physically identify the nic on the system.
3442 * @sp : private member of the device structure, which is a pointer to the
3443 * s2io_nic structure.
20346722 3444 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
3445 * ethtool.
3446 * Description: Used to physically identify the NIC on the system.
20346722 3447 * The Link LED will blink for a time specified by the user for
1da177e4 3448 * identification.
20346722 3449 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
3450 * identification is possible only if it's link is up.
3451 * Return value:
3452 * int , returns 0 on success
3453 */
3454
3455static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
3456{
3457 u64 val64 = 0, last_gpio_ctrl_val;
3458 nic_t *sp = dev->priv;
3459 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3460 u16 subid;
3461
3462 subid = sp->pdev->subsystem_device;
3463 last_gpio_ctrl_val = readq(&bar0->gpio_control);
3464 if ((subid & 0xFF) < 0x07) {
3465 val64 = readq(&bar0->adapter_control);
3466 if (!(val64 & ADAPTER_CNTL_EN)) {
3467 printk(KERN_ERR
3468 "Adapter Link down, cannot blink LED\n");
3469 return -EFAULT;
3470 }
3471 }
3472 if (sp->id_timer.function == NULL) {
3473 init_timer(&sp->id_timer);
3474 sp->id_timer.function = s2io_phy_id;
3475 sp->id_timer.data = (unsigned long) sp;
3476 }
3477 mod_timer(&sp->id_timer, jiffies);
3478 if (data)
20346722 3479 msleep_interruptible(data * HZ);
1da177e4 3480 else
20346722 3481 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
3482 del_timer_sync(&sp->id_timer);
3483
3484 if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
3485 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
3486 last_gpio_ctrl_val = readq(&bar0->gpio_control);
3487 }
3488
3489 return 0;
3490}
3491
3492/**
3493 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
3494 * @sp : private member of the device structure, which is a pointer to the
3495 * s2io_nic structure.
1da177e4
LT
3496 * @ep : pointer to the structure with pause parameters given by ethtool.
3497 * Description:
3498 * Returns the Pause frame generation and reception capability of the NIC.
3499 * Return value:
3500 * void
3501 */
3502static void s2io_ethtool_getpause_data(struct net_device *dev,
3503 struct ethtool_pauseparam *ep)
3504{
3505 u64 val64;
3506 nic_t *sp = dev->priv;
3507 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3508
3509 val64 = readq(&bar0->rmac_pause_cfg);
3510 if (val64 & RMAC_PAUSE_GEN_ENABLE)
3511 ep->tx_pause = TRUE;
3512 if (val64 & RMAC_PAUSE_RX_ENABLE)
3513 ep->rx_pause = TRUE;
3514 ep->autoneg = FALSE;
3515}
3516
3517/**
3518 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 3519 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
3520 * s2io_nic structure.
3521 * @ep : pointer to the structure with pause parameters given by ethtool.
3522 * Description:
3523 * It can be used to set or reset Pause frame generation or reception
3524 * support of the NIC.
3525 * Return value:
3526 * int, returns 0 on Success
3527 */
3528
3529static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 3530 struct ethtool_pauseparam *ep)
1da177e4
LT
3531{
3532 u64 val64;
3533 nic_t *sp = dev->priv;
3534 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3535
3536 val64 = readq(&bar0->rmac_pause_cfg);
3537 if (ep->tx_pause)
3538 val64 |= RMAC_PAUSE_GEN_ENABLE;
3539 else
3540 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
3541 if (ep->rx_pause)
3542 val64 |= RMAC_PAUSE_RX_ENABLE;
3543 else
3544 val64 &= ~RMAC_PAUSE_RX_ENABLE;
3545 writeq(val64, &bar0->rmac_pause_cfg);
3546 return 0;
3547}
3548
3549/**
3550 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 3551 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
3552 * s2io_nic structure.
3553 * @off : offset at which the data must be written
3554 * @data : Its an output parameter where the data read at the given
20346722 3555 * offset is stored.
1da177e4 3556 * Description:
20346722 3557 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
3558 * read data.
3559 * NOTE: Will allow to read only part of the EEPROM visible through the
3560 * I2C bus.
3561 * Return value:
3562 * -1 on failure and 0 on success.
3563 */
3564
3565#define S2IO_DEV_ID 5
3566static int read_eeprom(nic_t * sp, int off, u32 * data)
3567{
3568 int ret = -1;
3569 u32 exit_cnt = 0;
3570 u64 val64;
3571 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3572
3573 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
3574 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
3575 I2C_CONTROL_CNTL_START;
3576 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
3577
3578 while (exit_cnt < 5) {
3579 val64 = readq(&bar0->i2c_control);
3580 if (I2C_CONTROL_CNTL_END(val64)) {
3581 *data = I2C_CONTROL_GET_DATA(val64);
3582 ret = 0;
3583 break;
3584 }
3585 msleep(50);
3586 exit_cnt++;
3587 }
3588
3589 return ret;
3590}
3591
3592/**
3593 * write_eeprom - actually writes the relevant part of the data value.
3594 * @sp : private member of the device structure, which is a pointer to the
3595 * s2io_nic structure.
3596 * @off : offset at which the data must be written
3597 * @data : The data that is to be written
20346722 3598 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
3599 * the Eeprom. (max of 3)
3600 * Description:
3601 * Actually writes the relevant part of the data value into the Eeprom
3602 * through the I2C bus.
3603 * Return value:
3604 * 0 on success, -1 on failure.
3605 */
3606
3607static int write_eeprom(nic_t * sp, int off, u32 data, int cnt)
3608{
3609 int exit_cnt = 0, ret = -1;
3610 u64 val64;
3611 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3612
3613 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
3614 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) |
3615 I2C_CONTROL_CNTL_START;
3616 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
3617
3618 while (exit_cnt < 5) {
3619 val64 = readq(&bar0->i2c_control);
3620 if (I2C_CONTROL_CNTL_END(val64)) {
3621 if (!(val64 & I2C_CONTROL_NACK))
3622 ret = 0;
3623 break;
3624 }
3625 msleep(50);
3626 exit_cnt++;
3627 }
3628
3629 return ret;
3630}
3631
3632/**
3633 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
3634 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 3635 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
3636 * containing all relevant information.
3637 * @data_buf : user defined value to be written into Eeprom.
3638 * Description: Reads the values stored in the Eeprom at given offset
3639 * for a given length. Stores these values int the input argument data
3640 * buffer 'data_buf' and returns these to the caller (ethtool.)
3641 * Return value:
3642 * int 0 on success
3643 */
3644
3645static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 3646 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4
LT
3647{
3648 u32 data, i, valid;
3649 nic_t *sp = dev->priv;
3650
3651 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
3652
3653 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
3654 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
3655
3656 for (i = 0; i < eeprom->len; i += 4) {
3657 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
3658 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
3659 return -EFAULT;
3660 }
3661 valid = INV(data);
3662 memcpy((data_buf + i), &valid, 4);
3663 }
3664 return 0;
3665}
3666
3667/**
3668 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
3669 * @sp : private member of the device structure, which is a pointer to the
3670 * s2io_nic structure.
20346722 3671 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
3672 * containing all relevant information.
3673 * @data_buf ; user defined value to be written into Eeprom.
3674 * Description:
3675 * Tries to write the user provided value in the Eeprom, at the offset
3676 * given by the user.
3677 * Return value:
3678 * 0 on success, -EFAULT on failure.
3679 */
3680
3681static int s2io_ethtool_seeprom(struct net_device *dev,
3682 struct ethtool_eeprom *eeprom,
3683 u8 * data_buf)
3684{
3685 int len = eeprom->len, cnt = 0;
3686 u32 valid = 0, data;
3687 nic_t *sp = dev->priv;
3688
3689 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
3690 DBG_PRINT(ERR_DBG,
3691 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
3692 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
3693 eeprom->magic);
3694 return -EFAULT;
3695 }
3696
3697 while (len) {
3698 data = (u32) data_buf[cnt] & 0x000000FF;
3699 if (data) {
3700 valid = (u32) (data << 24);
3701 } else
3702 valid = data;
3703
3704 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
3705 DBG_PRINT(ERR_DBG,
3706 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
3707 DBG_PRINT(ERR_DBG,
3708 "write into the specified offset\n");
3709 return -EFAULT;
3710 }
3711 cnt++;
3712 len--;
3713 }
3714
3715 return 0;
3716}
3717
3718/**
20346722
K
3719 * s2io_register_test - reads and writes into all clock domains.
3720 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
3721 * s2io_nic structure.
3722 * @data : variable that returns the result of each of the test conducted b
3723 * by the driver.
3724 * Description:
3725 * Read and write into all clock domains. The NIC has 3 clock domains,
3726 * see that registers in all the three regions are accessible.
3727 * Return value:
3728 * 0 on success.
3729 */
3730
3731static int s2io_register_test(nic_t * sp, uint64_t * data)
3732{
3733 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3734 u64 val64 = 0;
3735 int fail = 0;
3736
20346722
K
3737 val64 = readq(&bar0->pif_rd_swapper_fb);
3738 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
3739 fail = 1;
3740 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
3741 }
3742
3743 val64 = readq(&bar0->rmac_pause_cfg);
3744 if (val64 != 0xc000ffff00000000ULL) {
3745 fail = 1;
3746 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
3747 }
3748
3749 val64 = readq(&bar0->rx_queue_cfg);
3750 if (val64 != 0x0808080808080808ULL) {
3751 fail = 1;
3752 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
3753 }
3754
3755 val64 = readq(&bar0->xgxs_efifo_cfg);
3756 if (val64 != 0x000000001923141EULL) {
3757 fail = 1;
3758 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
3759 }
3760
3761 val64 = 0x5A5A5A5A5A5A5A5AULL;
3762 writeq(val64, &bar0->xmsi_data);
3763 val64 = readq(&bar0->xmsi_data);
3764 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
3765 fail = 1;
3766 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
3767 }
3768
3769 val64 = 0xA5A5A5A5A5A5A5A5ULL;
3770 writeq(val64, &bar0->xmsi_data);
3771 val64 = readq(&bar0->xmsi_data);
3772 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
3773 fail = 1;
3774 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
3775 }
3776
3777 *data = fail;
3778 return 0;
3779}
3780
3781/**
20346722 3782 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
3783 * @sp : private member of the device structure, which is a pointer to the
3784 * s2io_nic structure.
3785 * @data:variable that returns the result of each of the test conducted by
3786 * the driver.
3787 * Description:
20346722 3788 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
3789 * register.
3790 * Return value:
3791 * 0 on success.
3792 */
3793
3794static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
3795{
3796 int fail = 0;
3797 u32 ret_data;
3798
3799 /* Test Write Error at offset 0 */
3800 if (!write_eeprom(sp, 0, 0, 3))
3801 fail = 1;
3802
3803 /* Test Write at offset 4f0 */
3804 if (write_eeprom(sp, 0x4F0, 0x01234567, 3))
3805 fail = 1;
3806 if (read_eeprom(sp, 0x4F0, &ret_data))
3807 fail = 1;
3808
3809 if (ret_data != 0x01234567)
3810 fail = 1;
3811
3812 /* Reset the EEPROM data go FFFF */
3813 write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3);
3814
3815 /* Test Write Request Error at offset 0x7c */
3816 if (!write_eeprom(sp, 0x07C, 0, 3))
3817 fail = 1;
3818
3819 /* Test Write Request at offset 0x7fc */
3820 if (write_eeprom(sp, 0x7FC, 0x01234567, 3))
3821 fail = 1;
3822 if (read_eeprom(sp, 0x7FC, &ret_data))
3823 fail = 1;
3824
3825 if (ret_data != 0x01234567)
3826 fail = 1;
3827
3828 /* Reset the EEPROM data go FFFF */
3829 write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3);
3830
3831 /* Test Write Error at offset 0x80 */
3832 if (!write_eeprom(sp, 0x080, 0, 3))
3833 fail = 1;
3834
3835 /* Test Write Error at offset 0xfc */
3836 if (!write_eeprom(sp, 0x0FC, 0, 3))
3837 fail = 1;
3838
3839 /* Test Write Error at offset 0x100 */
3840 if (!write_eeprom(sp, 0x100, 0, 3))
3841 fail = 1;
3842
3843 /* Test Write Error at offset 4ec */
3844 if (!write_eeprom(sp, 0x4EC, 0, 3))
3845 fail = 1;
3846
3847 *data = fail;
3848 return 0;
3849}
3850
3851/**
3852 * s2io_bist_test - invokes the MemBist test of the card .
20346722 3853 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3854 * s2io_nic structure.
20346722 3855 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
3856 * the driver.
3857 * Description:
3858 * This invokes the MemBist test of the card. We give around
3859 * 2 secs time for the Test to complete. If it's still not complete
20346722 3860 * within this peiod, we consider that the test failed.
1da177e4
LT
3861 * Return value:
3862 * 0 on success and -1 on failure.
3863 */
3864
3865static int s2io_bist_test(nic_t * sp, uint64_t * data)
3866{
3867 u8 bist = 0;
3868 int cnt = 0, ret = -1;
3869
3870 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
3871 bist |= PCI_BIST_START;
3872 pci_write_config_word(sp->pdev, PCI_BIST, bist);
3873
3874 while (cnt < 20) {
3875 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
3876 if (!(bist & PCI_BIST_START)) {
3877 *data = (bist & PCI_BIST_CODE_MASK);
3878 ret = 0;
3879 break;
3880 }
3881 msleep(100);
3882 cnt++;
3883 }
3884
3885 return ret;
3886}
3887
3888/**
20346722
K
3889 * s2io-link_test - verifies the link state of the nic
3890 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
3891 * s2io_nic structure.
3892 * @data: variable that returns the result of each of the test conducted by
3893 * the driver.
3894 * Description:
20346722 3895 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
3896 * argument 'data' appropriately.
3897 * Return value:
3898 * 0 on success.
3899 */
3900
3901static int s2io_link_test(nic_t * sp, uint64_t * data)
3902{
3903 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3904 u64 val64;
3905
3906 val64 = readq(&bar0->adapter_status);
3907 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
3908 *data = 1;
3909
3910 return 0;
3911}
3912
3913/**
20346722
K
3914 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
3915 * @sp - private member of the device structure, which is a pointer to the
1da177e4 3916 * s2io_nic structure.
20346722 3917 * @data - variable that returns the result of each of the test
1da177e4
LT
3918 * conducted by the driver.
3919 * Description:
20346722 3920 * This is one of the offline test that tests the read and write
1da177e4
LT
3921 * access to the RldRam chip on the NIC.
3922 * Return value:
3923 * 0 on success.
3924 */
3925
3926static int s2io_rldram_test(nic_t * sp, uint64_t * data)
3927{
3928 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3929 u64 val64;
3930 int cnt, iteration = 0, test_pass = 0;
3931
3932 val64 = readq(&bar0->adapter_control);
3933 val64 &= ~ADAPTER_ECC_EN;
3934 writeq(val64, &bar0->adapter_control);
3935
3936 val64 = readq(&bar0->mc_rldram_test_ctrl);
3937 val64 |= MC_RLDRAM_TEST_MODE;
3938 writeq(val64, &bar0->mc_rldram_test_ctrl);
3939
3940 val64 = readq(&bar0->mc_rldram_mrs);
3941 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
3942 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
3943
3944 val64 |= MC_RLDRAM_MRS_ENABLE;
3945 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
3946
3947 while (iteration < 2) {
3948 val64 = 0x55555555aaaa0000ULL;
3949 if (iteration == 1) {
3950 val64 ^= 0xFFFFFFFFFFFF0000ULL;
3951 }
3952 writeq(val64, &bar0->mc_rldram_test_d0);
3953
3954 val64 = 0xaaaa5a5555550000ULL;
3955 if (iteration == 1) {
3956 val64 ^= 0xFFFFFFFFFFFF0000ULL;
3957 }
3958 writeq(val64, &bar0->mc_rldram_test_d1);
3959
3960 val64 = 0x55aaaaaaaa5a0000ULL;
3961 if (iteration == 1) {
3962 val64 ^= 0xFFFFFFFFFFFF0000ULL;
3963 }
3964 writeq(val64, &bar0->mc_rldram_test_d2);
3965
3966 val64 = (u64) (0x0000003fffff0000ULL);
3967 writeq(val64, &bar0->mc_rldram_test_add);
3968
3969
3970 val64 = MC_RLDRAM_TEST_MODE;
3971 writeq(val64, &bar0->mc_rldram_test_ctrl);
3972
3973 val64 |=
3974 MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
3975 MC_RLDRAM_TEST_GO;
3976 writeq(val64, &bar0->mc_rldram_test_ctrl);
3977
3978 for (cnt = 0; cnt < 5; cnt++) {
3979 val64 = readq(&bar0->mc_rldram_test_ctrl);
3980 if (val64 & MC_RLDRAM_TEST_DONE)
3981 break;
3982 msleep(200);
3983 }
3984
3985 if (cnt == 5)
3986 break;
3987
3988 val64 = MC_RLDRAM_TEST_MODE;
3989 writeq(val64, &bar0->mc_rldram_test_ctrl);
3990
3991 val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
3992 writeq(val64, &bar0->mc_rldram_test_ctrl);
3993
3994 for (cnt = 0; cnt < 5; cnt++) {
3995 val64 = readq(&bar0->mc_rldram_test_ctrl);
3996 if (val64 & MC_RLDRAM_TEST_DONE)
3997 break;
3998 msleep(500);
3999 }
4000
4001 if (cnt == 5)
4002 break;
4003
4004 val64 = readq(&bar0->mc_rldram_test_ctrl);
4005 if (val64 & MC_RLDRAM_TEST_PASS)
4006 test_pass = 1;
4007
4008 iteration++;
4009 }
4010
4011 if (!test_pass)
4012 *data = 1;
4013 else
4014 *data = 0;
4015
4016 return 0;
4017}
4018
4019/**
4020 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4021 * @sp : private member of the device structure, which is a pointer to the
4022 * s2io_nic structure.
4023 * @ethtest : pointer to a ethtool command specific structure that will be
4024 * returned to the user.
20346722 4025 * @data : variable that returns the result of each of the test
1da177e4
LT
4026 * conducted by the driver.
4027 * Description:
4028 * This function conducts 6 tests ( 4 offline and 2 online) to determine
4029 * the health of the card.
4030 * Return value:
4031 * void
4032 */
4033
4034static void s2io_ethtool_test(struct net_device *dev,
4035 struct ethtool_test *ethtest,
4036 uint64_t * data)
4037{
4038 nic_t *sp = dev->priv;
4039 int orig_state = netif_running(sp->dev);
4040
4041 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4042 /* Offline Tests. */
20346722 4043 if (orig_state)
1da177e4 4044 s2io_close(sp->dev);
1da177e4
LT
4045
4046 if (s2io_register_test(sp, &data[0]))
4047 ethtest->flags |= ETH_TEST_FL_FAILED;
4048
4049 s2io_reset(sp);
1da177e4
LT
4050
4051 if (s2io_rldram_test(sp, &data[3]))
4052 ethtest->flags |= ETH_TEST_FL_FAILED;
4053
4054 s2io_reset(sp);
1da177e4
LT
4055
4056 if (s2io_eeprom_test(sp, &data[1]))
4057 ethtest->flags |= ETH_TEST_FL_FAILED;
4058
4059 if (s2io_bist_test(sp, &data[4]))
4060 ethtest->flags |= ETH_TEST_FL_FAILED;
4061
4062 if (orig_state)
4063 s2io_open(sp->dev);
4064
4065 data[2] = 0;
4066 } else {
4067 /* Online Tests. */
4068 if (!orig_state) {
4069 DBG_PRINT(ERR_DBG,
4070 "%s: is not up, cannot run test\n",
4071 dev->name);
4072 data[0] = -1;
4073 data[1] = -1;
4074 data[2] = -1;
4075 data[3] = -1;
4076 data[4] = -1;
4077 }
4078
4079 if (s2io_link_test(sp, &data[2]))
4080 ethtest->flags |= ETH_TEST_FL_FAILED;
4081
4082 data[0] = 0;
4083 data[1] = 0;
4084 data[3] = 0;
4085 data[4] = 0;
4086 }
4087}
4088
4089static void s2io_get_ethtool_stats(struct net_device *dev,
4090 struct ethtool_stats *estats,
4091 u64 * tmp_stats)
4092{
4093 int i = 0;
4094 nic_t *sp = dev->priv;
4095 StatInfo_t *stat_info = sp->mac_control.stats_info;
4096
7ba013ac 4097 s2io_updt_stats(sp);
1da177e4
LT
4098 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms);
4099 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets);
4100 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
4101 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms);
4102 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms);
4103 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
4104 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms);
4105 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
4106 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip);
4107 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip);
4108 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp);
4109 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp);
4110 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
4111 tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp);
4112 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms);
4113 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets);
4114 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
4115 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
4116 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms);
4117 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms);
4118 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
4119 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
4120 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
4121 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms);
4122 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms);
4123 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms);
4124 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms);
4125 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms);
4126 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip);
4127 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
4128 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
4129 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip);
4130 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp);
4131 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
4132 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp);
4133 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp);
4134 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt);
4135 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip);
4136 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
7ba013ac
K
4137 tmp_stats[i++] = 0;
4138 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
4139 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
1da177e4
LT
4140}
4141
20346722 4142int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
4143{
4144 return (XENA_REG_SPACE);
4145}
4146
4147
20346722 4148u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4
LT
4149{
4150 nic_t *sp = dev->priv;
4151
4152 return (sp->rx_csum);
4153}
20346722 4154int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4
LT
4155{
4156 nic_t *sp = dev->priv;
4157
4158 if (data)
4159 sp->rx_csum = 1;
4160 else
4161 sp->rx_csum = 0;
4162
4163 return 0;
4164}
20346722 4165int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
4166{
4167 return (XENA_EEPROM_SPACE);
4168}
4169
20346722 4170int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
4171{
4172 return (S2IO_TEST_LEN);
4173}
20346722
K
4174void s2io_ethtool_get_strings(struct net_device *dev,
4175 u32 stringset, u8 * data)
1da177e4
LT
4176{
4177 switch (stringset) {
4178 case ETH_SS_TEST:
4179 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
4180 break;
4181 case ETH_SS_STATS:
4182 memcpy(data, &ethtool_stats_keys,
4183 sizeof(ethtool_stats_keys));
4184 }
4185}
1da177e4
LT
4186static int s2io_ethtool_get_stats_count(struct net_device *dev)
4187{
4188 return (S2IO_STAT_LEN);
4189}
4190
20346722 4191int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
4192{
4193 if (data)
4194 dev->features |= NETIF_F_IP_CSUM;
4195 else
4196 dev->features &= ~NETIF_F_IP_CSUM;
4197
4198 return 0;
4199}
4200
4201
4202static struct ethtool_ops netdev_ethtool_ops = {
4203 .get_settings = s2io_ethtool_gset,
4204 .set_settings = s2io_ethtool_sset,
4205 .get_drvinfo = s2io_ethtool_gdrvinfo,
4206 .get_regs_len = s2io_ethtool_get_regs_len,
4207 .get_regs = s2io_ethtool_gregs,
4208 .get_link = ethtool_op_get_link,
4209 .get_eeprom_len = s2io_get_eeprom_len,
4210 .get_eeprom = s2io_ethtool_geeprom,
4211 .set_eeprom = s2io_ethtool_seeprom,
4212 .get_pauseparam = s2io_ethtool_getpause_data,
4213 .set_pauseparam = s2io_ethtool_setpause_data,
4214 .get_rx_csum = s2io_ethtool_get_rx_csum,
4215 .set_rx_csum = s2io_ethtool_set_rx_csum,
4216 .get_tx_csum = ethtool_op_get_tx_csum,
4217 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
4218 .get_sg = ethtool_op_get_sg,
4219 .set_sg = ethtool_op_set_sg,
4220#ifdef NETIF_F_TSO
4221 .get_tso = ethtool_op_get_tso,
4222 .set_tso = ethtool_op_set_tso,
4223#endif
4224 .self_test_count = s2io_ethtool_self_test_count,
4225 .self_test = s2io_ethtool_test,
4226 .get_strings = s2io_ethtool_get_strings,
4227 .phys_id = s2io_ethtool_idnic,
4228 .get_stats_count = s2io_ethtool_get_stats_count,
4229 .get_ethtool_stats = s2io_get_ethtool_stats
4230};
4231
4232/**
20346722 4233 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
4234 * @dev : Device pointer.
4235 * @ifr : An IOCTL specefic structure, that can contain a pointer to
4236 * a proprietary structure used to pass information to the driver.
4237 * @cmd : This is used to distinguish between the different commands that
4238 * can be passed to the IOCTL functions.
4239 * Description:
20346722
K
4240 * Currently there are no special functionality supported in IOCTL, hence
4241 * function always return EOPNOTSUPPORTED
1da177e4
LT
4242 */
4243
20346722 4244int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
4245{
4246 return -EOPNOTSUPP;
4247}
4248
4249/**
4250 * s2io_change_mtu - entry point to change MTU size for the device.
4251 * @dev : device pointer.
4252 * @new_mtu : the new MTU size for the device.
4253 * Description: A driver entry point to change MTU size for the device.
4254 * Before changing the MTU the device must be stopped.
4255 * Return value:
4256 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4257 * file on failure.
4258 */
4259
20346722 4260int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4
LT
4261{
4262 nic_t *sp = dev->priv;
1da177e4
LT
4263
4264 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
4265 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
4266 dev->name);
4267 return -EPERM;
4268 }
4269
1da177e4 4270 dev->mtu = new_mtu;
d8892c6e
K
4271 if (netif_running(dev)) {
4272 s2io_card_down(sp);
4273 netif_stop_queue(dev);
4274 if (s2io_card_up(sp)) {
4275 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
4276 __FUNCTION__);
4277 }
4278 if (netif_queue_stopped(dev))
4279 netif_wake_queue(dev);
4280 } else { /* Device is down */
4281 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4282 u64 val64 = new_mtu;
4283
4284 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
4285 }
1da177e4
LT
4286
4287 return 0;
4288}
4289
4290/**
4291 * s2io_tasklet - Bottom half of the ISR.
4292 * @dev_adr : address of the device structure in dma_addr_t format.
4293 * Description:
4294 * This is the tasklet or the bottom half of the ISR. This is
20346722 4295 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 4296 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 4297 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
4298 * replenish the Rx buffers in the Rx buffer descriptors.
4299 * Return value:
4300 * void.
4301 */
4302
4303static void s2io_tasklet(unsigned long dev_addr)
4304{
4305 struct net_device *dev = (struct net_device *) dev_addr;
4306 nic_t *sp = dev->priv;
4307 int i, ret;
4308 mac_info_t *mac_control;
4309 struct config_param *config;
4310
4311 mac_control = &sp->mac_control;
4312 config = &sp->config;
4313
4314 if (!TASKLET_IN_USE) {
4315 for (i = 0; i < config->rx_ring_num; i++) {
4316 ret = fill_rx_buffers(sp, i);
4317 if (ret == -ENOMEM) {
4318 DBG_PRINT(ERR_DBG, "%s: Out of ",
4319 dev->name);
4320 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
4321 break;
4322 } else if (ret == -EFILL) {
4323 DBG_PRINT(ERR_DBG,
4324 "%s: Rx Ring %d is full\n",
4325 dev->name, i);
4326 break;
4327 }
4328 }
4329 clear_bit(0, (&sp->tasklet_status));
4330 }
4331}
4332
4333/**
4334 * s2io_set_link - Set the LInk status
4335 * @data: long pointer to device private structue
4336 * Description: Sets the link status for the adapter
4337 */
4338
4339static void s2io_set_link(unsigned long data)
4340{
4341 nic_t *nic = (nic_t *) data;
4342 struct net_device *dev = nic->dev;
4343 XENA_dev_config_t __iomem *bar0 = nic->bar0;
4344 register u64 val64;
4345 u16 subid;
4346
4347 if (test_and_set_bit(0, &(nic->link_state))) {
4348 /* The card is being reset, no point doing anything */
4349 return;
4350 }
4351
4352 subid = nic->pdev->subsystem_device;
20346722
K
4353 /*
4354 * Allow a small delay for the NICs self initiated
1da177e4
LT
4355 * cleanup to complete.
4356 */
4357 msleep(100);
4358
4359 val64 = readq(&bar0->adapter_status);
20346722 4360 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
4361 if (LINK_IS_UP(val64)) {
4362 val64 = readq(&bar0->adapter_control);
4363 val64 |= ADAPTER_CNTL_EN;
4364 writeq(val64, &bar0->adapter_control);
4365 if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
4366 val64 = readq(&bar0->gpio_control);
4367 val64 |= GPIO_CTRL_GPIO_0;
4368 writeq(val64, &bar0->gpio_control);
4369 val64 = readq(&bar0->gpio_control);
4370 } else {
4371 val64 |= ADAPTER_LED_ON;
4372 writeq(val64, &bar0->adapter_control);
4373 }
4374 val64 = readq(&bar0->adapter_status);
4375 if (!LINK_IS_UP(val64)) {
4376 DBG_PRINT(ERR_DBG, "%s:", dev->name);
4377 DBG_PRINT(ERR_DBG, " Link down");
4378 DBG_PRINT(ERR_DBG, "after ");
4379 DBG_PRINT(ERR_DBG, "enabling ");
4380 DBG_PRINT(ERR_DBG, "device \n");
4381 }
4382 if (nic->device_enabled_once == FALSE) {
4383 nic->device_enabled_once = TRUE;
4384 }
4385 s2io_link(nic, LINK_UP);
4386 } else {
4387 if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
4388 val64 = readq(&bar0->gpio_control);
4389 val64 &= ~GPIO_CTRL_GPIO_0;
4390 writeq(val64, &bar0->gpio_control);
4391 val64 = readq(&bar0->gpio_control);
4392 }
4393 s2io_link(nic, LINK_DOWN);
4394 }
4395 } else { /* NIC is not Quiescent. */
4396 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
4397 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
4398 netif_stop_queue(dev);
4399 }
4400 clear_bit(0, &(nic->link_state));
4401}
4402
4403static void s2io_card_down(nic_t * sp)
4404{
4405 int cnt = 0;
4406 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4407 unsigned long flags;
4408 register u64 val64 = 0;
4409
25fff88e 4410 del_timer_sync(&sp->alarm_timer);
1da177e4 4411 /* If s2io_set_link task is executing, wait till it completes. */
20346722 4412 while (test_and_set_bit(0, &(sp->link_state))) {
1da177e4 4413 msleep(50);
20346722 4414 }
1da177e4
LT
4415 atomic_set(&sp->card_state, CARD_DOWN);
4416
4417 /* disable Tx and Rx traffic on the NIC */
4418 stop_nic(sp);
4419
4420 /* Kill tasklet. */
4421 tasklet_kill(&sp->task);
4422
4423 /* Check if the device is Quiescent and then Reset the NIC */
4424 do {
4425 val64 = readq(&bar0->adapter_status);
20346722 4426 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
1da177e4
LT
4427 break;
4428 }
4429
4430 msleep(50);
4431 cnt++;
4432 if (cnt == 10) {
4433 DBG_PRINT(ERR_DBG,
4434 "s2io_close:Device not Quiescent ");
4435 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
4436 (unsigned long long) val64);
4437 break;
4438 }
4439 } while (1);
1da177e4
LT
4440 s2io_reset(sp);
4441
7ba013ac
K
4442 /* Waiting till all Interrupt handlers are complete */
4443 cnt = 0;
4444 do {
4445 msleep(10);
4446 if (!atomic_read(&sp->isr_cnt))
4447 break;
4448 cnt++;
4449 } while(cnt < 5);
4450
4451 spin_lock_irqsave(&sp->tx_lock, flags);
4452 /* Free all Tx buffers */
1da177e4 4453 free_tx_buffers(sp);
7ba013ac
K
4454 spin_unlock_irqrestore(&sp->tx_lock, flags);
4455
4456 /* Free all Rx buffers */
4457 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 4458 free_rx_buffers(sp);
7ba013ac 4459 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 4460
1da177e4
LT
4461 clear_bit(0, &(sp->link_state));
4462}
4463
4464static int s2io_card_up(nic_t * sp)
4465{
4466 int i, ret;
4467 mac_info_t *mac_control;
4468 struct config_param *config;
4469 struct net_device *dev = (struct net_device *) sp->dev;
4470
4471 /* Initialize the H/W I/O registers */
4472 if (init_nic(sp) != 0) {
4473 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4474 dev->name);
4475 return -ENODEV;
4476 }
4477
20346722
K
4478 /*
4479 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
4480 * Rx ring and initializing buffers into 30 Rx blocks
4481 */
4482 mac_control = &sp->mac_control;
4483 config = &sp->config;
4484
4485 for (i = 0; i < config->rx_ring_num; i++) {
4486 if ((ret = fill_rx_buffers(sp, i))) {
4487 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
4488 dev->name);
4489 s2io_reset(sp);
4490 free_rx_buffers(sp);
4491 return -ENOMEM;
4492 }
4493 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
4494 atomic_read(&sp->rx_bufs_left[i]));
4495 }
4496
4497 /* Setting its receive mode */
4498 s2io_set_multicast(dev);
4499
4500 /* Enable tasklet for the device */
4501 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
4502
4503 /* Enable Rx Traffic and interrupts on the NIC */
4504 if (start_nic(sp)) {
4505 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
4506 tasklet_kill(&sp->task);
4507 s2io_reset(sp);
4508 free_irq(dev->irq, dev);
4509 free_rx_buffers(sp);
4510 return -ENODEV;
4511 }
4512
25fff88e
K
4513 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
4514
1da177e4
LT
4515 atomic_set(&sp->card_state, CARD_UP);
4516 return 0;
4517}
4518
20346722 4519/**
1da177e4
LT
4520 * s2io_restart_nic - Resets the NIC.
4521 * @data : long pointer to the device private structure
4522 * Description:
4523 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 4524 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
4525 * the run time of the watch dog routine which is run holding a
4526 * spin lock.
4527 */
4528
4529static void s2io_restart_nic(unsigned long data)
4530{
4531 struct net_device *dev = (struct net_device *) data;
4532 nic_t *sp = dev->priv;
4533
4534 s2io_card_down(sp);
4535 if (s2io_card_up(sp)) {
4536 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
4537 dev->name);
4538 }
4539 netif_wake_queue(dev);
4540 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
4541 dev->name);
20346722 4542
1da177e4
LT
4543}
4544
20346722
K
4545/**
4546 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
4547 * @dev : Pointer to net device structure
4548 * Description:
4549 * This function is triggered if the Tx Queue is stopped
4550 * for a pre-defined amount of time when the Interface is still up.
4551 * If the Interface is jammed in such a situation, the hardware is
4552 * reset (by s2io_close) and restarted again (by s2io_open) to
4553 * overcome any problem that might have been caused in the hardware.
4554 * Return value:
4555 * void
4556 */
4557
4558static void s2io_tx_watchdog(struct net_device *dev)
4559{
4560 nic_t *sp = dev->priv;
4561
4562 if (netif_carrier_ok(dev)) {
4563 schedule_work(&sp->rst_timer_task);
4564 }
4565}
4566
4567/**
4568 * rx_osm_handler - To perform some OS related operations on SKB.
4569 * @sp: private member of the device structure,pointer to s2io_nic structure.
4570 * @skb : the socket buffer pointer.
4571 * @len : length of the packet
4572 * @cksum : FCS checksum of the frame.
4573 * @ring_no : the ring from which this RxD was extracted.
20346722 4574 * Description:
1da177e4
LT
4575 * This function is called by the Tx interrupt serivce routine to perform
4576 * some OS related operations on the SKB before passing it to the upper
4577 * layers. It mainly checks if the checksum is OK, if so adds it to the
4578 * SKBs cksum variable, increments the Rx packet count and passes the SKB
4579 * to the upper layer. If the checksum is wrong, it increments the Rx
4580 * packet error count, frees the SKB and returns error.
4581 * Return value:
4582 * SUCCESS on success and -1 on failure.
4583 */
20346722 4584static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
1da177e4 4585{
20346722 4586 nic_t *sp = ring_data->nic;
1da177e4 4587 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
4588 struct sk_buff *skb = (struct sk_buff *)
4589 ((unsigned long) rxdp->Host_Control);
4590 int ring_no = ring_data->ring_no;
1da177e4
LT
4591 u16 l3_csum, l4_csum;
4592#ifdef CONFIG_2BUFF_MODE
20346722
K
4593 int buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
4594 int buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2);
4595 int get_block = ring_data->rx_curr_get_info.block_index;
4596 int get_off = ring_data->rx_curr_get_info.offset;
4597 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
1da177e4 4598 unsigned char *buff;
20346722
K
4599#else
4600 u16 len = (u16) ((RXD_GET_BUFFER0_SIZE(rxdp->Control_2)) >> 48);;
1da177e4 4601#endif
20346722
K
4602 skb->dev = dev;
4603 if (rxdp->Control_1 & RXD_T_CODE) {
4604 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
4605 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
4606 dev->name, err);
1ddc50d4
K
4607 dev_kfree_skb(skb);
4608 sp->stats.rx_crc_errors++;
4609 atomic_dec(&sp->rx_bufs_left[ring_no]);
4610 rxdp->Host_Control = 0;
4611 return 0;
20346722 4612 }
1da177e4 4613
20346722
K
4614 /* Updating statistics */
4615 rxdp->Host_Control = 0;
4616 sp->rx_pkt_count++;
4617 sp->stats.rx_packets++;
4618#ifndef CONFIG_2BUFF_MODE
4619 sp->stats.rx_bytes += len;
4620#else
4621 sp->stats.rx_bytes += buf0_len + buf2_len;
4622#endif
4623
4624#ifndef CONFIG_2BUFF_MODE
4625 skb_put(skb, len);
4626#else
4627 buff = skb_push(skb, buf0_len);
4628 memcpy(buff, ba->ba_0, buf0_len);
4629 skb_put(skb, buf2_len);
4630#endif
4631
4632 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
4633 (sp->rx_csum)) {
4634 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
4635 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
4636 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 4637 /*
1da177e4
LT
4638 * NIC verifies if the Checksum of the received
4639 * frame is Ok or not and accordingly returns
4640 * a flag in the RxD.
4641 */
4642 skb->ip_summed = CHECKSUM_UNNECESSARY;
4643 } else {
20346722
K
4644 /*
4645 * Packet with erroneous checksum, let the
1da177e4
LT
4646 * upper layers deal with it.
4647 */
4648 skb->ip_summed = CHECKSUM_NONE;
4649 }
4650 } else {
4651 skb->ip_summed = CHECKSUM_NONE;
4652 }
4653
1da177e4 4654 skb->protocol = eth_type_trans(skb, dev);
1da177e4
LT
4655#ifdef CONFIG_S2IO_NAPI
4656 netif_receive_skb(skb);
4657#else
4658 netif_rx(skb);
4659#endif
1da177e4 4660 dev->last_rx = jiffies;
1da177e4 4661 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
4662 return SUCCESS;
4663}
4664
4665/**
4666 * s2io_link - stops/starts the Tx queue.
4667 * @sp : private member of the device structure, which is a pointer to the
4668 * s2io_nic structure.
4669 * @link : inidicates whether link is UP/DOWN.
4670 * Description:
4671 * This function stops/starts the Tx queue depending on whether the link
20346722
K
4672 * status of the NIC is is down or up. This is called by the Alarm
4673 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
4674 * Return value:
4675 * void.
4676 */
4677
20346722 4678void s2io_link(nic_t * sp, int link)
1da177e4
LT
4679{
4680 struct net_device *dev = (struct net_device *) sp->dev;
4681
4682 if (link != sp->last_link_state) {
4683 if (link == LINK_DOWN) {
4684 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
4685 netif_carrier_off(dev);
4686 } else {
4687 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
4688 netif_carrier_on(dev);
4689 }
4690 }
4691 sp->last_link_state = link;
4692}
4693
4694/**
20346722
K
4695 * get_xena_rev_id - to identify revision ID of xena.
4696 * @pdev : PCI Dev structure
4697 * Description:
4698 * Function to identify the Revision ID of xena.
4699 * Return value:
4700 * returns the revision ID of the device.
4701 */
4702
4703int get_xena_rev_id(struct pci_dev *pdev)
4704{
4705 u8 id = 0;
4706 int ret;
4707 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
4708 return id;
4709}
4710
4711/**
4712 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
4713 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4714 * s2io_nic structure.
4715 * Description:
4716 * This function initializes a few of the PCI and PCI-X configuration registers
4717 * with recommended values.
4718 * Return value:
4719 * void
4720 */
4721
4722static void s2io_init_pci(nic_t * sp)
4723{
20346722 4724 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
4725
4726 /* Enable Data Parity Error Recovery in PCI-X command register. */
4727 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 4728 &(pcix_cmd));
1da177e4 4729 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 4730 (pcix_cmd | 1));
1da177e4 4731 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 4732 &(pcix_cmd));
1da177e4
LT
4733
4734 /* Set the PErr Response bit in PCI command register. */
4735 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
4736 pci_write_config_word(sp->pdev, PCI_COMMAND,
4737 (pci_cmd | PCI_COMMAND_PARITY));
4738 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
4739
1da177e4 4740 /* Forcibly disabling relaxed ordering capability of the card. */
20346722 4741 pcix_cmd &= 0xfffd;
1da177e4 4742 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 4743 pcix_cmd);
1da177e4 4744 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 4745 &(pcix_cmd));
1da177e4
LT
4746}
4747
4748MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
4749MODULE_LICENSE("GPL");
4750module_param(tx_fifo_num, int, 0);
1da177e4 4751module_param(rx_ring_num, int, 0);
20346722
K
4752module_param_array(tx_fifo_len, uint, NULL, 0);
4753module_param_array(rx_ring_sz, uint, NULL, 0);
20346722 4754module_param_array(rts_frm_len, uint, NULL, 0);
5e25b9dd 4755module_param(use_continuous_tx_intrs, int, 1);
1da177e4
LT
4756module_param(rmac_pause_time, int, 0);
4757module_param(mc_pause_threshold_q0q3, int, 0);
4758module_param(mc_pause_threshold_q4q7, int, 0);
4759module_param(shared_splits, int, 0);
4760module_param(tmac_util_period, int, 0);
4761module_param(rmac_util_period, int, 0);
4762#ifndef CONFIG_S2IO_NAPI
4763module_param(indicate_max_pkts, int, 0);
4764#endif
20346722 4765
1da177e4 4766/**
20346722 4767 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
4768 * @pdev : structure containing the PCI related information of the device.
4769 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
4770 * Description:
4771 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
4772 * All OS related initialization including memory and device structure and
4773 * initlaization of the device private variable is done. Also the swapper
4774 * control register is initialized to enable read and write into the I/O
1da177e4
LT
4775 * registers of the device.
4776 * Return value:
4777 * returns 0 on success and negative on failure.
4778 */
4779
4780static int __devinit
4781s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
4782{
4783 nic_t *sp;
4784 struct net_device *dev;
1da177e4
LT
4785 int i, j, ret;
4786 int dma_flag = FALSE;
4787 u32 mac_up, mac_down;
4788 u64 val64 = 0, tmp64 = 0;
4789 XENA_dev_config_t __iomem *bar0 = NULL;
4790 u16 subid;
4791 mac_info_t *mac_control;
4792 struct config_param *config;
4793
20346722
K
4794#ifdef CONFIG_S2IO_NAPI
4795 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
4796#endif
1da177e4
LT
4797
4798 if ((ret = pci_enable_device(pdev))) {
4799 DBG_PRINT(ERR_DBG,
4800 "s2io_init_nic: pci_enable_device failed\n");
4801 return ret;
4802 }
4803
1e7f0bd8 4804 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
4805 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
4806 dma_flag = TRUE;
1da177e4 4807 if (pci_set_consistent_dma_mask
1e7f0bd8 4808 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
4809 DBG_PRINT(ERR_DBG,
4810 "Unable to obtain 64bit DMA for \
4811 consistent allocations\n");
4812 pci_disable_device(pdev);
4813 return -ENOMEM;
4814 }
1e7f0bd8 4815 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
4816 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
4817 } else {
4818 pci_disable_device(pdev);
4819 return -ENOMEM;
4820 }
4821
4822 if (pci_request_regions(pdev, s2io_driver_name)) {
4823 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
4824 pci_disable_device(pdev);
4825 return -ENODEV;
4826 }
4827
4828 dev = alloc_etherdev(sizeof(nic_t));
4829 if (dev == NULL) {
4830 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
4831 pci_disable_device(pdev);
4832 pci_release_regions(pdev);
4833 return -ENODEV;
4834 }
4835
4836 pci_set_master(pdev);
4837 pci_set_drvdata(pdev, dev);
4838 SET_MODULE_OWNER(dev);
4839 SET_NETDEV_DEV(dev, &pdev->dev);
4840
4841 /* Private member variable initialized to s2io NIC structure */
4842 sp = dev->priv;
4843 memset(sp, 0, sizeof(nic_t));
4844 sp->dev = dev;
4845 sp->pdev = pdev;
1da177e4 4846 sp->high_dma_flag = dma_flag;
1da177e4 4847 sp->device_enabled_once = FALSE;
1da177e4
LT
4848
4849 /* Initialize some PCI/PCI-X fields of the NIC. */
4850 s2io_init_pci(sp);
4851
20346722 4852 /*
1da177e4 4853 * Setting the device configuration parameters.
20346722
K
4854 * Most of these parameters can be specified by the user during
4855 * module insertion as they are module loadable parameters. If
4856 * these parameters are not not specified during load time, they
1da177e4
LT
4857 * are initialized with default values.
4858 */
4859 mac_control = &sp->mac_control;
4860 config = &sp->config;
4861
4862 /* Tx side parameters. */
4863 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
4864 config->tx_fifo_num = tx_fifo_num;
4865 for (i = 0; i < MAX_TX_FIFOS; i++) {
4866 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
4867 config->tx_cfg[i].fifo_priority = i;
4868 }
4869
20346722
K
4870 /* mapping the QoS priority to the configured fifos */
4871 for (i = 0; i < MAX_TX_FIFOS; i++)
4872 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
4873
1da177e4
LT
4874 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
4875 for (i = 0; i < config->tx_fifo_num; i++) {
4876 config->tx_cfg[i].f_no_snoop =
4877 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
4878 if (config->tx_cfg[i].fifo_len < 65) {
4879 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
4880 break;
4881 }
4882 }
4883 config->max_txds = MAX_SKB_FRAGS;
4884
4885 /* Rx side parameters. */
4886 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
4887 config->rx_ring_num = rx_ring_num;
4888 for (i = 0; i < MAX_RX_RINGS; i++) {
4889 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
4890 (MAX_RXDS_PER_BLOCK + 1);
4891 config->rx_cfg[i].ring_priority = i;
4892 }
4893
4894 for (i = 0; i < rx_ring_num; i++) {
4895 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
4896 config->rx_cfg[i].f_no_snoop =
4897 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
4898 }
4899
4900 /* Setting Mac Control parameters */
4901 mac_control->rmac_pause_time = rmac_pause_time;
4902 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
4903 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
4904
4905
4906 /* Initialize Ring buffer parameters. */
4907 for (i = 0; i < config->rx_ring_num; i++)
4908 atomic_set(&sp->rx_bufs_left[i], 0);
4909
7ba013ac
K
4910 /* Initialize the number of ISRs currently running */
4911 atomic_set(&sp->isr_cnt, 0);
4912
1da177e4
LT
4913 /* initialize the shared memory used by the NIC and the host */
4914 if (init_shared_mem(sp)) {
4915 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
4916 dev->name);
4917 ret = -ENOMEM;
4918 goto mem_alloc_failed;
4919 }
4920
4921 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
4922 pci_resource_len(pdev, 0));
4923 if (!sp->bar0) {
4924 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
4925 dev->name);
4926 ret = -ENOMEM;
4927 goto bar0_remap_failed;
4928 }
4929
4930 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
4931 pci_resource_len(pdev, 2));
4932 if (!sp->bar1) {
4933 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
4934 dev->name);
4935 ret = -ENOMEM;
4936 goto bar1_remap_failed;
4937 }
4938
4939 dev->irq = pdev->irq;
4940 dev->base_addr = (unsigned long) sp->bar0;
4941
4942 /* Initializing the BAR1 address as the start of the FIFO pointer. */
4943 for (j = 0; j < MAX_TX_FIFOS; j++) {
4944 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
4945 (sp->bar1 + (j * 0x00020000));
4946 }
4947
4948 /* Driver entry points */
4949 dev->open = &s2io_open;
4950 dev->stop = &s2io_close;
4951 dev->hard_start_xmit = &s2io_xmit;
4952 dev->get_stats = &s2io_get_stats;
4953 dev->set_multicast_list = &s2io_set_multicast;
4954 dev->do_ioctl = &s2io_ioctl;
4955 dev->change_mtu = &s2io_change_mtu;
4956 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
20346722 4957
1da177e4
LT
4958 /*
4959 * will use eth_mac_addr() for dev->set_mac_address
4960 * mac address will be set every time dev->open() is called
4961 */
20346722 4962#if defined(CONFIG_S2IO_NAPI)
1da177e4 4963 dev->poll = s2io_poll;
20346722 4964 dev->weight = 32;
1da177e4
LT
4965#endif
4966
4967 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
4968 if (sp->high_dma_flag == TRUE)
4969 dev->features |= NETIF_F_HIGHDMA;
4970#ifdef NETIF_F_TSO
4971 dev->features |= NETIF_F_TSO;
4972#endif
4973
4974 dev->tx_timeout = &s2io_tx_watchdog;
4975 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
4976 INIT_WORK(&sp->rst_timer_task,
4977 (void (*)(void *)) s2io_restart_nic, dev);
4978 INIT_WORK(&sp->set_link_task,
4979 (void (*)(void *)) s2io_set_link, sp);
4980
4981 pci_save_state(sp->pdev);
4982
4983 /* Setting swapper control on the NIC, for proper reset operation */
4984 if (s2io_set_swapper(sp)) {
4985 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
4986 dev->name);
4987 ret = -EAGAIN;
4988 goto set_swap_failed;
4989 }
4990
20346722
K
4991 /*
4992 * Fix for all "FFs" MAC address problems observed on
4993 * Alpha platforms
4994 */
1da177e4
LT
4995 fix_mac_address(sp);
4996 s2io_reset(sp);
4997
4998 /*
1da177e4
LT
4999 * MAC address initialization.
5000 * For now only one mac address will be read and used.
5001 */
5002 bar0 = sp->bar0;
5003 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5004 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
5005 writeq(val64, &bar0->rmac_addr_cmd_mem);
5006 wait_for_cmd_complete(sp);
5007
5008 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5009 mac_down = (u32) tmp64;
5010 mac_up = (u32) (tmp64 >> 32);
5011
5012 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
5013
5014 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
5015 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
5016 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
5017 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
5018 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
5019 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
5020
5021 DBG_PRINT(INIT_DBG,
5022 "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n",
5023 sp->def_mac_addr[0].mac_addr[0],
5024 sp->def_mac_addr[0].mac_addr[1],
5025 sp->def_mac_addr[0].mac_addr[2],
5026 sp->def_mac_addr[0].mac_addr[3],
5027 sp->def_mac_addr[0].mac_addr[4],
5028 sp->def_mac_addr[0].mac_addr[5]);
5029
5030 /* Set the factory defined MAC address initially */
5031 dev->addr_len = ETH_ALEN;
5032 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
5033
5034 /*
20346722 5035 * Initialize the tasklet status and link state flags
1da177e4
LT
5036 * and the card statte parameter
5037 */
5038 atomic_set(&(sp->card_state), 0);
5039 sp->tasklet_status = 0;
5040 sp->link_state = 0;
5041
1da177e4
LT
5042 /* Initialize spinlocks */
5043 spin_lock_init(&sp->tx_lock);
5044#ifndef CONFIG_S2IO_NAPI
5045 spin_lock_init(&sp->put_lock);
5046#endif
7ba013ac 5047 spin_lock_init(&sp->rx_lock);
1da177e4 5048
20346722
K
5049 /*
5050 * SXE-002: Configure link and activity LED to init state
5051 * on driver load.
1da177e4
LT
5052 */
5053 subid = sp->pdev->subsystem_device;
5054 if ((subid & 0xFF) >= 0x07) {
5055 val64 = readq(&bar0->gpio_control);
5056 val64 |= 0x0000800000000000ULL;
5057 writeq(val64, &bar0->gpio_control);
5058 val64 = 0x0411040400000000ULL;
5059 writeq(val64, (void __iomem *) bar0 + 0x2700);
5060 val64 = readq(&bar0->gpio_control);
5061 }
5062
5063 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
5064
5065 if (register_netdev(dev)) {
5066 DBG_PRINT(ERR_DBG, "Device registration failed\n");
5067 ret = -ENODEV;
5068 goto register_failed;
5069 }
5070
7ba013ac
K
5071 /* Initialize device name */
5072 strcpy(sp->name, dev->name);
5073 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
5074
20346722
K
5075 /*
5076 * Make Link state as off at this point, when the Link change
5077 * interrupt comes the state will be automatically changed to
1da177e4
LT
5078 * the right state.
5079 */
5080 netif_carrier_off(dev);
1da177e4
LT
5081
5082 return 0;
5083
5084 register_failed:
5085 set_swap_failed:
5086 iounmap(sp->bar1);
5087 bar1_remap_failed:
5088 iounmap(sp->bar0);
5089 bar0_remap_failed:
5090 mem_alloc_failed:
5091 free_shared_mem(sp);
5092 pci_disable_device(pdev);
5093 pci_release_regions(pdev);
5094 pci_set_drvdata(pdev, NULL);
5095 free_netdev(dev);
5096
5097 return ret;
5098}
5099
5100/**
20346722 5101 * s2io_rem_nic - Free the PCI device
1da177e4 5102 * @pdev: structure containing the PCI related information of the device.
20346722 5103 * Description: This function is called by the Pci subsystem to release a
1da177e4 5104 * PCI device and free up all resource held up by the device. This could
20346722 5105 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
5106 * from memory.
5107 */
5108
5109static void __devexit s2io_rem_nic(struct pci_dev *pdev)
5110{
5111 struct net_device *dev =
5112 (struct net_device *) pci_get_drvdata(pdev);
5113 nic_t *sp;
5114
5115 if (dev == NULL) {
5116 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
5117 return;
5118 }
5119
5120 sp = dev->priv;
5121 unregister_netdev(dev);
5122
5123 free_shared_mem(sp);
5124 iounmap(sp->bar0);
5125 iounmap(sp->bar1);
5126 pci_disable_device(pdev);
5127 pci_release_regions(pdev);
5128 pci_set_drvdata(pdev, NULL);
1da177e4
LT
5129 free_netdev(dev);
5130}
5131
5132/**
5133 * s2io_starter - Entry point for the driver
5134 * Description: This function is the entry point for the driver. It verifies
5135 * the module loadable parameters and initializes PCI configuration space.
5136 */
5137
5138int __init s2io_starter(void)
5139{
5140 return pci_module_init(&s2io_driver);
5141}
5142
5143/**
20346722 5144 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
5145 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
5146 */
5147
20346722 5148void s2io_closer(void)
1da177e4
LT
5149{
5150 pci_unregister_driver(&s2io_driver);
5151 DBG_PRINT(INIT_DBG, "cleanup done\n");
5152}
5153
5154module_init(s2io_starter);
5155module_exit(s2io_closer);