]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/qlge/qlge_main.c
qlge: Increase filtering for inbound csum settings.
[net-next-2.6.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
4974097a
RM
61/* NETIF_MSG_TX_QUEUED | */
62/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
b0c2aadf 78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
80 /* required last entry */
81 {0,}
82};
83
84MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86/* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91{
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126}
127
128int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129{
0857e9d7 130 unsigned int wait_count = 30;
c4e84bde
RM
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
0857e9d7
RM
134 udelay(100);
135 } while (--wait_count);
c4e84bde
RM
136 return -ETIMEDOUT;
137}
138
139void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140{
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143}
144
145/* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151{
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172}
173
174/* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178{
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192}
193
194
195/* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200{
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
217 status = ql_wait_cfg(qdev, bit);
218 if (status) {
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
221 goto exit;
222 }
223
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225 if (status)
226 goto exit;
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239exit:
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242}
243
244/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247{
248 u32 offset = 0;
249 int status;
250
c4e84bde
RM
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
254 {
255 status =
256 ql_wait_reg_rdy(qdev,
939678f8 257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
939678f8 265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
939678f8 271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
939678f8 279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
939678f8 286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 294 MAC_ADDR_MR, 0);
c4e84bde
RM
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 }
299 break;
300 }
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
307 }
308exit:
c4e84bde
RM
309 return status;
310}
311
312/* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
314 */
315static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
317{
318 u32 offset = 0;
319 int status = 0;
320
c4e84bde
RM
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
323 case MAC_ADDR_TYPE_CAM_MAC:
324 {
325 u32 cam_output;
326 u32 upper = (addr[0] << 8) | addr[1];
327 u32 lower =
328 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
329 (addr[5]);
330
4974097a 331 QPRINTK(qdev, IFUP, DEBUG,
7c510e4b 332 "Adding %s address %pM"
c4e84bde
RM
333 " at index %d in the CAM.\n",
334 ((type ==
335 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 336 "UNICAST"), addr, index);
c4e84bde
RM
337
338 status =
339 ql_wait_reg_rdy(qdev,
939678f8 340 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
341 if (status)
342 goto exit;
343 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
344 (index << MAC_ADDR_IDX_SHIFT) | /* index */
345 type); /* type */
346 ql_write32(qdev, MAC_ADDR_DATA, lower);
347 status =
348 ql_wait_reg_rdy(qdev,
939678f8 349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
350 if (status)
351 goto exit;
352 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
353 (index << MAC_ADDR_IDX_SHIFT) | /* index */
354 type); /* type */
355 ql_write32(qdev, MAC_ADDR_DATA, upper);
356 status =
357 ql_wait_reg_rdy(qdev,
939678f8 358 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
359 if (status)
360 goto exit;
361 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
362 (index << MAC_ADDR_IDX_SHIFT) | /* index */
363 type); /* type */
364 /* This field should also include the queue id
365 and possibly the function id. Right now we hardcode
366 the route field to NIC core.
367 */
368 if (type == MAC_ADDR_TYPE_CAM_MAC) {
369 cam_output = (CAM_OUT_ROUTE_NIC |
370 (qdev->
371 func << CAM_OUT_FUNC_SHIFT) |
372 (qdev->
373 rss_ring_first_cq_id <<
374 CAM_OUT_CQ_ID_SHIFT));
375 if (qdev->vlgrp)
376 cam_output |= CAM_OUT_RV;
377 /* route to NIC core */
378 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
379 }
380 break;
381 }
382 case MAC_ADDR_TYPE_VLAN:
383 {
384 u32 enable_bit = *((u32 *) &addr[0]);
385 /* For VLAN, the addr actually holds a bit that
386 * either enables or disables the vlan id we are
387 * addressing. It's either MAC_ADDR_E on or off.
388 * That's bit-27 we're talking about.
389 */
390 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
391 (enable_bit ? "Adding" : "Removing"),
392 index, (enable_bit ? "to" : "from"));
393
394 status =
395 ql_wait_reg_rdy(qdev,
939678f8 396 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
397 if (status)
398 goto exit;
399 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
400 (index << MAC_ADDR_IDX_SHIFT) | /* index */
401 type | /* type */
402 enable_bit); /* enable/disable */
403 break;
404 }
405 case MAC_ADDR_TYPE_MULTI_FLTR:
406 default:
407 QPRINTK(qdev, IFUP, CRIT,
408 "Address type %d not yet supported.\n", type);
409 status = -EPERM;
410 }
411exit:
c4e84bde
RM
412 return status;
413}
414
415/* Get a specific frame routing value from the CAM.
416 * Used for debug and reg dump.
417 */
418int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
419{
420 int status = 0;
421
939678f8 422 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
423 if (status)
424 goto exit;
425
426 ql_write32(qdev, RT_IDX,
427 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 428 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
429 if (status)
430 goto exit;
431 *value = ql_read32(qdev, RT_DATA);
432exit:
c4e84bde
RM
433 return status;
434}
435
436/* The NIC function for this chip has 16 routing indexes. Each one can be used
437 * to route different frame types to various inbound queues. We send broadcast/
438 * multicast/error frames to the default queue for slow handling,
439 * and CAM hit/RSS frames to the fast handling queues.
440 */
441static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
442 int enable)
443{
8587ea35 444 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
445 u32 value = 0;
446
c4e84bde
RM
447 QPRINTK(qdev, IFUP, DEBUG,
448 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449 (enable ? "Adding" : "Removing"),
450 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
451 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
452 ((index ==
453 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
454 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
455 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
456 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
457 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
458 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
459 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
460 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
461 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
462 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
463 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
464 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
465 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
466 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
467 (enable ? "to" : "from"));
468
469 switch (mask) {
470 case RT_IDX_CAM_HIT:
471 {
472 value = RT_IDX_DST_CAM_Q | /* dest */
473 RT_IDX_TYPE_NICQ | /* type */
474 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
475 break;
476 }
477 case RT_IDX_VALID: /* Promiscuous Mode frames. */
478 {
479 value = RT_IDX_DST_DFLT_Q | /* dest */
480 RT_IDX_TYPE_NICQ | /* type */
481 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
482 break;
483 }
484 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
485 {
486 value = RT_IDX_DST_DFLT_Q | /* dest */
487 RT_IDX_TYPE_NICQ | /* type */
488 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
489 break;
490 }
491 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
492 {
493 value = RT_IDX_DST_DFLT_Q | /* dest */
494 RT_IDX_TYPE_NICQ | /* type */
495 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
496 break;
497 }
498 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
499 {
500 value = RT_IDX_DST_CAM_Q | /* dest */
501 RT_IDX_TYPE_NICQ | /* type */
502 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
503 break;
504 }
505 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
506 {
507 value = RT_IDX_DST_CAM_Q | /* dest */
508 RT_IDX_TYPE_NICQ | /* type */
509 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
510 break;
511 }
512 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
513 {
514 value = RT_IDX_DST_RSS | /* dest */
515 RT_IDX_TYPE_NICQ | /* type */
516 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
517 break;
518 }
519 case 0: /* Clear the E-bit on an entry. */
520 {
521 value = RT_IDX_DST_DFLT_Q | /* dest */
522 RT_IDX_TYPE_NICQ | /* type */
523 (index << RT_IDX_IDX_SHIFT);/* index */
524 break;
525 }
526 default:
527 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
528 mask);
529 status = -EPERM;
530 goto exit;
531 }
532
533 if (value) {
534 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
535 if (status)
536 goto exit;
537 value |= (enable ? RT_IDX_E : 0);
538 ql_write32(qdev, RT_IDX, value);
539 ql_write32(qdev, RT_DATA, enable ? mask : 0);
540 }
541exit:
c4e84bde
RM
542 return status;
543}
544
545static void ql_enable_interrupts(struct ql_adapter *qdev)
546{
547 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
548}
549
550static void ql_disable_interrupts(struct ql_adapter *qdev)
551{
552 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
553}
554
555/* If we're running with multiple MSI-X vectors then we enable on the fly.
556 * Otherwise, we may have multiple outstanding workers and don't want to
557 * enable until the last one finishes. In this case, the irq_cnt gets
558 * incremented everytime we queue a worker and decremented everytime
559 * a worker finishes. Once it hits zero we enable the interrupt.
560 */
bb0d215c 561u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 562{
bb0d215c
RM
563 u32 var = 0;
564 unsigned long hw_flags = 0;
565 struct intr_context *ctx = qdev->intr_context + intr;
566
567 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
568 /* Always enable if we're MSIX multi interrupts and
569 * it's not the default (zeroeth) interrupt.
570 */
c4e84bde 571 ql_write32(qdev, INTR_EN,
bb0d215c
RM
572 ctx->intr_en_mask);
573 var = ql_read32(qdev, STS);
574 return var;
c4e84bde 575 }
bb0d215c
RM
576
577 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
578 if (atomic_dec_and_test(&ctx->irq_cnt)) {
579 ql_write32(qdev, INTR_EN,
580 ctx->intr_en_mask);
581 var = ql_read32(qdev, STS);
582 }
583 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
584 return var;
c4e84bde
RM
585}
586
587static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
588{
589 u32 var = 0;
bb0d215c
RM
590 unsigned long hw_flags;
591 struct intr_context *ctx;
c4e84bde 592
bb0d215c
RM
593 /* HW disables for us if we're MSIX multi interrupts and
594 * it's not the default (zeroeth) interrupt.
595 */
596 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
597 return 0;
598
599 ctx = qdev->intr_context + intr;
600 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
601 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 602 ql_write32(qdev, INTR_EN,
bb0d215c 603 ctx->intr_dis_mask);
c4e84bde
RM
604 var = ql_read32(qdev, STS);
605 }
bb0d215c
RM
606 atomic_inc(&ctx->irq_cnt);
607 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
c4e84bde
RM
608 return var;
609}
610
611static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
612{
613 int i;
614 for (i = 0; i < qdev->intr_count; i++) {
615 /* The enable call does a atomic_dec_and_test
616 * and enables only if the result is zero.
617 * So we precharge it here.
618 */
bb0d215c
RM
619 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
620 i == 0))
621 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
622 ql_enable_completion_interrupt(qdev, i);
623 }
624
625}
626
b0c2aadf
RM
627static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
628{
629 int status, i;
630 u16 csum = 0;
631 __le16 *flash = (__le16 *)&qdev->flash;
632
633 status = strncmp((char *)&qdev->flash, str, 4);
634 if (status) {
635 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
636 return status;
637 }
638
639 for (i = 0; i < size; i++)
640 csum += le16_to_cpu(*flash++);
641
642 if (csum)
643 QPRINTK(qdev, IFUP, ERR,
644 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
645
646 return csum;
647}
648
26351479 649static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
650{
651 int status = 0;
652 /* wait for reg to come ready */
653 status = ql_wait_reg_rdy(qdev,
654 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
655 if (status)
656 goto exit;
657 /* set up for reg read */
658 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
659 /* wait for reg to come ready */
660 status = ql_wait_reg_rdy(qdev,
661 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
662 if (status)
663 goto exit;
26351479
RM
664 /* This data is stored on flash as an array of
665 * __le32. Since ql_read32() returns cpu endian
666 * we need to swap it back.
667 */
668 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
669exit:
670 return status;
671}
672
cdca8d02
RM
673static int ql_get_8000_flash_params(struct ql_adapter *qdev)
674{
675 u32 i, size;
676 int status;
677 __le32 *p = (__le32 *)&qdev->flash;
678 u32 offset;
679
680 /* Get flash offset for function and adjust
681 * for dword access.
682 */
683 if (!qdev->func)
684 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
685 else
686 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
687
688 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
689 return -ETIMEDOUT;
690
691 size = sizeof(struct flash_params_8000) / sizeof(u32);
692 for (i = 0; i < size; i++, p++) {
693 status = ql_read_flash_word(qdev, i+offset, p);
694 if (status) {
695 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
696 goto exit;
697 }
698 }
699
700 status = ql_validate_flash(qdev,
701 sizeof(struct flash_params_8000) / sizeof(u16),
702 "8000");
703 if (status) {
704 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
705 status = -EINVAL;
706 goto exit;
707 }
708
709 if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
710 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
711 status = -EINVAL;
712 goto exit;
713 }
714
715 memcpy(qdev->ndev->dev_addr,
716 qdev->flash.flash_params_8000.mac_addr,
717 qdev->ndev->addr_len);
718
719exit:
720 ql_sem_unlock(qdev, SEM_FLASH_MASK);
721 return status;
722}
723
b0c2aadf 724static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
725{
726 int i;
727 int status;
26351479 728 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 729 u32 offset = 0;
b0c2aadf 730 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
731
732 /* Second function's parameters follow the first
733 * function's.
734 */
735 if (qdev->func)
b0c2aadf 736 offset = size;
c4e84bde
RM
737
738 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
739 return -ETIMEDOUT;
740
b0c2aadf 741 for (i = 0; i < size; i++, p++) {
e78f5fa7 742 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
743 if (status) {
744 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
745 goto exit;
746 }
747
748 }
b0c2aadf
RM
749
750 status = ql_validate_flash(qdev,
751 sizeof(struct flash_params_8012) / sizeof(u16),
752 "8012");
753 if (status) {
754 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
755 status = -EINVAL;
756 goto exit;
757 }
758
759 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
760 status = -EINVAL;
761 goto exit;
762 }
763
764 memcpy(qdev->ndev->dev_addr,
765 qdev->flash.flash_params_8012.mac_addr,
766 qdev->ndev->addr_len);
767
c4e84bde
RM
768exit:
769 ql_sem_unlock(qdev, SEM_FLASH_MASK);
770 return status;
771}
772
773/* xgmac register are located behind the xgmac_addr and xgmac_data
774 * register pair. Each read/write requires us to wait for the ready
775 * bit before reading/writing the data.
776 */
777static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
778{
779 int status;
780 /* wait for reg to come ready */
781 status = ql_wait_reg_rdy(qdev,
782 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
783 if (status)
784 return status;
785 /* write the data to the data reg */
786 ql_write32(qdev, XGMAC_DATA, data);
787 /* trigger the write */
788 ql_write32(qdev, XGMAC_ADDR, reg);
789 return status;
790}
791
792/* xgmac register are located behind the xgmac_addr and xgmac_data
793 * register pair. Each read/write requires us to wait for the ready
794 * bit before reading/writing the data.
795 */
796int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
797{
798 int status = 0;
799 /* wait for reg to come ready */
800 status = ql_wait_reg_rdy(qdev,
801 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
802 if (status)
803 goto exit;
804 /* set up for reg read */
805 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
806 /* wait for reg to come ready */
807 status = ql_wait_reg_rdy(qdev,
808 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
809 if (status)
810 goto exit;
811 /* get the data */
812 *data = ql_read32(qdev, XGMAC_DATA);
813exit:
814 return status;
815}
816
817/* This is used for reading the 64-bit statistics regs. */
818int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
819{
820 int status = 0;
821 u32 hi = 0;
822 u32 lo = 0;
823
824 status = ql_read_xgmac_reg(qdev, reg, &lo);
825 if (status)
826 goto exit;
827
828 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
829 if (status)
830 goto exit;
831
832 *data = (u64) lo | ((u64) hi << 32);
833
834exit:
835 return status;
836}
837
cdca8d02
RM
838static int ql_8000_port_initialize(struct ql_adapter *qdev)
839{
bcc2cb3b
RM
840 int status;
841 status = ql_mb_get_fw_state(qdev);
842 if (status)
843 goto exit;
844 /* Wake up a worker to get/set the TX/RX frame sizes. */
845 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
846exit:
847 return status;
cdca8d02
RM
848}
849
c4e84bde
RM
850/* Take the MAC Core out of reset.
851 * Enable statistics counting.
852 * Take the transmitter/receiver out of reset.
853 * This functionality may be done in the MPI firmware at a
854 * later date.
855 */
b0c2aadf 856static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
857{
858 int status = 0;
859 u32 data;
860
861 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
862 /* Another function has the semaphore, so
863 * wait for the port init bit to come ready.
864 */
865 QPRINTK(qdev, LINK, INFO,
866 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
867 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
868 if (status) {
869 QPRINTK(qdev, LINK, CRIT,
870 "Port initialize timed out.\n");
871 }
872 return status;
873 }
874
875 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
876 /* Set the core reset. */
877 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
878 if (status)
879 goto end;
880 data |= GLOBAL_CFG_RESET;
881 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
882 if (status)
883 goto end;
884
885 /* Clear the core reset and turn on jumbo for receiver. */
886 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
887 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
888 data |= GLOBAL_CFG_TX_STAT_EN;
889 data |= GLOBAL_CFG_RX_STAT_EN;
890 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
891 if (status)
892 goto end;
893
894 /* Enable transmitter, and clear it's reset. */
895 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
896 if (status)
897 goto end;
898 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
899 data |= TX_CFG_EN; /* Enable the transmitter. */
900 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
901 if (status)
902 goto end;
903
904 /* Enable receiver and clear it's reset. */
905 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
906 if (status)
907 goto end;
908 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
909 data |= RX_CFG_EN; /* Enable the receiver. */
910 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
911 if (status)
912 goto end;
913
914 /* Turn on jumbo. */
915 status =
916 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
917 if (status)
918 goto end;
919 status =
920 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
921 if (status)
922 goto end;
923
924 /* Signal to the world that the port is enabled. */
925 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
926end:
927 ql_sem_unlock(qdev, qdev->xg_sem_mask);
928 return status;
929}
930
931/* Get the next large buffer. */
8668ae92 932static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
933{
934 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
935 rx_ring->lbq_curr_idx++;
936 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
937 rx_ring->lbq_curr_idx = 0;
938 rx_ring->lbq_free_cnt++;
939 return lbq_desc;
940}
941
942/* Get the next small buffer. */
8668ae92 943static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
944{
945 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
946 rx_ring->sbq_curr_idx++;
947 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
948 rx_ring->sbq_curr_idx = 0;
949 rx_ring->sbq_free_cnt++;
950 return sbq_desc;
951}
952
953/* Update an rx ring index. */
954static void ql_update_cq(struct rx_ring *rx_ring)
955{
956 rx_ring->cnsmr_idx++;
957 rx_ring->curr_entry++;
958 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
959 rx_ring->cnsmr_idx = 0;
960 rx_ring->curr_entry = rx_ring->cq_base;
961 }
962}
963
964static void ql_write_cq_idx(struct rx_ring *rx_ring)
965{
966 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
967}
968
969/* Process (refill) a large buffer queue. */
970static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
971{
49f2186d
RM
972 u32 clean_idx = rx_ring->lbq_clean_idx;
973 u32 start_idx = clean_idx;
c4e84bde 974 struct bq_desc *lbq_desc;
c4e84bde
RM
975 u64 map;
976 int i;
977
978 while (rx_ring->lbq_free_cnt > 16) {
979 for (i = 0; i < 16; i++) {
980 QPRINTK(qdev, RX_STATUS, DEBUG,
981 "lbq: try cleaning clean_idx = %d.\n",
982 clean_idx);
983 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
984 if (lbq_desc->p.lbq_page == NULL) {
985 QPRINTK(qdev, RX_STATUS, DEBUG,
986 "lbq: getting new page for index %d.\n",
987 lbq_desc->index);
988 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
989 if (lbq_desc->p.lbq_page == NULL) {
79d2b29e 990 rx_ring->lbq_clean_idx = clean_idx;
c4e84bde
RM
991 QPRINTK(qdev, RX_STATUS, ERR,
992 "Couldn't get a page.\n");
993 return;
994 }
995 map = pci_map_page(qdev->pdev,
996 lbq_desc->p.lbq_page,
997 0, PAGE_SIZE,
998 PCI_DMA_FROMDEVICE);
999 if (pci_dma_mapping_error(qdev->pdev, map)) {
79d2b29e 1000 rx_ring->lbq_clean_idx = clean_idx;
f2603c2c
RM
1001 put_page(lbq_desc->p.lbq_page);
1002 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
1003 QPRINTK(qdev, RX_STATUS, ERR,
1004 "PCI mapping failed.\n");
1005 return;
1006 }
1007 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1008 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 1009 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1010 }
1011 clean_idx++;
1012 if (clean_idx == rx_ring->lbq_len)
1013 clean_idx = 0;
1014 }
1015
1016 rx_ring->lbq_clean_idx = clean_idx;
1017 rx_ring->lbq_prod_idx += 16;
1018 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1019 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1020 rx_ring->lbq_free_cnt -= 16;
1021 }
1022
1023 if (start_idx != clean_idx) {
c4e84bde
RM
1024 QPRINTK(qdev, RX_STATUS, DEBUG,
1025 "lbq: updating prod idx = %d.\n",
1026 rx_ring->lbq_prod_idx);
1027 ql_write_db_reg(rx_ring->lbq_prod_idx,
1028 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1029 }
1030}
1031
1032/* Process (refill) a small buffer queue. */
1033static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1034{
49f2186d
RM
1035 u32 clean_idx = rx_ring->sbq_clean_idx;
1036 u32 start_idx = clean_idx;
c4e84bde 1037 struct bq_desc *sbq_desc;
c4e84bde
RM
1038 u64 map;
1039 int i;
1040
1041 while (rx_ring->sbq_free_cnt > 16) {
1042 for (i = 0; i < 16; i++) {
1043 sbq_desc = &rx_ring->sbq[clean_idx];
1044 QPRINTK(qdev, RX_STATUS, DEBUG,
1045 "sbq: try cleaning clean_idx = %d.\n",
1046 clean_idx);
c4e84bde
RM
1047 if (sbq_desc->p.skb == NULL) {
1048 QPRINTK(qdev, RX_STATUS, DEBUG,
1049 "sbq: getting new skb for index %d.\n",
1050 sbq_desc->index);
1051 sbq_desc->p.skb =
1052 netdev_alloc_skb(qdev->ndev,
1053 rx_ring->sbq_buf_size);
1054 if (sbq_desc->p.skb == NULL) {
1055 QPRINTK(qdev, PROBE, ERR,
1056 "Couldn't get an skb.\n");
1057 rx_ring->sbq_clean_idx = clean_idx;
1058 return;
1059 }
1060 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1061 map = pci_map_single(qdev->pdev,
1062 sbq_desc->p.skb->data,
1063 rx_ring->sbq_buf_size /
1064 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
1065 if (pci_dma_mapping_error(qdev->pdev, map)) {
1066 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1067 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1068 dev_kfree_skb_any(sbq_desc->p.skb);
1069 sbq_desc->p.skb = NULL;
c907a35a
RM
1070 return;
1071 }
c4e84bde
RM
1072 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1073 pci_unmap_len_set(sbq_desc, maplen,
1074 rx_ring->sbq_buf_size / 2);
2c9a0d41 1075 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1076 }
1077
1078 clean_idx++;
1079 if (clean_idx == rx_ring->sbq_len)
1080 clean_idx = 0;
1081 }
1082 rx_ring->sbq_clean_idx = clean_idx;
1083 rx_ring->sbq_prod_idx += 16;
1084 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1085 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1086 rx_ring->sbq_free_cnt -= 16;
1087 }
1088
1089 if (start_idx != clean_idx) {
c4e84bde
RM
1090 QPRINTK(qdev, RX_STATUS, DEBUG,
1091 "sbq: updating prod idx = %d.\n",
1092 rx_ring->sbq_prod_idx);
1093 ql_write_db_reg(rx_ring->sbq_prod_idx,
1094 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1095 }
1096}
1097
1098static void ql_update_buffer_queues(struct ql_adapter *qdev,
1099 struct rx_ring *rx_ring)
1100{
1101 ql_update_sbq(qdev, rx_ring);
1102 ql_update_lbq(qdev, rx_ring);
1103}
1104
1105/* Unmaps tx buffers. Can be called from send() if a pci mapping
1106 * fails at some stage, or from the interrupt when a tx completes.
1107 */
1108static void ql_unmap_send(struct ql_adapter *qdev,
1109 struct tx_ring_desc *tx_ring_desc, int mapped)
1110{
1111 int i;
1112 for (i = 0; i < mapped; i++) {
1113 if (i == 0 || (i == 7 && mapped > 7)) {
1114 /*
1115 * Unmap the skb->data area, or the
1116 * external sglist (AKA the Outbound
1117 * Address List (OAL)).
1118 * If its the zeroeth element, then it's
1119 * the skb->data area. If it's the 7th
1120 * element and there is more than 6 frags,
1121 * then its an OAL.
1122 */
1123 if (i == 7) {
1124 QPRINTK(qdev, TX_DONE, DEBUG,
1125 "unmapping OAL area.\n");
1126 }
1127 pci_unmap_single(qdev->pdev,
1128 pci_unmap_addr(&tx_ring_desc->map[i],
1129 mapaddr),
1130 pci_unmap_len(&tx_ring_desc->map[i],
1131 maplen),
1132 PCI_DMA_TODEVICE);
1133 } else {
1134 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1135 i);
1136 pci_unmap_page(qdev->pdev,
1137 pci_unmap_addr(&tx_ring_desc->map[i],
1138 mapaddr),
1139 pci_unmap_len(&tx_ring_desc->map[i],
1140 maplen), PCI_DMA_TODEVICE);
1141 }
1142 }
1143
1144}
1145
1146/* Map the buffers for this transmit. This will return
1147 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1148 */
1149static int ql_map_send(struct ql_adapter *qdev,
1150 struct ob_mac_iocb_req *mac_iocb_ptr,
1151 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1152{
1153 int len = skb_headlen(skb);
1154 dma_addr_t map;
1155 int frag_idx, err, map_idx = 0;
1156 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1157 int frag_cnt = skb_shinfo(skb)->nr_frags;
1158
1159 if (frag_cnt) {
1160 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1161 }
1162 /*
1163 * Map the skb buffer first.
1164 */
1165 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1166
1167 err = pci_dma_mapping_error(qdev->pdev, map);
1168 if (err) {
1169 QPRINTK(qdev, TX_QUEUED, ERR,
1170 "PCI mapping failed with error: %d\n", err);
1171
1172 return NETDEV_TX_BUSY;
1173 }
1174
1175 tbd->len = cpu_to_le32(len);
1176 tbd->addr = cpu_to_le64(map);
1177 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1178 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1179 map_idx++;
1180
1181 /*
1182 * This loop fills the remainder of the 8 address descriptors
1183 * in the IOCB. If there are more than 7 fragments, then the
1184 * eighth address desc will point to an external list (OAL).
1185 * When this happens, the remainder of the frags will be stored
1186 * in this list.
1187 */
1188 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1189 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1190 tbd++;
1191 if (frag_idx == 6 && frag_cnt > 7) {
1192 /* Let's tack on an sglist.
1193 * Our control block will now
1194 * look like this:
1195 * iocb->seg[0] = skb->data
1196 * iocb->seg[1] = frag[0]
1197 * iocb->seg[2] = frag[1]
1198 * iocb->seg[3] = frag[2]
1199 * iocb->seg[4] = frag[3]
1200 * iocb->seg[5] = frag[4]
1201 * iocb->seg[6] = frag[5]
1202 * iocb->seg[7] = ptr to OAL (external sglist)
1203 * oal->seg[0] = frag[6]
1204 * oal->seg[1] = frag[7]
1205 * oal->seg[2] = frag[8]
1206 * oal->seg[3] = frag[9]
1207 * oal->seg[4] = frag[10]
1208 * etc...
1209 */
1210 /* Tack on the OAL in the eighth segment of IOCB. */
1211 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1212 sizeof(struct oal),
1213 PCI_DMA_TODEVICE);
1214 err = pci_dma_mapping_error(qdev->pdev, map);
1215 if (err) {
1216 QPRINTK(qdev, TX_QUEUED, ERR,
1217 "PCI mapping outbound address list with error: %d\n",
1218 err);
1219 goto map_error;
1220 }
1221
1222 tbd->addr = cpu_to_le64(map);
1223 /*
1224 * The length is the number of fragments
1225 * that remain to be mapped times the length
1226 * of our sglist (OAL).
1227 */
1228 tbd->len =
1229 cpu_to_le32((sizeof(struct tx_buf_desc) *
1230 (frag_cnt - frag_idx)) | TX_DESC_C);
1231 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1232 map);
1233 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1234 sizeof(struct oal));
1235 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1236 map_idx++;
1237 }
1238
1239 map =
1240 pci_map_page(qdev->pdev, frag->page,
1241 frag->page_offset, frag->size,
1242 PCI_DMA_TODEVICE);
1243
1244 err = pci_dma_mapping_error(qdev->pdev, map);
1245 if (err) {
1246 QPRINTK(qdev, TX_QUEUED, ERR,
1247 "PCI mapping frags failed with error: %d.\n",
1248 err);
1249 goto map_error;
1250 }
1251
1252 tbd->addr = cpu_to_le64(map);
1253 tbd->len = cpu_to_le32(frag->size);
1254 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1255 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1256 frag->size);
1257
1258 }
1259 /* Save the number of segments we've mapped. */
1260 tx_ring_desc->map_cnt = map_idx;
1261 /* Terminate the last segment. */
1262 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1263 return NETDEV_TX_OK;
1264
1265map_error:
1266 /*
1267 * If the first frag mapping failed, then i will be zero.
1268 * This causes the unmap of the skb->data area. Otherwise
1269 * we pass in the number of frags that mapped successfully
1270 * so they can be umapped.
1271 */
1272 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1273 return NETDEV_TX_BUSY;
1274}
1275
8668ae92 1276static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1277{
1278 void *temp_addr = skb->data;
1279
1280 /* Undo the skb_reserve(skb,32) we did before
1281 * giving to hardware, and realign data on
1282 * a 2-byte boundary.
1283 */
1284 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1285 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1286 skb_copy_to_linear_data(skb, temp_addr,
1287 (unsigned int)len);
1288}
1289
1290/*
1291 * This function builds an skb for the given inbound
1292 * completion. It will be rewritten for readability in the near
1293 * future, but for not it works well.
1294 */
1295static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1296 struct rx_ring *rx_ring,
1297 struct ib_mac_iocb_rsp *ib_mac_rsp)
1298{
1299 struct bq_desc *lbq_desc;
1300 struct bq_desc *sbq_desc;
1301 struct sk_buff *skb = NULL;
1302 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1303 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1304
1305 /*
1306 * Handle the header buffer if present.
1307 */
1308 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1309 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1310 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1311 /*
1312 * Headers fit nicely into a small buffer.
1313 */
1314 sbq_desc = ql_get_curr_sbuf(rx_ring);
1315 pci_unmap_single(qdev->pdev,
1316 pci_unmap_addr(sbq_desc, mapaddr),
1317 pci_unmap_len(sbq_desc, maplen),
1318 PCI_DMA_FROMDEVICE);
1319 skb = sbq_desc->p.skb;
1320 ql_realign_skb(skb, hdr_len);
1321 skb_put(skb, hdr_len);
1322 sbq_desc->p.skb = NULL;
1323 }
1324
1325 /*
1326 * Handle the data buffer(s).
1327 */
1328 if (unlikely(!length)) { /* Is there data too? */
1329 QPRINTK(qdev, RX_STATUS, DEBUG,
1330 "No Data buffer in this packet.\n");
1331 return skb;
1332 }
1333
1334 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1335 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1336 QPRINTK(qdev, RX_STATUS, DEBUG,
1337 "Headers in small, data of %d bytes in small, combine them.\n", length);
1338 /*
1339 * Data is less than small buffer size so it's
1340 * stuffed in a small buffer.
1341 * For this case we append the data
1342 * from the "data" small buffer to the "header" small
1343 * buffer.
1344 */
1345 sbq_desc = ql_get_curr_sbuf(rx_ring);
1346 pci_dma_sync_single_for_cpu(qdev->pdev,
1347 pci_unmap_addr
1348 (sbq_desc, mapaddr),
1349 pci_unmap_len
1350 (sbq_desc, maplen),
1351 PCI_DMA_FROMDEVICE);
1352 memcpy(skb_put(skb, length),
1353 sbq_desc->p.skb->data, length);
1354 pci_dma_sync_single_for_device(qdev->pdev,
1355 pci_unmap_addr
1356 (sbq_desc,
1357 mapaddr),
1358 pci_unmap_len
1359 (sbq_desc,
1360 maplen),
1361 PCI_DMA_FROMDEVICE);
1362 } else {
1363 QPRINTK(qdev, RX_STATUS, DEBUG,
1364 "%d bytes in a single small buffer.\n", length);
1365 sbq_desc = ql_get_curr_sbuf(rx_ring);
1366 skb = sbq_desc->p.skb;
1367 ql_realign_skb(skb, length);
1368 skb_put(skb, length);
1369 pci_unmap_single(qdev->pdev,
1370 pci_unmap_addr(sbq_desc,
1371 mapaddr),
1372 pci_unmap_len(sbq_desc,
1373 maplen),
1374 PCI_DMA_FROMDEVICE);
1375 sbq_desc->p.skb = NULL;
1376 }
1377 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1378 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1379 QPRINTK(qdev, RX_STATUS, DEBUG,
1380 "Header in small, %d bytes in large. Chain large to small!\n", length);
1381 /*
1382 * The data is in a single large buffer. We
1383 * chain it to the header buffer's skb and let
1384 * it rip.
1385 */
1386 lbq_desc = ql_get_curr_lbuf(rx_ring);
1387 pci_unmap_page(qdev->pdev,
1388 pci_unmap_addr(lbq_desc,
1389 mapaddr),
1390 pci_unmap_len(lbq_desc, maplen),
1391 PCI_DMA_FROMDEVICE);
1392 QPRINTK(qdev, RX_STATUS, DEBUG,
1393 "Chaining page to skb.\n");
1394 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1395 0, length);
1396 skb->len += length;
1397 skb->data_len += length;
1398 skb->truesize += length;
1399 lbq_desc->p.lbq_page = NULL;
1400 } else {
1401 /*
1402 * The headers and data are in a single large buffer. We
1403 * copy it to a new skb and let it go. This can happen with
1404 * jumbo mtu on a non-TCP/UDP frame.
1405 */
1406 lbq_desc = ql_get_curr_lbuf(rx_ring);
1407 skb = netdev_alloc_skb(qdev->ndev, length);
1408 if (skb == NULL) {
1409 QPRINTK(qdev, PROBE, DEBUG,
1410 "No skb available, drop the packet.\n");
1411 return NULL;
1412 }
4055c7d4
RM
1413 pci_unmap_page(qdev->pdev,
1414 pci_unmap_addr(lbq_desc,
1415 mapaddr),
1416 pci_unmap_len(lbq_desc, maplen),
1417 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1418 skb_reserve(skb, NET_IP_ALIGN);
1419 QPRINTK(qdev, RX_STATUS, DEBUG,
1420 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1421 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1422 0, length);
1423 skb->len += length;
1424 skb->data_len += length;
1425 skb->truesize += length;
1426 length -= length;
1427 lbq_desc->p.lbq_page = NULL;
1428 __pskb_pull_tail(skb,
1429 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1430 VLAN_ETH_HLEN : ETH_HLEN);
1431 }
1432 } else {
1433 /*
1434 * The data is in a chain of large buffers
1435 * pointed to by a small buffer. We loop
1436 * thru and chain them to the our small header
1437 * buffer's skb.
1438 * frags: There are 18 max frags and our small
1439 * buffer will hold 32 of them. The thing is,
1440 * we'll use 3 max for our 9000 byte jumbo
1441 * frames. If the MTU goes up we could
1442 * eventually be in trouble.
1443 */
1444 int size, offset, i = 0;
2c9a0d41 1445 __le64 *bq, bq_array[8];
c4e84bde
RM
1446 sbq_desc = ql_get_curr_sbuf(rx_ring);
1447 pci_unmap_single(qdev->pdev,
1448 pci_unmap_addr(sbq_desc, mapaddr),
1449 pci_unmap_len(sbq_desc, maplen),
1450 PCI_DMA_FROMDEVICE);
1451 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1452 /*
1453 * This is an non TCP/UDP IP frame, so
1454 * the headers aren't split into a small
1455 * buffer. We have to use the small buffer
1456 * that contains our sg list as our skb to
1457 * send upstairs. Copy the sg list here to
1458 * a local buffer and use it to find the
1459 * pages to chain.
1460 */
1461 QPRINTK(qdev, RX_STATUS, DEBUG,
1462 "%d bytes of headers & data in chain of large.\n", length);
1463 skb = sbq_desc->p.skb;
1464 bq = &bq_array[0];
1465 memcpy(bq, skb->data, sizeof(bq_array));
1466 sbq_desc->p.skb = NULL;
1467 skb_reserve(skb, NET_IP_ALIGN);
1468 } else {
1469 QPRINTK(qdev, RX_STATUS, DEBUG,
1470 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1471 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1472 }
1473 while (length > 0) {
1474 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1475 pci_unmap_page(qdev->pdev,
1476 pci_unmap_addr(lbq_desc,
1477 mapaddr),
1478 pci_unmap_len(lbq_desc,
1479 maplen),
1480 PCI_DMA_FROMDEVICE);
1481 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1482 offset = 0;
1483
1484 QPRINTK(qdev, RX_STATUS, DEBUG,
1485 "Adding page %d to skb for %d bytes.\n",
1486 i, size);
1487 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1488 offset, size);
1489 skb->len += size;
1490 skb->data_len += size;
1491 skb->truesize += size;
1492 length -= size;
1493 lbq_desc->p.lbq_page = NULL;
1494 bq++;
1495 i++;
1496 }
1497 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1498 VLAN_ETH_HLEN : ETH_HLEN);
1499 }
1500 return skb;
1501}
1502
1503/* Process an inbound completion from an rx ring. */
1504static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1505 struct rx_ring *rx_ring,
1506 struct ib_mac_iocb_rsp *ib_mac_rsp)
1507{
1508 struct net_device *ndev = qdev->ndev;
1509 struct sk_buff *skb = NULL;
1510
1511 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1512
1513 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1514 if (unlikely(!skb)) {
1515 QPRINTK(qdev, RX_STATUS, DEBUG,
1516 "No skb available, drop packet.\n");
1517 return;
1518 }
1519
1520 prefetch(skb->data);
1521 skb->dev = ndev;
1522 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1523 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1524 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1525 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1526 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1527 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1528 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1529 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1530 }
1531 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1532 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1533 }
d555f592
RM
1534
1535
1536 skb->protocol = eth_type_trans(skb, ndev);
1537 skb->ip_summed = CHECKSUM_NONE;
1538
1539 /* If rx checksum is on, and there are no
1540 * csum or frame errors.
1541 */
1542 if (qdev->rx_csum &&
1543 !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1544 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1545 /* TCP frame. */
1546 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1547 QPRINTK(qdev, RX_STATUS, DEBUG,
1548 "TCP checksum done!\n");
1549 skb->ip_summed = CHECKSUM_UNNECESSARY;
1550 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1551 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1552 /* Unfragmented ipv4 UDP frame. */
1553 struct iphdr *iph = (struct iphdr *) skb->data;
1554 if (!(iph->frag_off &
1555 cpu_to_be16(IP_MF|IP_OFFSET))) {
1556 skb->ip_summed = CHECKSUM_UNNECESSARY;
1557 QPRINTK(qdev, RX_STATUS, DEBUG,
1558 "TCP checksum done!\n");
1559 }
1560 }
c4e84bde 1561 }
d555f592 1562
c4e84bde
RM
1563 qdev->stats.rx_packets++;
1564 qdev->stats.rx_bytes += skb->len;
0c8dfc83 1565 skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
c4e84bde
RM
1566 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1567 QPRINTK(qdev, RX_STATUS, DEBUG,
1568 "Passing a VLAN packet upstream.\n");
7a9deb66 1569 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
c4e84bde
RM
1570 le16_to_cpu(ib_mac_rsp->vlan_id));
1571 } else {
1572 QPRINTK(qdev, RX_STATUS, DEBUG,
1573 "Passing a normal packet upstream.\n");
7a9deb66 1574 netif_receive_skb(skb);
c4e84bde 1575 }
c4e84bde
RM
1576}
1577
1578/* Process an outbound completion from an rx ring. */
1579static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1580 struct ob_mac_iocb_rsp *mac_rsp)
1581{
1582 struct tx_ring *tx_ring;
1583 struct tx_ring_desc *tx_ring_desc;
1584
1585 QL_DUMP_OB_MAC_RSP(mac_rsp);
1586 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1587 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1588 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1589 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1590 qdev->stats.tx_packets++;
1591 dev_kfree_skb(tx_ring_desc->skb);
1592 tx_ring_desc->skb = NULL;
1593
1594 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1595 OB_MAC_IOCB_RSP_S |
1596 OB_MAC_IOCB_RSP_L |
1597 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1598 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1599 QPRINTK(qdev, TX_DONE, WARNING,
1600 "Total descriptor length did not match transfer length.\n");
1601 }
1602 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1603 QPRINTK(qdev, TX_DONE, WARNING,
1604 "Frame too short to be legal, not sent.\n");
1605 }
1606 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1607 QPRINTK(qdev, TX_DONE, WARNING,
1608 "Frame too long, but sent anyway.\n");
1609 }
1610 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1611 QPRINTK(qdev, TX_DONE, WARNING,
1612 "PCI backplane error. Frame not sent.\n");
1613 }
1614 }
1615 atomic_inc(&tx_ring->tx_count);
1616}
1617
1618/* Fire up a handler to reset the MPI processor. */
1619void ql_queue_fw_error(struct ql_adapter *qdev)
1620{
1621 netif_stop_queue(qdev->ndev);
1622 netif_carrier_off(qdev->ndev);
1623 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1624}
1625
1626void ql_queue_asic_error(struct ql_adapter *qdev)
1627{
1628 netif_stop_queue(qdev->ndev);
1629 netif_carrier_off(qdev->ndev);
1630 ql_disable_interrupts(qdev);
6497b607
RM
1631 /* Clear adapter up bit to signal the recovery
1632 * process that it shouldn't kill the reset worker
1633 * thread
1634 */
1635 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1636 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1637}
1638
1639static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1640 struct ib_ae_iocb_rsp *ib_ae_rsp)
1641{
1642 switch (ib_ae_rsp->event) {
1643 case MGMT_ERR_EVENT:
1644 QPRINTK(qdev, RX_ERR, ERR,
1645 "Management Processor Fatal Error.\n");
1646 ql_queue_fw_error(qdev);
1647 return;
1648
1649 case CAM_LOOKUP_ERR_EVENT:
1650 QPRINTK(qdev, LINK, ERR,
1651 "Multiple CAM hits lookup occurred.\n");
1652 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1653 ql_queue_asic_error(qdev);
1654 return;
1655
1656 case SOFT_ECC_ERROR_EVENT:
1657 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1658 ql_queue_asic_error(qdev);
1659 break;
1660
1661 case PCI_ERR_ANON_BUF_RD:
1662 QPRINTK(qdev, RX_ERR, ERR,
1663 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1664 ib_ae_rsp->q_id);
1665 ql_queue_asic_error(qdev);
1666 break;
1667
1668 default:
1669 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1670 ib_ae_rsp->event);
1671 ql_queue_asic_error(qdev);
1672 break;
1673 }
1674}
1675
1676static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1677{
1678 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1679 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1680 struct ob_mac_iocb_rsp *net_rsp = NULL;
1681 int count = 0;
1682
1683 /* While there are entries in the completion queue. */
1684 while (prod != rx_ring->cnsmr_idx) {
1685
1686 QPRINTK(qdev, RX_STATUS, DEBUG,
1687 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1688 prod, rx_ring->cnsmr_idx);
1689
1690 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1691 rmb();
1692 switch (net_rsp->opcode) {
1693
1694 case OPCODE_OB_MAC_TSO_IOCB:
1695 case OPCODE_OB_MAC_IOCB:
1696 ql_process_mac_tx_intr(qdev, net_rsp);
1697 break;
1698 default:
1699 QPRINTK(qdev, RX_STATUS, DEBUG,
1700 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1701 net_rsp->opcode);
1702 }
1703 count++;
1704 ql_update_cq(rx_ring);
ba7cd3ba 1705 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1706 }
1707 ql_write_cq_idx(rx_ring);
1708 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1709 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1710 if (atomic_read(&tx_ring->queue_stopped) &&
1711 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1712 /*
1713 * The queue got stopped because the tx_ring was full.
1714 * Wake it up, because it's now at least 25% empty.
1715 */
1716 netif_wake_queue(qdev->ndev);
1717 }
1718
1719 return count;
1720}
1721
1722static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1723{
1724 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1725 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1726 struct ql_net_rsp_iocb *net_rsp;
1727 int count = 0;
1728
1729 /* While there are entries in the completion queue. */
1730 while (prod != rx_ring->cnsmr_idx) {
1731
1732 QPRINTK(qdev, RX_STATUS, DEBUG,
1733 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1734 prod, rx_ring->cnsmr_idx);
1735
1736 net_rsp = rx_ring->curr_entry;
1737 rmb();
1738 switch (net_rsp->opcode) {
1739 case OPCODE_IB_MAC_IOCB:
1740 ql_process_mac_rx_intr(qdev, rx_ring,
1741 (struct ib_mac_iocb_rsp *)
1742 net_rsp);
1743 break;
1744
1745 case OPCODE_IB_AE_IOCB:
1746 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1747 net_rsp);
1748 break;
1749 default:
1750 {
1751 QPRINTK(qdev, RX_STATUS, DEBUG,
1752 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1753 net_rsp->opcode);
1754 }
1755 }
1756 count++;
1757 ql_update_cq(rx_ring);
ba7cd3ba 1758 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1759 if (count == budget)
1760 break;
1761 }
1762 ql_update_buffer_queues(qdev, rx_ring);
1763 ql_write_cq_idx(rx_ring);
1764 return count;
1765}
1766
1767static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1768{
1769 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1770 struct ql_adapter *qdev = rx_ring->qdev;
1771 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1772
1773 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1774 rx_ring->cq_id);
1775
1776 if (work_done < budget) {
288379f0 1777 __napi_complete(napi);
c4e84bde
RM
1778 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1779 }
1780 return work_done;
1781}
1782
1783static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1784{
1785 struct ql_adapter *qdev = netdev_priv(ndev);
1786
1787 qdev->vlgrp = grp;
1788 if (grp) {
1789 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1790 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1791 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1792 } else {
1793 QPRINTK(qdev, IFUP, DEBUG,
1794 "Turning off VLAN in NIC_RCV_CFG.\n");
1795 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1796 }
1797}
1798
1799static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1800{
1801 struct ql_adapter *qdev = netdev_priv(ndev);
1802 u32 enable_bit = MAC_ADDR_E;
cc288f54 1803 int status;
c4e84bde 1804
cc288f54
RM
1805 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1806 if (status)
1807 return;
c4e84bde
RM
1808 spin_lock(&qdev->hw_lock);
1809 if (ql_set_mac_addr_reg
1810 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1811 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1812 }
1813 spin_unlock(&qdev->hw_lock);
cc288f54 1814 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1815}
1816
1817static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1818{
1819 struct ql_adapter *qdev = netdev_priv(ndev);
1820 u32 enable_bit = 0;
cc288f54
RM
1821 int status;
1822
1823 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1824 if (status)
1825 return;
c4e84bde
RM
1826
1827 spin_lock(&qdev->hw_lock);
1828 if (ql_set_mac_addr_reg
1829 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1830 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1831 }
1832 spin_unlock(&qdev->hw_lock);
cc288f54 1833 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1834
1835}
1836
1837/* Worker thread to process a given rx_ring that is dedicated
1838 * to outbound completions.
1839 */
1840static void ql_tx_clean(struct work_struct *work)
1841{
1842 struct rx_ring *rx_ring =
1843 container_of(work, struct rx_ring, rx_work.work);
1844 ql_clean_outbound_rx_ring(rx_ring);
1845 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1846
1847}
1848
1849/* Worker thread to process a given rx_ring that is dedicated
1850 * to inbound completions.
1851 */
1852static void ql_rx_clean(struct work_struct *work)
1853{
1854 struct rx_ring *rx_ring =
1855 container_of(work, struct rx_ring, rx_work.work);
1856 ql_clean_inbound_rx_ring(rx_ring, 64);
1857 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1858}
1859
1860/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1861static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1862{
1863 struct rx_ring *rx_ring = dev_id;
1864 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1865 &rx_ring->rx_work, 0);
1866 return IRQ_HANDLED;
1867}
1868
1869/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1870static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1871{
1872 struct rx_ring *rx_ring = dev_id;
288379f0 1873 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1874 return IRQ_HANDLED;
1875}
1876
c4e84bde
RM
1877/* This handles a fatal error, MPI activity, and the default
1878 * rx_ring in an MSI-X multiple vector environment.
1879 * In MSI/Legacy environment it also process the rest of
1880 * the rx_rings.
1881 */
1882static irqreturn_t qlge_isr(int irq, void *dev_id)
1883{
1884 struct rx_ring *rx_ring = dev_id;
1885 struct ql_adapter *qdev = rx_ring->qdev;
1886 struct intr_context *intr_context = &qdev->intr_context[0];
1887 u32 var;
1888 int i;
1889 int work_done = 0;
1890
bb0d215c
RM
1891 spin_lock(&qdev->hw_lock);
1892 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1893 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1894 spin_unlock(&qdev->hw_lock);
1895 return IRQ_NONE;
c4e84bde 1896 }
bb0d215c 1897 spin_unlock(&qdev->hw_lock);
c4e84bde 1898
bb0d215c 1899 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1900
1901 /*
1902 * Check for fatal error.
1903 */
1904 if (var & STS_FE) {
1905 ql_queue_asic_error(qdev);
1906 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1907 var = ql_read32(qdev, ERR_STS);
1908 QPRINTK(qdev, INTR, ERR,
1909 "Resetting chip. Error Status Register = 0x%x\n", var);
1910 return IRQ_HANDLED;
1911 }
1912
1913 /*
1914 * Check MPI processor activity.
1915 */
1916 if (var & STS_PI) {
1917 /*
1918 * We've got an async event or mailbox completion.
1919 * Handle it and clear the source of the interrupt.
1920 */
1921 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1922 ql_disable_completion_interrupt(qdev, intr_context->intr);
1923 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1924 &qdev->mpi_work, 0);
1925 work_done++;
1926 }
1927
1928 /*
1929 * Check the default queue and wake handler if active.
1930 */
1931 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1932 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1933 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1934 ql_disable_completion_interrupt(qdev, intr_context->intr);
1935 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1936 &rx_ring->rx_work, 0);
1937 work_done++;
1938 }
1939
1940 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1941 /*
1942 * Start the DPC for each active queue.
1943 */
1944 for (i = 1; i < qdev->rx_ring_count; i++) {
1945 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1946 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1947 rx_ring->cnsmr_idx) {
1948 QPRINTK(qdev, INTR, INFO,
1949 "Waking handler for rx_ring[%d].\n", i);
1950 ql_disable_completion_interrupt(qdev,
1951 intr_context->
1952 intr);
1953 if (i < qdev->rss_ring_first_cq_id)
1954 queue_delayed_work_on(rx_ring->cpu,
1955 qdev->q_workqueue,
1956 &rx_ring->rx_work,
1957 0);
1958 else
288379f0 1959 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1960 work_done++;
1961 }
1962 }
1963 }
bb0d215c 1964 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1965 return work_done ? IRQ_HANDLED : IRQ_NONE;
1966}
1967
1968static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1969{
1970
1971 if (skb_is_gso(skb)) {
1972 int err;
1973 if (skb_header_cloned(skb)) {
1974 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1975 if (err)
1976 return err;
1977 }
1978
1979 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1980 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1981 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1982 mac_iocb_ptr->total_hdrs_len =
1983 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1984 mac_iocb_ptr->net_trans_offset =
1985 cpu_to_le16(skb_network_offset(skb) |
1986 skb_transport_offset(skb)
1987 << OB_MAC_TRANSPORT_HDR_SHIFT);
1988 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1989 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1990 if (likely(skb->protocol == htons(ETH_P_IP))) {
1991 struct iphdr *iph = ip_hdr(skb);
1992 iph->check = 0;
1993 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1994 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1995 iph->daddr, 0,
1996 IPPROTO_TCP,
1997 0);
1998 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1999 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2000 tcp_hdr(skb)->check =
2001 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2002 &ipv6_hdr(skb)->daddr,
2003 0, IPPROTO_TCP, 0);
2004 }
2005 return 1;
2006 }
2007 return 0;
2008}
2009
2010static void ql_hw_csum_setup(struct sk_buff *skb,
2011 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2012{
2013 int len;
2014 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2015 __sum16 *check;
c4e84bde
RM
2016 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2017 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2018 mac_iocb_ptr->net_trans_offset =
2019 cpu_to_le16(skb_network_offset(skb) |
2020 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2021
2022 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2023 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2024 if (likely(iph->protocol == IPPROTO_TCP)) {
2025 check = &(tcp_hdr(skb)->check);
2026 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2027 mac_iocb_ptr->total_hdrs_len =
2028 cpu_to_le16(skb_transport_offset(skb) +
2029 (tcp_hdr(skb)->doff << 2));
2030 } else {
2031 check = &(udp_hdr(skb)->check);
2032 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2033 mac_iocb_ptr->total_hdrs_len =
2034 cpu_to_le16(skb_transport_offset(skb) +
2035 sizeof(struct udphdr));
2036 }
2037 *check = ~csum_tcpudp_magic(iph->saddr,
2038 iph->daddr, len, iph->protocol, 0);
2039}
2040
2041static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2042{
2043 struct tx_ring_desc *tx_ring_desc;
2044 struct ob_mac_iocb_req *mac_iocb_ptr;
2045 struct ql_adapter *qdev = netdev_priv(ndev);
2046 int tso;
2047 struct tx_ring *tx_ring;
2048 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
2049
2050 tx_ring = &qdev->tx_ring[tx_ring_idx];
2051
2052 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2053 QPRINTK(qdev, TX_QUEUED, INFO,
2054 "%s: shutting down tx queue %d du to lack of resources.\n",
2055 __func__, tx_ring_idx);
2056 netif_stop_queue(ndev);
2057 atomic_inc(&tx_ring->queue_stopped);
2058 return NETDEV_TX_BUSY;
2059 }
2060 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2061 mac_iocb_ptr = tx_ring_desc->queue_entry;
2062 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
c4e84bde
RM
2063
2064 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2065 mac_iocb_ptr->tid = tx_ring_desc->index;
2066 /* We use the upper 32-bits to store the tx queue for this IO.
2067 * When we get the completion we can use it to establish the context.
2068 */
2069 mac_iocb_ptr->txq_idx = tx_ring_idx;
2070 tx_ring_desc->skb = skb;
2071
2072 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2073
2074 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2075 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2076 vlan_tx_tag_get(skb));
2077 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2078 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2079 }
2080 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2081 if (tso < 0) {
2082 dev_kfree_skb_any(skb);
2083 return NETDEV_TX_OK;
2084 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2085 ql_hw_csum_setup(skb,
2086 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2087 }
0d979f74
RM
2088 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2089 NETDEV_TX_OK) {
2090 QPRINTK(qdev, TX_QUEUED, ERR,
2091 "Could not map the segments.\n");
2092 return NETDEV_TX_BUSY;
2093 }
c4e84bde
RM
2094 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2095 tx_ring->prod_idx++;
2096 if (tx_ring->prod_idx == tx_ring->wq_len)
2097 tx_ring->prod_idx = 0;
2098 wmb();
2099
2100 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2101 ndev->trans_start = jiffies;
2102 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2103 tx_ring->prod_idx, skb->len);
2104
2105 atomic_dec(&tx_ring->tx_count);
2106 return NETDEV_TX_OK;
2107}
2108
2109static void ql_free_shadow_space(struct ql_adapter *qdev)
2110{
2111 if (qdev->rx_ring_shadow_reg_area) {
2112 pci_free_consistent(qdev->pdev,
2113 PAGE_SIZE,
2114 qdev->rx_ring_shadow_reg_area,
2115 qdev->rx_ring_shadow_reg_dma);
2116 qdev->rx_ring_shadow_reg_area = NULL;
2117 }
2118 if (qdev->tx_ring_shadow_reg_area) {
2119 pci_free_consistent(qdev->pdev,
2120 PAGE_SIZE,
2121 qdev->tx_ring_shadow_reg_area,
2122 qdev->tx_ring_shadow_reg_dma);
2123 qdev->tx_ring_shadow_reg_area = NULL;
2124 }
2125}
2126
2127static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2128{
2129 qdev->rx_ring_shadow_reg_area =
2130 pci_alloc_consistent(qdev->pdev,
2131 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2132 if (qdev->rx_ring_shadow_reg_area == NULL) {
2133 QPRINTK(qdev, IFUP, ERR,
2134 "Allocation of RX shadow space failed.\n");
2135 return -ENOMEM;
2136 }
2137 qdev->tx_ring_shadow_reg_area =
2138 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2139 &qdev->tx_ring_shadow_reg_dma);
2140 if (qdev->tx_ring_shadow_reg_area == NULL) {
2141 QPRINTK(qdev, IFUP, ERR,
2142 "Allocation of TX shadow space failed.\n");
2143 goto err_wqp_sh_area;
2144 }
2145 return 0;
2146
2147err_wqp_sh_area:
2148 pci_free_consistent(qdev->pdev,
2149 PAGE_SIZE,
2150 qdev->rx_ring_shadow_reg_area,
2151 qdev->rx_ring_shadow_reg_dma);
2152 return -ENOMEM;
2153}
2154
2155static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2156{
2157 struct tx_ring_desc *tx_ring_desc;
2158 int i;
2159 struct ob_mac_iocb_req *mac_iocb_ptr;
2160
2161 mac_iocb_ptr = tx_ring->wq_base;
2162 tx_ring_desc = tx_ring->q;
2163 for (i = 0; i < tx_ring->wq_len; i++) {
2164 tx_ring_desc->index = i;
2165 tx_ring_desc->skb = NULL;
2166 tx_ring_desc->queue_entry = mac_iocb_ptr;
2167 mac_iocb_ptr++;
2168 tx_ring_desc++;
2169 }
2170 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2171 atomic_set(&tx_ring->queue_stopped, 0);
2172}
2173
2174static void ql_free_tx_resources(struct ql_adapter *qdev,
2175 struct tx_ring *tx_ring)
2176{
2177 if (tx_ring->wq_base) {
2178 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2179 tx_ring->wq_base, tx_ring->wq_base_dma);
2180 tx_ring->wq_base = NULL;
2181 }
2182 kfree(tx_ring->q);
2183 tx_ring->q = NULL;
2184}
2185
2186static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2187 struct tx_ring *tx_ring)
2188{
2189 tx_ring->wq_base =
2190 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2191 &tx_ring->wq_base_dma);
2192
2193 if ((tx_ring->wq_base == NULL)
2194 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2195 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2196 return -ENOMEM;
2197 }
2198 tx_ring->q =
2199 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2200 if (tx_ring->q == NULL)
2201 goto err;
2202
2203 return 0;
2204err:
2205 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2206 tx_ring->wq_base, tx_ring->wq_base_dma);
2207 return -ENOMEM;
2208}
2209
8668ae92 2210static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2211{
2212 int i;
2213 struct bq_desc *lbq_desc;
2214
2215 for (i = 0; i < rx_ring->lbq_len; i++) {
2216 lbq_desc = &rx_ring->lbq[i];
2217 if (lbq_desc->p.lbq_page) {
2218 pci_unmap_page(qdev->pdev,
2219 pci_unmap_addr(lbq_desc, mapaddr),
2220 pci_unmap_len(lbq_desc, maplen),
2221 PCI_DMA_FROMDEVICE);
2222
2223 put_page(lbq_desc->p.lbq_page);
2224 lbq_desc->p.lbq_page = NULL;
2225 }
c4e84bde
RM
2226 }
2227}
2228
8668ae92 2229static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2230{
2231 int i;
2232 struct bq_desc *sbq_desc;
2233
2234 for (i = 0; i < rx_ring->sbq_len; i++) {
2235 sbq_desc = &rx_ring->sbq[i];
2236 if (sbq_desc == NULL) {
2237 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2238 return;
2239 }
2240 if (sbq_desc->p.skb) {
2241 pci_unmap_single(qdev->pdev,
2242 pci_unmap_addr(sbq_desc, mapaddr),
2243 pci_unmap_len(sbq_desc, maplen),
2244 PCI_DMA_FROMDEVICE);
2245 dev_kfree_skb(sbq_desc->p.skb);
2246 sbq_desc->p.skb = NULL;
2247 }
c4e84bde
RM
2248 }
2249}
2250
4545a3f2
RM
2251/* Free all large and small rx buffers associated
2252 * with the completion queues for this device.
2253 */
2254static void ql_free_rx_buffers(struct ql_adapter *qdev)
2255{
2256 int i;
2257 struct rx_ring *rx_ring;
2258
2259 for (i = 0; i < qdev->rx_ring_count; i++) {
2260 rx_ring = &qdev->rx_ring[i];
2261 if (rx_ring->lbq)
2262 ql_free_lbq_buffers(qdev, rx_ring);
2263 if (rx_ring->sbq)
2264 ql_free_sbq_buffers(qdev, rx_ring);
2265 }
2266}
2267
2268static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2269{
2270 struct rx_ring *rx_ring;
2271 int i;
2272
2273 for (i = 0; i < qdev->rx_ring_count; i++) {
2274 rx_ring = &qdev->rx_ring[i];
2275 if (rx_ring->type != TX_Q)
2276 ql_update_buffer_queues(qdev, rx_ring);
2277 }
2278}
2279
2280static void ql_init_lbq_ring(struct ql_adapter *qdev,
2281 struct rx_ring *rx_ring)
2282{
2283 int i;
2284 struct bq_desc *lbq_desc;
2285 __le64 *bq = rx_ring->lbq_base;
2286
2287 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2288 for (i = 0; i < rx_ring->lbq_len; i++) {
2289 lbq_desc = &rx_ring->lbq[i];
2290 memset(lbq_desc, 0, sizeof(*lbq_desc));
2291 lbq_desc->index = i;
2292 lbq_desc->addr = bq;
2293 bq++;
2294 }
2295}
2296
2297static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2298 struct rx_ring *rx_ring)
2299{
2300 int i;
2301 struct bq_desc *sbq_desc;
2c9a0d41 2302 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2303
4545a3f2 2304 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2305 for (i = 0; i < rx_ring->sbq_len; i++) {
2306 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2307 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2308 sbq_desc->index = i;
2c9a0d41 2309 sbq_desc->addr = bq;
c4e84bde
RM
2310 bq++;
2311 }
c4e84bde
RM
2312}
2313
2314static void ql_free_rx_resources(struct ql_adapter *qdev,
2315 struct rx_ring *rx_ring)
2316{
c4e84bde
RM
2317 /* Free the small buffer queue. */
2318 if (rx_ring->sbq_base) {
2319 pci_free_consistent(qdev->pdev,
2320 rx_ring->sbq_size,
2321 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2322 rx_ring->sbq_base = NULL;
2323 }
2324
2325 /* Free the small buffer queue control blocks. */
2326 kfree(rx_ring->sbq);
2327 rx_ring->sbq = NULL;
2328
2329 /* Free the large buffer queue. */
2330 if (rx_ring->lbq_base) {
2331 pci_free_consistent(qdev->pdev,
2332 rx_ring->lbq_size,
2333 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2334 rx_ring->lbq_base = NULL;
2335 }
2336
2337 /* Free the large buffer queue control blocks. */
2338 kfree(rx_ring->lbq);
2339 rx_ring->lbq = NULL;
2340
2341 /* Free the rx queue. */
2342 if (rx_ring->cq_base) {
2343 pci_free_consistent(qdev->pdev,
2344 rx_ring->cq_size,
2345 rx_ring->cq_base, rx_ring->cq_base_dma);
2346 rx_ring->cq_base = NULL;
2347 }
2348}
2349
2350/* Allocate queues and buffers for this completions queue based
2351 * on the values in the parameter structure. */
2352static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2353 struct rx_ring *rx_ring)
2354{
2355
2356 /*
2357 * Allocate the completion queue for this rx_ring.
2358 */
2359 rx_ring->cq_base =
2360 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2361 &rx_ring->cq_base_dma);
2362
2363 if (rx_ring->cq_base == NULL) {
2364 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2365 return -ENOMEM;
2366 }
2367
2368 if (rx_ring->sbq_len) {
2369 /*
2370 * Allocate small buffer queue.
2371 */
2372 rx_ring->sbq_base =
2373 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2374 &rx_ring->sbq_base_dma);
2375
2376 if (rx_ring->sbq_base == NULL) {
2377 QPRINTK(qdev, IFUP, ERR,
2378 "Small buffer queue allocation failed.\n");
2379 goto err_mem;
2380 }
2381
2382 /*
2383 * Allocate small buffer queue control blocks.
2384 */
2385 rx_ring->sbq =
2386 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2387 GFP_KERNEL);
2388 if (rx_ring->sbq == NULL) {
2389 QPRINTK(qdev, IFUP, ERR,
2390 "Small buffer queue control block allocation failed.\n");
2391 goto err_mem;
2392 }
2393
4545a3f2 2394 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2395 }
2396
2397 if (rx_ring->lbq_len) {
2398 /*
2399 * Allocate large buffer queue.
2400 */
2401 rx_ring->lbq_base =
2402 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2403 &rx_ring->lbq_base_dma);
2404
2405 if (rx_ring->lbq_base == NULL) {
2406 QPRINTK(qdev, IFUP, ERR,
2407 "Large buffer queue allocation failed.\n");
2408 goto err_mem;
2409 }
2410 /*
2411 * Allocate large buffer queue control blocks.
2412 */
2413 rx_ring->lbq =
2414 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2415 GFP_KERNEL);
2416 if (rx_ring->lbq == NULL) {
2417 QPRINTK(qdev, IFUP, ERR,
2418 "Large buffer queue control block allocation failed.\n");
2419 goto err_mem;
2420 }
2421
4545a3f2 2422 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2423 }
2424
2425 return 0;
2426
2427err_mem:
2428 ql_free_rx_resources(qdev, rx_ring);
2429 return -ENOMEM;
2430}
2431
2432static void ql_tx_ring_clean(struct ql_adapter *qdev)
2433{
2434 struct tx_ring *tx_ring;
2435 struct tx_ring_desc *tx_ring_desc;
2436 int i, j;
2437
2438 /*
2439 * Loop through all queues and free
2440 * any resources.
2441 */
2442 for (j = 0; j < qdev->tx_ring_count; j++) {
2443 tx_ring = &qdev->tx_ring[j];
2444 for (i = 0; i < tx_ring->wq_len; i++) {
2445 tx_ring_desc = &tx_ring->q[i];
2446 if (tx_ring_desc && tx_ring_desc->skb) {
2447 QPRINTK(qdev, IFDOWN, ERR,
2448 "Freeing lost SKB %p, from queue %d, index %d.\n",
2449 tx_ring_desc->skb, j,
2450 tx_ring_desc->index);
2451 ql_unmap_send(qdev, tx_ring_desc,
2452 tx_ring_desc->map_cnt);
2453 dev_kfree_skb(tx_ring_desc->skb);
2454 tx_ring_desc->skb = NULL;
2455 }
2456 }
2457 }
2458}
2459
c4e84bde
RM
2460static void ql_free_mem_resources(struct ql_adapter *qdev)
2461{
2462 int i;
2463
2464 for (i = 0; i < qdev->tx_ring_count; i++)
2465 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2466 for (i = 0; i < qdev->rx_ring_count; i++)
2467 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2468 ql_free_shadow_space(qdev);
2469}
2470
2471static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2472{
2473 int i;
2474
2475 /* Allocate space for our shadow registers and such. */
2476 if (ql_alloc_shadow_space(qdev))
2477 return -ENOMEM;
2478
2479 for (i = 0; i < qdev->rx_ring_count; i++) {
2480 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2481 QPRINTK(qdev, IFUP, ERR,
2482 "RX resource allocation failed.\n");
2483 goto err_mem;
2484 }
2485 }
2486 /* Allocate tx queue resources */
2487 for (i = 0; i < qdev->tx_ring_count; i++) {
2488 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2489 QPRINTK(qdev, IFUP, ERR,
2490 "TX resource allocation failed.\n");
2491 goto err_mem;
2492 }
2493 }
2494 return 0;
2495
2496err_mem:
2497 ql_free_mem_resources(qdev);
2498 return -ENOMEM;
2499}
2500
2501/* Set up the rx ring control block and pass it to the chip.
2502 * The control block is defined as
2503 * "Completion Queue Initialization Control Block", or cqicb.
2504 */
2505static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2506{
2507 struct cqicb *cqicb = &rx_ring->cqicb;
2508 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2509 (rx_ring->cq_id * sizeof(u64) * 4);
2510 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2511 (rx_ring->cq_id * sizeof(u64) * 4);
2512 void __iomem *doorbell_area =
2513 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2514 int err = 0;
2515 u16 bq_len;
2516
2517 /* Set up the shadow registers for this ring. */
2518 rx_ring->prod_idx_sh_reg = shadow_reg;
2519 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2520 shadow_reg += sizeof(u64);
2521 shadow_reg_dma += sizeof(u64);
2522 rx_ring->lbq_base_indirect = shadow_reg;
2523 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2524 shadow_reg += sizeof(u64);
2525 shadow_reg_dma += sizeof(u64);
2526 rx_ring->sbq_base_indirect = shadow_reg;
2527 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2528
2529 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2530 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2531 rx_ring->cnsmr_idx = 0;
2532 rx_ring->curr_entry = rx_ring->cq_base;
2533
2534 /* PCI doorbell mem area + 0x04 for valid register */
2535 rx_ring->valid_db_reg = doorbell_area + 0x04;
2536
2537 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2538 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2539
2540 /* PCI doorbell mem area + 0x1c */
8668ae92 2541 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2542
2543 memset((void *)cqicb, 0, sizeof(struct cqicb));
2544 cqicb->msix_vect = rx_ring->irq;
2545
459caf5a
RM
2546 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2547 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2548
97345524 2549 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2550
97345524 2551 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2552
2553 /*
2554 * Set up the control block load flags.
2555 */
2556 cqicb->flags = FLAGS_LC | /* Load queue base address */
2557 FLAGS_LV | /* Load MSI-X vector */
2558 FLAGS_LI; /* Load irq delay values */
2559 if (rx_ring->lbq_len) {
2560 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2561 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
97345524
RM
2562 cqicb->lbq_addr =
2563 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2564 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2565 (u16) rx_ring->lbq_buf_size;
2566 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2567 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2568 (u16) rx_ring->lbq_len;
c4e84bde 2569 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2570 rx_ring->lbq_prod_idx = 0;
c4e84bde 2571 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2572 rx_ring->lbq_clean_idx = 0;
2573 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2574 }
2575 if (rx_ring->sbq_len) {
2576 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2577 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
97345524
RM
2578 cqicb->sbq_addr =
2579 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde
RM
2580 cqicb->sbq_buf_size =
2581 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
459caf5a
RM
2582 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2583 (u16) rx_ring->sbq_len;
c4e84bde 2584 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2585 rx_ring->sbq_prod_idx = 0;
c4e84bde 2586 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2587 rx_ring->sbq_clean_idx = 0;
2588 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2589 }
2590 switch (rx_ring->type) {
2591 case TX_Q:
2592 /* If there's only one interrupt, then we use
2593 * worker threads to process the outbound
2594 * completion handling rx_rings. We do this so
2595 * they can be run on multiple CPUs. There is
2596 * room to play with this more where we would only
2597 * run in a worker if there are more than x number
2598 * of outbound completions on the queue and more
2599 * than one queue active. Some threshold that
2600 * would indicate a benefit in spite of the cost
2601 * of a context switch.
2602 * If there's more than one interrupt, then the
2603 * outbound completions are processed in the ISR.
2604 */
2605 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2606 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2607 else {
2608 /* With all debug warnings on we see a WARN_ON message
2609 * when we free the skb in the interrupt context.
2610 */
2611 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2612 }
2613 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2614 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2615 break;
2616 case DEFAULT_Q:
2617 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2618 cqicb->irq_delay = 0;
2619 cqicb->pkt_delay = 0;
2620 break;
2621 case RX_Q:
2622 /* Inbound completion handling rx_rings run in
2623 * separate NAPI contexts.
2624 */
2625 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2626 64);
2627 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2628 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2629 break;
2630 default:
2631 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2632 rx_ring->type);
2633 }
4974097a 2634 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
c4e84bde
RM
2635 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2636 CFG_LCQ, rx_ring->cq_id);
2637 if (err) {
2638 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2639 return err;
2640 }
c4e84bde
RM
2641 return err;
2642}
2643
2644static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2645{
2646 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2647 void __iomem *doorbell_area =
2648 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2649 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2650 (tx_ring->wq_id * sizeof(u64));
2651 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2652 (tx_ring->wq_id * sizeof(u64));
2653 int err = 0;
2654
2655 /*
2656 * Assign doorbell registers for this tx_ring.
2657 */
2658 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2659 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2660 tx_ring->prod_idx = 0;
2661 /* TX PCI doorbell mem area + 0x04 */
2662 tx_ring->valid_db_reg = doorbell_area + 0x04;
2663
2664 /*
2665 * Assign shadow registers for this tx_ring.
2666 */
2667 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2668 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2669
2670 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2671 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2672 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2673 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2674 wqicb->rid = 0;
97345524 2675 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2676
97345524 2677 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2678
2679 ql_init_tx_ring(qdev, tx_ring);
2680
2681 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2682 (u16) tx_ring->wq_id);
2683 if (err) {
2684 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2685 return err;
2686 }
4974097a 2687 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
c4e84bde
RM
2688 return err;
2689}
2690
2691static void ql_disable_msix(struct ql_adapter *qdev)
2692{
2693 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2694 pci_disable_msix(qdev->pdev);
2695 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2696 kfree(qdev->msi_x_entry);
2697 qdev->msi_x_entry = NULL;
2698 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2699 pci_disable_msi(qdev->pdev);
2700 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2701 }
2702}
2703
2704static void ql_enable_msix(struct ql_adapter *qdev)
2705{
2706 int i;
2707
2708 qdev->intr_count = 1;
2709 /* Get the MSIX vectors. */
2710 if (irq_type == MSIX_IRQ) {
2711 /* Try to alloc space for the msix struct,
2712 * if it fails then go to MSI/legacy.
2713 */
2714 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2715 sizeof(struct msix_entry),
2716 GFP_KERNEL);
2717 if (!qdev->msi_x_entry) {
2718 irq_type = MSI_IRQ;
2719 goto msi;
2720 }
2721
2722 for (i = 0; i < qdev->rx_ring_count; i++)
2723 qdev->msi_x_entry[i].entry = i;
2724
2725 if (!pci_enable_msix
2726 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2727 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2728 qdev->intr_count = qdev->rx_ring_count;
4974097a 2729 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2730 "MSI-X Enabled, got %d vectors.\n",
2731 qdev->intr_count);
2732 return;
2733 } else {
2734 kfree(qdev->msi_x_entry);
2735 qdev->msi_x_entry = NULL;
2736 QPRINTK(qdev, IFUP, WARNING,
2737 "MSI-X Enable failed, trying MSI.\n");
2738 irq_type = MSI_IRQ;
2739 }
2740 }
2741msi:
2742 if (irq_type == MSI_IRQ) {
2743 if (!pci_enable_msi(qdev->pdev)) {
2744 set_bit(QL_MSI_ENABLED, &qdev->flags);
2745 QPRINTK(qdev, IFUP, INFO,
2746 "Running with MSI interrupts.\n");
2747 return;
2748 }
2749 }
2750 irq_type = LEG_IRQ;
c4e84bde
RM
2751 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2752}
2753
2754/*
2755 * Here we build the intr_context structures based on
2756 * our rx_ring count and intr vector count.
2757 * The intr_context structure is used to hook each vector
2758 * to possibly different handlers.
2759 */
2760static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2761{
2762 int i = 0;
2763 struct intr_context *intr_context = &qdev->intr_context[0];
2764
2765 ql_enable_msix(qdev);
2766
2767 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2768 /* Each rx_ring has it's
2769 * own intr_context since we have separate
2770 * vectors for each queue.
2771 * This only true when MSI-X is enabled.
2772 */
2773 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2774 qdev->rx_ring[i].irq = i;
2775 intr_context->intr = i;
2776 intr_context->qdev = qdev;
2777 /*
2778 * We set up each vectors enable/disable/read bits so
2779 * there's no bit/mask calculations in the critical path.
2780 */
2781 intr_context->intr_en_mask =
2782 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2783 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2784 | i;
2785 intr_context->intr_dis_mask =
2786 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2787 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2788 INTR_EN_IHD | i;
2789 intr_context->intr_read_mask =
2790 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2791 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2792 i;
2793
2794 if (i == 0) {
2795 /*
2796 * Default queue handles bcast/mcast plus
2797 * async events. Needs buffers.
2798 */
2799 intr_context->handler = qlge_isr;
2800 sprintf(intr_context->name, "%s-default-queue",
2801 qdev->ndev->name);
2802 } else if (i < qdev->rss_ring_first_cq_id) {
2803 /*
2804 * Outbound queue is for outbound completions only.
2805 */
2806 intr_context->handler = qlge_msix_tx_isr;
c224969e 2807 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2808 qdev->ndev->name, i);
2809 } else {
2810 /*
2811 * Inbound queues handle unicast frames only.
2812 */
2813 intr_context->handler = qlge_msix_rx_isr;
c224969e 2814 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2815 qdev->ndev->name, i);
2816 }
2817 }
2818 } else {
2819 /*
2820 * All rx_rings use the same intr_context since
2821 * there is only one vector.
2822 */
2823 intr_context->intr = 0;
2824 intr_context->qdev = qdev;
2825 /*
2826 * We set up each vectors enable/disable/read bits so
2827 * there's no bit/mask calculations in the critical path.
2828 */
2829 intr_context->intr_en_mask =
2830 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2831 intr_context->intr_dis_mask =
2832 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2833 INTR_EN_TYPE_DISABLE;
2834 intr_context->intr_read_mask =
2835 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2836 /*
2837 * Single interrupt means one handler for all rings.
2838 */
2839 intr_context->handler = qlge_isr;
2840 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2841 for (i = 0; i < qdev->rx_ring_count; i++)
2842 qdev->rx_ring[i].irq = 0;
2843 }
2844}
2845
2846static void ql_free_irq(struct ql_adapter *qdev)
2847{
2848 int i;
2849 struct intr_context *intr_context = &qdev->intr_context[0];
2850
2851 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2852 if (intr_context->hooked) {
2853 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2854 free_irq(qdev->msi_x_entry[i].vector,
2855 &qdev->rx_ring[i]);
4974097a 2856 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2857 "freeing msix interrupt %d.\n", i);
2858 } else {
2859 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
4974097a 2860 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
2861 "freeing msi interrupt %d.\n", i);
2862 }
2863 }
2864 }
2865 ql_disable_msix(qdev);
2866}
2867
2868static int ql_request_irq(struct ql_adapter *qdev)
2869{
2870 int i;
2871 int status = 0;
2872 struct pci_dev *pdev = qdev->pdev;
2873 struct intr_context *intr_context = &qdev->intr_context[0];
2874
2875 ql_resolve_queues_to_irqs(qdev);
2876
2877 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2878 atomic_set(&intr_context->irq_cnt, 0);
2879 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2880 status = request_irq(qdev->msi_x_entry[i].vector,
2881 intr_context->handler,
2882 0,
2883 intr_context->name,
2884 &qdev->rx_ring[i]);
2885 if (status) {
2886 QPRINTK(qdev, IFUP, ERR,
2887 "Failed request for MSIX interrupt %d.\n",
2888 i);
2889 goto err_irq;
2890 } else {
4974097a 2891 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
2892 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2893 i,
2894 qdev->rx_ring[i].type ==
2895 DEFAULT_Q ? "DEFAULT_Q" : "",
2896 qdev->rx_ring[i].type ==
2897 TX_Q ? "TX_Q" : "",
2898 qdev->rx_ring[i].type ==
2899 RX_Q ? "RX_Q" : "", intr_context->name);
2900 }
2901 } else {
2902 QPRINTK(qdev, IFUP, DEBUG,
2903 "trying msi or legacy interrupts.\n");
2904 QPRINTK(qdev, IFUP, DEBUG,
2905 "%s: irq = %d.\n", __func__, pdev->irq);
2906 QPRINTK(qdev, IFUP, DEBUG,
2907 "%s: context->name = %s.\n", __func__,
2908 intr_context->name);
2909 QPRINTK(qdev, IFUP, DEBUG,
2910 "%s: dev_id = 0x%p.\n", __func__,
2911 &qdev->rx_ring[0]);
2912 status =
2913 request_irq(pdev->irq, qlge_isr,
2914 test_bit(QL_MSI_ENABLED,
2915 &qdev->
2916 flags) ? 0 : IRQF_SHARED,
2917 intr_context->name, &qdev->rx_ring[0]);
2918 if (status)
2919 goto err_irq;
2920
2921 QPRINTK(qdev, IFUP, ERR,
2922 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2923 i,
2924 qdev->rx_ring[0].type ==
2925 DEFAULT_Q ? "DEFAULT_Q" : "",
2926 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2927 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2928 intr_context->name);
2929 }
2930 intr_context->hooked = 1;
2931 }
2932 return status;
2933err_irq:
2934 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2935 ql_free_irq(qdev);
2936 return status;
2937}
2938
2939static int ql_start_rss(struct ql_adapter *qdev)
2940{
2941 struct ricb *ricb = &qdev->ricb;
2942 int status = 0;
2943 int i;
2944 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2945
2946 memset((void *)ricb, 0, sizeof(ricb));
2947
2948 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2949 ricb->flags =
2950 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2951 RSS_RT6);
2952 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2953
2954 /*
2955 * Fill out the Indirection Table.
2956 */
def48b6e
RM
2957 for (i = 0; i < 256; i++)
2958 hash_id[i] = i & (qdev->rss_ring_count - 1);
c4e84bde
RM
2959
2960 /*
2961 * Random values for the IPv6 and IPv4 Hash Keys.
2962 */
2963 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2964 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2965
4974097a 2966 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
c4e84bde
RM
2967
2968 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2969 if (status) {
2970 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2971 return status;
2972 }
4974097a 2973 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
c4e84bde
RM
2974 return status;
2975}
2976
2977/* Initialize the frame-to-queue routing. */
2978static int ql_route_initialize(struct ql_adapter *qdev)
2979{
2980 int status = 0;
2981 int i;
2982
8587ea35
RM
2983 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2984 if (status)
2985 return status;
2986
c4e84bde
RM
2987 /* Clear all the entries in the routing table. */
2988 for (i = 0; i < 16; i++) {
2989 status = ql_set_routing_reg(qdev, i, 0, 0);
2990 if (status) {
2991 QPRINTK(qdev, IFUP, ERR,
2992 "Failed to init routing register for CAM packets.\n");
8587ea35 2993 goto exit;
c4e84bde
RM
2994 }
2995 }
2996
2997 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2998 if (status) {
2999 QPRINTK(qdev, IFUP, ERR,
3000 "Failed to init routing register for error packets.\n");
8587ea35 3001 goto exit;
c4e84bde
RM
3002 }
3003 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3004 if (status) {
3005 QPRINTK(qdev, IFUP, ERR,
3006 "Failed to init routing register for broadcast packets.\n");
8587ea35 3007 goto exit;
c4e84bde
RM
3008 }
3009 /* If we have more than one inbound queue, then turn on RSS in the
3010 * routing block.
3011 */
3012 if (qdev->rss_ring_count > 1) {
3013 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3014 RT_IDX_RSS_MATCH, 1);
3015 if (status) {
3016 QPRINTK(qdev, IFUP, ERR,
3017 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3018 goto exit;
c4e84bde
RM
3019 }
3020 }
3021
3022 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3023 RT_IDX_CAM_HIT, 1);
8587ea35 3024 if (status)
c4e84bde
RM
3025 QPRINTK(qdev, IFUP, ERR,
3026 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3027exit:
3028 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3029 return status;
3030}
3031
2ee1e272 3032int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6
RM
3033{
3034 int status;
3035
cc288f54
RM
3036 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3037 if (status)
3038 return status;
bb58b5b6
RM
3039 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3040 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 3041 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
bb58b5b6
RM
3042 if (status) {
3043 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3044 return status;
3045 }
3046
3047 status = ql_route_initialize(qdev);
3048 if (status)
3049 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3050
3051 return status;
3052}
3053
c4e84bde
RM
3054static int ql_adapter_initialize(struct ql_adapter *qdev)
3055{
3056 u32 value, mask;
3057 int i;
3058 int status = 0;
3059
3060 /*
3061 * Set up the System register to halt on errors.
3062 */
3063 value = SYS_EFE | SYS_FAE;
3064 mask = value << 16;
3065 ql_write32(qdev, SYS, mask | value);
3066
3067 /* Set the default queue. */
3068 value = NIC_RCV_CFG_DFQ;
3069 mask = NIC_RCV_CFG_DFQ_MASK;
3070 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3071
3072 /* Set the MPI interrupt to enabled. */
3073 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3074
3075 /* Enable the function, set pagesize, enable error checking. */
3076 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3077 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3078
3079 /* Set/clear header splitting. */
3080 mask = FSC_VM_PAGESIZE_MASK |
3081 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3082 ql_write32(qdev, FSC, mask | value);
3083
3084 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3085 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3086
3087 /* Start up the rx queues. */
3088 for (i = 0; i < qdev->rx_ring_count; i++) {
3089 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3090 if (status) {
3091 QPRINTK(qdev, IFUP, ERR,
3092 "Failed to start rx ring[%d].\n", i);
3093 return status;
3094 }
3095 }
3096
3097 /* If there is more than one inbound completion queue
3098 * then download a RICB to configure RSS.
3099 */
3100 if (qdev->rss_ring_count > 1) {
3101 status = ql_start_rss(qdev);
3102 if (status) {
3103 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3104 return status;
3105 }
3106 }
3107
3108 /* Start up the tx queues. */
3109 for (i = 0; i < qdev->tx_ring_count; i++) {
3110 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3111 if (status) {
3112 QPRINTK(qdev, IFUP, ERR,
3113 "Failed to start tx ring[%d].\n", i);
3114 return status;
3115 }
3116 }
3117
b0c2aadf
RM
3118 /* Initialize the port and set the max framesize. */
3119 status = qdev->nic_ops->port_initialize(qdev);
3120 if (status) {
3121 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3122 return status;
3123 }
c4e84bde 3124
bb58b5b6
RM
3125 /* Set up the MAC address and frame routing filter. */
3126 status = ql_cam_route_initialize(qdev);
c4e84bde 3127 if (status) {
bb58b5b6
RM
3128 QPRINTK(qdev, IFUP, ERR,
3129 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3130 return status;
3131 }
3132
3133 /* Start NAPI for the RSS queues. */
3134 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
4974097a 3135 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
c4e84bde
RM
3136 i);
3137 napi_enable(&qdev->rx_ring[i].napi);
3138 }
3139
3140 return status;
3141}
3142
3143/* Issue soft reset to chip. */
3144static int ql_adapter_reset(struct ql_adapter *qdev)
3145{
3146 u32 value;
c4e84bde 3147 int status = 0;
a75ee7f1
RM
3148 unsigned long end_jiffies = jiffies +
3149 max((unsigned long)1, usecs_to_jiffies(30));
c4e84bde 3150
c4e84bde 3151 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3152
c4e84bde
RM
3153 do {
3154 value = ql_read32(qdev, RST_FO);
3155 if ((value & RST_FO_FR) == 0)
3156 break;
a75ee7f1
RM
3157 cpu_relax();
3158 } while (time_before(jiffies, end_jiffies));
c4e84bde 3159
c4e84bde 3160 if (value & RST_FO_FR) {
c4e84bde
RM
3161 QPRINTK(qdev, IFDOWN, ERR,
3162 "ETIMEOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3163 status = -ETIMEDOUT;
c4e84bde
RM
3164 }
3165
3166 return status;
3167}
3168
3169static void ql_display_dev_info(struct net_device *ndev)
3170{
3171 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3172
3173 QPRINTK(qdev, PROBE, INFO,
3174 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3175 "XG Roll = %d, XG Rev = %d.\n",
3176 qdev->func,
3177 qdev->chip_rev_id & 0x0000000f,
3178 qdev->chip_rev_id >> 4 & 0x0000000f,
3179 qdev->chip_rev_id >> 8 & 0x0000000f,
3180 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3181 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3182}
3183
3184static int ql_adapter_down(struct ql_adapter *qdev)
3185{
3186 struct net_device *ndev = qdev->ndev;
3187 int i, status = 0;
3188 struct rx_ring *rx_ring;
3189
3190 netif_stop_queue(ndev);
3191 netif_carrier_off(ndev);
3192
6497b607
RM
3193 /* Don't kill the reset worker thread if we
3194 * are in the process of recovery.
3195 */
3196 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3197 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3198 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3199 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3200 cancel_delayed_work_sync(&qdev->mpi_idc_work);
bcc2cb3b 3201 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c4e84bde
RM
3202
3203 /* The default queue at index 0 is always processed in
3204 * a workqueue.
3205 */
3206 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3207
3208 /* The rest of the rx_rings are processed in
3209 * a workqueue only if it's a single interrupt
3210 * environment (MSI/Legacy).
3211 */
c062076c 3212 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3213 rx_ring = &qdev->rx_ring[i];
3214 /* Only the RSS rings use NAPI on multi irq
3215 * environment. Outbound completion processing
3216 * is done in interrupt context.
3217 */
3218 if (i >= qdev->rss_ring_first_cq_id) {
3219 napi_disable(&rx_ring->napi);
3220 } else {
3221 cancel_delayed_work_sync(&rx_ring->rx_work);
3222 }
3223 }
3224
3225 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3226
3227 ql_disable_interrupts(qdev);
3228
3229 ql_tx_ring_clean(qdev);
3230
4545a3f2 3231 ql_free_rx_buffers(qdev);
c4e84bde
RM
3232 spin_lock(&qdev->hw_lock);
3233 status = ql_adapter_reset(qdev);
3234 if (status)
3235 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3236 qdev->func);
3237 spin_unlock(&qdev->hw_lock);
3238 return status;
3239}
3240
3241static int ql_adapter_up(struct ql_adapter *qdev)
3242{
3243 int err = 0;
3244
3245 spin_lock(&qdev->hw_lock);
3246 err = ql_adapter_initialize(qdev);
3247 if (err) {
3248 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3249 spin_unlock(&qdev->hw_lock);
3250 goto err_init;
3251 }
3252 spin_unlock(&qdev->hw_lock);
3253 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3254 ql_alloc_rx_buffers(qdev);
c4e84bde
RM
3255 ql_enable_interrupts(qdev);
3256 ql_enable_all_completion_interrupts(qdev);
3257 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3258 netif_carrier_on(qdev->ndev);
3259 netif_start_queue(qdev->ndev);
3260 }
3261
3262 return 0;
3263err_init:
3264 ql_adapter_reset(qdev);
3265 return err;
3266}
3267
c4e84bde
RM
3268static void ql_release_adapter_resources(struct ql_adapter *qdev)
3269{
3270 ql_free_mem_resources(qdev);
3271 ql_free_irq(qdev);
3272}
3273
3274static int ql_get_adapter_resources(struct ql_adapter *qdev)
3275{
3276 int status = 0;
3277
3278 if (ql_alloc_mem_resources(qdev)) {
3279 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3280 return -ENOMEM;
3281 }
3282 status = ql_request_irq(qdev);
3283 if (status)
3284 goto err_irq;
3285 return status;
3286err_irq:
3287 ql_free_mem_resources(qdev);
3288 return status;
3289}
3290
3291static int qlge_close(struct net_device *ndev)
3292{
3293 struct ql_adapter *qdev = netdev_priv(ndev);
3294
3295 /*
3296 * Wait for device to recover from a reset.
3297 * (Rarely happens, but possible.)
3298 */
3299 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3300 msleep(1);
3301 ql_adapter_down(qdev);
3302 ql_release_adapter_resources(qdev);
c4e84bde
RM
3303 return 0;
3304}
3305
3306static int ql_configure_rings(struct ql_adapter *qdev)
3307{
3308 int i;
3309 struct rx_ring *rx_ring;
3310 struct tx_ring *tx_ring;
3311 int cpu_cnt = num_online_cpus();
3312
3313 /*
3314 * For each processor present we allocate one
3315 * rx_ring for outbound completions, and one
3316 * rx_ring for inbound completions. Plus there is
3317 * always the one default queue. For the CPU
3318 * counts we end up with the following rx_rings:
3319 * rx_ring count =
3320 * one default queue +
3321 * (CPU count * outbound completion rx_ring) +
3322 * (CPU count * inbound (RSS) completion rx_ring)
3323 * To keep it simple we limit the total number of
3324 * queues to < 32, so we truncate CPU to 8.
3325 * This limitation can be removed when requested.
3326 */
3327
683d46a9
RM
3328 if (cpu_cnt > MAX_CPUS)
3329 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3330
3331 /*
3332 * rx_ring[0] is always the default queue.
3333 */
3334 /* Allocate outbound completion ring for each CPU. */
3335 qdev->tx_ring_count = cpu_cnt;
3336 /* Allocate inbound completion (RSS) ring for each CPU. */
3337 qdev->rss_ring_count = cpu_cnt;
3338 /* cq_id for the first inbound ring handler. */
3339 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3340 /*
3341 * qdev->rx_ring_count:
3342 * Total number of rx_rings. This includes the one
3343 * default queue, a number of outbound completion
3344 * handler rx_rings, and the number of inbound
3345 * completion handler rx_rings.
3346 */
3347 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3348
c4e84bde
RM
3349 for (i = 0; i < qdev->tx_ring_count; i++) {
3350 tx_ring = &qdev->tx_ring[i];
3351 memset((void *)tx_ring, 0, sizeof(tx_ring));
3352 tx_ring->qdev = qdev;
3353 tx_ring->wq_id = i;
3354 tx_ring->wq_len = qdev->tx_ring_size;
3355 tx_ring->wq_size =
3356 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3357
3358 /*
3359 * The completion queue ID for the tx rings start
3360 * immediately after the default Q ID, which is zero.
3361 */
3362 tx_ring->cq_id = i + 1;
3363 }
3364
3365 for (i = 0; i < qdev->rx_ring_count; i++) {
3366 rx_ring = &qdev->rx_ring[i];
3367 memset((void *)rx_ring, 0, sizeof(rx_ring));
3368 rx_ring->qdev = qdev;
3369 rx_ring->cq_id = i;
3370 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3371 if (i == 0) { /* Default queue at index 0. */
3372 /*
3373 * Default queue handles bcast/mcast plus
3374 * async events. Needs buffers.
3375 */
3376 rx_ring->cq_len = qdev->rx_ring_size;
3377 rx_ring->cq_size =
3378 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3379 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3380 rx_ring->lbq_size =
2c9a0d41 3381 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3382 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3383 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3384 rx_ring->sbq_size =
2c9a0d41 3385 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3386 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3387 rx_ring->type = DEFAULT_Q;
3388 } else if (i < qdev->rss_ring_first_cq_id) {
3389 /*
3390 * Outbound queue handles outbound completions only.
3391 */
3392 /* outbound cq is same size as tx_ring it services. */
3393 rx_ring->cq_len = qdev->tx_ring_size;
3394 rx_ring->cq_size =
3395 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3396 rx_ring->lbq_len = 0;
3397 rx_ring->lbq_size = 0;
3398 rx_ring->lbq_buf_size = 0;
3399 rx_ring->sbq_len = 0;
3400 rx_ring->sbq_size = 0;
3401 rx_ring->sbq_buf_size = 0;
3402 rx_ring->type = TX_Q;
3403 } else { /* Inbound completions (RSS) queues */
3404 /*
3405 * Inbound queues handle unicast frames only.
3406 */
3407 rx_ring->cq_len = qdev->rx_ring_size;
3408 rx_ring->cq_size =
3409 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3410 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3411 rx_ring->lbq_size =
2c9a0d41 3412 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3413 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3414 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3415 rx_ring->sbq_size =
2c9a0d41 3416 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3417 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3418 rx_ring->type = RX_Q;
3419 }
3420 }
3421 return 0;
3422}
3423
3424static int qlge_open(struct net_device *ndev)
3425{
3426 int err = 0;
3427 struct ql_adapter *qdev = netdev_priv(ndev);
3428
3429 err = ql_configure_rings(qdev);
3430 if (err)
3431 return err;
3432
3433 err = ql_get_adapter_resources(qdev);
3434 if (err)
3435 goto error_up;
3436
3437 err = ql_adapter_up(qdev);
3438 if (err)
3439 goto error_up;
3440
3441 return err;
3442
3443error_up:
3444 ql_release_adapter_resources(qdev);
c4e84bde
RM
3445 return err;
3446}
3447
3448static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3449{
3450 struct ql_adapter *qdev = netdev_priv(ndev);
3451
3452 if (ndev->mtu == 1500 && new_mtu == 9000) {
3453 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
bcc2cb3b
RM
3454 queue_delayed_work(qdev->workqueue,
3455 &qdev->mpi_port_cfg_work, 0);
c4e84bde
RM
3456 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3457 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3458 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3459 (ndev->mtu == 9000 && new_mtu == 9000)) {
3460 return 0;
3461 } else
3462 return -EINVAL;
3463 ndev->mtu = new_mtu;
3464 return 0;
3465}
3466
3467static struct net_device_stats *qlge_get_stats(struct net_device
3468 *ndev)
3469{
3470 struct ql_adapter *qdev = netdev_priv(ndev);
3471 return &qdev->stats;
3472}
3473
3474static void qlge_set_multicast_list(struct net_device *ndev)
3475{
3476 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3477 struct dev_mc_list *mc_ptr;
cc288f54 3478 int i, status;
c4e84bde 3479
cc288f54
RM
3480 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3481 if (status)
3482 return;
c4e84bde
RM
3483 spin_lock(&qdev->hw_lock);
3484 /*
3485 * Set or clear promiscuous mode if a
3486 * transition is taking place.
3487 */
3488 if (ndev->flags & IFF_PROMISC) {
3489 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3490 if (ql_set_routing_reg
3491 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3492 QPRINTK(qdev, HW, ERR,
3493 "Failed to set promiscous mode.\n");
3494 } else {
3495 set_bit(QL_PROMISCUOUS, &qdev->flags);
3496 }
3497 }
3498 } else {
3499 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3500 if (ql_set_routing_reg
3501 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3502 QPRINTK(qdev, HW, ERR,
3503 "Failed to clear promiscous mode.\n");
3504 } else {
3505 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3506 }
3507 }
3508 }
3509
3510 /*
3511 * Set or clear all multicast mode if a
3512 * transition is taking place.
3513 */
3514 if ((ndev->flags & IFF_ALLMULTI) ||
3515 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3516 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3517 if (ql_set_routing_reg
3518 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3519 QPRINTK(qdev, HW, ERR,
3520 "Failed to set all-multi mode.\n");
3521 } else {
3522 set_bit(QL_ALLMULTI, &qdev->flags);
3523 }
3524 }
3525 } else {
3526 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3527 if (ql_set_routing_reg
3528 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3529 QPRINTK(qdev, HW, ERR,
3530 "Failed to clear all-multi mode.\n");
3531 } else {
3532 clear_bit(QL_ALLMULTI, &qdev->flags);
3533 }
3534 }
3535 }
3536
3537 if (ndev->mc_count) {
cc288f54
RM
3538 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3539 if (status)
3540 goto exit;
c4e84bde
RM
3541 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3542 i++, mc_ptr = mc_ptr->next)
3543 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3544 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3545 QPRINTK(qdev, HW, ERR,
3546 "Failed to loadmulticast address.\n");
cc288f54 3547 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3548 goto exit;
3549 }
cc288f54 3550 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3551 if (ql_set_routing_reg
3552 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3553 QPRINTK(qdev, HW, ERR,
3554 "Failed to set multicast match mode.\n");
3555 } else {
3556 set_bit(QL_ALLMULTI, &qdev->flags);
3557 }
3558 }
3559exit:
3560 spin_unlock(&qdev->hw_lock);
8587ea35 3561 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3562}
3563
3564static int qlge_set_mac_address(struct net_device *ndev, void *p)
3565{
3566 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3567 struct sockaddr *addr = p;
cc288f54 3568 int status;
c4e84bde
RM
3569
3570 if (netif_running(ndev))
3571 return -EBUSY;
3572
3573 if (!is_valid_ether_addr(addr->sa_data))
3574 return -EADDRNOTAVAIL;
3575 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3576
cc288f54
RM
3577 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3578 if (status)
3579 return status;
c4e84bde 3580 spin_lock(&qdev->hw_lock);
cc288f54
RM
3581 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3582 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
c4e84bde 3583 spin_unlock(&qdev->hw_lock);
cc288f54
RM
3584 if (status)
3585 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3586 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3587 return status;
c4e84bde
RM
3588}
3589
3590static void qlge_tx_timeout(struct net_device *ndev)
3591{
3592 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3593 ql_queue_asic_error(qdev);
c4e84bde
RM
3594}
3595
3596static void ql_asic_reset_work(struct work_struct *work)
3597{
3598 struct ql_adapter *qdev =
3599 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f
RM
3600 int status;
3601
3602 status = ql_adapter_down(qdev);
3603 if (status)
3604 goto error;
3605
3606 status = ql_adapter_up(qdev);
3607 if (status)
3608 goto error;
3609
3610 return;
3611error:
3612 QPRINTK(qdev, IFUP, ALERT,
3613 "Driver up/down cycle failed, closing device\n");
3614 rtnl_lock();
3615 set_bit(QL_ADAPTER_UP, &qdev->flags);
3616 dev_close(qdev->ndev);
3617 rtnl_unlock();
c4e84bde
RM
3618}
3619
b0c2aadf
RM
3620static struct nic_operations qla8012_nic_ops = {
3621 .get_flash = ql_get_8012_flash_params,
3622 .port_initialize = ql_8012_port_initialize,
3623};
3624
cdca8d02
RM
3625static struct nic_operations qla8000_nic_ops = {
3626 .get_flash = ql_get_8000_flash_params,
3627 .port_initialize = ql_8000_port_initialize,
3628};
3629
b0c2aadf 3630
c4e84bde
RM
3631static void ql_get_board_info(struct ql_adapter *qdev)
3632{
3633 qdev->func =
3634 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3635 if (qdev->func) {
3636 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3637 qdev->port_link_up = STS_PL1;
3638 qdev->port_init = STS_PI1;
3639 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3640 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3641 } else {
3642 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3643 qdev->port_link_up = STS_PL0;
3644 qdev->port_init = STS_PI0;
3645 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3646 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3647 }
3648 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
3649 qdev->device_id = qdev->pdev->device;
3650 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3651 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
3652 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3653 qdev->nic_ops = &qla8000_nic_ops;
c4e84bde
RM
3654}
3655
3656static void ql_release_all(struct pci_dev *pdev)
3657{
3658 struct net_device *ndev = pci_get_drvdata(pdev);
3659 struct ql_adapter *qdev = netdev_priv(ndev);
3660
3661 if (qdev->workqueue) {
3662 destroy_workqueue(qdev->workqueue);
3663 qdev->workqueue = NULL;
3664 }
3665 if (qdev->q_workqueue) {
3666 destroy_workqueue(qdev->q_workqueue);
3667 qdev->q_workqueue = NULL;
3668 }
3669 if (qdev->reg_base)
8668ae92 3670 iounmap(qdev->reg_base);
c4e84bde
RM
3671 if (qdev->doorbell_area)
3672 iounmap(qdev->doorbell_area);
3673 pci_release_regions(pdev);
3674 pci_set_drvdata(pdev, NULL);
3675}
3676
3677static int __devinit ql_init_device(struct pci_dev *pdev,
3678 struct net_device *ndev, int cards_found)
3679{
3680 struct ql_adapter *qdev = netdev_priv(ndev);
3681 int pos, err = 0;
3682 u16 val16;
3683
3684 memset((void *)qdev, 0, sizeof(qdev));
3685 err = pci_enable_device(pdev);
3686 if (err) {
3687 dev_err(&pdev->dev, "PCI device enable failed.\n");
3688 return err;
3689 }
3690
3691 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3692 if (pos <= 0) {
3693 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3694 "aborting.\n");
3695 goto err_out;
3696 } else {
3697 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3698 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3699 val16 |= (PCI_EXP_DEVCTL_CERE |
3700 PCI_EXP_DEVCTL_NFERE |
3701 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3702 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3703 }
3704
3705 err = pci_request_regions(pdev, DRV_NAME);
3706 if (err) {
3707 dev_err(&pdev->dev, "PCI region request failed.\n");
3708 goto err_out;
3709 }
3710
3711 pci_set_master(pdev);
3712 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3713 set_bit(QL_DMA64, &qdev->flags);
3714 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3715 } else {
3716 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3717 if (!err)
3718 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3719 }
3720
3721 if (err) {
3722 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3723 goto err_out;
3724 }
3725
3726 pci_set_drvdata(pdev, ndev);
3727 qdev->reg_base =
3728 ioremap_nocache(pci_resource_start(pdev, 1),
3729 pci_resource_len(pdev, 1));
3730 if (!qdev->reg_base) {
3731 dev_err(&pdev->dev, "Register mapping failed.\n");
3732 err = -ENOMEM;
3733 goto err_out;
3734 }
3735
3736 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3737 qdev->doorbell_area =
3738 ioremap_nocache(pci_resource_start(pdev, 3),
3739 pci_resource_len(pdev, 3));
3740 if (!qdev->doorbell_area) {
3741 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3742 err = -ENOMEM;
3743 goto err_out;
3744 }
3745
c4e84bde
RM
3746 qdev->ndev = ndev;
3747 qdev->pdev = pdev;
b0c2aadf 3748 ql_get_board_info(qdev);
c4e84bde
RM
3749 qdev->msg_enable = netif_msg_init(debug, default_msg);
3750 spin_lock_init(&qdev->hw_lock);
3751 spin_lock_init(&qdev->stats_lock);
3752
3753 /* make sure the EEPROM is good */
b0c2aadf 3754 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
3755 if (err) {
3756 dev_err(&pdev->dev, "Invalid FLASH.\n");
3757 goto err_out;
3758 }
3759
c4e84bde
RM
3760 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3761
3762 /* Set up the default ring sizes. */
3763 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3764 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3765
3766 /* Set up the coalescing parameters. */
3767 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3768 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3769 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3770 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3771
3772 /*
3773 * Set up the operating parameters.
3774 */
3775 qdev->rx_csum = 1;
3776
3777 qdev->q_workqueue = create_workqueue(ndev->name);
3778 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3779 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3780 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3781 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 3782 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 3783 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
125844ea 3784 mutex_init(&qdev->mpi_mutex);
bcc2cb3b 3785 init_completion(&qdev->ide_completion);
c4e84bde
RM
3786
3787 if (!cards_found) {
3788 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3789 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3790 DRV_NAME, DRV_VERSION);
3791 }
3792 return 0;
3793err_out:
3794 ql_release_all(pdev);
3795 pci_disable_device(pdev);
3796 return err;
3797}
3798
25ed7849
SH
3799
3800static const struct net_device_ops qlge_netdev_ops = {
3801 .ndo_open = qlge_open,
3802 .ndo_stop = qlge_close,
3803 .ndo_start_xmit = qlge_send,
3804 .ndo_change_mtu = qlge_change_mtu,
3805 .ndo_get_stats = qlge_get_stats,
3806 .ndo_set_multicast_list = qlge_set_multicast_list,
3807 .ndo_set_mac_address = qlge_set_mac_address,
3808 .ndo_validate_addr = eth_validate_addr,
3809 .ndo_tx_timeout = qlge_tx_timeout,
3810 .ndo_vlan_rx_register = ql_vlan_rx_register,
3811 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3812 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3813};
3814
c4e84bde
RM
3815static int __devinit qlge_probe(struct pci_dev *pdev,
3816 const struct pci_device_id *pci_entry)
3817{
3818 struct net_device *ndev = NULL;
3819 struct ql_adapter *qdev = NULL;
3820 static int cards_found = 0;
3821 int err = 0;
3822
3823 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3824 if (!ndev)
3825 return -ENOMEM;
3826
3827 err = ql_init_device(pdev, ndev, cards_found);
3828 if (err < 0) {
3829 free_netdev(ndev);
3830 return err;
3831 }
3832
3833 qdev = netdev_priv(ndev);
3834 SET_NETDEV_DEV(ndev, &pdev->dev);
3835 ndev->features = (0
3836 | NETIF_F_IP_CSUM
3837 | NETIF_F_SG
3838 | NETIF_F_TSO
3839 | NETIF_F_TSO6
3840 | NETIF_F_TSO_ECN
3841 | NETIF_F_HW_VLAN_TX
3842 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3843
3844 if (test_bit(QL_DMA64, &qdev->flags))
3845 ndev->features |= NETIF_F_HIGHDMA;
3846
3847 /*
3848 * Set up net_device structure.
3849 */
3850 ndev->tx_queue_len = qdev->tx_ring_size;
3851 ndev->irq = pdev->irq;
25ed7849
SH
3852
3853 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3854 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3855 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3856
c4e84bde
RM
3857 err = register_netdev(ndev);
3858 if (err) {
3859 dev_err(&pdev->dev, "net device registration failed.\n");
3860 ql_release_all(pdev);
3861 pci_disable_device(pdev);
3862 return err;
3863 }
3864 netif_carrier_off(ndev);
3865 netif_stop_queue(ndev);
3866 ql_display_dev_info(ndev);
3867 cards_found++;
3868 return 0;
3869}
3870
3871static void __devexit qlge_remove(struct pci_dev *pdev)
3872{
3873 struct net_device *ndev = pci_get_drvdata(pdev);
3874 unregister_netdev(ndev);
3875 ql_release_all(pdev);
3876 pci_disable_device(pdev);
3877 free_netdev(ndev);
3878}
3879
3880/*
3881 * This callback is called by the PCI subsystem whenever
3882 * a PCI bus error is detected.
3883 */
3884static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3885 enum pci_channel_state state)
3886{
3887 struct net_device *ndev = pci_get_drvdata(pdev);
3888 struct ql_adapter *qdev = netdev_priv(ndev);
3889
3890 if (netif_running(ndev))
3891 ql_adapter_down(qdev);
3892
3893 pci_disable_device(pdev);
3894
3895 /* Request a slot reset. */
3896 return PCI_ERS_RESULT_NEED_RESET;
3897}
3898
3899/*
3900 * This callback is called after the PCI buss has been reset.
3901 * Basically, this tries to restart the card from scratch.
3902 * This is a shortened version of the device probe/discovery code,
3903 * it resembles the first-half of the () routine.
3904 */
3905static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3906{
3907 struct net_device *ndev = pci_get_drvdata(pdev);
3908 struct ql_adapter *qdev = netdev_priv(ndev);
3909
3910 if (pci_enable_device(pdev)) {
3911 QPRINTK(qdev, IFUP, ERR,
3912 "Cannot re-enable PCI device after reset.\n");
3913 return PCI_ERS_RESULT_DISCONNECT;
3914 }
3915
3916 pci_set_master(pdev);
3917
3918 netif_carrier_off(ndev);
3919 netif_stop_queue(ndev);
3920 ql_adapter_reset(qdev);
3921
3922 /* Make sure the EEPROM is good */
3923 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3924
3925 if (!is_valid_ether_addr(ndev->perm_addr)) {
3926 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3927 return PCI_ERS_RESULT_DISCONNECT;
3928 }
3929
3930 return PCI_ERS_RESULT_RECOVERED;
3931}
3932
3933static void qlge_io_resume(struct pci_dev *pdev)
3934{
3935 struct net_device *ndev = pci_get_drvdata(pdev);
3936 struct ql_adapter *qdev = netdev_priv(ndev);
3937
3938 pci_set_master(pdev);
3939
3940 if (netif_running(ndev)) {
3941 if (ql_adapter_up(qdev)) {
3942 QPRINTK(qdev, IFUP, ERR,
3943 "Device initialization failed after reset.\n");
3944 return;
3945 }
3946 }
3947
3948 netif_device_attach(ndev);
3949}
3950
3951static struct pci_error_handlers qlge_err_handler = {
3952 .error_detected = qlge_io_error_detected,
3953 .slot_reset = qlge_io_slot_reset,
3954 .resume = qlge_io_resume,
3955};
3956
3957static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3958{
3959 struct net_device *ndev = pci_get_drvdata(pdev);
3960 struct ql_adapter *qdev = netdev_priv(ndev);
0047e5d2 3961 int err, i;
c4e84bde
RM
3962
3963 netif_device_detach(ndev);
3964
3965 if (netif_running(ndev)) {
3966 err = ql_adapter_down(qdev);
3967 if (!err)
3968 return err;
3969 }
3970
0047e5d2
RM
3971 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3972 netif_napi_del(&qdev->rx_ring[i].napi);
3973
c4e84bde
RM
3974 err = pci_save_state(pdev);
3975 if (err)
3976 return err;
3977
3978 pci_disable_device(pdev);
3979
3980 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3981
3982 return 0;
3983}
3984
04da2cf9 3985#ifdef CONFIG_PM
c4e84bde
RM
3986static int qlge_resume(struct pci_dev *pdev)
3987{
3988 struct net_device *ndev = pci_get_drvdata(pdev);
3989 struct ql_adapter *qdev = netdev_priv(ndev);
3990 int err;
3991
3992 pci_set_power_state(pdev, PCI_D0);
3993 pci_restore_state(pdev);
3994 err = pci_enable_device(pdev);
3995 if (err) {
3996 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3997 return err;
3998 }
3999 pci_set_master(pdev);
4000
4001 pci_enable_wake(pdev, PCI_D3hot, 0);
4002 pci_enable_wake(pdev, PCI_D3cold, 0);
4003
4004 if (netif_running(ndev)) {
4005 err = ql_adapter_up(qdev);
4006 if (err)
4007 return err;
4008 }
4009
4010 netif_device_attach(ndev);
4011
4012 return 0;
4013}
04da2cf9 4014#endif /* CONFIG_PM */
c4e84bde
RM
4015
4016static void qlge_shutdown(struct pci_dev *pdev)
4017{
4018 qlge_suspend(pdev, PMSG_SUSPEND);
4019}
4020
4021static struct pci_driver qlge_driver = {
4022 .name = DRV_NAME,
4023 .id_table = qlge_pci_tbl,
4024 .probe = qlge_probe,
4025 .remove = __devexit_p(qlge_remove),
4026#ifdef CONFIG_PM
4027 .suspend = qlge_suspend,
4028 .resume = qlge_resume,
4029#endif
4030 .shutdown = qlge_shutdown,
4031 .err_handler = &qlge_err_handler
4032};
4033
4034static int __init qlge_init_module(void)
4035{
4036 return pci_register_driver(&qlge_driver);
4037}
4038
4039static void __exit qlge_exit(void)
4040{
4041 pci_unregister_driver(&qlge_driver);
4042}
4043
4044module_init(qlge_init_module);
4045module_exit(qlge_exit);