]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/qlge/qlge_main.c
qlge: Add asic reset to open call.
[net-next-2.6.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
c4e84bde 37#include <linux/if_vlan.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
b7c6bfb7 41#include <net/ip6_checksum.h>
c4e84bde
RM
42
43#include "qlge.h"
44
45char qlge_driver_name[] = DRV_NAME;
46const char qlge_driver_version[] = DRV_VERSION;
47
48MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49MODULE_DESCRIPTION(DRV_STRING " ");
50MODULE_LICENSE("GPL");
51MODULE_VERSION(DRV_VERSION);
52
53static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55/* NETIF_MSG_TIMER | */
56 NETIF_MSG_IFDOWN |
57 NETIF_MSG_IFUP |
58 NETIF_MSG_RX_ERR |
59 NETIF_MSG_TX_ERR |
4974097a
RM
60/* NETIF_MSG_TX_QUEUED | */
61/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
62/* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65static int debug = 0x00007fff; /* defaults above */
66module_param(debug, int, 0);
67MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69#define MSIX_IRQ 0
70#define MSI_IRQ 1
71#define LEG_IRQ 2
72static int irq_type = MSIX_IRQ;
73module_param(irq_type, int, MSIX_IRQ);
74MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
b0c2aadf 77 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
4322c5be
RM
216 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
217 if (status)
218 return status;
219
c4e84bde
RM
220 status = ql_wait_cfg(qdev, bit);
221 if (status) {
222 QPRINTK(qdev, IFUP, ERR,
223 "Timed out waiting for CFG to come ready.\n");
224 goto exit;
225 }
226
c4e84bde
RM
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
4322c5be 239 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242}
243
244/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247{
248 u32 offset = 0;
249 int status;
250
c4e84bde
RM
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
254 {
255 status =
256 ql_wait_reg_rdy(qdev,
939678f8 257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
939678f8 265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
939678f8 271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
939678f8 279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
939678f8 286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 294 MAC_ADDR_MR, 0);
c4e84bde
RM
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 }
299 break;
300 }
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
307 }
308exit:
c4e84bde
RM
309 return status;
310}
311
312/* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
314 */
315static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
317{
318 u32 offset = 0;
319 int status = 0;
320
c4e84bde
RM
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
323 {
324 u32 upper = (addr[0] << 8) | addr[1];
325 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
326 (addr[4] << 8) | (addr[5]);
327
328 status =
329 ql_wait_reg_rdy(qdev,
330 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
331 if (status)
332 goto exit;
333 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
334 (index << MAC_ADDR_IDX_SHIFT) |
335 type | MAC_ADDR_E);
336 ql_write32(qdev, MAC_ADDR_DATA, lower);
337 status =
338 ql_wait_reg_rdy(qdev,
339 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
340 if (status)
341 goto exit;
342 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
343 (index << MAC_ADDR_IDX_SHIFT) |
344 type | MAC_ADDR_E);
345
346 ql_write32(qdev, MAC_ADDR_DATA, upper);
347 status =
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350 if (status)
351 goto exit;
352 break;
353 }
c4e84bde
RM
354 case MAC_ADDR_TYPE_CAM_MAC:
355 {
356 u32 cam_output;
357 u32 upper = (addr[0] << 8) | addr[1];
358 u32 lower =
359 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
360 (addr[5]);
361
4974097a 362 QPRINTK(qdev, IFUP, DEBUG,
7c510e4b 363 "Adding %s address %pM"
c4e84bde
RM
364 " at index %d in the CAM.\n",
365 ((type ==
366 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 367 "UNICAST"), addr, index);
c4e84bde
RM
368
369 status =
370 ql_wait_reg_rdy(qdev,
939678f8 371 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
372 if (status)
373 goto exit;
374 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
375 (index << MAC_ADDR_IDX_SHIFT) | /* index */
376 type); /* type */
377 ql_write32(qdev, MAC_ADDR_DATA, lower);
378 status =
379 ql_wait_reg_rdy(qdev,
939678f8 380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, upper);
387 status =
388 ql_wait_reg_rdy(qdev,
939678f8 389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 /* This field should also include the queue id
396 and possibly the function id. Right now we hardcode
397 the route field to NIC core.
398 */
76b26694
RM
399 cam_output = (CAM_OUT_ROUTE_NIC |
400 (qdev->
401 func << CAM_OUT_FUNC_SHIFT) |
402 (0 << CAM_OUT_CQ_ID_SHIFT));
403 if (qdev->vlgrp)
404 cam_output |= CAM_OUT_RV;
405 /* route to NIC core */
406 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
407 break;
408 }
409 case MAC_ADDR_TYPE_VLAN:
410 {
411 u32 enable_bit = *((u32 *) &addr[0]);
412 /* For VLAN, the addr actually holds a bit that
413 * either enables or disables the vlan id we are
414 * addressing. It's either MAC_ADDR_E on or off.
415 * That's bit-27 we're talking about.
416 */
417 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
418 (enable_bit ? "Adding" : "Removing"),
419 index, (enable_bit ? "to" : "from"));
420
421 status =
422 ql_wait_reg_rdy(qdev,
939678f8 423 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
424 if (status)
425 goto exit;
426 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
427 (index << MAC_ADDR_IDX_SHIFT) | /* index */
428 type | /* type */
429 enable_bit); /* enable/disable */
430 break;
431 }
432 case MAC_ADDR_TYPE_MULTI_FLTR:
433 default:
434 QPRINTK(qdev, IFUP, CRIT,
435 "Address type %d not yet supported.\n", type);
436 status = -EPERM;
437 }
438exit:
c4e84bde
RM
439 return status;
440}
441
7fab3bfe
RM
442/* Set or clear MAC address in hardware. We sometimes
443 * have to clear it to prevent wrong frame routing
444 * especially in a bonding environment.
445 */
446static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
447{
448 int status;
449 char zero_mac_addr[ETH_ALEN];
450 char *addr;
451
452 if (set) {
453 addr = &qdev->ndev->dev_addr[0];
454 QPRINTK(qdev, IFUP, DEBUG,
455 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
456 addr[0], addr[1], addr[2], addr[3],
457 addr[4], addr[5]);
458 } else {
459 memset(zero_mac_addr, 0, ETH_ALEN);
460 addr = &zero_mac_addr[0];
461 QPRINTK(qdev, IFUP, DEBUG,
462 "Clearing MAC address on %s\n",
463 qdev->ndev->name);
464 }
465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
466 if (status)
467 return status;
468 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
469 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
470 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
471 if (status)
472 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
473 "address.\n");
474 return status;
475}
476
6a473308
RM
477void ql_link_on(struct ql_adapter *qdev)
478{
479 QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
480 qdev->ndev->name);
481 netif_carrier_on(qdev->ndev);
482 ql_set_mac_addr(qdev, 1);
483}
484
485void ql_link_off(struct ql_adapter *qdev)
486{
487 QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
488 qdev->ndev->name);
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491}
492
c4e84bde
RM
493/* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497{
498 int status = 0;
499
939678f8 500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510exit:
c4e84bde
RM
511 return status;
512}
513
514/* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521{
8587ea35 522 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
523 u32 value = 0;
524
c4e84bde
RM
525 QPRINTK(qdev, IFUP, DEBUG,
526 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
527 (enable ? "Adding" : "Removing"),
528 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
529 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
530 ((index ==
531 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
532 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
533 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
534 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
535 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
536 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
537 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
538 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
539 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
540 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
541 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
542 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
543 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
544 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
545 (enable ? "to" : "from"));
546
547 switch (mask) {
548 case RT_IDX_CAM_HIT:
549 {
550 value = RT_IDX_DST_CAM_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
553 break;
554 }
555 case RT_IDX_VALID: /* Promiscuous Mode frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
560 break;
561 }
562 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
563 {
564 value = RT_IDX_DST_DFLT_Q | /* dest */
565 RT_IDX_TYPE_NICQ | /* type */
566 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
567 break;
568 }
569 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
570 {
571 value = RT_IDX_DST_DFLT_Q | /* dest */
572 RT_IDX_TYPE_NICQ | /* type */
573 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
574 break;
575 }
576 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
577 {
e163d7f2 578 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
579 RT_IDX_TYPE_NICQ | /* type */
580 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
581 break;
582 }
583 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
584 {
e163d7f2 585 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
586 RT_IDX_TYPE_NICQ | /* type */
587 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
588 break;
589 }
590 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
591 {
592 value = RT_IDX_DST_RSS | /* dest */
593 RT_IDX_TYPE_NICQ | /* type */
594 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
595 break;
596 }
597 case 0: /* Clear the E-bit on an entry. */
598 {
599 value = RT_IDX_DST_DFLT_Q | /* dest */
600 RT_IDX_TYPE_NICQ | /* type */
601 (index << RT_IDX_IDX_SHIFT);/* index */
602 break;
603 }
604 default:
605 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
606 mask);
607 status = -EPERM;
608 goto exit;
609 }
610
611 if (value) {
612 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
613 if (status)
614 goto exit;
615 value |= (enable ? RT_IDX_E : 0);
616 ql_write32(qdev, RT_IDX, value);
617 ql_write32(qdev, RT_DATA, enable ? mask : 0);
618 }
619exit:
c4e84bde
RM
620 return status;
621}
622
623static void ql_enable_interrupts(struct ql_adapter *qdev)
624{
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
626}
627
628static void ql_disable_interrupts(struct ql_adapter *qdev)
629{
630 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
631}
632
633/* If we're running with multiple MSI-X vectors then we enable on the fly.
634 * Otherwise, we may have multiple outstanding workers and don't want to
635 * enable until the last one finishes. In this case, the irq_cnt gets
636 * incremented everytime we queue a worker and decremented everytime
637 * a worker finishes. Once it hits zero we enable the interrupt.
638 */
bb0d215c 639u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 640{
bb0d215c
RM
641 u32 var = 0;
642 unsigned long hw_flags = 0;
643 struct intr_context *ctx = qdev->intr_context + intr;
644
645 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
646 /* Always enable if we're MSIX multi interrupts and
647 * it's not the default (zeroeth) interrupt.
648 */
c4e84bde 649 ql_write32(qdev, INTR_EN,
bb0d215c
RM
650 ctx->intr_en_mask);
651 var = ql_read32(qdev, STS);
652 return var;
c4e84bde 653 }
bb0d215c
RM
654
655 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
656 if (atomic_dec_and_test(&ctx->irq_cnt)) {
657 ql_write32(qdev, INTR_EN,
658 ctx->intr_en_mask);
659 var = ql_read32(qdev, STS);
660 }
661 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
662 return var;
c4e84bde
RM
663}
664
665static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
666{
667 u32 var = 0;
bb0d215c 668 struct intr_context *ctx;
c4e84bde 669
bb0d215c
RM
670 /* HW disables for us if we're MSIX multi interrupts and
671 * it's not the default (zeroeth) interrupt.
672 */
673 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
674 return 0;
675
676 ctx = qdev->intr_context + intr;
08b1bc8f 677 spin_lock(&qdev->hw_lock);
bb0d215c 678 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 679 ql_write32(qdev, INTR_EN,
bb0d215c 680 ctx->intr_dis_mask);
c4e84bde
RM
681 var = ql_read32(qdev, STS);
682 }
bb0d215c 683 atomic_inc(&ctx->irq_cnt);
08b1bc8f 684 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
685 return var;
686}
687
688static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
689{
690 int i;
691 for (i = 0; i < qdev->intr_count; i++) {
692 /* The enable call does a atomic_dec_and_test
693 * and enables only if the result is zero.
694 * So we precharge it here.
695 */
bb0d215c
RM
696 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
697 i == 0))
698 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
699 ql_enable_completion_interrupt(qdev, i);
700 }
701
702}
703
b0c2aadf
RM
704static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
705{
706 int status, i;
707 u16 csum = 0;
708 __le16 *flash = (__le16 *)&qdev->flash;
709
710 status = strncmp((char *)&qdev->flash, str, 4);
711 if (status) {
712 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
713 return status;
714 }
715
716 for (i = 0; i < size; i++)
717 csum += le16_to_cpu(*flash++);
718
719 if (csum)
720 QPRINTK(qdev, IFUP, ERR,
721 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
722
723 return csum;
724}
725
26351479 726static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
727{
728 int status = 0;
729 /* wait for reg to come ready */
730 status = ql_wait_reg_rdy(qdev,
731 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
732 if (status)
733 goto exit;
734 /* set up for reg read */
735 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
736 /* wait for reg to come ready */
737 status = ql_wait_reg_rdy(qdev,
738 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
739 if (status)
740 goto exit;
26351479
RM
741 /* This data is stored on flash as an array of
742 * __le32. Since ql_read32() returns cpu endian
743 * we need to swap it back.
744 */
745 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
746exit:
747 return status;
748}
749
cdca8d02
RM
750static int ql_get_8000_flash_params(struct ql_adapter *qdev)
751{
752 u32 i, size;
753 int status;
754 __le32 *p = (__le32 *)&qdev->flash;
755 u32 offset;
542512e4 756 u8 mac_addr[6];
cdca8d02
RM
757
758 /* Get flash offset for function and adjust
759 * for dword access.
760 */
e4552f51 761 if (!qdev->port)
cdca8d02
RM
762 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
763 else
764 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
765
766 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
767 return -ETIMEDOUT;
768
769 size = sizeof(struct flash_params_8000) / sizeof(u32);
770 for (i = 0; i < size; i++, p++) {
771 status = ql_read_flash_word(qdev, i+offset, p);
772 if (status) {
773 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
774 goto exit;
775 }
776 }
777
778 status = ql_validate_flash(qdev,
779 sizeof(struct flash_params_8000) / sizeof(u16),
780 "8000");
781 if (status) {
782 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
783 status = -EINVAL;
784 goto exit;
785 }
786
542512e4
RM
787 /* Extract either manufacturer or BOFM modified
788 * MAC address.
789 */
790 if (qdev->flash.flash_params_8000.data_type1 == 2)
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr1,
793 qdev->ndev->addr_len);
794 else
795 memcpy(mac_addr,
796 qdev->flash.flash_params_8000.mac_addr,
797 qdev->ndev->addr_len);
798
799 if (!is_valid_ether_addr(mac_addr)) {
cdca8d02
RM
800 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
801 status = -EINVAL;
802 goto exit;
803 }
804
805 memcpy(qdev->ndev->dev_addr,
542512e4 806 mac_addr,
cdca8d02
RM
807 qdev->ndev->addr_len);
808
809exit:
810 ql_sem_unlock(qdev, SEM_FLASH_MASK);
811 return status;
812}
813
b0c2aadf 814static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
815{
816 int i;
817 int status;
26351479 818 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 819 u32 offset = 0;
b0c2aadf 820 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
821
822 /* Second function's parameters follow the first
823 * function's.
824 */
e4552f51 825 if (qdev->port)
b0c2aadf 826 offset = size;
c4e84bde
RM
827
828 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
829 return -ETIMEDOUT;
830
b0c2aadf 831 for (i = 0; i < size; i++, p++) {
e78f5fa7 832 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
833 if (status) {
834 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
835 goto exit;
836 }
837
838 }
b0c2aadf
RM
839
840 status = ql_validate_flash(qdev,
841 sizeof(struct flash_params_8012) / sizeof(u16),
842 "8012");
843 if (status) {
844 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
845 status = -EINVAL;
846 goto exit;
847 }
848
849 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
850 status = -EINVAL;
851 goto exit;
852 }
853
854 memcpy(qdev->ndev->dev_addr,
855 qdev->flash.flash_params_8012.mac_addr,
856 qdev->ndev->addr_len);
857
c4e84bde
RM
858exit:
859 ql_sem_unlock(qdev, SEM_FLASH_MASK);
860 return status;
861}
862
863/* xgmac register are located behind the xgmac_addr and xgmac_data
864 * register pair. Each read/write requires us to wait for the ready
865 * bit before reading/writing the data.
866 */
867static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
868{
869 int status;
870 /* wait for reg to come ready */
871 status = ql_wait_reg_rdy(qdev,
872 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
873 if (status)
874 return status;
875 /* write the data to the data reg */
876 ql_write32(qdev, XGMAC_DATA, data);
877 /* trigger the write */
878 ql_write32(qdev, XGMAC_ADDR, reg);
879 return status;
880}
881
882/* xgmac register are located behind the xgmac_addr and xgmac_data
883 * register pair. Each read/write requires us to wait for the ready
884 * bit before reading/writing the data.
885 */
886int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
887{
888 int status = 0;
889 /* wait for reg to come ready */
890 status = ql_wait_reg_rdy(qdev,
891 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
892 if (status)
893 goto exit;
894 /* set up for reg read */
895 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
896 /* wait for reg to come ready */
897 status = ql_wait_reg_rdy(qdev,
898 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
899 if (status)
900 goto exit;
901 /* get the data */
902 *data = ql_read32(qdev, XGMAC_DATA);
903exit:
904 return status;
905}
906
907/* This is used for reading the 64-bit statistics regs. */
908int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
909{
910 int status = 0;
911 u32 hi = 0;
912 u32 lo = 0;
913
914 status = ql_read_xgmac_reg(qdev, reg, &lo);
915 if (status)
916 goto exit;
917
918 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
919 if (status)
920 goto exit;
921
922 *data = (u64) lo | ((u64) hi << 32);
923
924exit:
925 return status;
926}
927
cdca8d02
RM
928static int ql_8000_port_initialize(struct ql_adapter *qdev)
929{
bcc2cb3b 930 int status;
cfec0cbc
RM
931 /*
932 * Get MPI firmware version for driver banner
933 * and ethool info.
934 */
935 status = ql_mb_about_fw(qdev);
936 if (status)
937 goto exit;
bcc2cb3b
RM
938 status = ql_mb_get_fw_state(qdev);
939 if (status)
940 goto exit;
941 /* Wake up a worker to get/set the TX/RX frame sizes. */
942 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
943exit:
944 return status;
cdca8d02
RM
945}
946
c4e84bde
RM
947/* Take the MAC Core out of reset.
948 * Enable statistics counting.
949 * Take the transmitter/receiver out of reset.
950 * This functionality may be done in the MPI firmware at a
951 * later date.
952 */
b0c2aadf 953static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
954{
955 int status = 0;
956 u32 data;
957
958 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
959 /* Another function has the semaphore, so
960 * wait for the port init bit to come ready.
961 */
962 QPRINTK(qdev, LINK, INFO,
963 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
964 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
965 if (status) {
966 QPRINTK(qdev, LINK, CRIT,
967 "Port initialize timed out.\n");
968 }
969 return status;
970 }
971
972 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
973 /* Set the core reset. */
974 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
975 if (status)
976 goto end;
977 data |= GLOBAL_CFG_RESET;
978 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
979 if (status)
980 goto end;
981
982 /* Clear the core reset and turn on jumbo for receiver. */
983 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
984 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
985 data |= GLOBAL_CFG_TX_STAT_EN;
986 data |= GLOBAL_CFG_RX_STAT_EN;
987 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
988 if (status)
989 goto end;
990
991 /* Enable transmitter, and clear it's reset. */
992 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
993 if (status)
994 goto end;
995 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
996 data |= TX_CFG_EN; /* Enable the transmitter. */
997 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
998 if (status)
999 goto end;
1000
1001 /* Enable receiver and clear it's reset. */
1002 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1003 if (status)
1004 goto end;
1005 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1006 data |= RX_CFG_EN; /* Enable the receiver. */
1007 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1008 if (status)
1009 goto end;
1010
1011 /* Turn on jumbo. */
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1014 if (status)
1015 goto end;
1016 status =
1017 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1018 if (status)
1019 goto end;
1020
1021 /* Signal to the world that the port is enabled. */
1022 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1023end:
1024 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1025 return status;
1026}
1027
7c734359
RM
1028static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1029{
1030 return PAGE_SIZE << qdev->lbq_buf_order;
1031}
1032
c4e84bde 1033/* Get the next large buffer. */
8668ae92 1034static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1035{
1036 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1037 rx_ring->lbq_curr_idx++;
1038 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1039 rx_ring->lbq_curr_idx = 0;
1040 rx_ring->lbq_free_cnt++;
1041 return lbq_desc;
1042}
1043
7c734359
RM
1044static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1045 struct rx_ring *rx_ring)
1046{
1047 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1048
1049 pci_dma_sync_single_for_cpu(qdev->pdev,
1050 pci_unmap_addr(lbq_desc, mapaddr),
1051 rx_ring->lbq_buf_size,
1052 PCI_DMA_FROMDEVICE);
1053
1054 /* If it's the last chunk of our master page then
1055 * we unmap it.
1056 */
1057 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1058 == ql_lbq_block_size(qdev))
1059 pci_unmap_page(qdev->pdev,
1060 lbq_desc->p.pg_chunk.map,
1061 ql_lbq_block_size(qdev),
1062 PCI_DMA_FROMDEVICE);
1063 return lbq_desc;
1064}
1065
c4e84bde 1066/* Get the next small buffer. */
8668ae92 1067static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1068{
1069 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1070 rx_ring->sbq_curr_idx++;
1071 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1072 rx_ring->sbq_curr_idx = 0;
1073 rx_ring->sbq_free_cnt++;
1074 return sbq_desc;
1075}
1076
1077/* Update an rx ring index. */
1078static void ql_update_cq(struct rx_ring *rx_ring)
1079{
1080 rx_ring->cnsmr_idx++;
1081 rx_ring->curr_entry++;
1082 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1083 rx_ring->cnsmr_idx = 0;
1084 rx_ring->curr_entry = rx_ring->cq_base;
1085 }
1086}
1087
1088static void ql_write_cq_idx(struct rx_ring *rx_ring)
1089{
1090 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1091}
1092
7c734359
RM
1093static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1094 struct bq_desc *lbq_desc)
1095{
1096 if (!rx_ring->pg_chunk.page) {
1097 u64 map;
1098 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1099 GFP_ATOMIC,
1100 qdev->lbq_buf_order);
1101 if (unlikely(!rx_ring->pg_chunk.page)) {
1102 QPRINTK(qdev, DRV, ERR,
1103 "page allocation failed.\n");
1104 return -ENOMEM;
1105 }
1106 rx_ring->pg_chunk.offset = 0;
1107 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1108 0, ql_lbq_block_size(qdev),
1109 PCI_DMA_FROMDEVICE);
1110 if (pci_dma_mapping_error(qdev->pdev, map)) {
1111 __free_pages(rx_ring->pg_chunk.page,
1112 qdev->lbq_buf_order);
1113 QPRINTK(qdev, DRV, ERR,
1114 "PCI mapping failed.\n");
1115 return -ENOMEM;
1116 }
1117 rx_ring->pg_chunk.map = map;
1118 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1119 }
1120
1121 /* Copy the current master pg_chunk info
1122 * to the current descriptor.
1123 */
1124 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1125
1126 /* Adjust the master page chunk for next
1127 * buffer get.
1128 */
1129 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1130 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1131 rx_ring->pg_chunk.page = NULL;
1132 lbq_desc->p.pg_chunk.last_flag = 1;
1133 } else {
1134 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1135 get_page(rx_ring->pg_chunk.page);
1136 lbq_desc->p.pg_chunk.last_flag = 0;
1137 }
1138 return 0;
1139}
c4e84bde
RM
1140/* Process (refill) a large buffer queue. */
1141static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1142{
49f2186d
RM
1143 u32 clean_idx = rx_ring->lbq_clean_idx;
1144 u32 start_idx = clean_idx;
c4e84bde 1145 struct bq_desc *lbq_desc;
c4e84bde
RM
1146 u64 map;
1147 int i;
1148
7c734359 1149 while (rx_ring->lbq_free_cnt > 32) {
c4e84bde
RM
1150 for (i = 0; i < 16; i++) {
1151 QPRINTK(qdev, RX_STATUS, DEBUG,
1152 "lbq: try cleaning clean_idx = %d.\n",
1153 clean_idx);
1154 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359
RM
1155 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1156 QPRINTK(qdev, IFUP, ERR,
1157 "Could not get a page chunk.\n");
c4e84bde
RM
1158 return;
1159 }
7c734359
RM
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
c4e84bde 1163 pci_unmap_addr_set(lbq_desc, mapaddr, map);
7c734359
RM
1164 pci_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
2c9a0d41 1166 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
c4e84bde
RM
1184 QPRINTK(qdev, RX_STATUS, DEBUG,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1189 }
1190}
1191
1192/* Process (refill) a small buffer queue. */
1193static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194{
49f2186d
RM
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
c4e84bde 1197 struct bq_desc *sbq_desc;
c4e84bde
RM
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = 0; i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 QPRINTK(qdev, RX_STATUS, DEBUG,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
c4e84bde
RM
1207 if (sbq_desc->p.skb == NULL) {
1208 QPRINTK(qdev, RX_STATUS, DEBUG,
1209 "sbq: getting new skb for index %d.\n",
1210 sbq_desc->index);
1211 sbq_desc->p.skb =
1212 netdev_alloc_skb(qdev->ndev,
52e55f3c 1213 SMALL_BUFFER_SIZE);
c4e84bde
RM
1214 if (sbq_desc->p.skb == NULL) {
1215 QPRINTK(qdev, PROBE, ERR,
1216 "Couldn't get an skb.\n");
1217 rx_ring->sbq_clean_idx = clean_idx;
1218 return;
1219 }
1220 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1221 map = pci_map_single(qdev->pdev,
1222 sbq_desc->p.skb->data,
52e55f3c
RM
1223 rx_ring->sbq_buf_size,
1224 PCI_DMA_FROMDEVICE);
c907a35a
RM
1225 if (pci_dma_mapping_error(qdev->pdev, map)) {
1226 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
c4e84bde
RM
1232 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1233 pci_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
c4e84bde
RM
1250 QPRINTK(qdev, RX_STATUS, DEBUG,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
1284 QPRINTK(qdev, TX_DONE, DEBUG,
1285 "unmapping OAL area.\n");
1286 }
1287 pci_unmap_single(qdev->pdev,
1288 pci_unmap_addr(&tx_ring_desc->map[i],
1289 mapaddr),
1290 pci_unmap_len(&tx_ring_desc->map[i],
1291 maplen),
1292 PCI_DMA_TODEVICE);
1293 } else {
1294 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1295 i);
1296 pci_unmap_page(qdev->pdev,
1297 pci_unmap_addr(&tx_ring_desc->map[i],
1298 mapaddr),
1299 pci_unmap_len(&tx_ring_desc->map[i],
1300 maplen), PCI_DMA_TODEVICE);
1301 }
1302 }
1303
1304}
1305
1306/* Map the buffers for this transmit. This will return
1307 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1308 */
1309static int ql_map_send(struct ql_adapter *qdev,
1310 struct ob_mac_iocb_req *mac_iocb_ptr,
1311 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1312{
1313 int len = skb_headlen(skb);
1314 dma_addr_t map;
1315 int frag_idx, err, map_idx = 0;
1316 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317 int frag_cnt = skb_shinfo(skb)->nr_frags;
1318
1319 if (frag_cnt) {
1320 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1321 }
1322 /*
1323 * Map the skb buffer first.
1324 */
1325 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1326
1327 err = pci_dma_mapping_error(qdev->pdev, map);
1328 if (err) {
1329 QPRINTK(qdev, TX_QUEUED, ERR,
1330 "PCI mapping failed with error: %d\n", err);
1331
1332 return NETDEV_TX_BUSY;
1333 }
1334
1335 tbd->len = cpu_to_le32(len);
1336 tbd->addr = cpu_to_le64(map);
1337 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1338 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1339 map_idx++;
1340
1341 /*
1342 * This loop fills the remainder of the 8 address descriptors
1343 * in the IOCB. If there are more than 7 fragments, then the
1344 * eighth address desc will point to an external list (OAL).
1345 * When this happens, the remainder of the frags will be stored
1346 * in this list.
1347 */
1348 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1349 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1350 tbd++;
1351 if (frag_idx == 6 && frag_cnt > 7) {
1352 /* Let's tack on an sglist.
1353 * Our control block will now
1354 * look like this:
1355 * iocb->seg[0] = skb->data
1356 * iocb->seg[1] = frag[0]
1357 * iocb->seg[2] = frag[1]
1358 * iocb->seg[3] = frag[2]
1359 * iocb->seg[4] = frag[3]
1360 * iocb->seg[5] = frag[4]
1361 * iocb->seg[6] = frag[5]
1362 * iocb->seg[7] = ptr to OAL (external sglist)
1363 * oal->seg[0] = frag[6]
1364 * oal->seg[1] = frag[7]
1365 * oal->seg[2] = frag[8]
1366 * oal->seg[3] = frag[9]
1367 * oal->seg[4] = frag[10]
1368 * etc...
1369 */
1370 /* Tack on the OAL in the eighth segment of IOCB. */
1371 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1372 sizeof(struct oal),
1373 PCI_DMA_TODEVICE);
1374 err = pci_dma_mapping_error(qdev->pdev, map);
1375 if (err) {
1376 QPRINTK(qdev, TX_QUEUED, ERR,
1377 "PCI mapping outbound address list with error: %d\n",
1378 err);
1379 goto map_error;
1380 }
1381
1382 tbd->addr = cpu_to_le64(map);
1383 /*
1384 * The length is the number of fragments
1385 * that remain to be mapped times the length
1386 * of our sglist (OAL).
1387 */
1388 tbd->len =
1389 cpu_to_le32((sizeof(struct tx_buf_desc) *
1390 (frag_cnt - frag_idx)) | TX_DESC_C);
1391 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1392 map);
1393 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1394 sizeof(struct oal));
1395 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1396 map_idx++;
1397 }
1398
1399 map =
1400 pci_map_page(qdev->pdev, frag->page,
1401 frag->page_offset, frag->size,
1402 PCI_DMA_TODEVICE);
1403
1404 err = pci_dma_mapping_error(qdev->pdev, map);
1405 if (err) {
1406 QPRINTK(qdev, TX_QUEUED, ERR,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(frag->size);
1414 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 frag->size);
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
8668ae92 1436static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1437{
1438 void *temp_addr = skb->data;
1439
1440 /* Undo the skb_reserve(skb,32) we did before
1441 * giving to hardware, and realign data on
1442 * a 2-byte boundary.
1443 */
1444 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1445 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1446 skb_copy_to_linear_data(skb, temp_addr,
1447 (unsigned int)len);
1448}
1449
1450/*
1451 * This function builds an skb for the given inbound
1452 * completion. It will be rewritten for readability in the near
1453 * future, but for not it works well.
1454 */
1455static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1456 struct rx_ring *rx_ring,
1457 struct ib_mac_iocb_rsp *ib_mac_rsp)
1458{
1459 struct bq_desc *lbq_desc;
1460 struct bq_desc *sbq_desc;
1461 struct sk_buff *skb = NULL;
1462 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1463 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1464
1465 /*
1466 * Handle the header buffer if present.
1467 */
1468 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1469 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1470 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1471 /*
1472 * Headers fit nicely into a small buffer.
1473 */
1474 sbq_desc = ql_get_curr_sbuf(rx_ring);
1475 pci_unmap_single(qdev->pdev,
1476 pci_unmap_addr(sbq_desc, mapaddr),
1477 pci_unmap_len(sbq_desc, maplen),
1478 PCI_DMA_FROMDEVICE);
1479 skb = sbq_desc->p.skb;
1480 ql_realign_skb(skb, hdr_len);
1481 skb_put(skb, hdr_len);
1482 sbq_desc->p.skb = NULL;
1483 }
1484
1485 /*
1486 * Handle the data buffer(s).
1487 */
1488 if (unlikely(!length)) { /* Is there data too? */
1489 QPRINTK(qdev, RX_STATUS, DEBUG,
1490 "No Data buffer in this packet.\n");
1491 return skb;
1492 }
1493
1494 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1495 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1496 QPRINTK(qdev, RX_STATUS, DEBUG,
1497 "Headers in small, data of %d bytes in small, combine them.\n", length);
1498 /*
1499 * Data is less than small buffer size so it's
1500 * stuffed in a small buffer.
1501 * For this case we append the data
1502 * from the "data" small buffer to the "header" small
1503 * buffer.
1504 */
1505 sbq_desc = ql_get_curr_sbuf(rx_ring);
1506 pci_dma_sync_single_for_cpu(qdev->pdev,
1507 pci_unmap_addr
1508 (sbq_desc, mapaddr),
1509 pci_unmap_len
1510 (sbq_desc, maplen),
1511 PCI_DMA_FROMDEVICE);
1512 memcpy(skb_put(skb, length),
1513 sbq_desc->p.skb->data, length);
1514 pci_dma_sync_single_for_device(qdev->pdev,
1515 pci_unmap_addr
1516 (sbq_desc,
1517 mapaddr),
1518 pci_unmap_len
1519 (sbq_desc,
1520 maplen),
1521 PCI_DMA_FROMDEVICE);
1522 } else {
1523 QPRINTK(qdev, RX_STATUS, DEBUG,
1524 "%d bytes in a single small buffer.\n", length);
1525 sbq_desc = ql_get_curr_sbuf(rx_ring);
1526 skb = sbq_desc->p.skb;
1527 ql_realign_skb(skb, length);
1528 skb_put(skb, length);
1529 pci_unmap_single(qdev->pdev,
1530 pci_unmap_addr(sbq_desc,
1531 mapaddr),
1532 pci_unmap_len(sbq_desc,
1533 maplen),
1534 PCI_DMA_FROMDEVICE);
1535 sbq_desc->p.skb = NULL;
1536 }
1537 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1538 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1539 QPRINTK(qdev, RX_STATUS, DEBUG,
1540 "Header in small, %d bytes in large. Chain large to small!\n", length);
1541 /*
1542 * The data is in a single large buffer. We
1543 * chain it to the header buffer's skb and let
1544 * it rip.
1545 */
7c734359 1546 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde 1547 QPRINTK(qdev, RX_STATUS, DEBUG,
7c734359
RM
1548 "Chaining page at offset = %d,"
1549 "for %d bytes to skb.\n",
1550 lbq_desc->p.pg_chunk.offset, length);
1551 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1552 lbq_desc->p.pg_chunk.offset,
1553 length);
c4e84bde
RM
1554 skb->len += length;
1555 skb->data_len += length;
1556 skb->truesize += length;
c4e84bde
RM
1557 } else {
1558 /*
1559 * The headers and data are in a single large buffer. We
1560 * copy it to a new skb and let it go. This can happen with
1561 * jumbo mtu on a non-TCP/UDP frame.
1562 */
7c734359 1563 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1564 skb = netdev_alloc_skb(qdev->ndev, length);
1565 if (skb == NULL) {
1566 QPRINTK(qdev, PROBE, DEBUG,
1567 "No skb available, drop the packet.\n");
1568 return NULL;
1569 }
4055c7d4
RM
1570 pci_unmap_page(qdev->pdev,
1571 pci_unmap_addr(lbq_desc,
1572 mapaddr),
1573 pci_unmap_len(lbq_desc, maplen),
1574 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1575 skb_reserve(skb, NET_IP_ALIGN);
1576 QPRINTK(qdev, RX_STATUS, DEBUG,
1577 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
7c734359
RM
1578 skb_fill_page_desc(skb, 0,
1579 lbq_desc->p.pg_chunk.page,
1580 lbq_desc->p.pg_chunk.offset,
1581 length);
c4e84bde
RM
1582 skb->len += length;
1583 skb->data_len += length;
1584 skb->truesize += length;
1585 length -= length;
c4e84bde
RM
1586 __pskb_pull_tail(skb,
1587 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1588 VLAN_ETH_HLEN : ETH_HLEN);
1589 }
1590 } else {
1591 /*
1592 * The data is in a chain of large buffers
1593 * pointed to by a small buffer. We loop
1594 * thru and chain them to the our small header
1595 * buffer's skb.
1596 * frags: There are 18 max frags and our small
1597 * buffer will hold 32 of them. The thing is,
1598 * we'll use 3 max for our 9000 byte jumbo
1599 * frames. If the MTU goes up we could
1600 * eventually be in trouble.
1601 */
7c734359 1602 int size, i = 0;
c4e84bde
RM
1603 sbq_desc = ql_get_curr_sbuf(rx_ring);
1604 pci_unmap_single(qdev->pdev,
1605 pci_unmap_addr(sbq_desc, mapaddr),
1606 pci_unmap_len(sbq_desc, maplen),
1607 PCI_DMA_FROMDEVICE);
1608 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1609 /*
1610 * This is an non TCP/UDP IP frame, so
1611 * the headers aren't split into a small
1612 * buffer. We have to use the small buffer
1613 * that contains our sg list as our skb to
1614 * send upstairs. Copy the sg list here to
1615 * a local buffer and use it to find the
1616 * pages to chain.
1617 */
1618 QPRINTK(qdev, RX_STATUS, DEBUG,
1619 "%d bytes of headers & data in chain of large.\n", length);
1620 skb = sbq_desc->p.skb;
c4e84bde
RM
1621 sbq_desc->p.skb = NULL;
1622 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1623 }
1624 while (length > 0) {
7c734359
RM
1625 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1626 size = (length < rx_ring->lbq_buf_size) ? length :
1627 rx_ring->lbq_buf_size;
c4e84bde
RM
1628
1629 QPRINTK(qdev, RX_STATUS, DEBUG,
1630 "Adding page %d to skb for %d bytes.\n",
1631 i, size);
7c734359
RM
1632 skb_fill_page_desc(skb, i,
1633 lbq_desc->p.pg_chunk.page,
1634 lbq_desc->p.pg_chunk.offset,
1635 size);
c4e84bde
RM
1636 skb->len += size;
1637 skb->data_len += size;
1638 skb->truesize += size;
1639 length -= size;
c4e84bde
RM
1640 i++;
1641 }
1642 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1643 VLAN_ETH_HLEN : ETH_HLEN);
1644 }
1645 return skb;
1646}
1647
1648/* Process an inbound completion from an rx ring. */
1649static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1650 struct rx_ring *rx_ring,
1651 struct ib_mac_iocb_rsp *ib_mac_rsp)
1652{
1653 struct net_device *ndev = qdev->ndev;
1654 struct sk_buff *skb = NULL;
22bdd4f5
RM
1655 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1656 IB_MAC_IOCB_RSP_VLAN_MASK)
c4e84bde
RM
1657
1658 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1659
1660 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1661 if (unlikely(!skb)) {
1662 QPRINTK(qdev, RX_STATUS, DEBUG,
1663 "No skb available, drop packet.\n");
885ee398 1664 rx_ring->rx_dropped++;
c4e84bde
RM
1665 return;
1666 }
1667
a32959cd
RM
1668 /* Frame error, so drop the packet. */
1669 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1670 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1671 ib_mac_rsp->flags2);
1672 dev_kfree_skb_any(skb);
885ee398 1673 rx_ring->rx_errors++;
a32959cd
RM
1674 return;
1675 }
ec33a491
RM
1676
1677 /* The max framesize filter on this chip is set higher than
1678 * MTU since FCoE uses 2k frames.
1679 */
1680 if (skb->len > ndev->mtu + ETH_HLEN) {
1681 dev_kfree_skb_any(skb);
885ee398 1682 rx_ring->rx_dropped++;
ec33a491
RM
1683 return;
1684 }
1685
9dfbbaa6
RM
1686 /* loopback self test for ethtool */
1687 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1688 ql_check_lb_frame(qdev, skb);
1689 dev_kfree_skb_any(skb);
1690 return;
1691 }
1692
c4e84bde
RM
1693 prefetch(skb->data);
1694 skb->dev = ndev;
1695 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1696 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1697 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1698 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1699 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1700 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1701 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1702 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 1703 rx_ring->rx_multicast++;
c4e84bde
RM
1704 }
1705 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1706 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1707 }
d555f592 1708
d555f592
RM
1709 skb->protocol = eth_type_trans(skb, ndev);
1710 skb->ip_summed = CHECKSUM_NONE;
1711
1712 /* If rx checksum is on, and there are no
1713 * csum or frame errors.
1714 */
1715 if (qdev->rx_csum &&
d555f592
RM
1716 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1717 /* TCP frame. */
1718 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1719 QPRINTK(qdev, RX_STATUS, DEBUG,
1720 "TCP checksum done!\n");
1721 skb->ip_summed = CHECKSUM_UNNECESSARY;
1722 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1723 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1724 /* Unfragmented ipv4 UDP frame. */
1725 struct iphdr *iph = (struct iphdr *) skb->data;
1726 if (!(iph->frag_off &
1727 cpu_to_be16(IP_MF|IP_OFFSET))) {
1728 skb->ip_summed = CHECKSUM_UNNECESSARY;
1729 QPRINTK(qdev, RX_STATUS, DEBUG,
1730 "TCP checksum done!\n");
1731 }
1732 }
c4e84bde 1733 }
d555f592 1734
885ee398
RM
1735 rx_ring->rx_packets++;
1736 rx_ring->rx_bytes += skb->len;
b2014ff8 1737 skb_record_rx_queue(skb, rx_ring->cq_id);
22bdd4f5
RM
1738 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1739 if (qdev->vlgrp &&
1740 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1741 (vlan_id != 0))
1742 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1743 vlan_id, skb);
1744 else
1745 napi_gro_receive(&rx_ring->napi, skb);
c4e84bde 1746 } else {
22bdd4f5
RM
1747 if (qdev->vlgrp &&
1748 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1749 (vlan_id != 0))
1750 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1751 else
1752 netif_receive_skb(skb);
c4e84bde 1753 }
c4e84bde
RM
1754}
1755
1756/* Process an outbound completion from an rx ring. */
1757static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1758 struct ob_mac_iocb_rsp *mac_rsp)
1759{
1760 struct tx_ring *tx_ring;
1761 struct tx_ring_desc *tx_ring_desc;
1762
1763 QL_DUMP_OB_MAC_RSP(mac_rsp);
1764 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1765 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1766 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
1767 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
1768 tx_ring->tx_packets++;
c4e84bde
RM
1769 dev_kfree_skb(tx_ring_desc->skb);
1770 tx_ring_desc->skb = NULL;
1771
1772 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1773 OB_MAC_IOCB_RSP_S |
1774 OB_MAC_IOCB_RSP_L |
1775 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1776 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1777 QPRINTK(qdev, TX_DONE, WARNING,
1778 "Total descriptor length did not match transfer length.\n");
1779 }
1780 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1781 QPRINTK(qdev, TX_DONE, WARNING,
1782 "Frame too short to be legal, not sent.\n");
1783 }
1784 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1785 QPRINTK(qdev, TX_DONE, WARNING,
1786 "Frame too long, but sent anyway.\n");
1787 }
1788 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1789 QPRINTK(qdev, TX_DONE, WARNING,
1790 "PCI backplane error. Frame not sent.\n");
1791 }
1792 }
1793 atomic_inc(&tx_ring->tx_count);
1794}
1795
1796/* Fire up a handler to reset the MPI processor. */
1797void ql_queue_fw_error(struct ql_adapter *qdev)
1798{
6a473308 1799 ql_link_off(qdev);
c4e84bde
RM
1800 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1801}
1802
1803void ql_queue_asic_error(struct ql_adapter *qdev)
1804{
6a473308 1805 ql_link_off(qdev);
c4e84bde 1806 ql_disable_interrupts(qdev);
6497b607
RM
1807 /* Clear adapter up bit to signal the recovery
1808 * process that it shouldn't kill the reset worker
1809 * thread
1810 */
1811 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1812 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1813}
1814
1815static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1816 struct ib_ae_iocb_rsp *ib_ae_rsp)
1817{
1818 switch (ib_ae_rsp->event) {
1819 case MGMT_ERR_EVENT:
1820 QPRINTK(qdev, RX_ERR, ERR,
1821 "Management Processor Fatal Error.\n");
1822 ql_queue_fw_error(qdev);
1823 return;
1824
1825 case CAM_LOOKUP_ERR_EVENT:
1826 QPRINTK(qdev, LINK, ERR,
1827 "Multiple CAM hits lookup occurred.\n");
1828 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1829 ql_queue_asic_error(qdev);
1830 return;
1831
1832 case SOFT_ECC_ERROR_EVENT:
1833 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1834 ql_queue_asic_error(qdev);
1835 break;
1836
1837 case PCI_ERR_ANON_BUF_RD:
1838 QPRINTK(qdev, RX_ERR, ERR,
1839 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1840 ib_ae_rsp->q_id);
1841 ql_queue_asic_error(qdev);
1842 break;
1843
1844 default:
1845 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1846 ib_ae_rsp->event);
1847 ql_queue_asic_error(qdev);
1848 break;
1849 }
1850}
1851
1852static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1853{
1854 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1855 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1856 struct ob_mac_iocb_rsp *net_rsp = NULL;
1857 int count = 0;
1858
1e213303 1859 struct tx_ring *tx_ring;
c4e84bde
RM
1860 /* While there are entries in the completion queue. */
1861 while (prod != rx_ring->cnsmr_idx) {
1862
1863 QPRINTK(qdev, RX_STATUS, DEBUG,
1864 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1865 prod, rx_ring->cnsmr_idx);
1866
1867 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1868 rmb();
1869 switch (net_rsp->opcode) {
1870
1871 case OPCODE_OB_MAC_TSO_IOCB:
1872 case OPCODE_OB_MAC_IOCB:
1873 ql_process_mac_tx_intr(qdev, net_rsp);
1874 break;
1875 default:
1876 QPRINTK(qdev, RX_STATUS, DEBUG,
1877 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1878 net_rsp->opcode);
1879 }
1880 count++;
1881 ql_update_cq(rx_ring);
ba7cd3ba 1882 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1883 }
1884 ql_write_cq_idx(rx_ring);
1e213303
RM
1885 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1886 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1887 net_rsp != NULL) {
c4e84bde
RM
1888 if (atomic_read(&tx_ring->queue_stopped) &&
1889 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1890 /*
1891 * The queue got stopped because the tx_ring was full.
1892 * Wake it up, because it's now at least 25% empty.
1893 */
1e213303 1894 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
1895 }
1896
1897 return count;
1898}
1899
1900static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1901{
1902 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1903 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1904 struct ql_net_rsp_iocb *net_rsp;
1905 int count = 0;
1906
1907 /* While there are entries in the completion queue. */
1908 while (prod != rx_ring->cnsmr_idx) {
1909
1910 QPRINTK(qdev, RX_STATUS, DEBUG,
1911 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1912 prod, rx_ring->cnsmr_idx);
1913
1914 net_rsp = rx_ring->curr_entry;
1915 rmb();
1916 switch (net_rsp->opcode) {
1917 case OPCODE_IB_MAC_IOCB:
1918 ql_process_mac_rx_intr(qdev, rx_ring,
1919 (struct ib_mac_iocb_rsp *)
1920 net_rsp);
1921 break;
1922
1923 case OPCODE_IB_AE_IOCB:
1924 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1925 net_rsp);
1926 break;
1927 default:
1928 {
1929 QPRINTK(qdev, RX_STATUS, DEBUG,
1930 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1931 net_rsp->opcode);
1932 }
1933 }
1934 count++;
1935 ql_update_cq(rx_ring);
ba7cd3ba 1936 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1937 if (count == budget)
1938 break;
1939 }
1940 ql_update_buffer_queues(qdev, rx_ring);
1941 ql_write_cq_idx(rx_ring);
1942 return count;
1943}
1944
1945static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1946{
1947 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1948 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
1949 struct rx_ring *trx_ring;
1950 int i, work_done = 0;
1951 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde
RM
1952
1953 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1954 rx_ring->cq_id);
1955
39aa8165
RM
1956 /* Service the TX rings first. They start
1957 * right after the RSS rings. */
1958 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
1959 trx_ring = &qdev->rx_ring[i];
1960 /* If this TX completion ring belongs to this vector and
1961 * it's not empty then service it.
1962 */
1963 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
1964 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
1965 trx_ring->cnsmr_idx)) {
1966 QPRINTK(qdev, INTR, DEBUG,
1967 "%s: Servicing TX completion ring %d.\n",
1968 __func__, trx_ring->cq_id);
1969 ql_clean_outbound_rx_ring(trx_ring);
1970 }
1971 }
1972
1973 /*
1974 * Now service the RSS ring if it's active.
1975 */
1976 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1977 rx_ring->cnsmr_idx) {
1978 QPRINTK(qdev, INTR, DEBUG,
1979 "%s: Servicing RX completion ring %d.\n",
1980 __func__, rx_ring->cq_id);
1981 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1982 }
1983
c4e84bde 1984 if (work_done < budget) {
22bdd4f5 1985 napi_complete(napi);
c4e84bde
RM
1986 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1987 }
1988 return work_done;
1989}
1990
01e6b953 1991static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
c4e84bde
RM
1992{
1993 struct ql_adapter *qdev = netdev_priv(ndev);
1994
1995 qdev->vlgrp = grp;
1996 if (grp) {
1997 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1998 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1999 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2000 } else {
2001 QPRINTK(qdev, IFUP, DEBUG,
2002 "Turning off VLAN in NIC_RCV_CFG.\n");
2003 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2004 }
2005}
2006
01e6b953 2007static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
c4e84bde
RM
2008{
2009 struct ql_adapter *qdev = netdev_priv(ndev);
2010 u32 enable_bit = MAC_ADDR_E;
cc288f54 2011 int status;
c4e84bde 2012
cc288f54
RM
2013 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2014 if (status)
2015 return;
c4e84bde
RM
2016 if (ql_set_mac_addr_reg
2017 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2018 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
2019 }
cc288f54 2020 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
2021}
2022
01e6b953 2023static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
c4e84bde
RM
2024{
2025 struct ql_adapter *qdev = netdev_priv(ndev);
2026 u32 enable_bit = 0;
cc288f54
RM
2027 int status;
2028
2029 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2030 if (status)
2031 return;
c4e84bde 2032
c4e84bde
RM
2033 if (ql_set_mac_addr_reg
2034 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2035 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
2036 }
cc288f54 2037 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
2038
2039}
2040
c4e84bde
RM
2041/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2042static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2043{
2044 struct rx_ring *rx_ring = dev_id;
288379f0 2045 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2046 return IRQ_HANDLED;
2047}
2048
c4e84bde
RM
2049/* This handles a fatal error, MPI activity, and the default
2050 * rx_ring in an MSI-X multiple vector environment.
2051 * In MSI/Legacy environment it also process the rest of
2052 * the rx_rings.
2053 */
2054static irqreturn_t qlge_isr(int irq, void *dev_id)
2055{
2056 struct rx_ring *rx_ring = dev_id;
2057 struct ql_adapter *qdev = rx_ring->qdev;
2058 struct intr_context *intr_context = &qdev->intr_context[0];
2059 u32 var;
c4e84bde
RM
2060 int work_done = 0;
2061
bb0d215c
RM
2062 spin_lock(&qdev->hw_lock);
2063 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2064 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
2065 spin_unlock(&qdev->hw_lock);
2066 return IRQ_NONE;
c4e84bde 2067 }
bb0d215c 2068 spin_unlock(&qdev->hw_lock);
c4e84bde 2069
bb0d215c 2070 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2071
2072 /*
2073 * Check for fatal error.
2074 */
2075 if (var & STS_FE) {
2076 ql_queue_asic_error(qdev);
2077 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2078 var = ql_read32(qdev, ERR_STS);
2079 QPRINTK(qdev, INTR, ERR,
2080 "Resetting chip. Error Status Register = 0x%x\n", var);
2081 return IRQ_HANDLED;
2082 }
2083
2084 /*
2085 * Check MPI processor activity.
2086 */
5ee22a5a
RM
2087 if ((var & STS_PI) &&
2088 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2089 /*
2090 * We've got an async event or mailbox completion.
2091 * Handle it and clear the source of the interrupt.
2092 */
2093 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2094 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2095 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2096 queue_delayed_work_on(smp_processor_id(),
2097 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2098 work_done++;
2099 }
2100
2101 /*
39aa8165
RM
2102 * Get the bit-mask that shows the active queues for this
2103 * pass. Compare it to the queues that this irq services
2104 * and call napi if there's a match.
c4e84bde 2105 */
39aa8165
RM
2106 var = ql_read32(qdev, ISR1);
2107 if (var & intr_context->irq_mask) {
32a5b2a0 2108 QPRINTK(qdev, INTR, INFO,
39aa8165
RM
2109 "Waking handler for rx_ring[0].\n");
2110 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2111 napi_schedule(&rx_ring->napi);
2112 work_done++;
2113 }
bb0d215c 2114 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2115 return work_done ? IRQ_HANDLED : IRQ_NONE;
2116}
2117
2118static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2119{
2120
2121 if (skb_is_gso(skb)) {
2122 int err;
2123 if (skb_header_cloned(skb)) {
2124 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2125 if (err)
2126 return err;
2127 }
2128
2129 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2130 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2131 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2132 mac_iocb_ptr->total_hdrs_len =
2133 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2134 mac_iocb_ptr->net_trans_offset =
2135 cpu_to_le16(skb_network_offset(skb) |
2136 skb_transport_offset(skb)
2137 << OB_MAC_TRANSPORT_HDR_SHIFT);
2138 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2139 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2140 if (likely(skb->protocol == htons(ETH_P_IP))) {
2141 struct iphdr *iph = ip_hdr(skb);
2142 iph->check = 0;
2143 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2144 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2145 iph->daddr, 0,
2146 IPPROTO_TCP,
2147 0);
2148 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2149 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2150 tcp_hdr(skb)->check =
2151 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2152 &ipv6_hdr(skb)->daddr,
2153 0, IPPROTO_TCP, 0);
2154 }
2155 return 1;
2156 }
2157 return 0;
2158}
2159
2160static void ql_hw_csum_setup(struct sk_buff *skb,
2161 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2162{
2163 int len;
2164 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2165 __sum16 *check;
c4e84bde
RM
2166 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2167 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2168 mac_iocb_ptr->net_trans_offset =
2169 cpu_to_le16(skb_network_offset(skb) |
2170 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2171
2172 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2173 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2174 if (likely(iph->protocol == IPPROTO_TCP)) {
2175 check = &(tcp_hdr(skb)->check);
2176 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2177 mac_iocb_ptr->total_hdrs_len =
2178 cpu_to_le16(skb_transport_offset(skb) +
2179 (tcp_hdr(skb)->doff << 2));
2180 } else {
2181 check = &(udp_hdr(skb)->check);
2182 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2183 mac_iocb_ptr->total_hdrs_len =
2184 cpu_to_le16(skb_transport_offset(skb) +
2185 sizeof(struct udphdr));
2186 }
2187 *check = ~csum_tcpudp_magic(iph->saddr,
2188 iph->daddr, len, iph->protocol, 0);
2189}
2190
61357325 2191static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2192{
2193 struct tx_ring_desc *tx_ring_desc;
2194 struct ob_mac_iocb_req *mac_iocb_ptr;
2195 struct ql_adapter *qdev = netdev_priv(ndev);
2196 int tso;
2197 struct tx_ring *tx_ring;
1e213303 2198 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2199
2200 tx_ring = &qdev->tx_ring[tx_ring_idx];
2201
74c50b4b
RM
2202 if (skb_padto(skb, ETH_ZLEN))
2203 return NETDEV_TX_OK;
2204
c4e84bde
RM
2205 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2206 QPRINTK(qdev, TX_QUEUED, INFO,
2207 "%s: shutting down tx queue %d du to lack of resources.\n",
2208 __func__, tx_ring_idx);
1e213303 2209 netif_stop_subqueue(ndev, tx_ring->wq_id);
c4e84bde 2210 atomic_inc(&tx_ring->queue_stopped);
885ee398 2211 tx_ring->tx_errors++;
c4e84bde
RM
2212 return NETDEV_TX_BUSY;
2213 }
2214 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2215 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2216 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2217
2218 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2219 mac_iocb_ptr->tid = tx_ring_desc->index;
2220 /* We use the upper 32-bits to store the tx queue for this IO.
2221 * When we get the completion we can use it to establish the context.
2222 */
2223 mac_iocb_ptr->txq_idx = tx_ring_idx;
2224 tx_ring_desc->skb = skb;
2225
2226 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2227
2228 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2229 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2230 vlan_tx_tag_get(skb));
2231 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2232 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2233 }
2234 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2235 if (tso < 0) {
2236 dev_kfree_skb_any(skb);
2237 return NETDEV_TX_OK;
2238 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2239 ql_hw_csum_setup(skb,
2240 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2241 }
0d979f74
RM
2242 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2243 NETDEV_TX_OK) {
2244 QPRINTK(qdev, TX_QUEUED, ERR,
2245 "Could not map the segments.\n");
885ee398 2246 tx_ring->tx_errors++;
0d979f74
RM
2247 return NETDEV_TX_BUSY;
2248 }
c4e84bde
RM
2249 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2250 tx_ring->prod_idx++;
2251 if (tx_ring->prod_idx == tx_ring->wq_len)
2252 tx_ring->prod_idx = 0;
2253 wmb();
2254
2255 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
c4e84bde
RM
2256 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2257 tx_ring->prod_idx, skb->len);
2258
2259 atomic_dec(&tx_ring->tx_count);
2260 return NETDEV_TX_OK;
2261}
2262
9dfbbaa6 2263
c4e84bde
RM
2264static void ql_free_shadow_space(struct ql_adapter *qdev)
2265{
2266 if (qdev->rx_ring_shadow_reg_area) {
2267 pci_free_consistent(qdev->pdev,
2268 PAGE_SIZE,
2269 qdev->rx_ring_shadow_reg_area,
2270 qdev->rx_ring_shadow_reg_dma);
2271 qdev->rx_ring_shadow_reg_area = NULL;
2272 }
2273 if (qdev->tx_ring_shadow_reg_area) {
2274 pci_free_consistent(qdev->pdev,
2275 PAGE_SIZE,
2276 qdev->tx_ring_shadow_reg_area,
2277 qdev->tx_ring_shadow_reg_dma);
2278 qdev->tx_ring_shadow_reg_area = NULL;
2279 }
2280}
2281
2282static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2283{
2284 qdev->rx_ring_shadow_reg_area =
2285 pci_alloc_consistent(qdev->pdev,
2286 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2287 if (qdev->rx_ring_shadow_reg_area == NULL) {
2288 QPRINTK(qdev, IFUP, ERR,
2289 "Allocation of RX shadow space failed.\n");
2290 return -ENOMEM;
2291 }
b25215d0 2292 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2293 qdev->tx_ring_shadow_reg_area =
2294 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2295 &qdev->tx_ring_shadow_reg_dma);
2296 if (qdev->tx_ring_shadow_reg_area == NULL) {
2297 QPRINTK(qdev, IFUP, ERR,
2298 "Allocation of TX shadow space failed.\n");
2299 goto err_wqp_sh_area;
2300 }
b25215d0 2301 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2302 return 0;
2303
2304err_wqp_sh_area:
2305 pci_free_consistent(qdev->pdev,
2306 PAGE_SIZE,
2307 qdev->rx_ring_shadow_reg_area,
2308 qdev->rx_ring_shadow_reg_dma);
2309 return -ENOMEM;
2310}
2311
2312static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2313{
2314 struct tx_ring_desc *tx_ring_desc;
2315 int i;
2316 struct ob_mac_iocb_req *mac_iocb_ptr;
2317
2318 mac_iocb_ptr = tx_ring->wq_base;
2319 tx_ring_desc = tx_ring->q;
2320 for (i = 0; i < tx_ring->wq_len; i++) {
2321 tx_ring_desc->index = i;
2322 tx_ring_desc->skb = NULL;
2323 tx_ring_desc->queue_entry = mac_iocb_ptr;
2324 mac_iocb_ptr++;
2325 tx_ring_desc++;
2326 }
2327 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2328 atomic_set(&tx_ring->queue_stopped, 0);
2329}
2330
2331static void ql_free_tx_resources(struct ql_adapter *qdev,
2332 struct tx_ring *tx_ring)
2333{
2334 if (tx_ring->wq_base) {
2335 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2336 tx_ring->wq_base, tx_ring->wq_base_dma);
2337 tx_ring->wq_base = NULL;
2338 }
2339 kfree(tx_ring->q);
2340 tx_ring->q = NULL;
2341}
2342
2343static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2344 struct tx_ring *tx_ring)
2345{
2346 tx_ring->wq_base =
2347 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2348 &tx_ring->wq_base_dma);
2349
2350 if ((tx_ring->wq_base == NULL)
88c55e3c 2351 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
c4e84bde
RM
2352 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2353 return -ENOMEM;
2354 }
2355 tx_ring->q =
2356 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2357 if (tx_ring->q == NULL)
2358 goto err;
2359
2360 return 0;
2361err:
2362 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2363 tx_ring->wq_base, tx_ring->wq_base_dma);
2364 return -ENOMEM;
2365}
2366
8668ae92 2367static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2368{
c4e84bde
RM
2369 struct bq_desc *lbq_desc;
2370
7c734359
RM
2371 uint32_t curr_idx, clean_idx;
2372
2373 curr_idx = rx_ring->lbq_curr_idx;
2374 clean_idx = rx_ring->lbq_clean_idx;
2375 while (curr_idx != clean_idx) {
2376 lbq_desc = &rx_ring->lbq[curr_idx];
2377
2378 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2379 pci_unmap_page(qdev->pdev,
7c734359
RM
2380 lbq_desc->p.pg_chunk.map,
2381 ql_lbq_block_size(qdev),
c4e84bde 2382 PCI_DMA_FROMDEVICE);
7c734359 2383 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2384 }
7c734359
RM
2385
2386 put_page(lbq_desc->p.pg_chunk.page);
2387 lbq_desc->p.pg_chunk.page = NULL;
2388
2389 if (++curr_idx == rx_ring->lbq_len)
2390 curr_idx = 0;
2391
c4e84bde
RM
2392 }
2393}
2394
8668ae92 2395static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2396{
2397 int i;
2398 struct bq_desc *sbq_desc;
2399
2400 for (i = 0; i < rx_ring->sbq_len; i++) {
2401 sbq_desc = &rx_ring->sbq[i];
2402 if (sbq_desc == NULL) {
2403 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2404 return;
2405 }
2406 if (sbq_desc->p.skb) {
2407 pci_unmap_single(qdev->pdev,
2408 pci_unmap_addr(sbq_desc, mapaddr),
2409 pci_unmap_len(sbq_desc, maplen),
2410 PCI_DMA_FROMDEVICE);
2411 dev_kfree_skb(sbq_desc->p.skb);
2412 sbq_desc->p.skb = NULL;
2413 }
c4e84bde
RM
2414 }
2415}
2416
4545a3f2
RM
2417/* Free all large and small rx buffers associated
2418 * with the completion queues for this device.
2419 */
2420static void ql_free_rx_buffers(struct ql_adapter *qdev)
2421{
2422 int i;
2423 struct rx_ring *rx_ring;
2424
2425 for (i = 0; i < qdev->rx_ring_count; i++) {
2426 rx_ring = &qdev->rx_ring[i];
2427 if (rx_ring->lbq)
2428 ql_free_lbq_buffers(qdev, rx_ring);
2429 if (rx_ring->sbq)
2430 ql_free_sbq_buffers(qdev, rx_ring);
2431 }
2432}
2433
2434static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2435{
2436 struct rx_ring *rx_ring;
2437 int i;
2438
2439 for (i = 0; i < qdev->rx_ring_count; i++) {
2440 rx_ring = &qdev->rx_ring[i];
2441 if (rx_ring->type != TX_Q)
2442 ql_update_buffer_queues(qdev, rx_ring);
2443 }
2444}
2445
2446static void ql_init_lbq_ring(struct ql_adapter *qdev,
2447 struct rx_ring *rx_ring)
2448{
2449 int i;
2450 struct bq_desc *lbq_desc;
2451 __le64 *bq = rx_ring->lbq_base;
2452
2453 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2454 for (i = 0; i < rx_ring->lbq_len; i++) {
2455 lbq_desc = &rx_ring->lbq[i];
2456 memset(lbq_desc, 0, sizeof(*lbq_desc));
2457 lbq_desc->index = i;
2458 lbq_desc->addr = bq;
2459 bq++;
2460 }
2461}
2462
2463static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2464 struct rx_ring *rx_ring)
2465{
2466 int i;
2467 struct bq_desc *sbq_desc;
2c9a0d41 2468 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2469
4545a3f2 2470 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2471 for (i = 0; i < rx_ring->sbq_len; i++) {
2472 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2473 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2474 sbq_desc->index = i;
2c9a0d41 2475 sbq_desc->addr = bq;
c4e84bde
RM
2476 bq++;
2477 }
c4e84bde
RM
2478}
2479
2480static void ql_free_rx_resources(struct ql_adapter *qdev,
2481 struct rx_ring *rx_ring)
2482{
c4e84bde
RM
2483 /* Free the small buffer queue. */
2484 if (rx_ring->sbq_base) {
2485 pci_free_consistent(qdev->pdev,
2486 rx_ring->sbq_size,
2487 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2488 rx_ring->sbq_base = NULL;
2489 }
2490
2491 /* Free the small buffer queue control blocks. */
2492 kfree(rx_ring->sbq);
2493 rx_ring->sbq = NULL;
2494
2495 /* Free the large buffer queue. */
2496 if (rx_ring->lbq_base) {
2497 pci_free_consistent(qdev->pdev,
2498 rx_ring->lbq_size,
2499 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2500 rx_ring->lbq_base = NULL;
2501 }
2502
2503 /* Free the large buffer queue control blocks. */
2504 kfree(rx_ring->lbq);
2505 rx_ring->lbq = NULL;
2506
2507 /* Free the rx queue. */
2508 if (rx_ring->cq_base) {
2509 pci_free_consistent(qdev->pdev,
2510 rx_ring->cq_size,
2511 rx_ring->cq_base, rx_ring->cq_base_dma);
2512 rx_ring->cq_base = NULL;
2513 }
2514}
2515
2516/* Allocate queues and buffers for this completions queue based
2517 * on the values in the parameter structure. */
2518static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2519 struct rx_ring *rx_ring)
2520{
2521
2522 /*
2523 * Allocate the completion queue for this rx_ring.
2524 */
2525 rx_ring->cq_base =
2526 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2527 &rx_ring->cq_base_dma);
2528
2529 if (rx_ring->cq_base == NULL) {
2530 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2531 return -ENOMEM;
2532 }
2533
2534 if (rx_ring->sbq_len) {
2535 /*
2536 * Allocate small buffer queue.
2537 */
2538 rx_ring->sbq_base =
2539 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2540 &rx_ring->sbq_base_dma);
2541
2542 if (rx_ring->sbq_base == NULL) {
2543 QPRINTK(qdev, IFUP, ERR,
2544 "Small buffer queue allocation failed.\n");
2545 goto err_mem;
2546 }
2547
2548 /*
2549 * Allocate small buffer queue control blocks.
2550 */
2551 rx_ring->sbq =
2552 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2553 GFP_KERNEL);
2554 if (rx_ring->sbq == NULL) {
2555 QPRINTK(qdev, IFUP, ERR,
2556 "Small buffer queue control block allocation failed.\n");
2557 goto err_mem;
2558 }
2559
4545a3f2 2560 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2561 }
2562
2563 if (rx_ring->lbq_len) {
2564 /*
2565 * Allocate large buffer queue.
2566 */
2567 rx_ring->lbq_base =
2568 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2569 &rx_ring->lbq_base_dma);
2570
2571 if (rx_ring->lbq_base == NULL) {
2572 QPRINTK(qdev, IFUP, ERR,
2573 "Large buffer queue allocation failed.\n");
2574 goto err_mem;
2575 }
2576 /*
2577 * Allocate large buffer queue control blocks.
2578 */
2579 rx_ring->lbq =
2580 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2581 GFP_KERNEL);
2582 if (rx_ring->lbq == NULL) {
2583 QPRINTK(qdev, IFUP, ERR,
2584 "Large buffer queue control block allocation failed.\n");
2585 goto err_mem;
2586 }
2587
4545a3f2 2588 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2589 }
2590
2591 return 0;
2592
2593err_mem:
2594 ql_free_rx_resources(qdev, rx_ring);
2595 return -ENOMEM;
2596}
2597
2598static void ql_tx_ring_clean(struct ql_adapter *qdev)
2599{
2600 struct tx_ring *tx_ring;
2601 struct tx_ring_desc *tx_ring_desc;
2602 int i, j;
2603
2604 /*
2605 * Loop through all queues and free
2606 * any resources.
2607 */
2608 for (j = 0; j < qdev->tx_ring_count; j++) {
2609 tx_ring = &qdev->tx_ring[j];
2610 for (i = 0; i < tx_ring->wq_len; i++) {
2611 tx_ring_desc = &tx_ring->q[i];
2612 if (tx_ring_desc && tx_ring_desc->skb) {
2613 QPRINTK(qdev, IFDOWN, ERR,
2614 "Freeing lost SKB %p, from queue %d, index %d.\n",
2615 tx_ring_desc->skb, j,
2616 tx_ring_desc->index);
2617 ql_unmap_send(qdev, tx_ring_desc,
2618 tx_ring_desc->map_cnt);
2619 dev_kfree_skb(tx_ring_desc->skb);
2620 tx_ring_desc->skb = NULL;
2621 }
2622 }
2623 }
2624}
2625
c4e84bde
RM
2626static void ql_free_mem_resources(struct ql_adapter *qdev)
2627{
2628 int i;
2629
2630 for (i = 0; i < qdev->tx_ring_count; i++)
2631 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2632 for (i = 0; i < qdev->rx_ring_count; i++)
2633 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2634 ql_free_shadow_space(qdev);
2635}
2636
2637static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2638{
2639 int i;
2640
2641 /* Allocate space for our shadow registers and such. */
2642 if (ql_alloc_shadow_space(qdev))
2643 return -ENOMEM;
2644
2645 for (i = 0; i < qdev->rx_ring_count; i++) {
2646 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2647 QPRINTK(qdev, IFUP, ERR,
2648 "RX resource allocation failed.\n");
2649 goto err_mem;
2650 }
2651 }
2652 /* Allocate tx queue resources */
2653 for (i = 0; i < qdev->tx_ring_count; i++) {
2654 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2655 QPRINTK(qdev, IFUP, ERR,
2656 "TX resource allocation failed.\n");
2657 goto err_mem;
2658 }
2659 }
2660 return 0;
2661
2662err_mem:
2663 ql_free_mem_resources(qdev);
2664 return -ENOMEM;
2665}
2666
2667/* Set up the rx ring control block and pass it to the chip.
2668 * The control block is defined as
2669 * "Completion Queue Initialization Control Block", or cqicb.
2670 */
2671static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2672{
2673 struct cqicb *cqicb = &rx_ring->cqicb;
2674 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 2675 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 2676 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 2677 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
2678 void __iomem *doorbell_area =
2679 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2680 int err = 0;
2681 u16 bq_len;
d4a4aba6 2682 u64 tmp;
b8facca0
RM
2683 __le64 *base_indirect_ptr;
2684 int page_entries;
c4e84bde
RM
2685
2686 /* Set up the shadow registers for this ring. */
2687 rx_ring->prod_idx_sh_reg = shadow_reg;
2688 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 2689 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
2690 shadow_reg += sizeof(u64);
2691 shadow_reg_dma += sizeof(u64);
2692 rx_ring->lbq_base_indirect = shadow_reg;
2693 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
2694 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2695 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
2696 rx_ring->sbq_base_indirect = shadow_reg;
2697 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2698
2699 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2700 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2701 rx_ring->cnsmr_idx = 0;
2702 rx_ring->curr_entry = rx_ring->cq_base;
2703
2704 /* PCI doorbell mem area + 0x04 for valid register */
2705 rx_ring->valid_db_reg = doorbell_area + 0x04;
2706
2707 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2708 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2709
2710 /* PCI doorbell mem area + 0x1c */
8668ae92 2711 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2712
2713 memset((void *)cqicb, 0, sizeof(struct cqicb));
2714 cqicb->msix_vect = rx_ring->irq;
2715
459caf5a
RM
2716 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2717 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2718
97345524 2719 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2720
97345524 2721 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2722
2723 /*
2724 * Set up the control block load flags.
2725 */
2726 cqicb->flags = FLAGS_LC | /* Load queue base address */
2727 FLAGS_LV | /* Load MSI-X vector */
2728 FLAGS_LI; /* Load irq delay values */
2729 if (rx_ring->lbq_len) {
2730 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 2731 tmp = (u64)rx_ring->lbq_base_dma;
b8facca0
RM
2732 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2733 page_entries = 0;
2734 do {
2735 *base_indirect_ptr = cpu_to_le64(tmp);
2736 tmp += DB_PAGE_SIZE;
2737 base_indirect_ptr++;
2738 page_entries++;
2739 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
2740 cqicb->lbq_addr =
2741 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2742 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2743 (u16) rx_ring->lbq_buf_size;
2744 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2745 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2746 (u16) rx_ring->lbq_len;
c4e84bde 2747 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2748 rx_ring->lbq_prod_idx = 0;
c4e84bde 2749 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2750 rx_ring->lbq_clean_idx = 0;
2751 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2752 }
2753 if (rx_ring->sbq_len) {
2754 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 2755 tmp = (u64)rx_ring->sbq_base_dma;
b8facca0
RM
2756 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2757 page_entries = 0;
2758 do {
2759 *base_indirect_ptr = cpu_to_le64(tmp);
2760 tmp += DB_PAGE_SIZE;
2761 base_indirect_ptr++;
2762 page_entries++;
2763 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
2764 cqicb->sbq_addr =
2765 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 2766 cqicb->sbq_buf_size =
52e55f3c 2767 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
2768 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2769 (u16) rx_ring->sbq_len;
c4e84bde 2770 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2771 rx_ring->sbq_prod_idx = 0;
c4e84bde 2772 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2773 rx_ring->sbq_clean_idx = 0;
2774 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2775 }
2776 switch (rx_ring->type) {
2777 case TX_Q:
c4e84bde
RM
2778 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2779 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2780 break;
c4e84bde
RM
2781 case RX_Q:
2782 /* Inbound completion handling rx_rings run in
2783 * separate NAPI contexts.
2784 */
2785 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2786 64);
2787 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2788 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2789 break;
2790 default:
2791 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2792 rx_ring->type);
2793 }
4974097a 2794 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
c4e84bde
RM
2795 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2796 CFG_LCQ, rx_ring->cq_id);
2797 if (err) {
2798 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2799 return err;
2800 }
c4e84bde
RM
2801 return err;
2802}
2803
2804static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2805{
2806 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2807 void __iomem *doorbell_area =
2808 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2809 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2810 (tx_ring->wq_id * sizeof(u64));
2811 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2812 (tx_ring->wq_id * sizeof(u64));
2813 int err = 0;
2814
2815 /*
2816 * Assign doorbell registers for this tx_ring.
2817 */
2818 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2819 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2820 tx_ring->prod_idx = 0;
2821 /* TX PCI doorbell mem area + 0x04 */
2822 tx_ring->valid_db_reg = doorbell_area + 0x04;
2823
2824 /*
2825 * Assign shadow registers for this tx_ring.
2826 */
2827 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2828 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2829
2830 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2831 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2832 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2833 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2834 wqicb->rid = 0;
97345524 2835 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2836
97345524 2837 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2838
2839 ql_init_tx_ring(qdev, tx_ring);
2840
e332471c 2841 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
2842 (u16) tx_ring->wq_id);
2843 if (err) {
2844 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2845 return err;
2846 }
4974097a 2847 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
c4e84bde
RM
2848 return err;
2849}
2850
2851static void ql_disable_msix(struct ql_adapter *qdev)
2852{
2853 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2854 pci_disable_msix(qdev->pdev);
2855 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2856 kfree(qdev->msi_x_entry);
2857 qdev->msi_x_entry = NULL;
2858 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2859 pci_disable_msi(qdev->pdev);
2860 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2861 }
2862}
2863
a4ab6137
RM
2864/* We start by trying to get the number of vectors
2865 * stored in qdev->intr_count. If we don't get that
2866 * many then we reduce the count and try again.
2867 */
c4e84bde
RM
2868static void ql_enable_msix(struct ql_adapter *qdev)
2869{
a4ab6137 2870 int i, err;
c4e84bde 2871
c4e84bde
RM
2872 /* Get the MSIX vectors. */
2873 if (irq_type == MSIX_IRQ) {
2874 /* Try to alloc space for the msix struct,
2875 * if it fails then go to MSI/legacy.
2876 */
a4ab6137 2877 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
2878 sizeof(struct msix_entry),
2879 GFP_KERNEL);
2880 if (!qdev->msi_x_entry) {
2881 irq_type = MSI_IRQ;
2882 goto msi;
2883 }
2884
a4ab6137 2885 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
2886 qdev->msi_x_entry[i].entry = i;
2887
a4ab6137
RM
2888 /* Loop to get our vectors. We start with
2889 * what we want and settle for what we get.
2890 */
2891 do {
2892 err = pci_enable_msix(qdev->pdev,
2893 qdev->msi_x_entry, qdev->intr_count);
2894 if (err > 0)
2895 qdev->intr_count = err;
2896 } while (err > 0);
2897
2898 if (err < 0) {
c4e84bde
RM
2899 kfree(qdev->msi_x_entry);
2900 qdev->msi_x_entry = NULL;
2901 QPRINTK(qdev, IFUP, WARNING,
2902 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 2903 qdev->intr_count = 1;
c4e84bde 2904 irq_type = MSI_IRQ;
a4ab6137
RM
2905 } else if (err == 0) {
2906 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2907 QPRINTK(qdev, IFUP, INFO,
2908 "MSI-X Enabled, got %d vectors.\n",
2909 qdev->intr_count);
2910 return;
c4e84bde
RM
2911 }
2912 }
2913msi:
a4ab6137 2914 qdev->intr_count = 1;
c4e84bde
RM
2915 if (irq_type == MSI_IRQ) {
2916 if (!pci_enable_msi(qdev->pdev)) {
2917 set_bit(QL_MSI_ENABLED, &qdev->flags);
2918 QPRINTK(qdev, IFUP, INFO,
2919 "Running with MSI interrupts.\n");
2920 return;
2921 }
2922 }
2923 irq_type = LEG_IRQ;
c4e84bde
RM
2924 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2925}
2926
39aa8165
RM
2927/* Each vector services 1 RSS ring and and 1 or more
2928 * TX completion rings. This function loops through
2929 * the TX completion rings and assigns the vector that
2930 * will service it. An example would be if there are
2931 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2932 * This would mean that vector 0 would service RSS ring 0
2933 * and TX competion rings 0,1,2 and 3. Vector 1 would
2934 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2935 */
2936static void ql_set_tx_vect(struct ql_adapter *qdev)
2937{
2938 int i, j, vect;
2939 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2940
2941 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2942 /* Assign irq vectors to TX rx_rings.*/
2943 for (vect = 0, j = 0, i = qdev->rss_ring_count;
2944 i < qdev->rx_ring_count; i++) {
2945 if (j == tx_rings_per_vector) {
2946 vect++;
2947 j = 0;
2948 }
2949 qdev->rx_ring[i].irq = vect;
2950 j++;
2951 }
2952 } else {
2953 /* For single vector all rings have an irq
2954 * of zero.
2955 */
2956 for (i = 0; i < qdev->rx_ring_count; i++)
2957 qdev->rx_ring[i].irq = 0;
2958 }
2959}
2960
2961/* Set the interrupt mask for this vector. Each vector
2962 * will service 1 RSS ring and 1 or more TX completion
2963 * rings. This function sets up a bit mask per vector
2964 * that indicates which rings it services.
2965 */
2966static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
2967{
2968 int j, vect = ctx->intr;
2969 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2970
2971 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2972 /* Add the RSS ring serviced by this vector
2973 * to the mask.
2974 */
2975 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
2976 /* Add the TX ring(s) serviced by this vector
2977 * to the mask. */
2978 for (j = 0; j < tx_rings_per_vector; j++) {
2979 ctx->irq_mask |=
2980 (1 << qdev->rx_ring[qdev->rss_ring_count +
2981 (vect * tx_rings_per_vector) + j].cq_id);
2982 }
2983 } else {
2984 /* For single vector we just shift each queue's
2985 * ID into the mask.
2986 */
2987 for (j = 0; j < qdev->rx_ring_count; j++)
2988 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
2989 }
2990}
2991
c4e84bde
RM
2992/*
2993 * Here we build the intr_context structures based on
2994 * our rx_ring count and intr vector count.
2995 * The intr_context structure is used to hook each vector
2996 * to possibly different handlers.
2997 */
2998static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2999{
3000 int i = 0;
3001 struct intr_context *intr_context = &qdev->intr_context[0];
3002
c4e84bde
RM
3003 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3004 /* Each rx_ring has it's
3005 * own intr_context since we have separate
3006 * vectors for each queue.
c4e84bde
RM
3007 */
3008 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3009 qdev->rx_ring[i].irq = i;
3010 intr_context->intr = i;
3011 intr_context->qdev = qdev;
39aa8165
RM
3012 /* Set up this vector's bit-mask that indicates
3013 * which queues it services.
3014 */
3015 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3016 /*
3017 * We set up each vectors enable/disable/read bits so
3018 * there's no bit/mask calculations in the critical path.
3019 */
3020 intr_context->intr_en_mask =
3021 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3022 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3023 | i;
3024 intr_context->intr_dis_mask =
3025 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3026 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3027 INTR_EN_IHD | i;
3028 intr_context->intr_read_mask =
3029 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3030 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3031 i;
39aa8165
RM
3032 if (i == 0) {
3033 /* The first vector/queue handles
3034 * broadcast/multicast, fatal errors,
3035 * and firmware events. This in addition
3036 * to normal inbound NAPI processing.
c4e84bde 3037 */
39aa8165 3038 intr_context->handler = qlge_isr;
b2014ff8
RM
3039 sprintf(intr_context->name, "%s-rx-%d",
3040 qdev->ndev->name, i);
3041 } else {
c4e84bde 3042 /*
39aa8165 3043 * Inbound queues handle unicast frames only.
c4e84bde 3044 */
39aa8165
RM
3045 intr_context->handler = qlge_msix_rx_isr;
3046 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3047 qdev->ndev->name, i);
c4e84bde
RM
3048 }
3049 }
3050 } else {
3051 /*
3052 * All rx_rings use the same intr_context since
3053 * there is only one vector.
3054 */
3055 intr_context->intr = 0;
3056 intr_context->qdev = qdev;
3057 /*
3058 * We set up each vectors enable/disable/read bits so
3059 * there's no bit/mask calculations in the critical path.
3060 */
3061 intr_context->intr_en_mask =
3062 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3063 intr_context->intr_dis_mask =
3064 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3065 INTR_EN_TYPE_DISABLE;
3066 intr_context->intr_read_mask =
3067 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3068 /*
3069 * Single interrupt means one handler for all rings.
3070 */
3071 intr_context->handler = qlge_isr;
3072 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3073 /* Set up this vector's bit-mask that indicates
3074 * which queues it services. In this case there is
3075 * a single vector so it will service all RSS and
3076 * TX completion rings.
3077 */
3078 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3079 }
39aa8165
RM
3080 /* Tell the TX completion rings which MSIx vector
3081 * they will be using.
3082 */
3083 ql_set_tx_vect(qdev);
c4e84bde
RM
3084}
3085
3086static void ql_free_irq(struct ql_adapter *qdev)
3087{
3088 int i;
3089 struct intr_context *intr_context = &qdev->intr_context[0];
3090
3091 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3092 if (intr_context->hooked) {
3093 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3094 free_irq(qdev->msi_x_entry[i].vector,
3095 &qdev->rx_ring[i]);
4974097a 3096 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
3097 "freeing msix interrupt %d.\n", i);
3098 } else {
3099 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
4974097a 3100 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
3101 "freeing msi interrupt %d.\n", i);
3102 }
3103 }
3104 }
3105 ql_disable_msix(qdev);
3106}
3107
3108static int ql_request_irq(struct ql_adapter *qdev)
3109{
3110 int i;
3111 int status = 0;
3112 struct pci_dev *pdev = qdev->pdev;
3113 struct intr_context *intr_context = &qdev->intr_context[0];
3114
3115 ql_resolve_queues_to_irqs(qdev);
3116
3117 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3118 atomic_set(&intr_context->irq_cnt, 0);
3119 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3120 status = request_irq(qdev->msi_x_entry[i].vector,
3121 intr_context->handler,
3122 0,
3123 intr_context->name,
3124 &qdev->rx_ring[i]);
3125 if (status) {
3126 QPRINTK(qdev, IFUP, ERR,
3127 "Failed request for MSIX interrupt %d.\n",
3128 i);
3129 goto err_irq;
3130 } else {
4974097a 3131 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
3132 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3133 i,
3134 qdev->rx_ring[i].type ==
3135 DEFAULT_Q ? "DEFAULT_Q" : "",
3136 qdev->rx_ring[i].type ==
3137 TX_Q ? "TX_Q" : "",
3138 qdev->rx_ring[i].type ==
3139 RX_Q ? "RX_Q" : "", intr_context->name);
3140 }
3141 } else {
3142 QPRINTK(qdev, IFUP, DEBUG,
3143 "trying msi or legacy interrupts.\n");
3144 QPRINTK(qdev, IFUP, DEBUG,
3145 "%s: irq = %d.\n", __func__, pdev->irq);
3146 QPRINTK(qdev, IFUP, DEBUG,
3147 "%s: context->name = %s.\n", __func__,
3148 intr_context->name);
3149 QPRINTK(qdev, IFUP, DEBUG,
3150 "%s: dev_id = 0x%p.\n", __func__,
3151 &qdev->rx_ring[0]);
3152 status =
3153 request_irq(pdev->irq, qlge_isr,
3154 test_bit(QL_MSI_ENABLED,
3155 &qdev->
3156 flags) ? 0 : IRQF_SHARED,
3157 intr_context->name, &qdev->rx_ring[0]);
3158 if (status)
3159 goto err_irq;
3160
3161 QPRINTK(qdev, IFUP, ERR,
3162 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3163 i,
3164 qdev->rx_ring[0].type ==
3165 DEFAULT_Q ? "DEFAULT_Q" : "",
3166 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3167 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3168 intr_context->name);
3169 }
3170 intr_context->hooked = 1;
3171 }
3172 return status;
3173err_irq:
3174 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3175 ql_free_irq(qdev);
3176 return status;
3177}
3178
3179static int ql_start_rss(struct ql_adapter *qdev)
3180{
541ae28c
RM
3181 u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3182 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
3183 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
3184 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
3185 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
3186 0xbe, 0xac, 0x01, 0xfa};
c4e84bde
RM
3187 struct ricb *ricb = &qdev->ricb;
3188 int status = 0;
3189 int i;
3190 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3191
e332471c 3192 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3193
b2014ff8 3194 ricb->base_cq = RSS_L4K;
c4e84bde 3195 ricb->flags =
541ae28c
RM
3196 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3197 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3198
3199 /*
3200 * Fill out the Indirection Table.
3201 */
541ae28c
RM
3202 for (i = 0; i < 1024; i++)
3203 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3204
541ae28c
RM
3205 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3206 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3207
4974097a 3208 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
c4e84bde 3209
e332471c 3210 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde
RM
3211 if (status) {
3212 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3213 return status;
3214 }
4974097a 3215 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
c4e84bde
RM
3216 return status;
3217}
3218
a5f59dc9 3219static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3220{
a5f59dc9 3221 int i, status = 0;
c4e84bde 3222
8587ea35
RM
3223 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3224 if (status)
3225 return status;
c4e84bde
RM
3226 /* Clear all the entries in the routing table. */
3227 for (i = 0; i < 16; i++) {
3228 status = ql_set_routing_reg(qdev, i, 0, 0);
3229 if (status) {
3230 QPRINTK(qdev, IFUP, ERR,
a5f59dc9
RM
3231 "Failed to init routing register for CAM "
3232 "packets.\n");
3233 break;
c4e84bde
RM
3234 }
3235 }
a5f59dc9
RM
3236 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3237 return status;
3238}
3239
3240/* Initialize the frame-to-queue routing. */
3241static int ql_route_initialize(struct ql_adapter *qdev)
3242{
3243 int status = 0;
3244
fd21cf52
RM
3245 /* Clear all the entries in the routing table. */
3246 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3247 if (status)
3248 return status;
3249
fd21cf52 3250 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3251 if (status)
fd21cf52 3252 return status;
c4e84bde
RM
3253
3254 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3255 if (status) {
3256 QPRINTK(qdev, IFUP, ERR,
3257 "Failed to init routing register for error packets.\n");
8587ea35 3258 goto exit;
c4e84bde
RM
3259 }
3260 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3261 if (status) {
3262 QPRINTK(qdev, IFUP, ERR,
3263 "Failed to init routing register for broadcast packets.\n");
8587ea35 3264 goto exit;
c4e84bde
RM
3265 }
3266 /* If we have more than one inbound queue, then turn on RSS in the
3267 * routing block.
3268 */
3269 if (qdev->rss_ring_count > 1) {
3270 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3271 RT_IDX_RSS_MATCH, 1);
3272 if (status) {
3273 QPRINTK(qdev, IFUP, ERR,
3274 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3275 goto exit;
c4e84bde
RM
3276 }
3277 }
3278
3279 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3280 RT_IDX_CAM_HIT, 1);
8587ea35 3281 if (status)
c4e84bde
RM
3282 QPRINTK(qdev, IFUP, ERR,
3283 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3284exit:
3285 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3286 return status;
3287}
3288
2ee1e272 3289int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3290{
7fab3bfe 3291 int status, set;
bb58b5b6 3292
7fab3bfe
RM
3293 /* If check if the link is up and use to
3294 * determine if we are setting or clearing
3295 * the MAC address in the CAM.
3296 */
3297 set = ql_read32(qdev, STS);
3298 set &= qdev->port_link_up;
3299 status = ql_set_mac_addr(qdev, set);
bb58b5b6
RM
3300 if (status) {
3301 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3302 return status;
3303 }
3304
3305 status = ql_route_initialize(qdev);
3306 if (status)
3307 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3308
3309 return status;
3310}
3311
c4e84bde
RM
3312static int ql_adapter_initialize(struct ql_adapter *qdev)
3313{
3314 u32 value, mask;
3315 int i;
3316 int status = 0;
3317
3318 /*
3319 * Set up the System register to halt on errors.
3320 */
3321 value = SYS_EFE | SYS_FAE;
3322 mask = value << 16;
3323 ql_write32(qdev, SYS, mask | value);
3324
c9cf0a04
RM
3325 /* Set the default queue, and VLAN behavior. */
3326 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3327 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3328 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3329
3330 /* Set the MPI interrupt to enabled. */
3331 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3332
3333 /* Enable the function, set pagesize, enable error checking. */
3334 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3335 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3336
3337 /* Set/clear header splitting. */
3338 mask = FSC_VM_PAGESIZE_MASK |
3339 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3340 ql_write32(qdev, FSC, mask | value);
3341
3342 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
52e55f3c 3343 min(SMALL_BUF_MAP_SIZE, MAX_SPLIT_SIZE));
c4e84bde 3344
a3b71939
RM
3345 /* Set RX packet routing to use port/pci function on which the
3346 * packet arrived on in addition to usual frame routing.
3347 * This is helpful on bonding where both interfaces can have
3348 * the same MAC address.
3349 */
3350 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3351 /* Reroute all packets to our Interface.
3352 * They may have been routed to MPI firmware
3353 * due to WOL.
3354 */
3355 value = ql_read32(qdev, MGMT_RCV_CFG);
3356 value &= ~MGMT_RCV_CFG_RM;
3357 mask = 0xffff0000;
3358
3359 /* Sticky reg needs clearing due to WOL. */
3360 ql_write32(qdev, MGMT_RCV_CFG, mask);
3361 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3362
3363 /* Default WOL is enable on Mezz cards */
3364 if (qdev->pdev->subsystem_device == 0x0068 ||
3365 qdev->pdev->subsystem_device == 0x0180)
3366 qdev->wol = WAKE_MAGIC;
a3b71939 3367
c4e84bde
RM
3368 /* Start up the rx queues. */
3369 for (i = 0; i < qdev->rx_ring_count; i++) {
3370 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3371 if (status) {
3372 QPRINTK(qdev, IFUP, ERR,
3373 "Failed to start rx ring[%d].\n", i);
3374 return status;
3375 }
3376 }
3377
3378 /* If there is more than one inbound completion queue
3379 * then download a RICB to configure RSS.
3380 */
3381 if (qdev->rss_ring_count > 1) {
3382 status = ql_start_rss(qdev);
3383 if (status) {
3384 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3385 return status;
3386 }
3387 }
3388
3389 /* Start up the tx queues. */
3390 for (i = 0; i < qdev->tx_ring_count; i++) {
3391 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3392 if (status) {
3393 QPRINTK(qdev, IFUP, ERR,
3394 "Failed to start tx ring[%d].\n", i);
3395 return status;
3396 }
3397 }
3398
b0c2aadf
RM
3399 /* Initialize the port and set the max framesize. */
3400 status = qdev->nic_ops->port_initialize(qdev);
80928860
RM
3401 if (status)
3402 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
c4e84bde 3403
bb58b5b6
RM
3404 /* Set up the MAC address and frame routing filter. */
3405 status = ql_cam_route_initialize(qdev);
c4e84bde 3406 if (status) {
bb58b5b6
RM
3407 QPRINTK(qdev, IFUP, ERR,
3408 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3409 return status;
3410 }
3411
3412 /* Start NAPI for the RSS queues. */
b2014ff8 3413 for (i = 0; i < qdev->rss_ring_count; i++) {
4974097a 3414 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
c4e84bde
RM
3415 i);
3416 napi_enable(&qdev->rx_ring[i].napi);
3417 }
3418
3419 return status;
3420}
3421
3422/* Issue soft reset to chip. */
3423static int ql_adapter_reset(struct ql_adapter *qdev)
3424{
3425 u32 value;
c4e84bde 3426 int status = 0;
a5f59dc9 3427 unsigned long end_jiffies;
c4e84bde 3428
a5f59dc9
RM
3429 /* Clear all the entries in the routing table. */
3430 status = ql_clear_routing_entries(qdev);
3431 if (status) {
3432 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3433 return status;
3434 }
3435
3436 end_jiffies = jiffies +
3437 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d
RM
3438
3439 /* Stop management traffic. */
3440 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3441
3442 /* Wait for the NIC and MGMNT FIFOs to empty. */
3443 ql_wait_fifo_empty(qdev);
3444
c4e84bde 3445 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3446
c4e84bde
RM
3447 do {
3448 value = ql_read32(qdev, RST_FO);
3449 if ((value & RST_FO_FR) == 0)
3450 break;
a75ee7f1
RM
3451 cpu_relax();
3452 } while (time_before(jiffies, end_jiffies));
c4e84bde 3453
c4e84bde 3454 if (value & RST_FO_FR) {
c4e84bde 3455 QPRINTK(qdev, IFDOWN, ERR,
3ac49a1c 3456 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3457 status = -ETIMEDOUT;
c4e84bde
RM
3458 }
3459
84087f4d
RM
3460 /* Resume management traffic. */
3461 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3462 return status;
3463}
3464
3465static void ql_display_dev_info(struct net_device *ndev)
3466{
3467 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3468
3469 QPRINTK(qdev, PROBE, INFO,
e4552f51 3470 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
c4e84bde
RM
3471 "XG Roll = %d, XG Rev = %d.\n",
3472 qdev->func,
e4552f51 3473 qdev->port,
c4e84bde
RM
3474 qdev->chip_rev_id & 0x0000000f,
3475 qdev->chip_rev_id >> 4 & 0x0000000f,
3476 qdev->chip_rev_id >> 8 & 0x0000000f,
3477 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3478 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3479}
3480
bc083ce9
RM
3481int ql_wol(struct ql_adapter *qdev)
3482{
3483 int status = 0;
3484 u32 wol = MB_WOL_DISABLE;
3485
3486 /* The CAM is still intact after a reset, but if we
3487 * are doing WOL, then we may need to program the
3488 * routing regs. We would also need to issue the mailbox
3489 * commands to instruct the MPI what to do per the ethtool
3490 * settings.
3491 */
3492
3493 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3494 WAKE_MCAST | WAKE_BCAST)) {
3495 QPRINTK(qdev, IFDOWN, ERR,
3496 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3497 qdev->wol);
3498 return -EINVAL;
3499 }
3500
3501 if (qdev->wol & WAKE_MAGIC) {
3502 status = ql_mb_wol_set_magic(qdev, 1);
3503 if (status) {
3504 QPRINTK(qdev, IFDOWN, ERR,
3505 "Failed to set magic packet on %s.\n",
3506 qdev->ndev->name);
3507 return status;
3508 } else
3509 QPRINTK(qdev, DRV, INFO,
3510 "Enabled magic packet successfully on %s.\n",
3511 qdev->ndev->name);
3512
3513 wol |= MB_WOL_MAGIC_PKT;
3514 }
3515
3516 if (qdev->wol) {
bc083ce9
RM
3517 wol |= MB_WOL_MODE_ON;
3518 status = ql_mb_wol_mode(qdev, wol);
3519 QPRINTK(qdev, DRV, ERR, "WOL %s (wol code 0x%x) on %s\n",
3520 (status == 0) ? "Sucessfully set" : "Failed", wol,
3521 qdev->ndev->name);
3522 }
3523
3524 return status;
3525}
3526
c4e84bde
RM
3527static int ql_adapter_down(struct ql_adapter *qdev)
3528{
c4e84bde 3529 int i, status = 0;
c4e84bde 3530
6a473308 3531 ql_link_off(qdev);
c4e84bde 3532
6497b607
RM
3533 /* Don't kill the reset worker thread if we
3534 * are in the process of recovery.
3535 */
3536 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3537 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3538 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3539 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3540 cancel_delayed_work_sync(&qdev->mpi_idc_work);
bcc2cb3b 3541 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c4e84bde 3542
39aa8165
RM
3543 for (i = 0; i < qdev->rss_ring_count; i++)
3544 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3545
3546 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3547
3548 ql_disable_interrupts(qdev);
3549
3550 ql_tx_ring_clean(qdev);
3551
6b318cb3
RM
3552 /* Call netif_napi_del() from common point.
3553 */
b2014ff8 3554 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3555 netif_napi_del(&qdev->rx_ring[i].napi);
3556
4545a3f2 3557 ql_free_rx_buffers(qdev);
2d6a5e95 3558
c4e84bde
RM
3559 status = ql_adapter_reset(qdev);
3560 if (status)
3561 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3562 qdev->func);
c4e84bde
RM
3563 return status;
3564}
3565
3566static int ql_adapter_up(struct ql_adapter *qdev)
3567{
3568 int err = 0;
3569
c4e84bde
RM
3570 err = ql_adapter_initialize(qdev);
3571 if (err) {
3572 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
c4e84bde
RM
3573 goto err_init;
3574 }
c4e84bde 3575 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3576 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3577 /* If the port is initialized and the
3578 * link is up the turn on the carrier.
3579 */
3580 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3581 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3582 ql_link_on(qdev);
c4e84bde
RM
3583 ql_enable_interrupts(qdev);
3584 ql_enable_all_completion_interrupts(qdev);
1e213303 3585 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3586
3587 return 0;
3588err_init:
3589 ql_adapter_reset(qdev);
3590 return err;
3591}
3592
c4e84bde
RM
3593static void ql_release_adapter_resources(struct ql_adapter *qdev)
3594{
3595 ql_free_mem_resources(qdev);
3596 ql_free_irq(qdev);
3597}
3598
3599static int ql_get_adapter_resources(struct ql_adapter *qdev)
3600{
3601 int status = 0;
3602
3603 if (ql_alloc_mem_resources(qdev)) {
3604 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3605 return -ENOMEM;
3606 }
3607 status = ql_request_irq(qdev);
c4e84bde
RM
3608 return status;
3609}
3610
3611static int qlge_close(struct net_device *ndev)
3612{
3613 struct ql_adapter *qdev = netdev_priv(ndev);
3614
3615 /*
3616 * Wait for device to recover from a reset.
3617 * (Rarely happens, but possible.)
3618 */
3619 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3620 msleep(1);
3621 ql_adapter_down(qdev);
3622 ql_release_adapter_resources(qdev);
c4e84bde
RM
3623 return 0;
3624}
3625
3626static int ql_configure_rings(struct ql_adapter *qdev)
3627{
3628 int i;
3629 struct rx_ring *rx_ring;
3630 struct tx_ring *tx_ring;
a4ab6137 3631 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
3632 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
3633 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
3634
3635 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
3636
3637 /* In a perfect world we have one RSS ring for each CPU
3638 * and each has it's own vector. To do that we ask for
3639 * cpu_cnt vectors. ql_enable_msix() will adjust the
3640 * vector count to what we actually get. We then
3641 * allocate an RSS ring for each.
3642 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 3643 */
a4ab6137
RM
3644 qdev->intr_count = cpu_cnt;
3645 ql_enable_msix(qdev);
3646 /* Adjust the RSS ring count to the actual vector count. */
3647 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 3648 qdev->tx_ring_count = cpu_cnt;
b2014ff8 3649 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 3650
c4e84bde
RM
3651 for (i = 0; i < qdev->tx_ring_count; i++) {
3652 tx_ring = &qdev->tx_ring[i];
e332471c 3653 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
3654 tx_ring->qdev = qdev;
3655 tx_ring->wq_id = i;
3656 tx_ring->wq_len = qdev->tx_ring_size;
3657 tx_ring->wq_size =
3658 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3659
3660 /*
3661 * The completion queue ID for the tx rings start
39aa8165 3662 * immediately after the rss rings.
c4e84bde 3663 */
39aa8165 3664 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
3665 }
3666
3667 for (i = 0; i < qdev->rx_ring_count; i++) {
3668 rx_ring = &qdev->rx_ring[i];
e332471c 3669 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
3670 rx_ring->qdev = qdev;
3671 rx_ring->cq_id = i;
3672 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 3673 if (i < qdev->rss_ring_count) {
39aa8165
RM
3674 /*
3675 * Inbound (RSS) queues.
3676 */
c4e84bde
RM
3677 rx_ring->cq_len = qdev->rx_ring_size;
3678 rx_ring->cq_size =
3679 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3680 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3681 rx_ring->lbq_size =
2c9a0d41 3682 rx_ring->lbq_len * sizeof(__le64);
7c734359
RM
3683 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
3684 QPRINTK(qdev, IFUP, DEBUG,
3685 "lbq_buf_size %d, order = %d\n",
3686 rx_ring->lbq_buf_size, qdev->lbq_buf_order);
c4e84bde
RM
3687 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3688 rx_ring->sbq_size =
2c9a0d41 3689 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 3690 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
3691 rx_ring->type = RX_Q;
3692 } else {
c4e84bde
RM
3693 /*
3694 * Outbound queue handles outbound completions only.
3695 */
3696 /* outbound cq is same size as tx_ring it services. */
3697 rx_ring->cq_len = qdev->tx_ring_size;
3698 rx_ring->cq_size =
3699 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3700 rx_ring->lbq_len = 0;
3701 rx_ring->lbq_size = 0;
3702 rx_ring->lbq_buf_size = 0;
3703 rx_ring->sbq_len = 0;
3704 rx_ring->sbq_size = 0;
3705 rx_ring->sbq_buf_size = 0;
3706 rx_ring->type = TX_Q;
c4e84bde
RM
3707 }
3708 }
3709 return 0;
3710}
3711
3712static int qlge_open(struct net_device *ndev)
3713{
3714 int err = 0;
3715 struct ql_adapter *qdev = netdev_priv(ndev);
3716
74e12435
RM
3717 err = ql_adapter_reset(qdev);
3718 if (err)
3719 return err;
3720
c4e84bde
RM
3721 err = ql_configure_rings(qdev);
3722 if (err)
3723 return err;
3724
3725 err = ql_get_adapter_resources(qdev);
3726 if (err)
3727 goto error_up;
3728
3729 err = ql_adapter_up(qdev);
3730 if (err)
3731 goto error_up;
3732
3733 return err;
3734
3735error_up:
3736 ql_release_adapter_resources(qdev);
c4e84bde
RM
3737 return err;
3738}
3739
7c734359
RM
3740static int ql_change_rx_buffers(struct ql_adapter *qdev)
3741{
3742 struct rx_ring *rx_ring;
3743 int i, status;
3744 u32 lbq_buf_len;
3745
3746 /* Wait for an oustanding reset to complete. */
3747 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
3748 int i = 3;
3749 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
3750 QPRINTK(qdev, IFUP, ERR,
3751 "Waiting for adapter UP...\n");
3752 ssleep(1);
3753 }
3754
3755 if (!i) {
3756 QPRINTK(qdev, IFUP, ERR,
3757 "Timed out waiting for adapter UP\n");
3758 return -ETIMEDOUT;
3759 }
3760 }
3761
3762 status = ql_adapter_down(qdev);
3763 if (status)
3764 goto error;
3765
3766 /* Get the new rx buffer size. */
3767 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
3768 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
3769 qdev->lbq_buf_order = get_order(lbq_buf_len);
3770
3771 for (i = 0; i < qdev->rss_ring_count; i++) {
3772 rx_ring = &qdev->rx_ring[i];
3773 /* Set the new size. */
3774 rx_ring->lbq_buf_size = lbq_buf_len;
3775 }
3776
3777 status = ql_adapter_up(qdev);
3778 if (status)
3779 goto error;
3780
3781 return status;
3782error:
3783 QPRINTK(qdev, IFUP, ALERT,
3784 "Driver up/down cycle failed, closing device.\n");
3785 set_bit(QL_ADAPTER_UP, &qdev->flags);
3786 dev_close(qdev->ndev);
3787 return status;
3788}
3789
c4e84bde
RM
3790static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3791{
3792 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 3793 int status;
c4e84bde
RM
3794
3795 if (ndev->mtu == 1500 && new_mtu == 9000) {
3796 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3797 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3798 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3799 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3800 (ndev->mtu == 9000 && new_mtu == 9000)) {
3801 return 0;
3802 } else
3803 return -EINVAL;
7c734359
RM
3804
3805 queue_delayed_work(qdev->workqueue,
3806 &qdev->mpi_port_cfg_work, 3*HZ);
3807
3808 if (!netif_running(qdev->ndev)) {
3809 ndev->mtu = new_mtu;
3810 return 0;
3811 }
3812
c4e84bde 3813 ndev->mtu = new_mtu;
7c734359
RM
3814 status = ql_change_rx_buffers(qdev);
3815 if (status) {
3816 QPRINTK(qdev, IFUP, ERR,
3817 "Changing MTU failed.\n");
3818 }
3819
3820 return status;
c4e84bde
RM
3821}
3822
3823static struct net_device_stats *qlge_get_stats(struct net_device
3824 *ndev)
3825{
885ee398
RM
3826 struct ql_adapter *qdev = netdev_priv(ndev);
3827 struct rx_ring *rx_ring = &qdev->rx_ring[0];
3828 struct tx_ring *tx_ring = &qdev->tx_ring[0];
3829 unsigned long pkts, mcast, dropped, errors, bytes;
3830 int i;
3831
3832 /* Get RX stats. */
3833 pkts = mcast = dropped = errors = bytes = 0;
3834 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
3835 pkts += rx_ring->rx_packets;
3836 bytes += rx_ring->rx_bytes;
3837 dropped += rx_ring->rx_dropped;
3838 errors += rx_ring->rx_errors;
3839 mcast += rx_ring->rx_multicast;
3840 }
3841 ndev->stats.rx_packets = pkts;
3842 ndev->stats.rx_bytes = bytes;
3843 ndev->stats.rx_dropped = dropped;
3844 ndev->stats.rx_errors = errors;
3845 ndev->stats.multicast = mcast;
3846
3847 /* Get TX stats. */
3848 pkts = errors = bytes = 0;
3849 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
3850 pkts += tx_ring->tx_packets;
3851 bytes += tx_ring->tx_bytes;
3852 errors += tx_ring->tx_errors;
3853 }
3854 ndev->stats.tx_packets = pkts;
3855 ndev->stats.tx_bytes = bytes;
3856 ndev->stats.tx_errors = errors;
bcc90f55 3857 return &ndev->stats;
c4e84bde
RM
3858}
3859
3860static void qlge_set_multicast_list(struct net_device *ndev)
3861{
3862 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3863 struct dev_mc_list *mc_ptr;
cc288f54 3864 int i, status;
c4e84bde 3865
cc288f54
RM
3866 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3867 if (status)
3868 return;
c4e84bde
RM
3869 /*
3870 * Set or clear promiscuous mode if a
3871 * transition is taking place.
3872 */
3873 if (ndev->flags & IFF_PROMISC) {
3874 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3875 if (ql_set_routing_reg
3876 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3877 QPRINTK(qdev, HW, ERR,
3878 "Failed to set promiscous mode.\n");
3879 } else {
3880 set_bit(QL_PROMISCUOUS, &qdev->flags);
3881 }
3882 }
3883 } else {
3884 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3885 if (ql_set_routing_reg
3886 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3887 QPRINTK(qdev, HW, ERR,
3888 "Failed to clear promiscous mode.\n");
3889 } else {
3890 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3891 }
3892 }
3893 }
3894
3895 /*
3896 * Set or clear all multicast mode if a
3897 * transition is taking place.
3898 */
3899 if ((ndev->flags & IFF_ALLMULTI) ||
3900 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3901 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3902 if (ql_set_routing_reg
3903 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3904 QPRINTK(qdev, HW, ERR,
3905 "Failed to set all-multi mode.\n");
3906 } else {
3907 set_bit(QL_ALLMULTI, &qdev->flags);
3908 }
3909 }
3910 } else {
3911 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3912 if (ql_set_routing_reg
3913 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3914 QPRINTK(qdev, HW, ERR,
3915 "Failed to clear all-multi mode.\n");
3916 } else {
3917 clear_bit(QL_ALLMULTI, &qdev->flags);
3918 }
3919 }
3920 }
3921
3922 if (ndev->mc_count) {
cc288f54
RM
3923 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3924 if (status)
3925 goto exit;
c4e84bde
RM
3926 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3927 i++, mc_ptr = mc_ptr->next)
3928 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3929 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3930 QPRINTK(qdev, HW, ERR,
3931 "Failed to loadmulticast address.\n");
cc288f54 3932 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3933 goto exit;
3934 }
cc288f54 3935 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3936 if (ql_set_routing_reg
3937 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3938 QPRINTK(qdev, HW, ERR,
3939 "Failed to set multicast match mode.\n");
3940 } else {
3941 set_bit(QL_ALLMULTI, &qdev->flags);
3942 }
3943 }
3944exit:
8587ea35 3945 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3946}
3947
3948static int qlge_set_mac_address(struct net_device *ndev, void *p)
3949{
3950 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3951 struct sockaddr *addr = p;
cc288f54 3952 int status;
c4e84bde
RM
3953
3954 if (netif_running(ndev))
3955 return -EBUSY;
3956
3957 if (!is_valid_ether_addr(addr->sa_data))
3958 return -EADDRNOTAVAIL;
3959 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3960
cc288f54
RM
3961 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3962 if (status)
3963 return status;
cc288f54
RM
3964 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3965 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54
RM
3966 if (status)
3967 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3968 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3969 return status;
c4e84bde
RM
3970}
3971
3972static void qlge_tx_timeout(struct net_device *ndev)
3973{
3974 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3975 ql_queue_asic_error(qdev);
c4e84bde
RM
3976}
3977
3978static void ql_asic_reset_work(struct work_struct *work)
3979{
3980 struct ql_adapter *qdev =
3981 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 3982 int status;
f2c0d8df 3983 rtnl_lock();
db98812f
RM
3984 status = ql_adapter_down(qdev);
3985 if (status)
3986 goto error;
3987
3988 status = ql_adapter_up(qdev);
3989 if (status)
3990 goto error;
2cd6dbaa
RM
3991
3992 /* Restore rx mode. */
3993 clear_bit(QL_ALLMULTI, &qdev->flags);
3994 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3995 qlge_set_multicast_list(qdev->ndev);
3996
f2c0d8df 3997 rtnl_unlock();
db98812f
RM
3998 return;
3999error:
4000 QPRINTK(qdev, IFUP, ALERT,
4001 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4002
db98812f
RM
4003 set_bit(QL_ADAPTER_UP, &qdev->flags);
4004 dev_close(qdev->ndev);
4005 rtnl_unlock();
c4e84bde
RM
4006}
4007
b0c2aadf
RM
4008static struct nic_operations qla8012_nic_ops = {
4009 .get_flash = ql_get_8012_flash_params,
4010 .port_initialize = ql_8012_port_initialize,
4011};
4012
cdca8d02
RM
4013static struct nic_operations qla8000_nic_ops = {
4014 .get_flash = ql_get_8000_flash_params,
4015 .port_initialize = ql_8000_port_initialize,
4016};
4017
e4552f51
RM
4018/* Find the pcie function number for the other NIC
4019 * on this chip. Since both NIC functions share a
4020 * common firmware we have the lowest enabled function
4021 * do any common work. Examples would be resetting
4022 * after a fatal firmware error, or doing a firmware
4023 * coredump.
4024 */
4025static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4026{
4027 int status = 0;
4028 u32 temp;
4029 u32 nic_func1, nic_func2;
4030
4031 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4032 &temp);
4033 if (status)
4034 return status;
4035
4036 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4037 MPI_TEST_NIC_FUNC_MASK);
4038 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4039 MPI_TEST_NIC_FUNC_MASK);
4040
4041 if (qdev->func == nic_func1)
4042 qdev->alt_func = nic_func2;
4043 else if (qdev->func == nic_func2)
4044 qdev->alt_func = nic_func1;
4045 else
4046 status = -EIO;
4047
4048 return status;
4049}
b0c2aadf 4050
e4552f51 4051static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4052{
e4552f51 4053 int status;
c4e84bde
RM
4054 qdev->func =
4055 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4056 if (qdev->func > 3)
4057 return -EIO;
4058
4059 status = ql_get_alt_pcie_func(qdev);
4060 if (status)
4061 return status;
4062
4063 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4064 if (qdev->port) {
c4e84bde
RM
4065 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4066 qdev->port_link_up = STS_PL1;
4067 qdev->port_init = STS_PI1;
4068 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4069 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4070 } else {
4071 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4072 qdev->port_link_up = STS_PL0;
4073 qdev->port_init = STS_PI0;
4074 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4075 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4076 }
4077 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4078 qdev->device_id = qdev->pdev->device;
4079 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4080 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4081 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4082 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4083 return status;
c4e84bde
RM
4084}
4085
4086static void ql_release_all(struct pci_dev *pdev)
4087{
4088 struct net_device *ndev = pci_get_drvdata(pdev);
4089 struct ql_adapter *qdev = netdev_priv(ndev);
4090
4091 if (qdev->workqueue) {
4092 destroy_workqueue(qdev->workqueue);
4093 qdev->workqueue = NULL;
4094 }
39aa8165 4095
c4e84bde 4096 if (qdev->reg_base)
8668ae92 4097 iounmap(qdev->reg_base);
c4e84bde
RM
4098 if (qdev->doorbell_area)
4099 iounmap(qdev->doorbell_area);
4100 pci_release_regions(pdev);
4101 pci_set_drvdata(pdev, NULL);
4102}
4103
4104static int __devinit ql_init_device(struct pci_dev *pdev,
4105 struct net_device *ndev, int cards_found)
4106{
4107 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4108 int err = 0;
c4e84bde 4109
e332471c 4110 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4111 err = pci_enable_device(pdev);
4112 if (err) {
4113 dev_err(&pdev->dev, "PCI device enable failed.\n");
4114 return err;
4115 }
4116
ebd6e774
RM
4117 qdev->ndev = ndev;
4118 qdev->pdev = pdev;
4119 pci_set_drvdata(pdev, ndev);
c4e84bde 4120
bc9167f3
RM
4121 /* Set PCIe read request size */
4122 err = pcie_set_readrq(pdev, 4096);
4123 if (err) {
4124 dev_err(&pdev->dev, "Set readrq failed.\n");
4125 goto err_out;
4126 }
4127
c4e84bde
RM
4128 err = pci_request_regions(pdev, DRV_NAME);
4129 if (err) {
4130 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4131 return err;
c4e84bde
RM
4132 }
4133
4134 pci_set_master(pdev);
6a35528a 4135 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4136 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4137 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4138 } else {
284901a9 4139 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4140 if (!err)
284901a9 4141 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4142 }
4143
4144 if (err) {
4145 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4146 goto err_out;
4147 }
4148
73475339
RM
4149 /* Set PCIe reset type for EEH to fundamental. */
4150 pdev->needs_freset = 1;
6d190c6e 4151 pci_save_state(pdev);
c4e84bde
RM
4152 qdev->reg_base =
4153 ioremap_nocache(pci_resource_start(pdev, 1),
4154 pci_resource_len(pdev, 1));
4155 if (!qdev->reg_base) {
4156 dev_err(&pdev->dev, "Register mapping failed.\n");
4157 err = -ENOMEM;
4158 goto err_out;
4159 }
4160
4161 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4162 qdev->doorbell_area =
4163 ioremap_nocache(pci_resource_start(pdev, 3),
4164 pci_resource_len(pdev, 3));
4165 if (!qdev->doorbell_area) {
4166 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4167 err = -ENOMEM;
4168 goto err_out;
4169 }
4170
e4552f51
RM
4171 err = ql_get_board_info(qdev);
4172 if (err) {
4173 dev_err(&pdev->dev, "Register access failed.\n");
4174 err = -EIO;
4175 goto err_out;
4176 }
c4e84bde
RM
4177 qdev->msg_enable = netif_msg_init(debug, default_msg);
4178 spin_lock_init(&qdev->hw_lock);
4179 spin_lock_init(&qdev->stats_lock);
4180
4181 /* make sure the EEPROM is good */
b0c2aadf 4182 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4183 if (err) {
4184 dev_err(&pdev->dev, "Invalid FLASH.\n");
4185 goto err_out;
4186 }
4187
c4e84bde
RM
4188 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4189
4190 /* Set up the default ring sizes. */
4191 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4192 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4193
4194 /* Set up the coalescing parameters. */
4195 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4196 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4197 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4198 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4199
4200 /*
4201 * Set up the operating parameters.
4202 */
4203 qdev->rx_csum = 1;
c4e84bde
RM
4204 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4205 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4206 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4207 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4208 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4209 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
bcc2cb3b 4210 init_completion(&qdev->ide_completion);
c4e84bde
RM
4211
4212 if (!cards_found) {
4213 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4214 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4215 DRV_NAME, DRV_VERSION);
4216 }
4217 return 0;
4218err_out:
4219 ql_release_all(pdev);
4220 pci_disable_device(pdev);
4221 return err;
4222}
4223
25ed7849
SH
4224static const struct net_device_ops qlge_netdev_ops = {
4225 .ndo_open = qlge_open,
4226 .ndo_stop = qlge_close,
4227 .ndo_start_xmit = qlge_send,
4228 .ndo_change_mtu = qlge_change_mtu,
4229 .ndo_get_stats = qlge_get_stats,
4230 .ndo_set_multicast_list = qlge_set_multicast_list,
4231 .ndo_set_mac_address = qlge_set_mac_address,
4232 .ndo_validate_addr = eth_validate_addr,
4233 .ndo_tx_timeout = qlge_tx_timeout,
01e6b953
RM
4234 .ndo_vlan_rx_register = qlge_vlan_rx_register,
4235 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4236 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4237};
4238
c4e84bde
RM
4239static int __devinit qlge_probe(struct pci_dev *pdev,
4240 const struct pci_device_id *pci_entry)
4241{
4242 struct net_device *ndev = NULL;
4243 struct ql_adapter *qdev = NULL;
4244 static int cards_found = 0;
4245 int err = 0;
4246
1e213303
RM
4247 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4248 min(MAX_CPUS, (int)num_online_cpus()));
c4e84bde
RM
4249 if (!ndev)
4250 return -ENOMEM;
4251
4252 err = ql_init_device(pdev, ndev, cards_found);
4253 if (err < 0) {
4254 free_netdev(ndev);
4255 return err;
4256 }
4257
4258 qdev = netdev_priv(ndev);
4259 SET_NETDEV_DEV(ndev, &pdev->dev);
4260 ndev->features = (0
4261 | NETIF_F_IP_CSUM
4262 | NETIF_F_SG
4263 | NETIF_F_TSO
4264 | NETIF_F_TSO6
4265 | NETIF_F_TSO_ECN
4266 | NETIF_F_HW_VLAN_TX
4267 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
22bdd4f5 4268 ndev->features |= NETIF_F_GRO;
c4e84bde
RM
4269
4270 if (test_bit(QL_DMA64, &qdev->flags))
4271 ndev->features |= NETIF_F_HIGHDMA;
4272
4273 /*
4274 * Set up net_device structure.
4275 */
4276 ndev->tx_queue_len = qdev->tx_ring_size;
4277 ndev->irq = pdev->irq;
25ed7849
SH
4278
4279 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4280 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4281 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4282
c4e84bde
RM
4283 err = register_netdev(ndev);
4284 if (err) {
4285 dev_err(&pdev->dev, "net device registration failed.\n");
4286 ql_release_all(pdev);
4287 pci_disable_device(pdev);
4288 return err;
4289 }
6a473308 4290 ql_link_off(qdev);
c4e84bde 4291 ql_display_dev_info(ndev);
9dfbbaa6 4292 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4293 cards_found++;
4294 return 0;
4295}
4296
9dfbbaa6
RM
4297netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4298{
4299 return qlge_send(skb, ndev);
4300}
4301
4302int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4303{
4304 return ql_clean_inbound_rx_ring(rx_ring, budget);
4305}
4306
c4e84bde
RM
4307static void __devexit qlge_remove(struct pci_dev *pdev)
4308{
4309 struct net_device *ndev = pci_get_drvdata(pdev);
4310 unregister_netdev(ndev);
4311 ql_release_all(pdev);
4312 pci_disable_device(pdev);
4313 free_netdev(ndev);
4314}
4315
6d190c6e
RM
4316/* Clean up resources without touching hardware. */
4317static void ql_eeh_close(struct net_device *ndev)
4318{
4319 int i;
4320 struct ql_adapter *qdev = netdev_priv(ndev);
4321
4322 if (netif_carrier_ok(ndev)) {
4323 netif_carrier_off(ndev);
4324 netif_stop_queue(ndev);
4325 }
4326
4327 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
4328 cancel_delayed_work_sync(&qdev->asic_reset_work);
4329 cancel_delayed_work_sync(&qdev->mpi_reset_work);
4330 cancel_delayed_work_sync(&qdev->mpi_work);
4331 cancel_delayed_work_sync(&qdev->mpi_idc_work);
4332 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
4333
4334 for (i = 0; i < qdev->rss_ring_count; i++)
4335 netif_napi_del(&qdev->rx_ring[i].napi);
4336
4337 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4338 ql_tx_ring_clean(qdev);
4339 ql_free_rx_buffers(qdev);
4340 ql_release_adapter_resources(qdev);
4341}
4342
c4e84bde
RM
4343/*
4344 * This callback is called by the PCI subsystem whenever
4345 * a PCI bus error is detected.
4346 */
4347static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4348 enum pci_channel_state state)
4349{
4350 struct net_device *ndev = pci_get_drvdata(pdev);
fbc663ce 4351
6d190c6e
RM
4352 switch (state) {
4353 case pci_channel_io_normal:
4354 return PCI_ERS_RESULT_CAN_RECOVER;
4355 case pci_channel_io_frozen:
4356 netif_device_detach(ndev);
4357 if (netif_running(ndev))
4358 ql_eeh_close(ndev);
4359 pci_disable_device(pdev);
4360 return PCI_ERS_RESULT_NEED_RESET;
4361 case pci_channel_io_perm_failure:
4362 dev_err(&pdev->dev,
4363 "%s: pci_channel_io_perm_failure.\n", __func__);
fbc663ce 4364 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4365 }
c4e84bde
RM
4366
4367 /* Request a slot reset. */
4368 return PCI_ERS_RESULT_NEED_RESET;
4369}
4370
4371/*
4372 * This callback is called after the PCI buss has been reset.
4373 * Basically, this tries to restart the card from scratch.
4374 * This is a shortened version of the device probe/discovery code,
4375 * it resembles the first-half of the () routine.
4376 */
4377static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4378{
4379 struct net_device *ndev = pci_get_drvdata(pdev);
4380 struct ql_adapter *qdev = netdev_priv(ndev);
4381
6d190c6e
RM
4382 pdev->error_state = pci_channel_io_normal;
4383
4384 pci_restore_state(pdev);
c4e84bde
RM
4385 if (pci_enable_device(pdev)) {
4386 QPRINTK(qdev, IFUP, ERR,
4387 "Cannot re-enable PCI device after reset.\n");
4388 return PCI_ERS_RESULT_DISCONNECT;
4389 }
c4e84bde 4390 pci_set_master(pdev);
c4e84bde
RM
4391 return PCI_ERS_RESULT_RECOVERED;
4392}
4393
4394static void qlge_io_resume(struct pci_dev *pdev)
4395{
4396 struct net_device *ndev = pci_get_drvdata(pdev);
4397 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4398 int err = 0;
c4e84bde 4399
6d190c6e
RM
4400 if (ql_adapter_reset(qdev))
4401 QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
c4e84bde 4402 if (netif_running(ndev)) {
6d190c6e
RM
4403 err = qlge_open(ndev);
4404 if (err) {
c4e84bde
RM
4405 QPRINTK(qdev, IFUP, ERR,
4406 "Device initialization failed after reset.\n");
4407 return;
4408 }
6d190c6e
RM
4409 } else {
4410 QPRINTK(qdev, IFUP, ERR,
4411 "Device was not running prior to EEH.\n");
c4e84bde 4412 }
c4e84bde
RM
4413 netif_device_attach(ndev);
4414}
4415
4416static struct pci_error_handlers qlge_err_handler = {
4417 .error_detected = qlge_io_error_detected,
4418 .slot_reset = qlge_io_slot_reset,
4419 .resume = qlge_io_resume,
4420};
4421
4422static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4423{
4424 struct net_device *ndev = pci_get_drvdata(pdev);
4425 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4426 int err;
c4e84bde
RM
4427
4428 netif_device_detach(ndev);
4429
4430 if (netif_running(ndev)) {
4431 err = ql_adapter_down(qdev);
4432 if (!err)
4433 return err;
4434 }
4435
bc083ce9 4436 ql_wol(qdev);
c4e84bde
RM
4437 err = pci_save_state(pdev);
4438 if (err)
4439 return err;
4440
4441 pci_disable_device(pdev);
4442
4443 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4444
4445 return 0;
4446}
4447
04da2cf9 4448#ifdef CONFIG_PM
c4e84bde
RM
4449static int qlge_resume(struct pci_dev *pdev)
4450{
4451 struct net_device *ndev = pci_get_drvdata(pdev);
4452 struct ql_adapter *qdev = netdev_priv(ndev);
4453 int err;
4454
4455 pci_set_power_state(pdev, PCI_D0);
4456 pci_restore_state(pdev);
4457 err = pci_enable_device(pdev);
4458 if (err) {
4459 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4460 return err;
4461 }
4462 pci_set_master(pdev);
4463
4464 pci_enable_wake(pdev, PCI_D3hot, 0);
4465 pci_enable_wake(pdev, PCI_D3cold, 0);
4466
4467 if (netif_running(ndev)) {
4468 err = ql_adapter_up(qdev);
4469 if (err)
4470 return err;
4471 }
4472
4473 netif_device_attach(ndev);
4474
4475 return 0;
4476}
04da2cf9 4477#endif /* CONFIG_PM */
c4e84bde
RM
4478
4479static void qlge_shutdown(struct pci_dev *pdev)
4480{
4481 qlge_suspend(pdev, PMSG_SUSPEND);
4482}
4483
4484static struct pci_driver qlge_driver = {
4485 .name = DRV_NAME,
4486 .id_table = qlge_pci_tbl,
4487 .probe = qlge_probe,
4488 .remove = __devexit_p(qlge_remove),
4489#ifdef CONFIG_PM
4490 .suspend = qlge_suspend,
4491 .resume = qlge_resume,
4492#endif
4493 .shutdown = qlge_shutdown,
4494 .err_handler = &qlge_err_handler
4495};
4496
4497static int __init qlge_init_module(void)
4498{
4499 return pci_register_driver(&qlge_driver);
4500}
4501
4502static void __exit qlge_exit(void)
4503{
4504 pci_unregister_driver(&qlge_driver);
4505}
4506
4507module_init(qlge_init_module);
4508module_exit(qlge_exit);