]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/qlge/qlge_main.c
qlge: bugfix: Fix endian issue when reading flash.
[net-next-2.6.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 NETIF_MSG_TX_QUEUED |
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
216 status = ql_wait_cfg(qdev, bit);
217 if (status) {
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
220 goto exit;
221 }
222
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224 if (status)
225 goto exit;
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
239 pci_unmap_single(qdev->pdev, map, size, direction);
240 return status;
241}
242
243/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245 u32 *value)
246{
247 u32 offset = 0;
248 int status;
249
250 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251 if (status)
252 return status;
253 switch (type) {
254 case MAC_ADDR_TYPE_MULTI_MAC:
255 case MAC_ADDR_TYPE_CAM_MAC:
256 {
257 status =
258 ql_wait_reg_rdy(qdev,
939678f8 259 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
260 if (status)
261 goto exit;
262 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265 status =
266 ql_wait_reg_rdy(qdev,
939678f8 267 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
268 if (status)
269 goto exit;
270 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271 status =
272 ql_wait_reg_rdy(qdev,
939678f8 273 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
274 if (status)
275 goto exit;
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279 status =
280 ql_wait_reg_rdy(qdev,
939678f8 281 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
282 if (status)
283 goto exit;
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 if (type == MAC_ADDR_TYPE_CAM_MAC) {
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 296 MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 }
301 break;
302 }
303 case MAC_ADDR_TYPE_VLAN:
304 case MAC_ADDR_TYPE_MULTI_FLTR:
305 default:
306 QPRINTK(qdev, IFUP, CRIT,
307 "Address type %d not yet supported.\n", type);
308 status = -EPERM;
309 }
310exit:
311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312 return status;
313}
314
315/* Set up a MAC, multicast or VLAN address for the
316 * inbound frame matching.
317 */
318static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319 u16 index)
320{
321 u32 offset = 0;
322 int status = 0;
323
324 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325 if (status)
326 return status;
327 switch (type) {
328 case MAC_ADDR_TYPE_MULTI_MAC:
329 case MAC_ADDR_TYPE_CAM_MAC:
330 {
331 u32 cam_output;
332 u32 upper = (addr[0] << 8) | addr[1];
333 u32 lower =
334 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335 (addr[5]);
336
337 QPRINTK(qdev, IFUP, INFO,
7c510e4b 338 "Adding %s address %pM"
c4e84bde
RM
339 " at index %d in the CAM.\n",
340 ((type ==
341 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 342 "UNICAST"), addr, index);
c4e84bde
RM
343
344 status =
345 ql_wait_reg_rdy(qdev,
939678f8 346 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
347 if (status)
348 goto exit;
349 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350 (index << MAC_ADDR_IDX_SHIFT) | /* index */
351 type); /* type */
352 ql_write32(qdev, MAC_ADDR_DATA, lower);
353 status =
354 ql_wait_reg_rdy(qdev,
939678f8 355 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
356 if (status)
357 goto exit;
358 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359 (index << MAC_ADDR_IDX_SHIFT) | /* index */
360 type); /* type */
361 ql_write32(qdev, MAC_ADDR_DATA, upper);
362 status =
363 ql_wait_reg_rdy(qdev,
939678f8 364 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
365 if (status)
366 goto exit;
367 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
368 (index << MAC_ADDR_IDX_SHIFT) | /* index */
369 type); /* type */
370 /* This field should also include the queue id
371 and possibly the function id. Right now we hardcode
372 the route field to NIC core.
373 */
374 if (type == MAC_ADDR_TYPE_CAM_MAC) {
375 cam_output = (CAM_OUT_ROUTE_NIC |
376 (qdev->
377 func << CAM_OUT_FUNC_SHIFT) |
378 (qdev->
379 rss_ring_first_cq_id <<
380 CAM_OUT_CQ_ID_SHIFT));
381 if (qdev->vlgrp)
382 cam_output |= CAM_OUT_RV;
383 /* route to NIC core */
384 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385 }
386 break;
387 }
388 case MAC_ADDR_TYPE_VLAN:
389 {
390 u32 enable_bit = *((u32 *) &addr[0]);
391 /* For VLAN, the addr actually holds a bit that
392 * either enables or disables the vlan id we are
393 * addressing. It's either MAC_ADDR_E on or off.
394 * That's bit-27 we're talking about.
395 */
396 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397 (enable_bit ? "Adding" : "Removing"),
398 index, (enable_bit ? "to" : "from"));
399
400 status =
401 ql_wait_reg_rdy(qdev,
939678f8 402 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
403 if (status)
404 goto exit;
405 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406 (index << MAC_ADDR_IDX_SHIFT) | /* index */
407 type | /* type */
408 enable_bit); /* enable/disable */
409 break;
410 }
411 case MAC_ADDR_TYPE_MULTI_FLTR:
412 default:
413 QPRINTK(qdev, IFUP, CRIT,
414 "Address type %d not yet supported.\n", type);
415 status = -EPERM;
416 }
417exit:
418 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419 return status;
420}
421
422/* Get a specific frame routing value from the CAM.
423 * Used for debug and reg dump.
424 */
425int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426{
427 int status = 0;
428
429 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430 if (status)
431 goto exit;
432
939678f8 433 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
434 if (status)
435 goto exit;
436
437 ql_write32(qdev, RT_IDX,
438 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 439 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
440 if (status)
441 goto exit;
442 *value = ql_read32(qdev, RT_DATA);
443exit:
444 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445 return status;
446}
447
448/* The NIC function for this chip has 16 routing indexes. Each one can be used
449 * to route different frame types to various inbound queues. We send broadcast/
450 * multicast/error frames to the default queue for slow handling,
451 * and CAM hit/RSS frames to the fast handling queues.
452 */
453static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454 int enable)
455{
456 int status;
457 u32 value = 0;
458
459 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460 if (status)
461 return status;
462
463 QPRINTK(qdev, IFUP, DEBUG,
464 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465 (enable ? "Adding" : "Removing"),
466 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468 ((index ==
469 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483 (enable ? "to" : "from"));
484
485 switch (mask) {
486 case RT_IDX_CAM_HIT:
487 {
488 value = RT_IDX_DST_CAM_Q | /* dest */
489 RT_IDX_TYPE_NICQ | /* type */
490 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491 break;
492 }
493 case RT_IDX_VALID: /* Promiscuous Mode frames. */
494 {
495 value = RT_IDX_DST_DFLT_Q | /* dest */
496 RT_IDX_TYPE_NICQ | /* type */
497 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498 break;
499 }
500 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
501 {
502 value = RT_IDX_DST_DFLT_Q | /* dest */
503 RT_IDX_TYPE_NICQ | /* type */
504 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505 break;
506 }
507 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
508 {
509 value = RT_IDX_DST_DFLT_Q | /* dest */
510 RT_IDX_TYPE_NICQ | /* type */
511 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512 break;
513 }
514 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
515 {
516 value = RT_IDX_DST_CAM_Q | /* dest */
517 RT_IDX_TYPE_NICQ | /* type */
518 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519 break;
520 }
521 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
522 {
523 value = RT_IDX_DST_CAM_Q | /* dest */
524 RT_IDX_TYPE_NICQ | /* type */
525 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526 break;
527 }
528 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
529 {
530 value = RT_IDX_DST_RSS | /* dest */
531 RT_IDX_TYPE_NICQ | /* type */
532 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533 break;
534 }
535 case 0: /* Clear the E-bit on an entry. */
536 {
537 value = RT_IDX_DST_DFLT_Q | /* dest */
538 RT_IDX_TYPE_NICQ | /* type */
539 (index << RT_IDX_IDX_SHIFT);/* index */
540 break;
541 }
542 default:
543 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544 mask);
545 status = -EPERM;
546 goto exit;
547 }
548
549 if (value) {
550 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551 if (status)
552 goto exit;
553 value |= (enable ? RT_IDX_E : 0);
554 ql_write32(qdev, RT_IDX, value);
555 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556 }
557exit:
558 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559 return status;
560}
561
562static void ql_enable_interrupts(struct ql_adapter *qdev)
563{
564 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565}
566
567static void ql_disable_interrupts(struct ql_adapter *qdev)
568{
569 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570}
571
572/* If we're running with multiple MSI-X vectors then we enable on the fly.
573 * Otherwise, we may have multiple outstanding workers and don't want to
574 * enable until the last one finishes. In this case, the irq_cnt gets
575 * incremented everytime we queue a worker and decremented everytime
576 * a worker finishes. Once it hits zero we enable the interrupt.
577 */
bb0d215c 578u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 579{
bb0d215c
RM
580 u32 var = 0;
581 unsigned long hw_flags = 0;
582 struct intr_context *ctx = qdev->intr_context + intr;
583
584 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585 /* Always enable if we're MSIX multi interrupts and
586 * it's not the default (zeroeth) interrupt.
587 */
c4e84bde 588 ql_write32(qdev, INTR_EN,
bb0d215c
RM
589 ctx->intr_en_mask);
590 var = ql_read32(qdev, STS);
591 return var;
c4e84bde 592 }
bb0d215c
RM
593
594 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595 if (atomic_dec_and_test(&ctx->irq_cnt)) {
596 ql_write32(qdev, INTR_EN,
597 ctx->intr_en_mask);
598 var = ql_read32(qdev, STS);
599 }
600 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601 return var;
c4e84bde
RM
602}
603
604static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605{
606 u32 var = 0;
bb0d215c
RM
607 unsigned long hw_flags;
608 struct intr_context *ctx;
c4e84bde 609
bb0d215c
RM
610 /* HW disables for us if we're MSIX multi interrupts and
611 * it's not the default (zeroeth) interrupt.
612 */
613 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614 return 0;
615
616 ctx = qdev->intr_context + intr;
617 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 619 ql_write32(qdev, INTR_EN,
bb0d215c 620 ctx->intr_dis_mask);
c4e84bde
RM
621 var = ql_read32(qdev, STS);
622 }
bb0d215c
RM
623 atomic_inc(&ctx->irq_cnt);
624 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
c4e84bde
RM
625 return var;
626}
627
628static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629{
630 int i;
631 for (i = 0; i < qdev->intr_count; i++) {
632 /* The enable call does a atomic_dec_and_test
633 * and enables only if the result is zero.
634 * So we precharge it here.
635 */
bb0d215c
RM
636 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637 i == 0))
638 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
639 ql_enable_completion_interrupt(qdev, i);
640 }
641
642}
643
26351479 644static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
645{
646 int status = 0;
647 /* wait for reg to come ready */
648 status = ql_wait_reg_rdy(qdev,
649 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650 if (status)
651 goto exit;
652 /* set up for reg read */
653 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654 /* wait for reg to come ready */
655 status = ql_wait_reg_rdy(qdev,
656 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657 if (status)
658 goto exit;
26351479
RM
659 /* This data is stored on flash as an array of
660 * __le32. Since ql_read32() returns cpu endian
661 * we need to swap it back.
662 */
663 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
664exit:
665 return status;
666}
667
668static int ql_get_flash_params(struct ql_adapter *qdev)
669{
670 int i;
671 int status;
26351479 672 __le32 *p = (__le32 *)&qdev->flash;
c4e84bde
RM
673
674 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
675 return -ETIMEDOUT;
676
677 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
678 status = ql_read_flash_word(qdev, i, p);
679 if (status) {
680 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
681 goto exit;
682 }
683
684 }
685exit:
686 ql_sem_unlock(qdev, SEM_FLASH_MASK);
687 return status;
688}
689
690/* xgmac register are located behind the xgmac_addr and xgmac_data
691 * register pair. Each read/write requires us to wait for the ready
692 * bit before reading/writing the data.
693 */
694static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
695{
696 int status;
697 /* wait for reg to come ready */
698 status = ql_wait_reg_rdy(qdev,
699 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
700 if (status)
701 return status;
702 /* write the data to the data reg */
703 ql_write32(qdev, XGMAC_DATA, data);
704 /* trigger the write */
705 ql_write32(qdev, XGMAC_ADDR, reg);
706 return status;
707}
708
709/* xgmac register are located behind the xgmac_addr and xgmac_data
710 * register pair. Each read/write requires us to wait for the ready
711 * bit before reading/writing the data.
712 */
713int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
714{
715 int status = 0;
716 /* wait for reg to come ready */
717 status = ql_wait_reg_rdy(qdev,
718 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
719 if (status)
720 goto exit;
721 /* set up for reg read */
722 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726 if (status)
727 goto exit;
728 /* get the data */
729 *data = ql_read32(qdev, XGMAC_DATA);
730exit:
731 return status;
732}
733
734/* This is used for reading the 64-bit statistics regs. */
735int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
736{
737 int status = 0;
738 u32 hi = 0;
739 u32 lo = 0;
740
741 status = ql_read_xgmac_reg(qdev, reg, &lo);
742 if (status)
743 goto exit;
744
745 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
746 if (status)
747 goto exit;
748
749 *data = (u64) lo | ((u64) hi << 32);
750
751exit:
752 return status;
753}
754
755/* Take the MAC Core out of reset.
756 * Enable statistics counting.
757 * Take the transmitter/receiver out of reset.
758 * This functionality may be done in the MPI firmware at a
759 * later date.
760 */
761static int ql_port_initialize(struct ql_adapter *qdev)
762{
763 int status = 0;
764 u32 data;
765
766 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
767 /* Another function has the semaphore, so
768 * wait for the port init bit to come ready.
769 */
770 QPRINTK(qdev, LINK, INFO,
771 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
772 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
773 if (status) {
774 QPRINTK(qdev, LINK, CRIT,
775 "Port initialize timed out.\n");
776 }
777 return status;
778 }
779
780 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
781 /* Set the core reset. */
782 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
783 if (status)
784 goto end;
785 data |= GLOBAL_CFG_RESET;
786 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
787 if (status)
788 goto end;
789
790 /* Clear the core reset and turn on jumbo for receiver. */
791 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
792 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
793 data |= GLOBAL_CFG_TX_STAT_EN;
794 data |= GLOBAL_CFG_RX_STAT_EN;
795 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
796 if (status)
797 goto end;
798
799 /* Enable transmitter, and clear it's reset. */
800 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
801 if (status)
802 goto end;
803 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
804 data |= TX_CFG_EN; /* Enable the transmitter. */
805 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
806 if (status)
807 goto end;
808
809 /* Enable receiver and clear it's reset. */
810 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
811 if (status)
812 goto end;
813 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
814 data |= RX_CFG_EN; /* Enable the receiver. */
815 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
816 if (status)
817 goto end;
818
819 /* Turn on jumbo. */
820 status =
821 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
822 if (status)
823 goto end;
824 status =
825 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
826 if (status)
827 goto end;
828
829 /* Signal to the world that the port is enabled. */
830 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
831end:
832 ql_sem_unlock(qdev, qdev->xg_sem_mask);
833 return status;
834}
835
836/* Get the next large buffer. */
8668ae92 837static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
838{
839 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
840 rx_ring->lbq_curr_idx++;
841 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
842 rx_ring->lbq_curr_idx = 0;
843 rx_ring->lbq_free_cnt++;
844 return lbq_desc;
845}
846
847/* Get the next small buffer. */
8668ae92 848static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
849{
850 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
851 rx_ring->sbq_curr_idx++;
852 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
853 rx_ring->sbq_curr_idx = 0;
854 rx_ring->sbq_free_cnt++;
855 return sbq_desc;
856}
857
858/* Update an rx ring index. */
859static void ql_update_cq(struct rx_ring *rx_ring)
860{
861 rx_ring->cnsmr_idx++;
862 rx_ring->curr_entry++;
863 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
864 rx_ring->cnsmr_idx = 0;
865 rx_ring->curr_entry = rx_ring->cq_base;
866 }
867}
868
869static void ql_write_cq_idx(struct rx_ring *rx_ring)
870{
871 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
872}
873
874/* Process (refill) a large buffer queue. */
875static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
876{
877 int clean_idx = rx_ring->lbq_clean_idx;
878 struct bq_desc *lbq_desc;
c4e84bde
RM
879 u64 map;
880 int i;
881
882 while (rx_ring->lbq_free_cnt > 16) {
883 for (i = 0; i < 16; i++) {
884 QPRINTK(qdev, RX_STATUS, DEBUG,
885 "lbq: try cleaning clean_idx = %d.\n",
886 clean_idx);
887 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
888 if (lbq_desc->p.lbq_page == NULL) {
889 QPRINTK(qdev, RX_STATUS, DEBUG,
890 "lbq: getting new page for index %d.\n",
891 lbq_desc->index);
892 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
893 if (lbq_desc->p.lbq_page == NULL) {
894 QPRINTK(qdev, RX_STATUS, ERR,
895 "Couldn't get a page.\n");
896 return;
897 }
898 map = pci_map_page(qdev->pdev,
899 lbq_desc->p.lbq_page,
900 0, PAGE_SIZE,
901 PCI_DMA_FROMDEVICE);
902 if (pci_dma_mapping_error(qdev->pdev, map)) {
903 QPRINTK(qdev, RX_STATUS, ERR,
904 "PCI mapping failed.\n");
905 return;
906 }
907 pci_unmap_addr_set(lbq_desc, mapaddr, map);
908 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 909 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
910 }
911 clean_idx++;
912 if (clean_idx == rx_ring->lbq_len)
913 clean_idx = 0;
914 }
915
916 rx_ring->lbq_clean_idx = clean_idx;
917 rx_ring->lbq_prod_idx += 16;
918 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
919 rx_ring->lbq_prod_idx = 0;
920 QPRINTK(qdev, RX_STATUS, DEBUG,
921 "lbq: updating prod idx = %d.\n",
922 rx_ring->lbq_prod_idx);
923 ql_write_db_reg(rx_ring->lbq_prod_idx,
924 rx_ring->lbq_prod_idx_db_reg);
925 rx_ring->lbq_free_cnt -= 16;
926 }
927}
928
929/* Process (refill) a small buffer queue. */
930static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
931{
932 int clean_idx = rx_ring->sbq_clean_idx;
933 struct bq_desc *sbq_desc;
c4e84bde
RM
934 u64 map;
935 int i;
936
937 while (rx_ring->sbq_free_cnt > 16) {
938 for (i = 0; i < 16; i++) {
939 sbq_desc = &rx_ring->sbq[clean_idx];
940 QPRINTK(qdev, RX_STATUS, DEBUG,
941 "sbq: try cleaning clean_idx = %d.\n",
942 clean_idx);
c4e84bde
RM
943 if (sbq_desc->p.skb == NULL) {
944 QPRINTK(qdev, RX_STATUS, DEBUG,
945 "sbq: getting new skb for index %d.\n",
946 sbq_desc->index);
947 sbq_desc->p.skb =
948 netdev_alloc_skb(qdev->ndev,
949 rx_ring->sbq_buf_size);
950 if (sbq_desc->p.skb == NULL) {
951 QPRINTK(qdev, PROBE, ERR,
952 "Couldn't get an skb.\n");
953 rx_ring->sbq_clean_idx = clean_idx;
954 return;
955 }
956 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
957 map = pci_map_single(qdev->pdev,
958 sbq_desc->p.skb->data,
959 rx_ring->sbq_buf_size /
960 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
961 if (pci_dma_mapping_error(qdev->pdev, map)) {
962 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
963 rx_ring->sbq_clean_idx = clean_idx;
964 return;
965 }
c4e84bde
RM
966 pci_unmap_addr_set(sbq_desc, mapaddr, map);
967 pci_unmap_len_set(sbq_desc, maplen,
968 rx_ring->sbq_buf_size / 2);
2c9a0d41 969 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
970 }
971
972 clean_idx++;
973 if (clean_idx == rx_ring->sbq_len)
974 clean_idx = 0;
975 }
976 rx_ring->sbq_clean_idx = clean_idx;
977 rx_ring->sbq_prod_idx += 16;
978 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
979 rx_ring->sbq_prod_idx = 0;
980 QPRINTK(qdev, RX_STATUS, DEBUG,
981 "sbq: updating prod idx = %d.\n",
982 rx_ring->sbq_prod_idx);
983 ql_write_db_reg(rx_ring->sbq_prod_idx,
984 rx_ring->sbq_prod_idx_db_reg);
985
986 rx_ring->sbq_free_cnt -= 16;
987 }
988}
989
990static void ql_update_buffer_queues(struct ql_adapter *qdev,
991 struct rx_ring *rx_ring)
992{
993 ql_update_sbq(qdev, rx_ring);
994 ql_update_lbq(qdev, rx_ring);
995}
996
997/* Unmaps tx buffers. Can be called from send() if a pci mapping
998 * fails at some stage, or from the interrupt when a tx completes.
999 */
1000static void ql_unmap_send(struct ql_adapter *qdev,
1001 struct tx_ring_desc *tx_ring_desc, int mapped)
1002{
1003 int i;
1004 for (i = 0; i < mapped; i++) {
1005 if (i == 0 || (i == 7 && mapped > 7)) {
1006 /*
1007 * Unmap the skb->data area, or the
1008 * external sglist (AKA the Outbound
1009 * Address List (OAL)).
1010 * If its the zeroeth element, then it's
1011 * the skb->data area. If it's the 7th
1012 * element and there is more than 6 frags,
1013 * then its an OAL.
1014 */
1015 if (i == 7) {
1016 QPRINTK(qdev, TX_DONE, DEBUG,
1017 "unmapping OAL area.\n");
1018 }
1019 pci_unmap_single(qdev->pdev,
1020 pci_unmap_addr(&tx_ring_desc->map[i],
1021 mapaddr),
1022 pci_unmap_len(&tx_ring_desc->map[i],
1023 maplen),
1024 PCI_DMA_TODEVICE);
1025 } else {
1026 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1027 i);
1028 pci_unmap_page(qdev->pdev,
1029 pci_unmap_addr(&tx_ring_desc->map[i],
1030 mapaddr),
1031 pci_unmap_len(&tx_ring_desc->map[i],
1032 maplen), PCI_DMA_TODEVICE);
1033 }
1034 }
1035
1036}
1037
1038/* Map the buffers for this transmit. This will return
1039 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1040 */
1041static int ql_map_send(struct ql_adapter *qdev,
1042 struct ob_mac_iocb_req *mac_iocb_ptr,
1043 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1044{
1045 int len = skb_headlen(skb);
1046 dma_addr_t map;
1047 int frag_idx, err, map_idx = 0;
1048 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1049 int frag_cnt = skb_shinfo(skb)->nr_frags;
1050
1051 if (frag_cnt) {
1052 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1053 }
1054 /*
1055 * Map the skb buffer first.
1056 */
1057 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1058
1059 err = pci_dma_mapping_error(qdev->pdev, map);
1060 if (err) {
1061 QPRINTK(qdev, TX_QUEUED, ERR,
1062 "PCI mapping failed with error: %d\n", err);
1063
1064 return NETDEV_TX_BUSY;
1065 }
1066
1067 tbd->len = cpu_to_le32(len);
1068 tbd->addr = cpu_to_le64(map);
1069 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1070 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1071 map_idx++;
1072
1073 /*
1074 * This loop fills the remainder of the 8 address descriptors
1075 * in the IOCB. If there are more than 7 fragments, then the
1076 * eighth address desc will point to an external list (OAL).
1077 * When this happens, the remainder of the frags will be stored
1078 * in this list.
1079 */
1080 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1081 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1082 tbd++;
1083 if (frag_idx == 6 && frag_cnt > 7) {
1084 /* Let's tack on an sglist.
1085 * Our control block will now
1086 * look like this:
1087 * iocb->seg[0] = skb->data
1088 * iocb->seg[1] = frag[0]
1089 * iocb->seg[2] = frag[1]
1090 * iocb->seg[3] = frag[2]
1091 * iocb->seg[4] = frag[3]
1092 * iocb->seg[5] = frag[4]
1093 * iocb->seg[6] = frag[5]
1094 * iocb->seg[7] = ptr to OAL (external sglist)
1095 * oal->seg[0] = frag[6]
1096 * oal->seg[1] = frag[7]
1097 * oal->seg[2] = frag[8]
1098 * oal->seg[3] = frag[9]
1099 * oal->seg[4] = frag[10]
1100 * etc...
1101 */
1102 /* Tack on the OAL in the eighth segment of IOCB. */
1103 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1104 sizeof(struct oal),
1105 PCI_DMA_TODEVICE);
1106 err = pci_dma_mapping_error(qdev->pdev, map);
1107 if (err) {
1108 QPRINTK(qdev, TX_QUEUED, ERR,
1109 "PCI mapping outbound address list with error: %d\n",
1110 err);
1111 goto map_error;
1112 }
1113
1114 tbd->addr = cpu_to_le64(map);
1115 /*
1116 * The length is the number of fragments
1117 * that remain to be mapped times the length
1118 * of our sglist (OAL).
1119 */
1120 tbd->len =
1121 cpu_to_le32((sizeof(struct tx_buf_desc) *
1122 (frag_cnt - frag_idx)) | TX_DESC_C);
1123 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1124 map);
1125 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1126 sizeof(struct oal));
1127 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1128 map_idx++;
1129 }
1130
1131 map =
1132 pci_map_page(qdev->pdev, frag->page,
1133 frag->page_offset, frag->size,
1134 PCI_DMA_TODEVICE);
1135
1136 err = pci_dma_mapping_error(qdev->pdev, map);
1137 if (err) {
1138 QPRINTK(qdev, TX_QUEUED, ERR,
1139 "PCI mapping frags failed with error: %d.\n",
1140 err);
1141 goto map_error;
1142 }
1143
1144 tbd->addr = cpu_to_le64(map);
1145 tbd->len = cpu_to_le32(frag->size);
1146 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1147 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1148 frag->size);
1149
1150 }
1151 /* Save the number of segments we've mapped. */
1152 tx_ring_desc->map_cnt = map_idx;
1153 /* Terminate the last segment. */
1154 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1155 return NETDEV_TX_OK;
1156
1157map_error:
1158 /*
1159 * If the first frag mapping failed, then i will be zero.
1160 * This causes the unmap of the skb->data area. Otherwise
1161 * we pass in the number of frags that mapped successfully
1162 * so they can be umapped.
1163 */
1164 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1165 return NETDEV_TX_BUSY;
1166}
1167
8668ae92 1168static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1169{
1170 void *temp_addr = skb->data;
1171
1172 /* Undo the skb_reserve(skb,32) we did before
1173 * giving to hardware, and realign data on
1174 * a 2-byte boundary.
1175 */
1176 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1177 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1178 skb_copy_to_linear_data(skb, temp_addr,
1179 (unsigned int)len);
1180}
1181
1182/*
1183 * This function builds an skb for the given inbound
1184 * completion. It will be rewritten for readability in the near
1185 * future, but for not it works well.
1186 */
1187static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1188 struct rx_ring *rx_ring,
1189 struct ib_mac_iocb_rsp *ib_mac_rsp)
1190{
1191 struct bq_desc *lbq_desc;
1192 struct bq_desc *sbq_desc;
1193 struct sk_buff *skb = NULL;
1194 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1195 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1196
1197 /*
1198 * Handle the header buffer if present.
1199 */
1200 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1201 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1202 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1203 /*
1204 * Headers fit nicely into a small buffer.
1205 */
1206 sbq_desc = ql_get_curr_sbuf(rx_ring);
1207 pci_unmap_single(qdev->pdev,
1208 pci_unmap_addr(sbq_desc, mapaddr),
1209 pci_unmap_len(sbq_desc, maplen),
1210 PCI_DMA_FROMDEVICE);
1211 skb = sbq_desc->p.skb;
1212 ql_realign_skb(skb, hdr_len);
1213 skb_put(skb, hdr_len);
1214 sbq_desc->p.skb = NULL;
1215 }
1216
1217 /*
1218 * Handle the data buffer(s).
1219 */
1220 if (unlikely(!length)) { /* Is there data too? */
1221 QPRINTK(qdev, RX_STATUS, DEBUG,
1222 "No Data buffer in this packet.\n");
1223 return skb;
1224 }
1225
1226 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1227 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1228 QPRINTK(qdev, RX_STATUS, DEBUG,
1229 "Headers in small, data of %d bytes in small, combine them.\n", length);
1230 /*
1231 * Data is less than small buffer size so it's
1232 * stuffed in a small buffer.
1233 * For this case we append the data
1234 * from the "data" small buffer to the "header" small
1235 * buffer.
1236 */
1237 sbq_desc = ql_get_curr_sbuf(rx_ring);
1238 pci_dma_sync_single_for_cpu(qdev->pdev,
1239 pci_unmap_addr
1240 (sbq_desc, mapaddr),
1241 pci_unmap_len
1242 (sbq_desc, maplen),
1243 PCI_DMA_FROMDEVICE);
1244 memcpy(skb_put(skb, length),
1245 sbq_desc->p.skb->data, length);
1246 pci_dma_sync_single_for_device(qdev->pdev,
1247 pci_unmap_addr
1248 (sbq_desc,
1249 mapaddr),
1250 pci_unmap_len
1251 (sbq_desc,
1252 maplen),
1253 PCI_DMA_FROMDEVICE);
1254 } else {
1255 QPRINTK(qdev, RX_STATUS, DEBUG,
1256 "%d bytes in a single small buffer.\n", length);
1257 sbq_desc = ql_get_curr_sbuf(rx_ring);
1258 skb = sbq_desc->p.skb;
1259 ql_realign_skb(skb, length);
1260 skb_put(skb, length);
1261 pci_unmap_single(qdev->pdev,
1262 pci_unmap_addr(sbq_desc,
1263 mapaddr),
1264 pci_unmap_len(sbq_desc,
1265 maplen),
1266 PCI_DMA_FROMDEVICE);
1267 sbq_desc->p.skb = NULL;
1268 }
1269 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1270 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1271 QPRINTK(qdev, RX_STATUS, DEBUG,
1272 "Header in small, %d bytes in large. Chain large to small!\n", length);
1273 /*
1274 * The data is in a single large buffer. We
1275 * chain it to the header buffer's skb and let
1276 * it rip.
1277 */
1278 lbq_desc = ql_get_curr_lbuf(rx_ring);
1279 pci_unmap_page(qdev->pdev,
1280 pci_unmap_addr(lbq_desc,
1281 mapaddr),
1282 pci_unmap_len(lbq_desc, maplen),
1283 PCI_DMA_FROMDEVICE);
1284 QPRINTK(qdev, RX_STATUS, DEBUG,
1285 "Chaining page to skb.\n");
1286 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1287 0, length);
1288 skb->len += length;
1289 skb->data_len += length;
1290 skb->truesize += length;
1291 lbq_desc->p.lbq_page = NULL;
1292 } else {
1293 /*
1294 * The headers and data are in a single large buffer. We
1295 * copy it to a new skb and let it go. This can happen with
1296 * jumbo mtu on a non-TCP/UDP frame.
1297 */
1298 lbq_desc = ql_get_curr_lbuf(rx_ring);
1299 skb = netdev_alloc_skb(qdev->ndev, length);
1300 if (skb == NULL) {
1301 QPRINTK(qdev, PROBE, DEBUG,
1302 "No skb available, drop the packet.\n");
1303 return NULL;
1304 }
4055c7d4
RM
1305 pci_unmap_page(qdev->pdev,
1306 pci_unmap_addr(lbq_desc,
1307 mapaddr),
1308 pci_unmap_len(lbq_desc, maplen),
1309 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1310 skb_reserve(skb, NET_IP_ALIGN);
1311 QPRINTK(qdev, RX_STATUS, DEBUG,
1312 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1313 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1314 0, length);
1315 skb->len += length;
1316 skb->data_len += length;
1317 skb->truesize += length;
1318 length -= length;
1319 lbq_desc->p.lbq_page = NULL;
1320 __pskb_pull_tail(skb,
1321 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1322 VLAN_ETH_HLEN : ETH_HLEN);
1323 }
1324 } else {
1325 /*
1326 * The data is in a chain of large buffers
1327 * pointed to by a small buffer. We loop
1328 * thru and chain them to the our small header
1329 * buffer's skb.
1330 * frags: There are 18 max frags and our small
1331 * buffer will hold 32 of them. The thing is,
1332 * we'll use 3 max for our 9000 byte jumbo
1333 * frames. If the MTU goes up we could
1334 * eventually be in trouble.
1335 */
1336 int size, offset, i = 0;
2c9a0d41 1337 __le64 *bq, bq_array[8];
c4e84bde
RM
1338 sbq_desc = ql_get_curr_sbuf(rx_ring);
1339 pci_unmap_single(qdev->pdev,
1340 pci_unmap_addr(sbq_desc, mapaddr),
1341 pci_unmap_len(sbq_desc, maplen),
1342 PCI_DMA_FROMDEVICE);
1343 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1344 /*
1345 * This is an non TCP/UDP IP frame, so
1346 * the headers aren't split into a small
1347 * buffer. We have to use the small buffer
1348 * that contains our sg list as our skb to
1349 * send upstairs. Copy the sg list here to
1350 * a local buffer and use it to find the
1351 * pages to chain.
1352 */
1353 QPRINTK(qdev, RX_STATUS, DEBUG,
1354 "%d bytes of headers & data in chain of large.\n", length);
1355 skb = sbq_desc->p.skb;
1356 bq = &bq_array[0];
1357 memcpy(bq, skb->data, sizeof(bq_array));
1358 sbq_desc->p.skb = NULL;
1359 skb_reserve(skb, NET_IP_ALIGN);
1360 } else {
1361 QPRINTK(qdev, RX_STATUS, DEBUG,
1362 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1363 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1364 }
1365 while (length > 0) {
1366 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1367 pci_unmap_page(qdev->pdev,
1368 pci_unmap_addr(lbq_desc,
1369 mapaddr),
1370 pci_unmap_len(lbq_desc,
1371 maplen),
1372 PCI_DMA_FROMDEVICE);
1373 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1374 offset = 0;
1375
1376 QPRINTK(qdev, RX_STATUS, DEBUG,
1377 "Adding page %d to skb for %d bytes.\n",
1378 i, size);
1379 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1380 offset, size);
1381 skb->len += size;
1382 skb->data_len += size;
1383 skb->truesize += size;
1384 length -= size;
1385 lbq_desc->p.lbq_page = NULL;
1386 bq++;
1387 i++;
1388 }
1389 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1390 VLAN_ETH_HLEN : ETH_HLEN);
1391 }
1392 return skb;
1393}
1394
1395/* Process an inbound completion from an rx ring. */
1396static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1397 struct rx_ring *rx_ring,
1398 struct ib_mac_iocb_rsp *ib_mac_rsp)
1399{
1400 struct net_device *ndev = qdev->ndev;
1401 struct sk_buff *skb = NULL;
1402
1403 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1404
1405 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1406 if (unlikely(!skb)) {
1407 QPRINTK(qdev, RX_STATUS, DEBUG,
1408 "No skb available, drop packet.\n");
1409 return;
1410 }
1411
1412 prefetch(skb->data);
1413 skb->dev = ndev;
1414 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1415 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1416 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1417 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1418 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1419 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1420 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1421 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1422 }
1423 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1424 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1425 }
1426 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1427 QPRINTK(qdev, RX_STATUS, ERR,
1428 "Bad checksum for this %s packet.\n",
1429 ((ib_mac_rsp->
1430 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1431 skb->ip_summed = CHECKSUM_NONE;
1432 } else if (qdev->rx_csum &&
1433 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1434 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1435 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1436 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1437 skb->ip_summed = CHECKSUM_UNNECESSARY;
1438 }
1439 qdev->stats.rx_packets++;
1440 qdev->stats.rx_bytes += skb->len;
1441 skb->protocol = eth_type_trans(skb, ndev);
1442 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1443 QPRINTK(qdev, RX_STATUS, DEBUG,
1444 "Passing a VLAN packet upstream.\n");
1445 vlan_hwaccel_rx(skb, qdev->vlgrp,
1446 le16_to_cpu(ib_mac_rsp->vlan_id));
1447 } else {
1448 QPRINTK(qdev, RX_STATUS, DEBUG,
1449 "Passing a normal packet upstream.\n");
1450 netif_rx(skb);
1451 }
c4e84bde
RM
1452}
1453
1454/* Process an outbound completion from an rx ring. */
1455static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1456 struct ob_mac_iocb_rsp *mac_rsp)
1457{
1458 struct tx_ring *tx_ring;
1459 struct tx_ring_desc *tx_ring_desc;
1460
1461 QL_DUMP_OB_MAC_RSP(mac_rsp);
1462 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1463 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1464 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1465 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1466 qdev->stats.tx_packets++;
1467 dev_kfree_skb(tx_ring_desc->skb);
1468 tx_ring_desc->skb = NULL;
1469
1470 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1471 OB_MAC_IOCB_RSP_S |
1472 OB_MAC_IOCB_RSP_L |
1473 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1474 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1475 QPRINTK(qdev, TX_DONE, WARNING,
1476 "Total descriptor length did not match transfer length.\n");
1477 }
1478 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1479 QPRINTK(qdev, TX_DONE, WARNING,
1480 "Frame too short to be legal, not sent.\n");
1481 }
1482 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1483 QPRINTK(qdev, TX_DONE, WARNING,
1484 "Frame too long, but sent anyway.\n");
1485 }
1486 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1487 QPRINTK(qdev, TX_DONE, WARNING,
1488 "PCI backplane error. Frame not sent.\n");
1489 }
1490 }
1491 atomic_inc(&tx_ring->tx_count);
1492}
1493
1494/* Fire up a handler to reset the MPI processor. */
1495void ql_queue_fw_error(struct ql_adapter *qdev)
1496{
1497 netif_stop_queue(qdev->ndev);
1498 netif_carrier_off(qdev->ndev);
1499 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1500}
1501
1502void ql_queue_asic_error(struct ql_adapter *qdev)
1503{
1504 netif_stop_queue(qdev->ndev);
1505 netif_carrier_off(qdev->ndev);
1506 ql_disable_interrupts(qdev);
1507 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1508}
1509
1510static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1511 struct ib_ae_iocb_rsp *ib_ae_rsp)
1512{
1513 switch (ib_ae_rsp->event) {
1514 case MGMT_ERR_EVENT:
1515 QPRINTK(qdev, RX_ERR, ERR,
1516 "Management Processor Fatal Error.\n");
1517 ql_queue_fw_error(qdev);
1518 return;
1519
1520 case CAM_LOOKUP_ERR_EVENT:
1521 QPRINTK(qdev, LINK, ERR,
1522 "Multiple CAM hits lookup occurred.\n");
1523 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1524 ql_queue_asic_error(qdev);
1525 return;
1526
1527 case SOFT_ECC_ERROR_EVENT:
1528 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1529 ql_queue_asic_error(qdev);
1530 break;
1531
1532 case PCI_ERR_ANON_BUF_RD:
1533 QPRINTK(qdev, RX_ERR, ERR,
1534 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1535 ib_ae_rsp->q_id);
1536 ql_queue_asic_error(qdev);
1537 break;
1538
1539 default:
1540 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1541 ib_ae_rsp->event);
1542 ql_queue_asic_error(qdev);
1543 break;
1544 }
1545}
1546
1547static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1548{
1549 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1550 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1551 struct ob_mac_iocb_rsp *net_rsp = NULL;
1552 int count = 0;
1553
1554 /* While there are entries in the completion queue. */
1555 while (prod != rx_ring->cnsmr_idx) {
1556
1557 QPRINTK(qdev, RX_STATUS, DEBUG,
1558 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1559 prod, rx_ring->cnsmr_idx);
1560
1561 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1562 rmb();
1563 switch (net_rsp->opcode) {
1564
1565 case OPCODE_OB_MAC_TSO_IOCB:
1566 case OPCODE_OB_MAC_IOCB:
1567 ql_process_mac_tx_intr(qdev, net_rsp);
1568 break;
1569 default:
1570 QPRINTK(qdev, RX_STATUS, DEBUG,
1571 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1572 net_rsp->opcode);
1573 }
1574 count++;
1575 ql_update_cq(rx_ring);
ba7cd3ba 1576 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1577 }
1578 ql_write_cq_idx(rx_ring);
1579 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1580 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1581 if (atomic_read(&tx_ring->queue_stopped) &&
1582 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1583 /*
1584 * The queue got stopped because the tx_ring was full.
1585 * Wake it up, because it's now at least 25% empty.
1586 */
1587 netif_wake_queue(qdev->ndev);
1588 }
1589
1590 return count;
1591}
1592
1593static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1594{
1595 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1596 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1597 struct ql_net_rsp_iocb *net_rsp;
1598 int count = 0;
1599
1600 /* While there are entries in the completion queue. */
1601 while (prod != rx_ring->cnsmr_idx) {
1602
1603 QPRINTK(qdev, RX_STATUS, DEBUG,
1604 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1605 prod, rx_ring->cnsmr_idx);
1606
1607 net_rsp = rx_ring->curr_entry;
1608 rmb();
1609 switch (net_rsp->opcode) {
1610 case OPCODE_IB_MAC_IOCB:
1611 ql_process_mac_rx_intr(qdev, rx_ring,
1612 (struct ib_mac_iocb_rsp *)
1613 net_rsp);
1614 break;
1615
1616 case OPCODE_IB_AE_IOCB:
1617 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1618 net_rsp);
1619 break;
1620 default:
1621 {
1622 QPRINTK(qdev, RX_STATUS, DEBUG,
1623 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1624 net_rsp->opcode);
1625 }
1626 }
1627 count++;
1628 ql_update_cq(rx_ring);
ba7cd3ba 1629 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1630 if (count == budget)
1631 break;
1632 }
1633 ql_update_buffer_queues(qdev, rx_ring);
1634 ql_write_cq_idx(rx_ring);
1635 return count;
1636}
1637
1638static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1639{
1640 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1641 struct ql_adapter *qdev = rx_ring->qdev;
1642 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1643
1644 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1645 rx_ring->cq_id);
1646
1647 if (work_done < budget) {
908a7a16 1648 __netif_rx_complete(napi);
c4e84bde
RM
1649 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1650 }
1651 return work_done;
1652}
1653
1654static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1655{
1656 struct ql_adapter *qdev = netdev_priv(ndev);
1657
1658 qdev->vlgrp = grp;
1659 if (grp) {
1660 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1661 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1662 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1663 } else {
1664 QPRINTK(qdev, IFUP, DEBUG,
1665 "Turning off VLAN in NIC_RCV_CFG.\n");
1666 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1667 }
1668}
1669
1670static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1671{
1672 struct ql_adapter *qdev = netdev_priv(ndev);
1673 u32 enable_bit = MAC_ADDR_E;
1674
1675 spin_lock(&qdev->hw_lock);
1676 if (ql_set_mac_addr_reg
1677 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1678 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1679 }
1680 spin_unlock(&qdev->hw_lock);
1681}
1682
1683static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1684{
1685 struct ql_adapter *qdev = netdev_priv(ndev);
1686 u32 enable_bit = 0;
1687
1688 spin_lock(&qdev->hw_lock);
1689 if (ql_set_mac_addr_reg
1690 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1691 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1692 }
1693 spin_unlock(&qdev->hw_lock);
1694
1695}
1696
1697/* Worker thread to process a given rx_ring that is dedicated
1698 * to outbound completions.
1699 */
1700static void ql_tx_clean(struct work_struct *work)
1701{
1702 struct rx_ring *rx_ring =
1703 container_of(work, struct rx_ring, rx_work.work);
1704 ql_clean_outbound_rx_ring(rx_ring);
1705 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1706
1707}
1708
1709/* Worker thread to process a given rx_ring that is dedicated
1710 * to inbound completions.
1711 */
1712static void ql_rx_clean(struct work_struct *work)
1713{
1714 struct rx_ring *rx_ring =
1715 container_of(work, struct rx_ring, rx_work.work);
1716 ql_clean_inbound_rx_ring(rx_ring, 64);
1717 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1718}
1719
1720/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1721static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1722{
1723 struct rx_ring *rx_ring = dev_id;
1724 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1725 &rx_ring->rx_work, 0);
1726 return IRQ_HANDLED;
1727}
1728
1729/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1730static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1731{
1732 struct rx_ring *rx_ring = dev_id;
908a7a16 1733 netif_rx_schedule(&rx_ring->napi);
c4e84bde
RM
1734 return IRQ_HANDLED;
1735}
1736
c4e84bde
RM
1737/* This handles a fatal error, MPI activity, and the default
1738 * rx_ring in an MSI-X multiple vector environment.
1739 * In MSI/Legacy environment it also process the rest of
1740 * the rx_rings.
1741 */
1742static irqreturn_t qlge_isr(int irq, void *dev_id)
1743{
1744 struct rx_ring *rx_ring = dev_id;
1745 struct ql_adapter *qdev = rx_ring->qdev;
1746 struct intr_context *intr_context = &qdev->intr_context[0];
1747 u32 var;
1748 int i;
1749 int work_done = 0;
1750
bb0d215c
RM
1751 spin_lock(&qdev->hw_lock);
1752 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1753 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1754 spin_unlock(&qdev->hw_lock);
1755 return IRQ_NONE;
c4e84bde 1756 }
bb0d215c 1757 spin_unlock(&qdev->hw_lock);
c4e84bde 1758
bb0d215c 1759 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1760
1761 /*
1762 * Check for fatal error.
1763 */
1764 if (var & STS_FE) {
1765 ql_queue_asic_error(qdev);
1766 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1767 var = ql_read32(qdev, ERR_STS);
1768 QPRINTK(qdev, INTR, ERR,
1769 "Resetting chip. Error Status Register = 0x%x\n", var);
1770 return IRQ_HANDLED;
1771 }
1772
1773 /*
1774 * Check MPI processor activity.
1775 */
1776 if (var & STS_PI) {
1777 /*
1778 * We've got an async event or mailbox completion.
1779 * Handle it and clear the source of the interrupt.
1780 */
1781 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1782 ql_disable_completion_interrupt(qdev, intr_context->intr);
1783 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1784 &qdev->mpi_work, 0);
1785 work_done++;
1786 }
1787
1788 /*
1789 * Check the default queue and wake handler if active.
1790 */
1791 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1792 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1793 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1794 ql_disable_completion_interrupt(qdev, intr_context->intr);
1795 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1796 &rx_ring->rx_work, 0);
1797 work_done++;
1798 }
1799
1800 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1801 /*
1802 * Start the DPC for each active queue.
1803 */
1804 for (i = 1; i < qdev->rx_ring_count; i++) {
1805 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1806 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1807 rx_ring->cnsmr_idx) {
1808 QPRINTK(qdev, INTR, INFO,
1809 "Waking handler for rx_ring[%d].\n", i);
1810 ql_disable_completion_interrupt(qdev,
1811 intr_context->
1812 intr);
1813 if (i < qdev->rss_ring_first_cq_id)
1814 queue_delayed_work_on(rx_ring->cpu,
1815 qdev->q_workqueue,
1816 &rx_ring->rx_work,
1817 0);
1818 else
908a7a16 1819 netif_rx_schedule(&rx_ring->napi);
c4e84bde
RM
1820 work_done++;
1821 }
1822 }
1823 }
bb0d215c 1824 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1825 return work_done ? IRQ_HANDLED : IRQ_NONE;
1826}
1827
1828static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1829{
1830
1831 if (skb_is_gso(skb)) {
1832 int err;
1833 if (skb_header_cloned(skb)) {
1834 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1835 if (err)
1836 return err;
1837 }
1838
1839 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1840 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1841 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1842 mac_iocb_ptr->total_hdrs_len =
1843 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1844 mac_iocb_ptr->net_trans_offset =
1845 cpu_to_le16(skb_network_offset(skb) |
1846 skb_transport_offset(skb)
1847 << OB_MAC_TRANSPORT_HDR_SHIFT);
1848 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1849 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1850 if (likely(skb->protocol == htons(ETH_P_IP))) {
1851 struct iphdr *iph = ip_hdr(skb);
1852 iph->check = 0;
1853 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1854 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1855 iph->daddr, 0,
1856 IPPROTO_TCP,
1857 0);
1858 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1859 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1860 tcp_hdr(skb)->check =
1861 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1862 &ipv6_hdr(skb)->daddr,
1863 0, IPPROTO_TCP, 0);
1864 }
1865 return 1;
1866 }
1867 return 0;
1868}
1869
1870static void ql_hw_csum_setup(struct sk_buff *skb,
1871 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1872{
1873 int len;
1874 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 1875 __sum16 *check;
c4e84bde
RM
1876 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1877 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1878 mac_iocb_ptr->net_trans_offset =
1879 cpu_to_le16(skb_network_offset(skb) |
1880 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1881
1882 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1883 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1884 if (likely(iph->protocol == IPPROTO_TCP)) {
1885 check = &(tcp_hdr(skb)->check);
1886 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1887 mac_iocb_ptr->total_hdrs_len =
1888 cpu_to_le16(skb_transport_offset(skb) +
1889 (tcp_hdr(skb)->doff << 2));
1890 } else {
1891 check = &(udp_hdr(skb)->check);
1892 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1893 mac_iocb_ptr->total_hdrs_len =
1894 cpu_to_le16(skb_transport_offset(skb) +
1895 sizeof(struct udphdr));
1896 }
1897 *check = ~csum_tcpudp_magic(iph->saddr,
1898 iph->daddr, len, iph->protocol, 0);
1899}
1900
1901static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1902{
1903 struct tx_ring_desc *tx_ring_desc;
1904 struct ob_mac_iocb_req *mac_iocb_ptr;
1905 struct ql_adapter *qdev = netdev_priv(ndev);
1906 int tso;
1907 struct tx_ring *tx_ring;
1908 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1909
1910 tx_ring = &qdev->tx_ring[tx_ring_idx];
1911
1912 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1913 QPRINTK(qdev, TX_QUEUED, INFO,
1914 "%s: shutting down tx queue %d du to lack of resources.\n",
1915 __func__, tx_ring_idx);
1916 netif_stop_queue(ndev);
1917 atomic_inc(&tx_ring->queue_stopped);
1918 return NETDEV_TX_BUSY;
1919 }
1920 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1921 mac_iocb_ptr = tx_ring_desc->queue_entry;
1922 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1923 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1924 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1925 return NETDEV_TX_BUSY;
1926 }
1927
1928 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1929 mac_iocb_ptr->tid = tx_ring_desc->index;
1930 /* We use the upper 32-bits to store the tx queue for this IO.
1931 * When we get the completion we can use it to establish the context.
1932 */
1933 mac_iocb_ptr->txq_idx = tx_ring_idx;
1934 tx_ring_desc->skb = skb;
1935
1936 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1937
1938 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1939 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1940 vlan_tx_tag_get(skb));
1941 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1942 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1943 }
1944 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1945 if (tso < 0) {
1946 dev_kfree_skb_any(skb);
1947 return NETDEV_TX_OK;
1948 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1949 ql_hw_csum_setup(skb,
1950 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1951 }
1952 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1953 tx_ring->prod_idx++;
1954 if (tx_ring->prod_idx == tx_ring->wq_len)
1955 tx_ring->prod_idx = 0;
1956 wmb();
1957
1958 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1959 ndev->trans_start = jiffies;
1960 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1961 tx_ring->prod_idx, skb->len);
1962
1963 atomic_dec(&tx_ring->tx_count);
1964 return NETDEV_TX_OK;
1965}
1966
1967static void ql_free_shadow_space(struct ql_adapter *qdev)
1968{
1969 if (qdev->rx_ring_shadow_reg_area) {
1970 pci_free_consistent(qdev->pdev,
1971 PAGE_SIZE,
1972 qdev->rx_ring_shadow_reg_area,
1973 qdev->rx_ring_shadow_reg_dma);
1974 qdev->rx_ring_shadow_reg_area = NULL;
1975 }
1976 if (qdev->tx_ring_shadow_reg_area) {
1977 pci_free_consistent(qdev->pdev,
1978 PAGE_SIZE,
1979 qdev->tx_ring_shadow_reg_area,
1980 qdev->tx_ring_shadow_reg_dma);
1981 qdev->tx_ring_shadow_reg_area = NULL;
1982 }
1983}
1984
1985static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1986{
1987 qdev->rx_ring_shadow_reg_area =
1988 pci_alloc_consistent(qdev->pdev,
1989 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1990 if (qdev->rx_ring_shadow_reg_area == NULL) {
1991 QPRINTK(qdev, IFUP, ERR,
1992 "Allocation of RX shadow space failed.\n");
1993 return -ENOMEM;
1994 }
1995 qdev->tx_ring_shadow_reg_area =
1996 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
1997 &qdev->tx_ring_shadow_reg_dma);
1998 if (qdev->tx_ring_shadow_reg_area == NULL) {
1999 QPRINTK(qdev, IFUP, ERR,
2000 "Allocation of TX shadow space failed.\n");
2001 goto err_wqp_sh_area;
2002 }
2003 return 0;
2004
2005err_wqp_sh_area:
2006 pci_free_consistent(qdev->pdev,
2007 PAGE_SIZE,
2008 qdev->rx_ring_shadow_reg_area,
2009 qdev->rx_ring_shadow_reg_dma);
2010 return -ENOMEM;
2011}
2012
2013static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2014{
2015 struct tx_ring_desc *tx_ring_desc;
2016 int i;
2017 struct ob_mac_iocb_req *mac_iocb_ptr;
2018
2019 mac_iocb_ptr = tx_ring->wq_base;
2020 tx_ring_desc = tx_ring->q;
2021 for (i = 0; i < tx_ring->wq_len; i++) {
2022 tx_ring_desc->index = i;
2023 tx_ring_desc->skb = NULL;
2024 tx_ring_desc->queue_entry = mac_iocb_ptr;
2025 mac_iocb_ptr++;
2026 tx_ring_desc++;
2027 }
2028 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2029 atomic_set(&tx_ring->queue_stopped, 0);
2030}
2031
2032static void ql_free_tx_resources(struct ql_adapter *qdev,
2033 struct tx_ring *tx_ring)
2034{
2035 if (tx_ring->wq_base) {
2036 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2037 tx_ring->wq_base, tx_ring->wq_base_dma);
2038 tx_ring->wq_base = NULL;
2039 }
2040 kfree(tx_ring->q);
2041 tx_ring->q = NULL;
2042}
2043
2044static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2045 struct tx_ring *tx_ring)
2046{
2047 tx_ring->wq_base =
2048 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2049 &tx_ring->wq_base_dma);
2050
2051 if ((tx_ring->wq_base == NULL)
2052 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2053 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2054 return -ENOMEM;
2055 }
2056 tx_ring->q =
2057 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2058 if (tx_ring->q == NULL)
2059 goto err;
2060
2061 return 0;
2062err:
2063 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2064 tx_ring->wq_base, tx_ring->wq_base_dma);
2065 return -ENOMEM;
2066}
2067
8668ae92 2068static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2069{
2070 int i;
2071 struct bq_desc *lbq_desc;
2072
2073 for (i = 0; i < rx_ring->lbq_len; i++) {
2074 lbq_desc = &rx_ring->lbq[i];
2075 if (lbq_desc->p.lbq_page) {
2076 pci_unmap_page(qdev->pdev,
2077 pci_unmap_addr(lbq_desc, mapaddr),
2078 pci_unmap_len(lbq_desc, maplen),
2079 PCI_DMA_FROMDEVICE);
2080
2081 put_page(lbq_desc->p.lbq_page);
2082 lbq_desc->p.lbq_page = NULL;
2083 }
c4e84bde
RM
2084 }
2085}
2086
2087/*
2088 * Allocate and map a page for each element of the lbq.
2089 */
2090static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2091 struct rx_ring *rx_ring)
2092{
2093 int i;
2094 struct bq_desc *lbq_desc;
2095 u64 map;
2c9a0d41 2096 __le64 *bq = rx_ring->lbq_base;
c4e84bde
RM
2097
2098 for (i = 0; i < rx_ring->lbq_len; i++) {
2099 lbq_desc = &rx_ring->lbq[i];
2100 memset(lbq_desc, 0, sizeof(lbq_desc));
2c9a0d41 2101 lbq_desc->addr = bq;
c4e84bde
RM
2102 lbq_desc->index = i;
2103 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2104 if (unlikely(!lbq_desc->p.lbq_page)) {
2105 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2106 goto mem_error;
2107 } else {
2108 map = pci_map_page(qdev->pdev,
2109 lbq_desc->p.lbq_page,
2110 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2111 if (pci_dma_mapping_error(qdev->pdev, map)) {
2112 QPRINTK(qdev, IFUP, ERR,
2113 "PCI mapping failed.\n");
2114 goto mem_error;
2115 }
2116 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2117 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 2118 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2119 }
2120 bq++;
2121 }
2122 return 0;
2123mem_error:
2124 ql_free_lbq_buffers(qdev, rx_ring);
2125 return -ENOMEM;
2126}
2127
8668ae92 2128static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2129{
2130 int i;
2131 struct bq_desc *sbq_desc;
2132
2133 for (i = 0; i < rx_ring->sbq_len; i++) {
2134 sbq_desc = &rx_ring->sbq[i];
2135 if (sbq_desc == NULL) {
2136 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2137 return;
2138 }
2139 if (sbq_desc->p.skb) {
2140 pci_unmap_single(qdev->pdev,
2141 pci_unmap_addr(sbq_desc, mapaddr),
2142 pci_unmap_len(sbq_desc, maplen),
2143 PCI_DMA_FROMDEVICE);
2144 dev_kfree_skb(sbq_desc->p.skb);
2145 sbq_desc->p.skb = NULL;
2146 }
c4e84bde
RM
2147 }
2148}
2149
2150/* Allocate and map an skb for each element of the sbq. */
2151static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2152 struct rx_ring *rx_ring)
2153{
2154 int i;
2155 struct bq_desc *sbq_desc;
2156 struct sk_buff *skb;
2157 u64 map;
2c9a0d41 2158 __le64 *bq = rx_ring->sbq_base;
c4e84bde
RM
2159
2160 for (i = 0; i < rx_ring->sbq_len; i++) {
2161 sbq_desc = &rx_ring->sbq[i];
2162 memset(sbq_desc, 0, sizeof(sbq_desc));
2163 sbq_desc->index = i;
2c9a0d41 2164 sbq_desc->addr = bq;
c4e84bde
RM
2165 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2166 if (unlikely(!skb)) {
2167 /* Better luck next round */
2168 QPRINTK(qdev, IFUP, ERR,
2169 "small buff alloc failed for %d bytes at index %d.\n",
2170 rx_ring->sbq_buf_size, i);
2171 goto mem_err;
2172 }
2173 skb_reserve(skb, QLGE_SB_PAD);
2174 sbq_desc->p.skb = skb;
2175 /*
2176 * Map only half the buffer. Because the
2177 * other half may get some data copied to it
2178 * when the completion arrives.
2179 */
2180 map = pci_map_single(qdev->pdev,
2181 skb->data,
2182 rx_ring->sbq_buf_size / 2,
2183 PCI_DMA_FROMDEVICE);
2184 if (pci_dma_mapping_error(qdev->pdev, map)) {
2185 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2186 goto mem_err;
2187 }
2188 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2189 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2c9a0d41 2190 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2191 bq++;
2192 }
2193 return 0;
2194mem_err:
2195 ql_free_sbq_buffers(qdev, rx_ring);
2196 return -ENOMEM;
2197}
2198
2199static void ql_free_rx_resources(struct ql_adapter *qdev,
2200 struct rx_ring *rx_ring)
2201{
2202 if (rx_ring->sbq_len)
2203 ql_free_sbq_buffers(qdev, rx_ring);
2204 if (rx_ring->lbq_len)
2205 ql_free_lbq_buffers(qdev, rx_ring);
2206
2207 /* Free the small buffer queue. */
2208 if (rx_ring->sbq_base) {
2209 pci_free_consistent(qdev->pdev,
2210 rx_ring->sbq_size,
2211 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2212 rx_ring->sbq_base = NULL;
2213 }
2214
2215 /* Free the small buffer queue control blocks. */
2216 kfree(rx_ring->sbq);
2217 rx_ring->sbq = NULL;
2218
2219 /* Free the large buffer queue. */
2220 if (rx_ring->lbq_base) {
2221 pci_free_consistent(qdev->pdev,
2222 rx_ring->lbq_size,
2223 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2224 rx_ring->lbq_base = NULL;
2225 }
2226
2227 /* Free the large buffer queue control blocks. */
2228 kfree(rx_ring->lbq);
2229 rx_ring->lbq = NULL;
2230
2231 /* Free the rx queue. */
2232 if (rx_ring->cq_base) {
2233 pci_free_consistent(qdev->pdev,
2234 rx_ring->cq_size,
2235 rx_ring->cq_base, rx_ring->cq_base_dma);
2236 rx_ring->cq_base = NULL;
2237 }
2238}
2239
2240/* Allocate queues and buffers for this completions queue based
2241 * on the values in the parameter structure. */
2242static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2243 struct rx_ring *rx_ring)
2244{
2245
2246 /*
2247 * Allocate the completion queue for this rx_ring.
2248 */
2249 rx_ring->cq_base =
2250 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2251 &rx_ring->cq_base_dma);
2252
2253 if (rx_ring->cq_base == NULL) {
2254 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2255 return -ENOMEM;
2256 }
2257
2258 if (rx_ring->sbq_len) {
2259 /*
2260 * Allocate small buffer queue.
2261 */
2262 rx_ring->sbq_base =
2263 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2264 &rx_ring->sbq_base_dma);
2265
2266 if (rx_ring->sbq_base == NULL) {
2267 QPRINTK(qdev, IFUP, ERR,
2268 "Small buffer queue allocation failed.\n");
2269 goto err_mem;
2270 }
2271
2272 /*
2273 * Allocate small buffer queue control blocks.
2274 */
2275 rx_ring->sbq =
2276 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2277 GFP_KERNEL);
2278 if (rx_ring->sbq == NULL) {
2279 QPRINTK(qdev, IFUP, ERR,
2280 "Small buffer queue control block allocation failed.\n");
2281 goto err_mem;
2282 }
2283
2284 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2285 QPRINTK(qdev, IFUP, ERR,
2286 "Small buffer allocation failed.\n");
2287 goto err_mem;
2288 }
2289 }
2290
2291 if (rx_ring->lbq_len) {
2292 /*
2293 * Allocate large buffer queue.
2294 */
2295 rx_ring->lbq_base =
2296 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2297 &rx_ring->lbq_base_dma);
2298
2299 if (rx_ring->lbq_base == NULL) {
2300 QPRINTK(qdev, IFUP, ERR,
2301 "Large buffer queue allocation failed.\n");
2302 goto err_mem;
2303 }
2304 /*
2305 * Allocate large buffer queue control blocks.
2306 */
2307 rx_ring->lbq =
2308 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2309 GFP_KERNEL);
2310 if (rx_ring->lbq == NULL) {
2311 QPRINTK(qdev, IFUP, ERR,
2312 "Large buffer queue control block allocation failed.\n");
2313 goto err_mem;
2314 }
2315
2316 /*
2317 * Allocate the buffers.
2318 */
2319 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2320 QPRINTK(qdev, IFUP, ERR,
2321 "Large buffer allocation failed.\n");
2322 goto err_mem;
2323 }
2324 }
2325
2326 return 0;
2327
2328err_mem:
2329 ql_free_rx_resources(qdev, rx_ring);
2330 return -ENOMEM;
2331}
2332
2333static void ql_tx_ring_clean(struct ql_adapter *qdev)
2334{
2335 struct tx_ring *tx_ring;
2336 struct tx_ring_desc *tx_ring_desc;
2337 int i, j;
2338
2339 /*
2340 * Loop through all queues and free
2341 * any resources.
2342 */
2343 for (j = 0; j < qdev->tx_ring_count; j++) {
2344 tx_ring = &qdev->tx_ring[j];
2345 for (i = 0; i < tx_ring->wq_len; i++) {
2346 tx_ring_desc = &tx_ring->q[i];
2347 if (tx_ring_desc && tx_ring_desc->skb) {
2348 QPRINTK(qdev, IFDOWN, ERR,
2349 "Freeing lost SKB %p, from queue %d, index %d.\n",
2350 tx_ring_desc->skb, j,
2351 tx_ring_desc->index);
2352 ql_unmap_send(qdev, tx_ring_desc,
2353 tx_ring_desc->map_cnt);
2354 dev_kfree_skb(tx_ring_desc->skb);
2355 tx_ring_desc->skb = NULL;
2356 }
2357 }
2358 }
2359}
2360
c4e84bde
RM
2361static void ql_free_mem_resources(struct ql_adapter *qdev)
2362{
2363 int i;
2364
2365 for (i = 0; i < qdev->tx_ring_count; i++)
2366 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2367 for (i = 0; i < qdev->rx_ring_count; i++)
2368 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2369 ql_free_shadow_space(qdev);
2370}
2371
2372static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2373{
2374 int i;
2375
2376 /* Allocate space for our shadow registers and such. */
2377 if (ql_alloc_shadow_space(qdev))
2378 return -ENOMEM;
2379
2380 for (i = 0; i < qdev->rx_ring_count; i++) {
2381 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2382 QPRINTK(qdev, IFUP, ERR,
2383 "RX resource allocation failed.\n");
2384 goto err_mem;
2385 }
2386 }
2387 /* Allocate tx queue resources */
2388 for (i = 0; i < qdev->tx_ring_count; i++) {
2389 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2390 QPRINTK(qdev, IFUP, ERR,
2391 "TX resource allocation failed.\n");
2392 goto err_mem;
2393 }
2394 }
2395 return 0;
2396
2397err_mem:
2398 ql_free_mem_resources(qdev);
2399 return -ENOMEM;
2400}
2401
2402/* Set up the rx ring control block and pass it to the chip.
2403 * The control block is defined as
2404 * "Completion Queue Initialization Control Block", or cqicb.
2405 */
2406static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2407{
2408 struct cqicb *cqicb = &rx_ring->cqicb;
2409 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2410 (rx_ring->cq_id * sizeof(u64) * 4);
2411 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2412 (rx_ring->cq_id * sizeof(u64) * 4);
2413 void __iomem *doorbell_area =
2414 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2415 int err = 0;
2416 u16 bq_len;
2417
2418 /* Set up the shadow registers for this ring. */
2419 rx_ring->prod_idx_sh_reg = shadow_reg;
2420 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2421 shadow_reg += sizeof(u64);
2422 shadow_reg_dma += sizeof(u64);
2423 rx_ring->lbq_base_indirect = shadow_reg;
2424 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2425 shadow_reg += sizeof(u64);
2426 shadow_reg_dma += sizeof(u64);
2427 rx_ring->sbq_base_indirect = shadow_reg;
2428 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2429
2430 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2431 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2432 rx_ring->cnsmr_idx = 0;
2433 rx_ring->curr_entry = rx_ring->cq_base;
2434
2435 /* PCI doorbell mem area + 0x04 for valid register */
2436 rx_ring->valid_db_reg = doorbell_area + 0x04;
2437
2438 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2439 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2440
2441 /* PCI doorbell mem area + 0x1c */
8668ae92 2442 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2443
2444 memset((void *)cqicb, 0, sizeof(struct cqicb));
2445 cqicb->msix_vect = rx_ring->irq;
2446
459caf5a
RM
2447 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2448 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2449
97345524 2450 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2451
97345524 2452 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2453
2454 /*
2455 * Set up the control block load flags.
2456 */
2457 cqicb->flags = FLAGS_LC | /* Load queue base address */
2458 FLAGS_LV | /* Load MSI-X vector */
2459 FLAGS_LI; /* Load irq delay values */
2460 if (rx_ring->lbq_len) {
2461 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2462 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
97345524
RM
2463 cqicb->lbq_addr =
2464 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2465 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2466 (u16) rx_ring->lbq_buf_size;
2467 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2468 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2469 (u16) rx_ring->lbq_len;
c4e84bde
RM
2470 cqicb->lbq_len = cpu_to_le16(bq_len);
2471 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2472 rx_ring->lbq_curr_idx = 0;
2473 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2474 rx_ring->lbq_free_cnt = 16;
2475 }
2476 if (rx_ring->sbq_len) {
2477 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2478 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
97345524
RM
2479 cqicb->sbq_addr =
2480 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde
RM
2481 cqicb->sbq_buf_size =
2482 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
459caf5a
RM
2483 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2484 (u16) rx_ring->sbq_len;
c4e84bde
RM
2485 cqicb->sbq_len = cpu_to_le16(bq_len);
2486 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2487 rx_ring->sbq_curr_idx = 0;
2488 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2489 rx_ring->sbq_free_cnt = 16;
2490 }
2491 switch (rx_ring->type) {
2492 case TX_Q:
2493 /* If there's only one interrupt, then we use
2494 * worker threads to process the outbound
2495 * completion handling rx_rings. We do this so
2496 * they can be run on multiple CPUs. There is
2497 * room to play with this more where we would only
2498 * run in a worker if there are more than x number
2499 * of outbound completions on the queue and more
2500 * than one queue active. Some threshold that
2501 * would indicate a benefit in spite of the cost
2502 * of a context switch.
2503 * If there's more than one interrupt, then the
2504 * outbound completions are processed in the ISR.
2505 */
2506 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2507 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2508 else {
2509 /* With all debug warnings on we see a WARN_ON message
2510 * when we free the skb in the interrupt context.
2511 */
2512 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2513 }
2514 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2515 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2516 break;
2517 case DEFAULT_Q:
2518 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2519 cqicb->irq_delay = 0;
2520 cqicb->pkt_delay = 0;
2521 break;
2522 case RX_Q:
2523 /* Inbound completion handling rx_rings run in
2524 * separate NAPI contexts.
2525 */
2526 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2527 64);
2528 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2529 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2530 break;
2531 default:
2532 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2533 rx_ring->type);
2534 }
2535 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2536 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2537 CFG_LCQ, rx_ring->cq_id);
2538 if (err) {
2539 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2540 return err;
2541 }
2542 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2543 /*
2544 * Advance the producer index for the buffer queues.
2545 */
2546 wmb();
2547 if (rx_ring->lbq_len)
2548 ql_write_db_reg(rx_ring->lbq_prod_idx,
2549 rx_ring->lbq_prod_idx_db_reg);
2550 if (rx_ring->sbq_len)
2551 ql_write_db_reg(rx_ring->sbq_prod_idx,
2552 rx_ring->sbq_prod_idx_db_reg);
2553 return err;
2554}
2555
2556static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2557{
2558 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2559 void __iomem *doorbell_area =
2560 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2561 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2562 (tx_ring->wq_id * sizeof(u64));
2563 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2564 (tx_ring->wq_id * sizeof(u64));
2565 int err = 0;
2566
2567 /*
2568 * Assign doorbell registers for this tx_ring.
2569 */
2570 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2571 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2572 tx_ring->prod_idx = 0;
2573 /* TX PCI doorbell mem area + 0x04 */
2574 tx_ring->valid_db_reg = doorbell_area + 0x04;
2575
2576 /*
2577 * Assign shadow registers for this tx_ring.
2578 */
2579 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2580 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2581
2582 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2583 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2584 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2585 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2586 wqicb->rid = 0;
97345524 2587 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2588
97345524 2589 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2590
2591 ql_init_tx_ring(qdev, tx_ring);
2592
2593 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2594 (u16) tx_ring->wq_id);
2595 if (err) {
2596 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2597 return err;
2598 }
2599 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2600 return err;
2601}
2602
2603static void ql_disable_msix(struct ql_adapter *qdev)
2604{
2605 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2606 pci_disable_msix(qdev->pdev);
2607 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2608 kfree(qdev->msi_x_entry);
2609 qdev->msi_x_entry = NULL;
2610 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2611 pci_disable_msi(qdev->pdev);
2612 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2613 }
2614}
2615
2616static void ql_enable_msix(struct ql_adapter *qdev)
2617{
2618 int i;
2619
2620 qdev->intr_count = 1;
2621 /* Get the MSIX vectors. */
2622 if (irq_type == MSIX_IRQ) {
2623 /* Try to alloc space for the msix struct,
2624 * if it fails then go to MSI/legacy.
2625 */
2626 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2627 sizeof(struct msix_entry),
2628 GFP_KERNEL);
2629 if (!qdev->msi_x_entry) {
2630 irq_type = MSI_IRQ;
2631 goto msi;
2632 }
2633
2634 for (i = 0; i < qdev->rx_ring_count; i++)
2635 qdev->msi_x_entry[i].entry = i;
2636
2637 if (!pci_enable_msix
2638 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2639 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2640 qdev->intr_count = qdev->rx_ring_count;
2641 QPRINTK(qdev, IFUP, INFO,
2642 "MSI-X Enabled, got %d vectors.\n",
2643 qdev->intr_count);
2644 return;
2645 } else {
2646 kfree(qdev->msi_x_entry);
2647 qdev->msi_x_entry = NULL;
2648 QPRINTK(qdev, IFUP, WARNING,
2649 "MSI-X Enable failed, trying MSI.\n");
2650 irq_type = MSI_IRQ;
2651 }
2652 }
2653msi:
2654 if (irq_type == MSI_IRQ) {
2655 if (!pci_enable_msi(qdev->pdev)) {
2656 set_bit(QL_MSI_ENABLED, &qdev->flags);
2657 QPRINTK(qdev, IFUP, INFO,
2658 "Running with MSI interrupts.\n");
2659 return;
2660 }
2661 }
2662 irq_type = LEG_IRQ;
c4e84bde
RM
2663 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2664}
2665
2666/*
2667 * Here we build the intr_context structures based on
2668 * our rx_ring count and intr vector count.
2669 * The intr_context structure is used to hook each vector
2670 * to possibly different handlers.
2671 */
2672static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2673{
2674 int i = 0;
2675 struct intr_context *intr_context = &qdev->intr_context[0];
2676
2677 ql_enable_msix(qdev);
2678
2679 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2680 /* Each rx_ring has it's
2681 * own intr_context since we have separate
2682 * vectors for each queue.
2683 * This only true when MSI-X is enabled.
2684 */
2685 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2686 qdev->rx_ring[i].irq = i;
2687 intr_context->intr = i;
2688 intr_context->qdev = qdev;
2689 /*
2690 * We set up each vectors enable/disable/read bits so
2691 * there's no bit/mask calculations in the critical path.
2692 */
2693 intr_context->intr_en_mask =
2694 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2695 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2696 | i;
2697 intr_context->intr_dis_mask =
2698 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2699 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2700 INTR_EN_IHD | i;
2701 intr_context->intr_read_mask =
2702 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2703 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2704 i;
2705
2706 if (i == 0) {
2707 /*
2708 * Default queue handles bcast/mcast plus
2709 * async events. Needs buffers.
2710 */
2711 intr_context->handler = qlge_isr;
2712 sprintf(intr_context->name, "%s-default-queue",
2713 qdev->ndev->name);
2714 } else if (i < qdev->rss_ring_first_cq_id) {
2715 /*
2716 * Outbound queue is for outbound completions only.
2717 */
2718 intr_context->handler = qlge_msix_tx_isr;
c224969e 2719 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2720 qdev->ndev->name, i);
2721 } else {
2722 /*
2723 * Inbound queues handle unicast frames only.
2724 */
2725 intr_context->handler = qlge_msix_rx_isr;
c224969e 2726 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2727 qdev->ndev->name, i);
2728 }
2729 }
2730 } else {
2731 /*
2732 * All rx_rings use the same intr_context since
2733 * there is only one vector.
2734 */
2735 intr_context->intr = 0;
2736 intr_context->qdev = qdev;
2737 /*
2738 * We set up each vectors enable/disable/read bits so
2739 * there's no bit/mask calculations in the critical path.
2740 */
2741 intr_context->intr_en_mask =
2742 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2743 intr_context->intr_dis_mask =
2744 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2745 INTR_EN_TYPE_DISABLE;
2746 intr_context->intr_read_mask =
2747 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2748 /*
2749 * Single interrupt means one handler for all rings.
2750 */
2751 intr_context->handler = qlge_isr;
2752 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2753 for (i = 0; i < qdev->rx_ring_count; i++)
2754 qdev->rx_ring[i].irq = 0;
2755 }
2756}
2757
2758static void ql_free_irq(struct ql_adapter *qdev)
2759{
2760 int i;
2761 struct intr_context *intr_context = &qdev->intr_context[0];
2762
2763 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2764 if (intr_context->hooked) {
2765 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2766 free_irq(qdev->msi_x_entry[i].vector,
2767 &qdev->rx_ring[i]);
2768 QPRINTK(qdev, IFDOWN, ERR,
2769 "freeing msix interrupt %d.\n", i);
2770 } else {
2771 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2772 QPRINTK(qdev, IFDOWN, ERR,
2773 "freeing msi interrupt %d.\n", i);
2774 }
2775 }
2776 }
2777 ql_disable_msix(qdev);
2778}
2779
2780static int ql_request_irq(struct ql_adapter *qdev)
2781{
2782 int i;
2783 int status = 0;
2784 struct pci_dev *pdev = qdev->pdev;
2785 struct intr_context *intr_context = &qdev->intr_context[0];
2786
2787 ql_resolve_queues_to_irqs(qdev);
2788
2789 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2790 atomic_set(&intr_context->irq_cnt, 0);
2791 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2792 status = request_irq(qdev->msi_x_entry[i].vector,
2793 intr_context->handler,
2794 0,
2795 intr_context->name,
2796 &qdev->rx_ring[i]);
2797 if (status) {
2798 QPRINTK(qdev, IFUP, ERR,
2799 "Failed request for MSIX interrupt %d.\n",
2800 i);
2801 goto err_irq;
2802 } else {
2803 QPRINTK(qdev, IFUP, INFO,
2804 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2805 i,
2806 qdev->rx_ring[i].type ==
2807 DEFAULT_Q ? "DEFAULT_Q" : "",
2808 qdev->rx_ring[i].type ==
2809 TX_Q ? "TX_Q" : "",
2810 qdev->rx_ring[i].type ==
2811 RX_Q ? "RX_Q" : "", intr_context->name);
2812 }
2813 } else {
2814 QPRINTK(qdev, IFUP, DEBUG,
2815 "trying msi or legacy interrupts.\n");
2816 QPRINTK(qdev, IFUP, DEBUG,
2817 "%s: irq = %d.\n", __func__, pdev->irq);
2818 QPRINTK(qdev, IFUP, DEBUG,
2819 "%s: context->name = %s.\n", __func__,
2820 intr_context->name);
2821 QPRINTK(qdev, IFUP, DEBUG,
2822 "%s: dev_id = 0x%p.\n", __func__,
2823 &qdev->rx_ring[0]);
2824 status =
2825 request_irq(pdev->irq, qlge_isr,
2826 test_bit(QL_MSI_ENABLED,
2827 &qdev->
2828 flags) ? 0 : IRQF_SHARED,
2829 intr_context->name, &qdev->rx_ring[0]);
2830 if (status)
2831 goto err_irq;
2832
2833 QPRINTK(qdev, IFUP, ERR,
2834 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2835 i,
2836 qdev->rx_ring[0].type ==
2837 DEFAULT_Q ? "DEFAULT_Q" : "",
2838 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2839 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2840 intr_context->name);
2841 }
2842 intr_context->hooked = 1;
2843 }
2844 return status;
2845err_irq:
2846 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2847 ql_free_irq(qdev);
2848 return status;
2849}
2850
2851static int ql_start_rss(struct ql_adapter *qdev)
2852{
2853 struct ricb *ricb = &qdev->ricb;
2854 int status = 0;
2855 int i;
2856 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2857
2858 memset((void *)ricb, 0, sizeof(ricb));
2859
2860 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2861 ricb->flags =
2862 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2863 RSS_RT6);
2864 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2865
2866 /*
2867 * Fill out the Indirection Table.
2868 */
2869 for (i = 0; i < 32; i++)
2870 hash_id[i] = i & 1;
2871
2872 /*
2873 * Random values for the IPv6 and IPv4 Hash Keys.
2874 */
2875 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2876 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2877
2878 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2879
2880 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2881 if (status) {
2882 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2883 return status;
2884 }
2885 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2886 return status;
2887}
2888
2889/* Initialize the frame-to-queue routing. */
2890static int ql_route_initialize(struct ql_adapter *qdev)
2891{
2892 int status = 0;
2893 int i;
2894
2895 /* Clear all the entries in the routing table. */
2896 for (i = 0; i < 16; i++) {
2897 status = ql_set_routing_reg(qdev, i, 0, 0);
2898 if (status) {
2899 QPRINTK(qdev, IFUP, ERR,
2900 "Failed to init routing register for CAM packets.\n");
2901 return status;
2902 }
2903 }
2904
2905 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2906 if (status) {
2907 QPRINTK(qdev, IFUP, ERR,
2908 "Failed to init routing register for error packets.\n");
2909 return status;
2910 }
2911 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2912 if (status) {
2913 QPRINTK(qdev, IFUP, ERR,
2914 "Failed to init routing register for broadcast packets.\n");
2915 return status;
2916 }
2917 /* If we have more than one inbound queue, then turn on RSS in the
2918 * routing block.
2919 */
2920 if (qdev->rss_ring_count > 1) {
2921 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2922 RT_IDX_RSS_MATCH, 1);
2923 if (status) {
2924 QPRINTK(qdev, IFUP, ERR,
2925 "Failed to init routing register for MATCH RSS packets.\n");
2926 return status;
2927 }
2928 }
2929
2930 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2931 RT_IDX_CAM_HIT, 1);
2932 if (status) {
2933 QPRINTK(qdev, IFUP, ERR,
2934 "Failed to init routing register for CAM packets.\n");
2935 return status;
2936 }
2937 return status;
2938}
2939
2940static int ql_adapter_initialize(struct ql_adapter *qdev)
2941{
2942 u32 value, mask;
2943 int i;
2944 int status = 0;
2945
2946 /*
2947 * Set up the System register to halt on errors.
2948 */
2949 value = SYS_EFE | SYS_FAE;
2950 mask = value << 16;
2951 ql_write32(qdev, SYS, mask | value);
2952
2953 /* Set the default queue. */
2954 value = NIC_RCV_CFG_DFQ;
2955 mask = NIC_RCV_CFG_DFQ_MASK;
2956 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2957
2958 /* Set the MPI interrupt to enabled. */
2959 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2960
2961 /* Enable the function, set pagesize, enable error checking. */
2962 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2963 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2964
2965 /* Set/clear header splitting. */
2966 mask = FSC_VM_PAGESIZE_MASK |
2967 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2968 ql_write32(qdev, FSC, mask | value);
2969
2970 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2971 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2972
2973 /* Start up the rx queues. */
2974 for (i = 0; i < qdev->rx_ring_count; i++) {
2975 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2976 if (status) {
2977 QPRINTK(qdev, IFUP, ERR,
2978 "Failed to start rx ring[%d].\n", i);
2979 return status;
2980 }
2981 }
2982
2983 /* If there is more than one inbound completion queue
2984 * then download a RICB to configure RSS.
2985 */
2986 if (qdev->rss_ring_count > 1) {
2987 status = ql_start_rss(qdev);
2988 if (status) {
2989 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
2990 return status;
2991 }
2992 }
2993
2994 /* Start up the tx queues. */
2995 for (i = 0; i < qdev->tx_ring_count; i++) {
2996 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
2997 if (status) {
2998 QPRINTK(qdev, IFUP, ERR,
2999 "Failed to start tx ring[%d].\n", i);
3000 return status;
3001 }
3002 }
3003
3004 status = ql_port_initialize(qdev);
3005 if (status) {
3006 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3007 return status;
3008 }
3009
3010 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3011 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3012 if (status) {
3013 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3014 return status;
3015 }
3016
3017 status = ql_route_initialize(qdev);
3018 if (status) {
3019 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3020 return status;
3021 }
3022
3023 /* Start NAPI for the RSS queues. */
3024 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3025 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3026 i);
3027 napi_enable(&qdev->rx_ring[i].napi);
3028 }
3029
3030 return status;
3031}
3032
3033/* Issue soft reset to chip. */
3034static int ql_adapter_reset(struct ql_adapter *qdev)
3035{
3036 u32 value;
3037 int max_wait_time;
3038 int status = 0;
3039 int resetCnt = 0;
3040
3041#define MAX_RESET_CNT 1
3042issueReset:
3043 resetCnt++;
3044 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3045 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3046 /* Wait for reset to complete. */
3047 max_wait_time = 3;
3048 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3049 max_wait_time);
3050 do {
3051 value = ql_read32(qdev, RST_FO);
3052 if ((value & RST_FO_FR) == 0)
3053 break;
3054
3055 ssleep(1);
3056 } while ((--max_wait_time));
3057 if (value & RST_FO_FR) {
3058 QPRINTK(qdev, IFDOWN, ERR,
3059 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3060 if (resetCnt < MAX_RESET_CNT)
3061 goto issueReset;
3062 }
3063 if (max_wait_time == 0) {
3064 status = -ETIMEDOUT;
3065 QPRINTK(qdev, IFDOWN, ERR,
3066 "ETIMEOUT!!! errored out of resetting the chip!\n");
3067 }
3068
3069 return status;
3070}
3071
3072static void ql_display_dev_info(struct net_device *ndev)
3073{
3074 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3075
3076 QPRINTK(qdev, PROBE, INFO,
3077 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3078 "XG Roll = %d, XG Rev = %d.\n",
3079 qdev->func,
3080 qdev->chip_rev_id & 0x0000000f,
3081 qdev->chip_rev_id >> 4 & 0x0000000f,
3082 qdev->chip_rev_id >> 8 & 0x0000000f,
3083 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3084 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3085}
3086
3087static int ql_adapter_down(struct ql_adapter *qdev)
3088{
3089 struct net_device *ndev = qdev->ndev;
3090 int i, status = 0;
3091 struct rx_ring *rx_ring;
3092
3093 netif_stop_queue(ndev);
3094 netif_carrier_off(ndev);
3095
3096 cancel_delayed_work_sync(&qdev->asic_reset_work);
3097 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3098 cancel_delayed_work_sync(&qdev->mpi_work);
3099
3100 /* The default queue at index 0 is always processed in
3101 * a workqueue.
3102 */
3103 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3104
3105 /* The rest of the rx_rings are processed in
3106 * a workqueue only if it's a single interrupt
3107 * environment (MSI/Legacy).
3108 */
c062076c 3109 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3110 rx_ring = &qdev->rx_ring[i];
3111 /* Only the RSS rings use NAPI on multi irq
3112 * environment. Outbound completion processing
3113 * is done in interrupt context.
3114 */
3115 if (i >= qdev->rss_ring_first_cq_id) {
3116 napi_disable(&rx_ring->napi);
3117 } else {
3118 cancel_delayed_work_sync(&rx_ring->rx_work);
3119 }
3120 }
3121
3122 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3123
3124 ql_disable_interrupts(qdev);
3125
3126 ql_tx_ring_clean(qdev);
3127
3128 spin_lock(&qdev->hw_lock);
3129 status = ql_adapter_reset(qdev);
3130 if (status)
3131 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3132 qdev->func);
3133 spin_unlock(&qdev->hw_lock);
3134 return status;
3135}
3136
3137static int ql_adapter_up(struct ql_adapter *qdev)
3138{
3139 int err = 0;
3140
3141 spin_lock(&qdev->hw_lock);
3142 err = ql_adapter_initialize(qdev);
3143 if (err) {
3144 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3145 spin_unlock(&qdev->hw_lock);
3146 goto err_init;
3147 }
3148 spin_unlock(&qdev->hw_lock);
3149 set_bit(QL_ADAPTER_UP, &qdev->flags);
3150 ql_enable_interrupts(qdev);
3151 ql_enable_all_completion_interrupts(qdev);
3152 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3153 netif_carrier_on(qdev->ndev);
3154 netif_start_queue(qdev->ndev);
3155 }
3156
3157 return 0;
3158err_init:
3159 ql_adapter_reset(qdev);
3160 return err;
3161}
3162
3163static int ql_cycle_adapter(struct ql_adapter *qdev)
3164{
3165 int status;
3166
3167 status = ql_adapter_down(qdev);
3168 if (status)
3169 goto error;
3170
3171 status = ql_adapter_up(qdev);
3172 if (status)
3173 goto error;
3174
3175 return status;
3176error:
3177 QPRINTK(qdev, IFUP, ALERT,
3178 "Driver up/down cycle failed, closing device\n");
3179 rtnl_lock();
3180 dev_close(qdev->ndev);
3181 rtnl_unlock();
3182 return status;
3183}
3184
3185static void ql_release_adapter_resources(struct ql_adapter *qdev)
3186{
3187 ql_free_mem_resources(qdev);
3188 ql_free_irq(qdev);
3189}
3190
3191static int ql_get_adapter_resources(struct ql_adapter *qdev)
3192{
3193 int status = 0;
3194
3195 if (ql_alloc_mem_resources(qdev)) {
3196 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3197 return -ENOMEM;
3198 }
3199 status = ql_request_irq(qdev);
3200 if (status)
3201 goto err_irq;
3202 return status;
3203err_irq:
3204 ql_free_mem_resources(qdev);
3205 return status;
3206}
3207
3208static int qlge_close(struct net_device *ndev)
3209{
3210 struct ql_adapter *qdev = netdev_priv(ndev);
3211
3212 /*
3213 * Wait for device to recover from a reset.
3214 * (Rarely happens, but possible.)
3215 */
3216 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3217 msleep(1);
3218 ql_adapter_down(qdev);
3219 ql_release_adapter_resources(qdev);
c4e84bde
RM
3220 return 0;
3221}
3222
3223static int ql_configure_rings(struct ql_adapter *qdev)
3224{
3225 int i;
3226 struct rx_ring *rx_ring;
3227 struct tx_ring *tx_ring;
3228 int cpu_cnt = num_online_cpus();
3229
3230 /*
3231 * For each processor present we allocate one
3232 * rx_ring for outbound completions, and one
3233 * rx_ring for inbound completions. Plus there is
3234 * always the one default queue. For the CPU
3235 * counts we end up with the following rx_rings:
3236 * rx_ring count =
3237 * one default queue +
3238 * (CPU count * outbound completion rx_ring) +
3239 * (CPU count * inbound (RSS) completion rx_ring)
3240 * To keep it simple we limit the total number of
3241 * queues to < 32, so we truncate CPU to 8.
3242 * This limitation can be removed when requested.
3243 */
3244
683d46a9
RM
3245 if (cpu_cnt > MAX_CPUS)
3246 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3247
3248 /*
3249 * rx_ring[0] is always the default queue.
3250 */
3251 /* Allocate outbound completion ring for each CPU. */
3252 qdev->tx_ring_count = cpu_cnt;
3253 /* Allocate inbound completion (RSS) ring for each CPU. */
3254 qdev->rss_ring_count = cpu_cnt;
3255 /* cq_id for the first inbound ring handler. */
3256 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3257 /*
3258 * qdev->rx_ring_count:
3259 * Total number of rx_rings. This includes the one
3260 * default queue, a number of outbound completion
3261 * handler rx_rings, and the number of inbound
3262 * completion handler rx_rings.
3263 */
3264 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3265
c4e84bde
RM
3266 for (i = 0; i < qdev->tx_ring_count; i++) {
3267 tx_ring = &qdev->tx_ring[i];
3268 memset((void *)tx_ring, 0, sizeof(tx_ring));
3269 tx_ring->qdev = qdev;
3270 tx_ring->wq_id = i;
3271 tx_ring->wq_len = qdev->tx_ring_size;
3272 tx_ring->wq_size =
3273 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3274
3275 /*
3276 * The completion queue ID for the tx rings start
3277 * immediately after the default Q ID, which is zero.
3278 */
3279 tx_ring->cq_id = i + 1;
3280 }
3281
3282 for (i = 0; i < qdev->rx_ring_count; i++) {
3283 rx_ring = &qdev->rx_ring[i];
3284 memset((void *)rx_ring, 0, sizeof(rx_ring));
3285 rx_ring->qdev = qdev;
3286 rx_ring->cq_id = i;
3287 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3288 if (i == 0) { /* Default queue at index 0. */
3289 /*
3290 * Default queue handles bcast/mcast plus
3291 * async events. Needs buffers.
3292 */
3293 rx_ring->cq_len = qdev->rx_ring_size;
3294 rx_ring->cq_size =
3295 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3296 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3297 rx_ring->lbq_size =
2c9a0d41 3298 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3299 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3300 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3301 rx_ring->sbq_size =
2c9a0d41 3302 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3303 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3304 rx_ring->type = DEFAULT_Q;
3305 } else if (i < qdev->rss_ring_first_cq_id) {
3306 /*
3307 * Outbound queue handles outbound completions only.
3308 */
3309 /* outbound cq is same size as tx_ring it services. */
3310 rx_ring->cq_len = qdev->tx_ring_size;
3311 rx_ring->cq_size =
3312 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3313 rx_ring->lbq_len = 0;
3314 rx_ring->lbq_size = 0;
3315 rx_ring->lbq_buf_size = 0;
3316 rx_ring->sbq_len = 0;
3317 rx_ring->sbq_size = 0;
3318 rx_ring->sbq_buf_size = 0;
3319 rx_ring->type = TX_Q;
3320 } else { /* Inbound completions (RSS) queues */
3321 /*
3322 * Inbound queues handle unicast frames only.
3323 */
3324 rx_ring->cq_len = qdev->rx_ring_size;
3325 rx_ring->cq_size =
3326 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3327 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3328 rx_ring->lbq_size =
2c9a0d41 3329 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3330 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3331 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3332 rx_ring->sbq_size =
2c9a0d41 3333 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3334 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3335 rx_ring->type = RX_Q;
3336 }
3337 }
3338 return 0;
3339}
3340
3341static int qlge_open(struct net_device *ndev)
3342{
3343 int err = 0;
3344 struct ql_adapter *qdev = netdev_priv(ndev);
3345
3346 err = ql_configure_rings(qdev);
3347 if (err)
3348 return err;
3349
3350 err = ql_get_adapter_resources(qdev);
3351 if (err)
3352 goto error_up;
3353
3354 err = ql_adapter_up(qdev);
3355 if (err)
3356 goto error_up;
3357
3358 return err;
3359
3360error_up:
3361 ql_release_adapter_resources(qdev);
c4e84bde
RM
3362 return err;
3363}
3364
3365static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3366{
3367 struct ql_adapter *qdev = netdev_priv(ndev);
3368
3369 if (ndev->mtu == 1500 && new_mtu == 9000) {
3370 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3371 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3372 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3373 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3374 (ndev->mtu == 9000 && new_mtu == 9000)) {
3375 return 0;
3376 } else
3377 return -EINVAL;
3378 ndev->mtu = new_mtu;
3379 return 0;
3380}
3381
3382static struct net_device_stats *qlge_get_stats(struct net_device
3383 *ndev)
3384{
3385 struct ql_adapter *qdev = netdev_priv(ndev);
3386 return &qdev->stats;
3387}
3388
3389static void qlge_set_multicast_list(struct net_device *ndev)
3390{
3391 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3392 struct dev_mc_list *mc_ptr;
3393 int i;
3394
3395 spin_lock(&qdev->hw_lock);
3396 /*
3397 * Set or clear promiscuous mode if a
3398 * transition is taking place.
3399 */
3400 if (ndev->flags & IFF_PROMISC) {
3401 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3402 if (ql_set_routing_reg
3403 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3404 QPRINTK(qdev, HW, ERR,
3405 "Failed to set promiscous mode.\n");
3406 } else {
3407 set_bit(QL_PROMISCUOUS, &qdev->flags);
3408 }
3409 }
3410 } else {
3411 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3412 if (ql_set_routing_reg
3413 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3414 QPRINTK(qdev, HW, ERR,
3415 "Failed to clear promiscous mode.\n");
3416 } else {
3417 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3418 }
3419 }
3420 }
3421
3422 /*
3423 * Set or clear all multicast mode if a
3424 * transition is taking place.
3425 */
3426 if ((ndev->flags & IFF_ALLMULTI) ||
3427 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3428 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3429 if (ql_set_routing_reg
3430 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3431 QPRINTK(qdev, HW, ERR,
3432 "Failed to set all-multi mode.\n");
3433 } else {
3434 set_bit(QL_ALLMULTI, &qdev->flags);
3435 }
3436 }
3437 } else {
3438 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3439 if (ql_set_routing_reg
3440 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3441 QPRINTK(qdev, HW, ERR,
3442 "Failed to clear all-multi mode.\n");
3443 } else {
3444 clear_bit(QL_ALLMULTI, &qdev->flags);
3445 }
3446 }
3447 }
3448
3449 if (ndev->mc_count) {
3450 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3451 i++, mc_ptr = mc_ptr->next)
3452 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3453 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3454 QPRINTK(qdev, HW, ERR,
3455 "Failed to loadmulticast address.\n");
3456 goto exit;
3457 }
3458 if (ql_set_routing_reg
3459 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3460 QPRINTK(qdev, HW, ERR,
3461 "Failed to set multicast match mode.\n");
3462 } else {
3463 set_bit(QL_ALLMULTI, &qdev->flags);
3464 }
3465 }
3466exit:
3467 spin_unlock(&qdev->hw_lock);
3468}
3469
3470static int qlge_set_mac_address(struct net_device *ndev, void *p)
3471{
3472 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3473 struct sockaddr *addr = p;
8668ae92 3474 int ret = 0;
c4e84bde
RM
3475
3476 if (netif_running(ndev))
3477 return -EBUSY;
3478
3479 if (!is_valid_ether_addr(addr->sa_data))
3480 return -EADDRNOTAVAIL;
3481 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3482
3483 spin_lock(&qdev->hw_lock);
3484 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3485 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3486 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
8668ae92 3487 ret = -1;
c4e84bde
RM
3488 }
3489 spin_unlock(&qdev->hw_lock);
3490
8668ae92 3491 return ret;
c4e84bde
RM
3492}
3493
3494static void qlge_tx_timeout(struct net_device *ndev)
3495{
3496 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3497 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3498}
3499
3500static void ql_asic_reset_work(struct work_struct *work)
3501{
3502 struct ql_adapter *qdev =
3503 container_of(work, struct ql_adapter, asic_reset_work.work);
3504 ql_cycle_adapter(qdev);
3505}
3506
3507static void ql_get_board_info(struct ql_adapter *qdev)
3508{
3509 qdev->func =
3510 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3511 if (qdev->func) {
3512 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3513 qdev->port_link_up = STS_PL1;
3514 qdev->port_init = STS_PI1;
3515 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3516 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3517 } else {
3518 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3519 qdev->port_link_up = STS_PL0;
3520 qdev->port_init = STS_PI0;
3521 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3522 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3523 }
3524 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3525}
3526
3527static void ql_release_all(struct pci_dev *pdev)
3528{
3529 struct net_device *ndev = pci_get_drvdata(pdev);
3530 struct ql_adapter *qdev = netdev_priv(ndev);
3531
3532 if (qdev->workqueue) {
3533 destroy_workqueue(qdev->workqueue);
3534 qdev->workqueue = NULL;
3535 }
3536 if (qdev->q_workqueue) {
3537 destroy_workqueue(qdev->q_workqueue);
3538 qdev->q_workqueue = NULL;
3539 }
3540 if (qdev->reg_base)
8668ae92 3541 iounmap(qdev->reg_base);
c4e84bde
RM
3542 if (qdev->doorbell_area)
3543 iounmap(qdev->doorbell_area);
3544 pci_release_regions(pdev);
3545 pci_set_drvdata(pdev, NULL);
3546}
3547
3548static int __devinit ql_init_device(struct pci_dev *pdev,
3549 struct net_device *ndev, int cards_found)
3550{
3551 struct ql_adapter *qdev = netdev_priv(ndev);
3552 int pos, err = 0;
3553 u16 val16;
3554
3555 memset((void *)qdev, 0, sizeof(qdev));
3556 err = pci_enable_device(pdev);
3557 if (err) {
3558 dev_err(&pdev->dev, "PCI device enable failed.\n");
3559 return err;
3560 }
3561
3562 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3563 if (pos <= 0) {
3564 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3565 "aborting.\n");
3566 goto err_out;
3567 } else {
3568 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3569 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3570 val16 |= (PCI_EXP_DEVCTL_CERE |
3571 PCI_EXP_DEVCTL_NFERE |
3572 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3573 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3574 }
3575
3576 err = pci_request_regions(pdev, DRV_NAME);
3577 if (err) {
3578 dev_err(&pdev->dev, "PCI region request failed.\n");
3579 goto err_out;
3580 }
3581
3582 pci_set_master(pdev);
3583 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3584 set_bit(QL_DMA64, &qdev->flags);
3585 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3586 } else {
3587 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3588 if (!err)
3589 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3590 }
3591
3592 if (err) {
3593 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3594 goto err_out;
3595 }
3596
3597 pci_set_drvdata(pdev, ndev);
3598 qdev->reg_base =
3599 ioremap_nocache(pci_resource_start(pdev, 1),
3600 pci_resource_len(pdev, 1));
3601 if (!qdev->reg_base) {
3602 dev_err(&pdev->dev, "Register mapping failed.\n");
3603 err = -ENOMEM;
3604 goto err_out;
3605 }
3606
3607 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3608 qdev->doorbell_area =
3609 ioremap_nocache(pci_resource_start(pdev, 3),
3610 pci_resource_len(pdev, 3));
3611 if (!qdev->doorbell_area) {
3612 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3613 err = -ENOMEM;
3614 goto err_out;
3615 }
3616
3617 ql_get_board_info(qdev);
3618 qdev->ndev = ndev;
3619 qdev->pdev = pdev;
3620 qdev->msg_enable = netif_msg_init(debug, default_msg);
3621 spin_lock_init(&qdev->hw_lock);
3622 spin_lock_init(&qdev->stats_lock);
3623
3624 /* make sure the EEPROM is good */
3625 err = ql_get_flash_params(qdev);
3626 if (err) {
3627 dev_err(&pdev->dev, "Invalid FLASH.\n");
3628 goto err_out;
3629 }
3630
3631 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3632 goto err_out;
3633
3634 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3635 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3636
3637 /* Set up the default ring sizes. */
3638 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3639 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3640
3641 /* Set up the coalescing parameters. */
3642 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3643 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3644 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3645 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3646
3647 /*
3648 * Set up the operating parameters.
3649 */
3650 qdev->rx_csum = 1;
3651
3652 qdev->q_workqueue = create_workqueue(ndev->name);
3653 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3654 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3655 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3656 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3657
3658 if (!cards_found) {
3659 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3660 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3661 DRV_NAME, DRV_VERSION);
3662 }
3663 return 0;
3664err_out:
3665 ql_release_all(pdev);
3666 pci_disable_device(pdev);
3667 return err;
3668}
3669
25ed7849
SH
3670
3671static const struct net_device_ops qlge_netdev_ops = {
3672 .ndo_open = qlge_open,
3673 .ndo_stop = qlge_close,
3674 .ndo_start_xmit = qlge_send,
3675 .ndo_change_mtu = qlge_change_mtu,
3676 .ndo_get_stats = qlge_get_stats,
3677 .ndo_set_multicast_list = qlge_set_multicast_list,
3678 .ndo_set_mac_address = qlge_set_mac_address,
3679 .ndo_validate_addr = eth_validate_addr,
3680 .ndo_tx_timeout = qlge_tx_timeout,
3681 .ndo_vlan_rx_register = ql_vlan_rx_register,
3682 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3683 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3684};
3685
c4e84bde
RM
3686static int __devinit qlge_probe(struct pci_dev *pdev,
3687 const struct pci_device_id *pci_entry)
3688{
3689 struct net_device *ndev = NULL;
3690 struct ql_adapter *qdev = NULL;
3691 static int cards_found = 0;
3692 int err = 0;
3693
3694 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3695 if (!ndev)
3696 return -ENOMEM;
3697
3698 err = ql_init_device(pdev, ndev, cards_found);
3699 if (err < 0) {
3700 free_netdev(ndev);
3701 return err;
3702 }
3703
3704 qdev = netdev_priv(ndev);
3705 SET_NETDEV_DEV(ndev, &pdev->dev);
3706 ndev->features = (0
3707 | NETIF_F_IP_CSUM
3708 | NETIF_F_SG
3709 | NETIF_F_TSO
3710 | NETIF_F_TSO6
3711 | NETIF_F_TSO_ECN
3712 | NETIF_F_HW_VLAN_TX
3713 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3714
3715 if (test_bit(QL_DMA64, &qdev->flags))
3716 ndev->features |= NETIF_F_HIGHDMA;
3717
3718 /*
3719 * Set up net_device structure.
3720 */
3721 ndev->tx_queue_len = qdev->tx_ring_size;
3722 ndev->irq = pdev->irq;
25ed7849
SH
3723
3724 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3725 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3726 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3727
c4e84bde
RM
3728 err = register_netdev(ndev);
3729 if (err) {
3730 dev_err(&pdev->dev, "net device registration failed.\n");
3731 ql_release_all(pdev);
3732 pci_disable_device(pdev);
3733 return err;
3734 }
3735 netif_carrier_off(ndev);
3736 netif_stop_queue(ndev);
3737 ql_display_dev_info(ndev);
3738 cards_found++;
3739 return 0;
3740}
3741
3742static void __devexit qlge_remove(struct pci_dev *pdev)
3743{
3744 struct net_device *ndev = pci_get_drvdata(pdev);
3745 unregister_netdev(ndev);
3746 ql_release_all(pdev);
3747 pci_disable_device(pdev);
3748 free_netdev(ndev);
3749}
3750
3751/*
3752 * This callback is called by the PCI subsystem whenever
3753 * a PCI bus error is detected.
3754 */
3755static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3756 enum pci_channel_state state)
3757{
3758 struct net_device *ndev = pci_get_drvdata(pdev);
3759 struct ql_adapter *qdev = netdev_priv(ndev);
3760
3761 if (netif_running(ndev))
3762 ql_adapter_down(qdev);
3763
3764 pci_disable_device(pdev);
3765
3766 /* Request a slot reset. */
3767 return PCI_ERS_RESULT_NEED_RESET;
3768}
3769
3770/*
3771 * This callback is called after the PCI buss has been reset.
3772 * Basically, this tries to restart the card from scratch.
3773 * This is a shortened version of the device probe/discovery code,
3774 * it resembles the first-half of the () routine.
3775 */
3776static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3777{
3778 struct net_device *ndev = pci_get_drvdata(pdev);
3779 struct ql_adapter *qdev = netdev_priv(ndev);
3780
3781 if (pci_enable_device(pdev)) {
3782 QPRINTK(qdev, IFUP, ERR,
3783 "Cannot re-enable PCI device after reset.\n");
3784 return PCI_ERS_RESULT_DISCONNECT;
3785 }
3786
3787 pci_set_master(pdev);
3788
3789 netif_carrier_off(ndev);
3790 netif_stop_queue(ndev);
3791 ql_adapter_reset(qdev);
3792
3793 /* Make sure the EEPROM is good */
3794 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3795
3796 if (!is_valid_ether_addr(ndev->perm_addr)) {
3797 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3798 return PCI_ERS_RESULT_DISCONNECT;
3799 }
3800
3801 return PCI_ERS_RESULT_RECOVERED;
3802}
3803
3804static void qlge_io_resume(struct pci_dev *pdev)
3805{
3806 struct net_device *ndev = pci_get_drvdata(pdev);
3807 struct ql_adapter *qdev = netdev_priv(ndev);
3808
3809 pci_set_master(pdev);
3810
3811 if (netif_running(ndev)) {
3812 if (ql_adapter_up(qdev)) {
3813 QPRINTK(qdev, IFUP, ERR,
3814 "Device initialization failed after reset.\n");
3815 return;
3816 }
3817 }
3818
3819 netif_device_attach(ndev);
3820}
3821
3822static struct pci_error_handlers qlge_err_handler = {
3823 .error_detected = qlge_io_error_detected,
3824 .slot_reset = qlge_io_slot_reset,
3825 .resume = qlge_io_resume,
3826};
3827
3828static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3829{
3830 struct net_device *ndev = pci_get_drvdata(pdev);
3831 struct ql_adapter *qdev = netdev_priv(ndev);
3832 int err;
3833
3834 netif_device_detach(ndev);
3835
3836 if (netif_running(ndev)) {
3837 err = ql_adapter_down(qdev);
3838 if (!err)
3839 return err;
3840 }
3841
3842 err = pci_save_state(pdev);
3843 if (err)
3844 return err;
3845
3846 pci_disable_device(pdev);
3847
3848 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3849
3850 return 0;
3851}
3852
04da2cf9 3853#ifdef CONFIG_PM
c4e84bde
RM
3854static int qlge_resume(struct pci_dev *pdev)
3855{
3856 struct net_device *ndev = pci_get_drvdata(pdev);
3857 struct ql_adapter *qdev = netdev_priv(ndev);
3858 int err;
3859
3860 pci_set_power_state(pdev, PCI_D0);
3861 pci_restore_state(pdev);
3862 err = pci_enable_device(pdev);
3863 if (err) {
3864 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3865 return err;
3866 }
3867 pci_set_master(pdev);
3868
3869 pci_enable_wake(pdev, PCI_D3hot, 0);
3870 pci_enable_wake(pdev, PCI_D3cold, 0);
3871
3872 if (netif_running(ndev)) {
3873 err = ql_adapter_up(qdev);
3874 if (err)
3875 return err;
3876 }
3877
3878 netif_device_attach(ndev);
3879
3880 return 0;
3881}
04da2cf9 3882#endif /* CONFIG_PM */
c4e84bde
RM
3883
3884static void qlge_shutdown(struct pci_dev *pdev)
3885{
3886 qlge_suspend(pdev, PMSG_SUSPEND);
3887}
3888
3889static struct pci_driver qlge_driver = {
3890 .name = DRV_NAME,
3891 .id_table = qlge_pci_tbl,
3892 .probe = qlge_probe,
3893 .remove = __devexit_p(qlge_remove),
3894#ifdef CONFIG_PM
3895 .suspend = qlge_suspend,
3896 .resume = qlge_resume,
3897#endif
3898 .shutdown = qlge_shutdown,
3899 .err_handler = &qlge_err_handler
3900};
3901
3902static int __init qlge_init_module(void)
3903{
3904 return pci_register_driver(&qlge_driver);
3905}
3906
3907static void __exit qlge_exit(void)
3908{
3909 pci_unregister_driver(&qlge_driver);
3910}
3911
3912module_init(qlge_init_module);
3913module_exit(qlge_exit);