]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/qlge/qlge_main.c
qlge: bugfix: Add missing dev_kfree_skb_any() call.
[net-next-2.6.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
b7c6bfb7 42#include <net/ip6_checksum.h>
c4e84bde
RM
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 NETIF_MSG_TX_QUEUED |
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
216 status = ql_wait_cfg(qdev, bit);
217 if (status) {
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
220 goto exit;
221 }
222
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224 if (status)
225 goto exit;
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
239 pci_unmap_single(qdev->pdev, map, size, direction);
240 return status;
241}
242
243/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245 u32 *value)
246{
247 u32 offset = 0;
248 int status;
249
250 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251 if (status)
252 return status;
253 switch (type) {
254 case MAC_ADDR_TYPE_MULTI_MAC:
255 case MAC_ADDR_TYPE_CAM_MAC:
256 {
257 status =
258 ql_wait_reg_rdy(qdev,
939678f8 259 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
260 if (status)
261 goto exit;
262 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265 status =
266 ql_wait_reg_rdy(qdev,
939678f8 267 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
268 if (status)
269 goto exit;
270 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271 status =
272 ql_wait_reg_rdy(qdev,
939678f8 273 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
274 if (status)
275 goto exit;
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279 status =
280 ql_wait_reg_rdy(qdev,
939678f8 281 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
282 if (status)
283 goto exit;
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 if (type == MAC_ADDR_TYPE_CAM_MAC) {
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 296 MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 }
301 break;
302 }
303 case MAC_ADDR_TYPE_VLAN:
304 case MAC_ADDR_TYPE_MULTI_FLTR:
305 default:
306 QPRINTK(qdev, IFUP, CRIT,
307 "Address type %d not yet supported.\n", type);
308 status = -EPERM;
309 }
310exit:
311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312 return status;
313}
314
315/* Set up a MAC, multicast or VLAN address for the
316 * inbound frame matching.
317 */
318static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319 u16 index)
320{
321 u32 offset = 0;
322 int status = 0;
323
324 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325 if (status)
326 return status;
327 switch (type) {
328 case MAC_ADDR_TYPE_MULTI_MAC:
329 case MAC_ADDR_TYPE_CAM_MAC:
330 {
331 u32 cam_output;
332 u32 upper = (addr[0] << 8) | addr[1];
333 u32 lower =
334 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335 (addr[5]);
336
337 QPRINTK(qdev, IFUP, INFO,
7c510e4b 338 "Adding %s address %pM"
c4e84bde
RM
339 " at index %d in the CAM.\n",
340 ((type ==
341 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 342 "UNICAST"), addr, index);
c4e84bde
RM
343
344 status =
345 ql_wait_reg_rdy(qdev,
939678f8 346 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
347 if (status)
348 goto exit;
349 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350 (index << MAC_ADDR_IDX_SHIFT) | /* index */
351 type); /* type */
352 ql_write32(qdev, MAC_ADDR_DATA, lower);
353 status =
354 ql_wait_reg_rdy(qdev,
939678f8 355 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
356 if (status)
357 goto exit;
358 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359 (index << MAC_ADDR_IDX_SHIFT) | /* index */
360 type); /* type */
361 ql_write32(qdev, MAC_ADDR_DATA, upper);
362 status =
363 ql_wait_reg_rdy(qdev,
939678f8 364 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
365 if (status)
366 goto exit;
367 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
368 (index << MAC_ADDR_IDX_SHIFT) | /* index */
369 type); /* type */
370 /* This field should also include the queue id
371 and possibly the function id. Right now we hardcode
372 the route field to NIC core.
373 */
374 if (type == MAC_ADDR_TYPE_CAM_MAC) {
375 cam_output = (CAM_OUT_ROUTE_NIC |
376 (qdev->
377 func << CAM_OUT_FUNC_SHIFT) |
378 (qdev->
379 rss_ring_first_cq_id <<
380 CAM_OUT_CQ_ID_SHIFT));
381 if (qdev->vlgrp)
382 cam_output |= CAM_OUT_RV;
383 /* route to NIC core */
384 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385 }
386 break;
387 }
388 case MAC_ADDR_TYPE_VLAN:
389 {
390 u32 enable_bit = *((u32 *) &addr[0]);
391 /* For VLAN, the addr actually holds a bit that
392 * either enables or disables the vlan id we are
393 * addressing. It's either MAC_ADDR_E on or off.
394 * That's bit-27 we're talking about.
395 */
396 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397 (enable_bit ? "Adding" : "Removing"),
398 index, (enable_bit ? "to" : "from"));
399
400 status =
401 ql_wait_reg_rdy(qdev,
939678f8 402 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
403 if (status)
404 goto exit;
405 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406 (index << MAC_ADDR_IDX_SHIFT) | /* index */
407 type | /* type */
408 enable_bit); /* enable/disable */
409 break;
410 }
411 case MAC_ADDR_TYPE_MULTI_FLTR:
412 default:
413 QPRINTK(qdev, IFUP, CRIT,
414 "Address type %d not yet supported.\n", type);
415 status = -EPERM;
416 }
417exit:
418 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419 return status;
420}
421
422/* Get a specific frame routing value from the CAM.
423 * Used for debug and reg dump.
424 */
425int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426{
427 int status = 0;
428
429 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430 if (status)
431 goto exit;
432
939678f8 433 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
434 if (status)
435 goto exit;
436
437 ql_write32(qdev, RT_IDX,
438 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 439 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
440 if (status)
441 goto exit;
442 *value = ql_read32(qdev, RT_DATA);
443exit:
444 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445 return status;
446}
447
448/* The NIC function for this chip has 16 routing indexes. Each one can be used
449 * to route different frame types to various inbound queues. We send broadcast/
450 * multicast/error frames to the default queue for slow handling,
451 * and CAM hit/RSS frames to the fast handling queues.
452 */
453static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454 int enable)
455{
456 int status;
457 u32 value = 0;
458
459 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460 if (status)
461 return status;
462
463 QPRINTK(qdev, IFUP, DEBUG,
464 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465 (enable ? "Adding" : "Removing"),
466 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468 ((index ==
469 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483 (enable ? "to" : "from"));
484
485 switch (mask) {
486 case RT_IDX_CAM_HIT:
487 {
488 value = RT_IDX_DST_CAM_Q | /* dest */
489 RT_IDX_TYPE_NICQ | /* type */
490 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491 break;
492 }
493 case RT_IDX_VALID: /* Promiscuous Mode frames. */
494 {
495 value = RT_IDX_DST_DFLT_Q | /* dest */
496 RT_IDX_TYPE_NICQ | /* type */
497 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498 break;
499 }
500 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
501 {
502 value = RT_IDX_DST_DFLT_Q | /* dest */
503 RT_IDX_TYPE_NICQ | /* type */
504 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505 break;
506 }
507 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
508 {
509 value = RT_IDX_DST_DFLT_Q | /* dest */
510 RT_IDX_TYPE_NICQ | /* type */
511 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512 break;
513 }
514 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
515 {
516 value = RT_IDX_DST_CAM_Q | /* dest */
517 RT_IDX_TYPE_NICQ | /* type */
518 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519 break;
520 }
521 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
522 {
523 value = RT_IDX_DST_CAM_Q | /* dest */
524 RT_IDX_TYPE_NICQ | /* type */
525 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526 break;
527 }
528 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
529 {
530 value = RT_IDX_DST_RSS | /* dest */
531 RT_IDX_TYPE_NICQ | /* type */
532 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533 break;
534 }
535 case 0: /* Clear the E-bit on an entry. */
536 {
537 value = RT_IDX_DST_DFLT_Q | /* dest */
538 RT_IDX_TYPE_NICQ | /* type */
539 (index << RT_IDX_IDX_SHIFT);/* index */
540 break;
541 }
542 default:
543 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544 mask);
545 status = -EPERM;
546 goto exit;
547 }
548
549 if (value) {
550 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551 if (status)
552 goto exit;
553 value |= (enable ? RT_IDX_E : 0);
554 ql_write32(qdev, RT_IDX, value);
555 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556 }
557exit:
558 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559 return status;
560}
561
562static void ql_enable_interrupts(struct ql_adapter *qdev)
563{
564 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565}
566
567static void ql_disable_interrupts(struct ql_adapter *qdev)
568{
569 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570}
571
572/* If we're running with multiple MSI-X vectors then we enable on the fly.
573 * Otherwise, we may have multiple outstanding workers and don't want to
574 * enable until the last one finishes. In this case, the irq_cnt gets
575 * incremented everytime we queue a worker and decremented everytime
576 * a worker finishes. Once it hits zero we enable the interrupt.
577 */
bb0d215c 578u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 579{
bb0d215c
RM
580 u32 var = 0;
581 unsigned long hw_flags = 0;
582 struct intr_context *ctx = qdev->intr_context + intr;
583
584 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585 /* Always enable if we're MSIX multi interrupts and
586 * it's not the default (zeroeth) interrupt.
587 */
c4e84bde 588 ql_write32(qdev, INTR_EN,
bb0d215c
RM
589 ctx->intr_en_mask);
590 var = ql_read32(qdev, STS);
591 return var;
c4e84bde 592 }
bb0d215c
RM
593
594 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595 if (atomic_dec_and_test(&ctx->irq_cnt)) {
596 ql_write32(qdev, INTR_EN,
597 ctx->intr_en_mask);
598 var = ql_read32(qdev, STS);
599 }
600 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601 return var;
c4e84bde
RM
602}
603
604static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605{
606 u32 var = 0;
bb0d215c
RM
607 unsigned long hw_flags;
608 struct intr_context *ctx;
c4e84bde 609
bb0d215c
RM
610 /* HW disables for us if we're MSIX multi interrupts and
611 * it's not the default (zeroeth) interrupt.
612 */
613 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614 return 0;
615
616 ctx = qdev->intr_context + intr;
617 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 619 ql_write32(qdev, INTR_EN,
bb0d215c 620 ctx->intr_dis_mask);
c4e84bde
RM
621 var = ql_read32(qdev, STS);
622 }
bb0d215c
RM
623 atomic_inc(&ctx->irq_cnt);
624 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
c4e84bde
RM
625 return var;
626}
627
628static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629{
630 int i;
631 for (i = 0; i < qdev->intr_count; i++) {
632 /* The enable call does a atomic_dec_and_test
633 * and enables only if the result is zero.
634 * So we precharge it here.
635 */
bb0d215c
RM
636 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637 i == 0))
638 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
639 ql_enable_completion_interrupt(qdev, i);
640 }
641
642}
643
26351479 644static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
645{
646 int status = 0;
647 /* wait for reg to come ready */
648 status = ql_wait_reg_rdy(qdev,
649 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650 if (status)
651 goto exit;
652 /* set up for reg read */
653 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654 /* wait for reg to come ready */
655 status = ql_wait_reg_rdy(qdev,
656 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657 if (status)
658 goto exit;
26351479
RM
659 /* This data is stored on flash as an array of
660 * __le32. Since ql_read32() returns cpu endian
661 * we need to swap it back.
662 */
663 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
664exit:
665 return status;
666}
667
668static int ql_get_flash_params(struct ql_adapter *qdev)
669{
670 int i;
671 int status;
26351479 672 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7
RM
673 u32 offset = 0;
674
675 /* Second function's parameters follow the first
676 * function's.
677 */
678 if (qdev->func)
679 offset = sizeof(qdev->flash) / sizeof(u32);
c4e84bde
RM
680
681 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
682 return -ETIMEDOUT;
683
684 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
e78f5fa7 685 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
686 if (status) {
687 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
688 goto exit;
689 }
690
691 }
692exit:
693 ql_sem_unlock(qdev, SEM_FLASH_MASK);
694 return status;
695}
696
697/* xgmac register are located behind the xgmac_addr and xgmac_data
698 * register pair. Each read/write requires us to wait for the ready
699 * bit before reading/writing the data.
700 */
701static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
702{
703 int status;
704 /* wait for reg to come ready */
705 status = ql_wait_reg_rdy(qdev,
706 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
707 if (status)
708 return status;
709 /* write the data to the data reg */
710 ql_write32(qdev, XGMAC_DATA, data);
711 /* trigger the write */
712 ql_write32(qdev, XGMAC_ADDR, reg);
713 return status;
714}
715
716/* xgmac register are located behind the xgmac_addr and xgmac_data
717 * register pair. Each read/write requires us to wait for the ready
718 * bit before reading/writing the data.
719 */
720int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
721{
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
733 if (status)
734 goto exit;
735 /* get the data */
736 *data = ql_read32(qdev, XGMAC_DATA);
737exit:
738 return status;
739}
740
741/* This is used for reading the 64-bit statistics regs. */
742int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
743{
744 int status = 0;
745 u32 hi = 0;
746 u32 lo = 0;
747
748 status = ql_read_xgmac_reg(qdev, reg, &lo);
749 if (status)
750 goto exit;
751
752 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
753 if (status)
754 goto exit;
755
756 *data = (u64) lo | ((u64) hi << 32);
757
758exit:
759 return status;
760}
761
762/* Take the MAC Core out of reset.
763 * Enable statistics counting.
764 * Take the transmitter/receiver out of reset.
765 * This functionality may be done in the MPI firmware at a
766 * later date.
767 */
768static int ql_port_initialize(struct ql_adapter *qdev)
769{
770 int status = 0;
771 u32 data;
772
773 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774 /* Another function has the semaphore, so
775 * wait for the port init bit to come ready.
776 */
777 QPRINTK(qdev, LINK, INFO,
778 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
779 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
780 if (status) {
781 QPRINTK(qdev, LINK, CRIT,
782 "Port initialize timed out.\n");
783 }
784 return status;
785 }
786
787 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788 /* Set the core reset. */
789 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
790 if (status)
791 goto end;
792 data |= GLOBAL_CFG_RESET;
793 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794 if (status)
795 goto end;
796
797 /* Clear the core reset and turn on jumbo for receiver. */
798 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
799 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
800 data |= GLOBAL_CFG_TX_STAT_EN;
801 data |= GLOBAL_CFG_RX_STAT_EN;
802 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
803 if (status)
804 goto end;
805
806 /* Enable transmitter, and clear it's reset. */
807 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
808 if (status)
809 goto end;
810 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
811 data |= TX_CFG_EN; /* Enable the transmitter. */
812 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
813 if (status)
814 goto end;
815
816 /* Enable receiver and clear it's reset. */
817 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
818 if (status)
819 goto end;
820 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
821 data |= RX_CFG_EN; /* Enable the receiver. */
822 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
823 if (status)
824 goto end;
825
826 /* Turn on jumbo. */
827 status =
828 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
829 if (status)
830 goto end;
831 status =
832 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
833 if (status)
834 goto end;
835
836 /* Signal to the world that the port is enabled. */
837 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
838end:
839 ql_sem_unlock(qdev, qdev->xg_sem_mask);
840 return status;
841}
842
843/* Get the next large buffer. */
8668ae92 844static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
845{
846 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847 rx_ring->lbq_curr_idx++;
848 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849 rx_ring->lbq_curr_idx = 0;
850 rx_ring->lbq_free_cnt++;
851 return lbq_desc;
852}
853
854/* Get the next small buffer. */
8668ae92 855static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
856{
857 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858 rx_ring->sbq_curr_idx++;
859 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860 rx_ring->sbq_curr_idx = 0;
861 rx_ring->sbq_free_cnt++;
862 return sbq_desc;
863}
864
865/* Update an rx ring index. */
866static void ql_update_cq(struct rx_ring *rx_ring)
867{
868 rx_ring->cnsmr_idx++;
869 rx_ring->curr_entry++;
870 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871 rx_ring->cnsmr_idx = 0;
872 rx_ring->curr_entry = rx_ring->cq_base;
873 }
874}
875
876static void ql_write_cq_idx(struct rx_ring *rx_ring)
877{
878 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
879}
880
881/* Process (refill) a large buffer queue. */
882static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
883{
884 int clean_idx = rx_ring->lbq_clean_idx;
885 struct bq_desc *lbq_desc;
c4e84bde
RM
886 u64 map;
887 int i;
888
889 while (rx_ring->lbq_free_cnt > 16) {
890 for (i = 0; i < 16; i++) {
891 QPRINTK(qdev, RX_STATUS, DEBUG,
892 "lbq: try cleaning clean_idx = %d.\n",
893 clean_idx);
894 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
895 if (lbq_desc->p.lbq_page == NULL) {
896 QPRINTK(qdev, RX_STATUS, DEBUG,
897 "lbq: getting new page for index %d.\n",
898 lbq_desc->index);
899 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900 if (lbq_desc->p.lbq_page == NULL) {
901 QPRINTK(qdev, RX_STATUS, ERR,
902 "Couldn't get a page.\n");
903 return;
904 }
905 map = pci_map_page(qdev->pdev,
906 lbq_desc->p.lbq_page,
907 0, PAGE_SIZE,
908 PCI_DMA_FROMDEVICE);
909 if (pci_dma_mapping_error(qdev->pdev, map)) {
f2603c2c
RM
910 put_page(lbq_desc->p.lbq_page);
911 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
912 QPRINTK(qdev, RX_STATUS, ERR,
913 "PCI mapping failed.\n");
914 return;
915 }
916 pci_unmap_addr_set(lbq_desc, mapaddr, map);
917 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 918 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
919 }
920 clean_idx++;
921 if (clean_idx == rx_ring->lbq_len)
922 clean_idx = 0;
923 }
924
925 rx_ring->lbq_clean_idx = clean_idx;
926 rx_ring->lbq_prod_idx += 16;
927 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
928 rx_ring->lbq_prod_idx = 0;
929 QPRINTK(qdev, RX_STATUS, DEBUG,
930 "lbq: updating prod idx = %d.\n",
931 rx_ring->lbq_prod_idx);
932 ql_write_db_reg(rx_ring->lbq_prod_idx,
933 rx_ring->lbq_prod_idx_db_reg);
934 rx_ring->lbq_free_cnt -= 16;
935 }
936}
937
938/* Process (refill) a small buffer queue. */
939static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
940{
941 int clean_idx = rx_ring->sbq_clean_idx;
942 struct bq_desc *sbq_desc;
c4e84bde
RM
943 u64 map;
944 int i;
945
946 while (rx_ring->sbq_free_cnt > 16) {
947 for (i = 0; i < 16; i++) {
948 sbq_desc = &rx_ring->sbq[clean_idx];
949 QPRINTK(qdev, RX_STATUS, DEBUG,
950 "sbq: try cleaning clean_idx = %d.\n",
951 clean_idx);
c4e84bde
RM
952 if (sbq_desc->p.skb == NULL) {
953 QPRINTK(qdev, RX_STATUS, DEBUG,
954 "sbq: getting new skb for index %d.\n",
955 sbq_desc->index);
956 sbq_desc->p.skb =
957 netdev_alloc_skb(qdev->ndev,
958 rx_ring->sbq_buf_size);
959 if (sbq_desc->p.skb == NULL) {
960 QPRINTK(qdev, PROBE, ERR,
961 "Couldn't get an skb.\n");
962 rx_ring->sbq_clean_idx = clean_idx;
963 return;
964 }
965 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
966 map = pci_map_single(qdev->pdev,
967 sbq_desc->p.skb->data,
968 rx_ring->sbq_buf_size /
969 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
970 if (pci_dma_mapping_error(qdev->pdev, map)) {
971 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
972 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
973 dev_kfree_skb_any(sbq_desc->p.skb);
974 sbq_desc->p.skb = NULL;
c907a35a
RM
975 return;
976 }
c4e84bde
RM
977 pci_unmap_addr_set(sbq_desc, mapaddr, map);
978 pci_unmap_len_set(sbq_desc, maplen,
979 rx_ring->sbq_buf_size / 2);
2c9a0d41 980 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
981 }
982
983 clean_idx++;
984 if (clean_idx == rx_ring->sbq_len)
985 clean_idx = 0;
986 }
987 rx_ring->sbq_clean_idx = clean_idx;
988 rx_ring->sbq_prod_idx += 16;
989 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
990 rx_ring->sbq_prod_idx = 0;
991 QPRINTK(qdev, RX_STATUS, DEBUG,
992 "sbq: updating prod idx = %d.\n",
993 rx_ring->sbq_prod_idx);
994 ql_write_db_reg(rx_ring->sbq_prod_idx,
995 rx_ring->sbq_prod_idx_db_reg);
996
997 rx_ring->sbq_free_cnt -= 16;
998 }
999}
1000
1001static void ql_update_buffer_queues(struct ql_adapter *qdev,
1002 struct rx_ring *rx_ring)
1003{
1004 ql_update_sbq(qdev, rx_ring);
1005 ql_update_lbq(qdev, rx_ring);
1006}
1007
1008/* Unmaps tx buffers. Can be called from send() if a pci mapping
1009 * fails at some stage, or from the interrupt when a tx completes.
1010 */
1011static void ql_unmap_send(struct ql_adapter *qdev,
1012 struct tx_ring_desc *tx_ring_desc, int mapped)
1013{
1014 int i;
1015 for (i = 0; i < mapped; i++) {
1016 if (i == 0 || (i == 7 && mapped > 7)) {
1017 /*
1018 * Unmap the skb->data area, or the
1019 * external sglist (AKA the Outbound
1020 * Address List (OAL)).
1021 * If its the zeroeth element, then it's
1022 * the skb->data area. If it's the 7th
1023 * element and there is more than 6 frags,
1024 * then its an OAL.
1025 */
1026 if (i == 7) {
1027 QPRINTK(qdev, TX_DONE, DEBUG,
1028 "unmapping OAL area.\n");
1029 }
1030 pci_unmap_single(qdev->pdev,
1031 pci_unmap_addr(&tx_ring_desc->map[i],
1032 mapaddr),
1033 pci_unmap_len(&tx_ring_desc->map[i],
1034 maplen),
1035 PCI_DMA_TODEVICE);
1036 } else {
1037 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1038 i);
1039 pci_unmap_page(qdev->pdev,
1040 pci_unmap_addr(&tx_ring_desc->map[i],
1041 mapaddr),
1042 pci_unmap_len(&tx_ring_desc->map[i],
1043 maplen), PCI_DMA_TODEVICE);
1044 }
1045 }
1046
1047}
1048
1049/* Map the buffers for this transmit. This will return
1050 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1051 */
1052static int ql_map_send(struct ql_adapter *qdev,
1053 struct ob_mac_iocb_req *mac_iocb_ptr,
1054 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1055{
1056 int len = skb_headlen(skb);
1057 dma_addr_t map;
1058 int frag_idx, err, map_idx = 0;
1059 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1060 int frag_cnt = skb_shinfo(skb)->nr_frags;
1061
1062 if (frag_cnt) {
1063 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1064 }
1065 /*
1066 * Map the skb buffer first.
1067 */
1068 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1069
1070 err = pci_dma_mapping_error(qdev->pdev, map);
1071 if (err) {
1072 QPRINTK(qdev, TX_QUEUED, ERR,
1073 "PCI mapping failed with error: %d\n", err);
1074
1075 return NETDEV_TX_BUSY;
1076 }
1077
1078 tbd->len = cpu_to_le32(len);
1079 tbd->addr = cpu_to_le64(map);
1080 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1081 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1082 map_idx++;
1083
1084 /*
1085 * This loop fills the remainder of the 8 address descriptors
1086 * in the IOCB. If there are more than 7 fragments, then the
1087 * eighth address desc will point to an external list (OAL).
1088 * When this happens, the remainder of the frags will be stored
1089 * in this list.
1090 */
1091 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1092 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1093 tbd++;
1094 if (frag_idx == 6 && frag_cnt > 7) {
1095 /* Let's tack on an sglist.
1096 * Our control block will now
1097 * look like this:
1098 * iocb->seg[0] = skb->data
1099 * iocb->seg[1] = frag[0]
1100 * iocb->seg[2] = frag[1]
1101 * iocb->seg[3] = frag[2]
1102 * iocb->seg[4] = frag[3]
1103 * iocb->seg[5] = frag[4]
1104 * iocb->seg[6] = frag[5]
1105 * iocb->seg[7] = ptr to OAL (external sglist)
1106 * oal->seg[0] = frag[6]
1107 * oal->seg[1] = frag[7]
1108 * oal->seg[2] = frag[8]
1109 * oal->seg[3] = frag[9]
1110 * oal->seg[4] = frag[10]
1111 * etc...
1112 */
1113 /* Tack on the OAL in the eighth segment of IOCB. */
1114 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1115 sizeof(struct oal),
1116 PCI_DMA_TODEVICE);
1117 err = pci_dma_mapping_error(qdev->pdev, map);
1118 if (err) {
1119 QPRINTK(qdev, TX_QUEUED, ERR,
1120 "PCI mapping outbound address list with error: %d\n",
1121 err);
1122 goto map_error;
1123 }
1124
1125 tbd->addr = cpu_to_le64(map);
1126 /*
1127 * The length is the number of fragments
1128 * that remain to be mapped times the length
1129 * of our sglist (OAL).
1130 */
1131 tbd->len =
1132 cpu_to_le32((sizeof(struct tx_buf_desc) *
1133 (frag_cnt - frag_idx)) | TX_DESC_C);
1134 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1135 map);
1136 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1137 sizeof(struct oal));
1138 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1139 map_idx++;
1140 }
1141
1142 map =
1143 pci_map_page(qdev->pdev, frag->page,
1144 frag->page_offset, frag->size,
1145 PCI_DMA_TODEVICE);
1146
1147 err = pci_dma_mapping_error(qdev->pdev, map);
1148 if (err) {
1149 QPRINTK(qdev, TX_QUEUED, ERR,
1150 "PCI mapping frags failed with error: %d.\n",
1151 err);
1152 goto map_error;
1153 }
1154
1155 tbd->addr = cpu_to_le64(map);
1156 tbd->len = cpu_to_le32(frag->size);
1157 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1158 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1159 frag->size);
1160
1161 }
1162 /* Save the number of segments we've mapped. */
1163 tx_ring_desc->map_cnt = map_idx;
1164 /* Terminate the last segment. */
1165 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1166 return NETDEV_TX_OK;
1167
1168map_error:
1169 /*
1170 * If the first frag mapping failed, then i will be zero.
1171 * This causes the unmap of the skb->data area. Otherwise
1172 * we pass in the number of frags that mapped successfully
1173 * so they can be umapped.
1174 */
1175 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1176 return NETDEV_TX_BUSY;
1177}
1178
8668ae92 1179static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1180{
1181 void *temp_addr = skb->data;
1182
1183 /* Undo the skb_reserve(skb,32) we did before
1184 * giving to hardware, and realign data on
1185 * a 2-byte boundary.
1186 */
1187 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1188 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1189 skb_copy_to_linear_data(skb, temp_addr,
1190 (unsigned int)len);
1191}
1192
1193/*
1194 * This function builds an skb for the given inbound
1195 * completion. It will be rewritten for readability in the near
1196 * future, but for not it works well.
1197 */
1198static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1199 struct rx_ring *rx_ring,
1200 struct ib_mac_iocb_rsp *ib_mac_rsp)
1201{
1202 struct bq_desc *lbq_desc;
1203 struct bq_desc *sbq_desc;
1204 struct sk_buff *skb = NULL;
1205 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1206 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1207
1208 /*
1209 * Handle the header buffer if present.
1210 */
1211 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1212 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1213 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1214 /*
1215 * Headers fit nicely into a small buffer.
1216 */
1217 sbq_desc = ql_get_curr_sbuf(rx_ring);
1218 pci_unmap_single(qdev->pdev,
1219 pci_unmap_addr(sbq_desc, mapaddr),
1220 pci_unmap_len(sbq_desc, maplen),
1221 PCI_DMA_FROMDEVICE);
1222 skb = sbq_desc->p.skb;
1223 ql_realign_skb(skb, hdr_len);
1224 skb_put(skb, hdr_len);
1225 sbq_desc->p.skb = NULL;
1226 }
1227
1228 /*
1229 * Handle the data buffer(s).
1230 */
1231 if (unlikely(!length)) { /* Is there data too? */
1232 QPRINTK(qdev, RX_STATUS, DEBUG,
1233 "No Data buffer in this packet.\n");
1234 return skb;
1235 }
1236
1237 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1238 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1239 QPRINTK(qdev, RX_STATUS, DEBUG,
1240 "Headers in small, data of %d bytes in small, combine them.\n", length);
1241 /*
1242 * Data is less than small buffer size so it's
1243 * stuffed in a small buffer.
1244 * For this case we append the data
1245 * from the "data" small buffer to the "header" small
1246 * buffer.
1247 */
1248 sbq_desc = ql_get_curr_sbuf(rx_ring);
1249 pci_dma_sync_single_for_cpu(qdev->pdev,
1250 pci_unmap_addr
1251 (sbq_desc, mapaddr),
1252 pci_unmap_len
1253 (sbq_desc, maplen),
1254 PCI_DMA_FROMDEVICE);
1255 memcpy(skb_put(skb, length),
1256 sbq_desc->p.skb->data, length);
1257 pci_dma_sync_single_for_device(qdev->pdev,
1258 pci_unmap_addr
1259 (sbq_desc,
1260 mapaddr),
1261 pci_unmap_len
1262 (sbq_desc,
1263 maplen),
1264 PCI_DMA_FROMDEVICE);
1265 } else {
1266 QPRINTK(qdev, RX_STATUS, DEBUG,
1267 "%d bytes in a single small buffer.\n", length);
1268 sbq_desc = ql_get_curr_sbuf(rx_ring);
1269 skb = sbq_desc->p.skb;
1270 ql_realign_skb(skb, length);
1271 skb_put(skb, length);
1272 pci_unmap_single(qdev->pdev,
1273 pci_unmap_addr(sbq_desc,
1274 mapaddr),
1275 pci_unmap_len(sbq_desc,
1276 maplen),
1277 PCI_DMA_FROMDEVICE);
1278 sbq_desc->p.skb = NULL;
1279 }
1280 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1281 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1282 QPRINTK(qdev, RX_STATUS, DEBUG,
1283 "Header in small, %d bytes in large. Chain large to small!\n", length);
1284 /*
1285 * The data is in a single large buffer. We
1286 * chain it to the header buffer's skb and let
1287 * it rip.
1288 */
1289 lbq_desc = ql_get_curr_lbuf(rx_ring);
1290 pci_unmap_page(qdev->pdev,
1291 pci_unmap_addr(lbq_desc,
1292 mapaddr),
1293 pci_unmap_len(lbq_desc, maplen),
1294 PCI_DMA_FROMDEVICE);
1295 QPRINTK(qdev, RX_STATUS, DEBUG,
1296 "Chaining page to skb.\n");
1297 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1298 0, length);
1299 skb->len += length;
1300 skb->data_len += length;
1301 skb->truesize += length;
1302 lbq_desc->p.lbq_page = NULL;
1303 } else {
1304 /*
1305 * The headers and data are in a single large buffer. We
1306 * copy it to a new skb and let it go. This can happen with
1307 * jumbo mtu on a non-TCP/UDP frame.
1308 */
1309 lbq_desc = ql_get_curr_lbuf(rx_ring);
1310 skb = netdev_alloc_skb(qdev->ndev, length);
1311 if (skb == NULL) {
1312 QPRINTK(qdev, PROBE, DEBUG,
1313 "No skb available, drop the packet.\n");
1314 return NULL;
1315 }
4055c7d4
RM
1316 pci_unmap_page(qdev->pdev,
1317 pci_unmap_addr(lbq_desc,
1318 mapaddr),
1319 pci_unmap_len(lbq_desc, maplen),
1320 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1321 skb_reserve(skb, NET_IP_ALIGN);
1322 QPRINTK(qdev, RX_STATUS, DEBUG,
1323 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1324 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1325 0, length);
1326 skb->len += length;
1327 skb->data_len += length;
1328 skb->truesize += length;
1329 length -= length;
1330 lbq_desc->p.lbq_page = NULL;
1331 __pskb_pull_tail(skb,
1332 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1333 VLAN_ETH_HLEN : ETH_HLEN);
1334 }
1335 } else {
1336 /*
1337 * The data is in a chain of large buffers
1338 * pointed to by a small buffer. We loop
1339 * thru and chain them to the our small header
1340 * buffer's skb.
1341 * frags: There are 18 max frags and our small
1342 * buffer will hold 32 of them. The thing is,
1343 * we'll use 3 max for our 9000 byte jumbo
1344 * frames. If the MTU goes up we could
1345 * eventually be in trouble.
1346 */
1347 int size, offset, i = 0;
2c9a0d41 1348 __le64 *bq, bq_array[8];
c4e84bde
RM
1349 sbq_desc = ql_get_curr_sbuf(rx_ring);
1350 pci_unmap_single(qdev->pdev,
1351 pci_unmap_addr(sbq_desc, mapaddr),
1352 pci_unmap_len(sbq_desc, maplen),
1353 PCI_DMA_FROMDEVICE);
1354 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1355 /*
1356 * This is an non TCP/UDP IP frame, so
1357 * the headers aren't split into a small
1358 * buffer. We have to use the small buffer
1359 * that contains our sg list as our skb to
1360 * send upstairs. Copy the sg list here to
1361 * a local buffer and use it to find the
1362 * pages to chain.
1363 */
1364 QPRINTK(qdev, RX_STATUS, DEBUG,
1365 "%d bytes of headers & data in chain of large.\n", length);
1366 skb = sbq_desc->p.skb;
1367 bq = &bq_array[0];
1368 memcpy(bq, skb->data, sizeof(bq_array));
1369 sbq_desc->p.skb = NULL;
1370 skb_reserve(skb, NET_IP_ALIGN);
1371 } else {
1372 QPRINTK(qdev, RX_STATUS, DEBUG,
1373 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1374 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1375 }
1376 while (length > 0) {
1377 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1378 pci_unmap_page(qdev->pdev,
1379 pci_unmap_addr(lbq_desc,
1380 mapaddr),
1381 pci_unmap_len(lbq_desc,
1382 maplen),
1383 PCI_DMA_FROMDEVICE);
1384 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1385 offset = 0;
1386
1387 QPRINTK(qdev, RX_STATUS, DEBUG,
1388 "Adding page %d to skb for %d bytes.\n",
1389 i, size);
1390 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1391 offset, size);
1392 skb->len += size;
1393 skb->data_len += size;
1394 skb->truesize += size;
1395 length -= size;
1396 lbq_desc->p.lbq_page = NULL;
1397 bq++;
1398 i++;
1399 }
1400 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1401 VLAN_ETH_HLEN : ETH_HLEN);
1402 }
1403 return skb;
1404}
1405
1406/* Process an inbound completion from an rx ring. */
1407static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1408 struct rx_ring *rx_ring,
1409 struct ib_mac_iocb_rsp *ib_mac_rsp)
1410{
1411 struct net_device *ndev = qdev->ndev;
1412 struct sk_buff *skb = NULL;
1413
1414 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1415
1416 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1417 if (unlikely(!skb)) {
1418 QPRINTK(qdev, RX_STATUS, DEBUG,
1419 "No skb available, drop packet.\n");
1420 return;
1421 }
1422
1423 prefetch(skb->data);
1424 skb->dev = ndev;
1425 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1426 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1427 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1428 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1429 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1430 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1431 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1432 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1433 }
1434 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1435 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1436 }
1437 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1438 QPRINTK(qdev, RX_STATUS, ERR,
1439 "Bad checksum for this %s packet.\n",
1440 ((ib_mac_rsp->
1441 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1442 skb->ip_summed = CHECKSUM_NONE;
1443 } else if (qdev->rx_csum &&
1444 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1445 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1446 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1447 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1448 skb->ip_summed = CHECKSUM_UNNECESSARY;
1449 }
1450 qdev->stats.rx_packets++;
1451 qdev->stats.rx_bytes += skb->len;
1452 skb->protocol = eth_type_trans(skb, ndev);
1453 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1454 QPRINTK(qdev, RX_STATUS, DEBUG,
1455 "Passing a VLAN packet upstream.\n");
7a9deb66 1456 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
c4e84bde
RM
1457 le16_to_cpu(ib_mac_rsp->vlan_id));
1458 } else {
1459 QPRINTK(qdev, RX_STATUS, DEBUG,
1460 "Passing a normal packet upstream.\n");
7a9deb66 1461 netif_receive_skb(skb);
c4e84bde 1462 }
c4e84bde
RM
1463}
1464
1465/* Process an outbound completion from an rx ring. */
1466static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1467 struct ob_mac_iocb_rsp *mac_rsp)
1468{
1469 struct tx_ring *tx_ring;
1470 struct tx_ring_desc *tx_ring_desc;
1471
1472 QL_DUMP_OB_MAC_RSP(mac_rsp);
1473 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1474 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1475 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1476 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1477 qdev->stats.tx_packets++;
1478 dev_kfree_skb(tx_ring_desc->skb);
1479 tx_ring_desc->skb = NULL;
1480
1481 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1482 OB_MAC_IOCB_RSP_S |
1483 OB_MAC_IOCB_RSP_L |
1484 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1485 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1486 QPRINTK(qdev, TX_DONE, WARNING,
1487 "Total descriptor length did not match transfer length.\n");
1488 }
1489 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1490 QPRINTK(qdev, TX_DONE, WARNING,
1491 "Frame too short to be legal, not sent.\n");
1492 }
1493 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1494 QPRINTK(qdev, TX_DONE, WARNING,
1495 "Frame too long, but sent anyway.\n");
1496 }
1497 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1498 QPRINTK(qdev, TX_DONE, WARNING,
1499 "PCI backplane error. Frame not sent.\n");
1500 }
1501 }
1502 atomic_inc(&tx_ring->tx_count);
1503}
1504
1505/* Fire up a handler to reset the MPI processor. */
1506void ql_queue_fw_error(struct ql_adapter *qdev)
1507{
1508 netif_stop_queue(qdev->ndev);
1509 netif_carrier_off(qdev->ndev);
1510 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1511}
1512
1513void ql_queue_asic_error(struct ql_adapter *qdev)
1514{
1515 netif_stop_queue(qdev->ndev);
1516 netif_carrier_off(qdev->ndev);
1517 ql_disable_interrupts(qdev);
6497b607
RM
1518 /* Clear adapter up bit to signal the recovery
1519 * process that it shouldn't kill the reset worker
1520 * thread
1521 */
1522 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1523 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1524}
1525
1526static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1527 struct ib_ae_iocb_rsp *ib_ae_rsp)
1528{
1529 switch (ib_ae_rsp->event) {
1530 case MGMT_ERR_EVENT:
1531 QPRINTK(qdev, RX_ERR, ERR,
1532 "Management Processor Fatal Error.\n");
1533 ql_queue_fw_error(qdev);
1534 return;
1535
1536 case CAM_LOOKUP_ERR_EVENT:
1537 QPRINTK(qdev, LINK, ERR,
1538 "Multiple CAM hits lookup occurred.\n");
1539 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1540 ql_queue_asic_error(qdev);
1541 return;
1542
1543 case SOFT_ECC_ERROR_EVENT:
1544 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1545 ql_queue_asic_error(qdev);
1546 break;
1547
1548 case PCI_ERR_ANON_BUF_RD:
1549 QPRINTK(qdev, RX_ERR, ERR,
1550 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1551 ib_ae_rsp->q_id);
1552 ql_queue_asic_error(qdev);
1553 break;
1554
1555 default:
1556 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1557 ib_ae_rsp->event);
1558 ql_queue_asic_error(qdev);
1559 break;
1560 }
1561}
1562
1563static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1564{
1565 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1566 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1567 struct ob_mac_iocb_rsp *net_rsp = NULL;
1568 int count = 0;
1569
1570 /* While there are entries in the completion queue. */
1571 while (prod != rx_ring->cnsmr_idx) {
1572
1573 QPRINTK(qdev, RX_STATUS, DEBUG,
1574 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1575 prod, rx_ring->cnsmr_idx);
1576
1577 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1578 rmb();
1579 switch (net_rsp->opcode) {
1580
1581 case OPCODE_OB_MAC_TSO_IOCB:
1582 case OPCODE_OB_MAC_IOCB:
1583 ql_process_mac_tx_intr(qdev, net_rsp);
1584 break;
1585 default:
1586 QPRINTK(qdev, RX_STATUS, DEBUG,
1587 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1588 net_rsp->opcode);
1589 }
1590 count++;
1591 ql_update_cq(rx_ring);
ba7cd3ba 1592 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1593 }
1594 ql_write_cq_idx(rx_ring);
1595 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1596 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1597 if (atomic_read(&tx_ring->queue_stopped) &&
1598 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1599 /*
1600 * The queue got stopped because the tx_ring was full.
1601 * Wake it up, because it's now at least 25% empty.
1602 */
1603 netif_wake_queue(qdev->ndev);
1604 }
1605
1606 return count;
1607}
1608
1609static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1610{
1611 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1612 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1613 struct ql_net_rsp_iocb *net_rsp;
1614 int count = 0;
1615
1616 /* While there are entries in the completion queue. */
1617 while (prod != rx_ring->cnsmr_idx) {
1618
1619 QPRINTK(qdev, RX_STATUS, DEBUG,
1620 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1621 prod, rx_ring->cnsmr_idx);
1622
1623 net_rsp = rx_ring->curr_entry;
1624 rmb();
1625 switch (net_rsp->opcode) {
1626 case OPCODE_IB_MAC_IOCB:
1627 ql_process_mac_rx_intr(qdev, rx_ring,
1628 (struct ib_mac_iocb_rsp *)
1629 net_rsp);
1630 break;
1631
1632 case OPCODE_IB_AE_IOCB:
1633 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1634 net_rsp);
1635 break;
1636 default:
1637 {
1638 QPRINTK(qdev, RX_STATUS, DEBUG,
1639 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1640 net_rsp->opcode);
1641 }
1642 }
1643 count++;
1644 ql_update_cq(rx_ring);
ba7cd3ba 1645 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1646 if (count == budget)
1647 break;
1648 }
1649 ql_update_buffer_queues(qdev, rx_ring);
1650 ql_write_cq_idx(rx_ring);
1651 return count;
1652}
1653
1654static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1655{
1656 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1657 struct ql_adapter *qdev = rx_ring->qdev;
1658 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1659
1660 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1661 rx_ring->cq_id);
1662
1663 if (work_done < budget) {
908a7a16 1664 __netif_rx_complete(napi);
c4e84bde
RM
1665 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1666 }
1667 return work_done;
1668}
1669
1670static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1671{
1672 struct ql_adapter *qdev = netdev_priv(ndev);
1673
1674 qdev->vlgrp = grp;
1675 if (grp) {
1676 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1677 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1678 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1679 } else {
1680 QPRINTK(qdev, IFUP, DEBUG,
1681 "Turning off VLAN in NIC_RCV_CFG.\n");
1682 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1683 }
1684}
1685
1686static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1687{
1688 struct ql_adapter *qdev = netdev_priv(ndev);
1689 u32 enable_bit = MAC_ADDR_E;
1690
1691 spin_lock(&qdev->hw_lock);
1692 if (ql_set_mac_addr_reg
1693 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1694 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1695 }
1696 spin_unlock(&qdev->hw_lock);
1697}
1698
1699static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1700{
1701 struct ql_adapter *qdev = netdev_priv(ndev);
1702 u32 enable_bit = 0;
1703
1704 spin_lock(&qdev->hw_lock);
1705 if (ql_set_mac_addr_reg
1706 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1707 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1708 }
1709 spin_unlock(&qdev->hw_lock);
1710
1711}
1712
1713/* Worker thread to process a given rx_ring that is dedicated
1714 * to outbound completions.
1715 */
1716static void ql_tx_clean(struct work_struct *work)
1717{
1718 struct rx_ring *rx_ring =
1719 container_of(work, struct rx_ring, rx_work.work);
1720 ql_clean_outbound_rx_ring(rx_ring);
1721 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1722
1723}
1724
1725/* Worker thread to process a given rx_ring that is dedicated
1726 * to inbound completions.
1727 */
1728static void ql_rx_clean(struct work_struct *work)
1729{
1730 struct rx_ring *rx_ring =
1731 container_of(work, struct rx_ring, rx_work.work);
1732 ql_clean_inbound_rx_ring(rx_ring, 64);
1733 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1734}
1735
1736/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1737static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1738{
1739 struct rx_ring *rx_ring = dev_id;
1740 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1741 &rx_ring->rx_work, 0);
1742 return IRQ_HANDLED;
1743}
1744
1745/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1746static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1747{
1748 struct rx_ring *rx_ring = dev_id;
908a7a16 1749 netif_rx_schedule(&rx_ring->napi);
c4e84bde
RM
1750 return IRQ_HANDLED;
1751}
1752
c4e84bde
RM
1753/* This handles a fatal error, MPI activity, and the default
1754 * rx_ring in an MSI-X multiple vector environment.
1755 * In MSI/Legacy environment it also process the rest of
1756 * the rx_rings.
1757 */
1758static irqreturn_t qlge_isr(int irq, void *dev_id)
1759{
1760 struct rx_ring *rx_ring = dev_id;
1761 struct ql_adapter *qdev = rx_ring->qdev;
1762 struct intr_context *intr_context = &qdev->intr_context[0];
1763 u32 var;
1764 int i;
1765 int work_done = 0;
1766
bb0d215c
RM
1767 spin_lock(&qdev->hw_lock);
1768 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1769 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1770 spin_unlock(&qdev->hw_lock);
1771 return IRQ_NONE;
c4e84bde 1772 }
bb0d215c 1773 spin_unlock(&qdev->hw_lock);
c4e84bde 1774
bb0d215c 1775 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1776
1777 /*
1778 * Check for fatal error.
1779 */
1780 if (var & STS_FE) {
1781 ql_queue_asic_error(qdev);
1782 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1783 var = ql_read32(qdev, ERR_STS);
1784 QPRINTK(qdev, INTR, ERR,
1785 "Resetting chip. Error Status Register = 0x%x\n", var);
1786 return IRQ_HANDLED;
1787 }
1788
1789 /*
1790 * Check MPI processor activity.
1791 */
1792 if (var & STS_PI) {
1793 /*
1794 * We've got an async event or mailbox completion.
1795 * Handle it and clear the source of the interrupt.
1796 */
1797 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1798 ql_disable_completion_interrupt(qdev, intr_context->intr);
1799 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1800 &qdev->mpi_work, 0);
1801 work_done++;
1802 }
1803
1804 /*
1805 * Check the default queue and wake handler if active.
1806 */
1807 rx_ring = &qdev->rx_ring[0];
ba7cd3ba 1808 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
c4e84bde
RM
1809 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1810 ql_disable_completion_interrupt(qdev, intr_context->intr);
1811 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1812 &rx_ring->rx_work, 0);
1813 work_done++;
1814 }
1815
1816 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1817 /*
1818 * Start the DPC for each active queue.
1819 */
1820 for (i = 1; i < qdev->rx_ring_count; i++) {
1821 rx_ring = &qdev->rx_ring[i];
ba7cd3ba 1822 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
c4e84bde
RM
1823 rx_ring->cnsmr_idx) {
1824 QPRINTK(qdev, INTR, INFO,
1825 "Waking handler for rx_ring[%d].\n", i);
1826 ql_disable_completion_interrupt(qdev,
1827 intr_context->
1828 intr);
1829 if (i < qdev->rss_ring_first_cq_id)
1830 queue_delayed_work_on(rx_ring->cpu,
1831 qdev->q_workqueue,
1832 &rx_ring->rx_work,
1833 0);
1834 else
908a7a16 1835 netif_rx_schedule(&rx_ring->napi);
c4e84bde
RM
1836 work_done++;
1837 }
1838 }
1839 }
bb0d215c 1840 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
1841 return work_done ? IRQ_HANDLED : IRQ_NONE;
1842}
1843
1844static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1845{
1846
1847 if (skb_is_gso(skb)) {
1848 int err;
1849 if (skb_header_cloned(skb)) {
1850 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1851 if (err)
1852 return err;
1853 }
1854
1855 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1856 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1857 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1858 mac_iocb_ptr->total_hdrs_len =
1859 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1860 mac_iocb_ptr->net_trans_offset =
1861 cpu_to_le16(skb_network_offset(skb) |
1862 skb_transport_offset(skb)
1863 << OB_MAC_TRANSPORT_HDR_SHIFT);
1864 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1865 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1866 if (likely(skb->protocol == htons(ETH_P_IP))) {
1867 struct iphdr *iph = ip_hdr(skb);
1868 iph->check = 0;
1869 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1870 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1871 iph->daddr, 0,
1872 IPPROTO_TCP,
1873 0);
1874 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1875 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1876 tcp_hdr(skb)->check =
1877 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1878 &ipv6_hdr(skb)->daddr,
1879 0, IPPROTO_TCP, 0);
1880 }
1881 return 1;
1882 }
1883 return 0;
1884}
1885
1886static void ql_hw_csum_setup(struct sk_buff *skb,
1887 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1888{
1889 int len;
1890 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 1891 __sum16 *check;
c4e84bde
RM
1892 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1893 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1894 mac_iocb_ptr->net_trans_offset =
1895 cpu_to_le16(skb_network_offset(skb) |
1896 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1897
1898 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1899 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1900 if (likely(iph->protocol == IPPROTO_TCP)) {
1901 check = &(tcp_hdr(skb)->check);
1902 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1903 mac_iocb_ptr->total_hdrs_len =
1904 cpu_to_le16(skb_transport_offset(skb) +
1905 (tcp_hdr(skb)->doff << 2));
1906 } else {
1907 check = &(udp_hdr(skb)->check);
1908 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1909 mac_iocb_ptr->total_hdrs_len =
1910 cpu_to_le16(skb_transport_offset(skb) +
1911 sizeof(struct udphdr));
1912 }
1913 *check = ~csum_tcpudp_magic(iph->saddr,
1914 iph->daddr, len, iph->protocol, 0);
1915}
1916
1917static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1918{
1919 struct tx_ring_desc *tx_ring_desc;
1920 struct ob_mac_iocb_req *mac_iocb_ptr;
1921 struct ql_adapter *qdev = netdev_priv(ndev);
1922 int tso;
1923 struct tx_ring *tx_ring;
1924 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1925
1926 tx_ring = &qdev->tx_ring[tx_ring_idx];
1927
1928 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1929 QPRINTK(qdev, TX_QUEUED, INFO,
1930 "%s: shutting down tx queue %d du to lack of resources.\n",
1931 __func__, tx_ring_idx);
1932 netif_stop_queue(ndev);
1933 atomic_inc(&tx_ring->queue_stopped);
1934 return NETDEV_TX_BUSY;
1935 }
1936 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1937 mac_iocb_ptr = tx_ring_desc->queue_entry;
1938 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1939 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1940 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1941 return NETDEV_TX_BUSY;
1942 }
1943
1944 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1945 mac_iocb_ptr->tid = tx_ring_desc->index;
1946 /* We use the upper 32-bits to store the tx queue for this IO.
1947 * When we get the completion we can use it to establish the context.
1948 */
1949 mac_iocb_ptr->txq_idx = tx_ring_idx;
1950 tx_ring_desc->skb = skb;
1951
1952 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1953
1954 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1955 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1956 vlan_tx_tag_get(skb));
1957 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1958 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1959 }
1960 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1961 if (tso < 0) {
1962 dev_kfree_skb_any(skb);
1963 return NETDEV_TX_OK;
1964 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1965 ql_hw_csum_setup(skb,
1966 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1967 }
1968 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1969 tx_ring->prod_idx++;
1970 if (tx_ring->prod_idx == tx_ring->wq_len)
1971 tx_ring->prod_idx = 0;
1972 wmb();
1973
1974 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1975 ndev->trans_start = jiffies;
1976 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1977 tx_ring->prod_idx, skb->len);
1978
1979 atomic_dec(&tx_ring->tx_count);
1980 return NETDEV_TX_OK;
1981}
1982
1983static void ql_free_shadow_space(struct ql_adapter *qdev)
1984{
1985 if (qdev->rx_ring_shadow_reg_area) {
1986 pci_free_consistent(qdev->pdev,
1987 PAGE_SIZE,
1988 qdev->rx_ring_shadow_reg_area,
1989 qdev->rx_ring_shadow_reg_dma);
1990 qdev->rx_ring_shadow_reg_area = NULL;
1991 }
1992 if (qdev->tx_ring_shadow_reg_area) {
1993 pci_free_consistent(qdev->pdev,
1994 PAGE_SIZE,
1995 qdev->tx_ring_shadow_reg_area,
1996 qdev->tx_ring_shadow_reg_dma);
1997 qdev->tx_ring_shadow_reg_area = NULL;
1998 }
1999}
2000
2001static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2002{
2003 qdev->rx_ring_shadow_reg_area =
2004 pci_alloc_consistent(qdev->pdev,
2005 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2006 if (qdev->rx_ring_shadow_reg_area == NULL) {
2007 QPRINTK(qdev, IFUP, ERR,
2008 "Allocation of RX shadow space failed.\n");
2009 return -ENOMEM;
2010 }
2011 qdev->tx_ring_shadow_reg_area =
2012 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2013 &qdev->tx_ring_shadow_reg_dma);
2014 if (qdev->tx_ring_shadow_reg_area == NULL) {
2015 QPRINTK(qdev, IFUP, ERR,
2016 "Allocation of TX shadow space failed.\n");
2017 goto err_wqp_sh_area;
2018 }
2019 return 0;
2020
2021err_wqp_sh_area:
2022 pci_free_consistent(qdev->pdev,
2023 PAGE_SIZE,
2024 qdev->rx_ring_shadow_reg_area,
2025 qdev->rx_ring_shadow_reg_dma);
2026 return -ENOMEM;
2027}
2028
2029static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2030{
2031 struct tx_ring_desc *tx_ring_desc;
2032 int i;
2033 struct ob_mac_iocb_req *mac_iocb_ptr;
2034
2035 mac_iocb_ptr = tx_ring->wq_base;
2036 tx_ring_desc = tx_ring->q;
2037 for (i = 0; i < tx_ring->wq_len; i++) {
2038 tx_ring_desc->index = i;
2039 tx_ring_desc->skb = NULL;
2040 tx_ring_desc->queue_entry = mac_iocb_ptr;
2041 mac_iocb_ptr++;
2042 tx_ring_desc++;
2043 }
2044 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2045 atomic_set(&tx_ring->queue_stopped, 0);
2046}
2047
2048static void ql_free_tx_resources(struct ql_adapter *qdev,
2049 struct tx_ring *tx_ring)
2050{
2051 if (tx_ring->wq_base) {
2052 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2053 tx_ring->wq_base, tx_ring->wq_base_dma);
2054 tx_ring->wq_base = NULL;
2055 }
2056 kfree(tx_ring->q);
2057 tx_ring->q = NULL;
2058}
2059
2060static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2061 struct tx_ring *tx_ring)
2062{
2063 tx_ring->wq_base =
2064 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2065 &tx_ring->wq_base_dma);
2066
2067 if ((tx_ring->wq_base == NULL)
2068 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2069 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2070 return -ENOMEM;
2071 }
2072 tx_ring->q =
2073 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2074 if (tx_ring->q == NULL)
2075 goto err;
2076
2077 return 0;
2078err:
2079 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2080 tx_ring->wq_base, tx_ring->wq_base_dma);
2081 return -ENOMEM;
2082}
2083
8668ae92 2084static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2085{
2086 int i;
2087 struct bq_desc *lbq_desc;
2088
2089 for (i = 0; i < rx_ring->lbq_len; i++) {
2090 lbq_desc = &rx_ring->lbq[i];
2091 if (lbq_desc->p.lbq_page) {
2092 pci_unmap_page(qdev->pdev,
2093 pci_unmap_addr(lbq_desc, mapaddr),
2094 pci_unmap_len(lbq_desc, maplen),
2095 PCI_DMA_FROMDEVICE);
2096
2097 put_page(lbq_desc->p.lbq_page);
2098 lbq_desc->p.lbq_page = NULL;
2099 }
c4e84bde
RM
2100 }
2101}
2102
2103/*
2104 * Allocate and map a page for each element of the lbq.
2105 */
2106static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2107 struct rx_ring *rx_ring)
2108{
2109 int i;
2110 struct bq_desc *lbq_desc;
2111 u64 map;
2c9a0d41 2112 __le64 *bq = rx_ring->lbq_base;
c4e84bde
RM
2113
2114 for (i = 0; i < rx_ring->lbq_len; i++) {
2115 lbq_desc = &rx_ring->lbq[i];
2116 memset(lbq_desc, 0, sizeof(lbq_desc));
2c9a0d41 2117 lbq_desc->addr = bq;
c4e84bde
RM
2118 lbq_desc->index = i;
2119 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2120 if (unlikely(!lbq_desc->p.lbq_page)) {
2121 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2122 goto mem_error;
2123 } else {
2124 map = pci_map_page(qdev->pdev,
2125 lbq_desc->p.lbq_page,
2126 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2127 if (pci_dma_mapping_error(qdev->pdev, map)) {
2128 QPRINTK(qdev, IFUP, ERR,
2129 "PCI mapping failed.\n");
2130 goto mem_error;
2131 }
2132 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2133 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 2134 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2135 }
2136 bq++;
2137 }
2138 return 0;
2139mem_error:
2140 ql_free_lbq_buffers(qdev, rx_ring);
2141 return -ENOMEM;
2142}
2143
8668ae92 2144static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2145{
2146 int i;
2147 struct bq_desc *sbq_desc;
2148
2149 for (i = 0; i < rx_ring->sbq_len; i++) {
2150 sbq_desc = &rx_ring->sbq[i];
2151 if (sbq_desc == NULL) {
2152 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2153 return;
2154 }
2155 if (sbq_desc->p.skb) {
2156 pci_unmap_single(qdev->pdev,
2157 pci_unmap_addr(sbq_desc, mapaddr),
2158 pci_unmap_len(sbq_desc, maplen),
2159 PCI_DMA_FROMDEVICE);
2160 dev_kfree_skb(sbq_desc->p.skb);
2161 sbq_desc->p.skb = NULL;
2162 }
c4e84bde
RM
2163 }
2164}
2165
2166/* Allocate and map an skb for each element of the sbq. */
2167static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2168 struct rx_ring *rx_ring)
2169{
2170 int i;
2171 struct bq_desc *sbq_desc;
2172 struct sk_buff *skb;
2173 u64 map;
2c9a0d41 2174 __le64 *bq = rx_ring->sbq_base;
c4e84bde
RM
2175
2176 for (i = 0; i < rx_ring->sbq_len; i++) {
2177 sbq_desc = &rx_ring->sbq[i];
2178 memset(sbq_desc, 0, sizeof(sbq_desc));
2179 sbq_desc->index = i;
2c9a0d41 2180 sbq_desc->addr = bq;
c4e84bde
RM
2181 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2182 if (unlikely(!skb)) {
2183 /* Better luck next round */
2184 QPRINTK(qdev, IFUP, ERR,
2185 "small buff alloc failed for %d bytes at index %d.\n",
2186 rx_ring->sbq_buf_size, i);
2187 goto mem_err;
2188 }
2189 skb_reserve(skb, QLGE_SB_PAD);
2190 sbq_desc->p.skb = skb;
2191 /*
2192 * Map only half the buffer. Because the
2193 * other half may get some data copied to it
2194 * when the completion arrives.
2195 */
2196 map = pci_map_single(qdev->pdev,
2197 skb->data,
2198 rx_ring->sbq_buf_size / 2,
2199 PCI_DMA_FROMDEVICE);
2200 if (pci_dma_mapping_error(qdev->pdev, map)) {
2201 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2202 goto mem_err;
2203 }
2204 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2205 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2c9a0d41 2206 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
2207 bq++;
2208 }
2209 return 0;
2210mem_err:
2211 ql_free_sbq_buffers(qdev, rx_ring);
2212 return -ENOMEM;
2213}
2214
2215static void ql_free_rx_resources(struct ql_adapter *qdev,
2216 struct rx_ring *rx_ring)
2217{
2218 if (rx_ring->sbq_len)
2219 ql_free_sbq_buffers(qdev, rx_ring);
2220 if (rx_ring->lbq_len)
2221 ql_free_lbq_buffers(qdev, rx_ring);
2222
2223 /* Free the small buffer queue. */
2224 if (rx_ring->sbq_base) {
2225 pci_free_consistent(qdev->pdev,
2226 rx_ring->sbq_size,
2227 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2228 rx_ring->sbq_base = NULL;
2229 }
2230
2231 /* Free the small buffer queue control blocks. */
2232 kfree(rx_ring->sbq);
2233 rx_ring->sbq = NULL;
2234
2235 /* Free the large buffer queue. */
2236 if (rx_ring->lbq_base) {
2237 pci_free_consistent(qdev->pdev,
2238 rx_ring->lbq_size,
2239 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2240 rx_ring->lbq_base = NULL;
2241 }
2242
2243 /* Free the large buffer queue control blocks. */
2244 kfree(rx_ring->lbq);
2245 rx_ring->lbq = NULL;
2246
2247 /* Free the rx queue. */
2248 if (rx_ring->cq_base) {
2249 pci_free_consistent(qdev->pdev,
2250 rx_ring->cq_size,
2251 rx_ring->cq_base, rx_ring->cq_base_dma);
2252 rx_ring->cq_base = NULL;
2253 }
2254}
2255
2256/* Allocate queues and buffers for this completions queue based
2257 * on the values in the parameter structure. */
2258static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2259 struct rx_ring *rx_ring)
2260{
2261
2262 /*
2263 * Allocate the completion queue for this rx_ring.
2264 */
2265 rx_ring->cq_base =
2266 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2267 &rx_ring->cq_base_dma);
2268
2269 if (rx_ring->cq_base == NULL) {
2270 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2271 return -ENOMEM;
2272 }
2273
2274 if (rx_ring->sbq_len) {
2275 /*
2276 * Allocate small buffer queue.
2277 */
2278 rx_ring->sbq_base =
2279 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2280 &rx_ring->sbq_base_dma);
2281
2282 if (rx_ring->sbq_base == NULL) {
2283 QPRINTK(qdev, IFUP, ERR,
2284 "Small buffer queue allocation failed.\n");
2285 goto err_mem;
2286 }
2287
2288 /*
2289 * Allocate small buffer queue control blocks.
2290 */
2291 rx_ring->sbq =
2292 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2293 GFP_KERNEL);
2294 if (rx_ring->sbq == NULL) {
2295 QPRINTK(qdev, IFUP, ERR,
2296 "Small buffer queue control block allocation failed.\n");
2297 goto err_mem;
2298 }
2299
2300 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2301 QPRINTK(qdev, IFUP, ERR,
2302 "Small buffer allocation failed.\n");
2303 goto err_mem;
2304 }
2305 }
2306
2307 if (rx_ring->lbq_len) {
2308 /*
2309 * Allocate large buffer queue.
2310 */
2311 rx_ring->lbq_base =
2312 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2313 &rx_ring->lbq_base_dma);
2314
2315 if (rx_ring->lbq_base == NULL) {
2316 QPRINTK(qdev, IFUP, ERR,
2317 "Large buffer queue allocation failed.\n");
2318 goto err_mem;
2319 }
2320 /*
2321 * Allocate large buffer queue control blocks.
2322 */
2323 rx_ring->lbq =
2324 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2325 GFP_KERNEL);
2326 if (rx_ring->lbq == NULL) {
2327 QPRINTK(qdev, IFUP, ERR,
2328 "Large buffer queue control block allocation failed.\n");
2329 goto err_mem;
2330 }
2331
2332 /*
2333 * Allocate the buffers.
2334 */
2335 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2336 QPRINTK(qdev, IFUP, ERR,
2337 "Large buffer allocation failed.\n");
2338 goto err_mem;
2339 }
2340 }
2341
2342 return 0;
2343
2344err_mem:
2345 ql_free_rx_resources(qdev, rx_ring);
2346 return -ENOMEM;
2347}
2348
2349static void ql_tx_ring_clean(struct ql_adapter *qdev)
2350{
2351 struct tx_ring *tx_ring;
2352 struct tx_ring_desc *tx_ring_desc;
2353 int i, j;
2354
2355 /*
2356 * Loop through all queues and free
2357 * any resources.
2358 */
2359 for (j = 0; j < qdev->tx_ring_count; j++) {
2360 tx_ring = &qdev->tx_ring[j];
2361 for (i = 0; i < tx_ring->wq_len; i++) {
2362 tx_ring_desc = &tx_ring->q[i];
2363 if (tx_ring_desc && tx_ring_desc->skb) {
2364 QPRINTK(qdev, IFDOWN, ERR,
2365 "Freeing lost SKB %p, from queue %d, index %d.\n",
2366 tx_ring_desc->skb, j,
2367 tx_ring_desc->index);
2368 ql_unmap_send(qdev, tx_ring_desc,
2369 tx_ring_desc->map_cnt);
2370 dev_kfree_skb(tx_ring_desc->skb);
2371 tx_ring_desc->skb = NULL;
2372 }
2373 }
2374 }
2375}
2376
c4e84bde
RM
2377static void ql_free_mem_resources(struct ql_adapter *qdev)
2378{
2379 int i;
2380
2381 for (i = 0; i < qdev->tx_ring_count; i++)
2382 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2383 for (i = 0; i < qdev->rx_ring_count; i++)
2384 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2385 ql_free_shadow_space(qdev);
2386}
2387
2388static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2389{
2390 int i;
2391
2392 /* Allocate space for our shadow registers and such. */
2393 if (ql_alloc_shadow_space(qdev))
2394 return -ENOMEM;
2395
2396 for (i = 0; i < qdev->rx_ring_count; i++) {
2397 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2398 QPRINTK(qdev, IFUP, ERR,
2399 "RX resource allocation failed.\n");
2400 goto err_mem;
2401 }
2402 }
2403 /* Allocate tx queue resources */
2404 for (i = 0; i < qdev->tx_ring_count; i++) {
2405 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2406 QPRINTK(qdev, IFUP, ERR,
2407 "TX resource allocation failed.\n");
2408 goto err_mem;
2409 }
2410 }
2411 return 0;
2412
2413err_mem:
2414 ql_free_mem_resources(qdev);
2415 return -ENOMEM;
2416}
2417
2418/* Set up the rx ring control block and pass it to the chip.
2419 * The control block is defined as
2420 * "Completion Queue Initialization Control Block", or cqicb.
2421 */
2422static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2423{
2424 struct cqicb *cqicb = &rx_ring->cqicb;
2425 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2426 (rx_ring->cq_id * sizeof(u64) * 4);
2427 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2428 (rx_ring->cq_id * sizeof(u64) * 4);
2429 void __iomem *doorbell_area =
2430 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2431 int err = 0;
2432 u16 bq_len;
2433
2434 /* Set up the shadow registers for this ring. */
2435 rx_ring->prod_idx_sh_reg = shadow_reg;
2436 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2437 shadow_reg += sizeof(u64);
2438 shadow_reg_dma += sizeof(u64);
2439 rx_ring->lbq_base_indirect = shadow_reg;
2440 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2441 shadow_reg += sizeof(u64);
2442 shadow_reg_dma += sizeof(u64);
2443 rx_ring->sbq_base_indirect = shadow_reg;
2444 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2445
2446 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2447 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2448 rx_ring->cnsmr_idx = 0;
2449 rx_ring->curr_entry = rx_ring->cq_base;
2450
2451 /* PCI doorbell mem area + 0x04 for valid register */
2452 rx_ring->valid_db_reg = doorbell_area + 0x04;
2453
2454 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2455 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2456
2457 /* PCI doorbell mem area + 0x1c */
8668ae92 2458 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2459
2460 memset((void *)cqicb, 0, sizeof(struct cqicb));
2461 cqicb->msix_vect = rx_ring->irq;
2462
459caf5a
RM
2463 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2464 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2465
97345524 2466 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2467
97345524 2468 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2469
2470 /*
2471 * Set up the control block load flags.
2472 */
2473 cqicb->flags = FLAGS_LC | /* Load queue base address */
2474 FLAGS_LV | /* Load MSI-X vector */
2475 FLAGS_LI; /* Load irq delay values */
2476 if (rx_ring->lbq_len) {
2477 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2478 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
97345524
RM
2479 cqicb->lbq_addr =
2480 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2481 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2482 (u16) rx_ring->lbq_buf_size;
2483 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2484 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2485 (u16) rx_ring->lbq_len;
c4e84bde
RM
2486 cqicb->lbq_len = cpu_to_le16(bq_len);
2487 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2488 rx_ring->lbq_curr_idx = 0;
2489 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2490 rx_ring->lbq_free_cnt = 16;
2491 }
2492 if (rx_ring->sbq_len) {
2493 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2494 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
97345524
RM
2495 cqicb->sbq_addr =
2496 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde
RM
2497 cqicb->sbq_buf_size =
2498 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
459caf5a
RM
2499 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2500 (u16) rx_ring->sbq_len;
c4e84bde
RM
2501 cqicb->sbq_len = cpu_to_le16(bq_len);
2502 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2503 rx_ring->sbq_curr_idx = 0;
2504 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2505 rx_ring->sbq_free_cnt = 16;
2506 }
2507 switch (rx_ring->type) {
2508 case TX_Q:
2509 /* If there's only one interrupt, then we use
2510 * worker threads to process the outbound
2511 * completion handling rx_rings. We do this so
2512 * they can be run on multiple CPUs. There is
2513 * room to play with this more where we would only
2514 * run in a worker if there are more than x number
2515 * of outbound completions on the queue and more
2516 * than one queue active. Some threshold that
2517 * would indicate a benefit in spite of the cost
2518 * of a context switch.
2519 * If there's more than one interrupt, then the
2520 * outbound completions are processed in the ISR.
2521 */
2522 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2523 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2524 else {
2525 /* With all debug warnings on we see a WARN_ON message
2526 * when we free the skb in the interrupt context.
2527 */
2528 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2529 }
2530 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2531 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2532 break;
2533 case DEFAULT_Q:
2534 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2535 cqicb->irq_delay = 0;
2536 cqicb->pkt_delay = 0;
2537 break;
2538 case RX_Q:
2539 /* Inbound completion handling rx_rings run in
2540 * separate NAPI contexts.
2541 */
2542 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2543 64);
2544 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2545 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2546 break;
2547 default:
2548 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2549 rx_ring->type);
2550 }
2551 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2552 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2553 CFG_LCQ, rx_ring->cq_id);
2554 if (err) {
2555 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2556 return err;
2557 }
2558 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2559 /*
2560 * Advance the producer index for the buffer queues.
2561 */
2562 wmb();
2563 if (rx_ring->lbq_len)
2564 ql_write_db_reg(rx_ring->lbq_prod_idx,
2565 rx_ring->lbq_prod_idx_db_reg);
2566 if (rx_ring->sbq_len)
2567 ql_write_db_reg(rx_ring->sbq_prod_idx,
2568 rx_ring->sbq_prod_idx_db_reg);
2569 return err;
2570}
2571
2572static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2573{
2574 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2575 void __iomem *doorbell_area =
2576 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2577 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2578 (tx_ring->wq_id * sizeof(u64));
2579 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2580 (tx_ring->wq_id * sizeof(u64));
2581 int err = 0;
2582
2583 /*
2584 * Assign doorbell registers for this tx_ring.
2585 */
2586 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2587 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2588 tx_ring->prod_idx = 0;
2589 /* TX PCI doorbell mem area + 0x04 */
2590 tx_ring->valid_db_reg = doorbell_area + 0x04;
2591
2592 /*
2593 * Assign shadow registers for this tx_ring.
2594 */
2595 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2596 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2597
2598 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2599 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2600 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2601 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2602 wqicb->rid = 0;
97345524 2603 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2604
97345524 2605 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2606
2607 ql_init_tx_ring(qdev, tx_ring);
2608
2609 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2610 (u16) tx_ring->wq_id);
2611 if (err) {
2612 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2613 return err;
2614 }
2615 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2616 return err;
2617}
2618
2619static void ql_disable_msix(struct ql_adapter *qdev)
2620{
2621 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2622 pci_disable_msix(qdev->pdev);
2623 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2624 kfree(qdev->msi_x_entry);
2625 qdev->msi_x_entry = NULL;
2626 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2627 pci_disable_msi(qdev->pdev);
2628 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2629 }
2630}
2631
2632static void ql_enable_msix(struct ql_adapter *qdev)
2633{
2634 int i;
2635
2636 qdev->intr_count = 1;
2637 /* Get the MSIX vectors. */
2638 if (irq_type == MSIX_IRQ) {
2639 /* Try to alloc space for the msix struct,
2640 * if it fails then go to MSI/legacy.
2641 */
2642 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2643 sizeof(struct msix_entry),
2644 GFP_KERNEL);
2645 if (!qdev->msi_x_entry) {
2646 irq_type = MSI_IRQ;
2647 goto msi;
2648 }
2649
2650 for (i = 0; i < qdev->rx_ring_count; i++)
2651 qdev->msi_x_entry[i].entry = i;
2652
2653 if (!pci_enable_msix
2654 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2655 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2656 qdev->intr_count = qdev->rx_ring_count;
2657 QPRINTK(qdev, IFUP, INFO,
2658 "MSI-X Enabled, got %d vectors.\n",
2659 qdev->intr_count);
2660 return;
2661 } else {
2662 kfree(qdev->msi_x_entry);
2663 qdev->msi_x_entry = NULL;
2664 QPRINTK(qdev, IFUP, WARNING,
2665 "MSI-X Enable failed, trying MSI.\n");
2666 irq_type = MSI_IRQ;
2667 }
2668 }
2669msi:
2670 if (irq_type == MSI_IRQ) {
2671 if (!pci_enable_msi(qdev->pdev)) {
2672 set_bit(QL_MSI_ENABLED, &qdev->flags);
2673 QPRINTK(qdev, IFUP, INFO,
2674 "Running with MSI interrupts.\n");
2675 return;
2676 }
2677 }
2678 irq_type = LEG_IRQ;
c4e84bde
RM
2679 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2680}
2681
2682/*
2683 * Here we build the intr_context structures based on
2684 * our rx_ring count and intr vector count.
2685 * The intr_context structure is used to hook each vector
2686 * to possibly different handlers.
2687 */
2688static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2689{
2690 int i = 0;
2691 struct intr_context *intr_context = &qdev->intr_context[0];
2692
2693 ql_enable_msix(qdev);
2694
2695 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2696 /* Each rx_ring has it's
2697 * own intr_context since we have separate
2698 * vectors for each queue.
2699 * This only true when MSI-X is enabled.
2700 */
2701 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2702 qdev->rx_ring[i].irq = i;
2703 intr_context->intr = i;
2704 intr_context->qdev = qdev;
2705 /*
2706 * We set up each vectors enable/disable/read bits so
2707 * there's no bit/mask calculations in the critical path.
2708 */
2709 intr_context->intr_en_mask =
2710 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2711 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2712 | i;
2713 intr_context->intr_dis_mask =
2714 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2715 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2716 INTR_EN_IHD | i;
2717 intr_context->intr_read_mask =
2718 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2719 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2720 i;
2721
2722 if (i == 0) {
2723 /*
2724 * Default queue handles bcast/mcast plus
2725 * async events. Needs buffers.
2726 */
2727 intr_context->handler = qlge_isr;
2728 sprintf(intr_context->name, "%s-default-queue",
2729 qdev->ndev->name);
2730 } else if (i < qdev->rss_ring_first_cq_id) {
2731 /*
2732 * Outbound queue is for outbound completions only.
2733 */
2734 intr_context->handler = qlge_msix_tx_isr;
c224969e 2735 sprintf(intr_context->name, "%s-tx-%d",
c4e84bde
RM
2736 qdev->ndev->name, i);
2737 } else {
2738 /*
2739 * Inbound queues handle unicast frames only.
2740 */
2741 intr_context->handler = qlge_msix_rx_isr;
c224969e 2742 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde
RM
2743 qdev->ndev->name, i);
2744 }
2745 }
2746 } else {
2747 /*
2748 * All rx_rings use the same intr_context since
2749 * there is only one vector.
2750 */
2751 intr_context->intr = 0;
2752 intr_context->qdev = qdev;
2753 /*
2754 * We set up each vectors enable/disable/read bits so
2755 * there's no bit/mask calculations in the critical path.
2756 */
2757 intr_context->intr_en_mask =
2758 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2759 intr_context->intr_dis_mask =
2760 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2761 INTR_EN_TYPE_DISABLE;
2762 intr_context->intr_read_mask =
2763 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2764 /*
2765 * Single interrupt means one handler for all rings.
2766 */
2767 intr_context->handler = qlge_isr;
2768 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2769 for (i = 0; i < qdev->rx_ring_count; i++)
2770 qdev->rx_ring[i].irq = 0;
2771 }
2772}
2773
2774static void ql_free_irq(struct ql_adapter *qdev)
2775{
2776 int i;
2777 struct intr_context *intr_context = &qdev->intr_context[0];
2778
2779 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2780 if (intr_context->hooked) {
2781 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2782 free_irq(qdev->msi_x_entry[i].vector,
2783 &qdev->rx_ring[i]);
2784 QPRINTK(qdev, IFDOWN, ERR,
2785 "freeing msix interrupt %d.\n", i);
2786 } else {
2787 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2788 QPRINTK(qdev, IFDOWN, ERR,
2789 "freeing msi interrupt %d.\n", i);
2790 }
2791 }
2792 }
2793 ql_disable_msix(qdev);
2794}
2795
2796static int ql_request_irq(struct ql_adapter *qdev)
2797{
2798 int i;
2799 int status = 0;
2800 struct pci_dev *pdev = qdev->pdev;
2801 struct intr_context *intr_context = &qdev->intr_context[0];
2802
2803 ql_resolve_queues_to_irqs(qdev);
2804
2805 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2806 atomic_set(&intr_context->irq_cnt, 0);
2807 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2808 status = request_irq(qdev->msi_x_entry[i].vector,
2809 intr_context->handler,
2810 0,
2811 intr_context->name,
2812 &qdev->rx_ring[i]);
2813 if (status) {
2814 QPRINTK(qdev, IFUP, ERR,
2815 "Failed request for MSIX interrupt %d.\n",
2816 i);
2817 goto err_irq;
2818 } else {
2819 QPRINTK(qdev, IFUP, INFO,
2820 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2821 i,
2822 qdev->rx_ring[i].type ==
2823 DEFAULT_Q ? "DEFAULT_Q" : "",
2824 qdev->rx_ring[i].type ==
2825 TX_Q ? "TX_Q" : "",
2826 qdev->rx_ring[i].type ==
2827 RX_Q ? "RX_Q" : "", intr_context->name);
2828 }
2829 } else {
2830 QPRINTK(qdev, IFUP, DEBUG,
2831 "trying msi or legacy interrupts.\n");
2832 QPRINTK(qdev, IFUP, DEBUG,
2833 "%s: irq = %d.\n", __func__, pdev->irq);
2834 QPRINTK(qdev, IFUP, DEBUG,
2835 "%s: context->name = %s.\n", __func__,
2836 intr_context->name);
2837 QPRINTK(qdev, IFUP, DEBUG,
2838 "%s: dev_id = 0x%p.\n", __func__,
2839 &qdev->rx_ring[0]);
2840 status =
2841 request_irq(pdev->irq, qlge_isr,
2842 test_bit(QL_MSI_ENABLED,
2843 &qdev->
2844 flags) ? 0 : IRQF_SHARED,
2845 intr_context->name, &qdev->rx_ring[0]);
2846 if (status)
2847 goto err_irq;
2848
2849 QPRINTK(qdev, IFUP, ERR,
2850 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2851 i,
2852 qdev->rx_ring[0].type ==
2853 DEFAULT_Q ? "DEFAULT_Q" : "",
2854 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2855 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2856 intr_context->name);
2857 }
2858 intr_context->hooked = 1;
2859 }
2860 return status;
2861err_irq:
2862 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2863 ql_free_irq(qdev);
2864 return status;
2865}
2866
2867static int ql_start_rss(struct ql_adapter *qdev)
2868{
2869 struct ricb *ricb = &qdev->ricb;
2870 int status = 0;
2871 int i;
2872 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2873
2874 memset((void *)ricb, 0, sizeof(ricb));
2875
2876 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2877 ricb->flags =
2878 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2879 RSS_RT6);
2880 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2881
2882 /*
2883 * Fill out the Indirection Table.
2884 */
2885 for (i = 0; i < 32; i++)
2886 hash_id[i] = i & 1;
2887
2888 /*
2889 * Random values for the IPv6 and IPv4 Hash Keys.
2890 */
2891 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2892 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2893
2894 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2895
2896 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2897 if (status) {
2898 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2899 return status;
2900 }
2901 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2902 return status;
2903}
2904
2905/* Initialize the frame-to-queue routing. */
2906static int ql_route_initialize(struct ql_adapter *qdev)
2907{
2908 int status = 0;
2909 int i;
2910
2911 /* Clear all the entries in the routing table. */
2912 for (i = 0; i < 16; i++) {
2913 status = ql_set_routing_reg(qdev, i, 0, 0);
2914 if (status) {
2915 QPRINTK(qdev, IFUP, ERR,
2916 "Failed to init routing register for CAM packets.\n");
2917 return status;
2918 }
2919 }
2920
2921 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2922 if (status) {
2923 QPRINTK(qdev, IFUP, ERR,
2924 "Failed to init routing register for error packets.\n");
2925 return status;
2926 }
2927 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2928 if (status) {
2929 QPRINTK(qdev, IFUP, ERR,
2930 "Failed to init routing register for broadcast packets.\n");
2931 return status;
2932 }
2933 /* If we have more than one inbound queue, then turn on RSS in the
2934 * routing block.
2935 */
2936 if (qdev->rss_ring_count > 1) {
2937 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2938 RT_IDX_RSS_MATCH, 1);
2939 if (status) {
2940 QPRINTK(qdev, IFUP, ERR,
2941 "Failed to init routing register for MATCH RSS packets.\n");
2942 return status;
2943 }
2944 }
2945
2946 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2947 RT_IDX_CAM_HIT, 1);
2948 if (status) {
2949 QPRINTK(qdev, IFUP, ERR,
2950 "Failed to init routing register for CAM packets.\n");
2951 return status;
2952 }
2953 return status;
2954}
2955
2956static int ql_adapter_initialize(struct ql_adapter *qdev)
2957{
2958 u32 value, mask;
2959 int i;
2960 int status = 0;
2961
2962 /*
2963 * Set up the System register to halt on errors.
2964 */
2965 value = SYS_EFE | SYS_FAE;
2966 mask = value << 16;
2967 ql_write32(qdev, SYS, mask | value);
2968
2969 /* Set the default queue. */
2970 value = NIC_RCV_CFG_DFQ;
2971 mask = NIC_RCV_CFG_DFQ_MASK;
2972 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2973
2974 /* Set the MPI interrupt to enabled. */
2975 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2976
2977 /* Enable the function, set pagesize, enable error checking. */
2978 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2979 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2980
2981 /* Set/clear header splitting. */
2982 mask = FSC_VM_PAGESIZE_MASK |
2983 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2984 ql_write32(qdev, FSC, mask | value);
2985
2986 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2987 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2988
2989 /* Start up the rx queues. */
2990 for (i = 0; i < qdev->rx_ring_count; i++) {
2991 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2992 if (status) {
2993 QPRINTK(qdev, IFUP, ERR,
2994 "Failed to start rx ring[%d].\n", i);
2995 return status;
2996 }
2997 }
2998
2999 /* If there is more than one inbound completion queue
3000 * then download a RICB to configure RSS.
3001 */
3002 if (qdev->rss_ring_count > 1) {
3003 status = ql_start_rss(qdev);
3004 if (status) {
3005 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3006 return status;
3007 }
3008 }
3009
3010 /* Start up the tx queues. */
3011 for (i = 0; i < qdev->tx_ring_count; i++) {
3012 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3013 if (status) {
3014 QPRINTK(qdev, IFUP, ERR,
3015 "Failed to start tx ring[%d].\n", i);
3016 return status;
3017 }
3018 }
3019
3020 status = ql_port_initialize(qdev);
3021 if (status) {
3022 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3023 return status;
3024 }
3025
3026 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3027 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3028 if (status) {
3029 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3030 return status;
3031 }
3032
3033 status = ql_route_initialize(qdev);
3034 if (status) {
3035 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3036 return status;
3037 }
3038
3039 /* Start NAPI for the RSS queues. */
3040 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3041 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3042 i);
3043 napi_enable(&qdev->rx_ring[i].napi);
3044 }
3045
3046 return status;
3047}
3048
3049/* Issue soft reset to chip. */
3050static int ql_adapter_reset(struct ql_adapter *qdev)
3051{
3052 u32 value;
3053 int max_wait_time;
3054 int status = 0;
3055 int resetCnt = 0;
3056
3057#define MAX_RESET_CNT 1
3058issueReset:
3059 resetCnt++;
3060 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3061 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3062 /* Wait for reset to complete. */
3063 max_wait_time = 3;
3064 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3065 max_wait_time);
3066 do {
3067 value = ql_read32(qdev, RST_FO);
3068 if ((value & RST_FO_FR) == 0)
3069 break;
3070
3071 ssleep(1);
3072 } while ((--max_wait_time));
3073 if (value & RST_FO_FR) {
3074 QPRINTK(qdev, IFDOWN, ERR,
3075 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3076 if (resetCnt < MAX_RESET_CNT)
3077 goto issueReset;
3078 }
3079 if (max_wait_time == 0) {
3080 status = -ETIMEDOUT;
3081 QPRINTK(qdev, IFDOWN, ERR,
3082 "ETIMEOUT!!! errored out of resetting the chip!\n");
3083 }
3084
3085 return status;
3086}
3087
3088static void ql_display_dev_info(struct net_device *ndev)
3089{
3090 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3091
3092 QPRINTK(qdev, PROBE, INFO,
3093 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3094 "XG Roll = %d, XG Rev = %d.\n",
3095 qdev->func,
3096 qdev->chip_rev_id & 0x0000000f,
3097 qdev->chip_rev_id >> 4 & 0x0000000f,
3098 qdev->chip_rev_id >> 8 & 0x0000000f,
3099 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3100 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3101}
3102
3103static int ql_adapter_down(struct ql_adapter *qdev)
3104{
3105 struct net_device *ndev = qdev->ndev;
3106 int i, status = 0;
3107 struct rx_ring *rx_ring;
3108
3109 netif_stop_queue(ndev);
3110 netif_carrier_off(ndev);
3111
6497b607
RM
3112 /* Don't kill the reset worker thread if we
3113 * are in the process of recovery.
3114 */
3115 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3116 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3117 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3118 cancel_delayed_work_sync(&qdev->mpi_work);
3119
3120 /* The default queue at index 0 is always processed in
3121 * a workqueue.
3122 */
3123 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3124
3125 /* The rest of the rx_rings are processed in
3126 * a workqueue only if it's a single interrupt
3127 * environment (MSI/Legacy).
3128 */
c062076c 3129 for (i = 1; i < qdev->rx_ring_count; i++) {
c4e84bde
RM
3130 rx_ring = &qdev->rx_ring[i];
3131 /* Only the RSS rings use NAPI on multi irq
3132 * environment. Outbound completion processing
3133 * is done in interrupt context.
3134 */
3135 if (i >= qdev->rss_ring_first_cq_id) {
3136 napi_disable(&rx_ring->napi);
3137 } else {
3138 cancel_delayed_work_sync(&rx_ring->rx_work);
3139 }
3140 }
3141
3142 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3143
3144 ql_disable_interrupts(qdev);
3145
3146 ql_tx_ring_clean(qdev);
3147
3148 spin_lock(&qdev->hw_lock);
3149 status = ql_adapter_reset(qdev);
3150 if (status)
3151 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3152 qdev->func);
3153 spin_unlock(&qdev->hw_lock);
3154 return status;
3155}
3156
3157static int ql_adapter_up(struct ql_adapter *qdev)
3158{
3159 int err = 0;
3160
3161 spin_lock(&qdev->hw_lock);
3162 err = ql_adapter_initialize(qdev);
3163 if (err) {
3164 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3165 spin_unlock(&qdev->hw_lock);
3166 goto err_init;
3167 }
3168 spin_unlock(&qdev->hw_lock);
3169 set_bit(QL_ADAPTER_UP, &qdev->flags);
3170 ql_enable_interrupts(qdev);
3171 ql_enable_all_completion_interrupts(qdev);
3172 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3173 netif_carrier_on(qdev->ndev);
3174 netif_start_queue(qdev->ndev);
3175 }
3176
3177 return 0;
3178err_init:
3179 ql_adapter_reset(qdev);
3180 return err;
3181}
3182
3183static int ql_cycle_adapter(struct ql_adapter *qdev)
3184{
3185 int status;
3186
3187 status = ql_adapter_down(qdev);
3188 if (status)
3189 goto error;
3190
3191 status = ql_adapter_up(qdev);
3192 if (status)
3193 goto error;
3194
3195 return status;
3196error:
3197 QPRINTK(qdev, IFUP, ALERT,
3198 "Driver up/down cycle failed, closing device\n");
3199 rtnl_lock();
3200 dev_close(qdev->ndev);
3201 rtnl_unlock();
3202 return status;
3203}
3204
3205static void ql_release_adapter_resources(struct ql_adapter *qdev)
3206{
3207 ql_free_mem_resources(qdev);
3208 ql_free_irq(qdev);
3209}
3210
3211static int ql_get_adapter_resources(struct ql_adapter *qdev)
3212{
3213 int status = 0;
3214
3215 if (ql_alloc_mem_resources(qdev)) {
3216 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3217 return -ENOMEM;
3218 }
3219 status = ql_request_irq(qdev);
3220 if (status)
3221 goto err_irq;
3222 return status;
3223err_irq:
3224 ql_free_mem_resources(qdev);
3225 return status;
3226}
3227
3228static int qlge_close(struct net_device *ndev)
3229{
3230 struct ql_adapter *qdev = netdev_priv(ndev);
3231
3232 /*
3233 * Wait for device to recover from a reset.
3234 * (Rarely happens, but possible.)
3235 */
3236 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3237 msleep(1);
3238 ql_adapter_down(qdev);
3239 ql_release_adapter_resources(qdev);
c4e84bde
RM
3240 return 0;
3241}
3242
3243static int ql_configure_rings(struct ql_adapter *qdev)
3244{
3245 int i;
3246 struct rx_ring *rx_ring;
3247 struct tx_ring *tx_ring;
3248 int cpu_cnt = num_online_cpus();
3249
3250 /*
3251 * For each processor present we allocate one
3252 * rx_ring for outbound completions, and one
3253 * rx_ring for inbound completions. Plus there is
3254 * always the one default queue. For the CPU
3255 * counts we end up with the following rx_rings:
3256 * rx_ring count =
3257 * one default queue +
3258 * (CPU count * outbound completion rx_ring) +
3259 * (CPU count * inbound (RSS) completion rx_ring)
3260 * To keep it simple we limit the total number of
3261 * queues to < 32, so we truncate CPU to 8.
3262 * This limitation can be removed when requested.
3263 */
3264
683d46a9
RM
3265 if (cpu_cnt > MAX_CPUS)
3266 cpu_cnt = MAX_CPUS;
c4e84bde
RM
3267
3268 /*
3269 * rx_ring[0] is always the default queue.
3270 */
3271 /* Allocate outbound completion ring for each CPU. */
3272 qdev->tx_ring_count = cpu_cnt;
3273 /* Allocate inbound completion (RSS) ring for each CPU. */
3274 qdev->rss_ring_count = cpu_cnt;
3275 /* cq_id for the first inbound ring handler. */
3276 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3277 /*
3278 * qdev->rx_ring_count:
3279 * Total number of rx_rings. This includes the one
3280 * default queue, a number of outbound completion
3281 * handler rx_rings, and the number of inbound
3282 * completion handler rx_rings.
3283 */
3284 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3285
c4e84bde
RM
3286 for (i = 0; i < qdev->tx_ring_count; i++) {
3287 tx_ring = &qdev->tx_ring[i];
3288 memset((void *)tx_ring, 0, sizeof(tx_ring));
3289 tx_ring->qdev = qdev;
3290 tx_ring->wq_id = i;
3291 tx_ring->wq_len = qdev->tx_ring_size;
3292 tx_ring->wq_size =
3293 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3294
3295 /*
3296 * The completion queue ID for the tx rings start
3297 * immediately after the default Q ID, which is zero.
3298 */
3299 tx_ring->cq_id = i + 1;
3300 }
3301
3302 for (i = 0; i < qdev->rx_ring_count; i++) {
3303 rx_ring = &qdev->rx_ring[i];
3304 memset((void *)rx_ring, 0, sizeof(rx_ring));
3305 rx_ring->qdev = qdev;
3306 rx_ring->cq_id = i;
3307 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3308 if (i == 0) { /* Default queue at index 0. */
3309 /*
3310 * Default queue handles bcast/mcast plus
3311 * async events. Needs buffers.
3312 */
3313 rx_ring->cq_len = qdev->rx_ring_size;
3314 rx_ring->cq_size =
3315 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3316 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3317 rx_ring->lbq_size =
2c9a0d41 3318 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3319 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3320 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3321 rx_ring->sbq_size =
2c9a0d41 3322 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3323 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3324 rx_ring->type = DEFAULT_Q;
3325 } else if (i < qdev->rss_ring_first_cq_id) {
3326 /*
3327 * Outbound queue handles outbound completions only.
3328 */
3329 /* outbound cq is same size as tx_ring it services. */
3330 rx_ring->cq_len = qdev->tx_ring_size;
3331 rx_ring->cq_size =
3332 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3333 rx_ring->lbq_len = 0;
3334 rx_ring->lbq_size = 0;
3335 rx_ring->lbq_buf_size = 0;
3336 rx_ring->sbq_len = 0;
3337 rx_ring->sbq_size = 0;
3338 rx_ring->sbq_buf_size = 0;
3339 rx_ring->type = TX_Q;
3340 } else { /* Inbound completions (RSS) queues */
3341 /*
3342 * Inbound queues handle unicast frames only.
3343 */
3344 rx_ring->cq_len = qdev->rx_ring_size;
3345 rx_ring->cq_size =
3346 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3347 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3348 rx_ring->lbq_size =
2c9a0d41 3349 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3350 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3351 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3352 rx_ring->sbq_size =
2c9a0d41 3353 rx_ring->sbq_len * sizeof(__le64);
c4e84bde
RM
3354 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3355 rx_ring->type = RX_Q;
3356 }
3357 }
3358 return 0;
3359}
3360
3361static int qlge_open(struct net_device *ndev)
3362{
3363 int err = 0;
3364 struct ql_adapter *qdev = netdev_priv(ndev);
3365
3366 err = ql_configure_rings(qdev);
3367 if (err)
3368 return err;
3369
3370 err = ql_get_adapter_resources(qdev);
3371 if (err)
3372 goto error_up;
3373
3374 err = ql_adapter_up(qdev);
3375 if (err)
3376 goto error_up;
3377
3378 return err;
3379
3380error_up:
3381 ql_release_adapter_resources(qdev);
c4e84bde
RM
3382 return err;
3383}
3384
3385static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3386{
3387 struct ql_adapter *qdev = netdev_priv(ndev);
3388
3389 if (ndev->mtu == 1500 && new_mtu == 9000) {
3390 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3391 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3392 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3393 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3394 (ndev->mtu == 9000 && new_mtu == 9000)) {
3395 return 0;
3396 } else
3397 return -EINVAL;
3398 ndev->mtu = new_mtu;
3399 return 0;
3400}
3401
3402static struct net_device_stats *qlge_get_stats(struct net_device
3403 *ndev)
3404{
3405 struct ql_adapter *qdev = netdev_priv(ndev);
3406 return &qdev->stats;
3407}
3408
3409static void qlge_set_multicast_list(struct net_device *ndev)
3410{
3411 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3412 struct dev_mc_list *mc_ptr;
3413 int i;
3414
3415 spin_lock(&qdev->hw_lock);
3416 /*
3417 * Set or clear promiscuous mode if a
3418 * transition is taking place.
3419 */
3420 if (ndev->flags & IFF_PROMISC) {
3421 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3422 if (ql_set_routing_reg
3423 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3424 QPRINTK(qdev, HW, ERR,
3425 "Failed to set promiscous mode.\n");
3426 } else {
3427 set_bit(QL_PROMISCUOUS, &qdev->flags);
3428 }
3429 }
3430 } else {
3431 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3432 if (ql_set_routing_reg
3433 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3434 QPRINTK(qdev, HW, ERR,
3435 "Failed to clear promiscous mode.\n");
3436 } else {
3437 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3438 }
3439 }
3440 }
3441
3442 /*
3443 * Set or clear all multicast mode if a
3444 * transition is taking place.
3445 */
3446 if ((ndev->flags & IFF_ALLMULTI) ||
3447 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3448 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3449 if (ql_set_routing_reg
3450 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3451 QPRINTK(qdev, HW, ERR,
3452 "Failed to set all-multi mode.\n");
3453 } else {
3454 set_bit(QL_ALLMULTI, &qdev->flags);
3455 }
3456 }
3457 } else {
3458 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3459 if (ql_set_routing_reg
3460 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3461 QPRINTK(qdev, HW, ERR,
3462 "Failed to clear all-multi mode.\n");
3463 } else {
3464 clear_bit(QL_ALLMULTI, &qdev->flags);
3465 }
3466 }
3467 }
3468
3469 if (ndev->mc_count) {
3470 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3471 i++, mc_ptr = mc_ptr->next)
3472 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3473 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3474 QPRINTK(qdev, HW, ERR,
3475 "Failed to loadmulticast address.\n");
3476 goto exit;
3477 }
3478 if (ql_set_routing_reg
3479 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3480 QPRINTK(qdev, HW, ERR,
3481 "Failed to set multicast match mode.\n");
3482 } else {
3483 set_bit(QL_ALLMULTI, &qdev->flags);
3484 }
3485 }
3486exit:
3487 spin_unlock(&qdev->hw_lock);
3488}
3489
3490static int qlge_set_mac_address(struct net_device *ndev, void *p)
3491{
3492 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3493 struct sockaddr *addr = p;
8668ae92 3494 int ret = 0;
c4e84bde
RM
3495
3496 if (netif_running(ndev))
3497 return -EBUSY;
3498
3499 if (!is_valid_ether_addr(addr->sa_data))
3500 return -EADDRNOTAVAIL;
3501 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3502
3503 spin_lock(&qdev->hw_lock);
3504 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3505 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3506 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
8668ae92 3507 ret = -1;
c4e84bde
RM
3508 }
3509 spin_unlock(&qdev->hw_lock);
3510
8668ae92 3511 return ret;
c4e84bde
RM
3512}
3513
3514static void qlge_tx_timeout(struct net_device *ndev)
3515{
3516 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3517 ql_queue_asic_error(qdev);
c4e84bde
RM
3518}
3519
3520static void ql_asic_reset_work(struct work_struct *work)
3521{
3522 struct ql_adapter *qdev =
3523 container_of(work, struct ql_adapter, asic_reset_work.work);
3524 ql_cycle_adapter(qdev);
3525}
3526
3527static void ql_get_board_info(struct ql_adapter *qdev)
3528{
3529 qdev->func =
3530 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3531 if (qdev->func) {
3532 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3533 qdev->port_link_up = STS_PL1;
3534 qdev->port_init = STS_PI1;
3535 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3536 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3537 } else {
3538 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3539 qdev->port_link_up = STS_PL0;
3540 qdev->port_init = STS_PI0;
3541 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3542 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3543 }
3544 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3545}
3546
3547static void ql_release_all(struct pci_dev *pdev)
3548{
3549 struct net_device *ndev = pci_get_drvdata(pdev);
3550 struct ql_adapter *qdev = netdev_priv(ndev);
3551
3552 if (qdev->workqueue) {
3553 destroy_workqueue(qdev->workqueue);
3554 qdev->workqueue = NULL;
3555 }
3556 if (qdev->q_workqueue) {
3557 destroy_workqueue(qdev->q_workqueue);
3558 qdev->q_workqueue = NULL;
3559 }
3560 if (qdev->reg_base)
8668ae92 3561 iounmap(qdev->reg_base);
c4e84bde
RM
3562 if (qdev->doorbell_area)
3563 iounmap(qdev->doorbell_area);
3564 pci_release_regions(pdev);
3565 pci_set_drvdata(pdev, NULL);
3566}
3567
3568static int __devinit ql_init_device(struct pci_dev *pdev,
3569 struct net_device *ndev, int cards_found)
3570{
3571 struct ql_adapter *qdev = netdev_priv(ndev);
3572 int pos, err = 0;
3573 u16 val16;
3574
3575 memset((void *)qdev, 0, sizeof(qdev));
3576 err = pci_enable_device(pdev);
3577 if (err) {
3578 dev_err(&pdev->dev, "PCI device enable failed.\n");
3579 return err;
3580 }
3581
3582 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3583 if (pos <= 0) {
3584 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3585 "aborting.\n");
3586 goto err_out;
3587 } else {
3588 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3589 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3590 val16 |= (PCI_EXP_DEVCTL_CERE |
3591 PCI_EXP_DEVCTL_NFERE |
3592 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3593 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3594 }
3595
3596 err = pci_request_regions(pdev, DRV_NAME);
3597 if (err) {
3598 dev_err(&pdev->dev, "PCI region request failed.\n");
3599 goto err_out;
3600 }
3601
3602 pci_set_master(pdev);
3603 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3604 set_bit(QL_DMA64, &qdev->flags);
3605 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3606 } else {
3607 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3608 if (!err)
3609 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3610 }
3611
3612 if (err) {
3613 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3614 goto err_out;
3615 }
3616
3617 pci_set_drvdata(pdev, ndev);
3618 qdev->reg_base =
3619 ioremap_nocache(pci_resource_start(pdev, 1),
3620 pci_resource_len(pdev, 1));
3621 if (!qdev->reg_base) {
3622 dev_err(&pdev->dev, "Register mapping failed.\n");
3623 err = -ENOMEM;
3624 goto err_out;
3625 }
3626
3627 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3628 qdev->doorbell_area =
3629 ioremap_nocache(pci_resource_start(pdev, 3),
3630 pci_resource_len(pdev, 3));
3631 if (!qdev->doorbell_area) {
3632 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3633 err = -ENOMEM;
3634 goto err_out;
3635 }
3636
3637 ql_get_board_info(qdev);
3638 qdev->ndev = ndev;
3639 qdev->pdev = pdev;
3640 qdev->msg_enable = netif_msg_init(debug, default_msg);
3641 spin_lock_init(&qdev->hw_lock);
3642 spin_lock_init(&qdev->stats_lock);
3643
3644 /* make sure the EEPROM is good */
3645 err = ql_get_flash_params(qdev);
3646 if (err) {
3647 dev_err(&pdev->dev, "Invalid FLASH.\n");
3648 goto err_out;
3649 }
3650
3651 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3652 goto err_out;
3653
3654 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3655 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3656
3657 /* Set up the default ring sizes. */
3658 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3659 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3660
3661 /* Set up the coalescing parameters. */
3662 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3663 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3664 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3665 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3666
3667 /*
3668 * Set up the operating parameters.
3669 */
3670 qdev->rx_csum = 1;
3671
3672 qdev->q_workqueue = create_workqueue(ndev->name);
3673 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3674 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3675 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3676 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3677
3678 if (!cards_found) {
3679 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3680 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3681 DRV_NAME, DRV_VERSION);
3682 }
3683 return 0;
3684err_out:
3685 ql_release_all(pdev);
3686 pci_disable_device(pdev);
3687 return err;
3688}
3689
25ed7849
SH
3690
3691static const struct net_device_ops qlge_netdev_ops = {
3692 .ndo_open = qlge_open,
3693 .ndo_stop = qlge_close,
3694 .ndo_start_xmit = qlge_send,
3695 .ndo_change_mtu = qlge_change_mtu,
3696 .ndo_get_stats = qlge_get_stats,
3697 .ndo_set_multicast_list = qlge_set_multicast_list,
3698 .ndo_set_mac_address = qlge_set_mac_address,
3699 .ndo_validate_addr = eth_validate_addr,
3700 .ndo_tx_timeout = qlge_tx_timeout,
3701 .ndo_vlan_rx_register = ql_vlan_rx_register,
3702 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3703 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3704};
3705
c4e84bde
RM
3706static int __devinit qlge_probe(struct pci_dev *pdev,
3707 const struct pci_device_id *pci_entry)
3708{
3709 struct net_device *ndev = NULL;
3710 struct ql_adapter *qdev = NULL;
3711 static int cards_found = 0;
3712 int err = 0;
3713
3714 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3715 if (!ndev)
3716 return -ENOMEM;
3717
3718 err = ql_init_device(pdev, ndev, cards_found);
3719 if (err < 0) {
3720 free_netdev(ndev);
3721 return err;
3722 }
3723
3724 qdev = netdev_priv(ndev);
3725 SET_NETDEV_DEV(ndev, &pdev->dev);
3726 ndev->features = (0
3727 | NETIF_F_IP_CSUM
3728 | NETIF_F_SG
3729 | NETIF_F_TSO
3730 | NETIF_F_TSO6
3731 | NETIF_F_TSO_ECN
3732 | NETIF_F_HW_VLAN_TX
3733 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3734
3735 if (test_bit(QL_DMA64, &qdev->flags))
3736 ndev->features |= NETIF_F_HIGHDMA;
3737
3738 /*
3739 * Set up net_device structure.
3740 */
3741 ndev->tx_queue_len = qdev->tx_ring_size;
3742 ndev->irq = pdev->irq;
25ed7849
SH
3743
3744 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 3745 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 3746 ndev->watchdog_timeo = 10 * HZ;
25ed7849 3747
c4e84bde
RM
3748 err = register_netdev(ndev);
3749 if (err) {
3750 dev_err(&pdev->dev, "net device registration failed.\n");
3751 ql_release_all(pdev);
3752 pci_disable_device(pdev);
3753 return err;
3754 }
3755 netif_carrier_off(ndev);
3756 netif_stop_queue(ndev);
3757 ql_display_dev_info(ndev);
3758 cards_found++;
3759 return 0;
3760}
3761
3762static void __devexit qlge_remove(struct pci_dev *pdev)
3763{
3764 struct net_device *ndev = pci_get_drvdata(pdev);
3765 unregister_netdev(ndev);
3766 ql_release_all(pdev);
3767 pci_disable_device(pdev);
3768 free_netdev(ndev);
3769}
3770
3771/*
3772 * This callback is called by the PCI subsystem whenever
3773 * a PCI bus error is detected.
3774 */
3775static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3776 enum pci_channel_state state)
3777{
3778 struct net_device *ndev = pci_get_drvdata(pdev);
3779 struct ql_adapter *qdev = netdev_priv(ndev);
3780
3781 if (netif_running(ndev))
3782 ql_adapter_down(qdev);
3783
3784 pci_disable_device(pdev);
3785
3786 /* Request a slot reset. */
3787 return PCI_ERS_RESULT_NEED_RESET;
3788}
3789
3790/*
3791 * This callback is called after the PCI buss has been reset.
3792 * Basically, this tries to restart the card from scratch.
3793 * This is a shortened version of the device probe/discovery code,
3794 * it resembles the first-half of the () routine.
3795 */
3796static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3797{
3798 struct net_device *ndev = pci_get_drvdata(pdev);
3799 struct ql_adapter *qdev = netdev_priv(ndev);
3800
3801 if (pci_enable_device(pdev)) {
3802 QPRINTK(qdev, IFUP, ERR,
3803 "Cannot re-enable PCI device after reset.\n");
3804 return PCI_ERS_RESULT_DISCONNECT;
3805 }
3806
3807 pci_set_master(pdev);
3808
3809 netif_carrier_off(ndev);
3810 netif_stop_queue(ndev);
3811 ql_adapter_reset(qdev);
3812
3813 /* Make sure the EEPROM is good */
3814 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3815
3816 if (!is_valid_ether_addr(ndev->perm_addr)) {
3817 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3818 return PCI_ERS_RESULT_DISCONNECT;
3819 }
3820
3821 return PCI_ERS_RESULT_RECOVERED;
3822}
3823
3824static void qlge_io_resume(struct pci_dev *pdev)
3825{
3826 struct net_device *ndev = pci_get_drvdata(pdev);
3827 struct ql_adapter *qdev = netdev_priv(ndev);
3828
3829 pci_set_master(pdev);
3830
3831 if (netif_running(ndev)) {
3832 if (ql_adapter_up(qdev)) {
3833 QPRINTK(qdev, IFUP, ERR,
3834 "Device initialization failed after reset.\n");
3835 return;
3836 }
3837 }
3838
3839 netif_device_attach(ndev);
3840}
3841
3842static struct pci_error_handlers qlge_err_handler = {
3843 .error_detected = qlge_io_error_detected,
3844 .slot_reset = qlge_io_slot_reset,
3845 .resume = qlge_io_resume,
3846};
3847
3848static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3849{
3850 struct net_device *ndev = pci_get_drvdata(pdev);
3851 struct ql_adapter *qdev = netdev_priv(ndev);
0047e5d2 3852 int err, i;
c4e84bde
RM
3853
3854 netif_device_detach(ndev);
3855
3856 if (netif_running(ndev)) {
3857 err = ql_adapter_down(qdev);
3858 if (!err)
3859 return err;
3860 }
3861
0047e5d2
RM
3862 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3863 netif_napi_del(&qdev->rx_ring[i].napi);
3864
c4e84bde
RM
3865 err = pci_save_state(pdev);
3866 if (err)
3867 return err;
3868
3869 pci_disable_device(pdev);
3870
3871 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3872
3873 return 0;
3874}
3875
04da2cf9 3876#ifdef CONFIG_PM
c4e84bde
RM
3877static int qlge_resume(struct pci_dev *pdev)
3878{
3879 struct net_device *ndev = pci_get_drvdata(pdev);
3880 struct ql_adapter *qdev = netdev_priv(ndev);
3881 int err;
3882
3883 pci_set_power_state(pdev, PCI_D0);
3884 pci_restore_state(pdev);
3885 err = pci_enable_device(pdev);
3886 if (err) {
3887 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3888 return err;
3889 }
3890 pci_set_master(pdev);
3891
3892 pci_enable_wake(pdev, PCI_D3hot, 0);
3893 pci_enable_wake(pdev, PCI_D3cold, 0);
3894
3895 if (netif_running(ndev)) {
3896 err = ql_adapter_up(qdev);
3897 if (err)
3898 return err;
3899 }
3900
3901 netif_device_attach(ndev);
3902
3903 return 0;
3904}
04da2cf9 3905#endif /* CONFIG_PM */
c4e84bde
RM
3906
3907static void qlge_shutdown(struct pci_dev *pdev)
3908{
3909 qlge_suspend(pdev, PMSG_SUSPEND);
3910}
3911
3912static struct pci_driver qlge_driver = {
3913 .name = DRV_NAME,
3914 .id_table = qlge_pci_tbl,
3915 .probe = qlge_probe,
3916 .remove = __devexit_p(qlge_remove),
3917#ifdef CONFIG_PM
3918 .suspend = qlge_suspend,
3919 .resume = qlge_resume,
3920#endif
3921 .shutdown = qlge_shutdown,
3922 .err_handler = &qlge_err_handler
3923};
3924
3925static int __init qlge_init_module(void)
3926{
3927 return pci_register_driver(&qlge_driver);
3928}
3929
3930static void __exit qlge_exit(void)
3931{
3932 pci_unregister_driver(&qlge_driver);
3933}
3934
3935module_init(qlge_init_module);
3936module_exit(qlge_exit);