]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/natsemi.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[net-next-2.6.git] / drivers / net / natsemi.c
CommitLineData
1da177e4
LT
1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2/*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
b27a16b7 6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
1da177e4
LT
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
15
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
20
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
03a8c661 23 [link no longer provides useful info -jgarzik]
1da177e4
LT
24
25
1da177e4
LT
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
1da177e4
LT
28*/
29
1da177e4
LT
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/errno.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/interrupt.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/init.h>
43#include <linux/spinlock.h>
44#include <linux/ethtool.h>
45#include <linux/delay.h>
46#include <linux/rtnetlink.h>
47#include <linux/mii.h>
48#include <linux/crc32.h>
49#include <linux/bitops.h>
b27a16b7 50#include <linux/prefetch.h>
1da177e4
LT
51#include <asm/processor.h> /* Processor type for cache alignment. */
52#include <asm/io.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55
56#define DRV_NAME "natsemi"
d5b20697
AG
57#define DRV_VERSION "2.1"
58#define DRV_RELDATE "Sept 11, 2006"
1da177e4
LT
59
60#define RX_OFFSET 2
61
62/* Updated to recommendations in pci-skeleton v2.03. */
63
64/* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
66
67#define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72static int debug = -1;
73
1da177e4
LT
74static int mtu;
75
76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
f71e1309 78static const int multicast_filter_limit = 100;
1da177e4
LT
79
80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82static int rx_copybreak;
83
84/* Used to pass the media type, etc.
85 Both 'options[]' and 'full_duplex[]' should exist for driver
86 interoperability.
87 The media type is usually passed in 'options[]'.
88*/
89#define MAX_UNITS 8 /* More are supported, limit only on options */
90static int options[MAX_UNITS];
91static int full_duplex[MAX_UNITS];
92
93/* Operational parameters that are set at compile time. */
94
95/* Keep the ring sizes a power of two for compile efficiency.
96 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
97 Making the Tx ring too large decreases the effectiveness of channel
98 bonding and packet priority.
99 There are no ill effects from too-large receive rings. */
100#define TX_RING_SIZE 16
101#define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
102#define RX_RING_SIZE 32
103
104/* Operational parameters that usually are not changed. */
105/* Time in jiffies before concluding the transmitter is hung. */
106#define TX_TIMEOUT (2*HZ)
107
108#define NATSEMI_HW_TIMEOUT 400
109#define NATSEMI_TIMER_FREQ 3*HZ
110#define NATSEMI_PG0_NREGS 64
111#define NATSEMI_RFDR_NREGS 8
112#define NATSEMI_PG1_NREGS 4
113#define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
114 NATSEMI_PG1_NREGS)
115#define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
116#define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
1da177e4
LT
117
118/* Buffer sizes:
119 * The nic writes 32-bit values, even if the upper bytes of
120 * a 32-bit value are beyond the end of the buffer.
121 */
122#define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
123#define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
124#define NATSEMI_LONGPKT 1518 /* limit for normal packets */
125#define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
126
127/* These identify the driver base version and may not be removed. */
e19360f2 128static const char version[] __devinitdata =
1da177e4
LT
129 KERN_INFO DRV_NAME " dp8381x driver, version "
130 DRV_VERSION ", " DRV_RELDATE "\n"
131 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
132 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
133 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
134
135MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
136MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
137MODULE_LICENSE("GPL");
138
1da177e4
LT
139module_param(mtu, int, 0);
140module_param(debug, int, 0);
141module_param(rx_copybreak, int, 0);
142module_param_array(options, int, NULL, 0);
143module_param_array(full_duplex, int, NULL, 0);
1da177e4
LT
144MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
145MODULE_PARM_DESC(debug, "DP8381x default debug level");
6aa20a22 146MODULE_PARM_DESC(rx_copybreak,
1da177e4 147 "DP8381x copy breakpoint for copy-only-tiny-frames");
6aa20a22 148MODULE_PARM_DESC(options,
1da177e4
LT
149 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
150MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
151
152/*
153 Theory of Operation
154
155I. Board Compatibility
156
157This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
158It also works with other chips in in the DP83810 series.
159
160II. Board-specific settings
161
162This driver requires the PCI interrupt line to be valid.
163It honors the EEPROM-set values.
164
165III. Driver operation
166
167IIIa. Ring buffers
168
169This driver uses two statically allocated fixed-size descriptor lists
170formed into rings by a branch from the final descriptor to the beginning of
171the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
172The NatSemi design uses a 'next descriptor' pointer that the driver forms
173into a list.
174
175IIIb/c. Transmit/Receive Structure
176
177This driver uses a zero-copy receive and transmit scheme.
178The driver allocates full frame size skbuffs for the Rx ring buffers at
179open() time and passes the skb->data field to the chip as receive data
180buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
181a fresh skbuff is allocated and the frame is copied to the new skbuff.
182When the incoming frame is larger, the skbuff is passed directly up the
183protocol stack. Buffers consumed this way are replaced by newly allocated
184skbuffs in a later phase of receives.
185
186The RX_COPYBREAK value is chosen to trade-off the memory wasted by
187using a full-sized skbuff for small frames vs. the copying costs of larger
188frames. New boards are typically used in generously configured machines
189and the underfilled buffers have negligible impact compared to the benefit of
190a single allocation size, so the default value of zero results in never
191copying packets. When copying is done, the cost is usually mitigated by using
192a combined copy/checksum routine. Copying also preloads the cache, which is
193most useful with small frames.
194
195A subtle aspect of the operation is that unaligned buffers are not permitted
196by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
197longword aligned for further processing. On copies frames are put into the
198skbuff at an offset of "+2", 16-byte aligning the IP header.
199
200IIId. Synchronization
201
202Most operations are synchronized on the np->lock irq spinlock, except the
203performance critical codepaths:
204
205The rx process only runs in the interrupt handler. Access from outside
206the interrupt handler is only permitted after disable_irq().
207
932ff279 208The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap
1da177e4
LT
209is set, then access is permitted under spin_lock_irq(&np->lock).
210
211Thus configuration functions that want to access everything must call
212 disable_irq(dev->irq);
932ff279 213 netif_tx_lock_bh(dev);
1da177e4
LT
214 spin_lock_irq(&np->lock);
215
216IV. Notes
217
218NatSemi PCI network controllers are very uncommon.
219
220IVb. References
221
222http://www.scyld.com/expert/100mbps.html
223http://www.scyld.com/expert/NWay.html
224Datasheet is available from:
225http://www.national.com/pf/DP/DP83815.html
226
227IVc. Errata
228
229None characterised.
230*/
231
232
233
1da177e4
LT
234/*
235 * Support for fibre connections on Am79C874:
236 * This phy needs a special setup when connected to a fibre cable.
237 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
238 */
239#define PHYID_AM79C874 0x0022561b
240
a2b524b2
JG
241enum {
242 MII_MCTRL = 0x15, /* mode control register */
243 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
244 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
245};
1da177e4 246
6aa20a22 247
1da177e4 248/* array of board data directly indexed by pci_tbl[x].driver_data */
f71e1309 249static const struct {
1da177e4
LT
250 const char *name;
251 unsigned long flags;
a2b524b2 252 unsigned int eeprom_size;
1da177e4 253} natsemi_pci_info[] __devinitdata = {
a2b524b2 254 { "NatSemi DP8381[56]", 0, 24 },
1da177e4
LT
255};
256
a2b524b2
JG
257static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
258 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
259 { } /* terminate list */
1da177e4
LT
260};
261MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
262
263/* Offsets to the device registers.
264 Unlike software-only systems, device drivers interact with complex hardware.
265 It's not useful to define symbolic names for every register bit in the
266 device.
267*/
268enum register_offsets {
269 ChipCmd = 0x00,
270 ChipConfig = 0x04,
271 EECtrl = 0x08,
272 PCIBusCfg = 0x0C,
273 IntrStatus = 0x10,
274 IntrMask = 0x14,
275 IntrEnable = 0x18,
276 IntrHoldoff = 0x1C, /* DP83816 only */
277 TxRingPtr = 0x20,
278 TxConfig = 0x24,
279 RxRingPtr = 0x30,
280 RxConfig = 0x34,
281 ClkRun = 0x3C,
282 WOLCmd = 0x40,
283 PauseCmd = 0x44,
284 RxFilterAddr = 0x48,
285 RxFilterData = 0x4C,
286 BootRomAddr = 0x50,
287 BootRomData = 0x54,
288 SiliconRev = 0x58,
289 StatsCtrl = 0x5C,
290 StatsData = 0x60,
291 RxPktErrs = 0x60,
292 RxMissed = 0x68,
293 RxCRCErrs = 0x64,
294 BasicControl = 0x80,
295 BasicStatus = 0x84,
296 AnegAdv = 0x90,
297 AnegPeer = 0x94,
298 PhyStatus = 0xC0,
299 MIntrCtrl = 0xC4,
300 MIntrStatus = 0xC8,
301 PhyCtrl = 0xE4,
302
303 /* These are from the spec, around page 78... on a separate table.
304 * The meaning of these registers depend on the value of PGSEL. */
305 PGSEL = 0xCC,
306 PMDCSR = 0xE4,
307 TSTDAT = 0xFC,
308 DSPCFG = 0xF4,
309 SDCFG = 0xF8
310};
311/* the values for the 'magic' registers above (PGSEL=1) */
312#define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
313#define TSTDAT_VAL 0x0
314#define DSPCFG_VAL 0x5040
315#define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
316#define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
317#define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
318#define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
319
320/* misc PCI space registers */
321enum pci_register_offsets {
322 PCIPM = 0x44,
323};
324
325enum ChipCmd_bits {
326 ChipReset = 0x100,
327 RxReset = 0x20,
328 TxReset = 0x10,
329 RxOff = 0x08,
330 RxOn = 0x04,
331 TxOff = 0x02,
332 TxOn = 0x01,
333};
334
335enum ChipConfig_bits {
336 CfgPhyDis = 0x200,
337 CfgPhyRst = 0x400,
338 CfgExtPhy = 0x1000,
339 CfgAnegEnable = 0x2000,
340 CfgAneg100 = 0x4000,
341 CfgAnegFull = 0x8000,
342 CfgAnegDone = 0x8000000,
343 CfgFullDuplex = 0x20000000,
344 CfgSpeed100 = 0x40000000,
345 CfgLink = 0x80000000,
346};
347
348enum EECtrl_bits {
349 EE_ShiftClk = 0x04,
350 EE_DataIn = 0x01,
351 EE_ChipSelect = 0x08,
352 EE_DataOut = 0x02,
353 MII_Data = 0x10,
354 MII_Write = 0x20,
355 MII_ShiftClk = 0x40,
356};
357
358enum PCIBusCfg_bits {
359 EepromReload = 0x4,
360};
361
362/* Bits in the interrupt status/mask registers. */
363enum IntrStatus_bits {
364 IntrRxDone = 0x0001,
365 IntrRxIntr = 0x0002,
366 IntrRxErr = 0x0004,
367 IntrRxEarly = 0x0008,
368 IntrRxIdle = 0x0010,
369 IntrRxOverrun = 0x0020,
370 IntrTxDone = 0x0040,
371 IntrTxIntr = 0x0080,
372 IntrTxErr = 0x0100,
373 IntrTxIdle = 0x0200,
374 IntrTxUnderrun = 0x0400,
375 StatsMax = 0x0800,
376 SWInt = 0x1000,
377 WOLPkt = 0x2000,
378 LinkChange = 0x4000,
379 IntrHighBits = 0x8000,
380 RxStatusFIFOOver = 0x10000,
381 IntrPCIErr = 0xf00000,
382 RxResetDone = 0x1000000,
383 TxResetDone = 0x2000000,
384 IntrAbnormalSummary = 0xCD20,
385};
386
387/*
388 * Default Interrupts:
389 * Rx OK, Rx Packet Error, Rx Overrun,
390 * Tx OK, Tx Packet Error, Tx Underrun,
391 * MIB Service, Phy Interrupt, High Bits,
392 * Rx Status FIFO overrun,
393 * Received Target Abort, Received Master Abort,
394 * Signalled System Error, Received Parity Error
395 */
396#define DEFAULT_INTR 0x00f1cd65
397
398enum TxConfig_bits {
399 TxDrthMask = 0x3f,
400 TxFlthMask = 0x3f00,
401 TxMxdmaMask = 0x700000,
402 TxMxdma_512 = 0x0,
403 TxMxdma_4 = 0x100000,
404 TxMxdma_8 = 0x200000,
405 TxMxdma_16 = 0x300000,
406 TxMxdma_32 = 0x400000,
407 TxMxdma_64 = 0x500000,
408 TxMxdma_128 = 0x600000,
409 TxMxdma_256 = 0x700000,
410 TxCollRetry = 0x800000,
411 TxAutoPad = 0x10000000,
412 TxMacLoop = 0x20000000,
413 TxHeartIgn = 0x40000000,
414 TxCarrierIgn = 0x80000000
415};
416
6aa20a22 417/*
1da177e4
LT
418 * Tx Configuration:
419 * - 256 byte DMA burst length
420 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
421 * - 64 bytes initial drain threshold (i.e. begin actual transmission
422 * when 64 byte are in the fifo)
423 * - on tx underruns, increase drain threshold by 64.
424 * - at most use a drain threshold of 1472 bytes: The sum of the fill
425 * threshold and the drain threshold must be less than 2016 bytes.
426 *
427 */
428#define TX_FLTH_VAL ((512/32) << 8)
429#define TX_DRTH_VAL_START (64/32)
430#define TX_DRTH_VAL_INC 2
431#define TX_DRTH_VAL_LIMIT (1472/32)
432
433enum RxConfig_bits {
434 RxDrthMask = 0x3e,
435 RxMxdmaMask = 0x700000,
436 RxMxdma_512 = 0x0,
437 RxMxdma_4 = 0x100000,
438 RxMxdma_8 = 0x200000,
439 RxMxdma_16 = 0x300000,
440 RxMxdma_32 = 0x400000,
441 RxMxdma_64 = 0x500000,
442 RxMxdma_128 = 0x600000,
443 RxMxdma_256 = 0x700000,
444 RxAcceptLong = 0x8000000,
445 RxAcceptTx = 0x10000000,
446 RxAcceptRunt = 0x40000000,
447 RxAcceptErr = 0x80000000
448};
449#define RX_DRTH_VAL (128/8)
450
451enum ClkRun_bits {
452 PMEEnable = 0x100,
453 PMEStatus = 0x8000,
454};
455
456enum WolCmd_bits {
457 WakePhy = 0x1,
458 WakeUnicast = 0x2,
459 WakeMulticast = 0x4,
460 WakeBroadcast = 0x8,
461 WakeArp = 0x10,
462 WakePMatch0 = 0x20,
463 WakePMatch1 = 0x40,
464 WakePMatch2 = 0x80,
465 WakePMatch3 = 0x100,
466 WakeMagic = 0x200,
467 WakeMagicSecure = 0x400,
468 SecureHack = 0x100000,
469 WokePhy = 0x400000,
470 WokeUnicast = 0x800000,
471 WokeMulticast = 0x1000000,
472 WokeBroadcast = 0x2000000,
473 WokeArp = 0x4000000,
474 WokePMatch0 = 0x8000000,
475 WokePMatch1 = 0x10000000,
476 WokePMatch2 = 0x20000000,
477 WokePMatch3 = 0x40000000,
478 WokeMagic = 0x80000000,
479 WakeOptsSummary = 0x7ff
480};
481
482enum RxFilterAddr_bits {
483 RFCRAddressMask = 0x3ff,
484 AcceptMulticast = 0x00200000,
485 AcceptMyPhys = 0x08000000,
486 AcceptAllPhys = 0x10000000,
487 AcceptAllMulticast = 0x20000000,
488 AcceptBroadcast = 0x40000000,
489 RxFilterEnable = 0x80000000
490};
491
492enum StatsCtrl_bits {
493 StatsWarn = 0x1,
494 StatsFreeze = 0x2,
495 StatsClear = 0x4,
496 StatsStrobe = 0x8,
497};
498
499enum MIntrCtrl_bits {
500 MICRIntEn = 0x2,
501};
502
503enum PhyCtrl_bits {
504 PhyAddrMask = 0x1f,
505};
506
507#define PHY_ADDR_NONE 32
508#define PHY_ADDR_INTERNAL 1
509
510/* values we might find in the silicon revision register */
511#define SRR_DP83815_C 0x0302
512#define SRR_DP83815_D 0x0403
513#define SRR_DP83816_A4 0x0504
514#define SRR_DP83816_A5 0x0505
515
516/* The Rx and Tx buffer descriptors. */
517/* Note that using only 32 bit fields simplifies conversion to big-endian
518 architectures. */
519struct netdev_desc {
520 u32 next_desc;
521 s32 cmd_status;
522 u32 addr;
523 u32 software_use;
524};
525
526/* Bits in network_desc.status */
527enum desc_status_bits {
528 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
529 DescNoCRC=0x10000000, DescPktOK=0x08000000,
530 DescSizeMask=0xfff,
531
532 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
533 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
534 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
535 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
536
537 DescRxAbort=0x04000000, DescRxOver=0x02000000,
538 DescRxDest=0x01800000, DescRxLong=0x00400000,
539 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
540 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
541 DescRxLoop=0x00020000, DesRxColl=0x00010000,
542};
543
544struct netdev_private {
545 /* Descriptor rings first for alignment */
546 dma_addr_t ring_dma;
547 struct netdev_desc *rx_ring;
548 struct netdev_desc *tx_ring;
549 /* The addresses of receive-in-place skbuffs */
550 struct sk_buff *rx_skbuff[RX_RING_SIZE];
551 dma_addr_t rx_dma[RX_RING_SIZE];
552 /* address of a sent-in-place packet/buffer, for later free() */
553 struct sk_buff *tx_skbuff[TX_RING_SIZE];
554 dma_addr_t tx_dma[TX_RING_SIZE];
555 struct net_device_stats stats;
556 /* Media monitoring timer */
557 struct timer_list timer;
558 /* Frequently used values: keep some adjacent for cache effect */
559 struct pci_dev *pci_dev;
560 struct netdev_desc *rx_head_desc;
561 /* Producer/consumer ring indices */
562 unsigned int cur_rx, dirty_rx;
563 unsigned int cur_tx, dirty_tx;
564 /* Based on MTU+slack. */
565 unsigned int rx_buf_sz;
566 int oom;
b27a16b7
MB
567 /* Interrupt status */
568 u32 intr_status;
1da177e4
LT
569 /* Do not touch the nic registers */
570 int hands_off;
571 /* external phy that is used: only valid if dev->if_port != PORT_TP */
572 int mii;
573 int phy_addr_external;
574 unsigned int full_duplex;
575 /* Rx filter */
576 u32 cur_rx_mode;
577 u32 rx_filter[16];
578 /* FIFO and PCI burst thresholds */
579 u32 tx_config, rx_config;
580 /* original contents of ClkRun register */
581 u32 SavedClkRun;
582 /* silicon revision */
583 u32 srr;
584 /* expected DSPCFG value */
585 u16 dspcfg;
586 /* parms saved in ethtool format */
587 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
588 u8 duplex; /* Duplex, half or full */
589 u8 autoneg; /* Autonegotiation enabled */
590 /* MII transceiver section */
591 u16 advertising;
592 unsigned int iosize;
593 spinlock_t lock;
594 u32 msg_enable;
a8b4cf42
MB
595 /* EEPROM data */
596 int eeprom_size;
1da177e4
LT
597};
598
599static void move_int_phy(struct net_device *dev, int addr);
600static int eeprom_read(void __iomem *ioaddr, int location);
601static int mdio_read(struct net_device *dev, int reg);
602static void mdio_write(struct net_device *dev, int reg, u16 data);
603static void init_phy_fixup(struct net_device *dev);
604static int miiport_read(struct net_device *dev, int phy_id, int reg);
605static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
606static int find_mii(struct net_device *dev);
607static void natsemi_reset(struct net_device *dev);
608static void natsemi_reload_eeprom(struct net_device *dev);
609static void natsemi_stop_rxtx(struct net_device *dev);
610static int netdev_open(struct net_device *dev);
611static void do_cable_magic(struct net_device *dev);
612static void undo_cable_magic(struct net_device *dev);
613static void check_link(struct net_device *dev);
614static void netdev_timer(unsigned long data);
615static void dump_ring(struct net_device *dev);
616static void tx_timeout(struct net_device *dev);
617static int alloc_ring(struct net_device *dev);
618static void refill_rx(struct net_device *dev);
619static void init_ring(struct net_device *dev);
620static void drain_tx(struct net_device *dev);
621static void drain_ring(struct net_device *dev);
622static void free_ring(struct net_device *dev);
623static void reinit_ring(struct net_device *dev);
624static void init_registers(struct net_device *dev);
625static int start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 626static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4 627static void netdev_error(struct net_device *dev, int intr_status);
b27a16b7
MB
628static int natsemi_poll(struct net_device *dev, int *budget);
629static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
1da177e4
LT
630static void netdev_tx_done(struct net_device *dev);
631static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
632#ifdef CONFIG_NET_POLL_CONTROLLER
633static void natsemi_poll_controller(struct net_device *dev);
634#endif
635static void __set_rx_mode(struct net_device *dev);
636static void set_rx_mode(struct net_device *dev);
637static void __get_stats(struct net_device *dev);
638static struct net_device_stats *get_stats(struct net_device *dev);
639static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
640static int netdev_set_wol(struct net_device *dev, u32 newval);
641static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
642static int netdev_set_sopass(struct net_device *dev, u8 *newval);
643static int netdev_get_sopass(struct net_device *dev, u8 *data);
644static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
646static void enable_wol_mode(struct net_device *dev, int enable_intr);
647static int netdev_close(struct net_device *dev);
648static int netdev_get_regs(struct net_device *dev, u8 *buf);
649static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
7282d491 650static const struct ethtool_ops ethtool_ops;
1da177e4
LT
651
652static inline void __iomem *ns_ioaddr(struct net_device *dev)
653{
654 return (void __iomem *) dev->base_addr;
655}
656
b27a16b7
MB
657static inline void natsemi_irq_enable(struct net_device *dev)
658{
659 writel(1, ns_ioaddr(dev) + IntrEnable);
660 readl(ns_ioaddr(dev) + IntrEnable);
661}
662
663static inline void natsemi_irq_disable(struct net_device *dev)
664{
665 writel(0, ns_ioaddr(dev) + IntrEnable);
666 readl(ns_ioaddr(dev) + IntrEnable);
667}
668
1da177e4
LT
669static void move_int_phy(struct net_device *dev, int addr)
670{
671 struct netdev_private *np = netdev_priv(dev);
672 void __iomem *ioaddr = ns_ioaddr(dev);
673 int target = 31;
674
6aa20a22 675 /*
1da177e4
LT
676 * The internal phy is visible on the external mii bus. Therefore we must
677 * move it away before we can send commands to an external phy.
678 * There are two addresses we must avoid:
679 * - the address on the external phy that is used for transmission.
680 * - the address that we want to access. User space can access phys
681 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
682 * phy that is used for transmission.
683 */
684
685 if (target == addr)
686 target--;
687 if (target == np->phy_addr_external)
688 target--;
689 writew(target, ioaddr + PhyCtrl);
690 readw(ioaddr + PhyCtrl);
691 udelay(1);
692}
693
5a40f09b
JG
694static void __devinit natsemi_init_media (struct net_device *dev)
695{
696 struct netdev_private *np = netdev_priv(dev);
697 u32 tmp;
698
699 netif_carrier_off(dev);
700
701 /* get the initial settings from hardware */
702 tmp = mdio_read(dev, MII_BMCR);
703 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
704 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
705 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
706 np->advertising= mdio_read(dev, MII_ADVERTISE);
707
708 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
709 && netif_msg_probe(np)) {
710 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
711 "10%s %s duplex.\n",
712 pci_name(np->pci_dev),
713 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
714 "enabled, advertise" : "disabled, force",
715 (np->advertising &
716 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
717 "0" : "",
718 (np->advertising &
719 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
720 "full" : "half");
721 }
722 if (netif_msg_probe(np))
723 printk(KERN_INFO
724 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
725 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
726 np->advertising);
727
728}
729
1da177e4
LT
730static int __devinit natsemi_probe1 (struct pci_dev *pdev,
731 const struct pci_device_id *ent)
732{
733 struct net_device *dev;
734 struct netdev_private *np;
735 int i, option, irq, chip_idx = ent->driver_data;
736 static int find_cnt = -1;
737 unsigned long iostart, iosize;
738 void __iomem *ioaddr;
739 const int pcibar = 1; /* PCI base address register */
740 int prev_eedata;
741 u32 tmp;
742
743/* when built into the kernel, we only print version if device is found */
744#ifndef MODULE
745 static int printed_version;
746 if (!printed_version++)
747 printk(version);
748#endif
749
750 i = pci_enable_device(pdev);
751 if (i) return i;
752
753 /* natsemi has a non-standard PM control register
754 * in PCI config space. Some boards apparently need
755 * to be brought to D0 in this manner.
756 */
757 pci_read_config_dword(pdev, PCIPM, &tmp);
758 if (tmp & PCI_PM_CTRL_STATE_MASK) {
759 /* D0 state, disable PME assertion */
760 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
761 pci_write_config_dword(pdev, PCIPM, newtmp);
762 }
763
764 find_cnt++;
765 iostart = pci_resource_start(pdev, pcibar);
766 iosize = pci_resource_len(pdev, pcibar);
767 irq = pdev->irq;
768
a2b524b2 769 pci_set_master(pdev);
1da177e4
LT
770
771 dev = alloc_etherdev(sizeof (struct netdev_private));
772 if (!dev)
773 return -ENOMEM;
774 SET_MODULE_OWNER(dev);
775 SET_NETDEV_DEV(dev, &pdev->dev);
776
777 i = pci_request_regions(pdev, DRV_NAME);
778 if (i)
779 goto err_pci_request_regions;
780
781 ioaddr = ioremap(iostart, iosize);
782 if (!ioaddr) {
783 i = -ENOMEM;
784 goto err_ioremap;
785 }
786
787 /* Work around the dropped serial bit. */
788 prev_eedata = eeprom_read(ioaddr, 6);
789 for (i = 0; i < 3; i++) {
790 int eedata = eeprom_read(ioaddr, i + 7);
791 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
792 dev->dev_addr[i*2+1] = eedata >> 7;
793 prev_eedata = eedata;
794 }
795
796 dev->base_addr = (unsigned long __force) ioaddr;
797 dev->irq = irq;
798
799 np = netdev_priv(dev);
800
801 np->pci_dev = pdev;
802 pci_set_drvdata(pdev, dev);
803 np->iosize = iosize;
804 spin_lock_init(&np->lock);
805 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
806 np->hands_off = 0;
b27a16b7 807 np->intr_status = 0;
a2b524b2 808 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
1da177e4
LT
809
810 /* Initial port:
811 * - If the nic was configured to use an external phy and if find_mii
812 * finds a phy: use external port, first phy that replies.
813 * - Otherwise: internal port.
814 * Note that the phy address for the internal phy doesn't matter:
815 * The address would be used to access a phy over the mii bus, but
816 * the internal phy is accessed through mapped registers.
817 */
818 if (readl(ioaddr + ChipConfig) & CfgExtPhy)
819 dev->if_port = PORT_MII;
820 else
821 dev->if_port = PORT_TP;
822 /* Reset the chip to erase previous misconfiguration. */
823 natsemi_reload_eeprom(dev);
824 natsemi_reset(dev);
825
826 if (dev->if_port != PORT_TP) {
827 np->phy_addr_external = find_mii(dev);
828 if (np->phy_addr_external == PHY_ADDR_NONE) {
829 dev->if_port = PORT_TP;
830 np->phy_addr_external = PHY_ADDR_INTERNAL;
831 }
832 } else {
833 np->phy_addr_external = PHY_ADDR_INTERNAL;
834 }
835
836 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
837 if (dev->mem_start)
838 option = dev->mem_start;
839
840 /* The lower four bits are the media type. */
841 if (option) {
842 if (option & 0x200)
843 np->full_duplex = 1;
844 if (option & 15)
845 printk(KERN_INFO
846 "natsemi %s: ignoring user supplied media type %d",
847 pci_name(np->pci_dev), option & 15);
848 }
849 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
850 np->full_duplex = 1;
851
852 /* The chip-specific entries in the device structure. */
853 dev->open = &netdev_open;
854 dev->hard_start_xmit = &start_tx;
855 dev->stop = &netdev_close;
856 dev->get_stats = &get_stats;
857 dev->set_multicast_list = &set_rx_mode;
858 dev->change_mtu = &natsemi_change_mtu;
859 dev->do_ioctl = &netdev_ioctl;
860 dev->tx_timeout = &tx_timeout;
861 dev->watchdog_timeo = TX_TIMEOUT;
b27a16b7
MB
862 dev->poll = natsemi_poll;
863 dev->weight = 64;
864
1da177e4
LT
865#ifdef CONFIG_NET_POLL_CONTROLLER
866 dev->poll_controller = &natsemi_poll_controller;
867#endif
868 SET_ETHTOOL_OPS(dev, &ethtool_ops);
869
870 if (mtu)
871 dev->mtu = mtu;
872
5a40f09b 873 natsemi_init_media(dev);
1da177e4
LT
874
875 /* save the silicon revision for later querying */
876 np->srr = readl(ioaddr + SiliconRev);
877 if (netif_msg_hw(np))
878 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
879 pci_name(np->pci_dev), np->srr);
880
881 i = register_netdev(dev);
882 if (i)
883 goto err_register_netdev;
884
885 if (netif_msg_drv(np)) {
886 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
887 dev->name, natsemi_pci_info[chip_idx].name, iostart,
888 pci_name(np->pci_dev));
889 for (i = 0; i < ETH_ALEN-1; i++)
890 printk("%02x:", dev->dev_addr[i]);
891 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
892 if (dev->if_port == PORT_TP)
893 printk(", port TP.\n");
894 else
895 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
896 }
897 return 0;
898
899 err_register_netdev:
900 iounmap(ioaddr);
901
902 err_ioremap:
903 pci_release_regions(pdev);
904 pci_set_drvdata(pdev, NULL);
905
906 err_pci_request_regions:
907 free_netdev(dev);
908 return i;
909}
910
911
912/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
913 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
914
915/* Delay between EEPROM clock transitions.
916 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
917 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
918 made udelay() unreliable.
919 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
920 depricated.
921*/
922#define eeprom_delay(ee_addr) readl(ee_addr)
923
924#define EE_Write0 (EE_ChipSelect)
925#define EE_Write1 (EE_ChipSelect | EE_DataIn)
926
927/* The EEPROM commands include the alway-set leading bit. */
928enum EEPROM_Cmds {
929 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
930};
931
932static int eeprom_read(void __iomem *addr, int location)
933{
934 int i;
935 int retval = 0;
936 void __iomem *ee_addr = addr + EECtrl;
937 int read_cmd = location | EE_ReadCmd;
938
939 writel(EE_Write0, ee_addr);
940
941 /* Shift the read command bits out. */
942 for (i = 10; i >= 0; i--) {
943 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
944 writel(dataval, ee_addr);
945 eeprom_delay(ee_addr);
946 writel(dataval | EE_ShiftClk, ee_addr);
947 eeprom_delay(ee_addr);
948 }
949 writel(EE_ChipSelect, ee_addr);
950 eeprom_delay(ee_addr);
951
952 for (i = 0; i < 16; i++) {
953 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
954 eeprom_delay(ee_addr);
955 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
956 writel(EE_ChipSelect, ee_addr);
957 eeprom_delay(ee_addr);
958 }
959
960 /* Terminate the EEPROM access. */
961 writel(EE_Write0, ee_addr);
962 writel(0, ee_addr);
963 return retval;
964}
965
966/* MII transceiver control section.
967 * The 83815 series has an internal transceiver, and we present the
968 * internal management registers as if they were MII connected.
969 * External Phy registers are referenced through the MII interface.
970 */
971
972/* clock transitions >= 20ns (25MHz)
973 * One readl should be good to PCI @ 100MHz
974 */
975#define mii_delay(ioaddr) readl(ioaddr + EECtrl)
976
977static int mii_getbit (struct net_device *dev)
978{
979 int data;
980 void __iomem *ioaddr = ns_ioaddr(dev);
981
982 writel(MII_ShiftClk, ioaddr + EECtrl);
983 data = readl(ioaddr + EECtrl);
984 writel(0, ioaddr + EECtrl);
985 mii_delay(ioaddr);
986 return (data & MII_Data)? 1 : 0;
987}
988
989static void mii_send_bits (struct net_device *dev, u32 data, int len)
990{
991 u32 i;
992 void __iomem *ioaddr = ns_ioaddr(dev);
993
994 for (i = (1 << (len-1)); i; i >>= 1)
995 {
996 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
997 writel(mdio_val, ioaddr + EECtrl);
998 mii_delay(ioaddr);
999 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1000 mii_delay(ioaddr);
1001 }
1002 writel(0, ioaddr + EECtrl);
1003 mii_delay(ioaddr);
1004}
1005
1006static int miiport_read(struct net_device *dev, int phy_id, int reg)
1007{
1008 u32 cmd;
1009 int i;
1010 u32 retval = 0;
1011
1012 /* Ensure sync */
1013 mii_send_bits (dev, 0xffffffff, 32);
1014 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1015 /* ST,OP = 0110'b for read operation */
1016 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1017 mii_send_bits (dev, cmd, 14);
1018 /* Turnaround */
1019 if (mii_getbit (dev))
1020 return 0;
1021 /* Read data */
1022 for (i = 0; i < 16; i++) {
1023 retval <<= 1;
1024 retval |= mii_getbit (dev);
1025 }
1026 /* End cycle */
1027 mii_getbit (dev);
1028 return retval;
1029}
1030
1031static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1032{
1033 u32 cmd;
1034
1035 /* Ensure sync */
1036 mii_send_bits (dev, 0xffffffff, 32);
1037 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1038 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1039 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1040 mii_send_bits (dev, cmd, 32);
1041 /* End cycle */
1042 mii_getbit (dev);
1043}
1044
1045static int mdio_read(struct net_device *dev, int reg)
1046{
1047 struct netdev_private *np = netdev_priv(dev);
1048 void __iomem *ioaddr = ns_ioaddr(dev);
1049
1050 /* The 83815 series has two ports:
1051 * - an internal transceiver
1052 * - an external mii bus
1053 */
1054 if (dev->if_port == PORT_TP)
1055 return readw(ioaddr+BasicControl+(reg<<2));
1056 else
1057 return miiport_read(dev, np->phy_addr_external, reg);
1058}
1059
1060static void mdio_write(struct net_device *dev, int reg, u16 data)
1061{
1062 struct netdev_private *np = netdev_priv(dev);
1063 void __iomem *ioaddr = ns_ioaddr(dev);
1064
1065 /* The 83815 series has an internal transceiver; handle separately */
1066 if (dev->if_port == PORT_TP)
1067 writew(data, ioaddr+BasicControl+(reg<<2));
1068 else
1069 miiport_write(dev, np->phy_addr_external, reg, data);
1070}
1071
1072static void init_phy_fixup(struct net_device *dev)
1073{
1074 struct netdev_private *np = netdev_priv(dev);
1075 void __iomem *ioaddr = ns_ioaddr(dev);
1076 int i;
1077 u32 cfg;
1078 u16 tmp;
1079
1080 /* restore stuff lost when power was out */
1081 tmp = mdio_read(dev, MII_BMCR);
1082 if (np->autoneg == AUTONEG_ENABLE) {
1083 /* renegotiate if something changed */
1084 if ((tmp & BMCR_ANENABLE) == 0
1085 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1086 {
1087 /* turn on autonegotiation and force negotiation */
1088 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1089 mdio_write(dev, MII_ADVERTISE, np->advertising);
1090 }
1091 } else {
1092 /* turn off auto negotiation, set speed and duplexity */
1093 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1094 if (np->speed == SPEED_100)
1095 tmp |= BMCR_SPEED100;
1096 if (np->duplex == DUPLEX_FULL)
1097 tmp |= BMCR_FULLDPLX;
6aa20a22 1098 /*
1da177e4
LT
1099 * Note: there is no good way to inform the link partner
1100 * that our capabilities changed. The user has to unplug
1101 * and replug the network cable after some changes, e.g.
1102 * after switching from 10HD, autoneg off to 100 HD,
1103 * autoneg off.
1104 */
1105 }
1106 mdio_write(dev, MII_BMCR, tmp);
1107 readl(ioaddr + ChipConfig);
1108 udelay(1);
1109
1110 /* find out what phy this is */
1111 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1112 + mdio_read(dev, MII_PHYSID2);
1113
1114 /* handle external phys here */
1115 switch (np->mii) {
1116 case PHYID_AM79C874:
1117 /* phy specific configuration for fibre/tp operation */
1118 tmp = mdio_read(dev, MII_MCTRL);
1119 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1120 if (dev->if_port == PORT_FIBRE)
1121 tmp |= MII_FX_SEL;
1122 else
1123 tmp |= MII_EN_SCRM;
1124 mdio_write(dev, MII_MCTRL, tmp);
1125 break;
1126 default:
1127 break;
1128 }
1129 cfg = readl(ioaddr + ChipConfig);
1130 if (cfg & CfgExtPhy)
1131 return;
1132
1133 /* On page 78 of the spec, they recommend some settings for "optimum
1134 performance" to be done in sequence. These settings optimize some
1135 of the 100Mbit autodetection circuitry. They say we only want to
1136 do this for rev C of the chip, but engineers at NSC (Bradley
1137 Kennedy) recommends always setting them. If you don't, you get
1138 errors on some autonegotiations that make the device unusable.
1139
1140 It seems that the DSP needs a few usec to reinitialize after
1141 the start of the phy. Just retry writing these values until they
1142 stick.
1143 */
1144 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1145
1146 int dspcfg;
1147 writew(1, ioaddr + PGSEL);
1148 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1149 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1150 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1151 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1152 writew(np->dspcfg, ioaddr + DSPCFG);
1153 writew(SDCFG_VAL, ioaddr + SDCFG);
1154 writew(0, ioaddr + PGSEL);
1155 readl(ioaddr + ChipConfig);
1156 udelay(10);
1157
1158 writew(1, ioaddr + PGSEL);
1159 dspcfg = readw(ioaddr + DSPCFG);
1160 writew(0, ioaddr + PGSEL);
1161 if (np->dspcfg == dspcfg)
1162 break;
1163 }
1164
1165 if (netif_msg_link(np)) {
1166 if (i==NATSEMI_HW_TIMEOUT) {
1167 printk(KERN_INFO
1168 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1169 dev->name, i*10);
1170 } else {
1171 printk(KERN_INFO
1172 "%s: DSPCFG accepted after %d usec.\n",
1173 dev->name, i*10);
1174 }
1175 }
1176 /*
1177 * Enable PHY Specific event based interrupts. Link state change
1178 * and Auto-Negotiation Completion are among the affected.
1179 * Read the intr status to clear it (needed for wake events).
1180 */
1181 readw(ioaddr + MIntrStatus);
1182 writew(MICRIntEn, ioaddr + MIntrCtrl);
1183}
1184
1185static int switch_port_external(struct net_device *dev)
1186{
1187 struct netdev_private *np = netdev_priv(dev);
1188 void __iomem *ioaddr = ns_ioaddr(dev);
1189 u32 cfg;
1190
1191 cfg = readl(ioaddr + ChipConfig);
1192 if (cfg & CfgExtPhy)
1193 return 0;
1194
1195 if (netif_msg_link(np)) {
1196 printk(KERN_INFO "%s: switching to external transceiver.\n",
1197 dev->name);
1198 }
1199
1200 /* 1) switch back to external phy */
1201 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1202 readl(ioaddr + ChipConfig);
1203 udelay(1);
1204
1205 /* 2) reset the external phy: */
1206 /* resetting the external PHY has been known to cause a hub supplying
1207 * power over Ethernet to kill the power. We don't want to kill
1208 * power to this computer, so we avoid resetting the phy.
1209 */
1210
1211 /* 3) reinit the phy fixup, it got lost during power down. */
1212 move_int_phy(dev, np->phy_addr_external);
1213 init_phy_fixup(dev);
1214
1215 return 1;
1216}
1217
1218static int switch_port_internal(struct net_device *dev)
1219{
1220 struct netdev_private *np = netdev_priv(dev);
1221 void __iomem *ioaddr = ns_ioaddr(dev);
1222 int i;
1223 u32 cfg;
1224 u16 bmcr;
1225
1226 cfg = readl(ioaddr + ChipConfig);
1227 if (!(cfg &CfgExtPhy))
1228 return 0;
1229
1230 if (netif_msg_link(np)) {
1231 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1232 dev->name);
1233 }
1234 /* 1) switch back to internal phy: */
1235 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1236 writel(cfg, ioaddr + ChipConfig);
1237 readl(ioaddr + ChipConfig);
1238 udelay(1);
6aa20a22 1239
1da177e4
LT
1240 /* 2) reset the internal phy: */
1241 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1242 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1243 readl(ioaddr + ChipConfig);
1244 udelay(10);
1245 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1246 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1247 if (!(bmcr & BMCR_RESET))
1248 break;
1249 udelay(10);
1250 }
1251 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1252 printk(KERN_INFO
1253 "%s: phy reset did not complete in %d usec.\n",
1254 dev->name, i*10);
1255 }
1256 /* 3) reinit the phy fixup, it got lost during power down. */
1257 init_phy_fixup(dev);
1258
1259 return 1;
1260}
1261
1262/* Scan for a PHY on the external mii bus.
1263 * There are two tricky points:
1264 * - Do not scan while the internal phy is enabled. The internal phy will
1265 * crash: e.g. reads from the DSPCFG register will return odd values and
1266 * the nasty random phy reset code will reset the nic every few seconds.
1267 * - The internal phy must be moved around, an external phy could
1268 * have the same address as the internal phy.
1269 */
1270static int find_mii(struct net_device *dev)
1271{
1272 struct netdev_private *np = netdev_priv(dev);
1273 int tmp;
1274 int i;
1275 int did_switch;
1276
1277 /* Switch to external phy */
1278 did_switch = switch_port_external(dev);
6aa20a22 1279
1da177e4
LT
1280 /* Scan the possible phy addresses:
1281 *
1282 * PHY address 0 means that the phy is in isolate mode. Not yet
1283 * supported due to lack of test hardware. User space should
1284 * handle it through ethtool.
1285 */
1286 for (i = 1; i <= 31; i++) {
1287 move_int_phy(dev, i);
1288 tmp = miiport_read(dev, i, MII_BMSR);
1289 if (tmp != 0xffff && tmp != 0x0000) {
1290 /* found something! */
1291 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1292 + mdio_read(dev, MII_PHYSID2);
1293 if (netif_msg_probe(np)) {
1294 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1295 pci_name(np->pci_dev), np->mii, i);
1296 }
1297 break;
1298 }
1299 }
1300 /* And switch back to internal phy: */
1301 if (did_switch)
1302 switch_port_internal(dev);
1303 return i;
1304}
1305
1306/* CFG bits [13:16] [18:23] */
1307#define CFG_RESET_SAVE 0xfde000
1308/* WCSR bits [0:4] [9:10] */
1309#define WCSR_RESET_SAVE 0x61f
1310/* RFCR bits [20] [22] [27:31] */
1311#define RFCR_RESET_SAVE 0xf8500000;
1312
1313static void natsemi_reset(struct net_device *dev)
1314{
1315 int i;
1316 u32 cfg;
1317 u32 wcsr;
1318 u32 rfcr;
1319 u16 pmatch[3];
1320 u16 sopass[3];
1321 struct netdev_private *np = netdev_priv(dev);
1322 void __iomem *ioaddr = ns_ioaddr(dev);
1323
1324 /*
1325 * Resetting the chip causes some registers to be lost.
1326 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1327 * we save the state that would have been loaded from EEPROM
1328 * on a normal power-up (see the spec EEPROM map). This assumes
1329 * whoever calls this will follow up with init_registers() eventually.
1330 */
1331
1332 /* CFG */
1333 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1334 /* WCSR */
1335 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1336 /* RFCR */
1337 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1338 /* PMATCH */
1339 for (i = 0; i < 3; i++) {
1340 writel(i*2, ioaddr + RxFilterAddr);
1341 pmatch[i] = readw(ioaddr + RxFilterData);
1342 }
1343 /* SOPAS */
1344 for (i = 0; i < 3; i++) {
1345 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1346 sopass[i] = readw(ioaddr + RxFilterData);
1347 }
1348
1349 /* now whack the chip */
1350 writel(ChipReset, ioaddr + ChipCmd);
1351 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1352 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1353 break;
1354 udelay(5);
1355 }
1356 if (i==NATSEMI_HW_TIMEOUT) {
1357 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1358 dev->name, i*5);
1359 } else if (netif_msg_hw(np)) {
1360 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1361 dev->name, i*5);
1362 }
1363
1364 /* restore CFG */
1365 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1366 /* turn on external phy if it was selected */
1367 if (dev->if_port == PORT_TP)
1368 cfg &= ~(CfgExtPhy | CfgPhyDis);
1369 else
1370 cfg |= (CfgExtPhy | CfgPhyDis);
1371 writel(cfg, ioaddr + ChipConfig);
1372 /* restore WCSR */
1373 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1374 writel(wcsr, ioaddr + WOLCmd);
1375 /* read RFCR */
1376 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1377 /* restore PMATCH */
1378 for (i = 0; i < 3; i++) {
1379 writel(i*2, ioaddr + RxFilterAddr);
1380 writew(pmatch[i], ioaddr + RxFilterData);
1381 }
1382 for (i = 0; i < 3; i++) {
1383 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1384 writew(sopass[i], ioaddr + RxFilterData);
1385 }
1386 /* restore RFCR */
1387 writel(rfcr, ioaddr + RxFilterAddr);
1388}
1389
e72fd96e
MB
1390static void reset_rx(struct net_device *dev)
1391{
1392 int i;
1393 struct netdev_private *np = netdev_priv(dev);
1394 void __iomem *ioaddr = ns_ioaddr(dev);
1395
1396 np->intr_status &= ~RxResetDone;
1397
1398 writel(RxReset, ioaddr + ChipCmd);
1399
1400 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1401 np->intr_status |= readl(ioaddr + IntrStatus);
1402 if (np->intr_status & RxResetDone)
1403 break;
1404 udelay(15);
1405 }
1406 if (i==NATSEMI_HW_TIMEOUT) {
1407 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1408 dev->name, i*15);
1409 } else if (netif_msg_hw(np)) {
1410 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1411 dev->name, i*15);
1412 }
1413}
1414
1da177e4
LT
1415static void natsemi_reload_eeprom(struct net_device *dev)
1416{
1417 struct netdev_private *np = netdev_priv(dev);
1418 void __iomem *ioaddr = ns_ioaddr(dev);
1419 int i;
1420
1421 writel(EepromReload, ioaddr + PCIBusCfg);
1422 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1423 udelay(50);
1424 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1425 break;
1426 }
1427 if (i==NATSEMI_HW_TIMEOUT) {
1428 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1429 pci_name(np->pci_dev), i*50);
1430 } else if (netif_msg_hw(np)) {
1431 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1432 pci_name(np->pci_dev), i*50);
1433 }
1434}
1435
1436static void natsemi_stop_rxtx(struct net_device *dev)
1437{
1438 void __iomem * ioaddr = ns_ioaddr(dev);
1439 struct netdev_private *np = netdev_priv(dev);
1440 int i;
1441
1442 writel(RxOff | TxOff, ioaddr + ChipCmd);
1443 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1444 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1445 break;
1446 udelay(5);
1447 }
1448 if (i==NATSEMI_HW_TIMEOUT) {
1449 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1450 dev->name, i*5);
1451 } else if (netif_msg_hw(np)) {
1452 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1453 dev->name, i*5);
1454 }
1455}
1456
1457static int netdev_open(struct net_device *dev)
1458{
1459 struct netdev_private *np = netdev_priv(dev);
1460 void __iomem * ioaddr = ns_ioaddr(dev);
1461 int i;
1462
1463 /* Reset the chip, just in case. */
1464 natsemi_reset(dev);
1465
1fb9df5d 1466 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
1467 if (i) return i;
1468
1469 if (netif_msg_ifup(np))
1470 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1471 dev->name, dev->irq);
1472 i = alloc_ring(dev);
1473 if (i < 0) {
1474 free_irq(dev->irq, dev);
1475 return i;
1476 }
1477 init_ring(dev);
1478 spin_lock_irq(&np->lock);
1479 init_registers(dev);
1480 /* now set the MAC address according to dev->dev_addr */
1481 for (i = 0; i < 3; i++) {
1482 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1483
1484 writel(i*2, ioaddr + RxFilterAddr);
1485 writew(mac, ioaddr + RxFilterData);
1486 }
1487 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1488 spin_unlock_irq(&np->lock);
1489
1490 netif_start_queue(dev);
1491
1492 if (netif_msg_ifup(np))
1493 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1494 dev->name, (int)readl(ioaddr + ChipCmd));
1495
1496 /* Set the timer to check for link beat. */
1497 init_timer(&np->timer);
1498 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1499 np->timer.data = (unsigned long)dev;
1500 np->timer.function = &netdev_timer; /* timer handler */
1501 add_timer(&np->timer);
1502
1503 return 0;
1504}
1505
1506static void do_cable_magic(struct net_device *dev)
1507{
1508 struct netdev_private *np = netdev_priv(dev);
1509 void __iomem *ioaddr = ns_ioaddr(dev);
1510
1511 if (dev->if_port != PORT_TP)
1512 return;
1513
1514 if (np->srr >= SRR_DP83816_A5)
1515 return;
1516
1517 /*
1518 * 100 MBit links with short cables can trip an issue with the chip.
1519 * The problem manifests as lots of CRC errors and/or flickering
1520 * activity LED while idle. This process is based on instructions
1521 * from engineers at National.
1522 */
1523 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1524 u16 data;
1525
1526 writew(1, ioaddr + PGSEL);
1527 /*
1528 * coefficient visibility should already be enabled via
1529 * DSPCFG | 0x1000
1530 */
1531 data = readw(ioaddr + TSTDAT) & 0xff;
1532 /*
1533 * the value must be negative, and within certain values
1534 * (these values all come from National)
1535 */
1536 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1537 struct netdev_private *np = netdev_priv(dev);
1538
1539 /* the bug has been triggered - fix the coefficient */
1540 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1541 /* lock the value */
1542 data = readw(ioaddr + DSPCFG);
1543 np->dspcfg = data | DSPCFG_LOCK;
1544 writew(np->dspcfg, ioaddr + DSPCFG);
1545 }
1546 writew(0, ioaddr + PGSEL);
1547 }
1548}
1549
1550static void undo_cable_magic(struct net_device *dev)
1551{
1552 u16 data;
1553 struct netdev_private *np = netdev_priv(dev);
1554 void __iomem * ioaddr = ns_ioaddr(dev);
1555
1556 if (dev->if_port != PORT_TP)
1557 return;
1558
1559 if (np->srr >= SRR_DP83816_A5)
1560 return;
1561
1562 writew(1, ioaddr + PGSEL);
1563 /* make sure the lock bit is clear */
1564 data = readw(ioaddr + DSPCFG);
1565 np->dspcfg = data & ~DSPCFG_LOCK;
1566 writew(np->dspcfg, ioaddr + DSPCFG);
1567 writew(0, ioaddr + PGSEL);
1568}
1569
1570static void check_link(struct net_device *dev)
1571{
1572 struct netdev_private *np = netdev_priv(dev);
1573 void __iomem * ioaddr = ns_ioaddr(dev);
1574 int duplex;
1575 u16 bmsr;
6aa20a22 1576
1da177e4
LT
1577 /* The link status field is latched: it remains low after a temporary
1578 * link failure until it's read. We need the current link status,
1579 * thus read twice.
1580 */
1581 mdio_read(dev, MII_BMSR);
1582 bmsr = mdio_read(dev, MII_BMSR);
1583
1584 if (!(bmsr & BMSR_LSTATUS)) {
1585 if (netif_carrier_ok(dev)) {
1586 if (netif_msg_link(np))
1587 printk(KERN_NOTICE "%s: link down.\n",
1588 dev->name);
1589 netif_carrier_off(dev);
1590 undo_cable_magic(dev);
1591 }
1592 return;
1593 }
1594 if (!netif_carrier_ok(dev)) {
1595 if (netif_msg_link(np))
1596 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1597 netif_carrier_on(dev);
1598 do_cable_magic(dev);
1599 }
1600
1601 duplex = np->full_duplex;
1602 if (!duplex) {
1603 if (bmsr & BMSR_ANEGCOMPLETE) {
1604 int tmp = mii_nway_result(
1605 np->advertising & mdio_read(dev, MII_LPA));
1606 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1607 duplex = 1;
1608 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1609 duplex = 1;
1610 }
1611
1612 /* if duplex is set then bit 28 must be set, too */
1613 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1614 if (netif_msg_link(np))
1615 printk(KERN_INFO
1616 "%s: Setting %s-duplex based on negotiated "
1617 "link capability.\n", dev->name,
1618 duplex ? "full" : "half");
1619 if (duplex) {
1620 np->rx_config |= RxAcceptTx;
1621 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1622 } else {
1623 np->rx_config &= ~RxAcceptTx;
1624 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1625 }
1626 writel(np->tx_config, ioaddr + TxConfig);
1627 writel(np->rx_config, ioaddr + RxConfig);
1628 }
1629}
1630
1631static void init_registers(struct net_device *dev)
1632{
1633 struct netdev_private *np = netdev_priv(dev);
1634 void __iomem * ioaddr = ns_ioaddr(dev);
1635
1636 init_phy_fixup(dev);
1637
1638 /* clear any interrupts that are pending, such as wake events */
1639 readl(ioaddr + IntrStatus);
1640
1641 writel(np->ring_dma, ioaddr + RxRingPtr);
1642 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1643 ioaddr + TxRingPtr);
1644
1645 /* Initialize other registers.
1646 * Configure the PCI bus bursts and FIFO thresholds.
1647 * Configure for standard, in-spec Ethernet.
1648 * Start with half-duplex. check_link will update
1649 * to the correct settings.
1650 */
1651
1652 /* DRTH: 2: start tx if 64 bytes are in the fifo
1653 * FLTH: 0x10: refill with next packet if 512 bytes are free
1654 * MXDMA: 0: up to 256 byte bursts.
1655 * MXDMA must be <= FLTH
1656 * ECRETRY=1
1657 * ATP=1
1658 */
1659 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1660 TX_FLTH_VAL | TX_DRTH_VAL_START;
1661 writel(np->tx_config, ioaddr + TxConfig);
1662
1663 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1664 * MXDMA 0: up to 256 byte bursts
1665 */
1666 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1667 /* if receive ring now has bigger buffers than normal, enable jumbo */
1668 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1669 np->rx_config |= RxAcceptLong;
1670
1671 writel(np->rx_config, ioaddr + RxConfig);
1672
1673 /* Disable PME:
1674 * The PME bit is initialized from the EEPROM contents.
1675 * PCI cards probably have PME disabled, but motherboard
1676 * implementations may have PME set to enable WakeOnLan.
1677 * With PME set the chip will scan incoming packets but
1678 * nothing will be written to memory. */
1679 np->SavedClkRun = readl(ioaddr + ClkRun);
1680 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1681 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1682 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1683 dev->name, readl(ioaddr + WOLCmd));
1684 }
1685
1686 check_link(dev);
1687 __set_rx_mode(dev);
1688
1689 /* Enable interrupts by setting the interrupt mask. */
1690 writel(DEFAULT_INTR, ioaddr + IntrMask);
1691 writel(1, ioaddr + IntrEnable);
1692
1693 writel(RxOn | TxOn, ioaddr + ChipCmd);
1694 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1695}
1696
1697/*
1698 * netdev_timer:
1699 * Purpose:
1700 * 1) check for link changes. Usually they are handled by the MII interrupt
1701 * but it doesn't hurt to check twice.
1702 * 2) check for sudden death of the NIC:
1703 * It seems that a reference set for this chip went out with incorrect info,
1704 * and there exist boards that aren't quite right. An unexpected voltage
1705 * drop can cause the PHY to get itself in a weird state (basically reset).
1706 * NOTE: this only seems to affect revC chips.
1707 * 3) check of death of the RX path due to OOM
1708 */
1709static void netdev_timer(unsigned long data)
1710{
1711 struct net_device *dev = (struct net_device *)data;
1712 struct netdev_private *np = netdev_priv(dev);
1713 void __iomem * ioaddr = ns_ioaddr(dev);
1714 int next_tick = 5*HZ;
1715
1716 if (netif_msg_timer(np)) {
1717 /* DO NOT read the IntrStatus register,
1718 * a read clears any pending interrupts.
1719 */
1720 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1721 dev->name);
1722 }
1723
1724 if (dev->if_port == PORT_TP) {
1725 u16 dspcfg;
1726
1727 spin_lock_irq(&np->lock);
1728 /* check for a nasty random phy-reset - use dspcfg as a flag */
1729 writew(1, ioaddr+PGSEL);
1730 dspcfg = readw(ioaddr+DSPCFG);
1731 writew(0, ioaddr+PGSEL);
1732 if (dspcfg != np->dspcfg) {
1733 if (!netif_queue_stopped(dev)) {
1734 spin_unlock_irq(&np->lock);
1735 if (netif_msg_hw(np))
1736 printk(KERN_NOTICE "%s: possible phy reset: "
1737 "re-initializing\n", dev->name);
1738 disable_irq(dev->irq);
1739 spin_lock_irq(&np->lock);
1740 natsemi_stop_rxtx(dev);
1741 dump_ring(dev);
1742 reinit_ring(dev);
1743 init_registers(dev);
1744 spin_unlock_irq(&np->lock);
1745 enable_irq(dev->irq);
1746 } else {
1747 /* hurry back */
1748 next_tick = HZ;
1749 spin_unlock_irq(&np->lock);
1750 }
1751 } else {
1752 /* init_registers() calls check_link() for the above case */
1753 check_link(dev);
1754 spin_unlock_irq(&np->lock);
1755 }
1756 } else {
1757 spin_lock_irq(&np->lock);
1758 check_link(dev);
1759 spin_unlock_irq(&np->lock);
1760 }
1761 if (np->oom) {
1762 disable_irq(dev->irq);
1763 np->oom = 0;
1764 refill_rx(dev);
1765 enable_irq(dev->irq);
1766 if (!np->oom) {
1767 writel(RxOn, ioaddr + ChipCmd);
1768 } else {
1769 next_tick = 1;
1770 }
1771 }
1772 mod_timer(&np->timer, jiffies + next_tick);
1773}
1774
1775static void dump_ring(struct net_device *dev)
1776{
1777 struct netdev_private *np = netdev_priv(dev);
1778
1779 if (netif_msg_pktdata(np)) {
1780 int i;
1781 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1782 for (i = 0; i < TX_RING_SIZE; i++) {
1783 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1784 i, np->tx_ring[i].next_desc,
1785 np->tx_ring[i].cmd_status,
1786 np->tx_ring[i].addr);
1787 }
1788 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1789 for (i = 0; i < RX_RING_SIZE; i++) {
1790 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1791 i, np->rx_ring[i].next_desc,
1792 np->rx_ring[i].cmd_status,
1793 np->rx_ring[i].addr);
1794 }
1795 }
1796}
1797
1798static void tx_timeout(struct net_device *dev)
1799{
1800 struct netdev_private *np = netdev_priv(dev);
1801 void __iomem * ioaddr = ns_ioaddr(dev);
1802
1803 disable_irq(dev->irq);
1804 spin_lock_irq(&np->lock);
1805 if (!np->hands_off) {
1806 if (netif_msg_tx_err(np))
1807 printk(KERN_WARNING
1808 "%s: Transmit timed out, status %#08x,"
1809 " resetting...\n",
1810 dev->name, readl(ioaddr + IntrStatus));
1811 dump_ring(dev);
1812
1813 natsemi_reset(dev);
1814 reinit_ring(dev);
1815 init_registers(dev);
1816 } else {
1817 printk(KERN_WARNING
1818 "%s: tx_timeout while in hands_off state?\n",
1819 dev->name);
1820 }
1821 spin_unlock_irq(&np->lock);
1822 enable_irq(dev->irq);
1823
1824 dev->trans_start = jiffies;
1825 np->stats.tx_errors++;
1826 netif_wake_queue(dev);
1827}
1828
1829static int alloc_ring(struct net_device *dev)
1830{
1831 struct netdev_private *np = netdev_priv(dev);
1832 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1833 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1834 &np->ring_dma);
1835 if (!np->rx_ring)
1836 return -ENOMEM;
1837 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1838 return 0;
1839}
1840
1841static void refill_rx(struct net_device *dev)
1842{
1843 struct netdev_private *np = netdev_priv(dev);
1844
1845 /* Refill the Rx ring buffers. */
1846 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1847 struct sk_buff *skb;
1848 int entry = np->dirty_rx % RX_RING_SIZE;
1849 if (np->rx_skbuff[entry] == NULL) {
1850 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1851 skb = dev_alloc_skb(buflen);
1852 np->rx_skbuff[entry] = skb;
1853 if (skb == NULL)
1854 break; /* Better luck next round. */
1855 skb->dev = dev; /* Mark as being used by this device. */
1856 np->rx_dma[entry] = pci_map_single(np->pci_dev,
689be439 1857 skb->data, buflen, PCI_DMA_FROMDEVICE);
1da177e4
LT
1858 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1859 }
1860 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1861 }
1862 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1863 if (netif_msg_rx_err(np))
1864 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1865 np->oom = 1;
1866 }
1867}
1868
1869static void set_bufsize(struct net_device *dev)
1870{
1871 struct netdev_private *np = netdev_priv(dev);
1872 if (dev->mtu <= ETH_DATA_LEN)
1873 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1874 else
1875 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1876}
1877
1878/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1879static void init_ring(struct net_device *dev)
1880{
1881 struct netdev_private *np = netdev_priv(dev);
1882 int i;
1883
1884 /* 1) TX ring */
1885 np->dirty_tx = np->cur_tx = 0;
1886 for (i = 0; i < TX_RING_SIZE; i++) {
1887 np->tx_skbuff[i] = NULL;
1888 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1889 +sizeof(struct netdev_desc)
1890 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1891 np->tx_ring[i].cmd_status = 0;
1892 }
1893
1894 /* 2) RX ring */
1895 np->dirty_rx = 0;
1896 np->cur_rx = RX_RING_SIZE;
1897 np->oom = 0;
1898 set_bufsize(dev);
1899
1900 np->rx_head_desc = &np->rx_ring[0];
1901
1902 /* Please be carefull before changing this loop - at least gcc-2.95.1
1903 * miscompiles it otherwise.
1904 */
1905 /* Initialize all Rx descriptors. */
1906 for (i = 0; i < RX_RING_SIZE; i++) {
1907 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1908 +sizeof(struct netdev_desc)
1909 *((i+1)%RX_RING_SIZE));
1910 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1911 np->rx_skbuff[i] = NULL;
1912 }
1913 refill_rx(dev);
1914 dump_ring(dev);
1915}
1916
1917static void drain_tx(struct net_device *dev)
1918{
1919 struct netdev_private *np = netdev_priv(dev);
1920 int i;
1921
1922 for (i = 0; i < TX_RING_SIZE; i++) {
1923 if (np->tx_skbuff[i]) {
1924 pci_unmap_single(np->pci_dev,
1925 np->tx_dma[i], np->tx_skbuff[i]->len,
1926 PCI_DMA_TODEVICE);
1927 dev_kfree_skb(np->tx_skbuff[i]);
1928 np->stats.tx_dropped++;
1929 }
1930 np->tx_skbuff[i] = NULL;
1931 }
1932}
1933
1934static void drain_rx(struct net_device *dev)
1935{
1936 struct netdev_private *np = netdev_priv(dev);
1937 unsigned int buflen = np->rx_buf_sz;
1938 int i;
1939
1940 /* Free all the skbuffs in the Rx queue. */
1941 for (i = 0; i < RX_RING_SIZE; i++) {
1942 np->rx_ring[i].cmd_status = 0;
1943 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
1944 if (np->rx_skbuff[i]) {
1945 pci_unmap_single(np->pci_dev,
1946 np->rx_dma[i], buflen,
1947 PCI_DMA_FROMDEVICE);
1948 dev_kfree_skb(np->rx_skbuff[i]);
1949 }
1950 np->rx_skbuff[i] = NULL;
1951 }
1952}
1953
1954static void drain_ring(struct net_device *dev)
1955{
1956 drain_rx(dev);
1957 drain_tx(dev);
1958}
1959
1960static void free_ring(struct net_device *dev)
1961{
1962 struct netdev_private *np = netdev_priv(dev);
1963 pci_free_consistent(np->pci_dev,
1964 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1965 np->rx_ring, np->ring_dma);
1966}
1967
1968static void reinit_rx(struct net_device *dev)
1969{
1970 struct netdev_private *np = netdev_priv(dev);
1971 int i;
1972
1973 /* RX Ring */
1974 np->dirty_rx = 0;
1975 np->cur_rx = RX_RING_SIZE;
1976 np->rx_head_desc = &np->rx_ring[0];
1977 /* Initialize all Rx descriptors. */
1978 for (i = 0; i < RX_RING_SIZE; i++)
1979 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1980
1981 refill_rx(dev);
1982}
1983
1984static void reinit_ring(struct net_device *dev)
1985{
1986 struct netdev_private *np = netdev_priv(dev);
1987 int i;
1988
1989 /* drain TX ring */
1990 drain_tx(dev);
1991 np->dirty_tx = np->cur_tx = 0;
1992 for (i=0;i<TX_RING_SIZE;i++)
1993 np->tx_ring[i].cmd_status = 0;
1994
1995 reinit_rx(dev);
1996}
1997
1998static int start_tx(struct sk_buff *skb, struct net_device *dev)
1999{
2000 struct netdev_private *np = netdev_priv(dev);
2001 void __iomem * ioaddr = ns_ioaddr(dev);
2002 unsigned entry;
2003
2004 /* Note: Ordering is important here, set the field with the
2005 "ownership" bit last, and only then increment cur_tx. */
2006
2007 /* Calculate the next Tx descriptor entry. */
2008 entry = np->cur_tx % TX_RING_SIZE;
2009
2010 np->tx_skbuff[entry] = skb;
2011 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2012 skb->data,skb->len, PCI_DMA_TODEVICE);
2013
2014 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2015
2016 spin_lock_irq(&np->lock);
2017
2018 if (!np->hands_off) {
2019 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2020 /* StrongARM: Explicitly cache flush np->tx_ring and
2021 * skb->data,skb->len. */
2022 wmb();
2023 np->cur_tx++;
2024 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2025 netdev_tx_done(dev);
2026 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2027 netif_stop_queue(dev);
2028 }
2029 /* Wake the potentially-idle transmit channel. */
2030 writel(TxOn, ioaddr + ChipCmd);
2031 } else {
2032 dev_kfree_skb_irq(skb);
2033 np->stats.tx_dropped++;
2034 }
2035 spin_unlock_irq(&np->lock);
2036
2037 dev->trans_start = jiffies;
2038
2039 if (netif_msg_tx_queued(np)) {
2040 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2041 dev->name, np->cur_tx, entry);
2042 }
2043 return 0;
2044}
2045
2046static void netdev_tx_done(struct net_device *dev)
2047{
2048 struct netdev_private *np = netdev_priv(dev);
2049
2050 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2051 int entry = np->dirty_tx % TX_RING_SIZE;
2052 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2053 break;
2054 if (netif_msg_tx_done(np))
2055 printk(KERN_DEBUG
2056 "%s: tx frame #%d finished, status %#08x.\n",
2057 dev->name, np->dirty_tx,
2058 le32_to_cpu(np->tx_ring[entry].cmd_status));
2059 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2060 np->stats.tx_packets++;
2061 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2062 } else { /* Various Tx errors */
2063 int tx_status =
2064 le32_to_cpu(np->tx_ring[entry].cmd_status);
2065 if (tx_status & (DescTxAbort|DescTxExcColl))
2066 np->stats.tx_aborted_errors++;
2067 if (tx_status & DescTxFIFO)
2068 np->stats.tx_fifo_errors++;
2069 if (tx_status & DescTxCarrier)
2070 np->stats.tx_carrier_errors++;
2071 if (tx_status & DescTxOOWCol)
2072 np->stats.tx_window_errors++;
2073 np->stats.tx_errors++;
2074 }
2075 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2076 np->tx_skbuff[entry]->len,
2077 PCI_DMA_TODEVICE);
2078 /* Free the original skb. */
2079 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2080 np->tx_skbuff[entry] = NULL;
2081 }
2082 if (netif_queue_stopped(dev)
2083 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2084 /* The ring is no longer full, wake queue. */
2085 netif_wake_queue(dev);
2086 }
2087}
2088
b27a16b7
MB
2089/* The interrupt handler doesn't actually handle interrupts itself, it
2090 * schedules a NAPI poll if there is anything to do. */
7d12e780 2091static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
2092{
2093 struct net_device *dev = dev_instance;
2094 struct netdev_private *np = netdev_priv(dev);
2095 void __iomem * ioaddr = ns_ioaddr(dev);
1da177e4
LT
2096
2097 if (np->hands_off)
2098 return IRQ_NONE;
6aa20a22 2099
b27a16b7
MB
2100 /* Reading automatically acknowledges. */
2101 np->intr_status = readl(ioaddr + IntrStatus);
1da177e4 2102
b27a16b7
MB
2103 if (netif_msg_intr(np))
2104 printk(KERN_DEBUG
2105 "%s: Interrupt, status %#08x, mask %#08x.\n",
2106 dev->name, np->intr_status,
2107 readl(ioaddr + IntrMask));
1da177e4 2108
6aa20a22 2109 if (!np->intr_status)
b27a16b7 2110 return IRQ_NONE;
1da177e4 2111
b27a16b7
MB
2112 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2113
2114 if (netif_rx_schedule_prep(dev)) {
2115 /* Disable interrupts and register for poll */
2116 natsemi_irq_disable(dev);
2117 __netif_rx_schedule(dev);
2118 }
2119 return IRQ_HANDLED;
2120}
2121
2122/* This is the NAPI poll routine. As well as the standard RX handling
2123 * it also handles all other interrupts that the chip might raise.
2124 */
2125static int natsemi_poll(struct net_device *dev, int *budget)
2126{
2127 struct netdev_private *np = netdev_priv(dev);
2128 void __iomem * ioaddr = ns_ioaddr(dev);
1da177e4 2129
b27a16b7
MB
2130 int work_to_do = min(*budget, dev->quota);
2131 int work_done = 0;
2132
2133 do {
2134 if (np->intr_status &
2135 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
1da177e4
LT
2136 spin_lock(&np->lock);
2137 netdev_tx_done(dev);
2138 spin_unlock(&np->lock);
2139 }
2140
2141 /* Abnormal error summary/uncommon events handlers. */
b27a16b7
MB
2142 if (np->intr_status & IntrAbnormalSummary)
2143 netdev_error(dev, np->intr_status);
6aa20a22 2144
b27a16b7
MB
2145 if (np->intr_status &
2146 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2147 IntrRxErr | IntrRxOverrun)) {
2148 netdev_rx(dev, &work_done, work_to_do);
1da177e4 2149 }
6aa20a22 2150
b27a16b7
MB
2151 *budget -= work_done;
2152 dev->quota -= work_done;
1da177e4 2153
b27a16b7
MB
2154 if (work_done >= work_to_do)
2155 return 1;
2156
2157 np->intr_status = readl(ioaddr + IntrStatus);
2158 } while (np->intr_status);
1da177e4 2159
b27a16b7
MB
2160 netif_rx_complete(dev);
2161
2162 /* Reenable interrupts providing nothing is trying to shut
2163 * the chip down. */
2164 spin_lock(&np->lock);
2165 if (!np->hands_off && netif_running(dev))
2166 natsemi_irq_enable(dev);
2167 spin_unlock(&np->lock);
2168
2169 return 0;
1da177e4
LT
2170}
2171
2172/* This routine is logically part of the interrupt handler, but separated
2173 for clarity and better register allocation. */
b27a16b7 2174static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
1da177e4
LT
2175{
2176 struct netdev_private *np = netdev_priv(dev);
2177 int entry = np->cur_rx % RX_RING_SIZE;
2178 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2179 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2180 unsigned int buflen = np->rx_buf_sz;
2181 void __iomem * ioaddr = ns_ioaddr(dev);
2182
2183 /* If the driver owns the next entry it's a new packet. Send it up. */
2184 while (desc_status < 0) { /* e.g. & DescOwn */
2185 int pkt_len;
2186 if (netif_msg_rx_status(np))
2187 printk(KERN_DEBUG
2188 " netdev_rx() entry %d status was %#08x.\n",
2189 entry, desc_status);
2190 if (--boguscnt < 0)
2191 break;
b27a16b7
MB
2192
2193 if (*work_done >= work_to_do)
2194 break;
2195
2196 (*work_done)++;
2197
1da177e4
LT
2198 pkt_len = (desc_status & DescSizeMask) - 4;
2199 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2200 if (desc_status & DescMore) {
2201 if (netif_msg_rx_err(np))
2202 printk(KERN_WARNING
2203 "%s: Oversized(?) Ethernet "
2204 "frame spanned multiple "
2205 "buffers, entry %#08x "
2206 "status %#08x.\n", dev->name,
2207 np->cur_rx, desc_status);
2208 np->stats.rx_length_errors++;
e72fd96e
MB
2209
2210 /* The RX state machine has probably
2211 * locked up beneath us. Follow the
2212 * reset procedure documented in
2213 * AN-1287. */
2214
2215 spin_lock_irq(&np->lock);
2216 reset_rx(dev);
2217 reinit_rx(dev);
2218 writel(np->ring_dma, ioaddr + RxRingPtr);
2219 check_link(dev);
2220 spin_unlock_irq(&np->lock);
2221
2222 /* We'll enable RX on exit from this
2223 * function. */
2224 break;
2225
1da177e4
LT
2226 } else {
2227 /* There was an error. */
2228 np->stats.rx_errors++;
2229 if (desc_status & (DescRxAbort|DescRxOver))
2230 np->stats.rx_over_errors++;
2231 if (desc_status & (DescRxLong|DescRxRunt))
2232 np->stats.rx_length_errors++;
2233 if (desc_status & (DescRxInvalid|DescRxAlign))
2234 np->stats.rx_frame_errors++;
2235 if (desc_status & DescRxCRC)
2236 np->stats.rx_crc_errors++;
2237 }
2238 } else if (pkt_len > np->rx_buf_sz) {
2239 /* if this is the tail of a double buffer
2240 * packet, we've already counted the error
2241 * on the first part. Ignore the second half.
2242 */
2243 } else {
2244 struct sk_buff *skb;
2245 /* Omit CRC size. */
2246 /* Check if the packet is long enough to accept
2247 * without copying to a minimally-sized skbuff. */
2248 if (pkt_len < rx_copybreak
2249 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2250 skb->dev = dev;
2251 /* 16 byte align the IP header */
2252 skb_reserve(skb, RX_OFFSET);
2253 pci_dma_sync_single_for_cpu(np->pci_dev,
2254 np->rx_dma[entry],
2255 buflen,
2256 PCI_DMA_FROMDEVICE);
2257 eth_copy_and_sum(skb,
689be439 2258 np->rx_skbuff[entry]->data, pkt_len, 0);
1da177e4
LT
2259 skb_put(skb, pkt_len);
2260 pci_dma_sync_single_for_device(np->pci_dev,
2261 np->rx_dma[entry],
2262 buflen,
2263 PCI_DMA_FROMDEVICE);
2264 } else {
2265 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2266 buflen, PCI_DMA_FROMDEVICE);
2267 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2268 np->rx_skbuff[entry] = NULL;
2269 }
2270 skb->protocol = eth_type_trans(skb, dev);
b27a16b7 2271 netif_receive_skb(skb);
1da177e4
LT
2272 dev->last_rx = jiffies;
2273 np->stats.rx_packets++;
2274 np->stats.rx_bytes += pkt_len;
2275 }
2276 entry = (++np->cur_rx) % RX_RING_SIZE;
2277 np->rx_head_desc = &np->rx_ring[entry];
2278 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2279 }
2280 refill_rx(dev);
2281
2282 /* Restart Rx engine if stopped. */
2283 if (np->oom)
2284 mod_timer(&np->timer, jiffies + 1);
2285 else
2286 writel(RxOn, ioaddr + ChipCmd);
2287}
2288
2289static void netdev_error(struct net_device *dev, int intr_status)
2290{
2291 struct netdev_private *np = netdev_priv(dev);
2292 void __iomem * ioaddr = ns_ioaddr(dev);
2293
2294 spin_lock(&np->lock);
2295 if (intr_status & LinkChange) {
2296 u16 lpa = mdio_read(dev, MII_LPA);
2297 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2298 && netif_msg_link(np)) {
2299 printk(KERN_INFO
2300 "%s: Autonegotiation advertising"
2301 " %#04x partner %#04x.\n", dev->name,
2302 np->advertising, lpa);
2303 }
2304
2305 /* read MII int status to clear the flag */
2306 readw(ioaddr + MIntrStatus);
2307 check_link(dev);
2308 }
2309 if (intr_status & StatsMax) {
2310 __get_stats(dev);
2311 }
2312 if (intr_status & IntrTxUnderrun) {
2313 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2314 np->tx_config += TX_DRTH_VAL_INC;
2315 if (netif_msg_tx_err(np))
2316 printk(KERN_NOTICE
2317 "%s: increased tx threshold, txcfg %#08x.\n",
2318 dev->name, np->tx_config);
2319 } else {
2320 if (netif_msg_tx_err(np))
2321 printk(KERN_NOTICE
2322 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2323 dev->name, np->tx_config);
2324 }
2325 writel(np->tx_config, ioaddr + TxConfig);
2326 }
2327 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2328 int wol_status = readl(ioaddr + WOLCmd);
2329 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2330 dev->name, wol_status);
2331 }
2332 if (intr_status & RxStatusFIFOOver) {
2333 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2334 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2335 dev->name);
2336 }
2337 np->stats.rx_fifo_errors++;
2338 }
2339 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2340 if (intr_status & IntrPCIErr) {
2341 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2342 intr_status & IntrPCIErr);
2343 np->stats.tx_fifo_errors++;
2344 np->stats.rx_fifo_errors++;
2345 }
2346 spin_unlock(&np->lock);
2347}
2348
2349static void __get_stats(struct net_device *dev)
2350{
2351 void __iomem * ioaddr = ns_ioaddr(dev);
2352 struct netdev_private *np = netdev_priv(dev);
2353
2354 /* The chip only need report frame silently dropped. */
2355 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2356 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2357}
2358
2359static struct net_device_stats *get_stats(struct net_device *dev)
2360{
2361 struct netdev_private *np = netdev_priv(dev);
2362
2363 /* The chip only need report frame silently dropped. */
2364 spin_lock_irq(&np->lock);
2365 if (netif_running(dev) && !np->hands_off)
2366 __get_stats(dev);
2367 spin_unlock_irq(&np->lock);
2368
2369 return &np->stats;
2370}
2371
2372#ifdef CONFIG_NET_POLL_CONTROLLER
2373static void natsemi_poll_controller(struct net_device *dev)
2374{
2375 disable_irq(dev->irq);
7d12e780 2376 intr_handler(dev->irq, dev);
1da177e4
LT
2377 enable_irq(dev->irq);
2378}
2379#endif
2380
2381#define HASH_TABLE 0x200
2382static void __set_rx_mode(struct net_device *dev)
2383{
2384 void __iomem * ioaddr = ns_ioaddr(dev);
2385 struct netdev_private *np = netdev_priv(dev);
2386 u8 mc_filter[64]; /* Multicast hash filter */
2387 u32 rx_mode;
2388
2389 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2390 rx_mode = RxFilterEnable | AcceptBroadcast
2391 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2392 } else if ((dev->mc_count > multicast_filter_limit)
2393 || (dev->flags & IFF_ALLMULTI)) {
2394 rx_mode = RxFilterEnable | AcceptBroadcast
2395 | AcceptAllMulticast | AcceptMyPhys;
2396 } else {
2397 struct dev_mc_list *mclist;
2398 int i;
2399 memset(mc_filter, 0, sizeof(mc_filter));
2400 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2401 i++, mclist = mclist->next) {
2402 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2403 mc_filter[i/8] |= (1 << (i & 0x07));
2404 }
2405 rx_mode = RxFilterEnable | AcceptBroadcast
2406 | AcceptMulticast | AcceptMyPhys;
2407 for (i = 0; i < 64; i += 2) {
760f86d7
HX
2408 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2409 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2410 ioaddr + RxFilterData);
1da177e4
LT
2411 }
2412 }
2413 writel(rx_mode, ioaddr + RxFilterAddr);
2414 np->cur_rx_mode = rx_mode;
2415}
2416
2417static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2418{
2419 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2420 return -EINVAL;
2421
2422 dev->mtu = new_mtu;
2423
2424 /* synchronized against open : rtnl_lock() held by caller */
2425 if (netif_running(dev)) {
2426 struct netdev_private *np = netdev_priv(dev);
2427 void __iomem * ioaddr = ns_ioaddr(dev);
2428
2429 disable_irq(dev->irq);
2430 spin_lock(&np->lock);
2431 /* stop engines */
2432 natsemi_stop_rxtx(dev);
2433 /* drain rx queue */
2434 drain_rx(dev);
2435 /* change buffers */
2436 set_bufsize(dev);
2437 reinit_rx(dev);
2438 writel(np->ring_dma, ioaddr + RxRingPtr);
2439 /* restart engines */
2440 writel(RxOn | TxOn, ioaddr + ChipCmd);
2441 spin_unlock(&np->lock);
2442 enable_irq(dev->irq);
2443 }
2444 return 0;
2445}
2446
2447static void set_rx_mode(struct net_device *dev)
2448{
2449 struct netdev_private *np = netdev_priv(dev);
2450 spin_lock_irq(&np->lock);
2451 if (!np->hands_off)
2452 __set_rx_mode(dev);
2453 spin_unlock_irq(&np->lock);
2454}
2455
2456static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2457{
2458 struct netdev_private *np = netdev_priv(dev);
2459 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2460 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2461 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2462}
2463
2464static int get_regs_len(struct net_device *dev)
2465{
2466 return NATSEMI_REGS_SIZE;
2467}
2468
2469static int get_eeprom_len(struct net_device *dev)
2470{
a8b4cf42
MB
2471 struct netdev_private *np = netdev_priv(dev);
2472 return np->eeprom_size;
1da177e4
LT
2473}
2474
2475static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2476{
2477 struct netdev_private *np = netdev_priv(dev);
2478 spin_lock_irq(&np->lock);
2479 netdev_get_ecmd(dev, ecmd);
2480 spin_unlock_irq(&np->lock);
2481 return 0;
2482}
2483
2484static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2485{
2486 struct netdev_private *np = netdev_priv(dev);
2487 int res;
2488 spin_lock_irq(&np->lock);
2489 res = netdev_set_ecmd(dev, ecmd);
2490 spin_unlock_irq(&np->lock);
2491 return res;
2492}
2493
2494static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2495{
2496 struct netdev_private *np = netdev_priv(dev);
2497 spin_lock_irq(&np->lock);
2498 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2499 netdev_get_sopass(dev, wol->sopass);
2500 spin_unlock_irq(&np->lock);
2501}
2502
2503static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2504{
2505 struct netdev_private *np = netdev_priv(dev);
2506 int res;
2507 spin_lock_irq(&np->lock);
2508 netdev_set_wol(dev, wol->wolopts);
2509 res = netdev_set_sopass(dev, wol->sopass);
2510 spin_unlock_irq(&np->lock);
2511 return res;
2512}
2513
2514static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2515{
2516 struct netdev_private *np = netdev_priv(dev);
2517 regs->version = NATSEMI_REGS_VER;
2518 spin_lock_irq(&np->lock);
2519 netdev_get_regs(dev, buf);
2520 spin_unlock_irq(&np->lock);
2521}
2522
2523static u32 get_msglevel(struct net_device *dev)
2524{
2525 struct netdev_private *np = netdev_priv(dev);
2526 return np->msg_enable;
2527}
2528
2529static void set_msglevel(struct net_device *dev, u32 val)
2530{
2531 struct netdev_private *np = netdev_priv(dev);
2532 np->msg_enable = val;
2533}
2534
2535static int nway_reset(struct net_device *dev)
2536{
2537 int tmp;
2538 int r = -EINVAL;
2539 /* if autoneg is off, it's an error */
2540 tmp = mdio_read(dev, MII_BMCR);
2541 if (tmp & BMCR_ANENABLE) {
2542 tmp |= (BMCR_ANRESTART);
2543 mdio_write(dev, MII_BMCR, tmp);
2544 r = 0;
2545 }
2546 return r;
2547}
2548
2549static u32 get_link(struct net_device *dev)
2550{
2551 /* LSTATUS is latched low until a read - so read twice */
2552 mdio_read(dev, MII_BMSR);
2553 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2554}
2555
2556static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2557{
2558 struct netdev_private *np = netdev_priv(dev);
a8b4cf42 2559 u8 *eebuf;
1da177e4
LT
2560 int res;
2561
a8b4cf42
MB
2562 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2563 if (!eebuf)
2564 return -ENOMEM;
2565
1da177e4
LT
2566 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2567 spin_lock_irq(&np->lock);
2568 res = netdev_get_eeprom(dev, eebuf);
2569 spin_unlock_irq(&np->lock);
2570 if (!res)
2571 memcpy(data, eebuf+eeprom->offset, eeprom->len);
a8b4cf42 2572 kfree(eebuf);
1da177e4
LT
2573 return res;
2574}
2575
7282d491 2576static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
2577 .get_drvinfo = get_drvinfo,
2578 .get_regs_len = get_regs_len,
2579 .get_eeprom_len = get_eeprom_len,
2580 .get_settings = get_settings,
2581 .set_settings = set_settings,
2582 .get_wol = get_wol,
2583 .set_wol = set_wol,
2584 .get_regs = get_regs,
2585 .get_msglevel = get_msglevel,
2586 .set_msglevel = set_msglevel,
2587 .nway_reset = nway_reset,
2588 .get_link = get_link,
2589 .get_eeprom = get_eeprom,
2590};
2591
2592static int netdev_set_wol(struct net_device *dev, u32 newval)
2593{
2594 struct netdev_private *np = netdev_priv(dev);
2595 void __iomem * ioaddr = ns_ioaddr(dev);
2596 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2597
2598 /* translate to bitmasks this chip understands */
2599 if (newval & WAKE_PHY)
2600 data |= WakePhy;
2601 if (newval & WAKE_UCAST)
2602 data |= WakeUnicast;
2603 if (newval & WAKE_MCAST)
2604 data |= WakeMulticast;
2605 if (newval & WAKE_BCAST)
2606 data |= WakeBroadcast;
2607 if (newval & WAKE_ARP)
2608 data |= WakeArp;
2609 if (newval & WAKE_MAGIC)
2610 data |= WakeMagic;
2611 if (np->srr >= SRR_DP83815_D) {
2612 if (newval & WAKE_MAGICSECURE) {
2613 data |= WakeMagicSecure;
2614 }
2615 }
2616
2617 writel(data, ioaddr + WOLCmd);
2618
2619 return 0;
2620}
2621
2622static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2623{
2624 struct netdev_private *np = netdev_priv(dev);
2625 void __iomem * ioaddr = ns_ioaddr(dev);
2626 u32 regval = readl(ioaddr + WOLCmd);
2627
2628 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2629 | WAKE_ARP | WAKE_MAGIC);
2630
2631 if (np->srr >= SRR_DP83815_D) {
2632 /* SOPASS works on revD and higher */
2633 *supported |= WAKE_MAGICSECURE;
2634 }
2635 *cur = 0;
2636
2637 /* translate from chip bitmasks */
2638 if (regval & WakePhy)
2639 *cur |= WAKE_PHY;
2640 if (regval & WakeUnicast)
2641 *cur |= WAKE_UCAST;
2642 if (regval & WakeMulticast)
2643 *cur |= WAKE_MCAST;
2644 if (regval & WakeBroadcast)
2645 *cur |= WAKE_BCAST;
2646 if (regval & WakeArp)
2647 *cur |= WAKE_ARP;
2648 if (regval & WakeMagic)
2649 *cur |= WAKE_MAGIC;
2650 if (regval & WakeMagicSecure) {
2651 /* this can be on in revC, but it's broken */
2652 *cur |= WAKE_MAGICSECURE;
2653 }
2654
2655 return 0;
2656}
2657
2658static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2659{
2660 struct netdev_private *np = netdev_priv(dev);
2661 void __iomem * ioaddr = ns_ioaddr(dev);
2662 u16 *sval = (u16 *)newval;
2663 u32 addr;
2664
2665 if (np->srr < SRR_DP83815_D) {
2666 return 0;
2667 }
2668
2669 /* enable writing to these registers by disabling the RX filter */
2670 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2671 addr &= ~RxFilterEnable;
2672 writel(addr, ioaddr + RxFilterAddr);
2673
2674 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2675 writel(addr | 0xa, ioaddr + RxFilterAddr);
2676 writew(sval[0], ioaddr + RxFilterData);
2677
2678 writel(addr | 0xc, ioaddr + RxFilterAddr);
2679 writew(sval[1], ioaddr + RxFilterData);
2680
2681 writel(addr | 0xe, ioaddr + RxFilterAddr);
2682 writew(sval[2], ioaddr + RxFilterData);
2683
2684 /* re-enable the RX filter */
2685 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2686
2687 return 0;
2688}
2689
2690static int netdev_get_sopass(struct net_device *dev, u8 *data)
2691{
2692 struct netdev_private *np = netdev_priv(dev);
2693 void __iomem * ioaddr = ns_ioaddr(dev);
2694 u16 *sval = (u16 *)data;
2695 u32 addr;
2696
2697 if (np->srr < SRR_DP83815_D) {
2698 sval[0] = sval[1] = sval[2] = 0;
2699 return 0;
2700 }
2701
2702 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2703 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2704
2705 writel(addr | 0xa, ioaddr + RxFilterAddr);
2706 sval[0] = readw(ioaddr + RxFilterData);
2707
2708 writel(addr | 0xc, ioaddr + RxFilterAddr);
2709 sval[1] = readw(ioaddr + RxFilterData);
2710
2711 writel(addr | 0xe, ioaddr + RxFilterAddr);
2712 sval[2] = readw(ioaddr + RxFilterData);
2713
2714 writel(addr, ioaddr + RxFilterAddr);
2715
2716 return 0;
2717}
2718
2719static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2720{
2721 struct netdev_private *np = netdev_priv(dev);
2722 u32 tmp;
2723
2724 ecmd->port = dev->if_port;
2725 ecmd->speed = np->speed;
2726 ecmd->duplex = np->duplex;
2727 ecmd->autoneg = np->autoneg;
2728 ecmd->advertising = 0;
2729 if (np->advertising & ADVERTISE_10HALF)
2730 ecmd->advertising |= ADVERTISED_10baseT_Half;
2731 if (np->advertising & ADVERTISE_10FULL)
2732 ecmd->advertising |= ADVERTISED_10baseT_Full;
2733 if (np->advertising & ADVERTISE_100HALF)
2734 ecmd->advertising |= ADVERTISED_100baseT_Half;
2735 if (np->advertising & ADVERTISE_100FULL)
2736 ecmd->advertising |= ADVERTISED_100baseT_Full;
2737 ecmd->supported = (SUPPORTED_Autoneg |
2738 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2739 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2740 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2741 ecmd->phy_address = np->phy_addr_external;
2742 /*
2743 * We intentionally report the phy address of the external
2744 * phy, even if the internal phy is used. This is necessary
2745 * to work around a deficiency of the ethtool interface:
2746 * It's only possible to query the settings of the active
6aa20a22 2747 * port. Therefore
1da177e4
LT
2748 * # ethtool -s ethX port mii
2749 * actually sends an ioctl to switch to port mii with the
2750 * settings that are used for the current active port.
2751 * If we would report a different phy address in this
2752 * command, then
2753 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2754 * would unintentionally change the phy address.
2755 *
2756 * Fortunately the phy address doesn't matter with the
2757 * internal phy...
2758 */
2759
2760 /* set information based on active port type */
2761 switch (ecmd->port) {
2762 default:
2763 case PORT_TP:
2764 ecmd->advertising |= ADVERTISED_TP;
2765 ecmd->transceiver = XCVR_INTERNAL;
2766 break;
2767 case PORT_MII:
2768 ecmd->advertising |= ADVERTISED_MII;
2769 ecmd->transceiver = XCVR_EXTERNAL;
2770 break;
2771 case PORT_FIBRE:
2772 ecmd->advertising |= ADVERTISED_FIBRE;
2773 ecmd->transceiver = XCVR_EXTERNAL;
2774 break;
2775 }
2776
2777 /* if autonegotiation is on, try to return the active speed/duplex */
2778 if (ecmd->autoneg == AUTONEG_ENABLE) {
2779 ecmd->advertising |= ADVERTISED_Autoneg;
2780 tmp = mii_nway_result(
2781 np->advertising & mdio_read(dev, MII_LPA));
2782 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2783 ecmd->speed = SPEED_100;
2784 else
2785 ecmd->speed = SPEED_10;
2786 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2787 ecmd->duplex = DUPLEX_FULL;
2788 else
2789 ecmd->duplex = DUPLEX_HALF;
2790 }
2791
2792 /* ignore maxtxpkt, maxrxpkt for now */
2793
2794 return 0;
2795}
2796
2797static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2798{
2799 struct netdev_private *np = netdev_priv(dev);
2800
2801 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2802 return -EINVAL;
2803 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2804 return -EINVAL;
2805 if (ecmd->autoneg == AUTONEG_ENABLE) {
2806 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2807 ADVERTISED_10baseT_Full |
2808 ADVERTISED_100baseT_Half |
2809 ADVERTISED_100baseT_Full)) == 0) {
2810 return -EINVAL;
2811 }
2812 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2813 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2814 return -EINVAL;
2815 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2816 return -EINVAL;
2817 } else {
2818 return -EINVAL;
2819 }
2820
2821 /*
2822 * maxtxpkt, maxrxpkt: ignored for now.
2823 *
2824 * transceiver:
2825 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2826 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2827 * selects based on ecmd->port.
2828 *
2829 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2830 * phys that are connected to the mii bus. It's used to apply fibre
2831 * specific updates.
2832 */
2833
2834 /* WHEW! now lets bang some bits */
2835
2836 /* save the parms */
2837 dev->if_port = ecmd->port;
2838 np->autoneg = ecmd->autoneg;
2839 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2840 if (np->autoneg == AUTONEG_ENABLE) {
2841 /* advertise only what has been requested */
2842 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2843 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2844 np->advertising |= ADVERTISE_10HALF;
2845 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2846 np->advertising |= ADVERTISE_10FULL;
2847 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2848 np->advertising |= ADVERTISE_100HALF;
2849 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2850 np->advertising |= ADVERTISE_100FULL;
2851 } else {
2852 np->speed = ecmd->speed;
2853 np->duplex = ecmd->duplex;
2854 /* user overriding the initial full duplex parm? */
2855 if (np->duplex == DUPLEX_HALF)
2856 np->full_duplex = 0;
2857 }
2858
2859 /* get the right phy enabled */
2860 if (ecmd->port == PORT_TP)
2861 switch_port_internal(dev);
2862 else
2863 switch_port_external(dev);
2864
2865 /* set parms and see how this affected our link status */
2866 init_phy_fixup(dev);
2867 check_link(dev);
2868 return 0;
2869}
2870
2871static int netdev_get_regs(struct net_device *dev, u8 *buf)
2872{
2873 int i;
2874 int j;
2875 u32 rfcr;
2876 u32 *rbuf = (u32 *)buf;
2877 void __iomem * ioaddr = ns_ioaddr(dev);
2878
2879 /* read non-mii page 0 of registers */
2880 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2881 rbuf[i] = readl(ioaddr + i*4);
2882 }
2883
2884 /* read current mii registers */
2885 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2886 rbuf[i] = mdio_read(dev, i & 0x1f);
2887
2888 /* read only the 'magic' registers from page 1 */
2889 writew(1, ioaddr + PGSEL);
2890 rbuf[i++] = readw(ioaddr + PMDCSR);
2891 rbuf[i++] = readw(ioaddr + TSTDAT);
2892 rbuf[i++] = readw(ioaddr + DSPCFG);
2893 rbuf[i++] = readw(ioaddr + SDCFG);
2894 writew(0, ioaddr + PGSEL);
2895
2896 /* read RFCR indexed registers */
2897 rfcr = readl(ioaddr + RxFilterAddr);
2898 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
2899 writel(j*2, ioaddr + RxFilterAddr);
2900 rbuf[i++] = readw(ioaddr + RxFilterData);
2901 }
2902 writel(rfcr, ioaddr + RxFilterAddr);
2903
2904 /* the interrupt status is clear-on-read - see if we missed any */
2905 if (rbuf[4] & rbuf[5]) {
2906 printk(KERN_WARNING
2907 "%s: shoot, we dropped an interrupt (%#08x)\n",
2908 dev->name, rbuf[4] & rbuf[5]);
2909 }
2910
2911 return 0;
2912}
2913
2914#define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
2915 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
2916 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
2917 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
2918 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
2919 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
2920 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
2921 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
2922
2923static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
2924{
2925 int i;
2926 u16 *ebuf = (u16 *)buf;
2927 void __iomem * ioaddr = ns_ioaddr(dev);
a8b4cf42 2928 struct netdev_private *np = netdev_priv(dev);
1da177e4
LT
2929
2930 /* eeprom_read reads 16 bits, and indexes by 16 bits */
a8b4cf42 2931 for (i = 0; i < np->eeprom_size/2; i++) {
1da177e4
LT
2932 ebuf[i] = eeprom_read(ioaddr, i);
2933 /* The EEPROM itself stores data bit-swapped, but eeprom_read
2934 * reads it back "sanely". So we swap it back here in order to
2935 * present it to userland as it is stored. */
2936 ebuf[i] = SWAP_BITS(ebuf[i]);
2937 }
2938 return 0;
2939}
2940
2941static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2942{
2943 struct mii_ioctl_data *data = if_mii(rq);
2944 struct netdev_private *np = netdev_priv(dev);
2945
2946 switch(cmd) {
2947 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2948 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
2949 data->phy_id = np->phy_addr_external;
2950 /* Fall Through */
2951
2952 case SIOCGMIIREG: /* Read MII PHY register. */
2953 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
2954 /* The phy_id is not enough to uniquely identify
2955 * the intended target. Therefore the command is sent to
2956 * the given mii on the current port.
2957 */
2958 if (dev->if_port == PORT_TP) {
2959 if ((data->phy_id & 0x1f) == np->phy_addr_external)
2960 data->val_out = mdio_read(dev,
2961 data->reg_num & 0x1f);
2962 else
2963 data->val_out = 0;
2964 } else {
2965 move_int_phy(dev, data->phy_id & 0x1f);
2966 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
2967 data->reg_num & 0x1f);
2968 }
2969 return 0;
2970
2971 case SIOCSMIIREG: /* Write MII PHY register. */
2972 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
2973 if (!capable(CAP_NET_ADMIN))
2974 return -EPERM;
2975 if (dev->if_port == PORT_TP) {
2976 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
2977 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
2978 np->advertising = data->val_in;
2979 mdio_write(dev, data->reg_num & 0x1f,
2980 data->val_in);
2981 }
2982 } else {
2983 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
2984 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
2985 np->advertising = data->val_in;
2986 }
2987 move_int_phy(dev, data->phy_id & 0x1f);
2988 miiport_write(dev, data->phy_id & 0x1f,
2989 data->reg_num & 0x1f,
2990 data->val_in);
2991 }
2992 return 0;
2993 default:
2994 return -EOPNOTSUPP;
2995 }
2996}
2997
2998static void enable_wol_mode(struct net_device *dev, int enable_intr)
2999{
3000 void __iomem * ioaddr = ns_ioaddr(dev);
3001 struct netdev_private *np = netdev_priv(dev);
3002
3003 if (netif_msg_wol(np))
3004 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3005 dev->name);
3006
3007 /* For WOL we must restart the rx process in silent mode.
3008 * Write NULL to the RxRingPtr. Only possible if
3009 * rx process is stopped
3010 */
3011 writel(0, ioaddr + RxRingPtr);
3012
3013 /* read WoL status to clear */
3014 readl(ioaddr + WOLCmd);
3015
3016 /* PME on, clear status */
3017 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3018
3019 /* and restart the rx process */
3020 writel(RxOn, ioaddr + ChipCmd);
3021
3022 if (enable_intr) {
3023 /* enable the WOL interrupt.
3024 * Could be used to send a netlink message.
3025 */
3026 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3027 writel(1, ioaddr + IntrEnable);
3028 }
3029}
3030
3031static int netdev_close(struct net_device *dev)
3032{
3033 void __iomem * ioaddr = ns_ioaddr(dev);
3034 struct netdev_private *np = netdev_priv(dev);
3035
3036 if (netif_msg_ifdown(np))
3037 printk(KERN_DEBUG
3038 "%s: Shutting down ethercard, status was %#04x.\n",
3039 dev->name, (int)readl(ioaddr + ChipCmd));
3040 if (netif_msg_pktdata(np))
3041 printk(KERN_DEBUG
3042 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3043 dev->name, np->cur_tx, np->dirty_tx,
3044 np->cur_rx, np->dirty_rx);
3045
3046 /*
3047 * FIXME: what if someone tries to close a device
3048 * that is suspended?
3049 * Should we reenable the nic to switch to
3050 * the final WOL settings?
3051 */
3052
3053 del_timer_sync(&np->timer);
3054 disable_irq(dev->irq);
3055 spin_lock_irq(&np->lock);
b27a16b7 3056 natsemi_irq_disable(dev);
1da177e4
LT
3057 np->hands_off = 1;
3058 spin_unlock_irq(&np->lock);
3059 enable_irq(dev->irq);
3060
3061 free_irq(dev->irq, dev);
3062
3063 /* Interrupt disabled, interrupt handler released,
3064 * queue stopped, timer deleted, rtnl_lock held
3065 * All async codepaths that access the driver are disabled.
3066 */
3067 spin_lock_irq(&np->lock);
3068 np->hands_off = 0;
3069 readl(ioaddr + IntrMask);
3070 readw(ioaddr + MIntrStatus);
3071
3072 /* Freeze Stats */
3073 writel(StatsFreeze, ioaddr + StatsCtrl);
3074
3075 /* Stop the chip's Tx and Rx processes. */
3076 natsemi_stop_rxtx(dev);
3077
3078 __get_stats(dev);
3079 spin_unlock_irq(&np->lock);
3080
3081 /* clear the carrier last - an interrupt could reenable it otherwise */
3082 netif_carrier_off(dev);
3083 netif_stop_queue(dev);
3084
3085 dump_ring(dev);
3086 drain_ring(dev);
3087 free_ring(dev);
3088
3089 {
3090 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3091 if (wol) {
3092 /* restart the NIC in WOL mode.
3093 * The nic must be stopped for this.
3094 */
3095 enable_wol_mode(dev, 0);
3096 } else {
3097 /* Restore PME enable bit unmolested */
3098 writel(np->SavedClkRun, ioaddr + ClkRun);
3099 }
3100 }
3101 return 0;
3102}
3103
3104
3105static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3106{
3107 struct net_device *dev = pci_get_drvdata(pdev);
3108 void __iomem * ioaddr = ns_ioaddr(dev);
3109
3110 unregister_netdev (dev);
3111 pci_release_regions (pdev);
3112 iounmap(ioaddr);
3113 free_netdev (dev);
3114 pci_set_drvdata(pdev, NULL);
3115}
3116
3117#ifdef CONFIG_PM
3118
3119/*
3120 * The ns83815 chip doesn't have explicit RxStop bits.
3121 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3122 * of the nic, thus this function must be very careful:
3123 *
3124 * suspend/resume synchronization:
3125 * entry points:
3126 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3127 * start_tx, tx_timeout
3128 *
3129 * No function accesses the hardware without checking np->hands_off.
3130 * the check occurs under spin_lock_irq(&np->lock);
3131 * exceptions:
3132 * * netdev_ioctl: noncritical access.
3133 * * netdev_open: cannot happen due to the device_detach
3134 * * netdev_close: doesn't hurt.
3135 * * netdev_timer: timer stopped by natsemi_suspend.
3136 * * intr_handler: doesn't acquire the spinlock. suspend calls
3137 * disable_irq() to enforce synchronization.
b27a16b7
MB
3138 * * natsemi_poll: checks before reenabling interrupts. suspend
3139 * sets hands_off, disables interrupts and then waits with
3140 * netif_poll_disable().
1da177e4
LT
3141 *
3142 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3143 */
3144
3145static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3146{
3147 struct net_device *dev = pci_get_drvdata (pdev);
3148 struct netdev_private *np = netdev_priv(dev);
3149 void __iomem * ioaddr = ns_ioaddr(dev);
3150
3151 rtnl_lock();
3152 if (netif_running (dev)) {
3153 del_timer_sync(&np->timer);
3154
3155 disable_irq(dev->irq);
3156 spin_lock_irq(&np->lock);
3157
3158 writel(0, ioaddr + IntrEnable);
3159 np->hands_off = 1;
3160 natsemi_stop_rxtx(dev);
3161 netif_stop_queue(dev);
3162
3163 spin_unlock_irq(&np->lock);
3164 enable_irq(dev->irq);
3165
b27a16b7
MB
3166 netif_poll_disable(dev);
3167
1da177e4
LT
3168 /* Update the error counts. */
3169 __get_stats(dev);
3170
3171 /* pci_power_off(pdev, -1); */
3172 drain_ring(dev);
3173 {
3174 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3175 /* Restore PME enable bit */
3176 if (wol) {
3177 /* restart the NIC in WOL mode.
3178 * The nic must be stopped for this.
3179 * FIXME: use the WOL interrupt
3180 */
3181 enable_wol_mode(dev, 0);
3182 } else {
3183 /* Restore PME enable bit unmolested */
3184 writel(np->SavedClkRun, ioaddr + ClkRun);
3185 }
3186 }
3187 }
3188 netif_device_detach(dev);
3189 rtnl_unlock();
3190 return 0;
3191}
3192
3193
3194static int natsemi_resume (struct pci_dev *pdev)
3195{
3196 struct net_device *dev = pci_get_drvdata (pdev);
3197 struct netdev_private *np = netdev_priv(dev);
3198
3199 rtnl_lock();
3200 if (netif_device_present(dev))
3201 goto out;
3202 if (netif_running(dev)) {
3203 BUG_ON(!np->hands_off);
3204 pci_enable_device(pdev);
3205 /* pci_power_on(pdev); */
3206
3207 natsemi_reset(dev);
3208 init_ring(dev);
3209 disable_irq(dev->irq);
3210 spin_lock_irq(&np->lock);
3211 np->hands_off = 0;
3212 init_registers(dev);
3213 netif_device_attach(dev);
3214 spin_unlock_irq(&np->lock);
3215 enable_irq(dev->irq);
3216
3217 mod_timer(&np->timer, jiffies + 1*HZ);
3218 }
3219 netif_device_attach(dev);
b27a16b7 3220 netif_poll_enable(dev);
1da177e4
LT
3221out:
3222 rtnl_unlock();
3223 return 0;
3224}
3225
3226#endif /* CONFIG_PM */
3227
3228static struct pci_driver natsemi_driver = {
3229 .name = DRV_NAME,
3230 .id_table = natsemi_pci_tbl,
3231 .probe = natsemi_probe1,
3232 .remove = __devexit_p(natsemi_remove1),
3233#ifdef CONFIG_PM
3234 .suspend = natsemi_suspend,
3235 .resume = natsemi_resume,
3236#endif
3237};
3238
3239static int __init natsemi_init_mod (void)
3240{
3241/* when a module, this is printed whether or not devices are found in probe */
3242#ifdef MODULE
3243 printk(version);
3244#endif
3245
29917620 3246 return pci_register_driver(&natsemi_driver);
1da177e4
LT
3247}
3248
3249static void __exit natsemi_exit_mod (void)
3250{
3251 pci_unregister_driver (&natsemi_driver);
3252}
3253
3254module_init(natsemi_init_mod);
3255module_exit(natsemi_exit_mod);
3256