]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/mv643xx_eth.c
drivers/net: const-ify ethtool_ops declarations
[net-next-2.6.git] / drivers / net / mv643xx_eth.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
3bb8a18a 9 * written by Manish Lachwani
1da177e4
LT
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
c8aaea25 13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
1da177e4
LT
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
b6298c22
AV
35#include <linux/in.h>
36#include <linux/ip.h>
1da177e4
LT
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/etherdevice.h>
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
d052d1be
RK
44#include <linux/platform_device.h>
45
1da177e4
LT
46#include <asm/io.h>
47#include <asm/types.h>
48#include <asm/pgtable.h>
49#include <asm/system.h>
50#include <asm/delay.h>
51#include "mv643xx_eth.h"
52
1da177e4 53/* Static function declarations */
1da177e4
LT
54static void eth_port_uc_addr_get(struct net_device *dev,
55 unsigned char *MacAddr);
16e03018 56static void eth_port_set_multicast_list(struct net_device *);
9f8dd319 57static void mv643xx_eth_port_enable_tx(unsigned int port_num,
12a87c64 58 unsigned int queues);
9f8dd319 59static void mv643xx_eth_port_enable_rx(unsigned int port_num,
12a87c64 60 unsigned int queues);
9f8dd319
DF
61static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
ab4384a6
DF
63static int mv643xx_eth_open(struct net_device *);
64static int mv643xx_eth_stop(struct net_device *);
1da177e4
LT
65static int mv643xx_eth_change_mtu(struct net_device *, int);
66static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67static void eth_port_init_mac_tables(unsigned int eth_port_num);
68#ifdef MV643XX_NAPI
69static int mv643xx_poll(struct net_device *dev, int *budget);
70#endif
c28a4f89 71static int ethernet_phy_get(unsigned int eth_port_num);
1da177e4
LT
72static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73static int ethernet_phy_detect(unsigned int eth_port_num);
c28a4f89
JC
74static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
d0412d96 76static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
7282d491 77static const struct ethtool_ops mv643xx_ethtool_ops;
1da177e4
LT
78
79static char mv643xx_driver_name[] = "mv643xx_eth";
80static char mv643xx_driver_version[] = "1.0";
81
82static void __iomem *mv643xx_eth_shared_base;
83
84/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
a9f6a0dd 85static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
1da177e4
LT
86
87static inline u32 mv_read(int offset)
88{
dc074a8a 89 void __iomem *reg_base;
1da177e4
LT
90
91 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
92
93 return readl(reg_base + offset);
94}
95
96static inline void mv_write(int offset, u32 data)
97{
dc074a8a 98 void __iomem *reg_base;
1da177e4
LT
99
100 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101 writel(data, reg_base + offset);
102}
103
104/*
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
106 *
107 * Input : pointer to ethernet interface network device structure
108 * new mtu size
109 * Output : 0 upon success, -EINVAL upon failure
110 */
111static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
112{
8f518703 113 if ((new_mtu > 9500) || (new_mtu < 64))
1da177e4 114 return -EINVAL;
1da177e4
LT
115
116 dev->mtu = new_mtu;
117 /*
118 * Stop then re-open the interface. This will allocate RX skb's with
119 * the new MTU.
120 * There is a possible danger that the open will not successed, due
121 * to memory is full, which might fail the open function.
122 */
123 if (netif_running(dev)) {
ab4384a6
DF
124 mv643xx_eth_stop(dev);
125 if (mv643xx_eth_open(dev))
1da177e4
LT
126 printk(KERN_ERR
127 "%s: Fatal error on opening device\n",
128 dev->name);
129 }
130
1da177e4
LT
131 return 0;
132}
133
134/*
f78fb474 135 * mv643xx_eth_rx_refill_descs
1da177e4
LT
136 *
137 * Fills / refills RX queue on a certain gigabit ethernet port
138 *
139 * Input : pointer to ethernet interface network device structure
140 * Output : N/A
141 */
f78fb474 142static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
1da177e4 143{
1da177e4
LT
144 struct mv643xx_private *mp = netdev_priv(dev);
145 struct pkt_info pkt_info;
146 struct sk_buff *skb;
b44cd572 147 int unaligned;
1da177e4 148
f78fb474 149 while (mp->rx_desc_count < mp->rx_ring_size) {
7303fde8 150 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + ETH_DMA_ALIGN);
1da177e4
LT
151 if (!skb)
152 break;
f98e36f1 153 mp->rx_desc_count++;
7303fde8 154 unaligned = (u32)skb->data & (ETH_DMA_ALIGN - 1);
b44cd572 155 if (unaligned)
7303fde8 156 skb_reserve(skb, ETH_DMA_ALIGN - unaligned);
1da177e4 157 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
7303fde8
DF
158 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
1da177e4
LT
161 pkt_info.return_info = skb;
162 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163 printk(KERN_ERR
164 "%s: Error allocating RX Ring\n", dev->name);
165 break;
166 }
7303fde8 167 skb_reserve(skb, ETH_HW_IP_ALIGN);
1da177e4 168 }
1da177e4
LT
169 /*
170 * If RX ring is empty of SKB, set a timer to try allocating
f78fb474 171 * again at a later time.
1da177e4 172 */
f78fb474 173 if (mp->rx_desc_count == 0) {
1da177e4 174 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
f78fb474 175 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
1da177e4 176 add_timer(&mp->timeout);
1da177e4 177 }
1da177e4
LT
178}
179
180/*
f78fb474 181 * mv643xx_eth_rx_refill_descs_timer_wrapper
1da177e4
LT
182 *
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
186 *
187 * Input : pointer to ethernet interface network device structure
188 * Output : N/A
189 */
f78fb474 190static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
1da177e4 191{
f78fb474 192 mv643xx_eth_rx_refill_descs((struct net_device *)data);
1da177e4
LT
193}
194
195/*
196 * mv643xx_eth_update_mac_address
197 *
198 * Update the MAC address of the port in the address table
199 *
200 * Input : pointer to ethernet interface network device structure
201 * Output : N/A
202 */
203static void mv643xx_eth_update_mac_address(struct net_device *dev)
204{
205 struct mv643xx_private *mp = netdev_priv(dev);
206 unsigned int port_num = mp->port_num;
207
208 eth_port_init_mac_tables(port_num);
ed9b5d45 209 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
210}
211
212/*
213 * mv643xx_eth_set_rx_mode
214 *
215 * Change from promiscuos to regular rx mode
216 *
217 * Input : pointer to ethernet interface network device structure
218 * Output : N/A
219 */
220static void mv643xx_eth_set_rx_mode(struct net_device *dev)
221{
222 struct mv643xx_private *mp = netdev_priv(dev);
01999873 223 u32 config_reg;
1da177e4 224
01999873 225 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
1da177e4 226 if (dev->flags & IFF_PROMISC)
01999873 227 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
1da177e4 228 else
01999873
DF
229 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
16e03018
DF
231
232 eth_port_set_multicast_list(dev);
1da177e4
LT
233}
234
235/*
236 * mv643xx_eth_set_mac_address
237 *
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
241 *
242 * Input : pointer to ethernet interface network device structure and
243 * a pointer to the designated entry to be added to the cache.
244 * Output : zero upon success, negative upon failure
245 */
246static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
247{
248 int i;
249
250 for (i = 0; i < 6; i++)
251 /* +2 is for the offset of the HW addr type */
252 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253 mv643xx_eth_update_mac_address(dev);
254 return 0;
255}
256
257/*
258 * mv643xx_eth_tx_timeout
259 *
260 * Called upon a timeout on transmitting a packet
261 *
262 * Input : pointer to ethernet interface network device structure.
263 * Output : N/A
264 */
265static void mv643xx_eth_tx_timeout(struct net_device *dev)
266{
267 struct mv643xx_private *mp = netdev_priv(dev);
268
269 printk(KERN_INFO "%s: TX timeout ", dev->name);
270
271 /* Do the reset outside of interrupt context */
272 schedule_work(&mp->tx_timeout_task);
273}
274
275/*
276 * mv643xx_eth_tx_timeout_task
277 *
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
279 */
280static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
281{
282 struct mv643xx_private *mp = netdev_priv(dev);
283
94843566
DF
284 if (!netif_running(dev))
285 return;
286
287 netif_stop_queue(dev);
288
1da177e4 289 eth_port_reset(mp->port_num);
ed9b5d45 290 eth_port_start(dev);
94843566
DF
291
292 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
293 netif_wake_queue(dev);
1da177e4
LT
294}
295
ff561eef
DF
296/**
297 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
1da177e4 298 *
ff561eef 299 * If force is non-zero, frees uncompleted descriptors as well
1da177e4 300 */
ff561eef 301int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
1da177e4
LT
302{
303 struct mv643xx_private *mp = netdev_priv(dev);
ff561eef
DF
304 struct eth_tx_desc *desc;
305 u32 cmd_sts;
306 struct sk_buff *skb;
307 unsigned long flags;
308 int tx_index;
309 dma_addr_t addr;
310 int count;
311 int released = 0;
1da177e4 312
ff561eef
DF
313 while (mp->tx_desc_count > 0) {
314 spin_lock_irqsave(&mp->lock, flags);
315 tx_index = mp->tx_used_desc_q;
316 desc = &mp->p_tx_desc_area[tx_index];
317 cmd_sts = desc->cmd_sts;
318
319 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
320 spin_unlock_irqrestore(&mp->lock, flags);
321 return released;
322 }
323
324 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
325 mp->tx_desc_count--;
326
327 addr = desc->buf_ptr;
328 count = desc->byte_cnt;
329 skb = mp->tx_skb[tx_index];
330 if (skb)
331 mp->tx_skb[tx_index] = NULL;
332
333 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 334
7303fde8 335 if (cmd_sts & ETH_ERROR_SUMMARY) {
1da177e4 336 printk("%s: Error in TX\n", dev->name);
ff561eef 337 mp->stats.tx_errors++;
1da177e4
LT
338 }
339
ff561eef
DF
340 if (cmd_sts & ETH_TX_FIRST_DESC)
341 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
cb415d30 342 else
ff561eef 343 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
1da177e4 344
ff561eef
DF
345 if (skb)
346 dev_kfree_skb_irq(skb);
347
348 released = 1;
1da177e4
LT
349 }
350
1da177e4
LT
351 return released;
352}
353
ff561eef
DF
354static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
355{
356 struct mv643xx_private *mp = netdev_priv(dev);
357
358 if (mv643xx_eth_free_tx_descs(dev, 0) &&
359 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
360 netif_wake_queue(dev);
361}
362
363static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
364{
365 mv643xx_eth_free_tx_descs(dev, 1);
366}
367
1da177e4
LT
368/*
369 * mv643xx_eth_receive
370 *
371 * This function is forward packets that are received from the port's
372 * queues toward kernel core or FastRoute them to another interface.
373 *
374 * Input : dev - a pointer to the required interface
375 * max - maximum number to receive (0 means unlimted)
376 *
377 * Output : number of served packets
378 */
1da177e4 379static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
1da177e4
LT
380{
381 struct mv643xx_private *mp = netdev_priv(dev);
382 struct net_device_stats *stats = &mp->stats;
383 unsigned int received_packets = 0;
384 struct sk_buff *skb;
385 struct pkt_info pkt_info;
386
b1dd9ca1 387 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
71d28725
DF
388 dma_unmap_single(NULL, pkt_info.buf_ptr, RX_SKB_SIZE,
389 DMA_FROM_DEVICE);
f98e36f1 390 mp->rx_desc_count--;
1da177e4 391 received_packets++;
b1dd9ca1 392
468d09f8
DF
393 /*
394 * Update statistics.
395 * Note byte count includes 4 byte CRC count
396 */
1da177e4
LT
397 stats->rx_packets++;
398 stats->rx_bytes += pkt_info.byte_cnt;
399 skb = pkt_info.return_info;
400 /*
401 * In case received a packet without first / last bits on OR
402 * the error summary bit is on, the packets needs to be dropeed.
403 */
404 if (((pkt_info.cmd_sts
405 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
406 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
407 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
408 stats->rx_dropped++;
409 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
410 ETH_RX_LAST_DESC)) !=
411 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
412 if (net_ratelimit())
413 printk(KERN_ERR
414 "%s: Received packet spread "
415 "on multiple descriptors\n",
416 dev->name);
417 }
418 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
419 stats->rx_errors++;
420
421 dev_kfree_skb_irq(skb);
422 } else {
423 /*
424 * The -4 is for the CRC in the trailer of the
425 * received packet
426 */
427 skb_put(skb, pkt_info.byte_cnt - 4);
428 skb->dev = dev;
429
430 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
431 skb->ip_summed = CHECKSUM_UNNECESSARY;
432 skb->csum = htons(
433 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
434 }
435 skb->protocol = eth_type_trans(skb, dev);
436#ifdef MV643XX_NAPI
437 netif_receive_skb(skb);
438#else
439 netif_rx(skb);
440#endif
441 }
12ad74f8 442 dev->last_rx = jiffies;
1da177e4 443 }
f78fb474 444 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
1da177e4
LT
445
446 return received_packets;
447}
448
d0412d96
JC
449/* Set the mv643xx port configuration register for the speed/duplex mode. */
450static void mv643xx_eth_update_pscr(struct net_device *dev,
451 struct ethtool_cmd *ecmd)
452{
453 struct mv643xx_private *mp = netdev_priv(dev);
454 int port_num = mp->port_num;
455 u32 o_pscr, n_pscr;
12a87c64 456 unsigned int queues;
d0412d96
JC
457
458 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
459 n_pscr = o_pscr;
460
461 /* clear speed, duplex and rx buffer size fields */
462 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
463 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
464 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
465 MV643XX_ETH_MAX_RX_PACKET_MASK);
466
467 if (ecmd->duplex == DUPLEX_FULL)
468 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
469
470 if (ecmd->speed == SPEED_1000)
471 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
472 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
473 else {
474 if (ecmd->speed == SPEED_100)
475 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
476 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
477 }
478
479 if (n_pscr != o_pscr) {
480 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
481 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
482 n_pscr);
483 else {
12a87c64 484 queues = mv643xx_eth_port_disable_tx(port_num);
d0412d96
JC
485
486 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
487 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
488 o_pscr);
489 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
490 n_pscr);
491 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
492 n_pscr);
12a87c64
DF
493 if (queues)
494 mv643xx_eth_port_enable_tx(port_num, queues);
d0412d96
JC
495 }
496 }
497}
498
1da177e4
LT
499/*
500 * mv643xx_eth_int_handler
501 *
502 * Main interrupt handler for the gigbit ethernet ports
503 *
504 * Input : irq - irq number (not used)
505 * dev_id - a pointer to the required interface's data structure
506 * regs - not used
507 * Output : N/A
508 */
509
510static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
b4de9051 511 struct pt_regs *regs)
1da177e4
LT
512{
513 struct net_device *dev = (struct net_device *)dev_id;
514 struct mv643xx_private *mp = netdev_priv(dev);
515 u32 eth_int_cause, eth_int_cause_ext = 0;
516 unsigned int port_num = mp->port_num;
517
518 /* Read interrupt cause registers */
519 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
7303fde8 520 ETH_INT_UNMASK_ALL;
468d09f8 521 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
1da177e4
LT
522 eth_int_cause_ext = mv_read(
523 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
7303fde8 524 ETH_INT_UNMASK_ALL_EXT;
468d09f8
DF
525 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
526 ~eth_int_cause_ext);
1da177e4 527 }
7303fde8 528
1da177e4 529 /* PHY status changed */
468d09f8 530 if (eth_int_cause_ext & ETH_INT_CAUSE_PHY) {
d0412d96
JC
531 struct ethtool_cmd cmd;
532
c28a4f89 533 if (mii_link_ok(&mp->mii)) {
d0412d96
JC
534 mii_ethtool_gset(&mp->mii, &cmd);
535 mv643xx_eth_update_pscr(dev, &cmd);
ff561eef
DF
536 mv643xx_eth_port_enable_tx(port_num,
537 ETH_TX_QUEUES_ENABLED);
c28a4f89
JC
538 if (!netif_carrier_ok(dev)) {
539 netif_carrier_on(dev);
ff561eef
DF
540 if (mp->tx_ring_size - mp->tx_desc_count >=
541 MAX_DESCS_PER_SKB)
d0412d96 542 netif_wake_queue(dev);
c28a4f89
JC
543 }
544 } else if (netif_carrier_ok(dev)) {
1da177e4 545 netif_stop_queue(dev);
c28a4f89 546 netif_carrier_off(dev);
1da177e4
LT
547 }
548 }
549
468d09f8
DF
550#ifdef MV643XX_NAPI
551 if (eth_int_cause & ETH_INT_CAUSE_RX) {
552 /* schedule the NAPI poll routine to maintain port */
553 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
554 ETH_INT_MASK_ALL);
555 /* wait for previous write to complete */
556 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
557
558 netif_rx_schedule(dev);
559 }
560#else
561 if (eth_int_cause & ETH_INT_CAUSE_RX)
562 mv643xx_eth_receive_queue(dev, INT_MAX);
5c537408 563#endif
468d09f8
DF
564 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
565 mv643xx_eth_free_completed_tx_descs(dev);
468d09f8 566
1da177e4
LT
567 /*
568 * If no real interrupt occured, exit.
569 * This can happen when using gigE interrupt coalescing mechanism.
570 */
571 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
572 return IRQ_NONE;
573
574 return IRQ_HANDLED;
575}
576
577#ifdef MV643XX_COAL
578
579/*
580 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
581 *
582 * DESCRIPTION:
583 * This routine sets the RX coalescing interrupt mechanism parameter.
584 * This parameter is a timeout counter, that counts in 64 t_clk
585 * chunks ; that when timeout event occurs a maskable interrupt
586 * occurs.
587 * The parameter is calculated using the tClk of the MV-643xx chip
588 * , and the required delay of the interrupt in usec.
589 *
590 * INPUT:
591 * unsigned int eth_port_num Ethernet port number
592 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
593 * unsigned int delay Delay in usec
594 *
595 * OUTPUT:
596 * Interrupt coalescing mechanism value is set in MV-643xx chip.
597 *
598 * RETURN:
599 * The interrupt coalescing value set in the gigE port.
600 *
601 */
602static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
603 unsigned int t_clk, unsigned int delay)
604{
605 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
606
607 /* Set RX Coalescing mechanism */
608 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
609 ((coal & 0x3fff) << 8) |
610 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
611 & 0xffc000ff));
612
613 return coal;
614}
615#endif
616
617/*
618 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
619 *
620 * DESCRIPTION:
621 * This routine sets the TX coalescing interrupt mechanism parameter.
622 * This parameter is a timeout counter, that counts in 64 t_clk
623 * chunks ; that when timeout event occurs a maskable interrupt
624 * occurs.
625 * The parameter is calculated using the t_cLK frequency of the
626 * MV-643xx chip and the required delay in the interrupt in uSec
627 *
628 * INPUT:
629 * unsigned int eth_port_num Ethernet port number
630 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
631 * unsigned int delay Delay in uSeconds
632 *
633 * OUTPUT:
634 * Interrupt coalescing mechanism value is set in MV-643xx chip.
635 *
636 * RETURN:
637 * The interrupt coalescing value set in the gigE port.
638 *
639 */
640static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
641 unsigned int t_clk, unsigned int delay)
642{
643 unsigned int coal;
644 coal = ((t_clk / 1000000) * delay) / 64;
645 /* Set TX Coalescing mechanism */
646 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
647 coal << 4);
648 return coal;
649}
650
1da177e4
LT
651/*
652 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
653 *
654 * DESCRIPTION:
655 * This function prepares a Rx chained list of descriptors and packet
656 * buffers in a form of a ring. The routine must be called after port
657 * initialization routine and before port start routine.
658 * The Ethernet SDMA engine uses CPU bus addresses to access the various
659 * devices in the system (i.e. DRAM). This function uses the ethernet
660 * struct 'virtual to physical' routine (set by the user) to set the ring
661 * with physical addresses.
662 *
663 * INPUT:
664 * struct mv643xx_private *mp Ethernet Port Control srtuct.
665 *
666 * OUTPUT:
667 * The routine updates the Ethernet port control struct with information
668 * regarding the Rx descriptors and buffers.
669 *
670 * RETURN:
671 * None.
672 */
673static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
674{
675 volatile struct eth_rx_desc *p_rx_desc;
676 int rx_desc_num = mp->rx_ring_size;
677 int i;
678
679 /* initialize the next_desc_ptr links in the Rx descriptors ring */
680 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
681 for (i = 0; i < rx_desc_num; i++) {
682 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
683 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
684 }
685
686 /* Save Rx desc pointer to driver struct. */
687 mp->rx_curr_desc_q = 0;
688 mp->rx_used_desc_q = 0;
689
690 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
1da177e4
LT
691}
692
693/*
694 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
695 *
696 * DESCRIPTION:
697 * This function prepares a Tx chained list of descriptors and packet
698 * buffers in a form of a ring. The routine must be called after port
699 * initialization routine and before port start routine.
700 * The Ethernet SDMA engine uses CPU bus addresses to access the various
701 * devices in the system (i.e. DRAM). This function uses the ethernet
702 * struct 'virtual to physical' routine (set by the user) to set the ring
703 * with physical addresses.
704 *
705 * INPUT:
706 * struct mv643xx_private *mp Ethernet Port Control srtuct.
707 *
708 * OUTPUT:
709 * The routine updates the Ethernet port control struct with information
710 * regarding the Tx descriptors and buffers.
711 *
712 * RETURN:
713 * None.
714 */
715static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
716{
717 int tx_desc_num = mp->tx_ring_size;
718 struct eth_tx_desc *p_tx_desc;
719 int i;
720
721 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
722 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
723 for (i = 0; i < tx_desc_num; i++) {
724 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
725 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
726 }
727
728 mp->tx_curr_desc_q = 0;
729 mp->tx_used_desc_q = 0;
1da177e4
LT
730
731 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
1da177e4
LT
732}
733
d0412d96
JC
734static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
735{
736 struct mv643xx_private *mp = netdev_priv(dev);
737 int err;
738
739 spin_lock_irq(&mp->lock);
740 err = mii_ethtool_sset(&mp->mii, cmd);
741 spin_unlock_irq(&mp->lock);
742
743 return err;
744}
745
746static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
747{
748 struct mv643xx_private *mp = netdev_priv(dev);
749 int err;
750
751 spin_lock_irq(&mp->lock);
752 err = mii_ethtool_gset(&mp->mii, cmd);
753 spin_unlock_irq(&mp->lock);
754
755 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
756 cmd->supported &= ~SUPPORTED_1000baseT_Half;
757 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
758
759 return err;
760}
761
ab4384a6
DF
762/*
763 * mv643xx_eth_open
764 *
765 * This function is called when openning the network device. The function
766 * should initialize all the hardware, initialize cyclic Rx/Tx
767 * descriptors chain and buffers and allocate an IRQ to the network
768 * device.
769 *
770 * Input : a pointer to the network device structure
771 *
772 * Output : zero of success , nonzero if fails.
773 */
774
775static int mv643xx_eth_open(struct net_device *dev)
1da177e4
LT
776{
777 struct mv643xx_private *mp = netdev_priv(dev);
778 unsigned int port_num = mp->port_num;
779 unsigned int size;
ab4384a6
DF
780 int err;
781
782 err = request_irq(dev->irq, mv643xx_eth_int_handler,
1fb9df5d 783 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
ab4384a6
DF
784 if (err) {
785 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
786 port_num);
787 return -EAGAIN;
788 }
1da177e4 789
1da177e4
LT
790 eth_port_init(mp);
791
1da177e4 792 memset(&mp->timeout, 0, sizeof(struct timer_list));
f78fb474 793 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
1da177e4
LT
794 mp->timeout.data = (unsigned long)dev;
795
1da177e4
LT
796 /* Allocate RX and TX skb rings */
797 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
798 GFP_KERNEL);
799 if (!mp->rx_skb) {
800 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
ab4384a6
DF
801 err = -ENOMEM;
802 goto out_free_irq;
1da177e4
LT
803 }
804 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
805 GFP_KERNEL);
806 if (!mp->tx_skb) {
807 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
ab4384a6
DF
808 err = -ENOMEM;
809 goto out_free_rx_skb;
1da177e4
LT
810 }
811
812 /* Allocate TX ring */
f98e36f1 813 mp->tx_desc_count = 0;
1da177e4
LT
814 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
815 mp->tx_desc_area_size = size;
816
817 if (mp->tx_sram_size) {
818 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
819 mp->tx_sram_size);
820 mp->tx_desc_dma = mp->tx_sram_addr;
821 } else
822 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
823 &mp->tx_desc_dma,
824 GFP_KERNEL);
825
826 if (!mp->p_tx_desc_area) {
827 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
828 dev->name, size);
ab4384a6
DF
829 err = -ENOMEM;
830 goto out_free_tx_skb;
1da177e4
LT
831 }
832 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
833 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
834
835 ether_init_tx_desc_ring(mp);
836
837 /* Allocate RX ring */
f98e36f1 838 mp->rx_desc_count = 0;
1da177e4
LT
839 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
840 mp->rx_desc_area_size = size;
841
842 if (mp->rx_sram_size) {
843 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
844 mp->rx_sram_size);
845 mp->rx_desc_dma = mp->rx_sram_addr;
846 } else
847 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
848 &mp->rx_desc_dma,
849 GFP_KERNEL);
850
851 if (!mp->p_rx_desc_area) {
852 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
853 dev->name, size);
854 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
855 dev->name);
856 if (mp->rx_sram_size)
dd09b1de 857 iounmap(mp->p_tx_desc_area);
1da177e4
LT
858 else
859 dma_free_coherent(NULL, mp->tx_desc_area_size,
860 mp->p_tx_desc_area, mp->tx_desc_dma);
ab4384a6
DF
861 err = -ENOMEM;
862 goto out_free_tx_skb;
1da177e4
LT
863 }
864 memset((void *)mp->p_rx_desc_area, 0, size);
865
866 ether_init_rx_desc_ring(mp);
867
f78fb474 868 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
1da177e4 869
d0412d96
JC
870 /* Clear any pending ethernet port interrupts */
871 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
872 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
873
ed9b5d45 874 eth_port_start(dev);
1da177e4
LT
875
876 /* Interrupt Coalescing */
877
878#ifdef MV643XX_COAL
879 mp->rx_int_coal =
880 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
881#endif
882
883 mp->tx_int_coal =
884 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
885
8f518703
DF
886 /* Unmask phy and link status changes interrupts */
887 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
7303fde8 888 ETH_INT_UNMASK_ALL_EXT);
1da177e4 889
8f518703 890 /* Unmask RX buffer and TX end interrupt */
7303fde8 891 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
d0412d96 892
1da177e4 893 return 0;
ab4384a6
DF
894
895out_free_tx_skb:
896 kfree(mp->tx_skb);
897out_free_rx_skb:
898 kfree(mp->rx_skb);
899out_free_irq:
900 free_irq(dev->irq, dev);
901
902 return err;
1da177e4
LT
903}
904
905static void mv643xx_eth_free_tx_rings(struct net_device *dev)
906{
907 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4
LT
908
909 /* Stop Tx Queues */
ff561eef 910 mv643xx_eth_port_disable_tx(mp->port_num);
1da177e4 911
ff561eef
DF
912 /* Free outstanding skb's on TX ring */
913 mv643xx_eth_free_all_tx_descs(dev);
914
915 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
1da177e4
LT
916
917 /* Free TX ring */
918 if (mp->tx_sram_size)
919 iounmap(mp->p_tx_desc_area);
920 else
921 dma_free_coherent(NULL, mp->tx_desc_area_size,
922 mp->p_tx_desc_area, mp->tx_desc_dma);
923}
924
925static void mv643xx_eth_free_rx_rings(struct net_device *dev)
926{
927 struct mv643xx_private *mp = netdev_priv(dev);
928 unsigned int port_num = mp->port_num;
929 int curr;
930
931 /* Stop RX Queues */
9f8dd319 932 mv643xx_eth_port_disable_rx(port_num);
1da177e4
LT
933
934 /* Free preallocated skb's on RX rings */
f98e36f1 935 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
1da177e4
LT
936 if (mp->rx_skb[curr]) {
937 dev_kfree_skb(mp->rx_skb[curr]);
f98e36f1 938 mp->rx_desc_count--;
1da177e4
LT
939 }
940 }
941
f98e36f1 942 if (mp->rx_desc_count)
1da177e4
LT
943 printk(KERN_ERR
944 "%s: Error in freeing Rx Ring. %d skb's still"
945 " stuck in RX Ring - ignoring them\n", dev->name,
f98e36f1 946 mp->rx_desc_count);
1da177e4
LT
947 /* Free RX ring */
948 if (mp->rx_sram_size)
949 iounmap(mp->p_rx_desc_area);
950 else
951 dma_free_coherent(NULL, mp->rx_desc_area_size,
952 mp->p_rx_desc_area, mp->rx_desc_dma);
953}
954
955/*
956 * mv643xx_eth_stop
957 *
958 * This function is used when closing the network device.
959 * It updates the hardware,
960 * release all memory that holds buffers and descriptors and release the IRQ.
961 * Input : a pointer to the device structure
962 * Output : zero if success , nonzero if fails
963 */
964
ab4384a6 965static int mv643xx_eth_stop(struct net_device *dev)
1da177e4
LT
966{
967 struct mv643xx_private *mp = netdev_priv(dev);
968 unsigned int port_num = mp->port_num;
969
c2e5b352 970 /* Mask all interrupts on ethernet port */
7303fde8 971 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
c2e5b352 972 /* wait for previous write to complete */
8f518703
DF
973 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
974
975#ifdef MV643XX_NAPI
976 netif_poll_disable(dev);
977#endif
1da177e4
LT
978 netif_carrier_off(dev);
979 netif_stop_queue(dev);
980
1da177e4
LT
981 eth_port_reset(mp->port_num);
982
8f518703
DF
983 mv643xx_eth_free_tx_rings(dev);
984 mv643xx_eth_free_rx_rings(dev);
1da177e4 985
8f518703
DF
986#ifdef MV643XX_NAPI
987 netif_poll_enable(dev);
988#endif
1da177e4 989
1da177e4 990 free_irq(dev->irq, dev);
1da177e4
LT
991
992 return 0;
993}
994
995#ifdef MV643XX_NAPI
1da177e4
LT
996/*
997 * mv643xx_poll
998 *
999 * This function is used in case of NAPI
1000 */
1001static int mv643xx_poll(struct net_device *dev, int *budget)
1002{
1003 struct mv643xx_private *mp = netdev_priv(dev);
1004 int done = 1, orig_budget, work_done;
1005 unsigned int port_num = mp->port_num;
1da177e4
LT
1006
1007#ifdef MV643XX_TX_FAST_REFILL
1008 if (++mp->tx_clean_threshold > 5) {
ff561eef 1009 mv643xx_eth_free_completed_tx_descs(dev);
1da177e4 1010 mp->tx_clean_threshold = 0;
1da177e4
LT
1011 }
1012#endif
1013
1014 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1015 != (u32) mp->rx_used_desc_q) {
1016 orig_budget = *budget;
1017 if (orig_budget > dev->quota)
1018 orig_budget = dev->quota;
1019 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1da177e4
LT
1020 *budget -= work_done;
1021 dev->quota -= work_done;
1022 if (work_done >= orig_budget)
1023 done = 0;
1024 }
1025
1026 if (done) {
8f518703 1027 netif_rx_complete(dev);
1da177e4
LT
1028 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1029 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1030 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
7303fde8 1031 ETH_INT_UNMASK_ALL);
1da177e4
LT
1032 }
1033
1034 return done ? 0 : 1;
1035}
1036#endif
1037
c8aaea25
DF
1038/**
1039 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1040 *
1041 * Hardware can't handle unaligned fragments smaller than 9 bytes.
f7ea3337
PJ
1042 * This helper function detects that case.
1043 */
1044
1045static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1046{
b4de9051
DF
1047 unsigned int frag;
1048 skb_frag_t *fragp;
f7ea3337 1049
b4de9051
DF
1050 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1051 fragp = &skb_shinfo(skb)->frags[frag];
1052 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1053 return 1;
1054 }
1055 return 0;
f7ea3337
PJ
1056}
1057
c8aaea25
DF
1058/**
1059 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1060 */
1061static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1062{
1063 int tx_desc_curr;
1064
c8aaea25 1065 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
c8aaea25 1066
ff561eef 1067 tx_desc_curr = mp->tx_curr_desc_q;
c8aaea25
DF
1068 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1069
1070 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1071
1072 return tx_desc_curr;
1073}
1074
1075/**
1076 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1da177e4 1077 *
c8aaea25
DF
1078 * Ensure the data for each fragment to be transmitted is mapped properly,
1079 * then fill in descriptors in the tx hw queue.
1da177e4 1080 */
c8aaea25
DF
1081static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1082 struct sk_buff *skb)
1da177e4 1083{
c8aaea25
DF
1084 int frag;
1085 int tx_index;
1086 struct eth_tx_desc *desc;
1da177e4 1087
c8aaea25
DF
1088 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1089 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1090
1091 tx_index = eth_alloc_tx_desc_index(mp);
1092 desc = &mp->p_tx_desc_area[tx_index];
1093
1094 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1095 /* Last Frag enables interrupt and frees the skb */
1096 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1097 desc->cmd_sts |= ETH_ZERO_PADDING |
1098 ETH_TX_LAST_DESC |
1099 ETH_TX_ENABLE_INTERRUPT;
1100 mp->tx_skb[tx_index] = skb;
1101 } else
1102 mp->tx_skb[tx_index] = 0;
1103
1104 desc = &mp->p_tx_desc_area[tx_index];
1105 desc->l4i_chk = 0;
1106 desc->byte_cnt = this_frag->size;
1107 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1108 this_frag->page_offset,
1109 this_frag->size,
1110 DMA_TO_DEVICE);
1da177e4 1111 }
c8aaea25 1112}
1da177e4 1113
c8aaea25
DF
1114/**
1115 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1116 *
1117 * Ensure the data for an skb to be transmitted is mapped properly,
1118 * then fill in descriptors in the tx hw queue and start the hardware.
1119 */
ff561eef
DF
1120static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1121 struct sk_buff *skb)
c8aaea25
DF
1122{
1123 int tx_index;
1124 struct eth_tx_desc *desc;
1125 u32 cmd_sts;
1126 int length;
ff561eef 1127 int nr_frags = skb_shinfo(skb)->nr_frags;
1da177e4 1128
c8aaea25 1129 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1da177e4 1130
c8aaea25
DF
1131 tx_index = eth_alloc_tx_desc_index(mp);
1132 desc = &mp->p_tx_desc_area[tx_index];
1133
ff561eef 1134 if (nr_frags) {
c8aaea25
DF
1135 eth_tx_fill_frag_descs(mp, skb);
1136
1137 length = skb_headlen(skb);
1138 mp->tx_skb[tx_index] = 0;
1139 } else {
1140 cmd_sts |= ETH_ZERO_PADDING |
1141 ETH_TX_LAST_DESC |
1142 ETH_TX_ENABLE_INTERRUPT;
1143 length = skb->len;
1144 mp->tx_skb[tx_index] = skb;
f7ea3337
PJ
1145 }
1146
c8aaea25
DF
1147 desc->byte_cnt = length;
1148 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1da177e4 1149
c8aaea25
DF
1150 if (skb->ip_summed == CHECKSUM_HW) {
1151 BUG_ON(skb->protocol != ETH_P_IP);
1152
1153 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1154 ETH_GEN_IP_V_4_CHECKSUM |
1155 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1156
1157 switch (skb->nh.iph->protocol) {
1158 case IPPROTO_UDP:
1159 cmd_sts |= ETH_UDP_FRAME;
1160 desc->l4i_chk = skb->h.uh->check;
1161 break;
1162 case IPPROTO_TCP:
1163 desc->l4i_chk = skb->h.th->check;
1164 break;
1165 default:
1166 BUG();
1da177e4 1167 }
1da177e4 1168 } else {
c8aaea25
DF
1169 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1170 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1171 desc->l4i_chk = 0;
1172 }
1da177e4 1173
c8aaea25
DF
1174 /* ensure all other descriptors are written before first cmd_sts */
1175 wmb();
1176 desc->cmd_sts = cmd_sts;
1da177e4 1177
c8aaea25
DF
1178 /* ensure all descriptors are written before poking hardware */
1179 wmb();
ff561eef 1180 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1da177e4 1181
ff561eef 1182 mp->tx_desc_count += nr_frags + 1;
c8aaea25 1183}
1da177e4 1184
c8aaea25
DF
1185/**
1186 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1187 *
1188 */
1189static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1190{
1191 struct mv643xx_private *mp = netdev_priv(dev);
1192 struct net_device_stats *stats = &mp->stats;
1193 unsigned long flags;
1da177e4 1194
c8aaea25
DF
1195 BUG_ON(netif_queue_stopped(dev));
1196 BUG_ON(skb == NULL);
94843566
DF
1197
1198 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1199 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1200 netif_stop_queue(dev);
1201 return 1;
1202 }
1da177e4 1203
c8aaea25 1204 if (has_tiny_unaligned_frags(skb)) {
364c6bad 1205 if (__skb_linearize(skb)) {
c8aaea25
DF
1206 stats->tx_dropped++;
1207 printk(KERN_DEBUG "%s: failed to linearize tiny "
1208 "unaligned fragment\n", dev->name);
1209 return 1;
1da177e4
LT
1210 }
1211 }
f7ea3337 1212
c8aaea25 1213 spin_lock_irqsave(&mp->lock, flags);
1da177e4 1214
ff561eef
DF
1215 eth_tx_submit_descs_for_skb(mp, skb);
1216 stats->tx_bytes = skb->len;
1da177e4
LT
1217 stats->tx_packets++;
1218 dev->trans_start = jiffies;
1219
c8aaea25
DF
1220 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1221 netif_stop_queue(dev);
1222
1da177e4
LT
1223 spin_unlock_irqrestore(&mp->lock, flags);
1224
1225 return 0; /* success */
1226}
1227
1228/*
1229 * mv643xx_eth_get_stats
1230 *
1231 * Returns a pointer to the interface statistics.
1232 *
1233 * Input : dev - a pointer to the required interface
1234 *
1235 * Output : a pointer to the interface's statistics
1236 */
1237
1238static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1239{
1240 struct mv643xx_private *mp = netdev_priv(dev);
1241
1242 return &mp->stats;
1243}
1244
63c9e549 1245#ifdef CONFIG_NET_POLL_CONTROLLER
63c9e549
DF
1246static void mv643xx_netpoll(struct net_device *netdev)
1247{
1248 struct mv643xx_private *mp = netdev_priv(netdev);
c2e5b352
DF
1249 int port_num = mp->port_num;
1250
7303fde8 1251 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
c2e5b352
DF
1252 /* wait for previous write to complete */
1253 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
63c9e549 1254
63c9e549 1255 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
c2e5b352 1256
7303fde8 1257 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
63c9e549
DF
1258}
1259#endif
1260
d0412d96
JC
1261static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1262 int speed, int duplex,
1263 struct ethtool_cmd *cmd)
1264{
1265 struct mv643xx_private *mp = netdev_priv(dev);
1266
1267 memset(cmd, 0, sizeof(*cmd));
1268
1269 cmd->port = PORT_MII;
1270 cmd->transceiver = XCVR_INTERNAL;
1271 cmd->phy_address = phy_address;
1272
1273 if (speed == 0) {
1274 cmd->autoneg = AUTONEG_ENABLE;
1275 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1276 cmd->speed = SPEED_100;
1277 cmd->advertising = ADVERTISED_10baseT_Half |
1278 ADVERTISED_10baseT_Full |
1279 ADVERTISED_100baseT_Half |
1280 ADVERTISED_100baseT_Full;
1281 if (mp->mii.supports_gmii)
1282 cmd->advertising |= ADVERTISED_1000baseT_Full;
1283 } else {
1284 cmd->autoneg = AUTONEG_DISABLE;
1285 cmd->speed = speed;
1286 cmd->duplex = duplex;
1287 }
1288}
1289
1da177e4
LT
1290/*/
1291 * mv643xx_eth_probe
1292 *
1293 * First function called after registering the network device.
1294 * It's purpose is to initialize the device as an ethernet device,
1295 * fill the ethernet device structure with pointers * to functions,
1296 * and set the MAC address of the interface
1297 *
1298 * Input : struct device *
1299 * Output : -ENOMEM if failed , 0 if success
1300 */
3ae5eaec 1301static int mv643xx_eth_probe(struct platform_device *pdev)
1da177e4 1302{
1da177e4
LT
1303 struct mv643xx_eth_platform_data *pd;
1304 int port_num = pdev->id;
1305 struct mv643xx_private *mp;
1306 struct net_device *dev;
1307 u8 *p;
1308 struct resource *res;
1309 int err;
d0412d96 1310 struct ethtool_cmd cmd;
01999873
DF
1311 int duplex = DUPLEX_HALF;
1312 int speed = 0; /* default to auto-negotiation */
1da177e4
LT
1313
1314 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1315 if (!dev)
1316 return -ENOMEM;
1317
3ae5eaec 1318 platform_set_drvdata(pdev, dev);
1da177e4
LT
1319
1320 mp = netdev_priv(dev);
1321
1322 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1323 BUG_ON(!res);
1324 dev->irq = res->start;
1325
1326 mp->port_num = port_num;
1327
1328 dev->open = mv643xx_eth_open;
1329 dev->stop = mv643xx_eth_stop;
1330 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1331 dev->get_stats = mv643xx_eth_get_stats;
1332 dev->set_mac_address = mv643xx_eth_set_mac_address;
1333 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1334
1335 /* No need to Tx Timeout */
1336 dev->tx_timeout = mv643xx_eth_tx_timeout;
1337#ifdef MV643XX_NAPI
1338 dev->poll = mv643xx_poll;
1339 dev->weight = 64;
1340#endif
1341
63c9e549
DF
1342#ifdef CONFIG_NET_POLL_CONTROLLER
1343 dev->poll_controller = mv643xx_netpoll;
1344#endif
1345
1da177e4
LT
1346 dev->watchdog_timeo = 2 * HZ;
1347 dev->tx_queue_len = mp->tx_ring_size;
1348 dev->base_addr = 0;
1349 dev->change_mtu = mv643xx_eth_change_mtu;
d0412d96 1350 dev->do_ioctl = mv643xx_eth_do_ioctl;
1da177e4
LT
1351 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1352
1353#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1354#ifdef MAX_SKB_FRAGS
1355 /*
1356 * Zero copy can only work if we use Discovery II memory. Else, we will
1357 * have to map the buffers to ISA memory which is only 16 MB
1358 */
63890576 1359 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1da177e4
LT
1360#endif
1361#endif
1362
1363 /* Configure the timeout task */
1364 INIT_WORK(&mp->tx_timeout_task,
1365 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1366
1367 spin_lock_init(&mp->lock);
1368
1369 /* set default config values */
1370 eth_port_uc_addr_get(dev, dev->dev_addr);
1da177e4
LT
1371 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1372 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1373
1374 pd = pdev->dev.platform_data;
1375 if (pd) {
01999873 1376 if (pd->mac_addr)
1da177e4
LT
1377 memcpy(dev->dev_addr, pd->mac_addr, 6);
1378
1379 if (pd->phy_addr || pd->force_phy_addr)
1380 ethernet_phy_set(port_num, pd->phy_addr);
1381
1da177e4
LT
1382 if (pd->rx_queue_size)
1383 mp->rx_ring_size = pd->rx_queue_size;
1384
1385 if (pd->tx_queue_size)
1386 mp->tx_ring_size = pd->tx_queue_size;
1387
1388 if (pd->tx_sram_size) {
1389 mp->tx_sram_size = pd->tx_sram_size;
1390 mp->tx_sram_addr = pd->tx_sram_addr;
1391 }
1392
1393 if (pd->rx_sram_size) {
1394 mp->rx_sram_size = pd->rx_sram_size;
1395 mp->rx_sram_addr = pd->rx_sram_addr;
1396 }
01999873
DF
1397
1398 duplex = pd->duplex;
1399 speed = pd->speed;
1da177e4
LT
1400 }
1401
c28a4f89
JC
1402 /* Hook up MII support for ethtool */
1403 mp->mii.dev = dev;
1404 mp->mii.mdio_read = mv643xx_mdio_read;
1405 mp->mii.mdio_write = mv643xx_mdio_write;
1406 mp->mii.phy_id = ethernet_phy_get(port_num);
1407 mp->mii.phy_id_mask = 0x3f;
1408 mp->mii.reg_num_mask = 0x1f;
1409
1da177e4
LT
1410 err = ethernet_phy_detect(port_num);
1411 if (err) {
1412 pr_debug("MV643xx ethernet port %d: "
1413 "No PHY detected at addr %d\n",
1414 port_num, ethernet_phy_get(port_num));
d0412d96 1415 goto out;
1da177e4
LT
1416 }
1417
01999873 1418 ethernet_phy_reset(port_num);
c28a4f89 1419 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
d0412d96
JC
1420 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1421 mv643xx_eth_update_pscr(dev, &cmd);
1422 mv643xx_set_settings(dev, &cmd);
c28a4f89 1423
b0b8dab2
OH
1424 SET_MODULE_OWNER(dev);
1425 SET_NETDEV_DEV(dev, &pdev->dev);
1da177e4
LT
1426 err = register_netdev(dev);
1427 if (err)
1428 goto out;
1429
1430 p = dev->dev_addr;
1431 printk(KERN_NOTICE
1432 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1433 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1434
1435 if (dev->features & NETIF_F_SG)
1436 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1437
1438 if (dev->features & NETIF_F_IP_CSUM)
1439 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1440 dev->name);
1441
1442#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1443 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1444#endif
1445
1446#ifdef MV643XX_COAL
1447 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1448 dev->name);
1449#endif
1450
1451#ifdef MV643XX_NAPI
1452 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1453#endif
1454
b1529871
ND
1455 if (mp->tx_sram_size > 0)
1456 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1457
1da177e4
LT
1458 return 0;
1459
1460out:
1461 free_netdev(dev);
1462
1463 return err;
1464}
1465
3ae5eaec 1466static int mv643xx_eth_remove(struct platform_device *pdev)
1da177e4 1467{
3ae5eaec 1468 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
1469
1470 unregister_netdev(dev);
1471 flush_scheduled_work();
1472
1473 free_netdev(dev);
3ae5eaec 1474 platform_set_drvdata(pdev, NULL);
1da177e4
LT
1475 return 0;
1476}
1477
3ae5eaec 1478static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1da177e4 1479{
1da177e4
LT
1480 struct resource *res;
1481
1482 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1483
1484 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485 if (res == NULL)
1486 return -ENODEV;
1487
1488 mv643xx_eth_shared_base = ioremap(res->start,
1489 MV643XX_ETH_SHARED_REGS_SIZE);
1490 if (mv643xx_eth_shared_base == NULL)
1491 return -ENOMEM;
1492
1493 return 0;
1494
1495}
1496
3ae5eaec 1497static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1da177e4
LT
1498{
1499 iounmap(mv643xx_eth_shared_base);
1500 mv643xx_eth_shared_base = NULL;
1501
1502 return 0;
1503}
1504
3ae5eaec 1505static struct platform_driver mv643xx_eth_driver = {
1da177e4
LT
1506 .probe = mv643xx_eth_probe,
1507 .remove = mv643xx_eth_remove,
3ae5eaec
RK
1508 .driver = {
1509 .name = MV643XX_ETH_NAME,
1510 },
1da177e4
LT
1511};
1512
3ae5eaec 1513static struct platform_driver mv643xx_eth_shared_driver = {
1da177e4
LT
1514 .probe = mv643xx_eth_shared_probe,
1515 .remove = mv643xx_eth_shared_remove,
3ae5eaec
RK
1516 .driver = {
1517 .name = MV643XX_ETH_SHARED_NAME,
1518 },
1da177e4
LT
1519};
1520
1521/*
1522 * mv643xx_init_module
1523 *
1524 * Registers the network drivers into the Linux kernel
1525 *
1526 * Input : N/A
1527 *
1528 * Output : N/A
1529 */
1530static int __init mv643xx_init_module(void)
1531{
1532 int rc;
1533
3ae5eaec 1534 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1da177e4 1535 if (!rc) {
3ae5eaec 1536 rc = platform_driver_register(&mv643xx_eth_driver);
1da177e4 1537 if (rc)
3ae5eaec 1538 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1539 }
1540 return rc;
1541}
1542
1543/*
1544 * mv643xx_cleanup_module
1545 *
1546 * Registers the network drivers into the Linux kernel
1547 *
1548 * Input : N/A
1549 *
1550 * Output : N/A
1551 */
1552static void __exit mv643xx_cleanup_module(void)
1553{
3ae5eaec
RK
1554 platform_driver_unregister(&mv643xx_eth_driver);
1555 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1556}
1557
1558module_init(mv643xx_init_module);
1559module_exit(mv643xx_cleanup_module);
1560
1561MODULE_LICENSE("GPL");
1562MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1563 " and Dale Farnsworth");
1564MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1565
1566/*
1567 * The second part is the low level driver of the gigE ethernet ports.
1568 */
1569
1570/*
1571 * Marvell's Gigabit Ethernet controller low level driver
1572 *
1573 * DESCRIPTION:
1574 * This file introduce low level API to Marvell's Gigabit Ethernet
1575 * controller. This Gigabit Ethernet Controller driver API controls
1576 * 1) Operations (i.e. port init, start, reset etc').
1577 * 2) Data flow (i.e. port send, receive etc').
1578 * Each Gigabit Ethernet port is controlled via
1579 * struct mv643xx_private.
1580 * This struct includes user configuration information as well as
1581 * driver internal data needed for its operations.
1582 *
1583 * Supported Features:
1584 * - This low level driver is OS independent. Allocating memory for
1585 * the descriptor rings and buffers are not within the scope of
1586 * this driver.
1587 * - The user is free from Rx/Tx queue managing.
1588 * - This low level driver introduce functionality API that enable
1589 * the to operate Marvell's Gigabit Ethernet Controller in a
1590 * convenient way.
1591 * - Simple Gigabit Ethernet port operation API.
1592 * - Simple Gigabit Ethernet port data flow API.
1593 * - Data flow and operation API support per queue functionality.
1594 * - Support cached descriptors for better performance.
1595 * - Enable access to all four DRAM banks and internal SRAM memory
1596 * spaces.
1597 * - PHY access and control API.
1598 * - Port control register configuration API.
1599 * - Full control over Unicast and Multicast MAC configurations.
1600 *
1601 * Operation flow:
1602 *
1603 * Initialization phase
1604 * This phase complete the initialization of the the
1605 * mv643xx_private struct.
1606 * User information regarding port configuration has to be set
1607 * prior to calling the port initialization routine.
1608 *
1609 * In this phase any port Tx/Rx activity is halted, MIB counters
1610 * are cleared, PHY address is set according to user parameter and
1611 * access to DRAM and internal SRAM memory spaces.
1612 *
1613 * Driver ring initialization
1614 * Allocating memory for the descriptor rings and buffers is not
1615 * within the scope of this driver. Thus, the user is required to
1616 * allocate memory for the descriptors ring and buffers. Those
1617 * memory parameters are used by the Rx and Tx ring initialization
1618 * routines in order to curve the descriptor linked list in a form
1619 * of a ring.
1620 * Note: Pay special attention to alignment issues when using
1621 * cached descriptors/buffers. In this phase the driver store
1622 * information in the mv643xx_private struct regarding each queue
1623 * ring.
1624 *
1625 * Driver start
1626 * This phase prepares the Ethernet port for Rx and Tx activity.
1627 * It uses the information stored in the mv643xx_private struct to
1628 * initialize the various port registers.
1629 *
1630 * Data flow:
1631 * All packet references to/from the driver are done using
1632 * struct pkt_info.
1633 * This struct is a unified struct used with Rx and Tx operations.
1634 * This way the user is not required to be familiar with neither
1635 * Tx nor Rx descriptors structures.
1636 * The driver's descriptors rings are management by indexes.
1637 * Those indexes controls the ring resources and used to indicate
1638 * a SW resource error:
1639 * 'current'
1640 * This index points to the current available resource for use. For
1641 * example in Rx process this index will point to the descriptor
1642 * that will be passed to the user upon calling the receive
1643 * routine. In Tx process, this index will point to the descriptor
1644 * that will be assigned with the user packet info and transmitted.
1645 * 'used'
1646 * This index points to the descriptor that need to restore its
1647 * resources. For example in Rx process, using the Rx buffer return
1648 * API will attach the buffer returned in packet info to the
1649 * descriptor pointed by 'used'. In Tx process, using the Tx
1650 * descriptor return will merely return the user packet info with
1651 * the command status of the transmitted buffer pointed by the
1652 * 'used' index. Nevertheless, it is essential to use this routine
1653 * to update the 'used' index.
1654 * 'first'
1655 * This index supports Tx Scatter-Gather. It points to the first
1656 * descriptor of a packet assembled of multiple buffers. For
1657 * example when in middle of Such packet we have a Tx resource
1658 * error the 'curr' index get the value of 'first' to indicate
1659 * that the ring returned to its state before trying to transmit
1660 * this packet.
1661 *
1662 * Receive operation:
1663 * The eth_port_receive API set the packet information struct,
1664 * passed by the caller, with received information from the
1665 * 'current' SDMA descriptor.
1666 * It is the user responsibility to return this resource back
1667 * to the Rx descriptor ring to enable the reuse of this source.
1668 * Return Rx resource is done using the eth_rx_return_buff API.
1669 *
1da177e4
LT
1670 * Prior to calling the initialization routine eth_port_init() the user
1671 * must set the following fields under mv643xx_private struct:
1672 * port_num User Ethernet port number.
1da177e4
LT
1673 * port_config User port configuration value.
1674 * port_config_extend User port config extend value.
1675 * port_sdma_config User port SDMA config value.
1676 * port_serial_control User port serial control value.
1677 *
1678 * This driver data flow is done using the struct pkt_info which
1679 * is a unified struct for Rx and Tx operations:
1680 *
1681 * byte_cnt Tx/Rx descriptor buffer byte count.
1682 * l4i_chk CPU provided TCP Checksum. For Tx operation
1683 * only.
1684 * cmd_sts Tx/Rx descriptor command status.
1685 * buf_ptr Tx/Rx descriptor buffer pointer.
1686 * return_info Tx/Rx user resource return information.
1687 */
1688
1da177e4
LT
1689/* PHY routines */
1690static int ethernet_phy_get(unsigned int eth_port_num);
1691static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1692
1693/* Ethernet Port routines */
cf4086c7 1694static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1da177e4
LT
1695
1696/*
1697 * eth_port_init - Initialize the Ethernet port driver
1698 *
1699 * DESCRIPTION:
1700 * This function prepares the ethernet port to start its activity:
1701 * 1) Completes the ethernet port driver struct initialization toward port
1702 * start routine.
1703 * 2) Resets the device to a quiescent state in case of warm reboot.
1704 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1705 * 4) Clean MAC tables. The reset status of those tables is unknown.
1706 * 5) Set PHY address.
1707 * Note: Call this routine prior to eth_port_start routine and after
1708 * setting user values in the user fields of Ethernet port control
1709 * struct.
1710 *
1711 * INPUT:
1712 * struct mv643xx_private *mp Ethernet port control struct
1713 *
1714 * OUTPUT:
1715 * See description.
1716 *
1717 * RETURN:
1718 * None.
1719 */
1720static void eth_port_init(struct mv643xx_private *mp)
1721{
1da177e4 1722 mp->rx_resource_err = 0;
1da177e4
LT
1723
1724 eth_port_reset(mp->port_num);
1725
1726 eth_port_init_mac_tables(mp->port_num);
1da177e4
LT
1727}
1728
1729/*
1730 * eth_port_start - Start the Ethernet port activity.
1731 *
1732 * DESCRIPTION:
1733 * This routine prepares the Ethernet port for Rx and Tx activity:
1734 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1735 * has been initialized a descriptor's ring (using
1736 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1737 * 2. Initialize and enable the Ethernet configuration port by writing to
1738 * the port's configuration and command registers.
1739 * 3. Initialize and enable the SDMA by writing to the SDMA's
1740 * configuration and command registers. After completing these steps,
1741 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1742 *
1743 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1744 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1745 * and ether_init_rx_desc_ring for Rx queues).
1746 *
1747 * INPUT:
ed9b5d45 1748 * dev - a pointer to the required interface
1da177e4
LT
1749 *
1750 * OUTPUT:
1751 * Ethernet port is ready to receive and transmit.
1752 *
1753 * RETURN:
1754 * None.
1755 */
ed9b5d45 1756static void eth_port_start(struct net_device *dev)
1da177e4 1757{
ed9b5d45 1758 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4
LT
1759 unsigned int port_num = mp->port_num;
1760 int tx_curr_desc, rx_curr_desc;
d0412d96
JC
1761 u32 pscr;
1762 struct ethtool_cmd ethtool_cmd;
1da177e4
LT
1763
1764 /* Assignment of Tx CTRP of given queue */
1765 tx_curr_desc = mp->tx_curr_desc_q;
1766 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1767 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1768
1769 /* Assignment of Rx CRDP of given queue */
1770 rx_curr_desc = mp->rx_curr_desc_q;
1771 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1772 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1773
1774 /* Add the assigned Ethernet address to the port's address table */
ed9b5d45 1775 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
1776
1777 /* Assign port configuration and command. */
01999873
DF
1778 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1779 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1780
1781 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1782 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1da177e4 1783
d0412d96 1784 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
01999873
DF
1785
1786 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
d0412d96 1787 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4 1788
d0412d96
JC
1789 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1790 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1791 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1792 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1793 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1da177e4 1794
d0412d96 1795 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4 1796
d0412d96
JC
1797 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1798 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4
LT
1799
1800 /* Assign port SDMA configuration */
01999873
DF
1801 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1802 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1da177e4
LT
1803
1804 /* Enable port Rx. */
ff561eef 1805 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
8f543718
DF
1806
1807 /* Disable port bandwidth limits by clearing MTU register */
1808 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
d0412d96
JC
1809
1810 /* save phy settings across reset */
1811 mv643xx_get_settings(dev, &ethtool_cmd);
1812 ethernet_phy_reset(mp->port_num);
1813 mv643xx_set_settings(dev, &ethtool_cmd);
1da177e4
LT
1814}
1815
1816/*
1817 * eth_port_uc_addr_set - This function Set the port Unicast address.
1818 *
1819 * DESCRIPTION:
1820 * This function Set the port Ethernet MAC address.
1821 *
1822 * INPUT:
1823 * unsigned int eth_port_num Port number.
1824 * char * p_addr Address to be set
1825 *
1826 * OUTPUT:
cf4086c7
DF
1827 * Set MAC address low and high registers. also calls
1828 * eth_port_set_filter_table_entry() to set the unicast
1829 * table with the proper information.
1da177e4
LT
1830 *
1831 * RETURN:
1832 * N/A.
1833 *
1834 */
1835static void eth_port_uc_addr_set(unsigned int eth_port_num,
1836 unsigned char *p_addr)
1837{
1838 unsigned int mac_h;
1839 unsigned int mac_l;
cf4086c7 1840 int table;
1da177e4
LT
1841
1842 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1843 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1844 (p_addr[3] << 0);
1845
1846 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1847 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1848
1849 /* Accept frames of this address */
cf4086c7
DF
1850 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
1851 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1da177e4
LT
1852}
1853
1854/*
1855 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1856 * (MAC address) from the ethernet hw registers.
1857 *
1858 * DESCRIPTION:
1859 * This function retrieves the port Ethernet MAC address.
1860 *
1861 * INPUT:
1862 * unsigned int eth_port_num Port number.
1863 * char *MacAddr pointer where the MAC address is stored
1864 *
1865 * OUTPUT:
1866 * Copy the MAC address to the location pointed to by MacAddr
1867 *
1868 * RETURN:
1869 * N/A.
1870 *
1871 */
1872static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1873{
1874 struct mv643xx_private *mp = netdev_priv(dev);
1875 unsigned int mac_h;
1876 unsigned int mac_l;
1877
1878 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1879 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1880
1881 p_addr[0] = (mac_h >> 24) & 0xff;
1882 p_addr[1] = (mac_h >> 16) & 0xff;
1883 p_addr[2] = (mac_h >> 8) & 0xff;
1884 p_addr[3] = mac_h & 0xff;
1885 p_addr[4] = (mac_l >> 8) & 0xff;
1886 p_addr[5] = mac_l & 0xff;
1887}
1888
16e03018
DF
1889/*
1890 * The entries in each table are indexed by a hash of a packet's MAC
1891 * address. One bit in each entry determines whether the packet is
1892 * accepted. There are 4 entries (each 8 bits wide) in each register
1893 * of the table. The bits in each entry are defined as follows:
1894 * 0 Accept=1, Drop=0
1895 * 3-1 Queue (ETH_Q0=0)
1896 * 7-4 Reserved = 0;
1897 */
1898static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1899{
1900 unsigned int table_reg;
1901 unsigned int tbl_offset;
1902 unsigned int reg_offset;
1903
1904 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1905 reg_offset = entry % 4; /* Entry offset within the register */
1906
1907 /* Set "accepts frame bit" at specified table entry */
1908 table_reg = mv_read(table + tbl_offset);
1909 table_reg |= 0x01 << (8 * reg_offset);
1910 mv_write(table + tbl_offset, table_reg);
1911}
1912
1913/*
1914 * eth_port_mc_addr - Multicast address settings.
1915 *
1916 * The MV device supports multicast using two tables:
1917 * 1) Special Multicast Table for MAC addresses of the form
1918 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1919 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1920 * Table entries in the DA-Filter table.
1921 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1922 * is used as an index to the Other Multicast Table entries in the
1923 * DA-Filter table. This function calculates the CRC-8bit value.
1924 * In either case, eth_port_set_filter_table_entry() is then called
1925 * to set to set the actual table entry.
1926 */
1927static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1928{
1929 unsigned int mac_h;
1930 unsigned int mac_l;
1931 unsigned char crc_result = 0;
1932 int table;
1933 int mac_array[48];
1934 int crc[8];
1935 int i;
1936
1937 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1938 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1939 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1940 (eth_port_num);
1941 eth_port_set_filter_table_entry(table, p_addr[5]);
1942 return;
1943 }
1944
1945 /* Calculate CRC-8 out of the given address */
1946 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1947 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1948 (p_addr[4] << 8) | (p_addr[5] << 0);
1949
1950 for (i = 0; i < 32; i++)
1951 mac_array[i] = (mac_l >> i) & 0x1;
1952 for (i = 32; i < 48; i++)
1953 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1954
1955 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1956 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1957 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1958 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1959 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1960
1961 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1962 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1963 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1964 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1965 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1966 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1967 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1968
1969 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1970 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1971 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1972 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1973 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1974 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1975
1976 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1977 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1978 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1979 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1980 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1981 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1982
1983 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1984 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1985 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1986 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1987 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1988 mac_array[3] ^ mac_array[2];
1989
1990 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1991 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1992 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1993 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1994 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
1995 mac_array[4] ^ mac_array[3];
1996
1997 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1998 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1999 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2000 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2001 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2002 mac_array[4];
2003
2004 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2005 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2006 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2007 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2008 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2009
2010 for (i = 0; i < 8; i++)
2011 crc_result = crc_result | (crc[i] << i);
2012
2013 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2014 eth_port_set_filter_table_entry(table, crc_result);
2015}
2016
2017/*
2018 * Set the entire multicast list based on dev->mc_list.
2019 */
2020static void eth_port_set_multicast_list(struct net_device *dev)
2021{
2022
2023 struct dev_mc_list *mc_list;
2024 int i;
2025 int table_index;
2026 struct mv643xx_private *mp = netdev_priv(dev);
2027 unsigned int eth_port_num = mp->port_num;
2028
2029 /* If the device is in promiscuous mode or in all multicast mode,
2030 * we will fully populate both multicast tables with accept.
2031 * This is guaranteed to yield a match on all multicast addresses...
2032 */
2033 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2034 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
b4de9051
DF
2035 /* Set all entries in DA filter special multicast
2036 * table (Ex_dFSMT)
2037 * Set for ETH_Q0 for now
2038 * Bits
2039 * 0 Accept=1, Drop=0
2040 * 3-1 Queue ETH_Q0=0
2041 * 7-4 Reserved = 0;
2042 */
2043 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2044
2045 /* Set all entries in DA filter other multicast
2046 * table (Ex_dFOMT)
2047 * Set for ETH_Q0 for now
2048 * Bits
2049 * 0 Accept=1, Drop=0
2050 * 3-1 Queue ETH_Q0=0
2051 * 7-4 Reserved = 0;
2052 */
2053 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2054 }
16e03018
DF
2055 return;
2056 }
2057
2058 /* We will clear out multicast tables every time we get the list.
2059 * Then add the entire new list...
2060 */
2061 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2062 /* Clear DA filter special multicast table (Ex_dFSMT) */
2063 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2064 (eth_port_num) + table_index, 0);
2065
2066 /* Clear DA filter other multicast table (Ex_dFOMT) */
2067 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2068 (eth_port_num) + table_index, 0);
2069 }
2070
2071 /* Get pointer to net_device multicast list and add each one... */
2072 for (i = 0, mc_list = dev->mc_list;
2073 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2074 i++, mc_list = mc_list->next)
2075 if (mc_list->dmi_addrlen == 6)
2076 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2077}
2078
1da177e4
LT
2079/*
2080 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2081 *
2082 * DESCRIPTION:
2083 * Go through all the DA filter tables (Unicast, Special Multicast &
2084 * Other Multicast) and set each entry to 0.
2085 *
2086 * INPUT:
2087 * unsigned int eth_port_num Ethernet Port number.
2088 *
2089 * OUTPUT:
2090 * Multicast and Unicast packets are rejected.
2091 *
2092 * RETURN:
2093 * None.
2094 */
2095static void eth_port_init_mac_tables(unsigned int eth_port_num)
2096{
2097 int table_index;
2098
2099 /* Clear DA filter unicast table (Ex_dFUT) */
2100 for (table_index = 0; table_index <= 0xC; table_index += 4)
cf4086c7
DF
2101 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2102 (eth_port_num) + table_index, 0);
1da177e4
LT
2103
2104 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2105 /* Clear DA filter special multicast table (Ex_dFSMT) */
16e03018
DF
2106 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2107 (eth_port_num) + table_index, 0);
1da177e4 2108 /* Clear DA filter other multicast table (Ex_dFOMT) */
16e03018
DF
2109 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2110 (eth_port_num) + table_index, 0);
1da177e4
LT
2111 }
2112}
2113
2114/*
2115 * eth_clear_mib_counters - Clear all MIB counters
2116 *
2117 * DESCRIPTION:
2118 * This function clears all MIB counters of a specific ethernet port.
2119 * A read from the MIB counter will reset the counter.
2120 *
2121 * INPUT:
2122 * unsigned int eth_port_num Ethernet Port number.
2123 *
2124 * OUTPUT:
2125 * After reading all MIB counters, the counters resets.
2126 *
2127 * RETURN:
2128 * MIB counter value.
2129 *
2130 */
2131static void eth_clear_mib_counters(unsigned int eth_port_num)
2132{
2133 int i;
2134
2135 /* Perform dummy reads from MIB counters */
2136 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2137 i += 4)
2138 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2139}
2140
2141static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2142{
2143 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2144}
2145
2146static void eth_update_mib_counters(struct mv643xx_private *mp)
2147{
2148 struct mv643xx_mib_counters *p = &mp->mib_counters;
2149 int offset;
2150
2151 p->good_octets_received +=
2152 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2153 p->good_octets_received +=
2154 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2155
2156 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2157 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2158 offset += 4)
2159 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2160
2161 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2162 p->good_octets_sent +=
2163 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2164
2165 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2166 offset <= ETH_MIB_LATE_COLLISION;
2167 offset += 4)
2168 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2169}
2170
2171/*
2172 * ethernet_phy_detect - Detect whether a phy is present
2173 *
2174 * DESCRIPTION:
2175 * This function tests whether there is a PHY present on
2176 * the specified port.
2177 *
2178 * INPUT:
2179 * unsigned int eth_port_num Ethernet Port number.
2180 *
2181 * OUTPUT:
2182 * None
2183 *
2184 * RETURN:
2185 * 0 on success
2186 * -ENODEV on failure
2187 *
2188 */
2189static int ethernet_phy_detect(unsigned int port_num)
2190{
2191 unsigned int phy_reg_data0;
2192 int auto_neg;
2193
2194 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2195 auto_neg = phy_reg_data0 & 0x1000;
2196 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2197 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2198
2199 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2200 if ((phy_reg_data0 & 0x1000) == auto_neg)
2201 return -ENODEV; /* change didn't take */
2202
2203 phy_reg_data0 ^= 0x1000;
2204 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2205 return 0;
2206}
2207
2208/*
2209 * ethernet_phy_get - Get the ethernet port PHY address.
2210 *
2211 * DESCRIPTION:
2212 * This routine returns the given ethernet port PHY address.
2213 *
2214 * INPUT:
2215 * unsigned int eth_port_num Ethernet Port number.
2216 *
2217 * OUTPUT:
2218 * None.
2219 *
2220 * RETURN:
2221 * PHY address.
2222 *
2223 */
2224static int ethernet_phy_get(unsigned int eth_port_num)
2225{
2226 unsigned int reg_data;
2227
2228 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2229
2230 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2231}
2232
2233/*
2234 * ethernet_phy_set - Set the ethernet port PHY address.
2235 *
2236 * DESCRIPTION:
2237 * This routine sets the given ethernet port PHY address.
2238 *
2239 * INPUT:
2240 * unsigned int eth_port_num Ethernet Port number.
2241 * int phy_addr PHY address.
2242 *
2243 * OUTPUT:
2244 * None.
2245 *
2246 * RETURN:
2247 * None.
2248 *
2249 */
2250static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2251{
2252 u32 reg_data;
2253 int addr_shift = 5 * eth_port_num;
2254
2255 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2256 reg_data &= ~(0x1f << addr_shift);
2257 reg_data |= (phy_addr & 0x1f) << addr_shift;
2258 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2259}
2260
2261/*
2262 * ethernet_phy_reset - Reset Ethernet port PHY.
2263 *
2264 * DESCRIPTION:
2265 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2266 *
2267 * INPUT:
2268 * unsigned int eth_port_num Ethernet Port number.
2269 *
2270 * OUTPUT:
2271 * The PHY is reset.
2272 *
2273 * RETURN:
2274 * None.
2275 *
2276 */
2277static void ethernet_phy_reset(unsigned int eth_port_num)
2278{
2279 unsigned int phy_reg_data;
2280
2281 /* Reset the PHY */
2282 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2283 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2284 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
d0412d96
JC
2285
2286 /* wait for PHY to come out of reset */
2287 do {
2288 udelay(1);
2289 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2290 } while (phy_reg_data & 0x8000);
1da177e4
LT
2291}
2292
9f8dd319 2293static void mv643xx_eth_port_enable_tx(unsigned int port_num,
12a87c64 2294 unsigned int queues)
9f8dd319 2295{
12a87c64 2296 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
9f8dd319
DF
2297}
2298
2299static void mv643xx_eth_port_enable_rx(unsigned int port_num,
12a87c64 2300 unsigned int queues)
9f8dd319 2301{
12a87c64 2302 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
9f8dd319
DF
2303}
2304
2305static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2306{
12a87c64 2307 u32 queues;
9f8dd319
DF
2308
2309 /* Stop Tx port activity. Check port Tx activity. */
12a87c64 2310 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
9f8dd319 2311 & 0xFF;
12a87c64
DF
2312 if (queues) {
2313 /* Issue stop command for active queues only */
9f8dd319 2314 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
12a87c64 2315 (queues << 8));
9f8dd319
DF
2316
2317 /* Wait for all Tx activity to terminate. */
2318 /* Check port cause register that all Tx queues are stopped */
2319 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2320 & 0xFF)
2321 udelay(PHY_WAIT_MICRO_SECONDS);
2322
2323 /* Wait for Tx FIFO to empty */
2324 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2325 ETH_PORT_TX_FIFO_EMPTY)
2326 udelay(PHY_WAIT_MICRO_SECONDS);
2327 }
2328
12a87c64 2329 return queues;
9f8dd319
DF
2330}
2331
2332static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2333{
12a87c64 2334 u32 queues;
9f8dd319
DF
2335
2336 /* Stop Rx port activity. Check port Rx activity. */
12a87c64 2337 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
e38fd1a0 2338 & 0xFF;
12a87c64
DF
2339 if (queues) {
2340 /* Issue stop command for active queues only */
9f8dd319 2341 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
12a87c64 2342 (queues << 8));
9f8dd319
DF
2343
2344 /* Wait for all Rx activity to terminate. */
2345 /* Check port cause register that all Rx queues are stopped */
2346 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2347 & 0xFF)
2348 udelay(PHY_WAIT_MICRO_SECONDS);
2349 }
2350
12a87c64 2351 return queues;
9f8dd319
DF
2352}
2353
1da177e4
LT
2354/*
2355 * eth_port_reset - Reset Ethernet port
2356 *
2357 * DESCRIPTION:
2358 * This routine resets the chip by aborting any SDMA engine activity and
2359 * clearing the MIB counters. The Receiver and the Transmit unit are in
2360 * idle state after this command is performed and the port is disabled.
2361 *
2362 * INPUT:
2363 * unsigned int eth_port_num Ethernet Port number.
2364 *
2365 * OUTPUT:
2366 * Channel activity is halted.
2367 *
2368 * RETURN:
2369 * None.
2370 *
2371 */
2372static void eth_port_reset(unsigned int port_num)
2373{
2374 unsigned int reg_data;
2375
9f8dd319
DF
2376 mv643xx_eth_port_disable_tx(port_num);
2377 mv643xx_eth_port_disable_rx(port_num);
1da177e4
LT
2378
2379 /* Clear all MIB counters */
2380 eth_clear_mib_counters(port_num);
2381
2382 /* Reset the Enable bit in the Configuration Register */
2383 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
d0412d96
JC
2384 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2385 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2386 MV643XX_ETH_FORCE_LINK_PASS);
1da177e4
LT
2387 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2388}
2389
1da177e4 2390
1da177e4
LT
2391/*
2392 * eth_port_read_smi_reg - Read PHY registers
2393 *
2394 * DESCRIPTION:
2395 * This routine utilize the SMI interface to interact with the PHY in
2396 * order to perform PHY register read.
2397 *
2398 * INPUT:
2399 * unsigned int port_num Ethernet Port number.
2400 * unsigned int phy_reg PHY register address offset.
2401 * unsigned int *value Register value buffer.
2402 *
2403 * OUTPUT:
2404 * Write the value of a specified PHY register into given buffer.
2405 *
2406 * RETURN:
2407 * false if the PHY is busy or read data is not in valid state.
2408 * true otherwise.
2409 *
2410 */
2411static void eth_port_read_smi_reg(unsigned int port_num,
2412 unsigned int phy_reg, unsigned int *value)
2413{
2414 int phy_addr = ethernet_phy_get(port_num);
2415 unsigned long flags;
2416 int i;
2417
2418 /* the SMI register is a shared resource */
2419 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2420
2421 /* wait for the SMI register to become available */
2422 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2423 if (i == PHY_WAIT_ITERATIONS) {
2424 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2425 goto out;
2426 }
2427 udelay(PHY_WAIT_MICRO_SECONDS);
2428 }
2429
2430 mv_write(MV643XX_ETH_SMI_REG,
2431 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2432
2433 /* now wait for the data to be valid */
2434 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2435 if (i == PHY_WAIT_ITERATIONS) {
2436 printk("mv643xx PHY read timeout, port %d\n", port_num);
2437 goto out;
2438 }
2439 udelay(PHY_WAIT_MICRO_SECONDS);
2440 }
2441
2442 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2443out:
2444 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2445}
2446
2447/*
2448 * eth_port_write_smi_reg - Write to PHY registers
2449 *
2450 * DESCRIPTION:
2451 * This routine utilize the SMI interface to interact with the PHY in
2452 * order to perform writes to PHY registers.
2453 *
2454 * INPUT:
2455 * unsigned int eth_port_num Ethernet Port number.
2456 * unsigned int phy_reg PHY register address offset.
2457 * unsigned int value Register value.
2458 *
2459 * OUTPUT:
2460 * Write the given value to the specified PHY register.
2461 *
2462 * RETURN:
2463 * false if the PHY is busy.
2464 * true otherwise.
2465 *
2466 */
2467static void eth_port_write_smi_reg(unsigned int eth_port_num,
2468 unsigned int phy_reg, unsigned int value)
2469{
2470 int phy_addr;
2471 int i;
2472 unsigned long flags;
2473
2474 phy_addr = ethernet_phy_get(eth_port_num);
2475
2476 /* the SMI register is a shared resource */
2477 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2478
2479 /* wait for the SMI register to become available */
2480 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2481 if (i == PHY_WAIT_ITERATIONS) {
2482 printk("mv643xx PHY busy timeout, port %d\n",
2483 eth_port_num);
2484 goto out;
2485 }
2486 udelay(PHY_WAIT_MICRO_SECONDS);
2487 }
2488
2489 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2490 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2491out:
2492 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2493}
2494
c28a4f89
JC
2495/*
2496 * Wrappers for MII support library.
2497 */
2498static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2499{
2500 int val;
2501 struct mv643xx_private *mp = netdev_priv(dev);
2502
2503 eth_port_read_smi_reg(mp->port_num, location, &val);
2504 return val;
2505}
2506
2507static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2508{
2509 struct mv643xx_private *mp = netdev_priv(dev);
2510 eth_port_write_smi_reg(mp->port_num, location, val);
2511}
2512
1da177e4
LT
2513/*
2514 * eth_port_receive - Get received information from Rx ring.
2515 *
2516 * DESCRIPTION:
2517 * This routine returns the received data to the caller. There is no
2518 * data copying during routine operation. All information is returned
2519 * using pointer to packet information struct passed from the caller.
2520 * If the routine exhausts Rx ring resources then the resource error flag
2521 * is set.
2522 *
2523 * INPUT:
2524 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2525 * struct pkt_info *p_pkt_info User packet buffer.
2526 *
2527 * OUTPUT:
2528 * Rx ring current and used indexes are updated.
2529 *
2530 * RETURN:
2531 * ETH_ERROR in case the routine can not access Rx desc ring.
2532 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2533 * ETH_END_OF_JOB if there is no received data.
2534 * ETH_OK otherwise.
2535 */
2536static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2537 struct pkt_info *p_pkt_info)
2538{
2539 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2540 volatile struct eth_rx_desc *p_rx_desc;
2541 unsigned int command_status;
8f518703 2542 unsigned long flags;
1da177e4
LT
2543
2544 /* Do not process Rx ring in case of Rx ring resource error */
2545 if (mp->rx_resource_err)
2546 return ETH_QUEUE_FULL;
2547
8f518703
DF
2548 spin_lock_irqsave(&mp->lock, flags);
2549
1da177e4
LT
2550 /* Get the Rx Desc ring 'curr and 'used' indexes */
2551 rx_curr_desc = mp->rx_curr_desc_q;
2552 rx_used_desc = mp->rx_used_desc_q;
2553
2554 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2555
2556 /* The following parameters are used to save readings from memory */
2557 command_status = p_rx_desc->cmd_sts;
2558 rmb();
2559
2560 /* Nothing to receive... */
8f518703
DF
2561 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2562 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 2563 return ETH_END_OF_JOB;
8f518703 2564 }
1da177e4
LT
2565
2566 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2567 p_pkt_info->cmd_sts = command_status;
2568 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2569 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2570 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2571
b4de9051
DF
2572 /*
2573 * Clean the return info field to indicate that the
2574 * packet has been moved to the upper layers
2575 */
1da177e4
LT
2576 mp->rx_skb[rx_curr_desc] = NULL;
2577
2578 /* Update current index in data structure */
2579 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2580 mp->rx_curr_desc_q = rx_next_curr_desc;
2581
2582 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2583 if (rx_next_curr_desc == rx_used_desc)
2584 mp->rx_resource_err = 1;
2585
8f518703
DF
2586 spin_unlock_irqrestore(&mp->lock, flags);
2587
1da177e4
LT
2588 return ETH_OK;
2589}
2590
2591/*
2592 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2593 *
2594 * DESCRIPTION:
2595 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2596 * next 'used' descriptor and attached the returned buffer to it.
2597 * In case the Rx ring was in "resource error" condition, where there are
2598 * no available Rx resources, the function resets the resource error flag.
2599 *
2600 * INPUT:
2601 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2602 * struct pkt_info *p_pkt_info Information on returned buffer.
2603 *
2604 * OUTPUT:
2605 * New available Rx resource in Rx descriptor ring.
2606 *
2607 * RETURN:
2608 * ETH_ERROR in case the routine can not access Rx desc ring.
2609 * ETH_OK otherwise.
2610 */
2611static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2612 struct pkt_info *p_pkt_info)
2613{
2614 int used_rx_desc; /* Where to return Rx resource */
2615 volatile struct eth_rx_desc *p_used_rx_desc;
8f518703
DF
2616 unsigned long flags;
2617
2618 spin_lock_irqsave(&mp->lock, flags);
1da177e4
LT
2619
2620 /* Get 'used' Rx descriptor */
2621 used_rx_desc = mp->rx_used_desc_q;
2622 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2623
2624 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2625 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2626 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2627
2628 /* Flush the write pipe */
2629
2630 /* Return the descriptor to DMA ownership */
2631 wmb();
2632 p_used_rx_desc->cmd_sts =
2633 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2634 wmb();
2635
2636 /* Move the used descriptor pointer to the next descriptor */
2637 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2638
2639 /* Any Rx return cancels the Rx resource error status */
2640 mp->rx_resource_err = 0;
2641
8f518703
DF
2642 spin_unlock_irqrestore(&mp->lock, flags);
2643
1da177e4
LT
2644 return ETH_OK;
2645}
2646
2647/************* Begin ethtool support *************************/
2648
2649struct mv643xx_stats {
2650 char stat_string[ETH_GSTRING_LEN];
2651 int sizeof_stat;
2652 int stat_offset;
2653};
2654
2655#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
b4de9051 2656 offsetof(struct mv643xx_private, m)
1da177e4
LT
2657
2658static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2659 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2660 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2661 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2662 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2663 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2664 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2665 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2666 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2667 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2668 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2669 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2670 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2671 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2672 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2673 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2674 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2675 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2676 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2677 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2678 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2679 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2680 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2681 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2682 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2683 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2684 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2685 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2686 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2687 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2688 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2689 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2690 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2691 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2692 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2693 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2694 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2695 { "collision", MV643XX_STAT(mib_counters.collision) },
2696 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2697};
2698
2699#define MV643XX_STATS_LEN \
2700 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2701
b4de9051
DF
2702static void mv643xx_get_drvinfo(struct net_device *netdev,
2703 struct ethtool_drvinfo *drvinfo)
1da177e4
LT
2704{
2705 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2706 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2707 strncpy(drvinfo->fw_version, "N/A", 32);
2708 strncpy(drvinfo->bus_info, "mv643xx", 32);
2709 drvinfo->n_stats = MV643XX_STATS_LEN;
2710}
2711
b4de9051 2712static int mv643xx_get_stats_count(struct net_device *netdev)
1da177e4
LT
2713{
2714 return MV643XX_STATS_LEN;
2715}
2716
b4de9051
DF
2717static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2718 struct ethtool_stats *stats, uint64_t *data)
1da177e4
LT
2719{
2720 struct mv643xx_private *mp = netdev->priv;
2721 int i;
2722
2723 eth_update_mib_counters(mp);
2724
b4de9051 2725 for (i = 0; i < MV643XX_STATS_LEN; i++) {
6aa20a22 2726 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
b4de9051 2727 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
1da177e4
LT
2728 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2729 }
2730}
2731
b4de9051
DF
2732static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2733 uint8_t *data)
1da177e4
LT
2734{
2735 int i;
2736
2737 switch(stringset) {
2738 case ETH_SS_STATS:
2739 for (i=0; i < MV643XX_STATS_LEN; i++) {
b4de9051
DF
2740 memcpy(data + i * ETH_GSTRING_LEN,
2741 mv643xx_gstrings_stats[i].stat_string,
2742 ETH_GSTRING_LEN);
1da177e4
LT
2743 }
2744 break;
2745 }
2746}
2747
d0412d96
JC
2748static u32 mv643xx_eth_get_link(struct net_device *dev)
2749{
2750 struct mv643xx_private *mp = netdev_priv(dev);
2751
2752 return mii_link_ok(&mp->mii);
2753}
2754
2755static int mv643xx_eth_nway_restart(struct net_device *dev)
2756{
2757 struct mv643xx_private *mp = netdev_priv(dev);
2758
2759 return mii_nway_restart(&mp->mii);
2760}
2761
2762static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2763{
2764 struct mv643xx_private *mp = netdev_priv(dev);
2765
2766 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2767}
2768
7282d491 2769static const struct ethtool_ops mv643xx_ethtool_ops = {
1da177e4 2770 .get_settings = mv643xx_get_settings,
d0412d96 2771 .set_settings = mv643xx_set_settings,
1da177e4 2772 .get_drvinfo = mv643xx_get_drvinfo,
d0412d96 2773 .get_link = mv643xx_eth_get_link,
1da177e4
LT
2774 .get_sg = ethtool_op_get_sg,
2775 .set_sg = ethtool_op_set_sg,
2776 .get_strings = mv643xx_get_strings,
2777 .get_stats_count = mv643xx_get_stats_count,
2778 .get_ethtool_stats = mv643xx_get_ethtool_stats,
d0412d96
JC
2779 .get_strings = mv643xx_get_strings,
2780 .get_stats_count = mv643xx_get_stats_count,
2781 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2782 .nway_reset = mv643xx_eth_nway_restart,
1da177e4
LT
2783};
2784
2785/************* End ethtool support *************************/