]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ks8851.c
net: move address list functions to a separate file
[net-next-2.6.git] / drivers / net / ks8851.c
CommitLineData
3320eae5 1/* drivers/net/ks8851.c
3ba81f3e
BD
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
0dc7d2b3
JP
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
3ba81f3e
BD
14#define DEBUG
15
16#include <linux/module.h>
17#include <linux/kernel.h>
18#include <linux/netdevice.h>
19#include <linux/etherdevice.h>
20#include <linux/ethtool.h>
21#include <linux/cache.h>
22#include <linux/crc32.h>
23#include <linux/mii.h>
24
25#include <linux/spi/spi.h>
26
27#include "ks8851.h"
28
29/**
30 * struct ks8851_rxctrl - KS8851 driver rx control
31 * @mchash: Multicast hash-table data.
32 * @rxcr1: KS_RXCR1 register setting
33 * @rxcr2: KS_RXCR2 register setting
34 *
35 * Representation of the settings needs to control the receive filtering
36 * such as the multicast hash-filter and the receive register settings. This
37 * is used to make the job of working out if the receive settings change and
38 * then issuing the new settings to the worker that will send the necessary
39 * commands.
40 */
41struct ks8851_rxctrl {
42 u16 mchash[4];
43 u16 rxcr1;
44 u16 rxcr2;
45};
46
47/**
48 * union ks8851_tx_hdr - tx header data
49 * @txb: The header as bytes
50 * @txw: The header as 16bit, little-endian words
51 *
52 * A dual representation of the tx header data to allow
53 * access to individual bytes, and to allow 16bit accesses
54 * with 16bit alignment.
55 */
56union ks8851_tx_hdr {
57 u8 txb[6];
58 __le16 txw[3];
59};
60
61/**
62 * struct ks8851_net - KS8851 driver private data
63 * @netdev: The network device we're bound to
64 * @spidev: The spi device we're bound to.
65 * @lock: Lock to ensure that the device is not accessed when busy.
66 * @statelock: Lock on this structure for tx list.
67 * @mii: The MII state information for the mii calls.
68 * @rxctrl: RX settings for @rxctrl_work.
69 * @tx_work: Work queue for tx packets
70 * @irq_work: Work queue for servicing interrupts
71 * @rxctrl_work: Work queue for updating RX mode and multicast lists
72 * @txq: Queue of packets for transmission.
73 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
74 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
75 * @txh: Space for generating packet TX header in DMA-able data
76 * @rxd: Space for receiving SPI data, in DMA-able space.
77 * @txd: Space for transmitting SPI data, in DMA-able space.
78 * @msg_enable: The message flags controlling driver output (see ethtool).
79 * @fid: Incrementing frame id tag.
80 * @rc_ier: Cached copy of KS_IER.
81 * @rc_rxqcr: Cached copy of KS_RXQCR.
82 *
83 * The @lock ensures that the chip is protected when certain operations are
84 * in progress. When the read or write packet transfer is in progress, most
85 * of the chip registers are not ccessible until the transfer is finished and
86 * the DMA has been de-asserted.
87 *
88 * The @statelock is used to protect information in the structure which may
89 * need to be accessed via several sources, such as the network driver layer
90 * or one of the work queues.
91 *
92 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
93 * wants to DMA map them, it will not have any problems with data the driver
94 * modifies.
95 */
96struct ks8851_net {
97 struct net_device *netdev;
98 struct spi_device *spidev;
99 struct mutex lock;
100 spinlock_t statelock;
101
102 union ks8851_tx_hdr txh ____cacheline_aligned;
103 u8 rxd[8];
104 u8 txd[8];
105
106 u32 msg_enable ____cacheline_aligned;
107 u16 tx_space;
108 u8 fid;
109
110 u16 rc_ier;
111 u16 rc_rxqcr;
112
113 struct mii_if_info mii;
114 struct ks8851_rxctrl rxctrl;
115
116 struct work_struct tx_work;
117 struct work_struct irq_work;
118 struct work_struct rxctrl_work;
119
120 struct sk_buff_head txq;
121
122 struct spi_message spi_msg1;
123 struct spi_message spi_msg2;
124 struct spi_transfer spi_xfer1;
125 struct spi_transfer spi_xfer2[2];
126};
127
128static int msg_enable;
129
3ba81f3e
BD
130/* shift for byte-enable data */
131#define BYTE_EN(_x) ((_x) << 2)
132
133/* turn register number and byte-enable mask into data for start of packet */
134#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
135
136/* SPI register read/write calls.
137 *
138 * All these calls issue SPI transactions to access the chip's registers. They
139 * all require that the necessary lock is held to prevent accesses when the
140 * chip is busy transfering packet data (RX/TX FIFO accesses).
141 */
142
143/**
144 * ks8851_wrreg16 - write 16bit register value to chip
145 * @ks: The chip state
146 * @reg: The register address
147 * @val: The value to write
148 *
149 * Issue a write to put the value @val into the register specified in @reg.
150 */
151static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
152{
153 struct spi_transfer *xfer = &ks->spi_xfer1;
154 struct spi_message *msg = &ks->spi_msg1;
155 __le16 txb[2];
156 int ret;
157
158 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
159 txb[1] = cpu_to_le16(val);
160
161 xfer->tx_buf = txb;
162 xfer->rx_buf = NULL;
163 xfer->len = 4;
164
165 ret = spi_sync(ks->spidev, msg);
166 if (ret < 0)
0dc7d2b3 167 netdev_err(ks->netdev, "spi_sync() failed\n");
3ba81f3e
BD
168}
169
160d0fad
BD
170/**
171 * ks8851_wrreg8 - write 8bit register value to chip
172 * @ks: The chip state
173 * @reg: The register address
174 * @val: The value to write
175 *
176 * Issue a write to put the value @val into the register specified in @reg.
177 */
178static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
179{
180 struct spi_transfer *xfer = &ks->spi_xfer1;
181 struct spi_message *msg = &ks->spi_msg1;
182 __le16 txb[2];
183 int ret;
184 int bit;
185
186 bit = 1 << (reg & 3);
187
188 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
189 txb[1] = val;
190
191 xfer->tx_buf = txb;
192 xfer->rx_buf = NULL;
193 xfer->len = 3;
194
195 ret = spi_sync(ks->spidev, msg);
196 if (ret < 0)
0dc7d2b3 197 netdev_err(ks->netdev, "spi_sync() failed\n");
160d0fad
BD
198}
199
3ba81f3e
BD
200/**
201 * ks8851_rx_1msg - select whether to use one or two messages for spi read
202 * @ks: The device structure
203 *
204 * Return whether to generate a single message with a tx and rx buffer
205 * supplied to spi_sync(), or alternatively send the tx and rx buffers
206 * as separate messages.
207 *
208 * Depending on the hardware in use, a single message may be more efficient
209 * on interrupts or work done by the driver.
210 *
211 * This currently always returns true until we add some per-device data passed
212 * from the platform code to specify which mode is better.
213 */
214static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
215{
216 return true;
217}
218
219/**
220 * ks8851_rdreg - issue read register command and return the data
221 * @ks: The device state
222 * @op: The register address and byte enables in message format.
223 * @rxb: The RX buffer to return the result into
224 * @rxl: The length of data expected.
225 *
226 * This is the low level read call that issues the necessary spi message(s)
227 * to read data from the register specified in @op.
228 */
229static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
230 u8 *rxb, unsigned rxl)
231{
232 struct spi_transfer *xfer;
233 struct spi_message *msg;
234 __le16 *txb = (__le16 *)ks->txd;
235 u8 *trx = ks->rxd;
236 int ret;
237
238 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
239
240 if (ks8851_rx_1msg(ks)) {
241 msg = &ks->spi_msg1;
242 xfer = &ks->spi_xfer1;
243
244 xfer->tx_buf = txb;
245 xfer->rx_buf = trx;
246 xfer->len = rxl + 2;
247 } else {
248 msg = &ks->spi_msg2;
249 xfer = ks->spi_xfer2;
250
251 xfer->tx_buf = txb;
252 xfer->rx_buf = NULL;
253 xfer->len = 2;
254
255 xfer++;
256 xfer->tx_buf = NULL;
257 xfer->rx_buf = trx;
258 xfer->len = rxl;
259 }
260
261 ret = spi_sync(ks->spidev, msg);
262 if (ret < 0)
0dc7d2b3 263 netdev_err(ks->netdev, "read: spi_sync() failed\n");
3ba81f3e
BD
264 else if (ks8851_rx_1msg(ks))
265 memcpy(rxb, trx + 2, rxl);
266 else
267 memcpy(rxb, trx, rxl);
268}
269
270/**
271 * ks8851_rdreg8 - read 8 bit register from device
272 * @ks: The chip information
273 * @reg: The register address
274 *
275 * Read a 8bit register from the chip, returning the result
276*/
277static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
278{
279 u8 rxb[1];
280
281 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
282 return rxb[0];
283}
284
285/**
286 * ks8851_rdreg16 - read 16 bit register from device
287 * @ks: The chip information
288 * @reg: The register address
289 *
290 * Read a 16bit register from the chip, returning the result
291*/
292static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
293{
294 __le16 rx = 0;
295
296 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
297 return le16_to_cpu(rx);
298}
299
300/**
301 * ks8851_rdreg32 - read 32 bit register from device
302 * @ks: The chip information
303 * @reg: The register address
304 *
305 * Read a 32bit register from the chip.
306 *
307 * Note, this read requires the address be aligned to 4 bytes.
308*/
309static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
310{
311 __le32 rx = 0;
312
313 WARN_ON(reg & 3);
314
315 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
316 return le32_to_cpu(rx);
317}
318
319/**
320 * ks8851_soft_reset - issue one of the soft reset to the device
321 * @ks: The device state.
322 * @op: The bit(s) to set in the GRR
323 *
324 * Issue the relevant soft-reset command to the device's GRR register
325 * specified by @op.
326 *
327 * Note, the delays are in there as a caution to ensure that the reset
328 * has time to take effect and then complete. Since the datasheet does
329 * not currently specify the exact sequence, we have chosen something
330 * that seems to work with our device.
331 */
332static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
333{
334 ks8851_wrreg16(ks, KS_GRR, op);
335 mdelay(1); /* wait a short time to effect reset */
336 ks8851_wrreg16(ks, KS_GRR, 0);
337 mdelay(1); /* wait for condition to clear */
338}
339
340/**
341 * ks8851_write_mac_addr - write mac address to device registers
342 * @dev: The network device
343 *
344 * Update the KS8851 MAC address registers from the address in @dev.
345 *
346 * This call assumes that the chip is not running, so there is no need to
347 * shutdown the RXQ process whilst setting this.
348*/
349static int ks8851_write_mac_addr(struct net_device *dev)
350{
351 struct ks8851_net *ks = netdev_priv(dev);
160d0fad 352 int i;
3ba81f3e
BD
353
354 mutex_lock(&ks->lock);
355
160d0fad
BD
356 for (i = 0; i < ETH_ALEN; i++)
357 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
3ba81f3e
BD
358
359 mutex_unlock(&ks->lock);
360
361 return 0;
362}
363
364/**
365 * ks8851_init_mac - initialise the mac address
366 * @ks: The device structure
367 *
368 * Get or create the initial mac address for the device and then set that
369 * into the station address register. Currently we assume that the device
370 * does not have a valid mac address in it, and so we use random_ether_addr()
371 * to create a new one.
372 *
373 * In future, the driver should check to see if the device has an EEPROM
374 * attached and whether that has a valid ethernet address in it.
375 */
376static void ks8851_init_mac(struct ks8851_net *ks)
377{
378 struct net_device *dev = ks->netdev;
379
380 random_ether_addr(dev->dev_addr);
381 ks8851_write_mac_addr(dev);
382}
383
384/**
385 * ks8851_irq - device interrupt handler
386 * @irq: Interrupt number passed from the IRQ hnalder.
387 * @pw: The private word passed to register_irq(), our struct ks8851_net.
388 *
389 * Disable the interrupt from happening again until we've processed the
390 * current status by scheduling ks8851_irq_work().
391 */
392static irqreturn_t ks8851_irq(int irq, void *pw)
393{
394 struct ks8851_net *ks = pw;
395
396 disable_irq_nosync(irq);
397 schedule_work(&ks->irq_work);
398 return IRQ_HANDLED;
399}
400
401/**
402 * ks8851_rdfifo - read data from the receive fifo
403 * @ks: The device state.
404 * @buff: The buffer address
405 * @len: The length of the data to read
406 *
9ddc5b6f 407 * Issue an RXQ FIFO read command and read the @len amount of data from
3ba81f3e
BD
408 * the FIFO into the buffer specified by @buff.
409 */
410static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
411{
412 struct spi_transfer *xfer = ks->spi_xfer2;
413 struct spi_message *msg = &ks->spi_msg2;
414 u8 txb[1];
415 int ret;
416
0dc7d2b3
JP
417 netif_dbg(ks, rx_status, ks->netdev,
418 "%s: %d@%p\n", __func__, len, buff);
3ba81f3e
BD
419
420 /* set the operation we're issuing */
421 txb[0] = KS_SPIOP_RXFIFO;
422
423 xfer->tx_buf = txb;
424 xfer->rx_buf = NULL;
425 xfer->len = 1;
426
427 xfer++;
428 xfer->rx_buf = buff;
429 xfer->tx_buf = NULL;
430 xfer->len = len;
431
432 ret = spi_sync(ks->spidev, msg);
433 if (ret < 0)
0dc7d2b3 434 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
435}
436
437/**
438 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
439 * @ks: The device state
440 * @rxpkt: The data for the received packet
441 *
442 * Dump the initial data from the packet to dev_dbg().
443*/
444static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
445{
0dc7d2b3
JP
446 netdev_dbg(ks->netdev,
447 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
448 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
449 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
450 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
3ba81f3e
BD
451}
452
453/**
454 * ks8851_rx_pkts - receive packets from the host
455 * @ks: The device information.
456 *
457 * This is called from the IRQ work queue when the system detects that there
458 * are packets in the receive queue. Find out how many packets there are and
459 * read them from the FIFO.
460 */
461static void ks8851_rx_pkts(struct ks8851_net *ks)
462{
463 struct sk_buff *skb;
464 unsigned rxfc;
465 unsigned rxlen;
466 unsigned rxstat;
467 u32 rxh;
468 u8 *rxpkt;
469
470 rxfc = ks8851_rdreg8(ks, KS_RXFC);
471
0dc7d2b3
JP
472 netif_dbg(ks, rx_status, ks->netdev,
473 "%s: %d packets\n", __func__, rxfc);
3ba81f3e
BD
474
475 /* Currently we're issuing a read per packet, but we could possibly
476 * improve the code by issuing a single read, getting the receive
477 * header, allocating the packet and then reading the packet data
478 * out in one go.
479 *
480 * This form of operation would require us to hold the SPI bus'
481 * chipselect low during the entie transaction to avoid any
482 * reset to the data stream comming from the chip.
483 */
484
485 for (; rxfc != 0; rxfc--) {
486 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
487 rxstat = rxh & 0xffff;
488 rxlen = rxh >> 16;
489
0dc7d2b3
JP
490 netif_dbg(ks, rx_status, ks->netdev,
491 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
3ba81f3e
BD
492
493 /* the length of the packet includes the 32bit CRC */
494
495 /* set dma read address */
496 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
497
498 /* start the packet dma process, and set auto-dequeue rx */
499 ks8851_wrreg16(ks, KS_RXQCR,
500 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
501
502 if (rxlen > 0) {
503 skb = netdev_alloc_skb(ks->netdev, rxlen + 2 + 8);
504 if (!skb) {
505 /* todo - dump frame and move on */
506 }
507
508 /* two bytes to ensure ip is aligned, and four bytes
509 * for the status header and 4 bytes of garbage */
510 skb_reserve(skb, 2 + 4 + 4);
511
512 rxpkt = skb_put(skb, rxlen - 4) - 8;
513
514 /* align the packet length to 4 bytes, and add 4 bytes
515 * as we're getting the rx status header as well */
516 ks8851_rdfifo(ks, rxpkt, ALIGN(rxlen, 4) + 8);
517
518 if (netif_msg_pktdata(ks))
519 ks8851_dbg_dumpkkt(ks, rxpkt);
520
521 skb->protocol = eth_type_trans(skb, ks->netdev);
522 netif_rx(skb);
523
524 ks->netdev->stats.rx_packets++;
525 ks->netdev->stats.rx_bytes += rxlen - 4;
526 }
527
528 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
529 }
530}
531
532/**
533 * ks8851_irq_work - work queue handler for dealing with interrupt requests
534 * @work: The work structure that was scheduled by schedule_work()
535 *
536 * This is the handler invoked when the ks8851_irq() is called to find out
537 * what happened, as we cannot allow ourselves to sleep whilst waiting for
538 * anything other process has the chip's lock.
539 *
540 * Read the interrupt status, work out what needs to be done and then clear
541 * any of the interrupts that are not needed.
542 */
543static void ks8851_irq_work(struct work_struct *work)
544{
545 struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
546 unsigned status;
547 unsigned handled = 0;
548
549 mutex_lock(&ks->lock);
550
551 status = ks8851_rdreg16(ks, KS_ISR);
552
0dc7d2b3
JP
553 netif_dbg(ks, intr, ks->netdev,
554 "%s: status 0x%04x\n", __func__, status);
3ba81f3e
BD
555
556 if (status & IRQ_LCI) {
557 /* should do something about checking link status */
558 handled |= IRQ_LCI;
559 }
560
561 if (status & IRQ_LDI) {
562 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
563 pmecr &= ~PMECR_WKEVT_MASK;
564 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
565
566 handled |= IRQ_LDI;
567 }
568
569 if (status & IRQ_RXPSI)
570 handled |= IRQ_RXPSI;
571
572 if (status & IRQ_TXI) {
573 handled |= IRQ_TXI;
574
575 /* no lock here, tx queue should have been stopped */
576
577 /* update our idea of how much tx space is available to the
578 * system */
579 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
580
0dc7d2b3
JP
581 netif_dbg(ks, intr, ks->netdev,
582 "%s: txspace %d\n", __func__, ks->tx_space);
3ba81f3e
BD
583 }
584
585 if (status & IRQ_RXI)
586 handled |= IRQ_RXI;
587
588 if (status & IRQ_SPIBEI) {
589 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
590 handled |= IRQ_SPIBEI;
591 }
592
593 ks8851_wrreg16(ks, KS_ISR, handled);
594
595 if (status & IRQ_RXI) {
596 /* the datasheet says to disable the rx interrupt during
597 * packet read-out, however we're masking the interrupt
598 * from the device so do not bother masking just the RX
599 * from the device. */
600
601 ks8851_rx_pkts(ks);
602 }
603
604 /* if something stopped the rx process, probably due to wanting
605 * to change the rx settings, then do something about restarting
606 * it. */
607 if (status & IRQ_RXPSI) {
608 struct ks8851_rxctrl *rxc = &ks->rxctrl;
609
610 /* update the multicast hash table */
611 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
612 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
613 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
614 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
615
616 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
617 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
618 }
619
620 mutex_unlock(&ks->lock);
621
622 if (status & IRQ_TXI)
623 netif_wake_queue(ks->netdev);
624
625 enable_irq(ks->netdev->irq);
626}
627
628/**
629 * calc_txlen - calculate size of message to send packet
630 * @len: Lenght of data
631 *
632 * Returns the size of the TXFIFO message needed to send
633 * this packet.
634 */
635static inline unsigned calc_txlen(unsigned len)
636{
637 return ALIGN(len + 4, 4);
638}
639
640/**
641 * ks8851_wrpkt - write packet to TX FIFO
642 * @ks: The device state.
643 * @txp: The sk_buff to transmit.
644 * @irq: IRQ on completion of the packet.
645 *
646 * Send the @txp to the chip. This means creating the relevant packet header
647 * specifying the length of the packet and the other information the chip
648 * needs, such as IRQ on completion. Send the header and the packet data to
649 * the device.
650 */
651static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
652{
653 struct spi_transfer *xfer = ks->spi_xfer2;
654 struct spi_message *msg = &ks->spi_msg2;
655 unsigned fid = 0;
656 int ret;
657
0dc7d2b3
JP
658 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
659 __func__, txp, txp->len, txp->data, irq);
3ba81f3e
BD
660
661 fid = ks->fid++;
662 fid &= TXFR_TXFID_MASK;
663
664 if (irq)
665 fid |= TXFR_TXIC; /* irq on completion */
666
667 /* start header at txb[1] to align txw entries */
668 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
669 ks->txh.txw[1] = cpu_to_le16(fid);
670 ks->txh.txw[2] = cpu_to_le16(txp->len);
671
672 xfer->tx_buf = &ks->txh.txb[1];
673 xfer->rx_buf = NULL;
674 xfer->len = 5;
675
676 xfer++;
677 xfer->tx_buf = txp->data;
678 xfer->rx_buf = NULL;
679 xfer->len = ALIGN(txp->len, 4);
680
681 ret = spi_sync(ks->spidev, msg);
682 if (ret < 0)
0dc7d2b3 683 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
684}
685
686/**
687 * ks8851_done_tx - update and then free skbuff after transmitting
688 * @ks: The device state
689 * @txb: The buffer transmitted
690 */
691static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
692{
693 struct net_device *dev = ks->netdev;
694
695 dev->stats.tx_bytes += txb->len;
696 dev->stats.tx_packets++;
697
698 dev_kfree_skb(txb);
699}
700
701/**
702 * ks8851_tx_work - process tx packet(s)
703 * @work: The work strucutre what was scheduled.
704 *
705 * This is called when a number of packets have been scheduled for
706 * transmission and need to be sent to the device.
707 */
708static void ks8851_tx_work(struct work_struct *work)
709{
710 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
711 struct sk_buff *txb;
3320eae5 712 bool last = skb_queue_empty(&ks->txq);
3ba81f3e
BD
713
714 mutex_lock(&ks->lock);
715
716 while (!last) {
717 txb = skb_dequeue(&ks->txq);
718 last = skb_queue_empty(&ks->txq);
719
720 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
721 ks8851_wrpkt(ks, txb, last);
722 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
723 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
724
725 ks8851_done_tx(ks, txb);
726 }
727
728 mutex_unlock(&ks->lock);
729}
730
731/**
732 * ks8851_set_powermode - set power mode of the device
733 * @ks: The device state
734 * @pwrmode: The power mode value to write to KS_PMECR.
735 *
736 * Change the power mode of the chip.
737 */
738static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
739{
740 unsigned pmecr;
741
0dc7d2b3 742 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
3ba81f3e
BD
743
744 pmecr = ks8851_rdreg16(ks, KS_PMECR);
745 pmecr &= ~PMECR_PM_MASK;
746 pmecr |= pwrmode;
747
748 ks8851_wrreg16(ks, KS_PMECR, pmecr);
749}
750
751/**
752 * ks8851_net_open - open network device
753 * @dev: The network device being opened.
754 *
755 * Called when the network device is marked active, such as a user executing
756 * 'ifconfig up' on the device.
757 */
758static int ks8851_net_open(struct net_device *dev)
759{
760 struct ks8851_net *ks = netdev_priv(dev);
761
762 /* lock the card, even if we may not actually be doing anything
763 * else at the moment */
764 mutex_lock(&ks->lock);
765
0dc7d2b3 766 netif_dbg(ks, ifup, ks->netdev, "opening\n");
3ba81f3e
BD
767
768 /* bring chip out of any power saving mode it was in */
769 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
770
771 /* issue a soft reset to the RX/TX QMU to put it into a known
772 * state. */
773 ks8851_soft_reset(ks, GRR_QMU);
774
775 /* setup transmission parameters */
776
777 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
778 TXCR_TXPE | /* pad to min length */
779 TXCR_TXCRC | /* add CRC */
780 TXCR_TXFCE)); /* enable flow control */
781
782 /* auto-increment tx data, reset tx pointer */
783 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
784
785 /* setup receiver control */
786
787 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
788 RXCR1_RXFCE | /* enable flow control */
789 RXCR1_RXBE | /* broadcast enable */
790 RXCR1_RXUE | /* unicast enable */
791 RXCR1_RXE)); /* enable rx block */
792
793 /* transfer entire frames out in one go */
794 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
795
796 /* set receive counter timeouts */
797 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
798 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
799 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
800
801 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
802 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
803 RXQCR_RXDTTE); /* IRQ on time exceeded */
804
805 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
806
807 /* clear then enable interrupts */
808
809#define STD_IRQ (IRQ_LCI | /* Link Change */ \
810 IRQ_TXI | /* TX done */ \
811 IRQ_RXI | /* RX done */ \
812 IRQ_SPIBEI | /* SPI bus error */ \
813 IRQ_TXPSI | /* TX process stop */ \
814 IRQ_RXPSI) /* RX process stop */
815
816 ks->rc_ier = STD_IRQ;
817 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
818 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
819
820 netif_start_queue(ks->netdev);
821
0dc7d2b3 822 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
3ba81f3e
BD
823
824 mutex_unlock(&ks->lock);
825 return 0;
826}
827
828/**
829 * ks8851_net_stop - close network device
830 * @dev: The device being closed.
831 *
832 * Called to close down a network device which has been active. Cancell any
833 * work, shutdown the RX and TX process and then place the chip into a low
834 * power state whilst it is not being used.
835 */
836static int ks8851_net_stop(struct net_device *dev)
837{
838 struct ks8851_net *ks = netdev_priv(dev);
839
0dc7d2b3 840 netif_info(ks, ifdown, dev, "shutting down\n");
3ba81f3e
BD
841
842 netif_stop_queue(dev);
843
844 mutex_lock(&ks->lock);
845
846 /* stop any outstanding work */
847 flush_work(&ks->irq_work);
848 flush_work(&ks->tx_work);
849 flush_work(&ks->rxctrl_work);
850
851 /* turn off the IRQs and ack any outstanding */
852 ks8851_wrreg16(ks, KS_IER, 0x0000);
853 ks8851_wrreg16(ks, KS_ISR, 0xffff);
854
855 /* shutdown RX process */
856 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
857
858 /* shutdown TX process */
859 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
860
861 /* set powermode to soft power down to save power */
862 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
863
864 /* ensure any queued tx buffers are dumped */
865 while (!skb_queue_empty(&ks->txq)) {
866 struct sk_buff *txb = skb_dequeue(&ks->txq);
867
0dc7d2b3
JP
868 netif_dbg(ks, ifdown, ks->netdev,
869 "%s: freeing txb %p\n", __func__, txb);
3ba81f3e
BD
870
871 dev_kfree_skb(txb);
872 }
873
874 mutex_unlock(&ks->lock);
875 return 0;
876}
877
878/**
879 * ks8851_start_xmit - transmit packet
880 * @skb: The buffer to transmit
881 * @dev: The device used to transmit the packet.
882 *
883 * Called by the network layer to transmit the @skb. Queue the packet for
884 * the device and schedule the necessary work to transmit the packet when
885 * it is free.
886 *
887 * We do this to firstly avoid sleeping with the network device locked,
888 * and secondly so we can round up more than one packet to transmit which
889 * means we can try and avoid generating too many transmit done interrupts.
890 */
61357325
SH
891static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
892 struct net_device *dev)
3ba81f3e
BD
893{
894 struct ks8851_net *ks = netdev_priv(dev);
895 unsigned needed = calc_txlen(skb->len);
61357325 896 netdev_tx_t ret = NETDEV_TX_OK;
3ba81f3e 897
0dc7d2b3
JP
898 netif_dbg(ks, tx_queued, ks->netdev,
899 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
3ba81f3e
BD
900
901 spin_lock(&ks->statelock);
902
903 if (needed > ks->tx_space) {
904 netif_stop_queue(dev);
905 ret = NETDEV_TX_BUSY;
906 } else {
907 ks->tx_space -= needed;
908 skb_queue_tail(&ks->txq, skb);
909 }
910
911 spin_unlock(&ks->statelock);
912 schedule_work(&ks->tx_work);
913
914 return ret;
915}
916
917/**
918 * ks8851_rxctrl_work - work handler to change rx mode
919 * @work: The work structure this belongs to.
920 *
921 * Lock the device and issue the necessary changes to the receive mode from
922 * the network device layer. This is done so that we can do this without
923 * having to sleep whilst holding the network device lock.
924 *
925 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
926 * receive parameters are programmed, we issue a write to disable the RXQ and
927 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
928 * complete. The interrupt handler then writes the new values into the chip.
929 */
930static void ks8851_rxctrl_work(struct work_struct *work)
931{
932 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
933
934 mutex_lock(&ks->lock);
935
936 /* need to shutdown RXQ before modifying filter parameters */
937 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
938
939 mutex_unlock(&ks->lock);
940}
941
942static void ks8851_set_rx_mode(struct net_device *dev)
943{
944 struct ks8851_net *ks = netdev_priv(dev);
945 struct ks8851_rxctrl rxctrl;
946
947 memset(&rxctrl, 0, sizeof(rxctrl));
948
949 if (dev->flags & IFF_PROMISC) {
950 /* interface to receive everything */
951
952 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
953 } else if (dev->flags & IFF_ALLMULTI) {
954 /* accept all multicast packets */
955
956 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
957 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
4cd24eaf 958 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
f9dcbcc9 959 struct dev_mc_list *mcptr;
3ba81f3e 960 u32 crc;
3ba81f3e
BD
961
962 /* accept some multicast */
963
f9dcbcc9 964 netdev_for_each_mc_addr(mcptr, dev) {
3ba81f3e
BD
965 crc = ether_crc(ETH_ALEN, mcptr->dmi_addr);
966 crc >>= (32 - 6); /* get top six bits */
967
968 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
3ba81f3e
BD
969 }
970
b6a71bfa 971 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
3ba81f3e
BD
972 } else {
973 /* just accept broadcast / unicast */
974 rxctrl.rxcr1 = RXCR1_RXPAFMA;
975 }
976
977 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
978 RXCR1_RXBE | /* broadcast enable */
979 RXCR1_RXE | /* RX process enable */
980 RXCR1_RXFCE); /* enable flow control */
981
982 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
983
984 /* schedule work to do the actual set of the data if needed */
985
986 spin_lock(&ks->statelock);
987
988 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
989 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
990 schedule_work(&ks->rxctrl_work);
991 }
992
993 spin_unlock(&ks->statelock);
994}
995
996static int ks8851_set_mac_address(struct net_device *dev, void *addr)
997{
998 struct sockaddr *sa = addr;
999
1000 if (netif_running(dev))
1001 return -EBUSY;
1002
1003 if (!is_valid_ether_addr(sa->sa_data))
1004 return -EADDRNOTAVAIL;
1005
1006 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1007 return ks8851_write_mac_addr(dev);
1008}
1009
1010static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1011{
1012 struct ks8851_net *ks = netdev_priv(dev);
1013
1014 if (!netif_running(dev))
1015 return -EINVAL;
1016
1017 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1018}
1019
1020static const struct net_device_ops ks8851_netdev_ops = {
1021 .ndo_open = ks8851_net_open,
1022 .ndo_stop = ks8851_net_stop,
1023 .ndo_do_ioctl = ks8851_net_ioctl,
1024 .ndo_start_xmit = ks8851_start_xmit,
1025 .ndo_set_mac_address = ks8851_set_mac_address,
1026 .ndo_set_rx_mode = ks8851_set_rx_mode,
1027 .ndo_change_mtu = eth_change_mtu,
1028 .ndo_validate_addr = eth_validate_addr,
1029};
1030
1031/* ethtool support */
1032
1033static void ks8851_get_drvinfo(struct net_device *dev,
1034 struct ethtool_drvinfo *di)
1035{
1036 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1037 strlcpy(di->version, "1.00", sizeof(di->version));
1038 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1039}
1040
1041static u32 ks8851_get_msglevel(struct net_device *dev)
1042{
1043 struct ks8851_net *ks = netdev_priv(dev);
1044 return ks->msg_enable;
1045}
1046
1047static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1048{
1049 struct ks8851_net *ks = netdev_priv(dev);
1050 ks->msg_enable = to;
1051}
1052
1053static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1054{
1055 struct ks8851_net *ks = netdev_priv(dev);
1056 return mii_ethtool_gset(&ks->mii, cmd);
1057}
1058
1059static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1060{
1061 struct ks8851_net *ks = netdev_priv(dev);
1062 return mii_ethtool_sset(&ks->mii, cmd);
1063}
1064
1065static u32 ks8851_get_link(struct net_device *dev)
1066{
1067 struct ks8851_net *ks = netdev_priv(dev);
1068 return mii_link_ok(&ks->mii);
1069}
1070
1071static int ks8851_nway_reset(struct net_device *dev)
1072{
1073 struct ks8851_net *ks = netdev_priv(dev);
1074 return mii_nway_restart(&ks->mii);
1075}
1076
1077static const struct ethtool_ops ks8851_ethtool_ops = {
1078 .get_drvinfo = ks8851_get_drvinfo,
1079 .get_msglevel = ks8851_get_msglevel,
1080 .set_msglevel = ks8851_set_msglevel,
1081 .get_settings = ks8851_get_settings,
1082 .set_settings = ks8851_set_settings,
1083 .get_link = ks8851_get_link,
1084 .nway_reset = ks8851_nway_reset,
1085};
1086
1087/* MII interface controls */
1088
1089/**
1090 * ks8851_phy_reg - convert MII register into a KS8851 register
1091 * @reg: MII register number.
1092 *
1093 * Return the KS8851 register number for the corresponding MII PHY register
1094 * if possible. Return zero if the MII register has no direct mapping to the
1095 * KS8851 register set.
1096 */
1097static int ks8851_phy_reg(int reg)
1098{
1099 switch (reg) {
1100 case MII_BMCR:
1101 return KS_P1MBCR;
1102 case MII_BMSR:
1103 return KS_P1MBSR;
1104 case MII_PHYSID1:
1105 return KS_PHY1ILR;
1106 case MII_PHYSID2:
1107 return KS_PHY1IHR;
1108 case MII_ADVERTISE:
1109 return KS_P1ANAR;
1110 case MII_LPA:
1111 return KS_P1ANLPR;
1112 }
1113
1114 return 0x0;
1115}
1116
1117/**
1118 * ks8851_phy_read - MII interface PHY register read.
1119 * @dev: The network device the PHY is on.
1120 * @phy_addr: Address of PHY (ignored as we only have one)
1121 * @reg: The register to read.
1122 *
1123 * This call reads data from the PHY register specified in @reg. Since the
1124 * device does not support all the MII registers, the non-existant values
1125 * are always returned as zero.
1126 *
1127 * We return zero for unsupported registers as the MII code does not check
1128 * the value returned for any error status, and simply returns it to the
1129 * caller. The mii-tool that the driver was tested with takes any -ve error
1130 * as real PHY capabilities, thus displaying incorrect data to the user.
1131 */
1132static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1133{
1134 struct ks8851_net *ks = netdev_priv(dev);
1135 int ksreg;
1136 int result;
1137
1138 ksreg = ks8851_phy_reg(reg);
1139 if (!ksreg)
1140 return 0x0; /* no error return allowed, so use zero */
1141
1142 mutex_lock(&ks->lock);
1143 result = ks8851_rdreg16(ks, ksreg);
1144 mutex_unlock(&ks->lock);
1145
1146 return result;
1147}
1148
1149static void ks8851_phy_write(struct net_device *dev,
1150 int phy, int reg, int value)
1151{
1152 struct ks8851_net *ks = netdev_priv(dev);
1153 int ksreg;
1154
1155 ksreg = ks8851_phy_reg(reg);
1156 if (ksreg) {
1157 mutex_lock(&ks->lock);
1158 ks8851_wrreg16(ks, ksreg, value);
1159 mutex_unlock(&ks->lock);
1160 }
1161}
1162
1163/**
1164 * ks8851_read_selftest - read the selftest memory info.
1165 * @ks: The device state
1166 *
1167 * Read and check the TX/RX memory selftest information.
1168 */
1169static int ks8851_read_selftest(struct ks8851_net *ks)
1170{
1171 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1172 int ret = 0;
1173 unsigned rd;
1174
1175 rd = ks8851_rdreg16(ks, KS_MBIR);
1176
1177 if ((rd & both_done) != both_done) {
0dc7d2b3 1178 netdev_warn(ks->netdev, "Memory selftest not finished\n");
3ba81f3e
BD
1179 return 0;
1180 }
1181
1182 if (rd & MBIR_TXMBFA) {
0dc7d2b3 1183 netdev_err(ks->netdev, "TX memory selftest fail\n");
3ba81f3e
BD
1184 ret |= 1;
1185 }
1186
1187 if (rd & MBIR_RXMBFA) {
0dc7d2b3 1188 netdev_err(ks->netdev, "RX memory selftest fail\n");
3ba81f3e
BD
1189 ret |= 2;
1190 }
1191
1192 return 0;
1193}
1194
1195/* driver bus management functions */
1196
1197static int __devinit ks8851_probe(struct spi_device *spi)
1198{
1199 struct net_device *ndev;
1200 struct ks8851_net *ks;
1201 int ret;
1202
1203 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1204 if (!ndev) {
1205 dev_err(&spi->dev, "failed to alloc ethernet device\n");
1206 return -ENOMEM;
1207 }
1208
1209 spi->bits_per_word = 8;
1210
1211 ks = netdev_priv(ndev);
1212
1213 ks->netdev = ndev;
1214 ks->spidev = spi;
1215 ks->tx_space = 6144;
1216
1217 mutex_init(&ks->lock);
1218 spin_lock_init(&ks->statelock);
1219
1220 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1221 INIT_WORK(&ks->irq_work, ks8851_irq_work);
1222 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1223
1224 /* initialise pre-made spi transfer messages */
1225
1226 spi_message_init(&ks->spi_msg1);
1227 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1228
1229 spi_message_init(&ks->spi_msg2);
1230 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1231 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1232
1233 /* setup mii state */
1234 ks->mii.dev = ndev;
1235 ks->mii.phy_id = 1,
1236 ks->mii.phy_id_mask = 1;
1237 ks->mii.reg_num_mask = 0xf;
1238 ks->mii.mdio_read = ks8851_phy_read;
1239 ks->mii.mdio_write = ks8851_phy_write;
1240
1241 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1242
1243 /* set the default message enable */
1244 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1245 NETIF_MSG_PROBE |
1246 NETIF_MSG_LINK));
1247
1248 skb_queue_head_init(&ks->txq);
1249
1250 SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1251 SET_NETDEV_DEV(ndev, &spi->dev);
1252
1253 dev_set_drvdata(&spi->dev, ks);
1254
1255 ndev->if_port = IF_PORT_100BASET;
1256 ndev->netdev_ops = &ks8851_netdev_ops;
1257 ndev->irq = spi->irq;
1258
57dada68
BD
1259 /* issue a global soft reset to reset the device. */
1260 ks8851_soft_reset(ks, GRR_GSR);
1261
3ba81f3e
BD
1262 /* simple check for a valid chip being connected to the bus */
1263
1264 if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1265 dev_err(&spi->dev, "failed to read device ID\n");
1266 ret = -ENODEV;
1267 goto err_id;
1268 }
1269
1270 ks8851_read_selftest(ks);
1271 ks8851_init_mac(ks);
1272
1273 ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1274 ndev->name, ks);
1275 if (ret < 0) {
1276 dev_err(&spi->dev, "failed to get irq\n");
1277 goto err_irq;
1278 }
1279
1280 ret = register_netdev(ndev);
1281 if (ret) {
1282 dev_err(&spi->dev, "failed to register network device\n");
1283 goto err_netdev;
1284 }
1285
0dc7d2b3
JP
1286 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
1287 CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1288 ndev->dev_addr, ndev->irq);
3ba81f3e
BD
1289
1290 return 0;
1291
1292
1293err_netdev:
1294 free_irq(ndev->irq, ndev);
1295
1296err_id:
1297err_irq:
1298 free_netdev(ndev);
1299 return ret;
1300}
1301
1302static int __devexit ks8851_remove(struct spi_device *spi)
1303{
1304 struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1305
1306 if (netif_msg_drv(priv))
0dc7d2b3 1307 dev_info(&spi->dev, "remove\n");
3ba81f3e
BD
1308
1309 unregister_netdev(priv->netdev);
1310 free_irq(spi->irq, priv);
1311 free_netdev(priv->netdev);
1312
1313 return 0;
1314}
1315
1316static struct spi_driver ks8851_driver = {
1317 .driver = {
1318 .name = "ks8851",
1319 .owner = THIS_MODULE,
1320 },
1321 .probe = ks8851_probe,
1322 .remove = __devexit_p(ks8851_remove),
1323};
1324
1325static int __init ks8851_init(void)
1326{
1327 return spi_register_driver(&ks8851_driver);
1328}
1329
1330static void __exit ks8851_exit(void)
1331{
1332 spi_unregister_driver(&ks8851_driver);
1333}
1334
1335module_init(ks8851_init);
1336module_exit(ks8851_exit);
1337
1338MODULE_DESCRIPTION("KS8851 Network driver");
1339MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1340MODULE_LICENSE("GPL");
1341
1342module_param_named(message, msg_enable, int, 0);
1343MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
e0626e38 1344MODULE_ALIAS("spi:ks8851");