]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ks8851.c
drm/radeon/kms: fix dpms state on resume
[net-next-2.6.git] / drivers / net / ks8851.c
CommitLineData
3320eae5 1/* drivers/net/ks8851.c
3ba81f3e
BD
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
0dc7d2b3
JP
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
3ba81f3e
BD
14#define DEBUG
15
16#include <linux/module.h>
17#include <linux/kernel.h>
18#include <linux/netdevice.h>
19#include <linux/etherdevice.h>
20#include <linux/ethtool.h>
21#include <linux/cache.h>
22#include <linux/crc32.h>
23#include <linux/mii.h>
24
25#include <linux/spi/spi.h>
26
27#include "ks8851.h"
28
29/**
30 * struct ks8851_rxctrl - KS8851 driver rx control
31 * @mchash: Multicast hash-table data.
32 * @rxcr1: KS_RXCR1 register setting
33 * @rxcr2: KS_RXCR2 register setting
34 *
35 * Representation of the settings needs to control the receive filtering
36 * such as the multicast hash-filter and the receive register settings. This
37 * is used to make the job of working out if the receive settings change and
38 * then issuing the new settings to the worker that will send the necessary
39 * commands.
40 */
41struct ks8851_rxctrl {
42 u16 mchash[4];
43 u16 rxcr1;
44 u16 rxcr2;
45};
46
47/**
48 * union ks8851_tx_hdr - tx header data
49 * @txb: The header as bytes
50 * @txw: The header as 16bit, little-endian words
51 *
52 * A dual representation of the tx header data to allow
53 * access to individual bytes, and to allow 16bit accesses
54 * with 16bit alignment.
55 */
56union ks8851_tx_hdr {
57 u8 txb[6];
58 __le16 txw[3];
59};
60
61/**
62 * struct ks8851_net - KS8851 driver private data
63 * @netdev: The network device we're bound to
64 * @spidev: The spi device we're bound to.
65 * @lock: Lock to ensure that the device is not accessed when busy.
66 * @statelock: Lock on this structure for tx list.
67 * @mii: The MII state information for the mii calls.
68 * @rxctrl: RX settings for @rxctrl_work.
69 * @tx_work: Work queue for tx packets
70 * @irq_work: Work queue for servicing interrupts
71 * @rxctrl_work: Work queue for updating RX mode and multicast lists
72 * @txq: Queue of packets for transmission.
73 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
74 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
75 * @txh: Space for generating packet TX header in DMA-able data
76 * @rxd: Space for receiving SPI data, in DMA-able space.
77 * @txd: Space for transmitting SPI data, in DMA-able space.
78 * @msg_enable: The message flags controlling driver output (see ethtool).
79 * @fid: Incrementing frame id tag.
80 * @rc_ier: Cached copy of KS_IER.
7d997466 81 * @rc_ccr: Cached copy of KS_CCR.
3ba81f3e 82 * @rc_rxqcr: Cached copy of KS_RXQCR.
7d997466 83 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
3ba81f3e
BD
84 *
85 * The @lock ensures that the chip is protected when certain operations are
86 * in progress. When the read or write packet transfer is in progress, most
87 * of the chip registers are not ccessible until the transfer is finished and
88 * the DMA has been de-asserted.
89 *
90 * The @statelock is used to protect information in the structure which may
91 * need to be accessed via several sources, such as the network driver layer
92 * or one of the work queues.
93 *
94 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
95 * wants to DMA map them, it will not have any problems with data the driver
96 * modifies.
97 */
98struct ks8851_net {
99 struct net_device *netdev;
100 struct spi_device *spidev;
101 struct mutex lock;
102 spinlock_t statelock;
103
104 union ks8851_tx_hdr txh ____cacheline_aligned;
105 u8 rxd[8];
106 u8 txd[8];
107
108 u32 msg_enable ____cacheline_aligned;
109 u16 tx_space;
110 u8 fid;
111
112 u16 rc_ier;
113 u16 rc_rxqcr;
7d997466
SJ
114 u16 rc_ccr;
115 u16 eeprom_size;
3ba81f3e
BD
116
117 struct mii_if_info mii;
118 struct ks8851_rxctrl rxctrl;
119
120 struct work_struct tx_work;
121 struct work_struct irq_work;
122 struct work_struct rxctrl_work;
123
124 struct sk_buff_head txq;
125
126 struct spi_message spi_msg1;
127 struct spi_message spi_msg2;
128 struct spi_transfer spi_xfer1;
129 struct spi_transfer spi_xfer2[2];
130};
131
132static int msg_enable;
133
3ba81f3e
BD
134/* shift for byte-enable data */
135#define BYTE_EN(_x) ((_x) << 2)
136
137/* turn register number and byte-enable mask into data for start of packet */
138#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
139
140/* SPI register read/write calls.
141 *
142 * All these calls issue SPI transactions to access the chip's registers. They
143 * all require that the necessary lock is held to prevent accesses when the
144 * chip is busy transfering packet data (RX/TX FIFO accesses).
145 */
146
147/**
148 * ks8851_wrreg16 - write 16bit register value to chip
149 * @ks: The chip state
150 * @reg: The register address
151 * @val: The value to write
152 *
153 * Issue a write to put the value @val into the register specified in @reg.
154 */
155static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
156{
157 struct spi_transfer *xfer = &ks->spi_xfer1;
158 struct spi_message *msg = &ks->spi_msg1;
159 __le16 txb[2];
160 int ret;
161
162 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
163 txb[1] = cpu_to_le16(val);
164
165 xfer->tx_buf = txb;
166 xfer->rx_buf = NULL;
167 xfer->len = 4;
168
169 ret = spi_sync(ks->spidev, msg);
170 if (ret < 0)
0dc7d2b3 171 netdev_err(ks->netdev, "spi_sync() failed\n");
3ba81f3e
BD
172}
173
160d0fad
BD
174/**
175 * ks8851_wrreg8 - write 8bit register value to chip
176 * @ks: The chip state
177 * @reg: The register address
178 * @val: The value to write
179 *
180 * Issue a write to put the value @val into the register specified in @reg.
181 */
182static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
183{
184 struct spi_transfer *xfer = &ks->spi_xfer1;
185 struct spi_message *msg = &ks->spi_msg1;
186 __le16 txb[2];
187 int ret;
188 int bit;
189
190 bit = 1 << (reg & 3);
191
192 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
193 txb[1] = val;
194
195 xfer->tx_buf = txb;
196 xfer->rx_buf = NULL;
197 xfer->len = 3;
198
199 ret = spi_sync(ks->spidev, msg);
200 if (ret < 0)
0dc7d2b3 201 netdev_err(ks->netdev, "spi_sync() failed\n");
160d0fad
BD
202}
203
3ba81f3e
BD
204/**
205 * ks8851_rx_1msg - select whether to use one or two messages for spi read
206 * @ks: The device structure
207 *
208 * Return whether to generate a single message with a tx and rx buffer
209 * supplied to spi_sync(), or alternatively send the tx and rx buffers
210 * as separate messages.
211 *
212 * Depending on the hardware in use, a single message may be more efficient
213 * on interrupts or work done by the driver.
214 *
215 * This currently always returns true until we add some per-device data passed
216 * from the platform code to specify which mode is better.
217 */
218static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
219{
220 return true;
221}
222
223/**
224 * ks8851_rdreg - issue read register command and return the data
225 * @ks: The device state
226 * @op: The register address and byte enables in message format.
227 * @rxb: The RX buffer to return the result into
228 * @rxl: The length of data expected.
229 *
230 * This is the low level read call that issues the necessary spi message(s)
231 * to read data from the register specified in @op.
232 */
233static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
234 u8 *rxb, unsigned rxl)
235{
236 struct spi_transfer *xfer;
237 struct spi_message *msg;
238 __le16 *txb = (__le16 *)ks->txd;
239 u8 *trx = ks->rxd;
240 int ret;
241
242 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
243
244 if (ks8851_rx_1msg(ks)) {
245 msg = &ks->spi_msg1;
246 xfer = &ks->spi_xfer1;
247
248 xfer->tx_buf = txb;
249 xfer->rx_buf = trx;
250 xfer->len = rxl + 2;
251 } else {
252 msg = &ks->spi_msg2;
253 xfer = ks->spi_xfer2;
254
255 xfer->tx_buf = txb;
256 xfer->rx_buf = NULL;
257 xfer->len = 2;
258
259 xfer++;
260 xfer->tx_buf = NULL;
261 xfer->rx_buf = trx;
262 xfer->len = rxl;
263 }
264
265 ret = spi_sync(ks->spidev, msg);
266 if (ret < 0)
0dc7d2b3 267 netdev_err(ks->netdev, "read: spi_sync() failed\n");
3ba81f3e
BD
268 else if (ks8851_rx_1msg(ks))
269 memcpy(rxb, trx + 2, rxl);
270 else
271 memcpy(rxb, trx, rxl);
272}
273
274/**
275 * ks8851_rdreg8 - read 8 bit register from device
276 * @ks: The chip information
277 * @reg: The register address
278 *
279 * Read a 8bit register from the chip, returning the result
280*/
281static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
282{
283 u8 rxb[1];
284
285 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
286 return rxb[0];
287}
288
289/**
290 * ks8851_rdreg16 - read 16 bit register from device
291 * @ks: The chip information
292 * @reg: The register address
293 *
294 * Read a 16bit register from the chip, returning the result
295*/
296static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
297{
298 __le16 rx = 0;
299
300 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
301 return le16_to_cpu(rx);
302}
303
304/**
305 * ks8851_rdreg32 - read 32 bit register from device
306 * @ks: The chip information
307 * @reg: The register address
308 *
309 * Read a 32bit register from the chip.
310 *
311 * Note, this read requires the address be aligned to 4 bytes.
312*/
313static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
314{
315 __le32 rx = 0;
316
317 WARN_ON(reg & 3);
318
319 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
320 return le32_to_cpu(rx);
321}
322
323/**
324 * ks8851_soft_reset - issue one of the soft reset to the device
325 * @ks: The device state.
326 * @op: The bit(s) to set in the GRR
327 *
328 * Issue the relevant soft-reset command to the device's GRR register
329 * specified by @op.
330 *
331 * Note, the delays are in there as a caution to ensure that the reset
332 * has time to take effect and then complete. Since the datasheet does
333 * not currently specify the exact sequence, we have chosen something
334 * that seems to work with our device.
335 */
336static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
337{
338 ks8851_wrreg16(ks, KS_GRR, op);
339 mdelay(1); /* wait a short time to effect reset */
340 ks8851_wrreg16(ks, KS_GRR, 0);
341 mdelay(1); /* wait for condition to clear */
342}
343
344/**
345 * ks8851_write_mac_addr - write mac address to device registers
346 * @dev: The network device
347 *
348 * Update the KS8851 MAC address registers from the address in @dev.
349 *
350 * This call assumes that the chip is not running, so there is no need to
351 * shutdown the RXQ process whilst setting this.
352*/
353static int ks8851_write_mac_addr(struct net_device *dev)
354{
355 struct ks8851_net *ks = netdev_priv(dev);
160d0fad 356 int i;
3ba81f3e
BD
357
358 mutex_lock(&ks->lock);
359
160d0fad
BD
360 for (i = 0; i < ETH_ALEN; i++)
361 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
3ba81f3e
BD
362
363 mutex_unlock(&ks->lock);
364
365 return 0;
366}
367
368/**
369 * ks8851_init_mac - initialise the mac address
370 * @ks: The device structure
371 *
372 * Get or create the initial mac address for the device and then set that
373 * into the station address register. Currently we assume that the device
374 * does not have a valid mac address in it, and so we use random_ether_addr()
375 * to create a new one.
376 *
377 * In future, the driver should check to see if the device has an EEPROM
378 * attached and whether that has a valid ethernet address in it.
379 */
380static void ks8851_init_mac(struct ks8851_net *ks)
381{
382 struct net_device *dev = ks->netdev;
383
384 random_ether_addr(dev->dev_addr);
385 ks8851_write_mac_addr(dev);
386}
387
388/**
389 * ks8851_irq - device interrupt handler
390 * @irq: Interrupt number passed from the IRQ hnalder.
391 * @pw: The private word passed to register_irq(), our struct ks8851_net.
392 *
393 * Disable the interrupt from happening again until we've processed the
394 * current status by scheduling ks8851_irq_work().
395 */
396static irqreturn_t ks8851_irq(int irq, void *pw)
397{
398 struct ks8851_net *ks = pw;
399
400 disable_irq_nosync(irq);
401 schedule_work(&ks->irq_work);
402 return IRQ_HANDLED;
403}
404
405/**
406 * ks8851_rdfifo - read data from the receive fifo
407 * @ks: The device state.
408 * @buff: The buffer address
409 * @len: The length of the data to read
410 *
9ddc5b6f 411 * Issue an RXQ FIFO read command and read the @len amount of data from
3ba81f3e
BD
412 * the FIFO into the buffer specified by @buff.
413 */
414static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
415{
416 struct spi_transfer *xfer = ks->spi_xfer2;
417 struct spi_message *msg = &ks->spi_msg2;
418 u8 txb[1];
419 int ret;
420
0dc7d2b3
JP
421 netif_dbg(ks, rx_status, ks->netdev,
422 "%s: %d@%p\n", __func__, len, buff);
3ba81f3e
BD
423
424 /* set the operation we're issuing */
425 txb[0] = KS_SPIOP_RXFIFO;
426
427 xfer->tx_buf = txb;
428 xfer->rx_buf = NULL;
429 xfer->len = 1;
430
431 xfer++;
432 xfer->rx_buf = buff;
433 xfer->tx_buf = NULL;
434 xfer->len = len;
435
436 ret = spi_sync(ks->spidev, msg);
437 if (ret < 0)
0dc7d2b3 438 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
439}
440
441/**
442 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
443 * @ks: The device state
444 * @rxpkt: The data for the received packet
445 *
446 * Dump the initial data from the packet to dev_dbg().
447*/
448static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
449{
0dc7d2b3
JP
450 netdev_dbg(ks->netdev,
451 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
452 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
453 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
454 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
3ba81f3e
BD
455}
456
457/**
458 * ks8851_rx_pkts - receive packets from the host
459 * @ks: The device information.
460 *
461 * This is called from the IRQ work queue when the system detects that there
462 * are packets in the receive queue. Find out how many packets there are and
463 * read them from the FIFO.
464 */
465static void ks8851_rx_pkts(struct ks8851_net *ks)
466{
467 struct sk_buff *skb;
468 unsigned rxfc;
469 unsigned rxlen;
470 unsigned rxstat;
471 u32 rxh;
472 u8 *rxpkt;
473
474 rxfc = ks8851_rdreg8(ks, KS_RXFC);
475
0dc7d2b3
JP
476 netif_dbg(ks, rx_status, ks->netdev,
477 "%s: %d packets\n", __func__, rxfc);
3ba81f3e
BD
478
479 /* Currently we're issuing a read per packet, but we could possibly
480 * improve the code by issuing a single read, getting the receive
481 * header, allocating the packet and then reading the packet data
482 * out in one go.
483 *
484 * This form of operation would require us to hold the SPI bus'
485 * chipselect low during the entie transaction to avoid any
486 * reset to the data stream comming from the chip.
487 */
488
489 for (; rxfc != 0; rxfc--) {
490 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
491 rxstat = rxh & 0xffff;
492 rxlen = rxh >> 16;
493
0dc7d2b3
JP
494 netif_dbg(ks, rx_status, ks->netdev,
495 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
3ba81f3e
BD
496
497 /* the length of the packet includes the 32bit CRC */
498
499 /* set dma read address */
500 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
501
502 /* start the packet dma process, and set auto-dequeue rx */
503 ks8851_wrreg16(ks, KS_RXQCR,
504 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
505
506 if (rxlen > 0) {
507 skb = netdev_alloc_skb(ks->netdev, rxlen + 2 + 8);
508 if (!skb) {
509 /* todo - dump frame and move on */
510 }
511
512 /* two bytes to ensure ip is aligned, and four bytes
513 * for the status header and 4 bytes of garbage */
514 skb_reserve(skb, 2 + 4 + 4);
515
516 rxpkt = skb_put(skb, rxlen - 4) - 8;
517
518 /* align the packet length to 4 bytes, and add 4 bytes
519 * as we're getting the rx status header as well */
520 ks8851_rdfifo(ks, rxpkt, ALIGN(rxlen, 4) + 8);
521
522 if (netif_msg_pktdata(ks))
523 ks8851_dbg_dumpkkt(ks, rxpkt);
524
525 skb->protocol = eth_type_trans(skb, ks->netdev);
526 netif_rx(skb);
527
528 ks->netdev->stats.rx_packets++;
529 ks->netdev->stats.rx_bytes += rxlen - 4;
530 }
531
532 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
533 }
534}
535
536/**
537 * ks8851_irq_work - work queue handler for dealing with interrupt requests
538 * @work: The work structure that was scheduled by schedule_work()
539 *
540 * This is the handler invoked when the ks8851_irq() is called to find out
541 * what happened, as we cannot allow ourselves to sleep whilst waiting for
542 * anything other process has the chip's lock.
543 *
544 * Read the interrupt status, work out what needs to be done and then clear
545 * any of the interrupts that are not needed.
546 */
547static void ks8851_irq_work(struct work_struct *work)
548{
549 struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
550 unsigned status;
551 unsigned handled = 0;
552
553 mutex_lock(&ks->lock);
554
555 status = ks8851_rdreg16(ks, KS_ISR);
556
0dc7d2b3
JP
557 netif_dbg(ks, intr, ks->netdev,
558 "%s: status 0x%04x\n", __func__, status);
3ba81f3e
BD
559
560 if (status & IRQ_LCI) {
561 /* should do something about checking link status */
562 handled |= IRQ_LCI;
563 }
564
565 if (status & IRQ_LDI) {
566 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
567 pmecr &= ~PMECR_WKEVT_MASK;
568 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
569
570 handled |= IRQ_LDI;
571 }
572
573 if (status & IRQ_RXPSI)
574 handled |= IRQ_RXPSI;
575
576 if (status & IRQ_TXI) {
577 handled |= IRQ_TXI;
578
579 /* no lock here, tx queue should have been stopped */
580
581 /* update our idea of how much tx space is available to the
582 * system */
583 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
584
0dc7d2b3
JP
585 netif_dbg(ks, intr, ks->netdev,
586 "%s: txspace %d\n", __func__, ks->tx_space);
3ba81f3e
BD
587 }
588
589 if (status & IRQ_RXI)
590 handled |= IRQ_RXI;
591
592 if (status & IRQ_SPIBEI) {
593 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
594 handled |= IRQ_SPIBEI;
595 }
596
597 ks8851_wrreg16(ks, KS_ISR, handled);
598
599 if (status & IRQ_RXI) {
600 /* the datasheet says to disable the rx interrupt during
601 * packet read-out, however we're masking the interrupt
602 * from the device so do not bother masking just the RX
603 * from the device. */
604
605 ks8851_rx_pkts(ks);
606 }
607
608 /* if something stopped the rx process, probably due to wanting
609 * to change the rx settings, then do something about restarting
610 * it. */
611 if (status & IRQ_RXPSI) {
612 struct ks8851_rxctrl *rxc = &ks->rxctrl;
613
614 /* update the multicast hash table */
615 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
616 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
617 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
618 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
619
620 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
621 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
622 }
623
624 mutex_unlock(&ks->lock);
625
626 if (status & IRQ_TXI)
627 netif_wake_queue(ks->netdev);
628
629 enable_irq(ks->netdev->irq);
630}
631
632/**
633 * calc_txlen - calculate size of message to send packet
634 * @len: Lenght of data
635 *
636 * Returns the size of the TXFIFO message needed to send
637 * this packet.
638 */
639static inline unsigned calc_txlen(unsigned len)
640{
641 return ALIGN(len + 4, 4);
642}
643
644/**
645 * ks8851_wrpkt - write packet to TX FIFO
646 * @ks: The device state.
647 * @txp: The sk_buff to transmit.
648 * @irq: IRQ on completion of the packet.
649 *
650 * Send the @txp to the chip. This means creating the relevant packet header
651 * specifying the length of the packet and the other information the chip
652 * needs, such as IRQ on completion. Send the header and the packet data to
653 * the device.
654 */
655static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
656{
657 struct spi_transfer *xfer = ks->spi_xfer2;
658 struct spi_message *msg = &ks->spi_msg2;
659 unsigned fid = 0;
660 int ret;
661
0dc7d2b3
JP
662 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
663 __func__, txp, txp->len, txp->data, irq);
3ba81f3e
BD
664
665 fid = ks->fid++;
666 fid &= TXFR_TXFID_MASK;
667
668 if (irq)
669 fid |= TXFR_TXIC; /* irq on completion */
670
671 /* start header at txb[1] to align txw entries */
672 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
673 ks->txh.txw[1] = cpu_to_le16(fid);
674 ks->txh.txw[2] = cpu_to_le16(txp->len);
675
676 xfer->tx_buf = &ks->txh.txb[1];
677 xfer->rx_buf = NULL;
678 xfer->len = 5;
679
680 xfer++;
681 xfer->tx_buf = txp->data;
682 xfer->rx_buf = NULL;
683 xfer->len = ALIGN(txp->len, 4);
684
685 ret = spi_sync(ks->spidev, msg);
686 if (ret < 0)
0dc7d2b3 687 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
688}
689
690/**
691 * ks8851_done_tx - update and then free skbuff after transmitting
692 * @ks: The device state
693 * @txb: The buffer transmitted
694 */
695static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
696{
697 struct net_device *dev = ks->netdev;
698
699 dev->stats.tx_bytes += txb->len;
700 dev->stats.tx_packets++;
701
702 dev_kfree_skb(txb);
703}
704
705/**
706 * ks8851_tx_work - process tx packet(s)
707 * @work: The work strucutre what was scheduled.
708 *
709 * This is called when a number of packets have been scheduled for
710 * transmission and need to be sent to the device.
711 */
712static void ks8851_tx_work(struct work_struct *work)
713{
714 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
715 struct sk_buff *txb;
3320eae5 716 bool last = skb_queue_empty(&ks->txq);
3ba81f3e
BD
717
718 mutex_lock(&ks->lock);
719
720 while (!last) {
721 txb = skb_dequeue(&ks->txq);
722 last = skb_queue_empty(&ks->txq);
723
761172fb
AA
724 if (txb != NULL) {
725 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
726 ks8851_wrpkt(ks, txb, last);
727 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
728 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
3ba81f3e 729
761172fb
AA
730 ks8851_done_tx(ks, txb);
731 }
3ba81f3e
BD
732 }
733
734 mutex_unlock(&ks->lock);
735}
736
737/**
738 * ks8851_set_powermode - set power mode of the device
739 * @ks: The device state
740 * @pwrmode: The power mode value to write to KS_PMECR.
741 *
742 * Change the power mode of the chip.
743 */
744static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
745{
746 unsigned pmecr;
747
0dc7d2b3 748 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
3ba81f3e
BD
749
750 pmecr = ks8851_rdreg16(ks, KS_PMECR);
751 pmecr &= ~PMECR_PM_MASK;
752 pmecr |= pwrmode;
753
754 ks8851_wrreg16(ks, KS_PMECR, pmecr);
755}
756
757/**
758 * ks8851_net_open - open network device
759 * @dev: The network device being opened.
760 *
761 * Called when the network device is marked active, such as a user executing
762 * 'ifconfig up' on the device.
763 */
764static int ks8851_net_open(struct net_device *dev)
765{
766 struct ks8851_net *ks = netdev_priv(dev);
767
768 /* lock the card, even if we may not actually be doing anything
769 * else at the moment */
770 mutex_lock(&ks->lock);
771
0dc7d2b3 772 netif_dbg(ks, ifup, ks->netdev, "opening\n");
3ba81f3e
BD
773
774 /* bring chip out of any power saving mode it was in */
775 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
776
777 /* issue a soft reset to the RX/TX QMU to put it into a known
778 * state. */
779 ks8851_soft_reset(ks, GRR_QMU);
780
781 /* setup transmission parameters */
782
783 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
784 TXCR_TXPE | /* pad to min length */
785 TXCR_TXCRC | /* add CRC */
786 TXCR_TXFCE)); /* enable flow control */
787
788 /* auto-increment tx data, reset tx pointer */
789 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
790
791 /* setup receiver control */
792
793 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
794 RXCR1_RXFCE | /* enable flow control */
795 RXCR1_RXBE | /* broadcast enable */
796 RXCR1_RXUE | /* unicast enable */
797 RXCR1_RXE)); /* enable rx block */
798
799 /* transfer entire frames out in one go */
800 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
801
802 /* set receive counter timeouts */
803 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
804 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
805 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
806
807 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
808 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
809 RXQCR_RXDTTE); /* IRQ on time exceeded */
810
811 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
812
813 /* clear then enable interrupts */
814
815#define STD_IRQ (IRQ_LCI | /* Link Change */ \
816 IRQ_TXI | /* TX done */ \
817 IRQ_RXI | /* RX done */ \
818 IRQ_SPIBEI | /* SPI bus error */ \
819 IRQ_TXPSI | /* TX process stop */ \
820 IRQ_RXPSI) /* RX process stop */
821
822 ks->rc_ier = STD_IRQ;
823 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
824 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
825
826 netif_start_queue(ks->netdev);
827
0dc7d2b3 828 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
3ba81f3e
BD
829
830 mutex_unlock(&ks->lock);
831 return 0;
832}
833
834/**
835 * ks8851_net_stop - close network device
836 * @dev: The device being closed.
837 *
838 * Called to close down a network device which has been active. Cancell any
839 * work, shutdown the RX and TX process and then place the chip into a low
840 * power state whilst it is not being used.
841 */
842static int ks8851_net_stop(struct net_device *dev)
843{
844 struct ks8851_net *ks = netdev_priv(dev);
845
0dc7d2b3 846 netif_info(ks, ifdown, dev, "shutting down\n");
3ba81f3e
BD
847
848 netif_stop_queue(dev);
849
850 mutex_lock(&ks->lock);
851
852 /* stop any outstanding work */
853 flush_work(&ks->irq_work);
854 flush_work(&ks->tx_work);
855 flush_work(&ks->rxctrl_work);
856
857 /* turn off the IRQs and ack any outstanding */
858 ks8851_wrreg16(ks, KS_IER, 0x0000);
859 ks8851_wrreg16(ks, KS_ISR, 0xffff);
860
861 /* shutdown RX process */
862 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
863
864 /* shutdown TX process */
865 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
866
867 /* set powermode to soft power down to save power */
868 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
869
870 /* ensure any queued tx buffers are dumped */
871 while (!skb_queue_empty(&ks->txq)) {
872 struct sk_buff *txb = skb_dequeue(&ks->txq);
873
0dc7d2b3
JP
874 netif_dbg(ks, ifdown, ks->netdev,
875 "%s: freeing txb %p\n", __func__, txb);
3ba81f3e
BD
876
877 dev_kfree_skb(txb);
878 }
879
880 mutex_unlock(&ks->lock);
881 return 0;
882}
883
884/**
885 * ks8851_start_xmit - transmit packet
886 * @skb: The buffer to transmit
887 * @dev: The device used to transmit the packet.
888 *
889 * Called by the network layer to transmit the @skb. Queue the packet for
890 * the device and schedule the necessary work to transmit the packet when
891 * it is free.
892 *
893 * We do this to firstly avoid sleeping with the network device locked,
894 * and secondly so we can round up more than one packet to transmit which
895 * means we can try and avoid generating too many transmit done interrupts.
896 */
61357325
SH
897static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
898 struct net_device *dev)
3ba81f3e
BD
899{
900 struct ks8851_net *ks = netdev_priv(dev);
901 unsigned needed = calc_txlen(skb->len);
61357325 902 netdev_tx_t ret = NETDEV_TX_OK;
3ba81f3e 903
0dc7d2b3
JP
904 netif_dbg(ks, tx_queued, ks->netdev,
905 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
3ba81f3e
BD
906
907 spin_lock(&ks->statelock);
908
909 if (needed > ks->tx_space) {
910 netif_stop_queue(dev);
911 ret = NETDEV_TX_BUSY;
912 } else {
913 ks->tx_space -= needed;
914 skb_queue_tail(&ks->txq, skb);
915 }
916
917 spin_unlock(&ks->statelock);
918 schedule_work(&ks->tx_work);
919
920 return ret;
921}
922
923/**
924 * ks8851_rxctrl_work - work handler to change rx mode
925 * @work: The work structure this belongs to.
926 *
927 * Lock the device and issue the necessary changes to the receive mode from
928 * the network device layer. This is done so that we can do this without
929 * having to sleep whilst holding the network device lock.
930 *
931 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
932 * receive parameters are programmed, we issue a write to disable the RXQ and
933 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
934 * complete. The interrupt handler then writes the new values into the chip.
935 */
936static void ks8851_rxctrl_work(struct work_struct *work)
937{
938 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
939
940 mutex_lock(&ks->lock);
941
942 /* need to shutdown RXQ before modifying filter parameters */
943 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
944
945 mutex_unlock(&ks->lock);
946}
947
948static void ks8851_set_rx_mode(struct net_device *dev)
949{
950 struct ks8851_net *ks = netdev_priv(dev);
951 struct ks8851_rxctrl rxctrl;
952
953 memset(&rxctrl, 0, sizeof(rxctrl));
954
955 if (dev->flags & IFF_PROMISC) {
956 /* interface to receive everything */
957
958 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
959 } else if (dev->flags & IFF_ALLMULTI) {
960 /* accept all multicast packets */
961
962 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
963 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
4cd24eaf 964 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
22bedad3 965 struct netdev_hw_addr *ha;
3ba81f3e 966 u32 crc;
3ba81f3e
BD
967
968 /* accept some multicast */
969
22bedad3
JP
970 netdev_for_each_mc_addr(ha, dev) {
971 crc = ether_crc(ETH_ALEN, ha->addr);
3ba81f3e
BD
972 crc >>= (32 - 6); /* get top six bits */
973
974 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
3ba81f3e
BD
975 }
976
b6a71bfa 977 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
3ba81f3e
BD
978 } else {
979 /* just accept broadcast / unicast */
980 rxctrl.rxcr1 = RXCR1_RXPAFMA;
981 }
982
983 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
984 RXCR1_RXBE | /* broadcast enable */
985 RXCR1_RXE | /* RX process enable */
986 RXCR1_RXFCE); /* enable flow control */
987
988 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
989
990 /* schedule work to do the actual set of the data if needed */
991
992 spin_lock(&ks->statelock);
993
994 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
995 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
996 schedule_work(&ks->rxctrl_work);
997 }
998
999 spin_unlock(&ks->statelock);
1000}
1001
1002static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1003{
1004 struct sockaddr *sa = addr;
1005
1006 if (netif_running(dev))
1007 return -EBUSY;
1008
1009 if (!is_valid_ether_addr(sa->sa_data))
1010 return -EADDRNOTAVAIL;
1011
1012 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1013 return ks8851_write_mac_addr(dev);
1014}
1015
1016static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1017{
1018 struct ks8851_net *ks = netdev_priv(dev);
1019
1020 if (!netif_running(dev))
1021 return -EINVAL;
1022
1023 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1024}
1025
1026static const struct net_device_ops ks8851_netdev_ops = {
1027 .ndo_open = ks8851_net_open,
1028 .ndo_stop = ks8851_net_stop,
1029 .ndo_do_ioctl = ks8851_net_ioctl,
1030 .ndo_start_xmit = ks8851_start_xmit,
1031 .ndo_set_mac_address = ks8851_set_mac_address,
1032 .ndo_set_rx_mode = ks8851_set_rx_mode,
1033 .ndo_change_mtu = eth_change_mtu,
1034 .ndo_validate_addr = eth_validate_addr,
1035};
1036
a4bdfff7
SJ
1037/* Companion eeprom access */
1038
1039enum { /* EEPROM programming states */
1040 EEPROM_CONTROL,
1041 EEPROM_ADDRESS,
1042 EEPROM_DATA,
1043 EEPROM_COMPLETE
1044};
1045
1046/**
1047 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1048 * @dev: The network device the PHY is on.
1049 * @addr: EEPROM address to read
1050 *
1051 * eeprom_size: used to define the data coding length. Can be changed
1052 * through debug-fs.
1053 *
1054 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1055 * Warning: The READ feature is not supported on ks8851 revision 0.
1056 *
1057 * Rough programming model:
1058 * - on period start: set clock high and read value on bus
1059 * - on period / 2: set clock low and program value on bus
1060 * - start on period / 2
1061 */
1062unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
1063{
1064 struct ks8851_net *ks = netdev_priv(dev);
1065 int eepcr;
1066 int ctrl = EEPROM_OP_READ;
1067 int state = EEPROM_CONTROL;
1068 int bit_count = EEPROM_OP_LEN - 1;
1069 unsigned int data = 0;
1070 int dummy;
1071 unsigned int addr_len;
1072
1073 addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1074
1075 /* start transaction: chip select high, authorize write */
1076 mutex_lock(&ks->lock);
1077 eepcr = EEPCR_EESA | EEPCR_EESRWA;
1078 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1079 eepcr |= EEPCR_EECS;
1080 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1081 mutex_unlock(&ks->lock);
1082
1083 while (state != EEPROM_COMPLETE) {
1084 /* falling clock period starts... */
1085 /* set EED_IO pin for control and address */
1086 eepcr &= ~EEPCR_EEDO;
1087 switch (state) {
1088 case EEPROM_CONTROL:
1089 eepcr |= ((ctrl >> bit_count) & 1) << 2;
1090 if (bit_count-- <= 0) {
1091 bit_count = addr_len - 1;
1092 state = EEPROM_ADDRESS;
1093 }
1094 break;
1095 case EEPROM_ADDRESS:
1096 eepcr |= ((addr >> bit_count) & 1) << 2;
1097 bit_count--;
1098 break;
1099 case EEPROM_DATA:
1100 /* Change to receive mode */
1101 eepcr &= ~EEPCR_EESRWA;
1102 break;
1103 }
1104
1105 /* lower clock */
1106 eepcr &= ~EEPCR_EESCK;
1107
1108 mutex_lock(&ks->lock);
1109 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1110 mutex_unlock(&ks->lock);
1111
1112 /* waitread period / 2 */
1113 udelay(EEPROM_SK_PERIOD / 2);
1114
1115 /* rising clock period starts... */
1116
1117 /* raise clock */
1118 mutex_lock(&ks->lock);
1119 eepcr |= EEPCR_EESCK;
1120 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1121 mutex_unlock(&ks->lock);
1122
1123 /* Manage read */
1124 switch (state) {
1125 case EEPROM_ADDRESS:
1126 if (bit_count < 0) {
1127 bit_count = EEPROM_DATA_LEN - 1;
1128 state = EEPROM_DATA;
1129 }
1130 break;
1131 case EEPROM_DATA:
1132 mutex_lock(&ks->lock);
1133 dummy = ks8851_rdreg16(ks, KS_EEPCR);
1134 mutex_unlock(&ks->lock);
1135 data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
1136 if (bit_count-- <= 0)
1137 state = EEPROM_COMPLETE;
1138 break;
1139 }
1140
1141 /* wait period / 2 */
1142 udelay(EEPROM_SK_PERIOD / 2);
1143 }
1144
1145 /* close transaction */
1146 mutex_lock(&ks->lock);
1147 eepcr &= ~EEPCR_EECS;
1148 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1149 eepcr = 0;
1150 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1151 mutex_unlock(&ks->lock);
1152
1153 return data;
1154}
1155
1156/**
1157 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1158 * @dev: The network device the PHY is on.
1159 * @op: operand (can be WRITE, EWEN, EWDS)
1160 * @addr: EEPROM address to write
1161 * @data: data to write
1162 *
1163 * eeprom_size: used to define the data coding length. Can be changed
1164 * through debug-fs.
1165 *
1166 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1167 *
1168 * Note that a write enable is required before writing data.
1169 *
1170 * Rough programming model:
1171 * - on period start: set clock high
1172 * - on period / 2: set clock low and program value on bus
1173 * - start on period / 2
1174 */
1175void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
1176 unsigned int addr, unsigned int data)
1177{
1178 struct ks8851_net *ks = netdev_priv(dev);
1179 int eepcr;
1180 int state = EEPROM_CONTROL;
1181 int bit_count = EEPROM_OP_LEN - 1;
1182 unsigned int addr_len;
1183
1184 addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1185
1186 switch (op) {
1187 case EEPROM_OP_EWEN:
1188 addr = 0x30;
1189 break;
1190 case EEPROM_OP_EWDS:
1191 addr = 0;
1192 break;
1193 }
1194
1195 /* start transaction: chip select high, authorize write */
1196 mutex_lock(&ks->lock);
1197 eepcr = EEPCR_EESA | EEPCR_EESRWA;
1198 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1199 eepcr |= EEPCR_EECS;
1200 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1201 mutex_unlock(&ks->lock);
1202
1203 while (state != EEPROM_COMPLETE) {
1204 /* falling clock period starts... */
1205 /* set EED_IO pin for control and address */
1206 eepcr &= ~EEPCR_EEDO;
1207 switch (state) {
1208 case EEPROM_CONTROL:
1209 eepcr |= ((op >> bit_count) & 1) << 2;
1210 if (bit_count-- <= 0) {
1211 bit_count = addr_len - 1;
1212 state = EEPROM_ADDRESS;
1213 }
1214 break;
1215 case EEPROM_ADDRESS:
1216 eepcr |= ((addr >> bit_count) & 1) << 2;
1217 if (bit_count-- <= 0) {
1218 if (op == EEPROM_OP_WRITE) {
1219 bit_count = EEPROM_DATA_LEN - 1;
1220 state = EEPROM_DATA;
1221 } else {
1222 state = EEPROM_COMPLETE;
1223 }
1224 }
1225 break;
1226 case EEPROM_DATA:
1227 eepcr |= ((data >> bit_count) & 1) << 2;
1228 if (bit_count-- <= 0)
1229 state = EEPROM_COMPLETE;
1230 break;
1231 }
1232
1233 /* lower clock */
1234 eepcr &= ~EEPCR_EESCK;
1235
1236 mutex_lock(&ks->lock);
1237 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1238 mutex_unlock(&ks->lock);
1239
1240 /* wait period / 2 */
1241 udelay(EEPROM_SK_PERIOD / 2);
1242
1243 /* rising clock period starts... */
1244
1245 /* raise clock */
1246 eepcr |= EEPCR_EESCK;
1247 mutex_lock(&ks->lock);
1248 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1249 mutex_unlock(&ks->lock);
1250
1251 /* wait period / 2 */
1252 udelay(EEPROM_SK_PERIOD / 2);
1253 }
1254
1255 /* close transaction */
1256 mutex_lock(&ks->lock);
1257 eepcr &= ~EEPCR_EECS;
1258 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1259 eepcr = 0;
1260 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1261 mutex_unlock(&ks->lock);
1262
1263}
1264
3ba81f3e
BD
1265/* ethtool support */
1266
1267static void ks8851_get_drvinfo(struct net_device *dev,
1268 struct ethtool_drvinfo *di)
1269{
1270 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1271 strlcpy(di->version, "1.00", sizeof(di->version));
1272 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1273}
1274
1275static u32 ks8851_get_msglevel(struct net_device *dev)
1276{
1277 struct ks8851_net *ks = netdev_priv(dev);
1278 return ks->msg_enable;
1279}
1280
1281static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1282{
1283 struct ks8851_net *ks = netdev_priv(dev);
1284 ks->msg_enable = to;
1285}
1286
1287static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1288{
1289 struct ks8851_net *ks = netdev_priv(dev);
1290 return mii_ethtool_gset(&ks->mii, cmd);
1291}
1292
1293static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1294{
1295 struct ks8851_net *ks = netdev_priv(dev);
1296 return mii_ethtool_sset(&ks->mii, cmd);
1297}
1298
1299static u32 ks8851_get_link(struct net_device *dev)
1300{
1301 struct ks8851_net *ks = netdev_priv(dev);
1302 return mii_link_ok(&ks->mii);
1303}
1304
1305static int ks8851_nway_reset(struct net_device *dev)
1306{
1307 struct ks8851_net *ks = netdev_priv(dev);
1308 return mii_nway_restart(&ks->mii);
1309}
1310
a84afa40
SJ
1311static int ks8851_get_eeprom_len(struct net_device *dev)
1312{
1313 struct ks8851_net *ks = netdev_priv(dev);
1314 return ks->eeprom_size;
1315}
1316
1317static int ks8851_get_eeprom(struct net_device *dev,
1318 struct ethtool_eeprom *eeprom, u8 *bytes)
1319{
1320 struct ks8851_net *ks = netdev_priv(dev);
1321 u16 *eeprom_buff;
1322 int first_word;
1323 int last_word;
1324 int ret_val = 0;
1325 u16 i;
1326
1327 if (eeprom->len == 0)
1328 return -EINVAL;
1329
1330 if (eeprom->len > ks->eeprom_size)
1331 return -EINVAL;
1332
1333 eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
1334
1335 first_word = eeprom->offset >> 1;
1336 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1337
1338 eeprom_buff = kmalloc(sizeof(u16) *
1339 (last_word - first_word + 1), GFP_KERNEL);
1340 if (!eeprom_buff)
1341 return -ENOMEM;
1342
1343 for (i = 0; i < last_word - first_word + 1; i++)
1344 eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
1345
1346 /* Device's eeprom is little-endian, word addressable */
1347 for (i = 0; i < last_word - first_word + 1; i++)
1348 le16_to_cpus(&eeprom_buff[i]);
1349
1350 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
1351 kfree(eeprom_buff);
1352
1353 return ret_val;
1354}
1355
1356static int ks8851_set_eeprom(struct net_device *dev,
1357 struct ethtool_eeprom *eeprom, u8 *bytes)
1358{
1359 struct ks8851_net *ks = netdev_priv(dev);
1360 u16 *eeprom_buff;
1361 void *ptr;
1362 int max_len;
1363 int first_word;
1364 int last_word;
1365 int ret_val = 0;
1366 u16 i;
1367
1368 if (eeprom->len == 0)
1369 return -EOPNOTSUPP;
1370
1371 if (eeprom->len > ks->eeprom_size)
1372 return -EINVAL;
1373
1374 if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
1375 return -EFAULT;
1376
1377 first_word = eeprom->offset >> 1;
1378 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1379 max_len = (last_word - first_word + 1) * 2;
1380 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1381 if (!eeprom_buff)
1382 return -ENOMEM;
1383
1384 ptr = (void *)eeprom_buff;
1385
1386 if (eeprom->offset & 1) {
1387 /* need read/modify/write of first changed EEPROM word */
1388 /* only the second byte of the word is being modified */
1389 eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
1390 ptr++;
1391 }
1392 if ((eeprom->offset + eeprom->len) & 1)
1393 /* need read/modify/write of last changed EEPROM word */
1394 /* only the first byte of the word is being modified */
1395 eeprom_buff[last_word - first_word] =
1396 ks8851_eeprom_read(dev, last_word);
1397
1398
1399 /* Device's eeprom is little-endian, word addressable */
1400 le16_to_cpus(&eeprom_buff[0]);
1401 le16_to_cpus(&eeprom_buff[last_word - first_word]);
1402
1403 memcpy(ptr, bytes, eeprom->len);
1404
1405 for (i = 0; i < last_word - first_word + 1; i++)
1406 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
1407
1408 ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
1409
1410 for (i = 0; i < last_word - first_word + 1; i++) {
1411 ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
1412 eeprom_buff[i]);
1413 mdelay(EEPROM_WRITE_TIME);
1414 }
1415
1416 ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
1417
1418 kfree(eeprom_buff);
1419 return ret_val;
1420}
1421
3ba81f3e
BD
1422static const struct ethtool_ops ks8851_ethtool_ops = {
1423 .get_drvinfo = ks8851_get_drvinfo,
1424 .get_msglevel = ks8851_get_msglevel,
1425 .set_msglevel = ks8851_set_msglevel,
1426 .get_settings = ks8851_get_settings,
1427 .set_settings = ks8851_set_settings,
1428 .get_link = ks8851_get_link,
1429 .nway_reset = ks8851_nway_reset,
a84afa40
SJ
1430 .get_eeprom_len = ks8851_get_eeprom_len,
1431 .get_eeprom = ks8851_get_eeprom,
1432 .set_eeprom = ks8851_set_eeprom,
3ba81f3e
BD
1433};
1434
1435/* MII interface controls */
1436
1437/**
1438 * ks8851_phy_reg - convert MII register into a KS8851 register
1439 * @reg: MII register number.
1440 *
1441 * Return the KS8851 register number for the corresponding MII PHY register
1442 * if possible. Return zero if the MII register has no direct mapping to the
1443 * KS8851 register set.
1444 */
1445static int ks8851_phy_reg(int reg)
1446{
1447 switch (reg) {
1448 case MII_BMCR:
1449 return KS_P1MBCR;
1450 case MII_BMSR:
1451 return KS_P1MBSR;
1452 case MII_PHYSID1:
1453 return KS_PHY1ILR;
1454 case MII_PHYSID2:
1455 return KS_PHY1IHR;
1456 case MII_ADVERTISE:
1457 return KS_P1ANAR;
1458 case MII_LPA:
1459 return KS_P1ANLPR;
1460 }
1461
1462 return 0x0;
1463}
1464
1465/**
1466 * ks8851_phy_read - MII interface PHY register read.
1467 * @dev: The network device the PHY is on.
1468 * @phy_addr: Address of PHY (ignored as we only have one)
1469 * @reg: The register to read.
1470 *
1471 * This call reads data from the PHY register specified in @reg. Since the
1472 * device does not support all the MII registers, the non-existant values
1473 * are always returned as zero.
1474 *
1475 * We return zero for unsupported registers as the MII code does not check
1476 * the value returned for any error status, and simply returns it to the
1477 * caller. The mii-tool that the driver was tested with takes any -ve error
1478 * as real PHY capabilities, thus displaying incorrect data to the user.
1479 */
1480static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1481{
1482 struct ks8851_net *ks = netdev_priv(dev);
1483 int ksreg;
1484 int result;
1485
1486 ksreg = ks8851_phy_reg(reg);
1487 if (!ksreg)
1488 return 0x0; /* no error return allowed, so use zero */
1489
1490 mutex_lock(&ks->lock);
1491 result = ks8851_rdreg16(ks, ksreg);
1492 mutex_unlock(&ks->lock);
1493
1494 return result;
1495}
1496
1497static void ks8851_phy_write(struct net_device *dev,
1498 int phy, int reg, int value)
1499{
1500 struct ks8851_net *ks = netdev_priv(dev);
1501 int ksreg;
1502
1503 ksreg = ks8851_phy_reg(reg);
1504 if (ksreg) {
1505 mutex_lock(&ks->lock);
1506 ks8851_wrreg16(ks, ksreg, value);
1507 mutex_unlock(&ks->lock);
1508 }
1509}
1510
1511/**
1512 * ks8851_read_selftest - read the selftest memory info.
1513 * @ks: The device state
1514 *
1515 * Read and check the TX/RX memory selftest information.
1516 */
1517static int ks8851_read_selftest(struct ks8851_net *ks)
1518{
1519 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1520 int ret = 0;
1521 unsigned rd;
1522
1523 rd = ks8851_rdreg16(ks, KS_MBIR);
1524
1525 if ((rd & both_done) != both_done) {
0dc7d2b3 1526 netdev_warn(ks->netdev, "Memory selftest not finished\n");
3ba81f3e
BD
1527 return 0;
1528 }
1529
1530 if (rd & MBIR_TXMBFA) {
0dc7d2b3 1531 netdev_err(ks->netdev, "TX memory selftest fail\n");
3ba81f3e
BD
1532 ret |= 1;
1533 }
1534
1535 if (rd & MBIR_RXMBFA) {
0dc7d2b3 1536 netdev_err(ks->netdev, "RX memory selftest fail\n");
3ba81f3e
BD
1537 ret |= 2;
1538 }
1539
1540 return 0;
1541}
1542
1543/* driver bus management functions */
1544
1545static int __devinit ks8851_probe(struct spi_device *spi)
1546{
1547 struct net_device *ndev;
1548 struct ks8851_net *ks;
1549 int ret;
1550
1551 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1552 if (!ndev) {
1553 dev_err(&spi->dev, "failed to alloc ethernet device\n");
1554 return -ENOMEM;
1555 }
1556
1557 spi->bits_per_word = 8;
1558
1559 ks = netdev_priv(ndev);
1560
1561 ks->netdev = ndev;
1562 ks->spidev = spi;
1563 ks->tx_space = 6144;
1564
1565 mutex_init(&ks->lock);
1566 spin_lock_init(&ks->statelock);
1567
1568 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1569 INIT_WORK(&ks->irq_work, ks8851_irq_work);
1570 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1571
1572 /* initialise pre-made spi transfer messages */
1573
1574 spi_message_init(&ks->spi_msg1);
1575 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1576
1577 spi_message_init(&ks->spi_msg2);
1578 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1579 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1580
1581 /* setup mii state */
1582 ks->mii.dev = ndev;
1583 ks->mii.phy_id = 1,
1584 ks->mii.phy_id_mask = 1;
1585 ks->mii.reg_num_mask = 0xf;
1586 ks->mii.mdio_read = ks8851_phy_read;
1587 ks->mii.mdio_write = ks8851_phy_write;
1588
1589 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1590
1591 /* set the default message enable */
1592 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1593 NETIF_MSG_PROBE |
1594 NETIF_MSG_LINK));
1595
1596 skb_queue_head_init(&ks->txq);
1597
1598 SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1599 SET_NETDEV_DEV(ndev, &spi->dev);
1600
1601 dev_set_drvdata(&spi->dev, ks);
1602
1603 ndev->if_port = IF_PORT_100BASET;
1604 ndev->netdev_ops = &ks8851_netdev_ops;
1605 ndev->irq = spi->irq;
1606
57dada68
BD
1607 /* issue a global soft reset to reset the device. */
1608 ks8851_soft_reset(ks, GRR_GSR);
1609
3ba81f3e
BD
1610 /* simple check for a valid chip being connected to the bus */
1611
1612 if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1613 dev_err(&spi->dev, "failed to read device ID\n");
1614 ret = -ENODEV;
1615 goto err_id;
1616 }
1617
7d997466
SJ
1618 /* cache the contents of the CCR register for EEPROM, etc. */
1619 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1620
1621 if (ks->rc_ccr & CCR_EEPROM)
1622 ks->eeprom_size = 128;
1623 else
1624 ks->eeprom_size = 0;
1625
3ba81f3e
BD
1626 ks8851_read_selftest(ks);
1627 ks8851_init_mac(ks);
1628
1629 ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1630 ndev->name, ks);
1631 if (ret < 0) {
1632 dev_err(&spi->dev, "failed to get irq\n");
1633 goto err_irq;
1634 }
1635
1636 ret = register_netdev(ndev);
1637 if (ret) {
1638 dev_err(&spi->dev, "failed to register network device\n");
1639 goto err_netdev;
1640 }
1641
0dc7d2b3
JP
1642 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
1643 CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1644 ndev->dev_addr, ndev->irq);
3ba81f3e
BD
1645
1646 return 0;
1647
1648
1649err_netdev:
1650 free_irq(ndev->irq, ndev);
1651
1652err_id:
1653err_irq:
1654 free_netdev(ndev);
1655 return ret;
1656}
1657
1658static int __devexit ks8851_remove(struct spi_device *spi)
1659{
1660 struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1661
1662 if (netif_msg_drv(priv))
0dc7d2b3 1663 dev_info(&spi->dev, "remove\n");
3ba81f3e
BD
1664
1665 unregister_netdev(priv->netdev);
1666 free_irq(spi->irq, priv);
1667 free_netdev(priv->netdev);
1668
1669 return 0;
1670}
1671
1672static struct spi_driver ks8851_driver = {
1673 .driver = {
1674 .name = "ks8851",
1675 .owner = THIS_MODULE,
1676 },
1677 .probe = ks8851_probe,
1678 .remove = __devexit_p(ks8851_remove),
1679};
1680
1681static int __init ks8851_init(void)
1682{
1683 return spi_register_driver(&ks8851_driver);
1684}
1685
1686static void __exit ks8851_exit(void)
1687{
1688 spi_unregister_driver(&ks8851_driver);
1689}
1690
1691module_init(ks8851_init);
1692module_exit(ks8851_exit);
1693
1694MODULE_DESCRIPTION("KS8851 Network driver");
1695MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1696MODULE_LICENSE("GPL");
1697
1698module_param_named(message, msg_enable, int, 0);
1699MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
e0626e38 1700MODULE_ALIAS("spi:ks8851");