]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ixgbe/ixgbe_phy.c
Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[net-next-2.6.git] / drivers / net / ixgbe / ixgbe_phy.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
8c47eaa7 4 Copyright(c) 1999 - 2010 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31
32#include "ixgbe_common.h"
33#include "ixgbe_phy.h"
34
11afc1b1
PW
35static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45static bool ixgbe_get_i2c_data(u32 *i2cctl);
46static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
9a799d71
AK
47static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
9a799d71
AK
49
50/**
c44ade9e 51 * ixgbe_identify_phy_generic - Get physical layer module
9a799d71
AK
52 * @hw: pointer to hardware structure
53 *
54 * Determines the physical layer module found on the current adapter.
55 **/
c44ade9e 56s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
9a799d71
AK
57{
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
60
c44ade9e
JB
61 if (hw->phy.type == ixgbe_phy_unknown) {
62 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63d6e1d8 63 hw->phy.mdio.prtad = phy_addr;
6b73e10d 64 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
c44ade9e
JB
65 ixgbe_get_phy_id(hw);
66 hw->phy.type =
67 ixgbe_get_phy_type_from_id(hw->phy.id);
68 status = 0;
69 break;
70 }
9a799d71 71 }
63d6e1d8
DS
72 /* clear value if nothing found */
73 hw->phy.mdio.prtad = 0;
c44ade9e
JB
74 } else {
75 status = 0;
9a799d71 76 }
c44ade9e 77
9a799d71
AK
78 return status;
79}
80
9a799d71
AK
81/**
82 * ixgbe_get_phy_id - Get the phy type
83 * @hw: pointer to hardware structure
84 *
85 **/
86static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87{
88 u32 status;
89 u16 phy_id_high = 0;
90 u16 phy_id_low = 0;
91
6b73e10d 92 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
c44ade9e 93 &phy_id_high);
9a799d71
AK
94
95 if (status == 0) {
96 hw->phy.id = (u32)(phy_id_high << 16);
6b73e10d 97 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
c44ade9e 98 &phy_id_low);
9a799d71
AK
99 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101 }
9a799d71
AK
102 return status;
103}
104
105/**
106 * ixgbe_get_phy_type_from_id - Get the phy type
107 * @hw: pointer to hardware structure
108 *
109 **/
110static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111{
112 enum ixgbe_phy_type phy_type;
113
114 switch (phy_id) {
0befdb3e
JB
115 case TN1010_PHY_ID:
116 phy_type = ixgbe_phy_tn;
117 break;
9a799d71
AK
118 case QT2022_PHY_ID:
119 phy_type = ixgbe_phy_qt;
120 break;
c4900be0
DS
121 case ATH_PHY_ID:
122 phy_type = ixgbe_phy_nl;
123 break;
9a799d71
AK
124 default:
125 phy_type = ixgbe_phy_unknown;
126 break;
127 }
128
129 return phy_type;
130}
131
132/**
c44ade9e 133 * ixgbe_reset_phy_generic - Performs a PHY reset
9a799d71
AK
134 * @hw: pointer to hardware structure
135 **/
c44ade9e 136s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
9a799d71 137{
119fc60a
MC
138 /* Don't reset PHY if it's shut down due to overtemp. */
139 if (!hw->phy.reset_if_overtemp &&
140 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
141 return 0;
142
9a799d71
AK
143 /*
144 * Perform soft PHY reset to the PHY_XS.
145 * This will cause a soft reset to the PHY
146 */
6b73e10d
BH
147 return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
148 MDIO_CTRL1_RESET);
9a799d71
AK
149}
150
151/**
c44ade9e 152 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
9a799d71
AK
153 * @hw: pointer to hardware structure
154 * @reg_addr: 32 bit address of PHY register to read
155 * @phy_data: Pointer to read data from PHY register
156 **/
c44ade9e
JB
157s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
158 u32 device_type, u16 *phy_data)
9a799d71
AK
159{
160 u32 command;
161 u32 i;
9a799d71
AK
162 u32 data;
163 s32 status = 0;
164 u16 gssr;
165
166 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
167 gssr = IXGBE_GSSR_PHY1_SM;
168 else
169 gssr = IXGBE_GSSR_PHY0_SM;
170
171 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
172 status = IXGBE_ERR_SWFW_SYNC;
173
174 if (status == 0) {
175 /* Setup and write the address cycle command */
176 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 177 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d 178 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 179 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
180
181 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
182
183 /*
184 * Check every 10 usec to see if the address cycle completed.
185 * The MDI Command bit will clear when the operation is
186 * complete
187 */
c44ade9e 188 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
189 udelay(10);
190
191 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
192
193 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
194 break;
195 }
196
197 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
198 hw_dbg(hw, "PHY address command did not complete.\n");
199 status = IXGBE_ERR_PHY;
200 }
201
202 if (status == 0) {
203 /*
204 * Address cycle complete, setup and write the read
205 * command
206 */
207 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 208 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d
BH
209 (hw->phy.mdio.prtad <<
210 IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 211 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
212
213 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
214
215 /*
216 * Check every 10 usec to see if the address cycle
217 * completed. The MDI Command bit will clear when the
218 * operation is complete
219 */
c44ade9e 220 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
221 udelay(10);
222
223 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
224
225 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
226 break;
227 }
228
229 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
c44ade9e 230 hw_dbg(hw, "PHY read command didn't complete\n");
9a799d71
AK
231 status = IXGBE_ERR_PHY;
232 } else {
233 /*
234 * Read operation is complete. Get the data
235 * from MSRWD
236 */
237 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
238 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
239 *phy_data = (u16)(data);
240 }
241 }
242
243 ixgbe_release_swfw_sync(hw, gssr);
244 }
c44ade9e 245
9a799d71
AK
246 return status;
247}
248
249/**
c44ade9e 250 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
9a799d71
AK
251 * @hw: pointer to hardware structure
252 * @reg_addr: 32 bit PHY register to write
253 * @device_type: 5 bit device type
254 * @phy_data: Data to write to the PHY register
255 **/
c44ade9e
JB
256s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
257 u32 device_type, u16 phy_data)
9a799d71
AK
258{
259 u32 command;
260 u32 i;
9a799d71
AK
261 s32 status = 0;
262 u16 gssr;
263
264 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
265 gssr = IXGBE_GSSR_PHY1_SM;
266 else
267 gssr = IXGBE_GSSR_PHY0_SM;
268
269 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
270 status = IXGBE_ERR_SWFW_SYNC;
271
272 if (status == 0) {
273 /* Put the data in the MDI single read and write data register*/
274 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
275
276 /* Setup and write the address cycle command */
277 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 278 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d 279 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 280 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
281
282 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
283
284 /*
285 * Check every 10 usec to see if the address cycle completed.
286 * The MDI Command bit will clear when the operation is
287 * complete
288 */
c44ade9e 289 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
290 udelay(10);
291
292 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
293
c44ade9e 294 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 295 break;
9a799d71
AK
296 }
297
c44ade9e
JB
298 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
299 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 300 status = IXGBE_ERR_PHY;
c44ade9e 301 }
9a799d71
AK
302
303 if (status == 0) {
304 /*
305 * Address cycle complete, setup and write the write
306 * command
307 */
308 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 309 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d
BH
310 (hw->phy.mdio.prtad <<
311 IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 312 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
313
314 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
315
316 /*
317 * Check every 10 usec to see if the address cycle
318 * completed. The MDI Command bit will clear when the
319 * operation is complete
320 */
c44ade9e 321 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
322 udelay(10);
323
324 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
325
c44ade9e 326 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 327 break;
9a799d71
AK
328 }
329
c44ade9e
JB
330 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 332 status = IXGBE_ERR_PHY;
c44ade9e 333 }
9a799d71
AK
334 }
335
336 ixgbe_release_swfw_sync(hw, gssr);
337 }
338
339 return status;
340}
341
342/**
c44ade9e 343 * ixgbe_setup_phy_link_generic - Set and restart autoneg
9a799d71
AK
344 * @hw: pointer to hardware structure
345 *
346 * Restart autonegotiation and PHY and waits for completion.
347 **/
c44ade9e 348s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
9a799d71
AK
349{
350 s32 status = IXGBE_NOT_IMPLEMENTED;
351 u32 time_out;
352 u32 max_time_out = 10;
6b73e10d 353 u16 autoneg_reg;
9a799d71
AK
354
355 /*
356 * Set advertisement settings in PHY based on autoneg_advertised
357 * settings. If autoneg_advertised = 0, then advertise default values
c44ade9e 358 * tnx devices cannot be "forced" to a autoneg 10G and fail. But can
9a799d71
AK
359 * for a 1G.
360 */
6b73e10d 361 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
9a799d71
AK
362
363 if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
6b73e10d 364 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
9a799d71 365 else
6b73e10d 366 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
9a799d71 367
6b73e10d 368 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
9a799d71
AK
369
370 /* Restart PHY autonegotiation and wait for completion */
6b73e10d 371 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
9a799d71 372
6b73e10d 373 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
9a799d71 374
6b73e10d 375 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
9a799d71
AK
376
377 /* Wait for autonegotiation to finish */
378 for (time_out = 0; time_out < max_time_out; time_out++) {
379 udelay(10);
380 /* Restart PHY autonegotiation and wait for completion */
6b73e10d 381 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
c44ade9e 382 &autoneg_reg);
9a799d71 383
6b73e10d
BH
384 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
385 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
9a799d71
AK
386 status = 0;
387 break;
388 }
389 }
390
391 if (time_out == max_time_out)
392 status = IXGBE_ERR_LINK_SETUP;
393
394 return status;
395}
396
397/**
c44ade9e 398 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
9a799d71
AK
399 * @hw: pointer to hardware structure
400 * @speed: new link speed
401 * @autoneg: true if autonegotiation enabled
402 **/
c44ade9e
JB
403s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
404 ixgbe_link_speed speed,
405 bool autoneg,
406 bool autoneg_wait_to_complete)
9a799d71 407{
c44ade9e 408
9a799d71
AK
409 /*
410 * Clear autoneg_advertised and set new values based on input link
411 * speed.
412 */
413 hw->phy.autoneg_advertised = 0;
414
415 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
416 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
c44ade9e 417
9a799d71
AK
418 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
419 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
420
421 /* Setup link based on the new speed settings */
c44ade9e 422 hw->phy.ops.setup_link(hw);
9a799d71
AK
423
424 return 0;
425}
c44ade9e 426
c4900be0
DS
427/**
428 * ixgbe_reset_phy_nl - Performs a PHY reset
429 * @hw: pointer to hardware structure
430 **/
431s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
432{
433 u16 phy_offset, control, eword, edata, block_crc;
434 bool end_data = false;
435 u16 list_offset, data_offset;
436 u16 phy_data = 0;
437 s32 ret_val = 0;
438 u32 i;
439
6b73e10d 440 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
c4900be0
DS
441
442 /* reset the PHY and poll for completion */
6b73e10d
BH
443 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
444 (phy_data | MDIO_CTRL1_RESET));
c4900be0
DS
445
446 for (i = 0; i < 100; i++) {
6b73e10d
BH
447 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
448 &phy_data);
449 if ((phy_data & MDIO_CTRL1_RESET) == 0)
c4900be0
DS
450 break;
451 msleep(10);
452 }
453
6b73e10d 454 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
c4900be0
DS
455 hw_dbg(hw, "PHY reset did not complete.\n");
456 ret_val = IXGBE_ERR_PHY;
457 goto out;
458 }
459
460 /* Get init offsets */
461 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
462 &data_offset);
463 if (ret_val != 0)
464 goto out;
465
466 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
467 data_offset++;
468 while (!end_data) {
469 /*
470 * Read control word from PHY init contents offset
471 */
472 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
473 control = (eword & IXGBE_CONTROL_MASK_NL) >>
474 IXGBE_CONTROL_SHIFT_NL;
475 edata = eword & IXGBE_DATA_MASK_NL;
476 switch (control) {
477 case IXGBE_DELAY_NL:
478 data_offset++;
479 hw_dbg(hw, "DELAY: %d MS\n", edata);
480 msleep(edata);
481 break;
482 case IXGBE_DATA_NL:
d6dbee86 483 hw_dbg(hw, "DATA:\n");
c4900be0
DS
484 data_offset++;
485 hw->eeprom.ops.read(hw, data_offset++,
486 &phy_offset);
487 for (i = 0; i < edata; i++) {
488 hw->eeprom.ops.read(hw, data_offset, &eword);
489 hw->phy.ops.write_reg(hw, phy_offset,
6b73e10d 490 MDIO_MMD_PMAPMD, eword);
c4900be0
DS
491 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
492 phy_offset);
493 data_offset++;
494 phy_offset++;
495 }
496 break;
497 case IXGBE_CONTROL_NL:
498 data_offset++;
d6dbee86 499 hw_dbg(hw, "CONTROL:\n");
c4900be0
DS
500 if (edata == IXGBE_CONTROL_EOL_NL) {
501 hw_dbg(hw, "EOL\n");
502 end_data = true;
503 } else if (edata == IXGBE_CONTROL_SOL_NL) {
504 hw_dbg(hw, "SOL\n");
505 } else {
506 hw_dbg(hw, "Bad control value\n");
507 ret_val = IXGBE_ERR_PHY;
508 goto out;
509 }
510 break;
511 default:
512 hw_dbg(hw, "Bad control type\n");
513 ret_val = IXGBE_ERR_PHY;
514 goto out;
515 }
516 }
517
518out:
519 return ret_val;
520}
521
522/**
523 * ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
524 * the PHY type.
525 * @hw: pointer to hardware structure
526 *
527 * Searches for and indentifies the SFP module. Assings appropriate PHY type.
528 **/
529s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
530{
531 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
532 u32 vendor_oui = 0;
553b4497 533 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
c4900be0
DS
534 u8 identifier = 0;
535 u8 comp_codes_1g = 0;
536 u8 comp_codes_10g = 0;
11afc1b1 537 u8 oui_bytes[3] = {0, 0, 0};
537d58a0 538 u8 cable_tech = 0;
ea0a04df 539 u8 cable_spec = 0;
11afc1b1 540 u16 enforce_sfp = 0;
c4900be0 541
8ca783ab
DS
542 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
543 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
544 status = IXGBE_ERR_SFP_NOT_PRESENT;
545 goto out;
546 }
547
c4900be0
DS
548 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
549 &identifier);
550
8ca783ab
DS
551 if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
552 status = IXGBE_ERR_SFP_NOT_PRESENT;
c4900be0 553 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
8ca783ab
DS
554 if (hw->phy.type != ixgbe_phy_nl) {
555 hw->phy.id = 0;
556 hw->phy.type = ixgbe_phy_unknown;
557 }
c4900be0
DS
558 goto out;
559 }
560
561 if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
562 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
563 &comp_codes_1g);
564 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
565 &comp_codes_10g);
537d58a0
PWJ
566 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
567 &cable_tech);
c4900be0
DS
568
569 /* ID Module
570 * =========
11afc1b1
PW
571 * 0 SFP_DA_CU
572 * 1 SFP_SR
573 * 2 SFP_LR
574 * 3 SFP_DA_CORE0 - 82599-specific
575 * 4 SFP_DA_CORE1 - 82599-specific
576 * 5 SFP_SR/LR_CORE0 - 82599-specific
577 * 6 SFP_SR/LR_CORE1 - 82599-specific
75672506
DS
578 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
579 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
c4900be0 580 */
11afc1b1 581 if (hw->mac.type == ixgbe_mac_82598EB) {
537d58a0 582 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
11afc1b1
PW
583 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
584 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
585 hw->phy.sfp_type = ixgbe_sfp_type_sr;
586 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
587 hw->phy.sfp_type = ixgbe_sfp_type_lr;
588 else
589 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
590 } else if (hw->mac.type == ixgbe_mac_82599EB) {
ea0a04df 591 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
11afc1b1
PW
592 if (hw->bus.lan_id == 0)
593 hw->phy.sfp_type =
594 ixgbe_sfp_type_da_cu_core0;
595 else
596 hw->phy.sfp_type =
597 ixgbe_sfp_type_da_cu_core1;
ea0a04df
DS
598 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
599 hw->phy.ops.read_i2c_eeprom(
600 hw, IXGBE_SFF_CABLE_SPEC_COMP,
601 &cable_spec);
602 if (cable_spec &
603 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
604 if (hw->bus.lan_id == 0)
605 hw->phy.sfp_type =
606 ixgbe_sfp_type_da_act_lmt_core0;
607 else
608 hw->phy.sfp_type =
609 ixgbe_sfp_type_da_act_lmt_core1;
610 } else {
611 hw->phy.sfp_type =
612 ixgbe_sfp_type_unknown;
613 }
614 } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
11afc1b1
PW
615 if (hw->bus.lan_id == 0)
616 hw->phy.sfp_type =
617 ixgbe_sfp_type_srlr_core0;
618 else
619 hw->phy.sfp_type =
620 ixgbe_sfp_type_srlr_core1;
621 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
622 if (hw->bus.lan_id == 0)
623 hw->phy.sfp_type =
624 ixgbe_sfp_type_srlr_core0;
625 else
626 hw->phy.sfp_type =
627 ixgbe_sfp_type_srlr_core1;
628 else
629 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
630 }
c4900be0 631
553b4497
PW
632 if (hw->phy.sfp_type != stored_sfp_type)
633 hw->phy.sfp_setup_needed = true;
634
635 /* Determine if the SFP+ PHY is dual speed or not. */
50ac58ba 636 hw->phy.multispeed_fiber = false;
553b4497
PW
637 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
638 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
639 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
640 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
641 hw->phy.multispeed_fiber = true;
642
c4900be0 643 /* Determine PHY vendor */
04193058 644 if (hw->phy.type != ixgbe_phy_nl) {
c4900be0
DS
645 hw->phy.id = identifier;
646 hw->phy.ops.read_i2c_eeprom(hw,
647 IXGBE_SFF_VENDOR_OUI_BYTE0,
648 &oui_bytes[0]);
649 hw->phy.ops.read_i2c_eeprom(hw,
650 IXGBE_SFF_VENDOR_OUI_BYTE1,
651 &oui_bytes[1]);
652 hw->phy.ops.read_i2c_eeprom(hw,
653 IXGBE_SFF_VENDOR_OUI_BYTE2,
654 &oui_bytes[2]);
655
656 vendor_oui =
657 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
658 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
659 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
660
661 switch (vendor_oui) {
662 case IXGBE_SFF_VENDOR_OUI_TYCO:
537d58a0 663 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
ea0a04df
DS
664 hw->phy.type =
665 ixgbe_phy_sfp_passive_tyco;
c4900be0
DS
666 break;
667 case IXGBE_SFF_VENDOR_OUI_FTL:
ea0a04df
DS
668 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
669 hw->phy.type = ixgbe_phy_sfp_ftl_active;
670 else
671 hw->phy.type = ixgbe_phy_sfp_ftl;
c4900be0
DS
672 break;
673 case IXGBE_SFF_VENDOR_OUI_AVAGO:
674 hw->phy.type = ixgbe_phy_sfp_avago;
675 break;
11afc1b1
PW
676 case IXGBE_SFF_VENDOR_OUI_INTEL:
677 hw->phy.type = ixgbe_phy_sfp_intel;
678 break;
c4900be0 679 default:
537d58a0 680 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
ea0a04df
DS
681 hw->phy.type =
682 ixgbe_phy_sfp_passive_unknown;
683 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
684 hw->phy.type =
685 ixgbe_phy_sfp_active_unknown;
c4900be0
DS
686 else
687 hw->phy.type = ixgbe_phy_sfp_unknown;
688 break;
689 }
690 }
fa466e91 691
537d58a0 692 /* All passive DA cables are supported */
ea0a04df
DS
693 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
694 IXGBE_SFF_DA_ACTIVE_CABLE)) {
fa466e91
WJP
695 status = 0;
696 goto out;
697 }
698
699 /* 1G SFP modules are not supported */
700 if (comp_codes_10g == 0) {
701 hw->phy.type = ixgbe_phy_sfp_unsupported;
702 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
703 goto out;
704 }
705
706 /* Anything else 82598-based is supported */
707 if (hw->mac.type == ixgbe_mac_82598EB) {
11afc1b1
PW
708 status = 0;
709 goto out;
710 }
711
04193058
PWJ
712 /* This is guaranteed to be 82599, no need to check for NULL */
713 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
714 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
11afc1b1
PW
715 /* Make sure we're a supported PHY type */
716 if (hw->phy.type == ixgbe_phy_sfp_intel) {
717 status = 0;
718 } else {
719 hw_dbg(hw, "SFP+ module not supported\n");
fa466e91 720 hw->phy.type = ixgbe_phy_sfp_unsupported;
11afc1b1
PW
721 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
722 }
723 } else {
724 status = 0;
725 }
c4900be0
DS
726 }
727
728out:
729 return status;
730}
731
732/**
733 * ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
734 * if it supports a given SFP+ module type, if so it returns the offsets to the
735 * phy init sequence block.
736 * @hw: pointer to hardware structure
737 * @list_offset: offset to the SFP ID list
738 * @data_offset: offset to the SFP data block
739 **/
740s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
741 u16 *list_offset,
742 u16 *data_offset)
743{
744 u16 sfp_id;
745
746 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
747 return IXGBE_ERR_SFP_NOT_SUPPORTED;
748
749 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
750 return IXGBE_ERR_SFP_NOT_PRESENT;
751
752 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
753 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
754 return IXGBE_ERR_SFP_NOT_SUPPORTED;
755
756 /* Read offset to PHY init contents */
757 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
758
759 if ((!*list_offset) || (*list_offset == 0xFFFF))
11afc1b1 760 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
c4900be0
DS
761
762 /* Shift offset to first ID word */
763 (*list_offset)++;
764
765 /*
766 * Find the matching SFP ID in the EEPROM
767 * and program the init sequence
768 */
769 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
770
771 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
772 if (sfp_id == hw->phy.sfp_type) {
773 (*list_offset)++;
774 hw->eeprom.ops.read(hw, *list_offset, data_offset);
775 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
776 hw_dbg(hw, "SFP+ module not supported\n");
777 return IXGBE_ERR_SFP_NOT_SUPPORTED;
778 } else {
779 break;
780 }
781 } else {
782 (*list_offset) += 2;
783 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
784 return IXGBE_ERR_PHY;
785 }
786 }
787
788 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
789 hw_dbg(hw, "No matching SFP+ module found\n");
790 return IXGBE_ERR_SFP_NOT_SUPPORTED;
791 }
792
793 return 0;
794}
795
11afc1b1
PW
796/**
797 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
798 * @hw: pointer to hardware structure
799 * @byte_offset: EEPROM byte offset to read
800 * @eeprom_data: value read
801 *
802 * Performs byte read operation to SFP module's EEPROM over I2C interface.
803 **/
804s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
805 u8 *eeprom_data)
806{
807 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
808 IXGBE_I2C_EEPROM_DEV_ADDR,
809 eeprom_data);
810}
811
812/**
813 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
814 * @hw: pointer to hardware structure
815 * @byte_offset: EEPROM byte offset to write
816 * @eeprom_data: value to write
817 *
818 * Performs byte write operation to SFP module's EEPROM over I2C interface.
819 **/
820s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
821 u8 eeprom_data)
822{
823 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
824 IXGBE_I2C_EEPROM_DEV_ADDR,
825 eeprom_data);
826}
827
828/**
829 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
830 * @hw: pointer to hardware structure
831 * @byte_offset: byte offset to read
832 * @data: value read
833 *
834 * Performs byte read operation to SFP module's EEPROM over I2C interface at
835 * a specified deivce address.
836 **/
837s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
838 u8 dev_addr, u8 *data)
839{
840 s32 status = 0;
841 u32 max_retry = 1;
842 u32 retry = 0;
843 bool nack = 1;
844
845 do {
846 ixgbe_i2c_start(hw);
847
848 /* Device Address and write indication */
849 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
850 if (status != 0)
851 goto fail;
852
853 status = ixgbe_get_i2c_ack(hw);
854 if (status != 0)
855 goto fail;
856
857 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
858 if (status != 0)
859 goto fail;
860
861 status = ixgbe_get_i2c_ack(hw);
862 if (status != 0)
863 goto fail;
864
865 ixgbe_i2c_start(hw);
866
867 /* Device Address and read indication */
868 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
869 if (status != 0)
870 goto fail;
871
872 status = ixgbe_get_i2c_ack(hw);
873 if (status != 0)
874 goto fail;
875
876 status = ixgbe_clock_in_i2c_byte(hw, data);
877 if (status != 0)
878 goto fail;
879
880 status = ixgbe_clock_out_i2c_bit(hw, nack);
881 if (status != 0)
882 goto fail;
883
884 ixgbe_i2c_stop(hw);
885 break;
886
887fail:
888 ixgbe_i2c_bus_clear(hw);
889 retry++;
890 if (retry < max_retry)
891 hw_dbg(hw, "I2C byte read error - Retrying.\n");
892 else
893 hw_dbg(hw, "I2C byte read error.\n");
894
895 } while (retry < max_retry);
896
897 return status;
898}
899
900/**
901 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
902 * @hw: pointer to hardware structure
903 * @byte_offset: byte offset to write
904 * @data: value to write
905 *
906 * Performs byte write operation to SFP module's EEPROM over I2C interface at
907 * a specified device address.
908 **/
909s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
910 u8 dev_addr, u8 data)
911{
912 s32 status = 0;
913 u32 max_retry = 1;
914 u32 retry = 0;
915
916 do {
917 ixgbe_i2c_start(hw);
918
919 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
920 if (status != 0)
921 goto fail;
922
923 status = ixgbe_get_i2c_ack(hw);
924 if (status != 0)
925 goto fail;
926
927 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
928 if (status != 0)
929 goto fail;
930
931 status = ixgbe_get_i2c_ack(hw);
932 if (status != 0)
933 goto fail;
934
935 status = ixgbe_clock_out_i2c_byte(hw, data);
936 if (status != 0)
937 goto fail;
938
939 status = ixgbe_get_i2c_ack(hw);
940 if (status != 0)
941 goto fail;
942
943 ixgbe_i2c_stop(hw);
944 break;
945
946fail:
947 ixgbe_i2c_bus_clear(hw);
948 retry++;
949 if (retry < max_retry)
950 hw_dbg(hw, "I2C byte write error - Retrying.\n");
951 else
952 hw_dbg(hw, "I2C byte write error.\n");
953 } while (retry < max_retry);
954
955 return status;
956}
957
958/**
959 * ixgbe_i2c_start - Sets I2C start condition
960 * @hw: pointer to hardware structure
961 *
962 * Sets I2C start condition (High -> Low on SDA while SCL is High)
963 **/
964static void ixgbe_i2c_start(struct ixgbe_hw *hw)
965{
966 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
967
968 /* Start condition must begin with data and clock high */
969 ixgbe_set_i2c_data(hw, &i2cctl, 1);
970 ixgbe_raise_i2c_clk(hw, &i2cctl);
971
972 /* Setup time for start condition (4.7us) */
973 udelay(IXGBE_I2C_T_SU_STA);
974
975 ixgbe_set_i2c_data(hw, &i2cctl, 0);
976
977 /* Hold time for start condition (4us) */
978 udelay(IXGBE_I2C_T_HD_STA);
979
980 ixgbe_lower_i2c_clk(hw, &i2cctl);
981
982 /* Minimum low period of clock is 4.7 us */
983 udelay(IXGBE_I2C_T_LOW);
984
985}
986
987/**
988 * ixgbe_i2c_stop - Sets I2C stop condition
989 * @hw: pointer to hardware structure
990 *
991 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
992 **/
993static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
994{
995 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
996
997 /* Stop condition must begin with data low and clock high */
998 ixgbe_set_i2c_data(hw, &i2cctl, 0);
999 ixgbe_raise_i2c_clk(hw, &i2cctl);
1000
1001 /* Setup time for stop condition (4us) */
1002 udelay(IXGBE_I2C_T_SU_STO);
1003
1004 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1005
1006 /* bus free time between stop and start (4.7us)*/
1007 udelay(IXGBE_I2C_T_BUF);
1008}
1009
1010/**
1011 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1012 * @hw: pointer to hardware structure
1013 * @data: data byte to clock in
1014 *
1015 * Clocks in one byte data via I2C data/clock
1016 **/
1017static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1018{
1019 s32 status = 0;
1020 s32 i;
1021 bool bit = 0;
1022
1023 for (i = 7; i >= 0; i--) {
1024 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1025 *data |= bit << i;
1026
1027 if (status != 0)
1028 break;
1029 }
1030
1031 return status;
1032}
1033
1034/**
1035 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1036 * @hw: pointer to hardware structure
1037 * @data: data byte clocked out
1038 *
1039 * Clocks out one byte data via I2C data/clock
1040 **/
1041static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1042{
1043 s32 status = 0;
1044 s32 i;
1045 u32 i2cctl;
1046 bool bit = 0;
1047
1048 for (i = 7; i >= 0; i--) {
1049 bit = (data >> i) & 0x1;
1050 status = ixgbe_clock_out_i2c_bit(hw, bit);
1051
1052 if (status != 0)
1053 break;
1054 }
1055
1056 /* Release SDA line (set high) */
1057 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1058 i2cctl |= IXGBE_I2C_DATA_OUT;
1059 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1060
1061 return status;
1062}
1063
1064/**
1065 * ixgbe_get_i2c_ack - Polls for I2C ACK
1066 * @hw: pointer to hardware structure
1067 *
1068 * Clocks in/out one bit via I2C data/clock
1069 **/
1070static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1071{
1072 s32 status;
1073 u32 i = 0;
1074 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1075 u32 timeout = 10;
1076 bool ack = 1;
1077
1078 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1079
1080 if (status != 0)
1081 goto out;
1082
1083 /* Minimum high period of clock is 4us */
1084 udelay(IXGBE_I2C_T_HIGH);
1085
1086 /* Poll for ACK. Note that ACK in I2C spec is
1087 * transition from 1 to 0 */
1088 for (i = 0; i < timeout; i++) {
1089 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1090 ack = ixgbe_get_i2c_data(&i2cctl);
1091
1092 udelay(1);
1093 if (ack == 0)
1094 break;
1095 }
1096
1097 if (ack == 1) {
1098 hw_dbg(hw, "I2C ack was not received.\n");
1099 status = IXGBE_ERR_I2C;
1100 }
1101
1102 ixgbe_lower_i2c_clk(hw, &i2cctl);
1103
1104 /* Minimum low period of clock is 4.7 us */
1105 udelay(IXGBE_I2C_T_LOW);
1106
1107out:
1108 return status;
1109}
1110
1111/**
1112 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1113 * @hw: pointer to hardware structure
1114 * @data: read data value
1115 *
1116 * Clocks in one bit via I2C data/clock
1117 **/
1118static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1119{
1120 s32 status;
1121 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1122
1123 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1124
1125 /* Minimum high period of clock is 4us */
1126 udelay(IXGBE_I2C_T_HIGH);
1127
1128 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1129 *data = ixgbe_get_i2c_data(&i2cctl);
1130
1131 ixgbe_lower_i2c_clk(hw, &i2cctl);
1132
1133 /* Minimum low period of clock is 4.7 us */
1134 udelay(IXGBE_I2C_T_LOW);
1135
1136 return status;
1137}
1138
1139/**
1140 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1141 * @hw: pointer to hardware structure
1142 * @data: data value to write
1143 *
1144 * Clocks out one bit via I2C data/clock
1145 **/
1146static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1147{
1148 s32 status;
1149 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1150
1151 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1152 if (status == 0) {
1153 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1154
1155 /* Minimum high period of clock is 4us */
1156 udelay(IXGBE_I2C_T_HIGH);
1157
1158 ixgbe_lower_i2c_clk(hw, &i2cctl);
1159
1160 /* Minimum low period of clock is 4.7 us.
1161 * This also takes care of the data hold time.
1162 */
1163 udelay(IXGBE_I2C_T_LOW);
1164 } else {
1165 status = IXGBE_ERR_I2C;
1166 hw_dbg(hw, "I2C data was not set to %X\n", data);
1167 }
1168
1169 return status;
1170}
1171/**
1172 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1173 * @hw: pointer to hardware structure
1174 * @i2cctl: Current value of I2CCTL register
1175 *
1176 * Raises the I2C clock line '0'->'1'
1177 **/
1178static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1179{
1180 s32 status = 0;
1181
1182 *i2cctl |= IXGBE_I2C_CLK_OUT;
1183
1184 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1185
1186 /* SCL rise time (1000ns) */
1187 udelay(IXGBE_I2C_T_RISE);
1188
1189 return status;
1190}
1191
1192/**
1193 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1194 * @hw: pointer to hardware structure
1195 * @i2cctl: Current value of I2CCTL register
1196 *
1197 * Lowers the I2C clock line '1'->'0'
1198 **/
1199static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1200{
1201
1202 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1203
1204 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1205
1206 /* SCL fall time (300ns) */
1207 udelay(IXGBE_I2C_T_FALL);
1208}
1209
1210/**
1211 * ixgbe_set_i2c_data - Sets the I2C data bit
1212 * @hw: pointer to hardware structure
1213 * @i2cctl: Current value of I2CCTL register
1214 * @data: I2C data value (0 or 1) to set
1215 *
1216 * Sets the I2C data bit
1217 **/
1218static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1219{
1220 s32 status = 0;
1221
1222 if (data)
1223 *i2cctl |= IXGBE_I2C_DATA_OUT;
1224 else
1225 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1226
1227 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1228
1229 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1230 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1231
1232 /* Verify data was set correctly */
1233 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1234 if (data != ixgbe_get_i2c_data(i2cctl)) {
1235 status = IXGBE_ERR_I2C;
1236 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1237 }
1238
1239 return status;
1240}
1241
1242/**
1243 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1244 * @hw: pointer to hardware structure
1245 * @i2cctl: Current value of I2CCTL register
1246 *
1247 * Returns the I2C data bit value
1248 **/
1249static bool ixgbe_get_i2c_data(u32 *i2cctl)
1250{
1251 bool data;
1252
1253 if (*i2cctl & IXGBE_I2C_DATA_IN)
1254 data = 1;
1255 else
1256 data = 0;
1257
1258 return data;
1259}
1260
1261/**
1262 * ixgbe_i2c_bus_clear - Clears the I2C bus
1263 * @hw: pointer to hardware structure
1264 *
1265 * Clears the I2C bus by sending nine clock pulses.
1266 * Used when data line is stuck low.
1267 **/
1268static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1269{
1270 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1271 u32 i;
1272
1273 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1274
1275 for (i = 0; i < 9; i++) {
1276 ixgbe_raise_i2c_clk(hw, &i2cctl);
1277
1278 /* Min high period of clock is 4us */
1279 udelay(IXGBE_I2C_T_HIGH);
1280
1281 ixgbe_lower_i2c_clk(hw, &i2cctl);
1282
1283 /* Min low period of clock is 4.7us*/
1284 udelay(IXGBE_I2C_T_LOW);
1285 }
1286
1287 /* Put the i2c bus back to default state */
1288 ixgbe_i2c_stop(hw);
1289}
1290
0befdb3e
JB
1291/**
1292 * ixgbe_check_phy_link_tnx - Determine link and speed status
1293 * @hw: pointer to hardware structure
1294 *
1295 * Reads the VS1 register to determine if link is up and the current speed for
1296 * the PHY.
1297 **/
1298s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1299 bool *link_up)
1300{
1301 s32 status = 0;
1302 u32 time_out;
1303 u32 max_time_out = 10;
1304 u16 phy_link = 0;
1305 u16 phy_speed = 0;
1306 u16 phy_data = 0;
1307
1308 /* Initialize speed and link to default case */
1309 *link_up = false;
1310 *speed = IXGBE_LINK_SPEED_10GB_FULL;
1311
1312 /*
1313 * Check current speed and link status of the PHY register.
1314 * This is a vendor specific register and may have to
1315 * be changed for other copper PHYs.
1316 */
1317 for (time_out = 0; time_out < max_time_out; time_out++) {
1318 udelay(10);
1319 status = hw->phy.ops.read_reg(hw,
1320 IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
6b73e10d 1321 MDIO_MMD_VEND1,
0befdb3e
JB
1322 &phy_data);
1323 phy_link = phy_data &
1324 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1325 phy_speed = phy_data &
1326 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1327 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1328 *link_up = true;
1329 if (phy_speed ==
1330 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1331 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1332 break;
1333 }
1334 }
1335
1336 return status;
1337}
1338
1339/**
1340 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1341 * @hw: pointer to hardware structure
1342 * @firmware_version: pointer to the PHY Firmware Version
1343 **/
1344s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1345 u16 *firmware_version)
1346{
1347 s32 status = 0;
1348
6b73e10d 1349 status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
0befdb3e
JB
1350 firmware_version);
1351
1352 return status;
1353}
1354
119fc60a
MC
1355/**
1356 * ixgbe_tn_check_overtemp - Checks if an overtemp occured.
1357 * @hw: pointer to hardware structure
1358 *
1359 * Checks if the LASI temp alarm status was triggered due to overtemp
1360 **/
1361s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1362{
1363 s32 status = 0;
1364 u16 phy_data = 0;
1365
1366 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1367 goto out;
1368
1369 /* Check that the LASI temp alarm status was triggered */
1370 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1371 MDIO_MMD_PMAPMD, &phy_data);
1372
1373 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1374 goto out;
1375
1376 status = IXGBE_ERR_OVERTEMP;
1377out:
1378 return status;
1379}