]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ixgbe/ixgbe_phy.c
igb: always use adapter->itr as EITR value
[net-next-2.6.git] / drivers / net / ixgbe / ixgbe_phy.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
3efac5a0 4 Copyright(c) 1999 - 2009 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31
32#include "ixgbe_common.h"
33#include "ixgbe_phy.h"
34
11afc1b1
PW
35static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45static bool ixgbe_get_i2c_data(u32 *i2cctl);
46static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
c44ade9e 47static bool ixgbe_validate_phy_addr(struct ixgbe_hw *hw, u32 phy_addr);
9a799d71
AK
48static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
49static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
9a799d71
AK
50
51/**
c44ade9e 52 * ixgbe_identify_phy_generic - Get physical layer module
9a799d71
AK
53 * @hw: pointer to hardware structure
54 *
55 * Determines the physical layer module found on the current adapter.
56 **/
c44ade9e 57s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
9a799d71
AK
58{
59 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
60 u32 phy_addr;
61
c44ade9e
JB
62 if (hw->phy.type == ixgbe_phy_unknown) {
63 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
64 if (ixgbe_validate_phy_addr(hw, phy_addr)) {
65 hw->phy.addr = phy_addr;
66 ixgbe_get_phy_id(hw);
67 hw->phy.type =
68 ixgbe_get_phy_type_from_id(hw->phy.id);
69 status = 0;
70 break;
71 }
9a799d71 72 }
c44ade9e
JB
73 } else {
74 status = 0;
9a799d71 75 }
c44ade9e 76
9a799d71
AK
77 return status;
78}
79
80/**
81 * ixgbe_validate_phy_addr - Determines phy address is valid
82 * @hw: pointer to hardware structure
83 *
84 **/
85static bool ixgbe_validate_phy_addr(struct ixgbe_hw *hw, u32 phy_addr)
86{
87 u16 phy_id = 0;
88 bool valid = false;
89
90 hw->phy.addr = phy_addr;
c44ade9e
JB
91 hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
92 IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_id);
9a799d71
AK
93
94 if (phy_id != 0xFFFF && phy_id != 0x0)
95 valid = true;
96
97 return valid;
98}
99
100/**
101 * ixgbe_get_phy_id - Get the phy type
102 * @hw: pointer to hardware structure
103 *
104 **/
105static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
106{
107 u32 status;
108 u16 phy_id_high = 0;
109 u16 phy_id_low = 0;
110
c44ade9e
JB
111 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
112 IXGBE_MDIO_PMA_PMD_DEV_TYPE,
113 &phy_id_high);
9a799d71
AK
114
115 if (status == 0) {
116 hw->phy.id = (u32)(phy_id_high << 16);
c44ade9e
JB
117 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_LOW,
118 IXGBE_MDIO_PMA_PMD_DEV_TYPE,
119 &phy_id_low);
9a799d71
AK
120 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
121 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
122 }
9a799d71
AK
123 return status;
124}
125
126/**
127 * ixgbe_get_phy_type_from_id - Get the phy type
128 * @hw: pointer to hardware structure
129 *
130 **/
131static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
132{
133 enum ixgbe_phy_type phy_type;
134
135 switch (phy_id) {
0befdb3e
JB
136 case TN1010_PHY_ID:
137 phy_type = ixgbe_phy_tn;
138 break;
9a799d71
AK
139 case QT2022_PHY_ID:
140 phy_type = ixgbe_phy_qt;
141 break;
c4900be0
DS
142 case ATH_PHY_ID:
143 phy_type = ixgbe_phy_nl;
144 break;
9a799d71
AK
145 default:
146 phy_type = ixgbe_phy_unknown;
147 break;
148 }
149
150 return phy_type;
151}
152
153/**
c44ade9e 154 * ixgbe_reset_phy_generic - Performs a PHY reset
9a799d71
AK
155 * @hw: pointer to hardware structure
156 **/
c44ade9e 157s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
9a799d71
AK
158{
159 /*
160 * Perform soft PHY reset to the PHY_XS.
161 * This will cause a soft reset to the PHY
162 */
c44ade9e
JB
163 return hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
164 IXGBE_MDIO_PHY_XS_DEV_TYPE,
165 IXGBE_MDIO_PHY_XS_RESET);
9a799d71
AK
166}
167
168/**
c44ade9e 169 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
9a799d71
AK
170 * @hw: pointer to hardware structure
171 * @reg_addr: 32 bit address of PHY register to read
172 * @phy_data: Pointer to read data from PHY register
173 **/
c44ade9e
JB
174s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
175 u32 device_type, u16 *phy_data)
9a799d71
AK
176{
177 u32 command;
178 u32 i;
9a799d71
AK
179 u32 data;
180 s32 status = 0;
181 u16 gssr;
182
183 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
184 gssr = IXGBE_GSSR_PHY1_SM;
185 else
186 gssr = IXGBE_GSSR_PHY0_SM;
187
188 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
189 status = IXGBE_ERR_SWFW_SYNC;
190
191 if (status == 0) {
192 /* Setup and write the address cycle command */
193 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e
JB
194 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
195 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
196 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
197
198 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
199
200 /*
201 * Check every 10 usec to see if the address cycle completed.
202 * The MDI Command bit will clear when the operation is
203 * complete
204 */
c44ade9e 205 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
206 udelay(10);
207
208 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
209
210 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
211 break;
212 }
213
214 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
215 hw_dbg(hw, "PHY address command did not complete.\n");
216 status = IXGBE_ERR_PHY;
217 }
218
219 if (status == 0) {
220 /*
221 * Address cycle complete, setup and write the read
222 * command
223 */
224 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e
JB
225 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
226 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
227 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
228
229 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
230
231 /*
232 * Check every 10 usec to see if the address cycle
233 * completed. The MDI Command bit will clear when the
234 * operation is complete
235 */
c44ade9e 236 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
237 udelay(10);
238
239 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
240
241 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
242 break;
243 }
244
245 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
c44ade9e 246 hw_dbg(hw, "PHY read command didn't complete\n");
9a799d71
AK
247 status = IXGBE_ERR_PHY;
248 } else {
249 /*
250 * Read operation is complete. Get the data
251 * from MSRWD
252 */
253 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
254 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
255 *phy_data = (u16)(data);
256 }
257 }
258
259 ixgbe_release_swfw_sync(hw, gssr);
260 }
c44ade9e 261
9a799d71
AK
262 return status;
263}
264
265/**
c44ade9e 266 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
9a799d71
AK
267 * @hw: pointer to hardware structure
268 * @reg_addr: 32 bit PHY register to write
269 * @device_type: 5 bit device type
270 * @phy_data: Data to write to the PHY register
271 **/
c44ade9e
JB
272s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
273 u32 device_type, u16 phy_data)
9a799d71
AK
274{
275 u32 command;
276 u32 i;
9a799d71
AK
277 s32 status = 0;
278 u16 gssr;
279
280 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
281 gssr = IXGBE_GSSR_PHY1_SM;
282 else
283 gssr = IXGBE_GSSR_PHY0_SM;
284
285 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
286 status = IXGBE_ERR_SWFW_SYNC;
287
288 if (status == 0) {
289 /* Put the data in the MDI single read and write data register*/
290 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
291
292 /* Setup and write the address cycle command */
293 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e
JB
294 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
295 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
296 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
297
298 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
299
300 /*
301 * Check every 10 usec to see if the address cycle completed.
302 * The MDI Command bit will clear when the operation is
303 * complete
304 */
c44ade9e 305 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
306 udelay(10);
307
308 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
309
c44ade9e 310 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 311 break;
9a799d71
AK
312 }
313
c44ade9e
JB
314 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
315 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 316 status = IXGBE_ERR_PHY;
c44ade9e 317 }
9a799d71
AK
318
319 if (status == 0) {
320 /*
321 * Address cycle complete, setup and write the write
322 * command
323 */
324 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e
JB
325 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
326 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
327 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
328
329 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
330
331 /*
332 * Check every 10 usec to see if the address cycle
333 * completed. The MDI Command bit will clear when the
334 * operation is complete
335 */
c44ade9e 336 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
337 udelay(10);
338
339 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
340
c44ade9e 341 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 342 break;
9a799d71
AK
343 }
344
c44ade9e
JB
345 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
346 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 347 status = IXGBE_ERR_PHY;
c44ade9e 348 }
9a799d71
AK
349 }
350
351 ixgbe_release_swfw_sync(hw, gssr);
352 }
353
354 return status;
355}
356
357/**
c44ade9e 358 * ixgbe_setup_phy_link_generic - Set and restart autoneg
9a799d71
AK
359 * @hw: pointer to hardware structure
360 *
361 * Restart autonegotiation and PHY and waits for completion.
362 **/
c44ade9e 363s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
9a799d71
AK
364{
365 s32 status = IXGBE_NOT_IMPLEMENTED;
366 u32 time_out;
367 u32 max_time_out = 10;
c44ade9e 368 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
9a799d71
AK
369
370 /*
371 * Set advertisement settings in PHY based on autoneg_advertised
372 * settings. If autoneg_advertised = 0, then advertise default values
c44ade9e 373 * tnx devices cannot be "forced" to a autoneg 10G and fail. But can
9a799d71
AK
374 * for a 1G.
375 */
c44ade9e
JB
376 hw->phy.ops.read_reg(hw, IXGBE_MII_SPEED_SELECTION_REG,
377 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
9a799d71
AK
378
379 if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
380 autoneg_reg &= 0xEFFF; /* 0 in bit 12 is 1G operation */
381 else
382 autoneg_reg |= 0x1000; /* 1 in bit 12 is 10G/1G operation */
383
c44ade9e
JB
384 hw->phy.ops.write_reg(hw, IXGBE_MII_SPEED_SELECTION_REG,
385 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
9a799d71
AK
386
387 /* Restart PHY autonegotiation and wait for completion */
c44ade9e
JB
388 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
389 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
9a799d71 390
c44ade9e 391 autoneg_reg |= IXGBE_MII_RESTART;
9a799d71 392
c44ade9e
JB
393 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
394 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
9a799d71
AK
395
396 /* Wait for autonegotiation to finish */
397 for (time_out = 0; time_out < max_time_out; time_out++) {
398 udelay(10);
399 /* Restart PHY autonegotiation and wait for completion */
c44ade9e
JB
400 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_STATUS,
401 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
402 &autoneg_reg);
9a799d71 403
c44ade9e
JB
404 autoneg_reg &= IXGBE_MII_AUTONEG_COMPLETE;
405 if (autoneg_reg == IXGBE_MII_AUTONEG_COMPLETE) {
9a799d71
AK
406 status = 0;
407 break;
408 }
409 }
410
411 if (time_out == max_time_out)
412 status = IXGBE_ERR_LINK_SETUP;
413
414 return status;
415}
416
417/**
c44ade9e 418 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
9a799d71
AK
419 * @hw: pointer to hardware structure
420 * @speed: new link speed
421 * @autoneg: true if autonegotiation enabled
422 **/
c44ade9e
JB
423s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
424 ixgbe_link_speed speed,
425 bool autoneg,
426 bool autoneg_wait_to_complete)
9a799d71 427{
c44ade9e 428
9a799d71
AK
429 /*
430 * Clear autoneg_advertised and set new values based on input link
431 * speed.
432 */
433 hw->phy.autoneg_advertised = 0;
434
435 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
436 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
c44ade9e 437
9a799d71
AK
438 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
439 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
440
441 /* Setup link based on the new speed settings */
c44ade9e 442 hw->phy.ops.setup_link(hw);
9a799d71
AK
443
444 return 0;
445}
c44ade9e 446
c4900be0
DS
447/**
448 * ixgbe_reset_phy_nl - Performs a PHY reset
449 * @hw: pointer to hardware structure
450 **/
451s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
452{
453 u16 phy_offset, control, eword, edata, block_crc;
454 bool end_data = false;
455 u16 list_offset, data_offset;
456 u16 phy_data = 0;
457 s32 ret_val = 0;
458 u32 i;
459
460 hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
461 IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
462
463 /* reset the PHY and poll for completion */
464 hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
465 IXGBE_MDIO_PHY_XS_DEV_TYPE,
466 (phy_data | IXGBE_MDIO_PHY_XS_RESET));
467
468 for (i = 0; i < 100; i++) {
469 hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
470 IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
471 if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) == 0)
472 break;
473 msleep(10);
474 }
475
476 if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) != 0) {
477 hw_dbg(hw, "PHY reset did not complete.\n");
478 ret_val = IXGBE_ERR_PHY;
479 goto out;
480 }
481
482 /* Get init offsets */
483 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
484 &data_offset);
485 if (ret_val != 0)
486 goto out;
487
488 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
489 data_offset++;
490 while (!end_data) {
491 /*
492 * Read control word from PHY init contents offset
493 */
494 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
495 control = (eword & IXGBE_CONTROL_MASK_NL) >>
496 IXGBE_CONTROL_SHIFT_NL;
497 edata = eword & IXGBE_DATA_MASK_NL;
498 switch (control) {
499 case IXGBE_DELAY_NL:
500 data_offset++;
501 hw_dbg(hw, "DELAY: %d MS\n", edata);
502 msleep(edata);
503 break;
504 case IXGBE_DATA_NL:
505 hw_dbg(hw, "DATA: \n");
506 data_offset++;
507 hw->eeprom.ops.read(hw, data_offset++,
508 &phy_offset);
509 for (i = 0; i < edata; i++) {
510 hw->eeprom.ops.read(hw, data_offset, &eword);
511 hw->phy.ops.write_reg(hw, phy_offset,
512 IXGBE_TWINAX_DEV, eword);
513 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
514 phy_offset);
515 data_offset++;
516 phy_offset++;
517 }
518 break;
519 case IXGBE_CONTROL_NL:
520 data_offset++;
521 hw_dbg(hw, "CONTROL: \n");
522 if (edata == IXGBE_CONTROL_EOL_NL) {
523 hw_dbg(hw, "EOL\n");
524 end_data = true;
525 } else if (edata == IXGBE_CONTROL_SOL_NL) {
526 hw_dbg(hw, "SOL\n");
527 } else {
528 hw_dbg(hw, "Bad control value\n");
529 ret_val = IXGBE_ERR_PHY;
530 goto out;
531 }
532 break;
533 default:
534 hw_dbg(hw, "Bad control type\n");
535 ret_val = IXGBE_ERR_PHY;
536 goto out;
537 }
538 }
539
540out:
541 return ret_val;
542}
543
544/**
545 * ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
546 * the PHY type.
547 * @hw: pointer to hardware structure
548 *
549 * Searches for and indentifies the SFP module. Assings appropriate PHY type.
550 **/
551s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
552{
553 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
554 u32 vendor_oui = 0;
553b4497 555 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
c4900be0
DS
556 u8 identifier = 0;
557 u8 comp_codes_1g = 0;
558 u8 comp_codes_10g = 0;
11afc1b1 559 u8 oui_bytes[3] = {0, 0, 0};
c4900be0 560 u8 transmission_media = 0;
11afc1b1 561 u16 enforce_sfp = 0;
c4900be0
DS
562
563 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
564 &identifier);
565
566 if (status == IXGBE_ERR_SFP_NOT_PRESENT) {
567 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
568 goto out;
569 }
570
571 if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
572 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
573 &comp_codes_1g);
574 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
575 &comp_codes_10g);
576 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_TRANSMISSION_MEDIA,
577 &transmission_media);
578
579 /* ID Module
580 * =========
11afc1b1
PW
581 * 0 SFP_DA_CU
582 * 1 SFP_SR
583 * 2 SFP_LR
584 * 3 SFP_DA_CORE0 - 82599-specific
585 * 4 SFP_DA_CORE1 - 82599-specific
586 * 5 SFP_SR/LR_CORE0 - 82599-specific
587 * 6 SFP_SR/LR_CORE1 - 82599-specific
c4900be0 588 */
11afc1b1
PW
589 if (hw->mac.type == ixgbe_mac_82598EB) {
590 if (transmission_media & IXGBE_SFF_TWIN_AX_CAPABLE)
591 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
592 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
593 hw->phy.sfp_type = ixgbe_sfp_type_sr;
594 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
595 hw->phy.sfp_type = ixgbe_sfp_type_lr;
596 else
597 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
598 } else if (hw->mac.type == ixgbe_mac_82599EB) {
599 if (transmission_media & IXGBE_SFF_TWIN_AX_CAPABLE)
600 if (hw->bus.lan_id == 0)
601 hw->phy.sfp_type =
602 ixgbe_sfp_type_da_cu_core0;
603 else
604 hw->phy.sfp_type =
605 ixgbe_sfp_type_da_cu_core1;
606 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
607 if (hw->bus.lan_id == 0)
608 hw->phy.sfp_type =
609 ixgbe_sfp_type_srlr_core0;
610 else
611 hw->phy.sfp_type =
612 ixgbe_sfp_type_srlr_core1;
613 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
614 if (hw->bus.lan_id == 0)
615 hw->phy.sfp_type =
616 ixgbe_sfp_type_srlr_core0;
617 else
618 hw->phy.sfp_type =
619 ixgbe_sfp_type_srlr_core1;
620 else
621 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
622 }
c4900be0 623
553b4497
PW
624 if (hw->phy.sfp_type != stored_sfp_type)
625 hw->phy.sfp_setup_needed = true;
626
627 /* Determine if the SFP+ PHY is dual speed or not. */
628 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
629 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
630 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
631 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
632 hw->phy.multispeed_fiber = true;
633
c4900be0 634 /* Determine PHY vendor */
04193058 635 if (hw->phy.type != ixgbe_phy_nl) {
c4900be0
DS
636 hw->phy.id = identifier;
637 hw->phy.ops.read_i2c_eeprom(hw,
638 IXGBE_SFF_VENDOR_OUI_BYTE0,
639 &oui_bytes[0]);
640 hw->phy.ops.read_i2c_eeprom(hw,
641 IXGBE_SFF_VENDOR_OUI_BYTE1,
642 &oui_bytes[1]);
643 hw->phy.ops.read_i2c_eeprom(hw,
644 IXGBE_SFF_VENDOR_OUI_BYTE2,
645 &oui_bytes[2]);
646
647 vendor_oui =
648 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
649 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
650 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
651
652 switch (vendor_oui) {
653 case IXGBE_SFF_VENDOR_OUI_TYCO:
654 if (transmission_media &
655 IXGBE_SFF_TWIN_AX_CAPABLE)
656 hw->phy.type = ixgbe_phy_tw_tyco;
657 break;
658 case IXGBE_SFF_VENDOR_OUI_FTL:
659 hw->phy.type = ixgbe_phy_sfp_ftl;
660 break;
661 case IXGBE_SFF_VENDOR_OUI_AVAGO:
662 hw->phy.type = ixgbe_phy_sfp_avago;
663 break;
11afc1b1
PW
664 case IXGBE_SFF_VENDOR_OUI_INTEL:
665 hw->phy.type = ixgbe_phy_sfp_intel;
666 break;
c4900be0
DS
667 default:
668 if (transmission_media &
669 IXGBE_SFF_TWIN_AX_CAPABLE)
670 hw->phy.type = ixgbe_phy_tw_unknown;
671 else
672 hw->phy.type = ixgbe_phy_sfp_unknown;
673 break;
674 }
675 }
11afc1b1
PW
676 if (hw->mac.type == ixgbe_mac_82598EB ||
677 (hw->phy.sfp_type != ixgbe_sfp_type_sr &&
678 hw->phy.sfp_type != ixgbe_sfp_type_lr &&
679 hw->phy.sfp_type != ixgbe_sfp_type_srlr_core0 &&
680 hw->phy.sfp_type != ixgbe_sfp_type_srlr_core1)) {
681 status = 0;
682 goto out;
683 }
684
04193058
PWJ
685 /* This is guaranteed to be 82599, no need to check for NULL */
686 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
687 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
11afc1b1
PW
688 /* Make sure we're a supported PHY type */
689 if (hw->phy.type == ixgbe_phy_sfp_intel) {
690 status = 0;
691 } else {
692 hw_dbg(hw, "SFP+ module not supported\n");
693 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
694 }
695 } else {
696 status = 0;
697 }
c4900be0
DS
698 }
699
700out:
701 return status;
702}
703
704/**
705 * ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
706 * if it supports a given SFP+ module type, if so it returns the offsets to the
707 * phy init sequence block.
708 * @hw: pointer to hardware structure
709 * @list_offset: offset to the SFP ID list
710 * @data_offset: offset to the SFP data block
711 **/
712s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
713 u16 *list_offset,
714 u16 *data_offset)
715{
716 u16 sfp_id;
717
718 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
719 return IXGBE_ERR_SFP_NOT_SUPPORTED;
720
721 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
722 return IXGBE_ERR_SFP_NOT_PRESENT;
723
724 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
725 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
726 return IXGBE_ERR_SFP_NOT_SUPPORTED;
727
728 /* Read offset to PHY init contents */
729 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
730
731 if ((!*list_offset) || (*list_offset == 0xFFFF))
11afc1b1 732 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
c4900be0
DS
733
734 /* Shift offset to first ID word */
735 (*list_offset)++;
736
737 /*
738 * Find the matching SFP ID in the EEPROM
739 * and program the init sequence
740 */
741 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
742
743 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
744 if (sfp_id == hw->phy.sfp_type) {
745 (*list_offset)++;
746 hw->eeprom.ops.read(hw, *list_offset, data_offset);
747 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
748 hw_dbg(hw, "SFP+ module not supported\n");
749 return IXGBE_ERR_SFP_NOT_SUPPORTED;
750 } else {
751 break;
752 }
753 } else {
754 (*list_offset) += 2;
755 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
756 return IXGBE_ERR_PHY;
757 }
758 }
759
760 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
761 hw_dbg(hw, "No matching SFP+ module found\n");
762 return IXGBE_ERR_SFP_NOT_SUPPORTED;
763 }
764
765 return 0;
766}
767
11afc1b1
PW
768/**
769 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
770 * @hw: pointer to hardware structure
771 * @byte_offset: EEPROM byte offset to read
772 * @eeprom_data: value read
773 *
774 * Performs byte read operation to SFP module's EEPROM over I2C interface.
775 **/
776s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
777 u8 *eeprom_data)
778{
779 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
780 IXGBE_I2C_EEPROM_DEV_ADDR,
781 eeprom_data);
782}
783
784/**
785 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
786 * @hw: pointer to hardware structure
787 * @byte_offset: EEPROM byte offset to write
788 * @eeprom_data: value to write
789 *
790 * Performs byte write operation to SFP module's EEPROM over I2C interface.
791 **/
792s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
793 u8 eeprom_data)
794{
795 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
796 IXGBE_I2C_EEPROM_DEV_ADDR,
797 eeprom_data);
798}
799
800/**
801 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
802 * @hw: pointer to hardware structure
803 * @byte_offset: byte offset to read
804 * @data: value read
805 *
806 * Performs byte read operation to SFP module's EEPROM over I2C interface at
807 * a specified deivce address.
808 **/
809s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
810 u8 dev_addr, u8 *data)
811{
812 s32 status = 0;
813 u32 max_retry = 1;
814 u32 retry = 0;
815 bool nack = 1;
816
817 do {
818 ixgbe_i2c_start(hw);
819
820 /* Device Address and write indication */
821 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
822 if (status != 0)
823 goto fail;
824
825 status = ixgbe_get_i2c_ack(hw);
826 if (status != 0)
827 goto fail;
828
829 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
830 if (status != 0)
831 goto fail;
832
833 status = ixgbe_get_i2c_ack(hw);
834 if (status != 0)
835 goto fail;
836
837 ixgbe_i2c_start(hw);
838
839 /* Device Address and read indication */
840 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
841 if (status != 0)
842 goto fail;
843
844 status = ixgbe_get_i2c_ack(hw);
845 if (status != 0)
846 goto fail;
847
848 status = ixgbe_clock_in_i2c_byte(hw, data);
849 if (status != 0)
850 goto fail;
851
852 status = ixgbe_clock_out_i2c_bit(hw, nack);
853 if (status != 0)
854 goto fail;
855
856 ixgbe_i2c_stop(hw);
857 break;
858
859fail:
860 ixgbe_i2c_bus_clear(hw);
861 retry++;
862 if (retry < max_retry)
863 hw_dbg(hw, "I2C byte read error - Retrying.\n");
864 else
865 hw_dbg(hw, "I2C byte read error.\n");
866
867 } while (retry < max_retry);
868
869 return status;
870}
871
872/**
873 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
874 * @hw: pointer to hardware structure
875 * @byte_offset: byte offset to write
876 * @data: value to write
877 *
878 * Performs byte write operation to SFP module's EEPROM over I2C interface at
879 * a specified device address.
880 **/
881s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
882 u8 dev_addr, u8 data)
883{
884 s32 status = 0;
885 u32 max_retry = 1;
886 u32 retry = 0;
887
888 do {
889 ixgbe_i2c_start(hw);
890
891 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
892 if (status != 0)
893 goto fail;
894
895 status = ixgbe_get_i2c_ack(hw);
896 if (status != 0)
897 goto fail;
898
899 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
900 if (status != 0)
901 goto fail;
902
903 status = ixgbe_get_i2c_ack(hw);
904 if (status != 0)
905 goto fail;
906
907 status = ixgbe_clock_out_i2c_byte(hw, data);
908 if (status != 0)
909 goto fail;
910
911 status = ixgbe_get_i2c_ack(hw);
912 if (status != 0)
913 goto fail;
914
915 ixgbe_i2c_stop(hw);
916 break;
917
918fail:
919 ixgbe_i2c_bus_clear(hw);
920 retry++;
921 if (retry < max_retry)
922 hw_dbg(hw, "I2C byte write error - Retrying.\n");
923 else
924 hw_dbg(hw, "I2C byte write error.\n");
925 } while (retry < max_retry);
926
927 return status;
928}
929
930/**
931 * ixgbe_i2c_start - Sets I2C start condition
932 * @hw: pointer to hardware structure
933 *
934 * Sets I2C start condition (High -> Low on SDA while SCL is High)
935 **/
936static void ixgbe_i2c_start(struct ixgbe_hw *hw)
937{
938 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
939
940 /* Start condition must begin with data and clock high */
941 ixgbe_set_i2c_data(hw, &i2cctl, 1);
942 ixgbe_raise_i2c_clk(hw, &i2cctl);
943
944 /* Setup time for start condition (4.7us) */
945 udelay(IXGBE_I2C_T_SU_STA);
946
947 ixgbe_set_i2c_data(hw, &i2cctl, 0);
948
949 /* Hold time for start condition (4us) */
950 udelay(IXGBE_I2C_T_HD_STA);
951
952 ixgbe_lower_i2c_clk(hw, &i2cctl);
953
954 /* Minimum low period of clock is 4.7 us */
955 udelay(IXGBE_I2C_T_LOW);
956
957}
958
959/**
960 * ixgbe_i2c_stop - Sets I2C stop condition
961 * @hw: pointer to hardware structure
962 *
963 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
964 **/
965static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
966{
967 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
968
969 /* Stop condition must begin with data low and clock high */
970 ixgbe_set_i2c_data(hw, &i2cctl, 0);
971 ixgbe_raise_i2c_clk(hw, &i2cctl);
972
973 /* Setup time for stop condition (4us) */
974 udelay(IXGBE_I2C_T_SU_STO);
975
976 ixgbe_set_i2c_data(hw, &i2cctl, 1);
977
978 /* bus free time between stop and start (4.7us)*/
979 udelay(IXGBE_I2C_T_BUF);
980}
981
982/**
983 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
984 * @hw: pointer to hardware structure
985 * @data: data byte to clock in
986 *
987 * Clocks in one byte data via I2C data/clock
988 **/
989static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
990{
991 s32 status = 0;
992 s32 i;
993 bool bit = 0;
994
995 for (i = 7; i >= 0; i--) {
996 status = ixgbe_clock_in_i2c_bit(hw, &bit);
997 *data |= bit << i;
998
999 if (status != 0)
1000 break;
1001 }
1002
1003 return status;
1004}
1005
1006/**
1007 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1008 * @hw: pointer to hardware structure
1009 * @data: data byte clocked out
1010 *
1011 * Clocks out one byte data via I2C data/clock
1012 **/
1013static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1014{
1015 s32 status = 0;
1016 s32 i;
1017 u32 i2cctl;
1018 bool bit = 0;
1019
1020 for (i = 7; i >= 0; i--) {
1021 bit = (data >> i) & 0x1;
1022 status = ixgbe_clock_out_i2c_bit(hw, bit);
1023
1024 if (status != 0)
1025 break;
1026 }
1027
1028 /* Release SDA line (set high) */
1029 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1030 i2cctl |= IXGBE_I2C_DATA_OUT;
1031 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1032
1033 return status;
1034}
1035
1036/**
1037 * ixgbe_get_i2c_ack - Polls for I2C ACK
1038 * @hw: pointer to hardware structure
1039 *
1040 * Clocks in/out one bit via I2C data/clock
1041 **/
1042static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1043{
1044 s32 status;
1045 u32 i = 0;
1046 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1047 u32 timeout = 10;
1048 bool ack = 1;
1049
1050 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1051
1052 if (status != 0)
1053 goto out;
1054
1055 /* Minimum high period of clock is 4us */
1056 udelay(IXGBE_I2C_T_HIGH);
1057
1058 /* Poll for ACK. Note that ACK in I2C spec is
1059 * transition from 1 to 0 */
1060 for (i = 0; i < timeout; i++) {
1061 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1062 ack = ixgbe_get_i2c_data(&i2cctl);
1063
1064 udelay(1);
1065 if (ack == 0)
1066 break;
1067 }
1068
1069 if (ack == 1) {
1070 hw_dbg(hw, "I2C ack was not received.\n");
1071 status = IXGBE_ERR_I2C;
1072 }
1073
1074 ixgbe_lower_i2c_clk(hw, &i2cctl);
1075
1076 /* Minimum low period of clock is 4.7 us */
1077 udelay(IXGBE_I2C_T_LOW);
1078
1079out:
1080 return status;
1081}
1082
1083/**
1084 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1085 * @hw: pointer to hardware structure
1086 * @data: read data value
1087 *
1088 * Clocks in one bit via I2C data/clock
1089 **/
1090static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1091{
1092 s32 status;
1093 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1094
1095 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1096
1097 /* Minimum high period of clock is 4us */
1098 udelay(IXGBE_I2C_T_HIGH);
1099
1100 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1101 *data = ixgbe_get_i2c_data(&i2cctl);
1102
1103 ixgbe_lower_i2c_clk(hw, &i2cctl);
1104
1105 /* Minimum low period of clock is 4.7 us */
1106 udelay(IXGBE_I2C_T_LOW);
1107
1108 return status;
1109}
1110
1111/**
1112 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1113 * @hw: pointer to hardware structure
1114 * @data: data value to write
1115 *
1116 * Clocks out one bit via I2C data/clock
1117 **/
1118static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1119{
1120 s32 status;
1121 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1122
1123 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1124 if (status == 0) {
1125 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1126
1127 /* Minimum high period of clock is 4us */
1128 udelay(IXGBE_I2C_T_HIGH);
1129
1130 ixgbe_lower_i2c_clk(hw, &i2cctl);
1131
1132 /* Minimum low period of clock is 4.7 us.
1133 * This also takes care of the data hold time.
1134 */
1135 udelay(IXGBE_I2C_T_LOW);
1136 } else {
1137 status = IXGBE_ERR_I2C;
1138 hw_dbg(hw, "I2C data was not set to %X\n", data);
1139 }
1140
1141 return status;
1142}
1143/**
1144 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1145 * @hw: pointer to hardware structure
1146 * @i2cctl: Current value of I2CCTL register
1147 *
1148 * Raises the I2C clock line '0'->'1'
1149 **/
1150static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1151{
1152 s32 status = 0;
1153
1154 *i2cctl |= IXGBE_I2C_CLK_OUT;
1155
1156 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1157
1158 /* SCL rise time (1000ns) */
1159 udelay(IXGBE_I2C_T_RISE);
1160
1161 return status;
1162}
1163
1164/**
1165 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1166 * @hw: pointer to hardware structure
1167 * @i2cctl: Current value of I2CCTL register
1168 *
1169 * Lowers the I2C clock line '1'->'0'
1170 **/
1171static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1172{
1173
1174 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1175
1176 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1177
1178 /* SCL fall time (300ns) */
1179 udelay(IXGBE_I2C_T_FALL);
1180}
1181
1182/**
1183 * ixgbe_set_i2c_data - Sets the I2C data bit
1184 * @hw: pointer to hardware structure
1185 * @i2cctl: Current value of I2CCTL register
1186 * @data: I2C data value (0 or 1) to set
1187 *
1188 * Sets the I2C data bit
1189 **/
1190static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1191{
1192 s32 status = 0;
1193
1194 if (data)
1195 *i2cctl |= IXGBE_I2C_DATA_OUT;
1196 else
1197 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1198
1199 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1200
1201 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1202 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1203
1204 /* Verify data was set correctly */
1205 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1206 if (data != ixgbe_get_i2c_data(i2cctl)) {
1207 status = IXGBE_ERR_I2C;
1208 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1209 }
1210
1211 return status;
1212}
1213
1214/**
1215 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1216 * @hw: pointer to hardware structure
1217 * @i2cctl: Current value of I2CCTL register
1218 *
1219 * Returns the I2C data bit value
1220 **/
1221static bool ixgbe_get_i2c_data(u32 *i2cctl)
1222{
1223 bool data;
1224
1225 if (*i2cctl & IXGBE_I2C_DATA_IN)
1226 data = 1;
1227 else
1228 data = 0;
1229
1230 return data;
1231}
1232
1233/**
1234 * ixgbe_i2c_bus_clear - Clears the I2C bus
1235 * @hw: pointer to hardware structure
1236 *
1237 * Clears the I2C bus by sending nine clock pulses.
1238 * Used when data line is stuck low.
1239 **/
1240static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1241{
1242 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1243 u32 i;
1244
1245 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1246
1247 for (i = 0; i < 9; i++) {
1248 ixgbe_raise_i2c_clk(hw, &i2cctl);
1249
1250 /* Min high period of clock is 4us */
1251 udelay(IXGBE_I2C_T_HIGH);
1252
1253 ixgbe_lower_i2c_clk(hw, &i2cctl);
1254
1255 /* Min low period of clock is 4.7us*/
1256 udelay(IXGBE_I2C_T_LOW);
1257 }
1258
1259 /* Put the i2c bus back to default state */
1260 ixgbe_i2c_stop(hw);
1261}
1262
0befdb3e
JB
1263/**
1264 * ixgbe_check_phy_link_tnx - Determine link and speed status
1265 * @hw: pointer to hardware structure
1266 *
1267 * Reads the VS1 register to determine if link is up and the current speed for
1268 * the PHY.
1269 **/
1270s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1271 bool *link_up)
1272{
1273 s32 status = 0;
1274 u32 time_out;
1275 u32 max_time_out = 10;
1276 u16 phy_link = 0;
1277 u16 phy_speed = 0;
1278 u16 phy_data = 0;
1279
1280 /* Initialize speed and link to default case */
1281 *link_up = false;
1282 *speed = IXGBE_LINK_SPEED_10GB_FULL;
1283
1284 /*
1285 * Check current speed and link status of the PHY register.
1286 * This is a vendor specific register and may have to
1287 * be changed for other copper PHYs.
1288 */
1289 for (time_out = 0; time_out < max_time_out; time_out++) {
1290 udelay(10);
1291 status = hw->phy.ops.read_reg(hw,
1292 IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1293 IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
1294 &phy_data);
1295 phy_link = phy_data &
1296 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1297 phy_speed = phy_data &
1298 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1299 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1300 *link_up = true;
1301 if (phy_speed ==
1302 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1303 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1304 break;
1305 }
1306 }
1307
1308 return status;
1309}
1310
1311/**
1312 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1313 * @hw: pointer to hardware structure
1314 * @firmware_version: pointer to the PHY Firmware Version
1315 **/
1316s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1317 u16 *firmware_version)
1318{
1319 s32 status = 0;
1320
1321 status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
1322 IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
1323 firmware_version);
1324
1325 return status;
1326}
1327