]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ixgbe/ixgbe_common.c
ixgbe: Use bool flag to see if the packet unmapping is delayed in HWRSC
[net-next-2.6.git] / drivers / net / ixgbe / ixgbe_common.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
8c47eaa7 4 Copyright(c) 1999 - 2010 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
ccffad25 31#include <linux/netdevice.h>
9a799d71 32
11afc1b1 33#include "ixgbe.h"
9a799d71
AK
34#include "ixgbe_common.h"
35#include "ixgbe_phy.h"
36
9a799d71 37static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
c44ade9e 38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
c44ade9e
JB
41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
49static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
50
c44ade9e
JB
51static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
52static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
9a799d71 53static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
c44ade9e 54static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
7b25cdba 55static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
9a799d71
AK
56
57/**
c44ade9e 58 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
9a799d71
AK
59 * @hw: pointer to hardware structure
60 *
61 * Starts the hardware by filling the bus info structure and media type, clears
62 * all on chip counters, initializes receive address registers, multicast
63 * table, VLAN filter table, calls routine to set up link and flow control
64 * settings, and leaves transmit and receive units disabled and uninitialized
65 **/
c44ade9e 66s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
9a799d71
AK
67{
68 u32 ctrl_ext;
69
70 /* Set the media type */
71 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
72
73 /* Identify the PHY */
c44ade9e 74 hw->phy.ops.identify(hw);
9a799d71 75
9a799d71 76 /* Clear the VLAN filter table */
c44ade9e 77 hw->mac.ops.clear_vfta(hw);
9a799d71 78
9a799d71 79 /* Clear statistics registers */
c44ade9e 80 hw->mac.ops.clear_hw_cntrs(hw);
9a799d71
AK
81
82 /* Set No Snoop Disable */
83 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
84 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
85 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
3957d63d 86 IXGBE_WRITE_FLUSH(hw);
9a799d71 87
620fa036
MC
88 /* Setup flow control */
89 ixgbe_setup_fc(hw, 0);
90
9a799d71
AK
91 /* Clear adapter stopped flag */
92 hw->adapter_stopped = false;
93
94 return 0;
95}
96
97/**
c44ade9e 98 * ixgbe_init_hw_generic - Generic hardware initialization
9a799d71
AK
99 * @hw: pointer to hardware structure
100 *
c44ade9e 101 * Initialize the hardware by resetting the hardware, filling the bus info
9a799d71
AK
102 * structure and media type, clears all on chip counters, initializes receive
103 * address registers, multicast table, VLAN filter table, calls routine to set
104 * up link and flow control settings, and leaves transmit and receive units
105 * disabled and uninitialized
106 **/
c44ade9e 107s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
9a799d71 108{
794caeb2
PWJ
109 s32 status;
110
9a799d71 111 /* Reset the hardware */
794caeb2 112 status = hw->mac.ops.reset_hw(hw);
9a799d71 113
794caeb2
PWJ
114 if (status == 0) {
115 /* Start the HW */
116 status = hw->mac.ops.start_hw(hw);
117 }
9a799d71 118
794caeb2 119 return status;
9a799d71
AK
120}
121
122/**
c44ade9e 123 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
9a799d71
AK
124 * @hw: pointer to hardware structure
125 *
126 * Clears all hardware statistics counters by reading them from the hardware
127 * Statistics counters are clear on read.
128 **/
c44ade9e 129s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
130{
131 u16 i = 0;
132
133 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
134 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
135 IXGBE_READ_REG(hw, IXGBE_ERRBC);
136 IXGBE_READ_REG(hw, IXGBE_MSPDC);
137 for (i = 0; i < 8; i++)
138 IXGBE_READ_REG(hw, IXGBE_MPC(i));
139
140 IXGBE_READ_REG(hw, IXGBE_MLFC);
141 IXGBE_READ_REG(hw, IXGBE_MRFC);
142 IXGBE_READ_REG(hw, IXGBE_RLEC);
143 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
144 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
145 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
146 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
147
148 for (i = 0; i < 8; i++) {
149 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
150 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
151 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
152 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
153 }
154
155 IXGBE_READ_REG(hw, IXGBE_PRC64);
156 IXGBE_READ_REG(hw, IXGBE_PRC127);
157 IXGBE_READ_REG(hw, IXGBE_PRC255);
158 IXGBE_READ_REG(hw, IXGBE_PRC511);
159 IXGBE_READ_REG(hw, IXGBE_PRC1023);
160 IXGBE_READ_REG(hw, IXGBE_PRC1522);
161 IXGBE_READ_REG(hw, IXGBE_GPRC);
162 IXGBE_READ_REG(hw, IXGBE_BPRC);
163 IXGBE_READ_REG(hw, IXGBE_MPRC);
164 IXGBE_READ_REG(hw, IXGBE_GPTC);
165 IXGBE_READ_REG(hw, IXGBE_GORCL);
166 IXGBE_READ_REG(hw, IXGBE_GORCH);
167 IXGBE_READ_REG(hw, IXGBE_GOTCL);
168 IXGBE_READ_REG(hw, IXGBE_GOTCH);
169 for (i = 0; i < 8; i++)
170 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
171 IXGBE_READ_REG(hw, IXGBE_RUC);
172 IXGBE_READ_REG(hw, IXGBE_RFC);
173 IXGBE_READ_REG(hw, IXGBE_ROC);
174 IXGBE_READ_REG(hw, IXGBE_RJC);
175 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
176 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
177 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
178 IXGBE_READ_REG(hw, IXGBE_TORL);
179 IXGBE_READ_REG(hw, IXGBE_TORH);
180 IXGBE_READ_REG(hw, IXGBE_TPR);
181 IXGBE_READ_REG(hw, IXGBE_TPT);
182 IXGBE_READ_REG(hw, IXGBE_PTC64);
183 IXGBE_READ_REG(hw, IXGBE_PTC127);
184 IXGBE_READ_REG(hw, IXGBE_PTC255);
185 IXGBE_READ_REG(hw, IXGBE_PTC511);
186 IXGBE_READ_REG(hw, IXGBE_PTC1023);
187 IXGBE_READ_REG(hw, IXGBE_PTC1522);
188 IXGBE_READ_REG(hw, IXGBE_MPTC);
189 IXGBE_READ_REG(hw, IXGBE_BPTC);
190 for (i = 0; i < 16; i++) {
191 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
192 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
193 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
194 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
195 }
196
197 return 0;
198}
199
200/**
c44ade9e
JB
201 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
202 * @hw: pointer to hardware structure
203 * @pba_num: stores the part number from the EEPROM
204 *
205 * Reads the part number from the EEPROM.
206 **/
207s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
208{
209 s32 ret_val;
210 u16 data;
211
212 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
213 if (ret_val) {
214 hw_dbg(hw, "NVM Read Error\n");
215 return ret_val;
216 }
217 *pba_num = (u32)(data << 16);
218
219 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
220 if (ret_val) {
221 hw_dbg(hw, "NVM Read Error\n");
222 return ret_val;
223 }
224 *pba_num |= data;
225
226 return 0;
227}
228
229/**
230 * ixgbe_get_mac_addr_generic - Generic get MAC address
9a799d71
AK
231 * @hw: pointer to hardware structure
232 * @mac_addr: Adapter MAC address
233 *
234 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
235 * A reset of the adapter must be performed prior to calling this function
236 * in order for the MAC address to have been loaded from the EEPROM into RAR0
237 **/
c44ade9e 238s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
9a799d71
AK
239{
240 u32 rar_high;
241 u32 rar_low;
242 u16 i;
243
244 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
245 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
246
247 for (i = 0; i < 4; i++)
248 mac_addr[i] = (u8)(rar_low >> (i*8));
249
250 for (i = 0; i < 2; i++)
251 mac_addr[i+4] = (u8)(rar_high >> (i*8));
252
253 return 0;
254}
255
11afc1b1
PW
256/**
257 * ixgbe_get_bus_info_generic - Generic set PCI bus info
258 * @hw: pointer to hardware structure
259 *
260 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
261 **/
262s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
263{
264 struct ixgbe_adapter *adapter = hw->back;
265 struct ixgbe_mac_info *mac = &hw->mac;
266 u16 link_status;
267
268 hw->bus.type = ixgbe_bus_type_pci_express;
269
270 /* Get the negotiated link width and speed from PCI config space */
271 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
272 &link_status);
273
274 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
275 case IXGBE_PCI_LINK_WIDTH_1:
276 hw->bus.width = ixgbe_bus_width_pcie_x1;
277 break;
278 case IXGBE_PCI_LINK_WIDTH_2:
279 hw->bus.width = ixgbe_bus_width_pcie_x2;
280 break;
281 case IXGBE_PCI_LINK_WIDTH_4:
282 hw->bus.width = ixgbe_bus_width_pcie_x4;
283 break;
284 case IXGBE_PCI_LINK_WIDTH_8:
285 hw->bus.width = ixgbe_bus_width_pcie_x8;
286 break;
287 default:
288 hw->bus.width = ixgbe_bus_width_unknown;
289 break;
290 }
291
292 switch (link_status & IXGBE_PCI_LINK_SPEED) {
293 case IXGBE_PCI_LINK_SPEED_2500:
294 hw->bus.speed = ixgbe_bus_speed_2500;
295 break;
296 case IXGBE_PCI_LINK_SPEED_5000:
297 hw->bus.speed = ixgbe_bus_speed_5000;
298 break;
299 default:
300 hw->bus.speed = ixgbe_bus_speed_unknown;
301 break;
302 }
303
304 mac->ops.set_lan_id(hw);
305
306 return 0;
307}
308
309/**
310 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
311 * @hw: pointer to the HW structure
312 *
313 * Determines the LAN function id by reading memory-mapped registers
314 * and swaps the port value if requested.
315 **/
316void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
317{
318 struct ixgbe_bus_info *bus = &hw->bus;
319 u32 reg;
320
321 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
322 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
323 bus->lan_id = bus->func;
324
325 /* check for a port swap */
326 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
327 if (reg & IXGBE_FACTPS_LFS)
328 bus->func ^= 0x1;
329}
330
9a799d71 331/**
c44ade9e 332 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
9a799d71
AK
333 * @hw: pointer to hardware structure
334 *
335 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
336 * disables transmit and receive units. The adapter_stopped flag is used by
337 * the shared code and drivers to determine if the adapter is in a stopped
338 * state and should not touch the hardware.
339 **/
c44ade9e 340s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
9a799d71
AK
341{
342 u32 number_of_queues;
343 u32 reg_val;
344 u16 i;
345
346 /*
347 * Set the adapter_stopped flag so other driver functions stop touching
348 * the hardware
349 */
350 hw->adapter_stopped = true;
351
352 /* Disable the receive unit */
353 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
354 reg_val &= ~(IXGBE_RXCTRL_RXEN);
355 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
c44ade9e 356 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
357 msleep(2);
358
359 /* Clear interrupt mask to stop from interrupts being generated */
360 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
361
362 /* Clear any pending interrupts */
363 IXGBE_READ_REG(hw, IXGBE_EICR);
364
365 /* Disable the transmit unit. Each queue must be disabled. */
c44ade9e 366 number_of_queues = hw->mac.max_tx_queues;
9a799d71
AK
367 for (i = 0; i < number_of_queues; i++) {
368 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
369 if (reg_val & IXGBE_TXDCTL_ENABLE) {
370 reg_val &= ~IXGBE_TXDCTL_ENABLE;
371 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
372 }
373 }
374
c44ade9e
JB
375 /*
376 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
377 * access and verify no pending requests
378 */
379 if (ixgbe_disable_pcie_master(hw) != 0)
380 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
381
9a799d71
AK
382 return 0;
383}
384
385/**
c44ade9e 386 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
9a799d71
AK
387 * @hw: pointer to hardware structure
388 * @index: led number to turn on
389 **/
c44ade9e 390s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
391{
392 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
393
394 /* To turn on the LED, set mode to ON. */
395 led_reg &= ~IXGBE_LED_MODE_MASK(index);
396 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
397 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 398 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
399
400 return 0;
401}
402
403/**
c44ade9e 404 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
9a799d71
AK
405 * @hw: pointer to hardware structure
406 * @index: led number to turn off
407 **/
c44ade9e 408s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
409{
410 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
411
412 /* To turn off the LED, set mode to OFF. */
413 led_reg &= ~IXGBE_LED_MODE_MASK(index);
414 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
415 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 416 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
417
418 return 0;
419}
420
9a799d71 421/**
c44ade9e 422 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
9a799d71
AK
423 * @hw: pointer to hardware structure
424 *
425 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
426 * ixgbe_hw struct in order to set up EEPROM access.
427 **/
c44ade9e 428s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
9a799d71
AK
429{
430 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
431 u32 eec;
432 u16 eeprom_size;
433
434 if (eeprom->type == ixgbe_eeprom_uninitialized) {
435 eeprom->type = ixgbe_eeprom_none;
c44ade9e
JB
436 /* Set default semaphore delay to 10ms which is a well
437 * tested value */
438 eeprom->semaphore_delay = 10;
9a799d71
AK
439
440 /*
441 * Check for EEPROM present first.
442 * If not present leave as none
443 */
444 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
445 if (eec & IXGBE_EEC_PRES) {
446 eeprom->type = ixgbe_eeprom_spi;
447
448 /*
449 * SPI EEPROM is assumed here. This code would need to
450 * change if a future EEPROM is not SPI.
451 */
452 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
453 IXGBE_EEC_SIZE_SHIFT);
454 eeprom->word_size = 1 << (eeprom_size +
455 IXGBE_EEPROM_WORD_SIZE_SHIFT);
456 }
457
458 if (eec & IXGBE_EEC_ADDR_SIZE)
459 eeprom->address_bits = 16;
460 else
461 eeprom->address_bits = 8;
462 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
463 "%d\n", eeprom->type, eeprom->word_size,
464 eeprom->address_bits);
465 }
466
467 return 0;
468}
469
11afc1b1
PW
470/**
471 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
472 * @hw: pointer to hardware structure
473 * @offset: offset within the EEPROM to be written to
474 * @data: 16 bit word to be written to the EEPROM
475 *
476 * If ixgbe_eeprom_update_checksum is not called after this function, the
477 * EEPROM will most likely contain an invalid checksum.
478 **/
479s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
480{
481 s32 status;
482 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
483
484 hw->eeprom.ops.init_params(hw);
485
486 if (offset >= hw->eeprom.word_size) {
487 status = IXGBE_ERR_EEPROM;
488 goto out;
489 }
490
491 /* Prepare the EEPROM for writing */
492 status = ixgbe_acquire_eeprom(hw);
493
494 if (status == 0) {
495 if (ixgbe_ready_eeprom(hw) != 0) {
496 ixgbe_release_eeprom(hw);
497 status = IXGBE_ERR_EEPROM;
498 }
499 }
500
501 if (status == 0) {
502 ixgbe_standby_eeprom(hw);
503
504 /* Send the WRITE ENABLE command (8 bit opcode ) */
505 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
506 IXGBE_EEPROM_OPCODE_BITS);
507
508 ixgbe_standby_eeprom(hw);
509
510 /*
511 * Some SPI eeproms use the 8th address bit embedded in the
512 * opcode
513 */
514 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
515 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
516
517 /* Send the Write command (8-bit opcode + addr) */
518 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
519 IXGBE_EEPROM_OPCODE_BITS);
520 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
521 hw->eeprom.address_bits);
522
523 /* Send the data */
524 data = (data >> 8) | (data << 8);
525 ixgbe_shift_out_eeprom_bits(hw, data, 16);
526 ixgbe_standby_eeprom(hw);
527
528 msleep(hw->eeprom.semaphore_delay);
529 /* Done with writing - release the EEPROM */
530 ixgbe_release_eeprom(hw);
531 }
532
533out:
534 return status;
535}
536
9a799d71 537/**
c44ade9e
JB
538 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
539 * @hw: pointer to hardware structure
540 * @offset: offset within the EEPROM to be read
541 * @data: read 16 bit value from EEPROM
542 *
543 * Reads 16 bit value from EEPROM through bit-bang method
544 **/
545s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
546 u16 *data)
547{
548 s32 status;
549 u16 word_in;
550 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
551
552 hw->eeprom.ops.init_params(hw);
553
554 if (offset >= hw->eeprom.word_size) {
555 status = IXGBE_ERR_EEPROM;
556 goto out;
557 }
558
559 /* Prepare the EEPROM for reading */
560 status = ixgbe_acquire_eeprom(hw);
561
562 if (status == 0) {
563 if (ixgbe_ready_eeprom(hw) != 0) {
564 ixgbe_release_eeprom(hw);
565 status = IXGBE_ERR_EEPROM;
566 }
567 }
568
569 if (status == 0) {
570 ixgbe_standby_eeprom(hw);
571
572 /*
573 * Some SPI eeproms use the 8th address bit embedded in the
574 * opcode
575 */
576 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
577 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
578
579 /* Send the READ command (opcode + addr) */
580 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
581 IXGBE_EEPROM_OPCODE_BITS);
582 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
583 hw->eeprom.address_bits);
584
585 /* Read the data. */
586 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
587 *data = (word_in >> 8) | (word_in << 8);
588
589 /* End this read operation */
590 ixgbe_release_eeprom(hw);
591 }
592
593out:
594 return status;
595}
596
597/**
598 * ixgbe_read_eeprom_generic - Read EEPROM word using EERD
9a799d71
AK
599 * @hw: pointer to hardware structure
600 * @offset: offset of word in the EEPROM to read
601 * @data: word read from the EEPROM
602 *
603 * Reads a 16 bit word from the EEPROM using the EERD register.
604 **/
c44ade9e 605s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
9a799d71
AK
606{
607 u32 eerd;
608 s32 status;
609
c44ade9e
JB
610 hw->eeprom.ops.init_params(hw);
611
612 if (offset >= hw->eeprom.word_size) {
613 status = IXGBE_ERR_EEPROM;
614 goto out;
615 }
616
9a799d71
AK
617 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
618 IXGBE_EEPROM_READ_REG_START;
619
620 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
621 status = ixgbe_poll_eeprom_eerd_done(hw);
622
623 if (status == 0)
624 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
b4617240 625 IXGBE_EEPROM_READ_REG_DATA);
9a799d71
AK
626 else
627 hw_dbg(hw, "Eeprom read timed out\n");
628
c44ade9e 629out:
9a799d71
AK
630 return status;
631}
632
633/**
634 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
635 * @hw: pointer to hardware structure
636 *
637 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
638 **/
639static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
640{
641 u32 i;
642 u32 reg;
643 s32 status = IXGBE_ERR_EEPROM;
644
645 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
646 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
647 if (reg & IXGBE_EEPROM_READ_REG_DONE) {
648 status = 0;
649 break;
650 }
651 udelay(5);
652 }
653 return status;
654}
655
c44ade9e
JB
656/**
657 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
658 * @hw: pointer to hardware structure
659 *
660 * Prepares EEPROM for access using bit-bang method. This function should
661 * be called before issuing a command to the EEPROM.
662 **/
663static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
664{
665 s32 status = 0;
fc1f2095 666 u32 eec = 0;
c44ade9e
JB
667 u32 i;
668
669 if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
670 status = IXGBE_ERR_SWFW_SYNC;
671
672 if (status == 0) {
673 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
674
675 /* Request EEPROM Access */
676 eec |= IXGBE_EEC_REQ;
677 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
678
679 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
680 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
681 if (eec & IXGBE_EEC_GNT)
682 break;
683 udelay(5);
684 }
685
686 /* Release if grant not acquired */
687 if (!(eec & IXGBE_EEC_GNT)) {
688 eec &= ~IXGBE_EEC_REQ;
689 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
690 hw_dbg(hw, "Could not acquire EEPROM grant\n");
691
692 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
693 status = IXGBE_ERR_EEPROM;
694 }
695 }
696
697 /* Setup EEPROM for Read/Write */
698 if (status == 0) {
699 /* Clear CS and SK */
700 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
701 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
702 IXGBE_WRITE_FLUSH(hw);
703 udelay(1);
704 }
705 return status;
706}
707
9a799d71
AK
708/**
709 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
710 * @hw: pointer to hardware structure
711 *
712 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
713 **/
714static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
715{
716 s32 status = IXGBE_ERR_EEPROM;
717 u32 timeout;
718 u32 i;
719 u32 swsm;
720
721 /* Set timeout value based on size of EEPROM */
722 timeout = hw->eeprom.word_size + 1;
723
724 /* Get SMBI software semaphore between device drivers first */
725 for (i = 0; i < timeout; i++) {
726 /*
727 * If the SMBI bit is 0 when we read it, then the bit will be
728 * set and we have the semaphore
729 */
730 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
731 if (!(swsm & IXGBE_SWSM_SMBI)) {
732 status = 0;
733 break;
734 }
735 msleep(1);
736 }
737
738 /* Now get the semaphore between SW/FW through the SWESMBI bit */
739 if (status == 0) {
740 for (i = 0; i < timeout; i++) {
741 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
742
743 /* Set the SW EEPROM semaphore bit to request access */
744 swsm |= IXGBE_SWSM_SWESMBI;
745 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
746
747 /*
748 * If we set the bit successfully then we got the
749 * semaphore.
750 */
751 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
752 if (swsm & IXGBE_SWSM_SWESMBI)
753 break;
754
755 udelay(50);
756 }
757
758 /*
759 * Release semaphores and return error if SW EEPROM semaphore
760 * was not granted because we don't have access to the EEPROM
761 */
762 if (i >= timeout) {
763 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
b4617240 764 "not granted.\n");
9a799d71
AK
765 ixgbe_release_eeprom_semaphore(hw);
766 status = IXGBE_ERR_EEPROM;
767 }
768 }
769
770 return status;
771}
772
773/**
774 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
775 * @hw: pointer to hardware structure
776 *
777 * This function clears hardware semaphore bits.
778 **/
779static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
780{
781 u32 swsm;
782
783 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
784
785 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
786 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
787 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
3957d63d 788 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
789}
790
c44ade9e
JB
791/**
792 * ixgbe_ready_eeprom - Polls for EEPROM ready
793 * @hw: pointer to hardware structure
794 **/
795static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
796{
797 s32 status = 0;
798 u16 i;
799 u8 spi_stat_reg;
800
801 /*
802 * Read "Status Register" repeatedly until the LSB is cleared. The
803 * EEPROM will signal that the command has been completed by clearing
804 * bit 0 of the internal status register. If it's not cleared within
805 * 5 milliseconds, then error out.
806 */
807 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
808 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
809 IXGBE_EEPROM_OPCODE_BITS);
810 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
811 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
812 break;
813
814 udelay(5);
815 ixgbe_standby_eeprom(hw);
816 };
817
818 /*
819 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
820 * devices (and only 0-5mSec on 5V devices)
821 */
822 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
823 hw_dbg(hw, "SPI EEPROM Status error\n");
824 status = IXGBE_ERR_EEPROM;
825 }
826
827 return status;
828}
829
830/**
831 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
832 * @hw: pointer to hardware structure
833 **/
834static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
835{
836 u32 eec;
837
838 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
839
840 /* Toggle CS to flush commands */
841 eec |= IXGBE_EEC_CS;
842 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
843 IXGBE_WRITE_FLUSH(hw);
844 udelay(1);
845 eec &= ~IXGBE_EEC_CS;
846 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
847 IXGBE_WRITE_FLUSH(hw);
848 udelay(1);
849}
850
851/**
852 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
853 * @hw: pointer to hardware structure
854 * @data: data to send to the EEPROM
855 * @count: number of bits to shift out
856 **/
857static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
858 u16 count)
859{
860 u32 eec;
861 u32 mask;
862 u32 i;
863
864 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
865
866 /*
867 * Mask is used to shift "count" bits of "data" out to the EEPROM
868 * one bit at a time. Determine the starting bit based on count
869 */
870 mask = 0x01 << (count - 1);
871
872 for (i = 0; i < count; i++) {
873 /*
874 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
875 * "1", and then raising and then lowering the clock (the SK
876 * bit controls the clock input to the EEPROM). A "0" is
877 * shifted out to the EEPROM by setting "DI" to "0" and then
878 * raising and then lowering the clock.
879 */
880 if (data & mask)
881 eec |= IXGBE_EEC_DI;
882 else
883 eec &= ~IXGBE_EEC_DI;
884
885 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
886 IXGBE_WRITE_FLUSH(hw);
887
888 udelay(1);
889
890 ixgbe_raise_eeprom_clk(hw, &eec);
891 ixgbe_lower_eeprom_clk(hw, &eec);
892
893 /*
894 * Shift mask to signify next bit of data to shift in to the
895 * EEPROM
896 */
897 mask = mask >> 1;
898 };
899
900 /* We leave the "DI" bit set to "0" when we leave this routine. */
901 eec &= ~IXGBE_EEC_DI;
902 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
903 IXGBE_WRITE_FLUSH(hw);
904}
905
906/**
907 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
908 * @hw: pointer to hardware structure
909 **/
910static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
911{
912 u32 eec;
913 u32 i;
914 u16 data = 0;
915
916 /*
917 * In order to read a register from the EEPROM, we need to shift
918 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
919 * the clock input to the EEPROM (setting the SK bit), and then reading
920 * the value of the "DO" bit. During this "shifting in" process the
921 * "DI" bit should always be clear.
922 */
923 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
924
925 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
926
927 for (i = 0; i < count; i++) {
928 data = data << 1;
929 ixgbe_raise_eeprom_clk(hw, &eec);
930
931 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
932
933 eec &= ~(IXGBE_EEC_DI);
934 if (eec & IXGBE_EEC_DO)
935 data |= 1;
936
937 ixgbe_lower_eeprom_clk(hw, &eec);
938 }
939
940 return data;
941}
942
943/**
944 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
945 * @hw: pointer to hardware structure
946 * @eec: EEC register's current value
947 **/
948static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
949{
950 /*
951 * Raise the clock input to the EEPROM
952 * (setting the SK bit), then delay
953 */
954 *eec = *eec | IXGBE_EEC_SK;
955 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
956 IXGBE_WRITE_FLUSH(hw);
957 udelay(1);
958}
959
960/**
961 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
962 * @hw: pointer to hardware structure
963 * @eecd: EECD's current value
964 **/
965static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
966{
967 /*
968 * Lower the clock input to the EEPROM (clearing the SK bit), then
969 * delay
970 */
971 *eec = *eec & ~IXGBE_EEC_SK;
972 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
973 IXGBE_WRITE_FLUSH(hw);
974 udelay(1);
975}
976
977/**
978 * ixgbe_release_eeprom - Release EEPROM, release semaphores
979 * @hw: pointer to hardware structure
980 **/
981static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
982{
983 u32 eec;
984
985 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
986
987 eec |= IXGBE_EEC_CS; /* Pull CS high */
988 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
989
990 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
991 IXGBE_WRITE_FLUSH(hw);
992
993 udelay(1);
994
995 /* Stop requesting EEPROM access */
996 eec &= ~IXGBE_EEC_REQ;
997 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
998
999 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1000}
1001
9a799d71
AK
1002/**
1003 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1004 * @hw: pointer to hardware structure
1005 **/
1006static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
1007{
1008 u16 i;
1009 u16 j;
1010 u16 checksum = 0;
1011 u16 length = 0;
1012 u16 pointer = 0;
1013 u16 word = 0;
1014
1015 /* Include 0x0-0x3F in the checksum */
1016 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
c44ade9e 1017 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
9a799d71
AK
1018 hw_dbg(hw, "EEPROM read failed\n");
1019 break;
1020 }
1021 checksum += word;
1022 }
1023
1024 /* Include all data from pointers except for the fw pointer */
1025 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
c44ade9e 1026 hw->eeprom.ops.read(hw, i, &pointer);
9a799d71
AK
1027
1028 /* Make sure the pointer seems valid */
1029 if (pointer != 0xFFFF && pointer != 0) {
c44ade9e 1030 hw->eeprom.ops.read(hw, pointer, &length);
9a799d71
AK
1031
1032 if (length != 0xFFFF && length != 0) {
1033 for (j = pointer+1; j <= pointer+length; j++) {
c44ade9e 1034 hw->eeprom.ops.read(hw, j, &word);
9a799d71
AK
1035 checksum += word;
1036 }
1037 }
1038 }
1039 }
1040
1041 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1042
1043 return checksum;
1044}
1045
1046/**
c44ade9e 1047 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
9a799d71
AK
1048 * @hw: pointer to hardware structure
1049 * @checksum_val: calculated checksum
1050 *
1051 * Performs checksum calculation and validates the EEPROM checksum. If the
1052 * caller does not need checksum_val, the value can be NULL.
1053 **/
c44ade9e
JB
1054s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1055 u16 *checksum_val)
9a799d71
AK
1056{
1057 s32 status;
1058 u16 checksum;
1059 u16 read_checksum = 0;
1060
1061 /*
1062 * Read the first word from the EEPROM. If this times out or fails, do
1063 * not continue or we could be in for a very long wait while every
1064 * EEPROM read fails
1065 */
c44ade9e 1066 status = hw->eeprom.ops.read(hw, 0, &checksum);
9a799d71
AK
1067
1068 if (status == 0) {
1069 checksum = ixgbe_calc_eeprom_checksum(hw);
1070
c44ade9e 1071 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
9a799d71
AK
1072
1073 /*
1074 * Verify read checksum from EEPROM is the same as
1075 * calculated checksum
1076 */
1077 if (read_checksum != checksum)
1078 status = IXGBE_ERR_EEPROM_CHECKSUM;
1079
1080 /* If the user cares, return the calculated checksum */
1081 if (checksum_val)
1082 *checksum_val = checksum;
1083 } else {
1084 hw_dbg(hw, "EEPROM read failed\n");
1085 }
1086
1087 return status;
1088}
1089
c44ade9e
JB
1090/**
1091 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1092 * @hw: pointer to hardware structure
1093 **/
1094s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1095{
1096 s32 status;
1097 u16 checksum;
1098
1099 /*
1100 * Read the first word from the EEPROM. If this times out or fails, do
1101 * not continue or we could be in for a very long wait while every
1102 * EEPROM read fails
1103 */
1104 status = hw->eeprom.ops.read(hw, 0, &checksum);
1105
1106 if (status == 0) {
1107 checksum = ixgbe_calc_eeprom_checksum(hw);
1108 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1109 checksum);
1110 } else {
1111 hw_dbg(hw, "EEPROM read failed\n");
1112 }
1113
1114 return status;
1115}
1116
9a799d71
AK
1117/**
1118 * ixgbe_validate_mac_addr - Validate MAC address
1119 * @mac_addr: pointer to MAC address.
1120 *
1121 * Tests a MAC address to ensure it is a valid Individual Address
1122 **/
1123s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1124{
1125 s32 status = 0;
1126
1127 /* Make sure it is not a multicast address */
1128 if (IXGBE_IS_MULTICAST(mac_addr))
1129 status = IXGBE_ERR_INVALID_MAC_ADDR;
1130 /* Not a broadcast address */
1131 else if (IXGBE_IS_BROADCAST(mac_addr))
1132 status = IXGBE_ERR_INVALID_MAC_ADDR;
1133 /* Reject the zero address */
1134 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
c44ade9e 1135 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
9a799d71
AK
1136 status = IXGBE_ERR_INVALID_MAC_ADDR;
1137
1138 return status;
1139}
1140
1141/**
c44ade9e 1142 * ixgbe_set_rar_generic - Set Rx address register
9a799d71 1143 * @hw: pointer to hardware structure
9a799d71 1144 * @index: Receive address register to write
c44ade9e
JB
1145 * @addr: Address to put into receive address register
1146 * @vmdq: VMDq "set" or "pool" index
9a799d71
AK
1147 * @enable_addr: set flag that address is active
1148 *
1149 * Puts an ethernet address into a receive address register.
1150 **/
c44ade9e
JB
1151s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1152 u32 enable_addr)
9a799d71
AK
1153{
1154 u32 rar_low, rar_high;
c44ade9e
JB
1155 u32 rar_entries = hw->mac.num_rar_entries;
1156
1157 /* setup VMDq pool selection before this RAR gets enabled */
1158 hw->mac.ops.set_vmdq(hw, index, vmdq);
9a799d71 1159
c44ade9e
JB
1160 /* Make sure we are using a valid rar index range */
1161 if (index < rar_entries) {
b4617240 1162 /*
c44ade9e
JB
1163 * HW expects these in little endian so we reverse the byte
1164 * order from network order (big endian) to little endian
b4617240
PW
1165 */
1166 rar_low = ((u32)addr[0] |
1167 ((u32)addr[1] << 8) |
1168 ((u32)addr[2] << 16) |
1169 ((u32)addr[3] << 24));
c44ade9e
JB
1170 /*
1171 * Some parts put the VMDq setting in the extra RAH bits,
1172 * so save everything except the lower 16 bits that hold part
1173 * of the address and the address valid bit.
1174 */
1175 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1176 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1177 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
9a799d71 1178
b4617240
PW
1179 if (enable_addr != 0)
1180 rar_high |= IXGBE_RAH_AV;
9a799d71 1181
b4617240
PW
1182 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1183 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
c44ade9e
JB
1184 } else {
1185 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1186 }
1187
1188 return 0;
1189}
1190
1191/**
1192 * ixgbe_clear_rar_generic - Remove Rx address register
1193 * @hw: pointer to hardware structure
1194 * @index: Receive address register to write
1195 *
1196 * Clears an ethernet address from a receive address register.
1197 **/
1198s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1199{
1200 u32 rar_high;
1201 u32 rar_entries = hw->mac.num_rar_entries;
1202
1203 /* Make sure we are using a valid rar index range */
1204 if (index < rar_entries) {
1205 /*
1206 * Some parts put the VMDq setting in the extra RAH bits,
1207 * so save everything except the lower 16 bits that hold part
1208 * of the address and the address valid bit.
1209 */
1210 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1211 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1212
1213 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1214 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1215 } else {
1216 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1217 }
1218
1219 /* clear VMDq pool/queue selection for this RAR */
1220 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
9a799d71
AK
1221
1222 return 0;
1223}
1224
1225/**
c44ade9e
JB
1226 * ixgbe_enable_rar - Enable Rx address register
1227 * @hw: pointer to hardware structure
1228 * @index: index into the RAR table
1229 *
1230 * Enables the select receive address register.
1231 **/
1232static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1233{
1234 u32 rar_high;
1235
1236 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1237 rar_high |= IXGBE_RAH_AV;
1238 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1239}
1240
1241/**
1242 * ixgbe_disable_rar - Disable Rx address register
1243 * @hw: pointer to hardware structure
1244 * @index: index into the RAR table
1245 *
1246 * Disables the select receive address register.
1247 **/
1248static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1249{
1250 u32 rar_high;
1251
1252 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1253 rar_high &= (~IXGBE_RAH_AV);
1254 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1255}
1256
1257/**
1258 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
9a799d71
AK
1259 * @hw: pointer to hardware structure
1260 *
1261 * Places the MAC address in receive address register 0 and clears the rest
c44ade9e 1262 * of the receive address registers. Clears the multicast table. Assumes
9a799d71
AK
1263 * the receiver is in reset when the routine is called.
1264 **/
c44ade9e 1265s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
1266{
1267 u32 i;
2c5645cf 1268 u32 rar_entries = hw->mac.num_rar_entries;
9a799d71
AK
1269
1270 /*
1271 * If the current mac address is valid, assume it is a software override
1272 * to the permanent address.
1273 * Otherwise, use the permanent address from the eeprom.
1274 */
1275 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1276 IXGBE_ERR_INVALID_MAC_ADDR) {
1277 /* Get the MAC address from the RAR0 for later reference */
c44ade9e 1278 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
9a799d71 1279
ce7194d8 1280 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
9a799d71
AK
1281 } else {
1282 /* Setup the receive address. */
1283 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
ce7194d8 1284 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
9a799d71 1285
c44ade9e 1286 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
9a799d71 1287 }
c44ade9e 1288 hw->addr_ctrl.overflow_promisc = 0;
9a799d71
AK
1289
1290 hw->addr_ctrl.rar_used_count = 1;
1291
1292 /* Zero out the other receive addresses. */
c44ade9e 1293 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
9a799d71
AK
1294 for (i = 1; i < rar_entries; i++) {
1295 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1296 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1297 }
1298
1299 /* Clear the MTA */
1300 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1301 hw->addr_ctrl.mta_in_use = 0;
1302 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1303
1304 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1305 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1306 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1307
c44ade9e
JB
1308 if (hw->mac.ops.init_uta_tables)
1309 hw->mac.ops.init_uta_tables(hw);
1310
9a799d71
AK
1311 return 0;
1312}
1313
2c5645cf
CL
1314/**
1315 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1316 * @hw: pointer to hardware structure
1317 * @addr: new address
1318 *
1319 * Adds it to unused receive address register or goes into promiscuous mode.
1320 **/
c44ade9e 1321static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2c5645cf
CL
1322{
1323 u32 rar_entries = hw->mac.num_rar_entries;
1324 u32 rar;
1325
1326 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1327 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1328
1329 /*
1330 * Place this address in the RAR if there is room,
1331 * else put the controller into promiscuous mode
1332 */
1333 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1334 rar = hw->addr_ctrl.rar_used_count -
1335 hw->addr_ctrl.mc_addr_in_rar_count;
c44ade9e 1336 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2c5645cf
CL
1337 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1338 hw->addr_ctrl.rar_used_count++;
1339 } else {
1340 hw->addr_ctrl.overflow_promisc++;
1341 }
1342
1343 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1344}
1345
1346/**
c44ade9e 1347 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2c5645cf 1348 * @hw: pointer to hardware structure
32e7bfc4 1349 * @netdev: pointer to net device structure
2c5645cf
CL
1350 *
1351 * The given list replaces any existing list. Clears the secondary addrs from
1352 * receive address registers. Uses unused receive address registers for the
1353 * first secondary addresses, and falls back to promiscuous mode as needed.
1354 *
1355 * Drivers using secondary unicast addresses must set user_set_promisc when
1356 * manually putting the device into promiscuous mode.
1357 **/
ccffad25 1358s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
32e7bfc4 1359 struct net_device *netdev)
2c5645cf 1360{
2c5645cf
CL
1361 u32 i;
1362 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1363 u32 uc_addr_in_use;
1364 u32 fctrl;
ccffad25 1365 struct netdev_hw_addr *ha;
2c5645cf
CL
1366
1367 /*
1368 * Clear accounting of old secondary address list,
1369 * don't count RAR[0]
1370 */
495dce12 1371 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2c5645cf
CL
1372 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1373 hw->addr_ctrl.overflow_promisc = 0;
1374
1375 /* Zero out the other receive addresses */
91152c32
SN
1376 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use + 1);
1377 for (i = 0; i < uc_addr_in_use; i++) {
1378 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
1379 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2c5645cf
CL
1380 }
1381
1382 /* Add the new addresses */
32e7bfc4 1383 netdev_for_each_uc_addr(ha, netdev) {
2c5645cf 1384 hw_dbg(hw, " Adding the secondary addresses:\n");
ccffad25 1385 ixgbe_add_uc_addr(hw, ha->addr, 0);
2c5645cf
CL
1386 }
1387
1388 if (hw->addr_ctrl.overflow_promisc) {
1389 /* enable promisc if not already in overflow or set by user */
1390 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1391 hw_dbg(hw, " Entering address overflow promisc mode\n");
1392 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1393 fctrl |= IXGBE_FCTRL_UPE;
1394 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
e433ea1f 1395 hw->addr_ctrl.uc_set_promisc = true;
2c5645cf
CL
1396 }
1397 } else {
1398 /* only disable if set by overflow, not by user */
e433ea1f
ET
1399 if ((old_promisc_setting && hw->addr_ctrl.uc_set_promisc) &&
1400 !(hw->addr_ctrl.user_set_promisc)) {
2c5645cf
CL
1401 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1402 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1403 fctrl &= ~IXGBE_FCTRL_UPE;
1404 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
e433ea1f 1405 hw->addr_ctrl.uc_set_promisc = false;
2c5645cf
CL
1406 }
1407 }
1408
c44ade9e 1409 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
2c5645cf
CL
1410 return 0;
1411}
1412
9a799d71
AK
1413/**
1414 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1415 * @hw: pointer to hardware structure
1416 * @mc_addr: the multicast address
1417 *
1418 * Extracts the 12 bits, from a multicast address, to determine which
1419 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1420 * incoming rx multicast addresses, to determine the bit-vector to check in
1421 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
c44ade9e 1422 * by the MO field of the MCSTCTRL. The MO field is set during initialization
9a799d71
AK
1423 * to mc_filter_type.
1424 **/
1425static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1426{
1427 u32 vector = 0;
1428
1429 switch (hw->mac.mc_filter_type) {
b4617240 1430 case 0: /* use bits [47:36] of the address */
9a799d71
AK
1431 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1432 break;
b4617240 1433 case 1: /* use bits [46:35] of the address */
9a799d71
AK
1434 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1435 break;
b4617240 1436 case 2: /* use bits [45:34] of the address */
9a799d71
AK
1437 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1438 break;
b4617240 1439 case 3: /* use bits [43:32] of the address */
9a799d71
AK
1440 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1441 break;
b4617240 1442 default: /* Invalid mc_filter_type */
9a799d71
AK
1443 hw_dbg(hw, "MC filter type param set incorrectly\n");
1444 break;
1445 }
1446
1447 /* vector can only be 12-bits or boundary will be exceeded */
1448 vector &= 0xFFF;
1449 return vector;
1450}
1451
1452/**
1453 * ixgbe_set_mta - Set bit-vector in multicast table
1454 * @hw: pointer to hardware structure
1455 * @hash_value: Multicast address hash value
1456 *
1457 * Sets the bit-vector in the multicast table.
1458 **/
1459static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1460{
1461 u32 vector;
1462 u32 vector_bit;
1463 u32 vector_reg;
1464 u32 mta_reg;
1465
1466 hw->addr_ctrl.mta_in_use++;
1467
1468 vector = ixgbe_mta_vector(hw, mc_addr);
1469 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1470
1471 /*
1472 * The MTA is a register array of 128 32-bit registers. It is treated
1473 * like an array of 4096 bits. We want to set bit
1474 * BitArray[vector_value]. So we figure out what register the bit is
1475 * in, read it, OR in the new bit, then write back the new value. The
1476 * register is determined by the upper 7 bits of the vector value and
1477 * the bit within that register are determined by the lower 5 bits of
1478 * the value.
1479 */
1480 vector_reg = (vector >> 5) & 0x7F;
1481 vector_bit = vector & 0x1F;
1482 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1483 mta_reg |= (1 << vector_bit);
1484 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1485}
1486
9a799d71 1487/**
c44ade9e 1488 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
9a799d71 1489 * @hw: pointer to hardware structure
2853eb89 1490 * @netdev: pointer to net device structure
9a799d71
AK
1491 *
1492 * The given list replaces any existing list. Clears the MC addrs from receive
c44ade9e 1493 * address registers and the multicast table. Uses unused receive address
9a799d71
AK
1494 * registers for the first multicast addresses, and hashes the rest into the
1495 * multicast table.
1496 **/
2853eb89
JP
1497s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1498 struct net_device *netdev)
9a799d71 1499{
22bedad3 1500 struct netdev_hw_addr *ha;
9a799d71 1501 u32 i;
9a799d71
AK
1502
1503 /*
1504 * Set the new number of MC addresses that we are being requested to
1505 * use.
1506 */
2853eb89 1507 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
9a799d71
AK
1508 hw->addr_ctrl.mta_in_use = 0;
1509
9a799d71
AK
1510 /* Clear the MTA */
1511 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1512 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1513 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1514
1515 /* Add the new addresses */
22bedad3 1516 netdev_for_each_mc_addr(ha, netdev) {
9a799d71 1517 hw_dbg(hw, " Adding the multicast addresses:\n");
22bedad3 1518 ixgbe_set_mta(hw, ha->addr);
9a799d71
AK
1519 }
1520
1521 /* Enable mta */
1522 if (hw->addr_ctrl.mta_in_use > 0)
1523 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
b4617240 1524 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
9a799d71 1525
c44ade9e 1526 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
9a799d71
AK
1527 return 0;
1528}
1529
1530/**
c44ade9e 1531 * ixgbe_enable_mc_generic - Enable multicast address in RAR
9a799d71
AK
1532 * @hw: pointer to hardware structure
1533 *
c44ade9e 1534 * Enables multicast address in RAR and the use of the multicast hash table.
9a799d71 1535 **/
c44ade9e 1536s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
9a799d71 1537{
c44ade9e
JB
1538 u32 i;
1539 u32 rar_entries = hw->mac.num_rar_entries;
1540 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
9a799d71 1541
c44ade9e
JB
1542 if (a->mc_addr_in_rar_count > 0)
1543 for (i = (rar_entries - a->mc_addr_in_rar_count);
1544 i < rar_entries; i++)
1545 ixgbe_enable_rar(hw, i);
9a799d71 1546
c44ade9e
JB
1547 if (a->mta_in_use > 0)
1548 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1549 hw->mac.mc_filter_type);
9a799d71
AK
1550
1551 return 0;
1552}
1553
1554/**
c44ade9e 1555 * ixgbe_disable_mc_generic - Disable multicast address in RAR
9a799d71 1556 * @hw: pointer to hardware structure
9a799d71 1557 *
c44ade9e 1558 * Disables multicast address in RAR and the use of the multicast hash table.
9a799d71 1559 **/
c44ade9e 1560s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
9a799d71 1561{
c44ade9e
JB
1562 u32 i;
1563 u32 rar_entries = hw->mac.num_rar_entries;
1564 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2b9ade93 1565
c44ade9e
JB
1566 if (a->mc_addr_in_rar_count > 0)
1567 for (i = (rar_entries - a->mc_addr_in_rar_count);
1568 i < rar_entries; i++)
1569 ixgbe_disable_rar(hw, i);
9a799d71 1570
c44ade9e
JB
1571 if (a->mta_in_use > 0)
1572 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
9a799d71
AK
1573
1574 return 0;
1575}
1576
11afc1b1 1577/**
620fa036 1578 * ixgbe_fc_enable_generic - Enable flow control
11afc1b1
PW
1579 * @hw: pointer to hardware structure
1580 * @packetbuf_num: packet buffer number (0-7)
1581 *
1582 * Enable flow control according to the current settings.
1583 **/
620fa036 1584s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
11afc1b1
PW
1585{
1586 s32 ret_val = 0;
620fa036 1587 u32 mflcn_reg, fccfg_reg;
11afc1b1 1588 u32 reg;
70b77628
PWJ
1589 u32 rx_pba_size;
1590
1591#ifdef CONFIG_DCB
1592 if (hw->fc.requested_mode == ixgbe_fc_pfc)
1593 goto out;
1594
1595#endif /* CONFIG_DCB */
620fa036
MC
1596 /* Negotiate the fc mode to use */
1597 ret_val = ixgbe_fc_autoneg(hw);
1598 if (ret_val)
1599 goto out;
11afc1b1 1600
620fa036 1601 /* Disable any previous flow control settings */
11afc1b1
PW
1602 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1603 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1604
1605 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1606 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1607
1608 /*
1609 * The possible values of fc.current_mode are:
1610 * 0: Flow control is completely disabled
1611 * 1: Rx flow control is enabled (we can receive pause frames,
1612 * but not send pause frames).
bb3daa4a
PW
1613 * 2: Tx flow control is enabled (we can send pause frames but
1614 * we do not support receiving pause frames).
11afc1b1 1615 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bb3daa4a 1616 * 4: Priority Flow Control is enabled.
11afc1b1
PW
1617 * other: Invalid.
1618 */
1619 switch (hw->fc.current_mode) {
1620 case ixgbe_fc_none:
620fa036
MC
1621 /*
1622 * Flow control is disabled by software override or autoneg.
1623 * The code below will actually disable it in the HW.
1624 */
11afc1b1
PW
1625 break;
1626 case ixgbe_fc_rx_pause:
1627 /*
1628 * Rx Flow control is enabled and Tx Flow control is
1629 * disabled by software override. Since there really
1630 * isn't a way to advertise that we are capable of RX
1631 * Pause ONLY, we will advertise that we support both
1632 * symmetric and asymmetric Rx PAUSE. Later, we will
1633 * disable the adapter's ability to send PAUSE frames.
1634 */
1635 mflcn_reg |= IXGBE_MFLCN_RFCE;
1636 break;
1637 case ixgbe_fc_tx_pause:
1638 /*
1639 * Tx Flow control is enabled, and Rx Flow control is
1640 * disabled by software override.
1641 */
1642 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1643 break;
1644 case ixgbe_fc_full:
1645 /* Flow control (both Rx and Tx) is enabled by SW override. */
1646 mflcn_reg |= IXGBE_MFLCN_RFCE;
1647 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1648 break;
bb3daa4a
PW
1649#ifdef CONFIG_DCB
1650 case ixgbe_fc_pfc:
1651 goto out;
1652 break;
620fa036 1653#endif /* CONFIG_DCB */
11afc1b1
PW
1654 default:
1655 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 1656 ret_val = IXGBE_ERR_CONFIG;
11afc1b1
PW
1657 goto out;
1658 break;
1659 }
1660
620fa036 1661 /* Set 802.3x based flow control settings. */
2132d381 1662 mflcn_reg |= IXGBE_MFLCN_DPF;
11afc1b1
PW
1663 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1664 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1665
70b77628
PWJ
1666 reg = IXGBE_READ_REG(hw, IXGBE_MTQC);
1667 /* Thresholds are different for link flow control when in DCB mode */
1668 if (reg & IXGBE_MTQC_RT_ENA) {
620fa036
MC
1669 rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1670
70b77628 1671 /* Always disable XON for LFC when in DCB mode */
620fa036
MC
1672 reg = (rx_pba_size >> 5) & 0xFFE0;
1673 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), reg);
264857b8 1674
70b77628
PWJ
1675 reg = (rx_pba_size >> 2) & 0xFFE0;
1676 if (hw->fc.current_mode & ixgbe_fc_tx_pause)
1677 reg |= IXGBE_FCRTH_FCEN;
1678 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), reg);
1679 } else {
1680 /*
1681 * Set up and enable Rx high/low water mark thresholds,
1682 * enable XON.
1683 */
1684 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1685 if (hw->fc.send_xon) {
1686 IXGBE_WRITE_REG(hw,
1687 IXGBE_FCRTL_82599(packetbuf_num),
1688 (hw->fc.low_water |
1689 IXGBE_FCRTL_XONE));
1690 } else {
1691 IXGBE_WRITE_REG(hw,
1692 IXGBE_FCRTL_82599(packetbuf_num),
1693 hw->fc.low_water);
1694 }
1695
1696 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
1697 (hw->fc.high_water | IXGBE_FCRTH_FCEN));
1698 }
11afc1b1
PW
1699 }
1700
1701 /* Configure pause time (2 TCs per register) */
70b77628 1702 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
11afc1b1
PW
1703 if ((packetbuf_num & 1) == 0)
1704 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1705 else
1706 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1707 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1708
1709 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1710
1711out:
1712 return ret_val;
1713}
1714
0ecc061d
PWJ
1715/**
1716 * ixgbe_fc_autoneg - Configure flow control
1717 * @hw: pointer to hardware structure
1718 *
620fa036
MC
1719 * Compares our advertised flow control capabilities to those advertised by
1720 * our link partner, and determines the proper flow control mode to use.
0ecc061d
PWJ
1721 **/
1722s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1723{
1724 s32 ret_val = 0;
620fa036
MC
1725 ixgbe_link_speed speed;
1726 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
539e5f02 1727 u32 links2, anlp1_reg, autoc_reg, links;
620fa036 1728 bool link_up;
0ecc061d
PWJ
1729
1730 /*
620fa036
MC
1731 * AN should have completed when the cable was plugged in.
1732 * Look for reasons to bail out. Bail out if:
1733 * - FC autoneg is disabled, or if
539e5f02 1734 * - link is not up.
620fa036 1735 *
539e5f02 1736 * Since we're being called from an LSC, link is already known to be up.
620fa036 1737 * So use link_up_wait_to_complete=false.
0ecc061d 1738 */
620fa036 1739 hw->mac.ops.check_link(hw, &speed, &link_up, false);
539e5f02
PWJ
1740
1741 if (hw->fc.disable_fc_autoneg || (!link_up)) {
620fa036
MC
1742 hw->fc.fc_was_autonegged = false;
1743 hw->fc.current_mode = hw->fc.requested_mode;
0ecc061d
PWJ
1744 goto out;
1745 }
1746
539e5f02
PWJ
1747 /*
1748 * On backplane, bail out if
1749 * - backplane autoneg was not completed, or if
000c486d 1750 * - we are 82599 and link partner is not AN enabled
539e5f02
PWJ
1751 */
1752 if (hw->phy.media_type == ixgbe_media_type_backplane) {
1753 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
000c486d 1754 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
539e5f02
PWJ
1755 hw->fc.fc_was_autonegged = false;
1756 hw->fc.current_mode = hw->fc.requested_mode;
1757 goto out;
1758 }
000c486d
DS
1759
1760 if (hw->mac.type == ixgbe_mac_82599EB) {
1761 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
1762 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
1763 hw->fc.fc_was_autonegged = false;
1764 hw->fc.current_mode = hw->fc.requested_mode;
1765 goto out;
1766 }
1767 }
539e5f02
PWJ
1768 }
1769
1770 /*
1771 * On multispeed fiber at 1g, bail out if
1772 * - link is up but AN did not complete, or if
1773 * - link is up and AN completed but timed out
1774 */
1775 if (hw->phy.multispeed_fiber && (speed == IXGBE_LINK_SPEED_1GB_FULL)) {
1776 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1777 if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
1778 ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
1779 hw->fc.fc_was_autonegged = false;
1780 hw->fc.current_mode = hw->fc.requested_mode;
1781 goto out;
1782 }
1783 }
1784
9bbe3a57
PW
1785 /*
1786 * Bail out on
1787 * - copper or CX4 adapters
1788 * - fiber adapters running at 10gig
1789 */
1790 if ((hw->phy.media_type == ixgbe_media_type_copper) ||
1791 (hw->phy.media_type == ixgbe_media_type_cx4) ||
1792 ((hw->phy.media_type == ixgbe_media_type_fiber) &&
1793 (speed == IXGBE_LINK_SPEED_10GB_FULL))) {
1794 hw->fc.fc_was_autonegged = false;
1795 hw->fc.current_mode = hw->fc.requested_mode;
1796 goto out;
1797 }
1798
0ecc061d
PWJ
1799 /*
1800 * Read the AN advertisement and LP ability registers and resolve
1801 * local flow control settings accordingly
1802 */
539e5f02
PWJ
1803 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
1804 (hw->phy.media_type != ixgbe_media_type_backplane)) {
1805 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1806 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1807 if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1808 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
1809 /*
1810 * Now we need to check if the user selected Rx ONLY
1811 * of pause frames. In this case, we had to advertise
1812 * FULL flow control because we could not advertise RX
1813 * ONLY. Hence, we must now check to see if we need to
1814 * turn OFF the TRANSMISSION of PAUSE frames.
1815 */
1816 if (hw->fc.requested_mode == ixgbe_fc_full) {
1817 hw->fc.current_mode = ixgbe_fc_full;
1818 hw_dbg(hw, "Flow Control = FULL.\n");
1819 } else {
1820 hw->fc.current_mode = ixgbe_fc_rx_pause;
1821 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1822 }
1823 } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1824 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1825 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1826 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1827 hw->fc.current_mode = ixgbe_fc_tx_pause;
1828 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1829 } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1830 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1831 !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1832 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1833 hw->fc.current_mode = ixgbe_fc_rx_pause;
1834 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1835 } else {
1836 hw->fc.current_mode = ixgbe_fc_none;
1837 hw_dbg(hw, "Flow Control = NONE.\n");
1838 }
1839 }
1840
1841 if (hw->phy.media_type == ixgbe_media_type_backplane) {
0ecc061d 1842 /*
539e5f02
PWJ
1843 * Read the 10g AN autoc and LP ability registers and resolve
1844 * local flow control settings accordingly
0ecc061d 1845 */
539e5f02
PWJ
1846 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1847 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
1848
1849 if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1850 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE)) {
1851 /*
1852 * Now we need to check if the user selected Rx ONLY
1853 * of pause frames. In this case, we had to advertise
1854 * FULL flow control because we could not advertise RX
1855 * ONLY. Hence, we must now check to see if we need to
1856 * turn OFF the TRANSMISSION of PAUSE frames.
1857 */
1858 if (hw->fc.requested_mode == ixgbe_fc_full) {
1859 hw->fc.current_mode = ixgbe_fc_full;
1860 hw_dbg(hw, "Flow Control = FULL.\n");
1861 } else {
1862 hw->fc.current_mode = ixgbe_fc_rx_pause;
1863 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1864 }
1865 } else if (!(autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1866 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1867 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1868 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
1869 hw->fc.current_mode = ixgbe_fc_tx_pause;
1870 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1871 } else if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1872 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1873 !(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1874 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
0ecc061d
PWJ
1875 hw->fc.current_mode = ixgbe_fc_rx_pause;
1876 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
539e5f02
PWJ
1877 } else {
1878 hw->fc.current_mode = ixgbe_fc_none;
1879 hw_dbg(hw, "Flow Control = NONE.\n");
0ecc061d 1880 }
0ecc061d 1881 }
620fa036
MC
1882 /* Record that current_mode is the result of a successful autoneg */
1883 hw->fc.fc_was_autonegged = true;
1884
0ecc061d
PWJ
1885out:
1886 return ret_val;
1887}
1888
11afc1b1 1889/**
620fa036 1890 * ixgbe_setup_fc - Set up flow control
11afc1b1
PW
1891 * @hw: pointer to hardware structure
1892 *
620fa036 1893 * Called at init time to set up flow control.
11afc1b1 1894 **/
7b25cdba 1895static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
11afc1b1
PW
1896{
1897 s32 ret_val = 0;
620fa036 1898 u32 reg;
11afc1b1 1899
bb3daa4a
PW
1900#ifdef CONFIG_DCB
1901 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1902 hw->fc.current_mode = hw->fc.requested_mode;
1903 goto out;
1904 }
1905
1906#endif
11afc1b1
PW
1907 /* Validate the packetbuf configuration */
1908 if (packetbuf_num < 0 || packetbuf_num > 7) {
1909 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1910 "is 0-7\n", packetbuf_num);
1911 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1912 goto out;
1913 }
1914
1915 /*
1916 * Validate the water mark configuration. Zero water marks are invalid
1917 * because it causes the controller to just blast out fc packets.
1918 */
1919 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
620fa036
MC
1920 hw_dbg(hw, "Invalid water mark configuration\n");
1921 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1922 goto out;
11afc1b1
PW
1923 }
1924
1925 /*
1926 * Validate the requested mode. Strict IEEE mode does not allow
620fa036 1927 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
11afc1b1
PW
1928 */
1929 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1930 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1931 "IEEE mode\n");
1932 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1933 goto out;
1934 }
1935
1936 /*
1937 * 10gig parts do not have a word in the EEPROM to determine the
1938 * default flow control setting, so we explicitly set it to full.
1939 */
1940 if (hw->fc.requested_mode == ixgbe_fc_default)
1941 hw->fc.requested_mode = ixgbe_fc_full;
1942
1943 /*
620fa036
MC
1944 * Set up the 1G flow control advertisement registers so the HW will be
1945 * able to do fc autoneg once the cable is plugged in. If we end up
1946 * using 10g instead, this is harmless.
11afc1b1 1947 */
620fa036 1948 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
11afc1b1 1949
620fa036
MC
1950 /*
1951 * The possible values of fc.requested_mode are:
1952 * 0: Flow control is completely disabled
1953 * 1: Rx flow control is enabled (we can receive pause frames,
1954 * but not send pause frames).
1955 * 2: Tx flow control is enabled (we can send pause frames but
1956 * we do not support receiving pause frames).
1957 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1958#ifdef CONFIG_DCB
1959 * 4: Priority Flow Control is enabled.
1960#endif
1961 * other: Invalid.
1962 */
1963 switch (hw->fc.requested_mode) {
1964 case ixgbe_fc_none:
1965 /* Flow control completely disabled by software override. */
1966 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1967 break;
1968 case ixgbe_fc_rx_pause:
1969 /*
1970 * Rx Flow control is enabled and Tx Flow control is
1971 * disabled by software override. Since there really
1972 * isn't a way to advertise that we are capable of RX
1973 * Pause ONLY, we will advertise that we support both
1974 * symmetric and asymmetric Rx PAUSE. Later, we will
1975 * disable the adapter's ability to send PAUSE frames.
1976 */
1977 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1978 break;
1979 case ixgbe_fc_tx_pause:
1980 /*
1981 * Tx Flow control is enabled, and Rx Flow control is
1982 * disabled by software override.
1983 */
1984 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
1985 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
1986 break;
1987 case ixgbe_fc_full:
1988 /* Flow control (both Rx and Tx) is enabled by SW override. */
1989 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1990 break;
1991#ifdef CONFIG_DCB
1992 case ixgbe_fc_pfc:
11afc1b1 1993 goto out;
620fa036
MC
1994 break;
1995#endif /* CONFIG_DCB */
1996 default:
1997 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 1998 ret_val = IXGBE_ERR_CONFIG;
620fa036
MC
1999 goto out;
2000 break;
2001 }
2002
2003 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2004 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
11afc1b1 2005
620fa036
MC
2006 /* Disable AN timeout */
2007 if (hw->fc.strict_ieee)
2008 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2009
2010 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2011 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
11afc1b1 2012
539e5f02
PWJ
2013 /*
2014 * Set up the 10G flow control advertisement registers so the HW
2015 * can do fc autoneg once the cable is plugged in. If we end up
2016 * using 1g instead, this is harmless.
2017 */
2018 reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2019
2020 /*
2021 * The possible values of fc.requested_mode are:
2022 * 0: Flow control is completely disabled
2023 * 1: Rx flow control is enabled (we can receive pause frames,
2024 * but not send pause frames).
2025 * 2: Tx flow control is enabled (we can send pause frames but
2026 * we do not support receiving pause frames).
2027 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2028 * other: Invalid.
2029 */
2030 switch (hw->fc.requested_mode) {
2031 case ixgbe_fc_none:
2032 /* Flow control completely disabled by software override. */
2033 reg &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2034 break;
2035 case ixgbe_fc_rx_pause:
2036 /*
2037 * Rx Flow control is enabled and Tx Flow control is
2038 * disabled by software override. Since there really
2039 * isn't a way to advertise that we are capable of RX
2040 * Pause ONLY, we will advertise that we support both
2041 * symmetric and asymmetric Rx PAUSE. Later, we will
2042 * disable the adapter's ability to send PAUSE frames.
2043 */
2044 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2045 break;
2046 case ixgbe_fc_tx_pause:
2047 /*
2048 * Tx Flow control is enabled, and Rx Flow control is
2049 * disabled by software override.
2050 */
2051 reg |= (IXGBE_AUTOC_ASM_PAUSE);
2052 reg &= ~(IXGBE_AUTOC_SYM_PAUSE);
2053 break;
2054 case ixgbe_fc_full:
2055 /* Flow control (both Rx and Tx) is enabled by SW override. */
2056 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2057 break;
2058#ifdef CONFIG_DCB
2059 case ixgbe_fc_pfc:
2060 goto out;
2061 break;
2062#endif /* CONFIG_DCB */
2063 default:
2064 hw_dbg(hw, "Flow control param set incorrectly\n");
2065 ret_val = IXGBE_ERR_CONFIG;
2066 goto out;
2067 break;
2068 }
2069 /*
2070 * AUTOC restart handles negotiation of 1G and 10G. There is
2071 * no need to set the PCS1GCTL register.
2072 */
2073 reg |= IXGBE_AUTOC_AN_RESTART;
2074 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg);
2075 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2076
11afc1b1
PW
2077out:
2078 return ret_val;
2079}
2080
9a799d71
AK
2081/**
2082 * ixgbe_disable_pcie_master - Disable PCI-express master access
2083 * @hw: pointer to hardware structure
2084 *
2085 * Disables PCI-Express master access and verifies there are no pending
2086 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2087 * bit hasn't caused the master requests to be disabled, else 0
2088 * is returned signifying master requests disabled.
2089 **/
2090s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2091{
c44ade9e
JB
2092 u32 i;
2093 u32 reg_val;
2094 u32 number_of_queues;
9a799d71
AK
2095 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2096
c44ade9e
JB
2097 /* Disable the receive unit by stopping each queue */
2098 number_of_queues = hw->mac.max_rx_queues;
2099 for (i = 0; i < number_of_queues; i++) {
2100 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2101 if (reg_val & IXGBE_RXDCTL_ENABLE) {
2102 reg_val &= ~IXGBE_RXDCTL_ENABLE;
2103 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2104 }
2105 }
2106
2107 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2108 reg_val |= IXGBE_CTRL_GIO_DIS;
2109 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
9a799d71
AK
2110
2111 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2112 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
2113 status = 0;
2114 break;
2115 }
2116 udelay(100);
2117 }
2118
2119 return status;
2120}
2121
2122
2123/**
c44ade9e 2124 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
9a799d71 2125 * @hw: pointer to hardware structure
c44ade9e 2126 * @mask: Mask to specify which semaphore to acquire
9a799d71 2127 *
c44ade9e 2128 * Acquires the SWFW semaphore thought the GSSR register for the specified
9a799d71
AK
2129 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2130 **/
2131s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2132{
2133 u32 gssr;
2134 u32 swmask = mask;
2135 u32 fwmask = mask << 5;
2136 s32 timeout = 200;
2137
2138 while (timeout) {
2139 if (ixgbe_get_eeprom_semaphore(hw))
539e5f02 2140 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2141
2142 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2143 if (!(gssr & (fwmask | swmask)))
2144 break;
2145
2146 /*
2147 * Firmware currently using resource (fwmask) or other software
2148 * thread currently using resource (swmask)
2149 */
2150 ixgbe_release_eeprom_semaphore(hw);
2151 msleep(5);
2152 timeout--;
2153 }
2154
2155 if (!timeout) {
2156 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
539e5f02 2157 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2158 }
2159
2160 gssr |= swmask;
2161 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2162
2163 ixgbe_release_eeprom_semaphore(hw);
2164 return 0;
2165}
2166
2167/**
2168 * ixgbe_release_swfw_sync - Release SWFW semaphore
2169 * @hw: pointer to hardware structure
c44ade9e 2170 * @mask: Mask to specify which semaphore to release
9a799d71 2171 *
c44ade9e 2172 * Releases the SWFW semaphore thought the GSSR register for the specified
9a799d71
AK
2173 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2174 **/
2175void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2176{
2177 u32 gssr;
2178 u32 swmask = mask;
2179
2180 ixgbe_get_eeprom_semaphore(hw);
2181
2182 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2183 gssr &= ~swmask;
2184 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2185
2186 ixgbe_release_eeprom_semaphore(hw);
2187}
2188
11afc1b1
PW
2189/**
2190 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2191 * @hw: pointer to hardware structure
2192 * @regval: register value to write to RXCTRL
2193 *
2194 * Enables the Rx DMA unit
2195 **/
2196s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2197{
2198 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2199
2200 return 0;
2201}
87c12017
PW
2202
2203/**
2204 * ixgbe_blink_led_start_generic - Blink LED based on index.
2205 * @hw: pointer to hardware structure
2206 * @index: led number to blink
2207 **/
2208s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2209{
2210 ixgbe_link_speed speed = 0;
2211 bool link_up = 0;
2212 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2213 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2214
2215 /*
2216 * Link must be up to auto-blink the LEDs;
2217 * Force it if link is down.
2218 */
2219 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2220
2221 if (!link_up) {
50ac58ba 2222 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017
PW
2223 autoc_reg |= IXGBE_AUTOC_FLU;
2224 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2225 msleep(10);
2226 }
2227
2228 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2229 led_reg |= IXGBE_LED_BLINK(index);
2230 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2231 IXGBE_WRITE_FLUSH(hw);
2232
2233 return 0;
2234}
2235
2236/**
2237 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2238 * @hw: pointer to hardware structure
2239 * @index: led number to stop blinking
2240 **/
2241s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2242{
2243 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2244 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2245
2246 autoc_reg &= ~IXGBE_AUTOC_FLU;
2247 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2248 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2249
2250 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2251 led_reg &= ~IXGBE_LED_BLINK(index);
2252 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2253 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2254 IXGBE_WRITE_FLUSH(hw);
2255
2256 return 0;
2257}