]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ixgbe/ixgbe_82599.c
ixgbe: Add support for 82599-based CX4 adapters
[net-next-2.6.git] / drivers / net / ixgbe / ixgbe_82599.c
CommitLineData
11afc1b1
PW
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31
32#include "ixgbe.h"
33#include "ixgbe_phy.h"
34
35#define IXGBE_82599_MAX_TX_QUEUES 128
36#define IXGBE_82599_MAX_RX_QUEUES 128
37#define IXGBE_82599_RAR_ENTRIES 128
38#define IXGBE_82599_MC_TBL_SIZE 128
39#define IXGBE_82599_VFT_TBL_SIZE 128
40
8620a103
MC
41s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
42 ixgbe_link_speed speed,
43 bool autoneg,
44 bool autoneg_wait_to_complete);
45s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
46 bool autoneg_wait_to_complete);
47s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
48 ixgbe_link_speed speed,
49 bool autoneg,
50 bool autoneg_wait_to_complete);
11afc1b1
PW
51static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
52 ixgbe_link_speed *speed,
53 bool *autoneg);
8620a103
MC
54static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
55 ixgbe_link_speed speed,
56 bool autoneg,
57 bool autoneg_wait_to_complete);
794caeb2 58static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw);
11afc1b1 59
7b25cdba 60static void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw)
11afc1b1
PW
61{
62 struct ixgbe_mac_info *mac = &hw->mac;
63 if (hw->phy.multispeed_fiber) {
64 /* Set up dual speed SFP+ support */
8620a103 65 mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber;
11afc1b1 66 } else {
8620a103 67 mac->ops.setup_link = &ixgbe_setup_mac_link_82599;
11afc1b1
PW
68 }
69}
70
7b25cdba 71static s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw)
11afc1b1
PW
72{
73 s32 ret_val = 0;
74 u16 list_offset, data_offset, data_value;
75
76 if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) {
77 ixgbe_init_mac_link_ops_82599(hw);
553b4497
PW
78
79 hw->phy.ops.reset = NULL;
80
11afc1b1
PW
81 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
82 &data_offset);
83
84 if (ret_val != 0)
85 goto setup_sfp_out;
86
aa5aec88
PWJ
87 /* PHY config will finish before releasing the semaphore */
88 ret_val = ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
89 if (ret_val != 0) {
90 ret_val = IXGBE_ERR_SWFW_SYNC;
91 goto setup_sfp_out;
92 }
93
11afc1b1
PW
94 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
95 while (data_value != 0xffff) {
96 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value);
97 IXGBE_WRITE_FLUSH(hw);
98 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
99 }
1479ad4f
PWJ
100 /* Now restart DSP by setting Restart_AN */
101 IXGBE_WRITE_REG(hw, IXGBE_AUTOC,
102 (IXGBE_READ_REG(hw, IXGBE_AUTOC) | IXGBE_AUTOC_AN_RESTART));
aa5aec88
PWJ
103
104 /* Release the semaphore */
105 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
106 /* Delay obtaining semaphore again to allow FW access */
107 msleep(hw->eeprom.semaphore_delay);
11afc1b1
PW
108 }
109
110setup_sfp_out:
111 return ret_val;
112}
113
114/**
115 * ixgbe_get_pcie_msix_count_82599 - Gets MSI-X vector count
116 * @hw: pointer to hardware structure
117 *
118 * Read PCIe configuration space, and get the MSI-X vector count from
119 * the capabilities table.
120 **/
7b25cdba 121static u32 ixgbe_get_pcie_msix_count_82599(struct ixgbe_hw *hw)
11afc1b1
PW
122{
123 struct ixgbe_adapter *adapter = hw->back;
124 u16 msix_count;
125 pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
126 &msix_count);
127 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
128
129 /* MSI-X count is zero-based in HW, so increment to give proper value */
130 msix_count++;
131
132 return msix_count;
133}
134
135static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw)
136{
137 struct ixgbe_mac_info *mac = &hw->mac;
11afc1b1 138
04f165ef 139 ixgbe_init_mac_link_ops_82599(hw);
11afc1b1 140
04f165ef
PW
141 mac->mcft_size = IXGBE_82599_MC_TBL_SIZE;
142 mac->vft_size = IXGBE_82599_VFT_TBL_SIZE;
143 mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES;
144 mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES;
145 mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES;
146 mac->max_msix_vectors = ixgbe_get_pcie_msix_count_82599(hw);
11afc1b1 147
04f165ef
PW
148 return 0;
149}
11afc1b1 150
04f165ef
PW
151/**
152 * ixgbe_init_phy_ops_82599 - PHY/SFP specific init
153 * @hw: pointer to hardware structure
154 *
155 * Initialize any function pointers that were not able to be
156 * set during get_invariants because the PHY/SFP type was
157 * not known. Perform the SFP init if necessary.
158 *
159 **/
7b25cdba 160static s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw)
04f165ef
PW
161{
162 struct ixgbe_mac_info *mac = &hw->mac;
163 struct ixgbe_phy_info *phy = &hw->phy;
164 s32 ret_val = 0;
11afc1b1 165
04f165ef
PW
166 /* Identify the PHY or SFP module */
167 ret_val = phy->ops.identify(hw);
168
169 /* Setup function pointers based on detected SFP module and speeds */
170 ixgbe_init_mac_link_ops_82599(hw);
11afc1b1
PW
171
172 /* If copper media, overwrite with copper function pointers */
173 if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) {
174 mac->ops.setup_link = &ixgbe_setup_copper_link_82599;
11afc1b1
PW
175 mac->ops.get_link_capabilities =
176 &ixgbe_get_copper_link_capabilities_82599;
177 }
178
04f165ef 179 /* Set necessary function pointers based on phy type */
11afc1b1
PW
180 switch (hw->phy.type) {
181 case ixgbe_phy_tn:
182 phy->ops.check_link = &ixgbe_check_phy_link_tnx;
183 phy->ops.get_firmware_version =
04f165ef 184 &ixgbe_get_phy_firmware_version_tnx;
11afc1b1
PW
185 break;
186 default:
187 break;
188 }
189
11afc1b1
PW
190 return ret_val;
191}
192
193/**
194 * ixgbe_get_link_capabilities_82599 - Determines link capabilities
195 * @hw: pointer to hardware structure
196 * @speed: pointer to link speed
197 * @negotiation: true when autoneg or autotry is enabled
198 *
199 * Determines the link capabilities by reading the AUTOC register.
200 **/
7b25cdba
DS
201static s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
202 ixgbe_link_speed *speed,
203 bool *negotiation)
11afc1b1
PW
204{
205 s32 status = 0;
1eb99d5a 206 u32 autoc = 0;
11afc1b1 207
1eb99d5a
PW
208 /*
209 * Determine link capabilities based on the stored value of AUTOC,
210 * which represents EEPROM defaults. If AUTOC value has not been
211 * stored, use the current register value.
212 */
213 if (hw->mac.orig_link_settings_stored)
214 autoc = hw->mac.orig_autoc;
215 else
216 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
217
218 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
11afc1b1
PW
219 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
220 *speed = IXGBE_LINK_SPEED_1GB_FULL;
221 *negotiation = false;
222 break;
223
224 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
225 *speed = IXGBE_LINK_SPEED_10GB_FULL;
226 *negotiation = false;
227 break;
228
229 case IXGBE_AUTOC_LMS_1G_AN:
230 *speed = IXGBE_LINK_SPEED_1GB_FULL;
231 *negotiation = true;
232 break;
233
234 case IXGBE_AUTOC_LMS_10G_SERIAL:
235 *speed = IXGBE_LINK_SPEED_10GB_FULL;
236 *negotiation = false;
237 break;
238
239 case IXGBE_AUTOC_LMS_KX4_KX_KR:
240 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
241 *speed = IXGBE_LINK_SPEED_UNKNOWN;
1eb99d5a 242 if (autoc & IXGBE_AUTOC_KR_SUPP)
11afc1b1 243 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
1eb99d5a 244 if (autoc & IXGBE_AUTOC_KX4_SUPP)
11afc1b1 245 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
1eb99d5a 246 if (autoc & IXGBE_AUTOC_KX_SUPP)
11afc1b1
PW
247 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
248 *negotiation = true;
249 break;
250
251 case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
252 *speed = IXGBE_LINK_SPEED_100_FULL;
1eb99d5a 253 if (autoc & IXGBE_AUTOC_KR_SUPP)
11afc1b1 254 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
1eb99d5a 255 if (autoc & IXGBE_AUTOC_KX4_SUPP)
11afc1b1 256 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
1eb99d5a 257 if (autoc & IXGBE_AUTOC_KX_SUPP)
11afc1b1
PW
258 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
259 *negotiation = true;
260 break;
261
262 case IXGBE_AUTOC_LMS_SGMII_1G_100M:
263 *speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL;
264 *negotiation = false;
265 break;
266
267 default:
268 status = IXGBE_ERR_LINK_SETUP;
269 goto out;
270 break;
271 }
272
273 if (hw->phy.multispeed_fiber) {
274 *speed |= IXGBE_LINK_SPEED_10GB_FULL |
275 IXGBE_LINK_SPEED_1GB_FULL;
276 *negotiation = true;
277 }
278
279out:
280 return status;
281}
282
283/**
284 * ixgbe_get_copper_link_capabilities_82599 - Determines link capabilities
285 * @hw: pointer to hardware structure
286 * @speed: pointer to link speed
287 * @autoneg: boolean auto-negotiation value
288 *
289 * Determines the link capabilities by reading the AUTOC register.
290 **/
291static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
292 ixgbe_link_speed *speed,
293 bool *autoneg)
294{
295 s32 status = IXGBE_ERR_LINK_SETUP;
296 u16 speed_ability;
297
298 *speed = 0;
299 *autoneg = true;
300
6b73e10d 301 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
11afc1b1
PW
302 &speed_ability);
303
304 if (status == 0) {
6b73e10d 305 if (speed_ability & MDIO_SPEED_10G)
11afc1b1 306 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
6b73e10d 307 if (speed_ability & MDIO_PMA_SPEED_1000)
11afc1b1
PW
308 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
309 }
310
311 return status;
312}
313
314/**
315 * ixgbe_get_media_type_82599 - Get media type
316 * @hw: pointer to hardware structure
317 *
318 * Returns the media type (fiber, copper, backplane)
319 **/
7b25cdba 320static enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw)
11afc1b1
PW
321{
322 enum ixgbe_media_type media_type;
323
324 /* Detect if there is a copper PHY attached. */
325 if (hw->phy.type == ixgbe_phy_cu_unknown ||
326 hw->phy.type == ixgbe_phy_tn) {
327 media_type = ixgbe_media_type_copper;
328 goto out;
329 }
330
331 switch (hw->device_id) {
11afc1b1 332 case IXGBE_DEV_ID_82599_KX4:
1fcf03e6 333 case IXGBE_DEV_ID_82599_XAUI_LOM:
11afc1b1
PW
334 /* Default device ID is mezzanine card KX/KX4 */
335 media_type = ixgbe_media_type_backplane;
336 break;
337 case IXGBE_DEV_ID_82599_SFP:
338 media_type = ixgbe_media_type_fiber;
339 break;
8911184f
PWJ
340 case IXGBE_DEV_ID_82599_CX4:
341 media_type = ixgbe_media_type_fiber;
342 break;
11afc1b1
PW
343 default:
344 media_type = ixgbe_media_type_unknown;
345 break;
346 }
347out:
348 return media_type;
349}
350
351/**
8620a103 352 * ixgbe_start_mac_link_82599 - Setup MAC link settings
11afc1b1 353 * @hw: pointer to hardware structure
8620a103 354 * @autoneg_wait_to_complete: true when waiting for completion is needed
11afc1b1
PW
355 *
356 * Configures link settings based on values in the ixgbe_hw struct.
357 * Restarts the link. Performs autonegotiation if needed.
358 **/
8620a103
MC
359s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
360 bool autoneg_wait_to_complete)
11afc1b1
PW
361{
362 u32 autoc_reg;
363 u32 links_reg;
364 u32 i;
365 s32 status = 0;
366
367 /* Restart link */
368 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
369 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
370 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
371
372 /* Only poll for autoneg to complete if specified to do so */
8620a103 373 if (autoneg_wait_to_complete) {
11afc1b1
PW
374 if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
375 IXGBE_AUTOC_LMS_KX4_KX_KR ||
376 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
377 IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
378 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
379 IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
380 links_reg = 0; /* Just in case Autoneg time = 0 */
381 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
382 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
383 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
384 break;
385 msleep(100);
386 }
387 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
388 status = IXGBE_ERR_AUTONEG_NOT_COMPLETE;
389 hw_dbg(hw, "Autoneg did not complete.\n");
390 }
391 }
392 }
393
11afc1b1
PW
394 /* Add delay to filter out noises during initial link setup */
395 msleep(50);
396
397 return status;
398}
399
400/**
8620a103 401 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
11afc1b1
PW
402 * @hw: pointer to hardware structure
403 * @speed: new link speed
404 * @autoneg: true if autonegotiation enabled
405 * @autoneg_wait_to_complete: true when waiting for completion is needed
406 *
407 * Set the link speed in the AUTOC register and restarts link.
408 **/
8620a103
MC
409s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
410 ixgbe_link_speed speed,
411 bool autoneg,
412 bool autoneg_wait_to_complete)
11afc1b1
PW
413{
414 s32 status = 0;
415 ixgbe_link_speed phy_link_speed;
416 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
417 u32 speedcnt = 0;
418 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
419 bool link_up = false;
420 bool negotiation;
50ac58ba 421 int i;
11afc1b1
PW
422
423 /* Mask off requested but non-supported speeds */
424 hw->mac.ops.get_link_capabilities(hw, &phy_link_speed, &negotiation);
425 speed &= phy_link_speed;
426
50ac58ba
PWJ
427 /*
428 * When the driver changes the link speeds that it can support,
429 * it sets autotry_restart to true to indicate that we need to
430 * initiate a new autotry session with the link partner. To do
431 * so, we set the speed then disable and re-enable the tx laser, to
432 * alert the link partner that it also needs to restart autotry on its
433 * end. This is consistent with true clause 37 autoneg, which also
434 * involves a loss of signal.
435 */
436
11afc1b1
PW
437 /*
438 * Try each speed one by one, highest priority first. We do this in
439 * software because 10gb fiber doesn't support speed autonegotiation.
440 */
441 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
442 speedcnt++;
443 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
444
50ac58ba
PWJ
445 /* If we already have link at this speed, just jump out */
446 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
447
448 if ((phy_link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
449 goto out;
450
451 /* Set the module link speed */
11afc1b1
PW
452 esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5);
453 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
454
50ac58ba
PWJ
455 /* Allow module to change analog characteristics (1G->10G) */
456 msleep(40);
11afc1b1 457
8620a103
MC
458 status = ixgbe_setup_mac_link_82599(hw,
459 IXGBE_LINK_SPEED_10GB_FULL,
460 autoneg,
461 autoneg_wait_to_complete);
50ac58ba 462 if (status != 0)
c3c74327 463 return status;
50ac58ba
PWJ
464
465 /* Flap the tx laser if it has not already been done */
466 if (hw->mac.autotry_restart) {
467 /* Disable tx laser; allow 100us to go dark per spec */
468 esdp_reg |= IXGBE_ESDP_SDP3;
469 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
470 udelay(100);
471
472 /* Enable tx laser; allow 2ms to light up per spec */
473 esdp_reg &= ~IXGBE_ESDP_SDP3;
474 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
475 msleep(2);
476
477 hw->mac.autotry_restart = false;
478 }
479
480 /* The controller may take up to 500ms at 10g to acquire link */
481 for (i = 0; i < 5; i++) {
482 /* Wait for the link partner to also set speed */
483 msleep(100);
484
485 /* If we have link, just jump out */
486 hw->mac.ops.check_link(hw, &phy_link_speed,
487 &link_up, false);
488 if (link_up)
489 goto out;
490 }
11afc1b1
PW
491 }
492
493 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
494 speedcnt++;
495 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
496 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
497
50ac58ba
PWJ
498 /* If we already have link at this speed, just jump out */
499 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
500
501 if ((phy_link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
502 goto out;
503
504 /* Set the module link speed */
11afc1b1
PW
505 esdp_reg &= ~IXGBE_ESDP_SDP5;
506 esdp_reg |= IXGBE_ESDP_SDP5_DIR;
507 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
508
50ac58ba
PWJ
509 /* Allow module to change analog characteristics (10G->1G) */
510 msleep(40);
11afc1b1 511
8620a103 512 status = ixgbe_setup_mac_link_82599(hw,
50ac58ba
PWJ
513 IXGBE_LINK_SPEED_1GB_FULL,
514 autoneg,
515 autoneg_wait_to_complete);
516 if (status != 0)
c3c74327 517 return status;
50ac58ba
PWJ
518
519 /* Flap the tx laser if it has not already been done */
520 if (hw->mac.autotry_restart) {
521 /* Disable tx laser; allow 100us to go dark per spec */
522 esdp_reg |= IXGBE_ESDP_SDP3;
523 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
524 udelay(100);
525
526 /* Enable tx laser; allow 2ms to light up per spec */
527 esdp_reg &= ~IXGBE_ESDP_SDP3;
528 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
529 msleep(2);
530
531 hw->mac.autotry_restart = false;
532 }
533
534 /* Wait for the link partner to also set speed */
535 msleep(100);
11afc1b1
PW
536
537 /* If we have link, just jump out */
538 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
539 if (link_up)
540 goto out;
541 }
542
543 /*
544 * We didn't get link. Configure back to the highest speed we tried,
545 * (if there was more than one). We call ourselves back with just the
546 * single highest speed that the user requested.
547 */
548 if (speedcnt > 1)
8620a103
MC
549 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
550 highest_link_speed,
551 autoneg,
552 autoneg_wait_to_complete);
11afc1b1
PW
553
554out:
c3c74327
MC
555 /* Set autoneg_advertised value based on input link speed */
556 hw->phy.autoneg_advertised = 0;
557
558 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
559 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
560
561 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
562 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
563
11afc1b1
PW
564 return status;
565}
566
567/**
568 * ixgbe_check_mac_link_82599 - Determine link and speed status
569 * @hw: pointer to hardware structure
570 * @speed: pointer to link speed
571 * @link_up: true when link is up
572 * @link_up_wait_to_complete: bool used to wait for link up or not
573 *
574 * Reads the links register to determine if link is up and the current speed
575 **/
7b25cdba
DS
576static s32 ixgbe_check_mac_link_82599(struct ixgbe_hw *hw,
577 ixgbe_link_speed *speed,
578 bool *link_up,
579 bool link_up_wait_to_complete)
11afc1b1
PW
580{
581 u32 links_reg;
582 u32 i;
583
584 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
585 if (link_up_wait_to_complete) {
586 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
587 if (links_reg & IXGBE_LINKS_UP) {
588 *link_up = true;
589 break;
590 } else {
591 *link_up = false;
592 }
593 msleep(100);
594 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
595 }
596 } else {
597 if (links_reg & IXGBE_LINKS_UP)
598 *link_up = true;
599 else
600 *link_up = false;
601 }
602
603 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
604 IXGBE_LINKS_SPEED_10G_82599)
605 *speed = IXGBE_LINK_SPEED_10GB_FULL;
606 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
607 IXGBE_LINKS_SPEED_1G_82599)
608 *speed = IXGBE_LINK_SPEED_1GB_FULL;
609 else
610 *speed = IXGBE_LINK_SPEED_100_FULL;
611
620fa036
MC
612 /* if link is down, zero out the current_mode */
613 if (*link_up == false) {
614 hw->fc.current_mode = ixgbe_fc_none;
615 hw->fc.fc_was_autonegged = false;
616 }
11afc1b1
PW
617
618 return 0;
619}
620
621/**
8620a103 622 * ixgbe_setup_mac_link_82599 - Set MAC link speed
11afc1b1
PW
623 * @hw: pointer to hardware structure
624 * @speed: new link speed
625 * @autoneg: true if autonegotiation enabled
626 * @autoneg_wait_to_complete: true when waiting for completion is needed
627 *
628 * Set the link speed in the AUTOC register and restarts link.
629 **/
8620a103
MC
630s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
631 ixgbe_link_speed speed, bool autoneg,
632 bool autoneg_wait_to_complete)
11afc1b1
PW
633{
634 s32 status = 0;
635 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
636 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
50ac58ba 637 u32 start_autoc = autoc;
1eb99d5a 638 u32 orig_autoc = 0;
11afc1b1
PW
639 u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK;
640 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
641 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
642 u32 links_reg;
643 u32 i;
644 ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN;
645
646 /* Check to see if speed passed in is supported. */
647 hw->mac.ops.get_link_capabilities(hw, &link_capabilities, &autoneg);
648 speed &= link_capabilities;
649
50ac58ba
PWJ
650 if (speed == IXGBE_LINK_SPEED_UNKNOWN) {
651 status = IXGBE_ERR_LINK_SETUP;
652 goto out;
653 }
654
1eb99d5a
PW
655 /* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
656 if (hw->mac.orig_link_settings_stored)
657 orig_autoc = hw->mac.orig_autoc;
658 else
659 orig_autoc = autoc;
660
661
50ac58ba
PWJ
662 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
663 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
664 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
11afc1b1
PW
665 /* Set KX4/KX/KR support according to speed requested */
666 autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP);
667 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1eb99d5a 668 if (orig_autoc & IXGBE_AUTOC_KX4_SUPP)
11afc1b1 669 autoc |= IXGBE_AUTOC_KX4_SUPP;
1eb99d5a 670 if (orig_autoc & IXGBE_AUTOC_KR_SUPP)
11afc1b1
PW
671 autoc |= IXGBE_AUTOC_KR_SUPP;
672 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
673 autoc |= IXGBE_AUTOC_KX_SUPP;
674 } else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) &&
675 (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
676 link_mode == IXGBE_AUTOC_LMS_1G_AN)) {
677 /* Switch from 1G SFI to 10G SFI if requested */
678 if ((speed == IXGBE_LINK_SPEED_10GB_FULL) &&
679 (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) {
680 autoc &= ~IXGBE_AUTOC_LMS_MASK;
681 autoc |= IXGBE_AUTOC_LMS_10G_SERIAL;
682 }
683 } else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) &&
684 (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) {
685 /* Switch from 10G SFI to 1G SFI if requested */
686 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
687 (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) {
688 autoc &= ~IXGBE_AUTOC_LMS_MASK;
689 if (autoneg)
690 autoc |= IXGBE_AUTOC_LMS_1G_AN;
691 else
692 autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN;
693 }
694 }
695
50ac58ba 696 if (autoc != start_autoc) {
11afc1b1
PW
697 /* Restart link */
698 autoc |= IXGBE_AUTOC_AN_RESTART;
699 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc);
700
701 /* Only poll for autoneg to complete if specified to do so */
702 if (autoneg_wait_to_complete) {
703 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
704 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
705 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
706 links_reg = 0; /*Just in case Autoneg time=0*/
707 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
708 links_reg =
709 IXGBE_READ_REG(hw, IXGBE_LINKS);
710 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
711 break;
712 msleep(100);
713 }
714 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
715 status =
716 IXGBE_ERR_AUTONEG_NOT_COMPLETE;
717 hw_dbg(hw, "Autoneg did not "
718 "complete.\n");
719 }
720 }
721 }
722
11afc1b1
PW
723 /* Add delay to filter out noises during initial link setup */
724 msleep(50);
725 }
726
50ac58ba 727out:
11afc1b1
PW
728 return status;
729}
730
731/**
8620a103 732 * ixgbe_setup_copper_link_82599 - Set the PHY autoneg advertised field
11afc1b1
PW
733 * @hw: pointer to hardware structure
734 * @speed: new link speed
735 * @autoneg: true if autonegotiation enabled
736 * @autoneg_wait_to_complete: true if waiting is needed to complete
737 *
738 * Restarts link on PHY and MAC based on settings passed in.
739 **/
8620a103
MC
740static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
741 ixgbe_link_speed speed,
742 bool autoneg,
743 bool autoneg_wait_to_complete)
11afc1b1
PW
744{
745 s32 status;
746
747 /* Setup the PHY according to input speed */
748 status = hw->phy.ops.setup_link_speed(hw, speed, autoneg,
749 autoneg_wait_to_complete);
750 /* Set up MAC */
8620a103 751 ixgbe_start_mac_link_82599(hw, autoneg_wait_to_complete);
11afc1b1
PW
752
753 return status;
754}
755
756/**
757 * ixgbe_reset_hw_82599 - Perform hardware reset
758 * @hw: pointer to hardware structure
759 *
760 * Resets the hardware by resetting the transmit and receive units, masks
761 * and clears all interrupts, perform a PHY reset, and perform a link (MAC)
762 * reset.
763 **/
7b25cdba 764static s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw)
11afc1b1
PW
765{
766 s32 status = 0;
767 u32 ctrl, ctrl_ext;
768 u32 i;
769 u32 autoc;
770 u32 autoc2;
771
772 /* Call adapter stop to disable tx/rx and clear interrupts */
773 hw->mac.ops.stop_adapter(hw);
774
553b4497 775 /* PHY ops must be identified and initialized prior to reset */
04f165ef 776
553b4497
PW
777 /* Init PHY and function pointers, perform SFP setup */
778 status = hw->phy.ops.init(hw);
04f165ef 779
553b4497
PW
780 if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
781 goto reset_hw_out;
04f165ef 782
553b4497
PW
783 /* Setup SFP module if there is one present. */
784 if (hw->phy.sfp_setup_needed) {
785 status = hw->mac.ops.setup_sfp(hw);
786 hw->phy.sfp_setup_needed = false;
04f165ef 787 }
11afc1b1 788
553b4497
PW
789 /* Reset PHY */
790 if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL)
791 hw->phy.ops.reset(hw);
792
11afc1b1
PW
793 /*
794 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
795 * access and verify no pending requests before reset
796 */
04f165ef
PW
797 status = ixgbe_disable_pcie_master(hw);
798 if (status != 0) {
11afc1b1
PW
799 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
800 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
801 }
802
803 /*
804 * Issue global reset to the MAC. This needs to be a SW reset.
805 * If link reset is used, it might reset the MAC when mng is using it
806 */
807 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
808 IXGBE_WRITE_REG(hw, IXGBE_CTRL, (ctrl | IXGBE_CTRL_RST));
809 IXGBE_WRITE_FLUSH(hw);
810
811 /* Poll for reset bit to self-clear indicating reset is complete */
812 for (i = 0; i < 10; i++) {
813 udelay(1);
814 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
815 if (!(ctrl & IXGBE_CTRL_RST))
816 break;
817 }
818 if (ctrl & IXGBE_CTRL_RST) {
819 status = IXGBE_ERR_RESET_FAILED;
820 hw_dbg(hw, "Reset polling failed to complete.\n");
821 }
822 /* Clear PF Reset Done bit so PF/VF Mail Ops can work */
823 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
824 ctrl_ext |= IXGBE_CTRL_EXT_PFRSTD;
825 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
826
827 msleep(50);
828
829
830
831 /*
832 * Store the original AUTOC/AUTOC2 values if they have not been
833 * stored off yet. Otherwise restore the stored original
834 * values since the reset operation sets back to defaults.
835 */
836 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
837 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
838 if (hw->mac.orig_link_settings_stored == false) {
839 hw->mac.orig_autoc = autoc;
840 hw->mac.orig_autoc2 = autoc2;
841 hw->mac.orig_link_settings_stored = true;
4df10466 842 } else {
11afc1b1
PW
843 if (autoc != hw->mac.orig_autoc)
844 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc |
845 IXGBE_AUTOC_AN_RESTART));
846
847 if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) !=
848 (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) {
849 autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK;
850 autoc2 |= (hw->mac.orig_autoc2 &
851 IXGBE_AUTOC2_UPPER_MASK);
852 IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
853 }
854 }
855
aca6bee7
WJP
856 /*
857 * Store MAC address from RAR0, clear receive address registers, and
858 * clear the multicast table. Also reset num_rar_entries to 128,
859 * since we modify this value when programming the SAN MAC address.
860 */
861 hw->mac.num_rar_entries = 128;
862 hw->mac.ops.init_rx_addrs(hw);
863
11afc1b1
PW
864 /* Store the permanent mac address */
865 hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
866
0365e6e4
PW
867 /* Store the permanent SAN mac address */
868 hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);
869
aca6bee7
WJP
870 /* Add the SAN MAC address to the RAR only if it's a valid address */
871 if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
872 hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1,
873 hw->mac.san_addr, 0, IXGBE_RAH_AV);
874
875 /* Reserve the last RAR for the SAN MAC address */
876 hw->mac.num_rar_entries--;
877 }
878
04f165ef 879reset_hw_out:
11afc1b1
PW
880 return status;
881}
882
883/**
884 * ixgbe_clear_vmdq_82599 - Disassociate a VMDq pool index from a rx address
885 * @hw: pointer to hardware struct
886 * @rar: receive address register index to disassociate
887 * @vmdq: VMDq pool index to remove from the rar
888 **/
7b25cdba 889static s32 ixgbe_clear_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
11afc1b1
PW
890{
891 u32 mpsar_lo, mpsar_hi;
892 u32 rar_entries = hw->mac.num_rar_entries;
893
894 if (rar < rar_entries) {
895 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
896 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
897
898 if (!mpsar_lo && !mpsar_hi)
899 goto done;
900
901 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
902 if (mpsar_lo) {
903 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
904 mpsar_lo = 0;
905 }
906 if (mpsar_hi) {
907 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
908 mpsar_hi = 0;
909 }
910 } else if (vmdq < 32) {
911 mpsar_lo &= ~(1 << vmdq);
912 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
913 } else {
914 mpsar_hi &= ~(1 << (vmdq - 32));
915 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
916 }
917
918 /* was that the last pool using this rar? */
919 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
920 hw->mac.ops.clear_rar(hw, rar);
921 } else {
922 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
923 }
924
925done:
926 return 0;
927}
928
929/**
930 * ixgbe_set_vmdq_82599 - Associate a VMDq pool index with a rx address
931 * @hw: pointer to hardware struct
932 * @rar: receive address register index to associate with a VMDq index
933 * @vmdq: VMDq pool index
934 **/
7b25cdba 935static s32 ixgbe_set_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
11afc1b1
PW
936{
937 u32 mpsar;
938 u32 rar_entries = hw->mac.num_rar_entries;
939
940 if (rar < rar_entries) {
941 if (vmdq < 32) {
942 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
943 mpsar |= 1 << vmdq;
944 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
945 } else {
946 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
947 mpsar |= 1 << (vmdq - 32);
948 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
949 }
950 } else {
951 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
952 }
953 return 0;
954}
955
956/**
957 * ixgbe_set_vfta_82599 - Set VLAN filter table
958 * @hw: pointer to hardware structure
959 * @vlan: VLAN id to write to VLAN filter
960 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
961 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
962 *
963 * Turn on/off specified VLAN in the VLAN filter table.
964 **/
7b25cdba
DS
965static s32 ixgbe_set_vfta_82599(struct ixgbe_hw *hw, u32 vlan, u32 vind,
966 bool vlan_on)
11afc1b1
PW
967{
968 u32 regindex;
969 u32 bitindex;
970 u32 bits;
971 u32 first_empty_slot;
972
973 if (vlan > 4095)
974 return IXGBE_ERR_PARAM;
975
976 /*
977 * this is a 2 part operation - first the VFTA, then the
978 * VLVF and VLVFB if vind is set
979 */
980
981 /* Part 1
982 * The VFTA is a bitstring made up of 128 32-bit registers
983 * that enable the particular VLAN id, much like the MTA:
984 * bits[11-5]: which register
985 * bits[4-0]: which bit in the register
986 */
987 regindex = (vlan >> 5) & 0x7F;
988 bitindex = vlan & 0x1F;
989 bits = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
990 if (vlan_on)
991 bits |= (1 << bitindex);
992 else
993 bits &= ~(1 << bitindex);
994 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), bits);
995
996
997 /* Part 2
998 * If the vind is set
999 * Either vlan_on
1000 * make sure the vlan is in VLVF
1001 * set the vind bit in the matching VLVFB
1002 * Or !vlan_on
1003 * clear the pool bit and possibly the vind
1004 */
1005 if (vind) {
1006 /* find the vlanid or the first empty slot */
1007 first_empty_slot = 0;
1008
1009 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
1010 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
1011 if (!bits && !first_empty_slot)
1012 first_empty_slot = regindex;
1013 else if ((bits & 0x0FFF) == vlan)
1014 break;
1015 }
1016
1017 if (regindex >= IXGBE_VLVF_ENTRIES) {
1018 if (first_empty_slot)
1019 regindex = first_empty_slot;
1020 else {
1021 hw_dbg(hw, "No space in VLVF.\n");
1022 goto out;
1023 }
1024 }
1025
1026 if (vlan_on) {
1027 /* set the pool bit */
1028 if (vind < 32) {
1029 bits = IXGBE_READ_REG(hw,
1030 IXGBE_VLVFB(regindex * 2));
1031 bits |= (1 << vind);
1032 IXGBE_WRITE_REG(hw,
1033 IXGBE_VLVFB(regindex * 2), bits);
1034 } else {
1035 bits = IXGBE_READ_REG(hw,
1036 IXGBE_VLVFB((regindex * 2) + 1));
1037 bits |= (1 << vind);
1038 IXGBE_WRITE_REG(hw,
1039 IXGBE_VLVFB((regindex * 2) + 1), bits);
1040 }
1041 } else {
1042 /* clear the pool bit */
1043 if (vind < 32) {
1044 bits = IXGBE_READ_REG(hw,
1045 IXGBE_VLVFB(regindex * 2));
1046 bits &= ~(1 << vind);
1047 IXGBE_WRITE_REG(hw,
1048 IXGBE_VLVFB(regindex * 2), bits);
1049 bits |= IXGBE_READ_REG(hw,
1050 IXGBE_VLVFB((regindex * 2) + 1));
1051 } else {
1052 bits = IXGBE_READ_REG(hw,
1053 IXGBE_VLVFB((regindex * 2) + 1));
1054 bits &= ~(1 << vind);
1055 IXGBE_WRITE_REG(hw,
1056 IXGBE_VLVFB((regindex * 2) + 1), bits);
1057 bits |= IXGBE_READ_REG(hw,
1058 IXGBE_VLVFB(regindex * 2));
1059 }
1060 }
1061
1062 if (bits)
1063 IXGBE_WRITE_REG(hw, IXGBE_VLVF(regindex),
1064 (IXGBE_VLVF_VIEN | vlan));
1065 else
1066 IXGBE_WRITE_REG(hw, IXGBE_VLVF(regindex), 0);
1067 }
1068
1069out:
1070 return 0;
1071}
1072
1073/**
1074 * ixgbe_clear_vfta_82599 - Clear VLAN filter table
1075 * @hw: pointer to hardware structure
1076 *
1077 * Clears the VLAN filer table, and the VMDq index associated with the filter
1078 **/
7b25cdba 1079static s32 ixgbe_clear_vfta_82599(struct ixgbe_hw *hw)
11afc1b1
PW
1080{
1081 u32 offset;
1082
1083 for (offset = 0; offset < hw->mac.vft_size; offset++)
1084 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
1085
1086 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
1087 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
1088 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
1089 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
1090 }
1091
1092 return 0;
1093}
1094
11afc1b1
PW
1095/**
1096 * ixgbe_init_uta_tables_82599 - Initialize the Unicast Table Array
1097 * @hw: pointer to hardware structure
1098 **/
7b25cdba 1099static s32 ixgbe_init_uta_tables_82599(struct ixgbe_hw *hw)
11afc1b1
PW
1100{
1101 int i;
1102 hw_dbg(hw, " Clearing UTA\n");
1103
1104 for (i = 0; i < 128; i++)
1105 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
1106
1107 return 0;
1108}
1109
ffff4772
PWJ
1110/**
1111 * ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables.
1112 * @hw: pointer to hardware structure
1113 **/
1114s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw)
1115{
1116 int i;
1117 u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL);
1118 fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE;
1119
1120 /*
1121 * Before starting reinitialization process,
1122 * FDIRCMD.CMD must be zero.
1123 */
1124 for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) {
1125 if (!(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1126 IXGBE_FDIRCMD_CMD_MASK))
1127 break;
1128 udelay(10);
1129 }
1130 if (i >= IXGBE_FDIRCMD_CMD_POLL) {
1131 hw_dbg(hw ,"Flow Director previous command isn't complete, "
1132 "aborting table re-initialization. \n");
1133 return IXGBE_ERR_FDIR_REINIT_FAILED;
1134 }
1135
1136 IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0);
1137 IXGBE_WRITE_FLUSH(hw);
1138 /*
1139 * 82599 adapters flow director init flow cannot be restarted,
1140 * Workaround 82599 silicon errata by performing the following steps
1141 * before re-writing the FDIRCTRL control register with the same value.
1142 * - write 1 to bit 8 of FDIRCMD register &
1143 * - write 0 to bit 8 of FDIRCMD register
1144 */
1145 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1146 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) |
1147 IXGBE_FDIRCMD_CLEARHT));
1148 IXGBE_WRITE_FLUSH(hw);
1149 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1150 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1151 ~IXGBE_FDIRCMD_CLEARHT));
1152 IXGBE_WRITE_FLUSH(hw);
1153 /*
1154 * Clear FDIR Hash register to clear any leftover hashes
1155 * waiting to be programmed.
1156 */
1157 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00);
1158 IXGBE_WRITE_FLUSH(hw);
1159
1160 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1161 IXGBE_WRITE_FLUSH(hw);
1162
1163 /* Poll init-done after we write FDIRCTRL register */
1164 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1165 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1166 IXGBE_FDIRCTRL_INIT_DONE)
1167 break;
1168 udelay(10);
1169 }
1170 if (i >= IXGBE_FDIR_INIT_DONE_POLL) {
1171 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1172 return IXGBE_ERR_FDIR_REINIT_FAILED;
1173 }
1174
1175 /* Clear FDIR statistics registers (read to clear) */
1176 IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT);
1177 IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT);
1178 IXGBE_READ_REG(hw, IXGBE_FDIRMATCH);
1179 IXGBE_READ_REG(hw, IXGBE_FDIRMISS);
1180 IXGBE_READ_REG(hw, IXGBE_FDIRLEN);
1181
1182 return 0;
1183}
1184
1185/**
1186 * ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters
1187 * @hw: pointer to hardware structure
1188 * @pballoc: which mode to allocate filters with
1189 **/
1190s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 pballoc)
1191{
1192 u32 fdirctrl = 0;
1193 u32 pbsize;
1194 int i;
1195
1196 /*
1197 * Before enabling Flow Director, the Rx Packet Buffer size
1198 * must be reduced. The new value is the current size minus
1199 * flow director memory usage size.
1200 */
1201 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1202 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1203 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1204
1205 /*
1206 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1207 * intialized to zero for non DCB mode otherwise actual total RX PB
1208 * would be bigger than programmed and filter space would run into
1209 * the PB 0 region.
1210 */
1211 for (i = 1; i < 8; i++)
1212 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1213
1214 /* Send interrupt when 64 filters are left */
1215 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1216
1217 /* Set the maximum length per hash bucket to 0xA filters */
1218 fdirctrl |= 0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT;
1219
1220 switch (pballoc) {
1221 case IXGBE_FDIR_PBALLOC_64K:
1222 /* 8k - 1 signature filters */
1223 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1224 break;
1225 case IXGBE_FDIR_PBALLOC_128K:
1226 /* 16k - 1 signature filters */
1227 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1228 break;
1229 case IXGBE_FDIR_PBALLOC_256K:
1230 /* 32k - 1 signature filters */
1231 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1232 break;
1233 default:
1234 /* bad value */
1235 return IXGBE_ERR_CONFIG;
1236 };
1237
1238 /* Move the flexible bytes to use the ethertype - shift 6 words */
1239 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1240
1241 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1242
1243 /* Prime the keys for hashing */
1244 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1245 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1246 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1247 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1248
1249 /*
1250 * Poll init-done after we write the register. Estimated times:
1251 * 10G: PBALLOC = 11b, timing is 60us
1252 * 1G: PBALLOC = 11b, timing is 600us
1253 * 100M: PBALLOC = 11b, timing is 6ms
1254 *
1255 * Multiple these timings by 4 if under full Rx load
1256 *
1257 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1258 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1259 * this might not finish in our poll time, but we can live with that
1260 * for now.
1261 */
1262 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1263 IXGBE_WRITE_FLUSH(hw);
1264 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1265 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1266 IXGBE_FDIRCTRL_INIT_DONE)
1267 break;
1268 msleep(1);
1269 }
1270 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1271 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1272
1273 return 0;
1274}
1275
1276/**
1277 * ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters
1278 * @hw: pointer to hardware structure
1279 * @pballoc: which mode to allocate filters with
1280 **/
1281s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 pballoc)
1282{
1283 u32 fdirctrl = 0;
1284 u32 pbsize;
1285 int i;
1286
1287 /*
1288 * Before enabling Flow Director, the Rx Packet Buffer size
1289 * must be reduced. The new value is the current size minus
1290 * flow director memory usage size.
1291 */
1292 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1293 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1294 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1295
1296 /*
1297 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1298 * intialized to zero for non DCB mode otherwise actual total RX PB
1299 * would be bigger than programmed and filter space would run into
1300 * the PB 0 region.
1301 */
1302 for (i = 1; i < 8; i++)
1303 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1304
1305 /* Send interrupt when 64 filters are left */
1306 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1307
1308 switch (pballoc) {
1309 case IXGBE_FDIR_PBALLOC_64K:
1310 /* 2k - 1 perfect filters */
1311 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1312 break;
1313 case IXGBE_FDIR_PBALLOC_128K:
1314 /* 4k - 1 perfect filters */
1315 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1316 break;
1317 case IXGBE_FDIR_PBALLOC_256K:
1318 /* 8k - 1 perfect filters */
1319 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1320 break;
1321 default:
1322 /* bad value */
1323 return IXGBE_ERR_CONFIG;
1324 };
1325
1326 /* Turn perfect match filtering on */
1327 fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH;
1328 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1329
1330 /* Move the flexible bytes to use the ethertype - shift 6 words */
1331 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1332
1333 /* Prime the keys for hashing */
1334 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1335 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1336 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1337 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1338
1339 /*
1340 * Poll init-done after we write the register. Estimated times:
1341 * 10G: PBALLOC = 11b, timing is 60us
1342 * 1G: PBALLOC = 11b, timing is 600us
1343 * 100M: PBALLOC = 11b, timing is 6ms
1344 *
1345 * Multiple these timings by 4 if under full Rx load
1346 *
1347 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1348 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1349 * this might not finish in our poll time, but we can live with that
1350 * for now.
1351 */
1352
1353 /* Set the maximum length per hash bucket to 0xA filters */
1354 fdirctrl |= (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT);
1355
1356 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1357 IXGBE_WRITE_FLUSH(hw);
1358 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1359 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1360 IXGBE_FDIRCTRL_INIT_DONE)
1361 break;
1362 msleep(1);
1363 }
1364 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1365 hw_dbg(hw, "Flow Director Perfect poll time exceeded!\n");
1366
1367 return 0;
1368}
1369
1370
1371/**
1372 * ixgbe_atr_compute_hash_82599 - Compute the hashes for SW ATR
1373 * @stream: input bitstream to compute the hash on
1374 * @key: 32-bit hash key
1375 **/
7b25cdba
DS
1376static u16 ixgbe_atr_compute_hash_82599(struct ixgbe_atr_input *atr_input,
1377 u32 key)
ffff4772
PWJ
1378{
1379 /*
1380 * The algorithm is as follows:
1381 * Hash[15:0] = Sum { S[n] x K[n+16] }, n = 0...350
1382 * where Sum {A[n]}, n = 0...n is bitwise XOR of A[0], A[1]...A[n]
1383 * and A[n] x B[n] is bitwise AND between same length strings
1384 *
1385 * K[n] is 16 bits, defined as:
1386 * for n modulo 32 >= 15, K[n] = K[n % 32 : (n % 32) - 15]
1387 * for n modulo 32 < 15, K[n] =
1388 * K[(n % 32:0) | (31:31 - (14 - (n % 32)))]
1389 *
1390 * S[n] is 16 bits, defined as:
1391 * for n >= 15, S[n] = S[n:n - 15]
1392 * for n < 15, S[n] = S[(n:0) | (350:350 - (14 - n))]
1393 *
1394 * To simplify for programming, the algorithm is implemented
1395 * in software this way:
1396 *
1397 * Key[31:0], Stream[335:0]
1398 *
1399 * tmp_key[11 * 32 - 1:0] = 11{Key[31:0] = key concatenated 11 times
1400 * int_key[350:0] = tmp_key[351:1]
1401 * int_stream[365:0] = Stream[14:0] | Stream[335:0] | Stream[335:321]
1402 *
1403 * hash[15:0] = 0;
1404 * for (i = 0; i < 351; i++) {
1405 * if (int_key[i])
1406 * hash ^= int_stream[(i + 15):i];
1407 * }
1408 */
1409
1410 union {
1411 u64 fill[6];
1412 u32 key[11];
1413 u8 key_stream[44];
1414 } tmp_key;
1415
1416 u8 *stream = (u8 *)atr_input;
1417 u8 int_key[44]; /* upper-most bit unused */
1418 u8 hash_str[46]; /* upper-most 2 bits unused */
1419 u16 hash_result = 0;
1420 int i, j, k, h;
1421
1422 /*
1423 * Initialize the fill member to prevent warnings
1424 * on some compilers
1425 */
1426 tmp_key.fill[0] = 0;
1427
1428 /* First load the temporary key stream */
1429 for (i = 0; i < 6; i++) {
1430 u64 fillkey = ((u64)key << 32) | key;
1431 tmp_key.fill[i] = fillkey;
1432 }
1433
1434 /*
1435 * Set the interim key for the hashing. Bit 352 is unused, so we must
1436 * shift and compensate when building the key.
1437 */
1438
1439 int_key[0] = tmp_key.key_stream[0] >> 1;
1440 for (i = 1, j = 0; i < 44; i++) {
1441 unsigned int this_key = tmp_key.key_stream[j] << 7;
1442 j++;
1443 int_key[i] = (u8)(this_key | (tmp_key.key_stream[j] >> 1));
1444 }
1445
1446 /*
1447 * Set the interim bit string for the hashing. Bits 368 and 367 are
1448 * unused, so shift and compensate when building the string.
1449 */
1450 hash_str[0] = (stream[40] & 0x7f) >> 1;
1451 for (i = 1, j = 40; i < 46; i++) {
1452 unsigned int this_str = stream[j] << 7;
1453 j++;
1454 if (j > 41)
1455 j = 0;
1456 hash_str[i] = (u8)(this_str | (stream[j] >> 1));
1457 }
1458
1459 /*
1460 * Now compute the hash. i is the index into hash_str, j is into our
1461 * key stream, k is counting the number of bits, and h interates within
1462 * each byte.
1463 */
1464 for (i = 45, j = 43, k = 0; k < 351 && i >= 2 && j >= 0; i--, j--) {
1465 for (h = 0; h < 8 && k < 351; h++, k++) {
1466 if (int_key[j] & (1 << h)) {
1467 /*
1468 * Key bit is set, XOR in the current 16-bit
1469 * string. Example of processing:
1470 * h = 0,
1471 * tmp = (hash_str[i - 2] & 0 << 16) |
1472 * (hash_str[i - 1] & 0xff << 8) |
1473 * (hash_str[i] & 0xff >> 0)
1474 * So tmp = hash_str[15 + k:k], since the
1475 * i + 2 clause rolls off the 16-bit value
1476 * h = 7,
1477 * tmp = (hash_str[i - 2] & 0x7f << 9) |
1478 * (hash_str[i - 1] & 0xff << 1) |
1479 * (hash_str[i] & 0x80 >> 7)
1480 */
1481 int tmp = (hash_str[i] >> h);
1482 tmp |= (hash_str[i - 1] << (8 - h));
1483 tmp |= (int)(hash_str[i - 2] & ((1 << h) - 1))
1484 << (16 - h);
1485 hash_result ^= (u16)tmp;
1486 }
1487 }
1488 }
1489
1490 return hash_result;
1491}
1492
1493/**
1494 * ixgbe_atr_set_vlan_id_82599 - Sets the VLAN id in the ATR input stream
1495 * @input: input stream to modify
1496 * @vlan: the VLAN id to load
1497 **/
1498s32 ixgbe_atr_set_vlan_id_82599(struct ixgbe_atr_input *input, u16 vlan)
1499{
1500 input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] = vlan >> 8;
1501 input->byte_stream[IXGBE_ATR_VLAN_OFFSET] = vlan & 0xff;
1502
1503 return 0;
1504}
1505
1506/**
1507 * ixgbe_atr_set_src_ipv4_82599 - Sets the source IPv4 address
1508 * @input: input stream to modify
1509 * @src_addr: the IP address to load
1510 **/
1511s32 ixgbe_atr_set_src_ipv4_82599(struct ixgbe_atr_input *input, u32 src_addr)
1512{
1513 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] = src_addr >> 24;
1514 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] =
1515 (src_addr >> 16) & 0xff;
1516 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] =
1517 (src_addr >> 8) & 0xff;
1518 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET] = src_addr & 0xff;
1519
1520 return 0;
1521}
1522
1523/**
1524 * ixgbe_atr_set_dst_ipv4_82599 - Sets the destination IPv4 address
1525 * @input: input stream to modify
1526 * @dst_addr: the IP address to load
1527 **/
1528s32 ixgbe_atr_set_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 dst_addr)
1529{
1530 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] = dst_addr >> 24;
1531 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] =
1532 (dst_addr >> 16) & 0xff;
1533 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] =
1534 (dst_addr >> 8) & 0xff;
1535 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET] = dst_addr & 0xff;
1536
1537 return 0;
1538}
1539
1540/**
1541 * ixgbe_atr_set_src_ipv6_82599 - Sets the source IPv6 address
1542 * @input: input stream to modify
1543 * @src_addr_1: the first 4 bytes of the IP address to load
1544 * @src_addr_2: the second 4 bytes of the IP address to load
1545 * @src_addr_3: the third 4 bytes of the IP address to load
1546 * @src_addr_4: the fourth 4 bytes of the IP address to load
1547 **/
1548s32 ixgbe_atr_set_src_ipv6_82599(struct ixgbe_atr_input *input,
7b25cdba
DS
1549 u32 src_addr_1, u32 src_addr_2,
1550 u32 src_addr_3, u32 src_addr_4)
ffff4772
PWJ
1551{
1552 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET] = src_addr_4 & 0xff;
1553 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] =
1554 (src_addr_4 >> 8) & 0xff;
1555 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] =
1556 (src_addr_4 >> 16) & 0xff;
1557 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] = src_addr_4 >> 24;
1558
1559 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4] = src_addr_3 & 0xff;
1560 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] =
1561 (src_addr_3 >> 8) & 0xff;
1562 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] =
1563 (src_addr_3 >> 16) & 0xff;
1564 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] = src_addr_3 >> 24;
1565
1566 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8] = src_addr_2 & 0xff;
1567 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] =
1568 (src_addr_2 >> 8) & 0xff;
1569 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] =
1570 (src_addr_2 >> 16) & 0xff;
1571 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] = src_addr_2 >> 24;
1572
1573 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12] = src_addr_1 & 0xff;
1574 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] =
1575 (src_addr_1 >> 8) & 0xff;
1576 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] =
1577 (src_addr_1 >> 16) & 0xff;
1578 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] = src_addr_1 >> 24;
1579
1580 return 0;
1581}
1582
1583/**
1584 * ixgbe_atr_set_dst_ipv6_82599 - Sets the destination IPv6 address
1585 * @input: input stream to modify
1586 * @dst_addr_1: the first 4 bytes of the IP address to load
1587 * @dst_addr_2: the second 4 bytes of the IP address to load
1588 * @dst_addr_3: the third 4 bytes of the IP address to load
1589 * @dst_addr_4: the fourth 4 bytes of the IP address to load
1590 **/
1591s32 ixgbe_atr_set_dst_ipv6_82599(struct ixgbe_atr_input *input,
7b25cdba
DS
1592 u32 dst_addr_1, u32 dst_addr_2,
1593 u32 dst_addr_3, u32 dst_addr_4)
ffff4772
PWJ
1594{
1595 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET] = dst_addr_4 & 0xff;
1596 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] =
1597 (dst_addr_4 >> 8) & 0xff;
1598 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] =
1599 (dst_addr_4 >> 16) & 0xff;
1600 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] = dst_addr_4 >> 24;
1601
1602 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4] = dst_addr_3 & 0xff;
1603 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] =
1604 (dst_addr_3 >> 8) & 0xff;
1605 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] =
1606 (dst_addr_3 >> 16) & 0xff;
1607 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] = dst_addr_3 >> 24;
1608
1609 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8] = dst_addr_2 & 0xff;
1610 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] =
1611 (dst_addr_2 >> 8) & 0xff;
1612 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] =
1613 (dst_addr_2 >> 16) & 0xff;
1614 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] = dst_addr_2 >> 24;
1615
1616 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12] = dst_addr_1 & 0xff;
1617 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] =
1618 (dst_addr_1 >> 8) & 0xff;
1619 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] =
1620 (dst_addr_1 >> 16) & 0xff;
1621 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] = dst_addr_1 >> 24;
1622
1623 return 0;
1624}
1625
1626/**
1627 * ixgbe_atr_set_src_port_82599 - Sets the source port
1628 * @input: input stream to modify
1629 * @src_port: the source port to load
1630 **/
1631s32 ixgbe_atr_set_src_port_82599(struct ixgbe_atr_input *input, u16 src_port)
1632{
1633 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1] = src_port >> 8;
1634 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] = src_port & 0xff;
1635
1636 return 0;
1637}
1638
1639/**
1640 * ixgbe_atr_set_dst_port_82599 - Sets the destination port
1641 * @input: input stream to modify
1642 * @dst_port: the destination port to load
1643 **/
1644s32 ixgbe_atr_set_dst_port_82599(struct ixgbe_atr_input *input, u16 dst_port)
1645{
1646 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1] = dst_port >> 8;
1647 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] = dst_port & 0xff;
1648
1649 return 0;
1650}
1651
1652/**
1653 * ixgbe_atr_set_flex_byte_82599 - Sets the flexible bytes
1654 * @input: input stream to modify
1655 * @flex_bytes: the flexible bytes to load
1656 **/
1657s32 ixgbe_atr_set_flex_byte_82599(struct ixgbe_atr_input *input, u16 flex_byte)
1658{
1659 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] = flex_byte >> 8;
1660 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET] = flex_byte & 0xff;
1661
1662 return 0;
1663}
1664
1665/**
1666 * ixgbe_atr_set_vm_pool_82599 - Sets the Virtual Machine pool
1667 * @input: input stream to modify
1668 * @vm_pool: the Virtual Machine pool to load
1669 **/
7b25cdba
DS
1670s32 ixgbe_atr_set_vm_pool_82599(struct ixgbe_atr_input *input,
1671 u8 vm_pool)
ffff4772
PWJ
1672{
1673 input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET] = vm_pool;
1674
1675 return 0;
1676}
1677
1678/**
1679 * ixgbe_atr_set_l4type_82599 - Sets the layer 4 packet type
1680 * @input: input stream to modify
1681 * @l4type: the layer 4 type value to load
1682 **/
1683s32 ixgbe_atr_set_l4type_82599(struct ixgbe_atr_input *input, u8 l4type)
1684{
1685 input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET] = l4type;
1686
1687 return 0;
1688}
1689
1690/**
1691 * ixgbe_atr_get_vlan_id_82599 - Gets the VLAN id from the ATR input stream
1692 * @input: input stream to search
1693 * @vlan: the VLAN id to load
1694 **/
7b25cdba
DS
1695static s32 ixgbe_atr_get_vlan_id_82599(struct ixgbe_atr_input *input,
1696 u16 *vlan)
ffff4772
PWJ
1697{
1698 *vlan = input->byte_stream[IXGBE_ATR_VLAN_OFFSET];
1699 *vlan |= input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] << 8;
1700
1701 return 0;
1702}
1703
1704/**
1705 * ixgbe_atr_get_src_ipv4_82599 - Gets the source IPv4 address
1706 * @input: input stream to search
1707 * @src_addr: the IP address to load
1708 **/
7b25cdba
DS
1709static s32 ixgbe_atr_get_src_ipv4_82599(struct ixgbe_atr_input *input,
1710 u32 *src_addr)
ffff4772
PWJ
1711{
1712 *src_addr = input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET];
1713 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] << 8;
1714 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] << 16;
1715 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] << 24;
1716
1717 return 0;
1718}
1719
1720/**
1721 * ixgbe_atr_get_dst_ipv4_82599 - Gets the destination IPv4 address
1722 * @input: input stream to search
1723 * @dst_addr: the IP address to load
1724 **/
7b25cdba
DS
1725static s32 ixgbe_atr_get_dst_ipv4_82599(struct ixgbe_atr_input *input,
1726 u32 *dst_addr)
ffff4772
PWJ
1727{
1728 *dst_addr = input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET];
1729 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] << 8;
1730 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] << 16;
1731 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] << 24;
1732
1733 return 0;
1734}
1735
1736/**
1737 * ixgbe_atr_get_src_ipv6_82599 - Gets the source IPv6 address
1738 * @input: input stream to search
1739 * @src_addr_1: the first 4 bytes of the IP address to load
1740 * @src_addr_2: the second 4 bytes of the IP address to load
1741 * @src_addr_3: the third 4 bytes of the IP address to load
1742 * @src_addr_4: the fourth 4 bytes of the IP address to load
1743 **/
7b25cdba
DS
1744static s32 ixgbe_atr_get_src_ipv6_82599(struct ixgbe_atr_input *input,
1745 u32 *src_addr_1, u32 *src_addr_2,
1746 u32 *src_addr_3, u32 *src_addr_4)
ffff4772
PWJ
1747{
1748 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12];
1749 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] << 8;
1750 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] << 16;
1751 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] << 24;
1752
1753 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8];
1754 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] << 8;
1755 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] << 16;
1756 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] << 24;
1757
1758 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4];
1759 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] << 8;
1760 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] << 16;
1761 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] << 24;
1762
1763 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET];
1764 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] << 8;
1765 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] << 16;
1766 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] << 24;
1767
1768 return 0;
1769}
1770
1771/**
1772 * ixgbe_atr_get_dst_ipv6_82599 - Gets the destination IPv6 address
1773 * @input: input stream to search
1774 * @dst_addr_1: the first 4 bytes of the IP address to load
1775 * @dst_addr_2: the second 4 bytes of the IP address to load
1776 * @dst_addr_3: the third 4 bytes of the IP address to load
1777 * @dst_addr_4: the fourth 4 bytes of the IP address to load
1778 **/
1779s32 ixgbe_atr_get_dst_ipv6_82599(struct ixgbe_atr_input *input,
7b25cdba
DS
1780 u32 *dst_addr_1, u32 *dst_addr_2,
1781 u32 *dst_addr_3, u32 *dst_addr_4)
ffff4772
PWJ
1782{
1783 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12];
1784 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] << 8;
1785 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] << 16;
1786 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] << 24;
1787
1788 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8];
1789 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] << 8;
1790 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] << 16;
1791 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] << 24;
1792
1793 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4];
1794 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] << 8;
1795 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] << 16;
1796 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] << 24;
1797
1798 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET];
1799 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] << 8;
1800 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] << 16;
1801 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] << 24;
1802
1803 return 0;
1804}
1805
1806/**
1807 * ixgbe_atr_get_src_port_82599 - Gets the source port
1808 * @input: input stream to modify
1809 * @src_port: the source port to load
1810 *
1811 * Even though the input is given in big-endian, the FDIRPORT registers
1812 * expect the ports to be programmed in little-endian. Hence the need to swap
1813 * endianness when retrieving the data. This can be confusing since the
1814 * internal hash engine expects it to be big-endian.
1815 **/
7b25cdba
DS
1816static s32 ixgbe_atr_get_src_port_82599(struct ixgbe_atr_input *input,
1817 u16 *src_port)
ffff4772
PWJ
1818{
1819 *src_port = input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] << 8;
1820 *src_port |= input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1];
1821
1822 return 0;
1823}
1824
1825/**
1826 * ixgbe_atr_get_dst_port_82599 - Gets the destination port
1827 * @input: input stream to modify
1828 * @dst_port: the destination port to load
1829 *
1830 * Even though the input is given in big-endian, the FDIRPORT registers
1831 * expect the ports to be programmed in little-endian. Hence the need to swap
1832 * endianness when retrieving the data. This can be confusing since the
1833 * internal hash engine expects it to be big-endian.
1834 **/
7b25cdba
DS
1835static s32 ixgbe_atr_get_dst_port_82599(struct ixgbe_atr_input *input,
1836 u16 *dst_port)
ffff4772
PWJ
1837{
1838 *dst_port = input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] << 8;
1839 *dst_port |= input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1];
1840
1841 return 0;
1842}
1843
1844/**
1845 * ixgbe_atr_get_flex_byte_82599 - Gets the flexible bytes
1846 * @input: input stream to modify
1847 * @flex_bytes: the flexible bytes to load
1848 **/
7b25cdba
DS
1849static s32 ixgbe_atr_get_flex_byte_82599(struct ixgbe_atr_input *input,
1850 u16 *flex_byte)
ffff4772
PWJ
1851{
1852 *flex_byte = input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET];
1853 *flex_byte |= input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] << 8;
1854
1855 return 0;
1856}
1857
1858/**
1859 * ixgbe_atr_get_vm_pool_82599 - Gets the Virtual Machine pool
1860 * @input: input stream to modify
1861 * @vm_pool: the Virtual Machine pool to load
1862 **/
7b25cdba
DS
1863s32 ixgbe_atr_get_vm_pool_82599(struct ixgbe_atr_input *input,
1864 u8 *vm_pool)
ffff4772
PWJ
1865{
1866 *vm_pool = input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET];
1867
1868 return 0;
1869}
1870
1871/**
1872 * ixgbe_atr_get_l4type_82599 - Gets the layer 4 packet type
1873 * @input: input stream to modify
1874 * @l4type: the layer 4 type value to load
1875 **/
7b25cdba
DS
1876static s32 ixgbe_atr_get_l4type_82599(struct ixgbe_atr_input *input,
1877 u8 *l4type)
ffff4772
PWJ
1878{
1879 *l4type = input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET];
1880
1881 return 0;
1882}
1883
1884/**
1885 * ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter
1886 * @hw: pointer to hardware structure
1887 * @stream: input bitstream
1888 * @queue: queue index to direct traffic to
1889 **/
1890s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw,
1891 struct ixgbe_atr_input *input,
1892 u8 queue)
1893{
1894 u64 fdirhashcmd;
1895 u64 fdircmd;
1896 u32 fdirhash;
1897 u16 bucket_hash, sig_hash;
1898 u8 l4type;
1899
1900 bucket_hash = ixgbe_atr_compute_hash_82599(input,
1901 IXGBE_ATR_BUCKET_HASH_KEY);
1902
1903 /* bucket_hash is only 15 bits */
1904 bucket_hash &= IXGBE_ATR_HASH_MASK;
1905
1906 sig_hash = ixgbe_atr_compute_hash_82599(input,
1907 IXGBE_ATR_SIGNATURE_HASH_KEY);
1908
1909 /* Get the l4type in order to program FDIRCMD properly */
1910 /* lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 */
1911 ixgbe_atr_get_l4type_82599(input, &l4type);
1912
1913 /*
1914 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits
1915 * is for FDIRCMD. Then do a 64-bit register write from FDIRHASH.
1916 */
1917 fdirhash = sig_hash << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
1918
1919 fdircmd = (IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
1920 IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN);
1921
1922 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1923 case IXGBE_ATR_L4TYPE_TCP:
1924 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
1925 break;
1926 case IXGBE_ATR_L4TYPE_UDP:
1927 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
1928 break;
1929 case IXGBE_ATR_L4TYPE_SCTP:
1930 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
1931 break;
1932 default:
1933 hw_dbg(hw, "Error on l4type input\n");
1934 return IXGBE_ERR_CONFIG;
1935 }
1936
1937 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK)
1938 fdircmd |= IXGBE_FDIRCMD_IPV6;
1939
1940 fdircmd |= ((u64)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT);
1941 fdirhashcmd = ((fdircmd << 32) | fdirhash);
1942
1943 IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd);
1944
1945 return 0;
1946}
1947
1948/**
1949 * ixgbe_fdir_add_perfect_filter_82599 - Adds a perfect filter
1950 * @hw: pointer to hardware structure
1951 * @input: input bitstream
1952 * @queue: queue index to direct traffic to
1953 *
1954 * Note that the caller to this function must lock before calling, since the
1955 * hardware writes must be protected from one another.
1956 **/
1957s32 ixgbe_fdir_add_perfect_filter_82599(struct ixgbe_hw *hw,
7b25cdba
DS
1958 struct ixgbe_atr_input *input,
1959 u16 soft_id,
1960 u8 queue)
ffff4772
PWJ
1961{
1962 u32 fdircmd = 0;
1963 u32 fdirhash;
1964 u32 src_ipv4, dst_ipv4;
1965 u32 src_ipv6_1, src_ipv6_2, src_ipv6_3, src_ipv6_4;
1966 u16 src_port, dst_port, vlan_id, flex_bytes;
1967 u16 bucket_hash;
1968 u8 l4type;
1969
1970 /* Get our input values */
1971 ixgbe_atr_get_l4type_82599(input, &l4type);
1972
1973 /*
1974 * Check l4type formatting, and bail out before we touch the hardware
1975 * if there's a configuration issue
1976 */
1977 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1978 case IXGBE_ATR_L4TYPE_TCP:
1979 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
1980 break;
1981 case IXGBE_ATR_L4TYPE_UDP:
1982 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
1983 break;
1984 case IXGBE_ATR_L4TYPE_SCTP:
1985 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
1986 break;
1987 default:
1988 hw_dbg(hw, "Error on l4type input\n");
1989 return IXGBE_ERR_CONFIG;
1990 }
1991
1992 bucket_hash = ixgbe_atr_compute_hash_82599(input,
1993 IXGBE_ATR_BUCKET_HASH_KEY);
1994
1995 /* bucket_hash is only 15 bits */
1996 bucket_hash &= IXGBE_ATR_HASH_MASK;
1997
1998 ixgbe_atr_get_vlan_id_82599(input, &vlan_id);
1999 ixgbe_atr_get_src_port_82599(input, &src_port);
2000 ixgbe_atr_get_dst_port_82599(input, &dst_port);
2001 ixgbe_atr_get_flex_byte_82599(input, &flex_bytes);
2002
2003 fdirhash = soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
2004
2005 /* Now figure out if we're IPv4 or IPv6 */
2006 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) {
2007 /* IPv6 */
2008 ixgbe_atr_get_src_ipv6_82599(input, &src_ipv6_1, &src_ipv6_2,
2009 &src_ipv6_3, &src_ipv6_4);
2010
2011 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(0), src_ipv6_1);
2012 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(1), src_ipv6_2);
2013 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(2), src_ipv6_3);
2014 /* The last 4 bytes is the same register as IPv4 */
2015 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv6_4);
2016
2017 fdircmd |= IXGBE_FDIRCMD_IPV6;
2018 fdircmd |= IXGBE_FDIRCMD_IPv6DMATCH;
2019 } else {
2020 /* IPv4 */
2021 ixgbe_atr_get_src_ipv4_82599(input, &src_ipv4);
2022 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv4);
2023
2024 }
2025
2026 ixgbe_atr_get_dst_ipv4_82599(input, &dst_ipv4);
2027 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPDA, dst_ipv4);
2028
2029 IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, (vlan_id |
2030 (flex_bytes << IXGBE_FDIRVLAN_FLEX_SHIFT)));
2031 IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, (src_port |
2032 (dst_port << IXGBE_FDIRPORT_DESTINATION_SHIFT)));
2033
2034 fdircmd |= IXGBE_FDIRCMD_CMD_ADD_FLOW;
2035 fdircmd |= IXGBE_FDIRCMD_FILTER_UPDATE;
2036 fdircmd |= IXGBE_FDIRCMD_LAST;
2037 fdircmd |= IXGBE_FDIRCMD_QUEUE_EN;
2038 fdircmd |= queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;
2039
2040 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);
2041 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd);
2042
2043 return 0;
2044}
11afc1b1
PW
2045/**
2046 * ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register
2047 * @hw: pointer to hardware structure
2048 * @reg: analog register to read
2049 * @val: read value
2050 *
2051 * Performs read operation to Omer analog register specified.
2052 **/
7b25cdba 2053static s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val)
11afc1b1
PW
2054{
2055 u32 core_ctl;
2056
2057 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD |
2058 (reg << 8));
2059 IXGBE_WRITE_FLUSH(hw);
2060 udelay(10);
2061 core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL);
2062 *val = (u8)core_ctl;
2063
2064 return 0;
2065}
2066
2067/**
2068 * ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register
2069 * @hw: pointer to hardware structure
2070 * @reg: atlas register to write
2071 * @val: value to write
2072 *
2073 * Performs write operation to Omer analog register specified.
2074 **/
7b25cdba 2075static s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val)
11afc1b1
PW
2076{
2077 u32 core_ctl;
2078
2079 core_ctl = (reg << 8) | val;
2080 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl);
2081 IXGBE_WRITE_FLUSH(hw);
2082 udelay(10);
2083
2084 return 0;
2085}
2086
2087/**
2088 * ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx
2089 * @hw: pointer to hardware structure
2090 *
2091 * Starts the hardware using the generic start_hw function.
2092 * Then performs device-specific:
2093 * Clears the rate limiter registers.
2094 **/
7b25cdba 2095static s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw)
11afc1b1
PW
2096{
2097 u32 q_num;
794caeb2 2098 s32 ret_val;
11afc1b1 2099
794caeb2 2100 ret_val = ixgbe_start_hw_generic(hw);
11afc1b1
PW
2101
2102 /* Clear the rate limiters */
2103 for (q_num = 0; q_num < hw->mac.max_tx_queues; q_num++) {
2104 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, q_num);
2105 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
2106 }
2107 IXGBE_WRITE_FLUSH(hw);
2108
50ac58ba
PWJ
2109 /* We need to run link autotry after the driver loads */
2110 hw->mac.autotry_restart = true;
2111
794caeb2
PWJ
2112 if (ret_val == 0)
2113 ret_val = ixgbe_verify_fw_version_82599(hw);
2114
2115 return ret_val;
11afc1b1
PW
2116}
2117
2118/**
2119 * ixgbe_identify_phy_82599 - Get physical layer module
2120 * @hw: pointer to hardware structure
2121 *
2122 * Determines the physical layer module found on the current adapter.
2123 **/
7b25cdba 2124static s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw)
11afc1b1
PW
2125{
2126 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
2127 status = ixgbe_identify_phy_generic(hw);
2128 if (status != 0)
2129 status = ixgbe_identify_sfp_module_generic(hw);
2130 return status;
2131}
2132
2133/**
2134 * ixgbe_get_supported_physical_layer_82599 - Returns physical layer type
2135 * @hw: pointer to hardware structure
2136 *
2137 * Determines physical layer capabilities of the current configuration.
2138 **/
7b25cdba 2139static u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw)
11afc1b1
PW
2140{
2141 u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN;
04193058
PWJ
2142 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2143 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
2144 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
2145 u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK;
2146 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
2147 u16 ext_ability = 0;
1339b9e9 2148 u8 comp_codes_10g = 0;
11afc1b1 2149
04193058
PWJ
2150 hw->phy.ops.identify(hw);
2151
2152 if (hw->phy.type == ixgbe_phy_tn ||
2153 hw->phy.type == ixgbe_phy_cu_unknown) {
6b73e10d
BH
2154 hw->phy.ops.read_reg(hw, MDIO_PMA_EXTABLE, MDIO_MMD_PMAPMD,
2155 &ext_ability);
2156 if (ext_ability & MDIO_PMA_EXTABLE_10GBT)
04193058 2157 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T;
6b73e10d 2158 if (ext_ability & MDIO_PMA_EXTABLE_1000BT)
04193058 2159 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T;
6b73e10d 2160 if (ext_ability & MDIO_PMA_EXTABLE_100BTX)
04193058
PWJ
2161 physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX;
2162 goto out;
2163 }
2164
2165 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
2166 case IXGBE_AUTOC_LMS_1G_AN:
2167 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
2168 if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) {
2169 physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX |
2170 IXGBE_PHYSICAL_LAYER_1000BASE_BX;
2171 goto out;
2172 } else
2173 /* SFI mode so read SFP module */
2174 goto sfp_check;
11afc1b1 2175 break;
04193058
PWJ
2176 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
2177 if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4)
2178 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4;
2179 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4)
2180 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
1fcf03e6
PWJ
2181 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_XAUI)
2182 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_XAUI;
04193058
PWJ
2183 goto out;
2184 break;
2185 case IXGBE_AUTOC_LMS_10G_SERIAL:
2186 if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) {
2187 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2188 goto out;
2189 } else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)
2190 goto sfp_check;
2191 break;
2192 case IXGBE_AUTOC_LMS_KX4_KX_KR:
2193 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
2194 if (autoc & IXGBE_AUTOC_KX_SUPP)
2195 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX;
2196 if (autoc & IXGBE_AUTOC_KX4_SUPP)
2197 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2198 if (autoc & IXGBE_AUTOC_KR_SUPP)
2199 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2200 goto out;
2201 break;
2202 default:
2203 goto out;
2204 break;
2205 }
11afc1b1 2206
04193058
PWJ
2207sfp_check:
2208 /* SFP check must be done last since DA modules are sometimes used to
2209 * test KR mode - we need to id KR mode correctly before SFP module.
2210 * Call identify_sfp because the pluggable module may have changed */
2211 hw->phy.ops.identify_sfp(hw);
2212 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2213 goto out;
2214
2215 switch (hw->phy.type) {
2216 case ixgbe_phy_tw_tyco:
2217 case ixgbe_phy_tw_unknown:
2218 physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU;
2219 break;
2220 case ixgbe_phy_sfp_avago:
2221 case ixgbe_phy_sfp_ftl:
2222 case ixgbe_phy_sfp_intel:
2223 case ixgbe_phy_sfp_unknown:
2224 hw->phy.ops.read_i2c_eeprom(hw,
2225 IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g);
2226 if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
11afc1b1 2227 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR;
04193058 2228 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
11afc1b1 2229 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR;
11afc1b1
PW
2230 break;
2231 default:
11afc1b1
PW
2232 break;
2233 }
2234
04193058 2235out:
11afc1b1
PW
2236 return physical_layer;
2237}
2238
2239/**
2240 * ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599
2241 * @hw: pointer to hardware structure
2242 * @regval: register value to write to RXCTRL
2243 *
2244 * Enables the Rx DMA unit for 82599
2245 **/
7b25cdba 2246static s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval)
11afc1b1
PW
2247{
2248#define IXGBE_MAX_SECRX_POLL 30
2249 int i;
2250 int secrxreg;
2251
2252 /*
2253 * Workaround for 82599 silicon errata when enabling the Rx datapath.
2254 * If traffic is incoming before we enable the Rx unit, it could hang
2255 * the Rx DMA unit. Therefore, make sure the security engine is
2256 * completely disabled prior to enabling the Rx unit.
2257 */
2258 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2259 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2260 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2261 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2262 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2263 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2264 break;
2265 else
2266 udelay(10);
2267 }
2268
2269 /* For informational purposes only */
2270 if (i >= IXGBE_MAX_SECRX_POLL)
2271 hw_dbg(hw, "Rx unit being enabled before security "
2272 "path fully disabled. Continuing with init.\n");
2273
2274 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2275 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2276 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2277 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2278 IXGBE_WRITE_FLUSH(hw);
2279
2280 return 0;
2281}
2282
04193058
PWJ
2283/**
2284 * ixgbe_get_device_caps_82599 - Get additional device capabilities
2285 * @hw: pointer to hardware structure
2286 * @device_caps: the EEPROM word with the extra device capabilities
2287 *
2288 * This function will read the EEPROM location for the device capabilities,
2289 * and return the word through device_caps.
2290 **/
7b25cdba 2291static s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps)
04193058
PWJ
2292{
2293 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
2294
2295 return 0;
2296}
2297
0365e6e4
PW
2298/**
2299 * ixgbe_get_san_mac_addr_offset_82599 - SAN MAC address offset for 82599
2300 * @hw: pointer to hardware structure
2301 * @san_mac_offset: SAN MAC address offset
2302 *
2303 * This function will read the EEPROM location for the SAN MAC address
2304 * pointer, and returns the value at that location. This is used in both
2305 * get and set mac_addr routines.
2306 **/
7b25cdba
DS
2307static s32 ixgbe_get_san_mac_addr_offset_82599(struct ixgbe_hw *hw,
2308 u16 *san_mac_offset)
0365e6e4
PW
2309{
2310 /*
2311 * First read the EEPROM pointer to see if the MAC addresses are
2312 * available.
2313 */
2314 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2315
2316 return 0;
2317}
2318
2319/**
2320 * ixgbe_get_san_mac_addr_82599 - SAN MAC address retrieval for 82599
2321 * @hw: pointer to hardware structure
2322 * @san_mac_addr: SAN MAC address
2323 *
2324 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2325 * per-port, so set_lan_id() must be called before reading the addresses.
2326 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2327 * upon for non-SFP connections, so we must call it here.
2328 **/
7b25cdba 2329static s32 ixgbe_get_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr)
0365e6e4
PW
2330{
2331 u16 san_mac_data, san_mac_offset;
2332 u8 i;
2333
2334 /*
2335 * First read the EEPROM pointer to see if the MAC addresses are
2336 * available. If they're not, no point in calling set_lan_id() here.
2337 */
2338 ixgbe_get_san_mac_addr_offset_82599(hw, &san_mac_offset);
2339
2340 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2341 /*
2342 * No addresses available in this EEPROM. It's not an
2343 * error though, so just wipe the local address and return.
2344 */
2345 for (i = 0; i < 6; i++)
2346 san_mac_addr[i] = 0xFF;
2347
2348 goto san_mac_addr_out;
2349 }
2350
2351 /* make sure we know which port we need to program */
2352 hw->mac.ops.set_lan_id(hw);
2353 /* apply the port offset to the address offset */
2354 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2355 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2356 for (i = 0; i < 3; i++) {
2357 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2358 san_mac_addr[i * 2] = (u8)(san_mac_data);
2359 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2360 san_mac_offset++;
2361 }
2362
2363san_mac_addr_out:
2364 return 0;
2365}
2366
794caeb2
PWJ
2367/**
2368 * ixgbe_verify_fw_version_82599 - verify fw version for 82599
2369 * @hw: pointer to hardware structure
2370 *
2371 * Verifies that installed the firmware version is 0.6 or higher
2372 * for SFI devices. All 82599 SFI devices should have version 0.6 or higher.
2373 *
2374 * Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or
2375 * if the FW version is not supported.
2376 **/
2377static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw)
2378{
2379 s32 status = IXGBE_ERR_EEPROM_VERSION;
2380 u16 fw_offset, fw_ptp_cfg_offset;
2381 u16 fw_version = 0;
2382
2383 /* firmware check is only necessary for SFI devices */
2384 if (hw->phy.media_type != ixgbe_media_type_fiber) {
2385 status = 0;
2386 goto fw_version_out;
2387 }
2388
2389 /* get the offset to the Firmware Module block */
2390 hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset);
2391
2392 if ((fw_offset == 0) || (fw_offset == 0xFFFF))
2393 goto fw_version_out;
2394
2395 /* get the offset to the Pass Through Patch Configuration block */
2396 hw->eeprom.ops.read(hw, (fw_offset +
2397 IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR),
2398 &fw_ptp_cfg_offset);
2399
2400 if ((fw_ptp_cfg_offset == 0) || (fw_ptp_cfg_offset == 0xFFFF))
2401 goto fw_version_out;
2402
2403 /* get the firmware version */
2404 hw->eeprom.ops.read(hw, (fw_ptp_cfg_offset +
2405 IXGBE_FW_PATCH_VERSION_4),
2406 &fw_version);
2407
2408 if (fw_version > 0x5)
2409 status = 0;
2410
2411fw_version_out:
2412 return status;
2413}
2414
11afc1b1
PW
2415static struct ixgbe_mac_operations mac_ops_82599 = {
2416 .init_hw = &ixgbe_init_hw_generic,
2417 .reset_hw = &ixgbe_reset_hw_82599,
2418 .start_hw = &ixgbe_start_hw_82599,
2419 .clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic,
2420 .get_media_type = &ixgbe_get_media_type_82599,
2421 .get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599,
2422 .enable_rx_dma = &ixgbe_enable_rx_dma_82599,
2423 .get_mac_addr = &ixgbe_get_mac_addr_generic,
0365e6e4 2424 .get_san_mac_addr = &ixgbe_get_san_mac_addr_82599,
04193058 2425 .get_device_caps = &ixgbe_get_device_caps_82599,
11afc1b1
PW
2426 .stop_adapter = &ixgbe_stop_adapter_generic,
2427 .get_bus_info = &ixgbe_get_bus_info_generic,
2428 .set_lan_id = &ixgbe_set_lan_id_multi_port_pcie,
2429 .read_analog_reg8 = &ixgbe_read_analog_reg8_82599,
2430 .write_analog_reg8 = &ixgbe_write_analog_reg8_82599,
2431 .setup_link = &ixgbe_setup_mac_link_82599,
11afc1b1
PW
2432 .check_link = &ixgbe_check_mac_link_82599,
2433 .get_link_capabilities = &ixgbe_get_link_capabilities_82599,
2434 .led_on = &ixgbe_led_on_generic,
2435 .led_off = &ixgbe_led_off_generic,
87c12017
PW
2436 .blink_led_start = &ixgbe_blink_led_start_generic,
2437 .blink_led_stop = &ixgbe_blink_led_stop_generic,
11afc1b1
PW
2438 .set_rar = &ixgbe_set_rar_generic,
2439 .clear_rar = &ixgbe_clear_rar_generic,
2440 .set_vmdq = &ixgbe_set_vmdq_82599,
2441 .clear_vmdq = &ixgbe_clear_vmdq_82599,
2442 .init_rx_addrs = &ixgbe_init_rx_addrs_generic,
2443 .update_uc_addr_list = &ixgbe_update_uc_addr_list_generic,
2444 .update_mc_addr_list = &ixgbe_update_mc_addr_list_generic,
2445 .enable_mc = &ixgbe_enable_mc_generic,
2446 .disable_mc = &ixgbe_disable_mc_generic,
2447 .clear_vfta = &ixgbe_clear_vfta_82599,
2448 .set_vfta = &ixgbe_set_vfta_82599,
620fa036 2449 .fc_enable = &ixgbe_fc_enable_generic,
11afc1b1
PW
2450 .init_uta_tables = &ixgbe_init_uta_tables_82599,
2451 .setup_sfp = &ixgbe_setup_sfp_modules_82599,
2452};
2453
2454static struct ixgbe_eeprom_operations eeprom_ops_82599 = {
2455 .init_params = &ixgbe_init_eeprom_params_generic,
2456 .read = &ixgbe_read_eeprom_generic,
2457 .write = &ixgbe_write_eeprom_generic,
2458 .validate_checksum = &ixgbe_validate_eeprom_checksum_generic,
2459 .update_checksum = &ixgbe_update_eeprom_checksum_generic,
2460};
2461
2462static struct ixgbe_phy_operations phy_ops_82599 = {
2463 .identify = &ixgbe_identify_phy_82599,
2464 .identify_sfp = &ixgbe_identify_sfp_module_generic,
04f165ef 2465 .init = &ixgbe_init_phy_ops_82599,
11afc1b1
PW
2466 .reset = &ixgbe_reset_phy_generic,
2467 .read_reg = &ixgbe_read_phy_reg_generic,
2468 .write_reg = &ixgbe_write_phy_reg_generic,
2469 .setup_link = &ixgbe_setup_phy_link_generic,
2470 .setup_link_speed = &ixgbe_setup_phy_link_speed_generic,
2471 .read_i2c_byte = &ixgbe_read_i2c_byte_generic,
2472 .write_i2c_byte = &ixgbe_write_i2c_byte_generic,
2473 .read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic,
2474 .write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic,
2475};
2476
2477struct ixgbe_info ixgbe_82599_info = {
2478 .mac = ixgbe_mac_82599EB,
2479 .get_invariants = &ixgbe_get_invariants_82599,
2480 .mac_ops = &mac_ops_82599,
2481 .eeprom_ops = &eeprom_ops_82599,
2482 .phy_ops = &phy_ops_82599,
2483};