]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ioc3-eth.c
[PATCH] irq-flags: misc drivers: Use the new IRQF_ constants
[net-next-2.6.git] / drivers / net / ioc3-eth.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 2001, 2003 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30#define IOC3_NAME "ioc3-eth"
31#define IOC3_VERSION "2.6.3-3"
32
1da177e4
LT
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/kernel.h>
36#include <linux/mm.h>
37#include <linux/errno.h>
38#include <linux/module.h>
39#include <linux/pci.h>
40#include <linux/crc32.h>
41#include <linux/mii.h>
42#include <linux/in.h>
43#include <linux/ip.h>
44#include <linux/tcp.h>
45#include <linux/udp.h>
910638ae 46#include <linux/dma-mapping.h>
1da177e4
LT
47
48#ifdef CONFIG_SERIAL_8250
15a93807
RB
49#include <linux/serial_core.h>
50#include <linux/serial_8250.h>
1da177e4
LT
51#endif
52
53#include <linux/netdevice.h>
54#include <linux/etherdevice.h>
55#include <linux/ethtool.h>
56#include <linux/skbuff.h>
57#include <net/ip.h>
58
59#include <asm/byteorder.h>
60#include <asm/checksum.h>
61#include <asm/io.h>
62#include <asm/pgtable.h>
63#include <asm/uaccess.h>
64#include <asm/sn/types.h>
65#include <asm/sn/sn0/addrs.h>
66#include <asm/sn/sn0/hubni.h>
67#include <asm/sn/sn0/hubio.h>
68#include <asm/sn/klconfig.h>
69#include <asm/sn/ioc3.h>
70#include <asm/sn/sn0/ip27.h>
71#include <asm/pci/bridge.h>
72
73/*
74 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
75 * value must be a power of two.
76 */
77#define RX_BUFFS 64
78
79#define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
80#define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
81
82/* Private per NIC data of the driver. */
83struct ioc3_private {
84 struct ioc3 *regs;
85 unsigned long *rxr; /* pointer to receiver ring */
86 struct ioc3_etxd *txr;
87 struct sk_buff *rx_skbs[512];
88 struct sk_buff *tx_skbs[128];
89 struct net_device_stats stats;
90 int rx_ci; /* RX consumer index */
91 int rx_pi; /* RX producer index */
92 int tx_ci; /* TX consumer index */
93 int tx_pi; /* TX producer index */
94 int txqlen;
95 u32 emcr, ehar_h, ehar_l;
96 spinlock_t ioc3_lock;
97 struct mii_if_info mii;
98 struct pci_dev *pdev;
99
100 /* Members used by autonegotiation */
101 struct timer_list ioc3_timer;
102};
103
104static inline struct net_device *priv_netdev(struct ioc3_private *dev)
105{
106 return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
107}
108
109static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110static void ioc3_set_multicast_list(struct net_device *dev);
111static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
112static void ioc3_timeout(struct net_device *dev);
113static inline unsigned int ioc3_hash(const unsigned char *addr);
114static inline void ioc3_stop(struct ioc3_private *ip);
115static void ioc3_init(struct net_device *dev);
116
117static const char ioc3_str[] = "IOC3 Ethernet";
118static struct ethtool_ops ioc3_ethtool_ops;
119
120/* We use this to acquire receive skb's that we can DMA directly into. */
121
122#define IOC3_CACHELINE 128UL
123
124static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
125{
126 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
127}
128
129static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
130 unsigned int gfp_mask)
131{
132 struct sk_buff *skb;
133
134 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
135 if (likely(skb)) {
136 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
137 if (offset)
138 skb_reserve(skb, offset);
139 }
140
141 return skb;
142}
143
144static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
145{
146#ifdef CONFIG_SGI_IP27
d955d90b 147 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
1da177e4
LT
148
149 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
150 ((unsigned long)ptr & TO_PHYS_MASK);
151#else
152 return virt_to_bus(ptr);
153#endif
154}
155
156/* BEWARE: The IOC3 documentation documents the size of rx buffers as
157 1644 while it's actually 1664. This one was nasty to track down ... */
158#define RX_OFFSET 10
159#define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
160
161/* DMA barrier to separate cached and uncached accesses. */
162#define BARRIER() \
163 __asm__("sync" ::: "memory")
164
165
166#define IOC3_SIZE 0x100000
167
168/*
169 * IOC3 is a big endian device
170 *
171 * Unorthodox but makes the users of these macros more readable - the pointer
172 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
173 * in the environment.
174 */
175#define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
176#define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
177#define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
178#define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
179#define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
180#define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
181#define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
182#define ioc3_r_eier() be32_to_cpu(ioc3->eier)
183#define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
184#define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
185#define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
186#define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
187#define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
188#define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
189#define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
190#define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
191#define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
192#define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
193#define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
194#define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
195#define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
196#define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
197#define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
198#define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
199#define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
200#define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
201#define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
202#define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
203#define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
204#define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
205#define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
206#define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
207#define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
208#define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
209#define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
210#define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
211#define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
212#define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
213#define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
214#define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
215#define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
216#define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
217#define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
218#define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
219#define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
220#define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
221#define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
222#define ioc3_r_micr() be32_to_cpu(ioc3->micr)
223#define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
224#define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
225#define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
226#define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
227#define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
228
229static inline u32 mcr_pack(u32 pulse, u32 sample)
230{
231 return (pulse << 10) | (sample << 2);
232}
233
234static int nic_wait(struct ioc3 *ioc3)
235{
236 u32 mcr;
237
238 do {
239 mcr = ioc3_r_mcr();
240 } while (!(mcr & 2));
241
242 return mcr & 1;
243}
244
245static int nic_reset(struct ioc3 *ioc3)
246{
247 int presence;
248
249 ioc3_w_mcr(mcr_pack(500, 65));
250 presence = nic_wait(ioc3);
251
252 ioc3_w_mcr(mcr_pack(0, 500));
253 nic_wait(ioc3);
254
255 return presence;
256}
257
258static inline int nic_read_bit(struct ioc3 *ioc3)
259{
260 int result;
261
262 ioc3_w_mcr(mcr_pack(6, 13));
263 result = nic_wait(ioc3);
264 ioc3_w_mcr(mcr_pack(0, 100));
265 nic_wait(ioc3);
266
267 return result;
268}
269
270static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
271{
272 if (bit)
273 ioc3_w_mcr(mcr_pack(6, 110));
274 else
275 ioc3_w_mcr(mcr_pack(80, 30));
276
277 nic_wait(ioc3);
278}
279
280/*
281 * Read a byte from an iButton device
282 */
283static u32 nic_read_byte(struct ioc3 *ioc3)
284{
285 u32 result = 0;
286 int i;
287
288 for (i = 0; i < 8; i++)
289 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
290
291 return result;
292}
293
294/*
295 * Write a byte to an iButton device
296 */
297static void nic_write_byte(struct ioc3 *ioc3, int byte)
298{
299 int i, bit;
300
301 for (i = 8; i; i--) {
302 bit = byte & 1;
303 byte >>= 1;
304
305 nic_write_bit(ioc3, bit);
306 }
307}
308
309static u64 nic_find(struct ioc3 *ioc3, int *last)
310{
311 int a, b, index, disc;
312 u64 address = 0;
313
314 nic_reset(ioc3);
315 /* Search ROM. */
316 nic_write_byte(ioc3, 0xf0);
317
318 /* Algorithm from ``Book of iButton Standards''. */
319 for (index = 0, disc = 0; index < 64; index++) {
320 a = nic_read_bit(ioc3);
321 b = nic_read_bit(ioc3);
322
323 if (a && b) {
324 printk("NIC search failed (not fatal).\n");
325 *last = 0;
326 return 0;
327 }
328
329 if (!a && !b) {
330 if (index == *last) {
331 address |= 1UL << index;
332 } else if (index > *last) {
333 address &= ~(1UL << index);
334 disc = index;
335 } else if ((address & (1UL << index)) == 0)
336 disc = index;
337 nic_write_bit(ioc3, address & (1UL << index));
338 continue;
339 } else {
340 if (a)
341 address |= 1UL << index;
342 else
343 address &= ~(1UL << index);
344 nic_write_bit(ioc3, a);
345 continue;
346 }
347 }
348
349 *last = disc;
350
351 return address;
352}
353
354static int nic_init(struct ioc3 *ioc3)
355{
356 const char *type;
357 u8 crc;
358 u8 serial[6];
359 int save = 0, i;
360
361 type = "unknown";
362
363 while (1) {
364 u64 reg;
365 reg = nic_find(ioc3, &save);
366
367 switch (reg & 0xff) {
368 case 0x91:
369 type = "DS1981U";
370 break;
371 default:
372 if (save == 0) {
373 /* Let the caller try again. */
374 return -1;
375 }
376 continue;
377 }
378
379 nic_reset(ioc3);
380
381 /* Match ROM. */
382 nic_write_byte(ioc3, 0x55);
383 for (i = 0; i < 8; i++)
384 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
385
386 reg >>= 8; /* Shift out type. */
387 for (i = 0; i < 6; i++) {
388 serial[i] = reg & 0xff;
389 reg >>= 8;
390 }
391 crc = reg & 0xff;
392 break;
393 }
394
395 printk("Found %s NIC", type);
396 if (type != "unknown") {
397 printk (" registration number %02x:%02x:%02x:%02x:%02x:%02x,"
398 " CRC %02x", serial[0], serial[1], serial[2],
399 serial[3], serial[4], serial[5], crc);
400 }
401 printk(".\n");
402
403 return 0;
404}
405
406/*
407 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
408 * SN0 / SN00 nodeboards and PCI cards.
409 */
410static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
411{
412 struct ioc3 *ioc3 = ip->regs;
413 u8 nic[14];
414 int tries = 2; /* There may be some problem with the battery? */
415 int i;
416
417 ioc3_w_gpcr_s(1 << 21);
418
419 while (tries--) {
420 if (!nic_init(ioc3))
421 break;
422 udelay(500);
423 }
424
425 if (tries < 0) {
426 printk("Failed to read MAC address\n");
427 return;
428 }
429
430 /* Read Memory. */
431 nic_write_byte(ioc3, 0xf0);
432 nic_write_byte(ioc3, 0x00);
433 nic_write_byte(ioc3, 0x00);
434
435 for (i = 13; i >= 0; i--)
436 nic[i] = nic_read_byte(ioc3);
437
438 for (i = 2; i < 8; i++)
439 priv_netdev(ip)->dev_addr[i - 2] = nic[i];
440}
441
442/*
443 * Ok, this is hosed by design. It's necessary to know what machine the
444 * NIC is in in order to know how to read the NIC address. We also have
445 * to know if it's a PCI card or a NIC in on the node board ...
446 */
447static void ioc3_get_eaddr(struct ioc3_private *ip)
448{
449 int i;
450
451
452 ioc3_get_eaddr_nic(ip);
453
454 printk("Ethernet address is ");
455 for (i = 0; i < 6; i++) {
456 printk("%02x", priv_netdev(ip)->dev_addr[i]);
457 if (i < 5)
458 printk(":");
459 }
460 printk(".\n");
461}
462
463static void __ioc3_set_mac_address(struct net_device *dev)
464{
465 struct ioc3_private *ip = netdev_priv(dev);
466 struct ioc3 *ioc3 = ip->regs;
467
468 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
469 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
470 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
471}
472
473static int ioc3_set_mac_address(struct net_device *dev, void *addr)
474{
475 struct ioc3_private *ip = netdev_priv(dev);
476 struct sockaddr *sa = addr;
477
478 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
479
480 spin_lock_irq(&ip->ioc3_lock);
481 __ioc3_set_mac_address(dev);
482 spin_unlock_irq(&ip->ioc3_lock);
483
484 return 0;
485}
486
487/*
488 * Caller must hold the ioc3_lock ever for MII readers. This is also
489 * used to protect the transmitter side but it's low contention.
490 */
491static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
492{
493 struct ioc3_private *ip = netdev_priv(dev);
494 struct ioc3 *ioc3 = ip->regs;
495
496 while (ioc3_r_micr() & MICR_BUSY);
497 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
498 while (ioc3_r_micr() & MICR_BUSY);
499
852ea22a 500 return ioc3_r_midr_r() & MIDR_DATA_MASK;
1da177e4
LT
501}
502
503static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
504{
505 struct ioc3_private *ip = netdev_priv(dev);
506 struct ioc3 *ioc3 = ip->regs;
507
508 while (ioc3_r_micr() & MICR_BUSY);
509 ioc3_w_midr_w(data);
510 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
511 while (ioc3_r_micr() & MICR_BUSY);
512}
513
514static int ioc3_mii_init(struct ioc3_private *ip);
515
516static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
517{
518 struct ioc3_private *ip = netdev_priv(dev);
519 struct ioc3 *ioc3 = ip->regs;
520
521 ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
522 return &ip->stats;
523}
524
525#ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM
526
527static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
528{
529 struct ethhdr *eh = eth_hdr(skb);
530 uint32_t csum, ehsum;
531 unsigned int proto;
532 struct iphdr *ih;
533 uint16_t *ew;
534 unsigned char *cp;
535
536 /*
537 * Did hardware handle the checksum at all? The cases we can handle
538 * are:
539 *
540 * - TCP and UDP checksums of IPv4 only.
541 * - IPv6 would be doable but we keep that for later ...
542 * - Only unfragmented packets. Did somebody already tell you
543 * fragmentation is evil?
544 * - don't care about packet size. Worst case when processing a
545 * malformed packet we'll try to access the packet at ip header +
546 * 64 bytes which is still inside the skb. Even in the unlikely
547 * case where the checksum is right the higher layers will still
548 * drop the packet as appropriate.
549 */
550 if (eh->h_proto != ntohs(ETH_P_IP))
551 return;
552
553 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
554 if (ih->frag_off & htons(IP_MF | IP_OFFSET))
555 return;
556
557 proto = ih->protocol;
558 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
559 return;
560
561 /* Same as tx - compute csum of pseudo header */
562 csum = hwsum +
563 (ih->tot_len - (ih->ihl << 2)) +
564 htons((uint16_t)ih->protocol) +
565 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
566 (ih->daddr >> 16) + (ih->daddr & 0xffff);
567
568 /* Sum up ethernet dest addr, src addr and protocol */
569 ew = (uint16_t *) eh;
570 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
571
572 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
573 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
574
575 csum += 0xffff ^ ehsum;
576
577 /* In the next step we also subtract the 1's complement
578 checksum of the trailing ethernet CRC. */
579 cp = (char *)eh + len; /* points at trailing CRC */
580 if (len & 1) {
581 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
582 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
583 } else {
584 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
585 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
586 }
587
588 csum = (csum & 0xffff) + (csum >> 16);
589 csum = (csum & 0xffff) + (csum >> 16);
590
591 if (csum == 0xffff)
592 skb->ip_summed = CHECKSUM_UNNECESSARY;
593}
594#endif /* CONFIG_SGI_IOC3_ETH_HW_RX_CSUM */
595
596static inline void ioc3_rx(struct ioc3_private *ip)
597{
598 struct sk_buff *skb, *new_skb;
599 struct ioc3 *ioc3 = ip->regs;
600 int rx_entry, n_entry, len;
601 struct ioc3_erxbuf *rxb;
602 unsigned long *rxr;
603 u32 w0, err;
604
605 rxr = (unsigned long *) ip->rxr; /* Ring base */
606 rx_entry = ip->rx_ci; /* RX consume index */
607 n_entry = ip->rx_pi;
608
609 skb = ip->rx_skbs[rx_entry];
610 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
611 w0 = be32_to_cpu(rxb->w0);
612
613 while (w0 & ERXBUF_V) {
614 err = be32_to_cpu(rxb->err); /* It's valid ... */
615 if (err & ERXBUF_GOODPKT) {
616 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
617 skb_trim(skb, len);
618 skb->protocol = eth_type_trans(skb, priv_netdev(ip));
619
620 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
621 if (!new_skb) {
622 /* Ouch, drop packet and just recycle packet
623 to keep the ring filled. */
624 ip->stats.rx_dropped++;
625 new_skb = skb;
626 goto next;
627 }
628
629#ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM
630 ioc3_tcpudp_checksum(skb, w0 & ERXBUF_IPCKSUM_MASK,len);
631#endif
632
633 netif_rx(skb);
634
635 ip->rx_skbs[rx_entry] = NULL; /* Poison */
636
637 new_skb->dev = priv_netdev(ip);
638
639 /* Because we reserve afterwards. */
640 skb_put(new_skb, (1664 + RX_OFFSET));
641 rxb = (struct ioc3_erxbuf *) new_skb->data;
642 skb_reserve(new_skb, RX_OFFSET);
643
644 priv_netdev(ip)->last_rx = jiffies;
645 ip->stats.rx_packets++; /* Statistics */
646 ip->stats.rx_bytes += len;
647 } else {
648 /* The frame is invalid and the skb never
649 reached the network layer so we can just
650 recycle it. */
651 new_skb = skb;
652 ip->stats.rx_errors++;
653 }
654 if (err & ERXBUF_CRCERR) /* Statistics */
655 ip->stats.rx_crc_errors++;
656 if (err & ERXBUF_FRAMERR)
657 ip->stats.rx_frame_errors++;
658next:
659 ip->rx_skbs[n_entry] = new_skb;
660 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
661 rxb->w0 = 0; /* Clear valid flag */
662 n_entry = (n_entry + 1) & 511; /* Update erpir */
663
664 /* Now go on to the next ring entry. */
665 rx_entry = (rx_entry + 1) & 511;
666 skb = ip->rx_skbs[rx_entry];
667 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
668 w0 = be32_to_cpu(rxb->w0);
669 }
670 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
671 ip->rx_pi = n_entry;
672 ip->rx_ci = rx_entry;
673}
674
675static inline void ioc3_tx(struct ioc3_private *ip)
676{
677 unsigned long packets, bytes;
678 struct ioc3 *ioc3 = ip->regs;
679 int tx_entry, o_entry;
680 struct sk_buff *skb;
681 u32 etcir;
682
683 spin_lock(&ip->ioc3_lock);
684 etcir = ioc3_r_etcir();
685
686 tx_entry = (etcir >> 7) & 127;
687 o_entry = ip->tx_ci;
688 packets = 0;
689 bytes = 0;
690
691 while (o_entry != tx_entry) {
692 packets++;
693 skb = ip->tx_skbs[o_entry];
694 bytes += skb->len;
695 dev_kfree_skb_irq(skb);
696 ip->tx_skbs[o_entry] = NULL;
697
698 o_entry = (o_entry + 1) & 127; /* Next */
699
700 etcir = ioc3_r_etcir(); /* More pkts sent? */
701 tx_entry = (etcir >> 7) & 127;
702 }
703
704 ip->stats.tx_packets += packets;
705 ip->stats.tx_bytes += bytes;
706 ip->txqlen -= packets;
707
708 if (ip->txqlen < 128)
709 netif_wake_queue(priv_netdev(ip));
710
711 ip->tx_ci = o_entry;
712 spin_unlock(&ip->ioc3_lock);
713}
714
715/*
716 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
717 * software problems, so we should try to recover
718 * more gracefully if this ever happens. In theory we might be flooded
719 * with such error interrupts if something really goes wrong, so we might
720 * also consider to take the interface down.
721 */
722static void ioc3_error(struct ioc3_private *ip, u32 eisr)
723{
724 struct net_device *dev = priv_netdev(ip);
725 unsigned char *iface = dev->name;
726
727 spin_lock(&ip->ioc3_lock);
728
729 if (eisr & EISR_RXOFLO)
730 printk(KERN_ERR "%s: RX overflow.\n", iface);
731 if (eisr & EISR_RXBUFOFLO)
732 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
733 if (eisr & EISR_RXMEMERR)
734 printk(KERN_ERR "%s: RX PCI error.\n", iface);
735 if (eisr & EISR_RXPARERR)
736 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
737 if (eisr & EISR_TXBUFUFLO)
738 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
739 if (eisr & EISR_TXMEMERR)
740 printk(KERN_ERR "%s: TX PCI error.\n", iface);
741
742 ioc3_stop(ip);
743 ioc3_init(dev);
744 ioc3_mii_init(ip);
745
746 netif_wake_queue(dev);
747
748 spin_unlock(&ip->ioc3_lock);
749}
750
751/* The interrupt handler does all of the Rx thread work and cleans up
752 after the Tx thread. */
753static irqreturn_t ioc3_interrupt(int irq, void *_dev, struct pt_regs *regs)
754{
755 struct net_device *dev = (struct net_device *)_dev;
756 struct ioc3_private *ip = netdev_priv(dev);
757 struct ioc3 *ioc3 = ip->regs;
758 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
759 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
760 EISR_TXEXPLICIT | EISR_TXMEMERR;
761 u32 eisr;
762
763 eisr = ioc3_r_eisr() & enabled;
764
765 ioc3_w_eisr(eisr);
766 (void) ioc3_r_eisr(); /* Flush */
767
768 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
769 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
770 ioc3_error(ip, eisr);
771 if (eisr & EISR_RXTIMERINT)
772 ioc3_rx(ip);
773 if (eisr & EISR_TXEXPLICIT)
774 ioc3_tx(ip);
775
776 return IRQ_HANDLED;
777}
778
779static inline void ioc3_setup_duplex(struct ioc3_private *ip)
780{
781 struct ioc3 *ioc3 = ip->regs;
782
783 if (ip->mii.full_duplex) {
784 ioc3_w_etcsr(ETCSR_FD);
785 ip->emcr |= EMCR_DUPLEX;
786 } else {
787 ioc3_w_etcsr(ETCSR_HD);
788 ip->emcr &= ~EMCR_DUPLEX;
789 }
790 ioc3_w_emcr(ip->emcr);
791}
792
793static void ioc3_timer(unsigned long data)
794{
795 struct ioc3_private *ip = (struct ioc3_private *) data;
796
797 /* Print the link status if it has changed */
798 mii_check_media(&ip->mii, 1, 0);
799 ioc3_setup_duplex(ip);
800
801 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
802 add_timer(&ip->ioc3_timer);
803}
804
805/*
806 * Try to find a PHY. There is no apparent relation between the MII addresses
807 * in the SGI documentation and what we find in reality, so we simply probe
808 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
809 * onboard IOC3s has the special oddity that probing doesn't seem to find it
810 * yet the interface seems to work fine, so if probing fails we for now will
811 * simply default to PHY 31 instead of bailing out.
812 */
813static int ioc3_mii_init(struct ioc3_private *ip)
814{
815 struct net_device *dev = priv_netdev(ip);
816 int i, found = 0, res = 0;
817 int ioc3_phy_workaround = 1;
818 u16 word;
819
820 for (i = 0; i < 32; i++) {
821 word = ioc3_mdio_read(dev, i, MII_PHYSID1);
822
823 if (word != 0xffff && word != 0x0000) {
824 found = 1;
825 break; /* Found a PHY */
826 }
827 }
828
829 if (!found) {
830 if (ioc3_phy_workaround)
831 i = 31;
832 else {
833 ip->mii.phy_id = -1;
834 res = -ENODEV;
835 goto out;
836 }
837 }
838
839 ip->mii.phy_id = i;
840 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
841 ip->ioc3_timer.data = (unsigned long) ip;
842 ip->ioc3_timer.function = &ioc3_timer;
843 add_timer(&ip->ioc3_timer);
844
845out:
846 return res;
847}
848
849static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
850{
851 struct sk_buff *skb;
852 int i;
853
854 for (i = ip->rx_ci; i & 15; i++) {
855 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
856 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
857 }
858 ip->rx_pi &= 511;
859 ip->rx_ci &= 511;
860
861 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
862 struct ioc3_erxbuf *rxb;
863 skb = ip->rx_skbs[i];
864 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
865 rxb->w0 = 0;
866 }
867}
868
869static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
870{
871 struct sk_buff *skb;
872 int i;
873
874 for (i=0; i < 128; i++) {
875 skb = ip->tx_skbs[i];
876 if (skb) {
877 ip->tx_skbs[i] = NULL;
878 dev_kfree_skb_any(skb);
879 }
880 ip->txr[i].cmd = 0;
881 }
882 ip->tx_pi = 0;
883 ip->tx_ci = 0;
884}
885
886static void ioc3_free_rings(struct ioc3_private *ip)
887{
888 struct sk_buff *skb;
889 int rx_entry, n_entry;
890
891 if (ip->txr) {
892 ioc3_clean_tx_ring(ip);
893 free_pages((unsigned long)ip->txr, 2);
894 ip->txr = NULL;
895 }
896
897 if (ip->rxr) {
898 n_entry = ip->rx_ci;
899 rx_entry = ip->rx_pi;
900
901 while (n_entry != rx_entry) {
902 skb = ip->rx_skbs[n_entry];
903 if (skb)
904 dev_kfree_skb_any(skb);
905
906 n_entry = (n_entry + 1) & 511;
907 }
908 free_page((unsigned long)ip->rxr);
909 ip->rxr = NULL;
910 }
911}
912
913static void ioc3_alloc_rings(struct net_device *dev)
914{
915 struct ioc3_private *ip = netdev_priv(dev);
916 struct ioc3_erxbuf *rxb;
917 unsigned long *rxr;
918 int i;
919
920 if (ip->rxr == NULL) {
921 /* Allocate and initialize rx ring. 4kb = 512 entries */
922 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
923 rxr = (unsigned long *) ip->rxr;
924 if (!rxr)
925 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
926
927 /* Now the rx buffers. The RX ring may be larger but
928 we only allocate 16 buffers for now. Need to tune
929 this for performance and memory later. */
930 for (i = 0; i < RX_BUFFS; i++) {
931 struct sk_buff *skb;
932
933 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
934 if (!skb) {
935 show_free_areas();
936 continue;
937 }
938
939 ip->rx_skbs[i] = skb;
940 skb->dev = dev;
941
942 /* Because we reserve afterwards. */
943 skb_put(skb, (1664 + RX_OFFSET));
944 rxb = (struct ioc3_erxbuf *) skb->data;
945 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
946 skb_reserve(skb, RX_OFFSET);
947 }
948 ip->rx_ci = 0;
949 ip->rx_pi = RX_BUFFS;
950 }
951
952 if (ip->txr == NULL) {
953 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
954 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
955 if (!ip->txr)
956 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
957 ip->tx_pi = 0;
958 ip->tx_ci = 0;
959 }
960}
961
962static void ioc3_init_rings(struct net_device *dev)
963{
964 struct ioc3_private *ip = netdev_priv(dev);
965 struct ioc3 *ioc3 = ip->regs;
966 unsigned long ring;
967
968 ioc3_free_rings(ip);
969 ioc3_alloc_rings(dev);
970
971 ioc3_clean_rx_ring(ip);
972 ioc3_clean_tx_ring(ip);
973
974 /* Now the rx ring base, consume & produce registers. */
975 ring = ioc3_map(ip->rxr, 0);
976 ioc3_w_erbr_h(ring >> 32);
977 ioc3_w_erbr_l(ring & 0xffffffff);
978 ioc3_w_ercir(ip->rx_ci << 3);
979 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
980
981 ring = ioc3_map(ip->txr, 0);
982
983 ip->txqlen = 0; /* nothing queued */
984
985 /* Now the tx ring base, consume & produce registers. */
986 ioc3_w_etbr_h(ring >> 32);
987 ioc3_w_etbr_l(ring & 0xffffffff);
988 ioc3_w_etpir(ip->tx_pi << 7);
989 ioc3_w_etcir(ip->tx_ci << 7);
990 (void) ioc3_r_etcir(); /* Flush */
991}
992
993static inline void ioc3_ssram_disc(struct ioc3_private *ip)
994{
995 struct ioc3 *ioc3 = ip->regs;
996 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
997 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
998 unsigned int pattern = 0x5555;
999
1000 /* Assume the larger size SSRAM and enable parity checking */
1001 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
1002
1003 *ssram0 = pattern;
1004 *ssram1 = ~pattern & IOC3_SSRAM_DM;
1005
1006 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
1007 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
1008 /* set ssram size to 64 KB */
1009 ip->emcr = EMCR_RAMPAR;
1010 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
1011 } else
1012 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
1013}
1014
1015static void ioc3_init(struct net_device *dev)
1016{
1017 struct ioc3_private *ip = netdev_priv(dev);
1018 struct ioc3 *ioc3 = ip->regs;
1019
1020 del_timer(&ip->ioc3_timer); /* Kill if running */
1021
1022 ioc3_w_emcr(EMCR_RST); /* Reset */
1023 (void) ioc3_r_emcr(); /* Flush WB */
1024 udelay(4); /* Give it time ... */
1025 ioc3_w_emcr(0);
1026 (void) ioc3_r_emcr();
1027
1028 /* Misc registers */
1029#ifdef CONFIG_SGI_IP27
1030 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1031#else
1032 ioc3_w_erbar(0); /* Let PCI API get it right */
1033#endif
1034 (void) ioc3_r_etcdc(); /* Clear on read */
1035 ioc3_w_ercsr(15); /* RX low watermark */
1036 ioc3_w_ertr(0); /* Interrupt immediately */
1037 __ioc3_set_mac_address(dev);
1038 ioc3_w_ehar_h(ip->ehar_h);
1039 ioc3_w_ehar_l(ip->ehar_l);
1040 ioc3_w_ersr(42); /* XXX should be random */
1041
1042 ioc3_init_rings(dev);
1043
1044 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1045 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1046 ioc3_w_emcr(ip->emcr);
1047 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1048 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1049 EISR_TXEXPLICIT | EISR_TXMEMERR);
1050 (void) ioc3_r_eier();
1051}
1052
1053static inline void ioc3_stop(struct ioc3_private *ip)
1054{
1055 struct ioc3 *ioc3 = ip->regs;
1056
1057 ioc3_w_emcr(0); /* Shutup */
1058 ioc3_w_eier(0); /* Disable interrupts */
1059 (void) ioc3_r_eier(); /* Flush */
1060}
1061
1062static int ioc3_open(struct net_device *dev)
1063{
1064 struct ioc3_private *ip = netdev_priv(dev);
1065
1066 if (request_irq(dev->irq, ioc3_interrupt, SA_SHIRQ, ioc3_str, dev)) {
1067 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1068
1069 return -EAGAIN;
1070 }
1071
1072 ip->ehar_h = 0;
1073 ip->ehar_l = 0;
1074 ioc3_init(dev);
1075
1076 netif_start_queue(dev);
1077 return 0;
1078}
1079
1080static int ioc3_close(struct net_device *dev)
1081{
1082 struct ioc3_private *ip = netdev_priv(dev);
1083
1084 del_timer(&ip->ioc3_timer);
1085
1086 netif_stop_queue(dev);
1087
1088 ioc3_stop(ip);
1089 free_irq(dev->irq, dev);
1090
1091 ioc3_free_rings(ip);
1092 return 0;
1093}
1094
1095/*
1096 * MENET cards have four IOC3 chips, which are attached to two sets of
1097 * PCI slot resources each: the primary connections are on slots
1098 * 0..3 and the secondaries are on 4..7
1099 *
1100 * All four ethernets are brought out to connectors; six serial ports
1101 * (a pair from each of the first three IOC3s) are brought out to
1102 * MiniDINs; all other subdevices are left swinging in the wind, leave
1103 * them disabled.
1104 */
1105static inline int ioc3_is_menet(struct pci_dev *pdev)
1106{
1107 struct pci_dev *dev;
1108
1109 return pdev->bus->parent == NULL
1110 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(0, 0)))
1111 && dev->vendor == PCI_VENDOR_ID_SGI
1112 && dev->device == PCI_DEVICE_ID_SGI_IOC3
1113 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(1, 0)))
1114 && dev->vendor == PCI_VENDOR_ID_SGI
1115 && dev->device == PCI_DEVICE_ID_SGI_IOC3
1116 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(2, 0)))
1117 && dev->vendor == PCI_VENDOR_ID_SGI
1118 && dev->device == PCI_DEVICE_ID_SGI_IOC3;
1119}
1120
1121#ifdef CONFIG_SERIAL_8250
1122/*
1123 * Note about serial ports and consoles:
1124 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1125 * connected to the master node (look in ip27_setup_console() and
1126 * ip27prom_console_write()).
1127 *
1128 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1129 * addresses on a partitioned machine. Since we currently use the ioc3
1130 * serial ports, we use dynamic serial port discovery that the serial.c
1131 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1132 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1133 * than UARTB's, although UARTA on o200s has traditionally been known as
1134 * port 0. So, we just use one serial port from each ioc3 (since the
1135 * serial driver adds addresses to get to higher ports).
1136 *
1137 * The first one to do a register_console becomes the preferred console
1138 * (if there is no kernel command line console= directive). /dev/console
1139 * (ie 5, 1) is then "aliased" into the device number returned by the
1140 * "device" routine referred to in this console structure
1141 * (ip27prom_console_dev).
1142 *
1143 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1144 * around ioc3 oddities in this respect.
1145 *
1146 * The IOC3 serials use a 22MHz clock rate with an additional divider by 3.
1da177e4
LT
1147 */
1148
1149static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1150{
15a93807 1151 struct uart_port port;
1da177e4
LT
1152
1153 /*
1154 * We need to recognice and treat the fourth MENET serial as it
1155 * does not have an SuperIO chip attached to it, therefore attempting
1156 * to access it will result in bus errors. We call something an
1157 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1158 * in it. This is paranoid but we want to avoid blowing up on a
1159 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1160 * not paranoid enough ...
1161 */
1162 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1163 return;
1164
15a93807
RB
1165 /*
1166 * Register to interrupt zero because we share the interrupt with
1167 * the serial driver which we don't properly support yet.
1168 *
1169 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already
1170 * been registered.
1171 */
1172 memset(&port, 0, sizeof(port));
1173 port.irq = 0;
1174 port.flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF;
1175 port.iotype = UPIO_MEM;
1176 port.regshift = 0;
1177 port.uartclk = 22000000 / 3;
1178
1179 port.membase = (unsigned char *) &ioc3->sregs.uarta;
1180 serial8250_register_port(&port);
1181
1182 port.membase = (unsigned char *) &ioc3->sregs.uartb;
1183 serial8250_register_port(&port);
1da177e4
LT
1184}
1185#endif
1186
1187static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1188{
1189 unsigned int sw_physid1, sw_physid2;
1190 struct net_device *dev = NULL;
1191 struct ioc3_private *ip;
1192 struct ioc3 *ioc3;
1193 unsigned long ioc3_base, ioc3_size;
1194 u32 vendor, model, rev;
1195 int err, pci_using_dac;
1196
1197 /* Configure DMA attributes. */
910638ae 1198 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1da177e4
LT
1199 if (!err) {
1200 pci_using_dac = 1;
910638ae 1201 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1da177e4
LT
1202 if (err < 0) {
1203 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1204 "for consistent allocations\n", pci_name(pdev));
1205 goto out;
1206 }
1207 } else {
910638ae 1208 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1da177e4
LT
1209 if (err) {
1210 printk(KERN_ERR "%s: No usable DMA configuration, "
1211 "aborting.\n", pci_name(pdev));
1212 goto out;
1213 }
1214 pci_using_dac = 0;
1215 }
1216
1217 if (pci_enable_device(pdev))
1218 return -ENODEV;
1219
1220 dev = alloc_etherdev(sizeof(struct ioc3_private));
1221 if (!dev) {
1222 err = -ENOMEM;
1223 goto out_disable;
1224 }
1225
1226 if (pci_using_dac)
1227 dev->features |= NETIF_F_HIGHDMA;
1228
1229 err = pci_request_regions(pdev, "ioc3");
1230 if (err)
1231 goto out_free;
1232
1233 SET_MODULE_OWNER(dev);
1234 SET_NETDEV_DEV(dev, &pdev->dev);
1235
1236 ip = netdev_priv(dev);
1237
1238 dev->irq = pdev->irq;
1239
1240 ioc3_base = pci_resource_start(pdev, 0);
1241 ioc3_size = pci_resource_len(pdev, 0);
1242 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1243 if (!ioc3) {
1244 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1245 pci_name(pdev));
1246 err = -ENOMEM;
1247 goto out_res;
1248 }
1249 ip->regs = ioc3;
1250
1251#ifdef CONFIG_SERIAL_8250
1252 ioc3_serial_probe(pdev, ioc3);
1253#endif
1254
1255 spin_lock_init(&ip->ioc3_lock);
1256 init_timer(&ip->ioc3_timer);
1257
1258 ioc3_stop(ip);
1259 ioc3_init(dev);
1260
1261 ip->pdev = pdev;
1262
1263 ip->mii.phy_id_mask = 0x1f;
1264 ip->mii.reg_num_mask = 0x1f;
1265 ip->mii.dev = dev;
1266 ip->mii.mdio_read = ioc3_mdio_read;
1267 ip->mii.mdio_write = ioc3_mdio_write;
1268
1269 ioc3_mii_init(ip);
1270
1271 if (ip->mii.phy_id == -1) {
1272 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1273 pci_name(pdev));
1274 err = -ENODEV;
1275 goto out_stop;
1276 }
1277
1278 ioc3_ssram_disc(ip);
1279 ioc3_get_eaddr(ip);
1280
1281 /* The IOC3-specific entries in the device structure. */
1282 dev->open = ioc3_open;
1283 dev->hard_start_xmit = ioc3_start_xmit;
1284 dev->tx_timeout = ioc3_timeout;
1285 dev->watchdog_timeo = 5 * HZ;
1286 dev->stop = ioc3_close;
1287 dev->get_stats = ioc3_get_stats;
1288 dev->do_ioctl = ioc3_ioctl;
1289 dev->set_multicast_list = ioc3_set_multicast_list;
1290 dev->set_mac_address = ioc3_set_mac_address;
1291 dev->ethtool_ops = &ioc3_ethtool_ops;
1292#ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM
1293 dev->features = NETIF_F_IP_CSUM;
1294#endif
1295
1da177e4
LT
1296 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1297 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1298
1299 err = register_netdev(dev);
1300 if (err)
1301 goto out_stop;
1302
1303 mii_check_media(&ip->mii, 1, 1);
852ea22a 1304 ioc3_setup_duplex(ip);
1da177e4
LT
1305
1306 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1307 model = (sw_physid2 >> 4) & 0x3f;
1308 rev = sw_physid2 & 0xf;
1309 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1310 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1311 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1312 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1313
1314 return 0;
1315
1316out_stop:
1317 ioc3_stop(ip);
1318 ioc3_free_rings(ip);
1319out_res:
1320 pci_release_regions(pdev);
1321out_free:
1322 free_netdev(dev);
1323out_disable:
1324 /*
1325 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1326 * such a weird device ...
1327 */
1328out:
1329 return err;
1330}
1331
1332static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1333{
1334 struct net_device *dev = pci_get_drvdata(pdev);
1335 struct ioc3_private *ip = netdev_priv(dev);
1336 struct ioc3 *ioc3 = ip->regs;
1337
1338 unregister_netdev(dev);
1339 iounmap(ioc3);
1340 pci_release_regions(pdev);
1341 free_netdev(dev);
1342 /*
1343 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1344 * such a weird device ...
1345 */
1346}
1347
1348static struct pci_device_id ioc3_pci_tbl[] = {
1349 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1350 { 0 }
1351};
1352MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1353
1354static struct pci_driver ioc3_driver = {
1355 .name = "ioc3-eth",
1356 .id_table = ioc3_pci_tbl,
1357 .probe = ioc3_probe,
1358 .remove = __devexit_p(ioc3_remove_one),
1359};
1360
1361static int __init ioc3_init_module(void)
1362{
70f1e002 1363 return pci_register_driver(&ioc3_driver);
1da177e4
LT
1364}
1365
1366static void __exit ioc3_cleanup_module(void)
1367{
1368 pci_unregister_driver(&ioc3_driver);
1369}
1370
1371static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1372{
1373 unsigned long data;
1374 struct ioc3_private *ip = netdev_priv(dev);
1375 struct ioc3 *ioc3 = ip->regs;
1376 unsigned int len;
1377 struct ioc3_etxd *desc;
1378 uint32_t w0 = 0;
1379 int produce;
1380
1381#ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM
1382 /*
1383 * IOC3 has a fairly simple minded checksumming hardware which simply
1384 * adds up the 1's complement checksum for the entire packet and
1385 * inserts it at an offset which can be specified in the descriptor
1386 * into the transmit packet. This means we have to compensate for the
1387 * MAC header which should not be summed and the TCP/UDP pseudo headers
1388 * manually.
1389 */
1390 if (skb->ip_summed == CHECKSUM_HW) {
1391 int proto = ntohs(skb->nh.iph->protocol);
1392 unsigned int csoff;
1393 struct iphdr *ih = skb->nh.iph;
1394 uint32_t csum, ehsum;
1395 uint16_t *eh;
1396
1397 /* The MAC header. skb->mac seem the logic approach
1398 to find the MAC header - except it's a NULL pointer ... */
1399 eh = (uint16_t *) skb->data;
1400
1401 /* Sum up dest addr, src addr and protocol */
1402 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1403
1404 /* Fold ehsum. can't use csum_fold which negates also ... */
1405 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1406 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1407
1408 /* Skip IP header; it's sum is always zero and was
1409 already filled in by ip_output.c */
1410 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1411 ih->tot_len - (ih->ihl << 2),
1412 proto, 0xffff ^ ehsum);
1413
1414 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1415 csum = (csum & 0xffff) + (csum >> 16);
1416
1417 csoff = ETH_HLEN + (ih->ihl << 2);
1418 if (proto == IPPROTO_UDP) {
1419 csoff += offsetof(struct udphdr, check);
1420 skb->h.uh->check = csum;
1421 }
1422 if (proto == IPPROTO_TCP) {
1423 csoff += offsetof(struct tcphdr, check);
1424 skb->h.th->check = csum;
1425 }
1426
1427 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1428 }
1429#endif /* CONFIG_SGI_IOC3_ETH_HW_TX_CSUM */
1430
1431 spin_lock_irq(&ip->ioc3_lock);
1432
1433 data = (unsigned long) skb->data;
1434 len = skb->len;
1435
1436 produce = ip->tx_pi;
1437 desc = &ip->txr[produce];
1438
1439 if (len <= 104) {
1440 /* Short packet, let's copy it directly into the ring. */
1441 memcpy(desc->data, skb->data, skb->len);
1442 if (len < ETH_ZLEN) {
1443 /* Very short packet, pad with zeros at the end. */
1444 memset(desc->data + len, 0, ETH_ZLEN - len);
1445 len = ETH_ZLEN;
1446 }
1447 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1448 desc->bufcnt = cpu_to_be32(len);
1449 } else if ((data ^ (data + len - 1)) & 0x4000) {
1450 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1451 unsigned long s1 = b2 - data;
1452 unsigned long s2 = data + len - b2;
1453
1454 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1455 ETXD_B1V | ETXD_B2V | w0);
1456 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1457 (s2 << ETXD_B2CNT_SHIFT));
1458 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1459 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1460 } else {
1461 /* Normal sized packet that doesn't cross a page boundary. */
1462 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1463 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1464 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1465 }
1466
1467 BARRIER();
1468
1469 dev->trans_start = jiffies;
1470 ip->tx_skbs[produce] = skb; /* Remember skb */
1471 produce = (produce + 1) & 127;
1472 ip->tx_pi = produce;
1473 ioc3_w_etpir(produce << 7); /* Fire ... */
1474
1475 ip->txqlen++;
1476
1477 if (ip->txqlen >= 127)
1478 netif_stop_queue(dev);
1479
1480 spin_unlock_irq(&ip->ioc3_lock);
1481
1482 return 0;
1483}
1484
1485static void ioc3_timeout(struct net_device *dev)
1486{
1487 struct ioc3_private *ip = netdev_priv(dev);
1488
1489 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1490
1491 spin_lock_irq(&ip->ioc3_lock);
1492
1493 ioc3_stop(ip);
1494 ioc3_init(dev);
1495 ioc3_mii_init(ip);
1496
1497 spin_unlock_irq(&ip->ioc3_lock);
1498
1499 netif_wake_queue(dev);
1500}
1501
1502/*
1503 * Given a multicast ethernet address, this routine calculates the
1504 * address's bit index in the logical address filter mask
1505 */
1506
1507static inline unsigned int ioc3_hash(const unsigned char *addr)
1508{
1509 unsigned int temp = 0;
1510 u32 crc;
1511 int bits;
1512
1513 crc = ether_crc_le(ETH_ALEN, addr);
1514
1515 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1516 for (bits = 6; --bits >= 0; ) {
1517 temp <<= 1;
1518 temp |= (crc & 0x1);
1519 crc >>= 1;
1520 }
1521
1522 return temp;
1523}
1524
1525static void ioc3_get_drvinfo (struct net_device *dev,
1526 struct ethtool_drvinfo *info)
1527{
1528 struct ioc3_private *ip = netdev_priv(dev);
852ea22a 1529
1da177e4
LT
1530 strcpy (info->driver, IOC3_NAME);
1531 strcpy (info->version, IOC3_VERSION);
1532 strcpy (info->bus_info, pci_name(ip->pdev));
1533}
1534
1535static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1536{
1537 struct ioc3_private *ip = netdev_priv(dev);
1538 int rc;
1539
1540 spin_lock_irq(&ip->ioc3_lock);
1541 rc = mii_ethtool_gset(&ip->mii, cmd);
1542 spin_unlock_irq(&ip->ioc3_lock);
1543
1544 return rc;
1545}
1546
1547static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1548{
1549 struct ioc3_private *ip = netdev_priv(dev);
1550 int rc;
1551
1552 spin_lock_irq(&ip->ioc3_lock);
1553 rc = mii_ethtool_sset(&ip->mii, cmd);
1554 spin_unlock_irq(&ip->ioc3_lock);
852ea22a 1555
1da177e4
LT
1556 return rc;
1557}
1558
1559static int ioc3_nway_reset(struct net_device *dev)
1560{
1561 struct ioc3_private *ip = netdev_priv(dev);
1562 int rc;
1563
1564 spin_lock_irq(&ip->ioc3_lock);
1565 rc = mii_nway_restart(&ip->mii);
1566 spin_unlock_irq(&ip->ioc3_lock);
1567
1568 return rc;
1569}
1570
1571static u32 ioc3_get_link(struct net_device *dev)
1572{
1573 struct ioc3_private *ip = netdev_priv(dev);
1574 int rc;
1575
1576 spin_lock_irq(&ip->ioc3_lock);
1577 rc = mii_link_ok(&ip->mii);
1578 spin_unlock_irq(&ip->ioc3_lock);
1579
1580 return rc;
1581}
1582
1583static struct ethtool_ops ioc3_ethtool_ops = {
1584 .get_drvinfo = ioc3_get_drvinfo,
1585 .get_settings = ioc3_get_settings,
1586 .set_settings = ioc3_set_settings,
1587 .nway_reset = ioc3_nway_reset,
1588 .get_link = ioc3_get_link,
1589};
1590
1591static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1592{
1593 struct ioc3_private *ip = netdev_priv(dev);
1594 int rc;
1595
1596 spin_lock_irq(&ip->ioc3_lock);
1597 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1598 spin_unlock_irq(&ip->ioc3_lock);
1599
1600 return rc;
1601}
1602
1603static void ioc3_set_multicast_list(struct net_device *dev)
1604{
1605 struct dev_mc_list *dmi = dev->mc_list;
1606 struct ioc3_private *ip = netdev_priv(dev);
1607 struct ioc3 *ioc3 = ip->regs;
1608 u64 ehar = 0;
1609 int i;
1610
1611 netif_stop_queue(dev); /* Lock out others. */
1612
1613 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1614 /* Unconditionally log net taps. */
1615 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1616 ip->emcr |= EMCR_PROMISC;
1617 ioc3_w_emcr(ip->emcr);
1618 (void) ioc3_r_emcr();
1619 } else {
1620 ip->emcr &= ~EMCR_PROMISC;
1621 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1622 (void) ioc3_r_emcr();
1623
1624 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1625 /* Too many for hashing to make sense or we want all
1626 multicast packets anyway, so skip computing all the
1627 hashes and just accept all packets. */
1628 ip->ehar_h = 0xffffffff;
1629 ip->ehar_l = 0xffffffff;
1630 } else {
1631 for (i = 0; i < dev->mc_count; i++) {
1632 char *addr = dmi->dmi_addr;
1633 dmi = dmi->next;
1634
1635 if (!(*addr & 1))
1636 continue;
1637
1638 ehar |= (1UL << ioc3_hash(addr));
1639 }
1640 ip->ehar_h = ehar >> 32;
1641 ip->ehar_l = ehar & 0xffffffff;
1642 }
1643 ioc3_w_ehar_h(ip->ehar_h);
1644 ioc3_w_ehar_l(ip->ehar_l);
1645 }
1646
1647 netif_wake_queue(dev); /* Let us get going again. */
1648}
1649
1650MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1651MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1652MODULE_LICENSE("GPL");
1653
1654module_init(ioc3_init_module);
1655module_exit(ioc3_cleanup_module);