]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igbvf/netdev.c
igbvf: Make igbvf error message more informative
[net-next-2.6.git] / drivers / net / igbvf / netdev.c
CommitLineData
d4e0fe01
AD
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/mii.h>
41#include <linux/ethtool.h>
42#include <linux/if_vlan.h>
43#include <linux/pm_qos_params.h>
44
45#include "igbvf.h"
46
47#define DRV_VERSION "1.0.0-k0"
48char igbvf_driver_name[] = "igbvf";
49const char igbvf_driver_version[] = DRV_VERSION;
50static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54static int igbvf_poll(struct napi_struct *napi, int budget);
2d165771
AD
55static void igbvf_reset(struct igbvf_adapter *);
56static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
57static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
d4e0fe01
AD
58
59static struct igbvf_info igbvf_vf_info = {
60 .mac = e1000_vfadapt,
0364d6fd 61 .flags = 0,
d4e0fe01
AD
62 .pba = 10,
63 .init_ops = e1000_init_function_pointers_vf,
64};
65
66static const struct igbvf_info *igbvf_info_tbl[] = {
67 [board_vf] = &igbvf_vf_info,
68};
69
70/**
71 * igbvf_desc_unused - calculate if we have unused descriptors
72 **/
73static int igbvf_desc_unused(struct igbvf_ring *ring)
74{
75 if (ring->next_to_clean > ring->next_to_use)
76 return ring->next_to_clean - ring->next_to_use - 1;
77
78 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
79}
80
81/**
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
87 **/
88static void igbvf_receive_skb(struct igbvf_adapter *adapter,
89 struct net_device *netdev,
90 struct sk_buff *skb,
91 u32 status, u16 vlan)
92{
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
95 le16_to_cpu(vlan) &
96 E1000_RXD_SPC_VLAN_MASK);
97 else
98 netif_receive_skb(skb);
d4e0fe01
AD
99}
100
101static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
102 u32 status_err, struct sk_buff *skb)
103{
104 skb->ip_summed = CHECKSUM_NONE;
105
106 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
0364d6fd
AD
107 if ((status_err & E1000_RXD_STAT_IXSM) ||
108 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
d4e0fe01 109 return;
0364d6fd 110
d4e0fe01
AD
111 /* TCP/UDP checksum error bit is set */
112 if (status_err &
113 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
114 /* let the stack verify checksum errors */
115 adapter->hw_csum_err++;
116 return;
117 }
0364d6fd 118
d4e0fe01
AD
119 /* It must be a TCP or UDP packet with a valid checksum */
120 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121 skb->ip_summed = CHECKSUM_UNNECESSARY;
122
123 adapter->hw_csum_good++;
124}
125
126/**
127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128 * @rx_ring: address of ring structure to repopulate
129 * @cleaned_count: number of buffers to repopulate
130 **/
131static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
132 int cleaned_count)
133{
134 struct igbvf_adapter *adapter = rx_ring->adapter;
135 struct net_device *netdev = adapter->netdev;
136 struct pci_dev *pdev = adapter->pdev;
137 union e1000_adv_rx_desc *rx_desc;
138 struct igbvf_buffer *buffer_info;
139 struct sk_buff *skb;
140 unsigned int i;
141 int bufsz;
142
143 i = rx_ring->next_to_use;
144 buffer_info = &rx_ring->buffer_info[i];
145
146 if (adapter->rx_ps_hdr_size)
147 bufsz = adapter->rx_ps_hdr_size;
148 else
149 bufsz = adapter->rx_buffer_len;
d4e0fe01
AD
150
151 while (cleaned_count--) {
152 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
153
154 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
155 if (!buffer_info->page) {
156 buffer_info->page = alloc_page(GFP_ATOMIC);
157 if (!buffer_info->page) {
158 adapter->alloc_rx_buff_failed++;
159 goto no_buffers;
160 }
161 buffer_info->page_offset = 0;
162 } else {
163 buffer_info->page_offset ^= PAGE_SIZE / 2;
164 }
165 buffer_info->page_dma =
166 pci_map_page(pdev, buffer_info->page,
167 buffer_info->page_offset,
168 PAGE_SIZE / 2,
169 PCI_DMA_FROMDEVICE);
170 }
171
172 if (!buffer_info->skb) {
89d71a66 173 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
d4e0fe01
AD
174 if (!skb) {
175 adapter->alloc_rx_buff_failed++;
176 goto no_buffers;
177 }
178
d4e0fe01
AD
179 buffer_info->skb = skb;
180 buffer_info->dma = pci_map_single(pdev, skb->data,
181 bufsz,
182 PCI_DMA_FROMDEVICE);
183 }
184 /* Refresh the desc even if buffer_addrs didn't change because
185 * each write-back erases this info. */
186 if (adapter->rx_ps_hdr_size) {
187 rx_desc->read.pkt_addr =
188 cpu_to_le64(buffer_info->page_dma);
189 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
190 } else {
191 rx_desc->read.pkt_addr =
192 cpu_to_le64(buffer_info->dma);
193 rx_desc->read.hdr_addr = 0;
194 }
195
196 i++;
197 if (i == rx_ring->count)
198 i = 0;
199 buffer_info = &rx_ring->buffer_info[i];
200 }
201
202no_buffers:
203 if (rx_ring->next_to_use != i) {
204 rx_ring->next_to_use = i;
205 if (i == 0)
206 i = (rx_ring->count - 1);
207 else
208 i--;
209
210 /* Force memory writes to complete before letting h/w
211 * know there are new descriptors to fetch. (Only
212 * applicable for weak-ordered memory model archs,
213 * such as IA-64). */
214 wmb();
215 writel(i, adapter->hw.hw_addr + rx_ring->tail);
216 }
217}
218
219/**
220 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
221 * @adapter: board private structure
222 *
223 * the return value indicates whether actual cleaning was done, there
224 * is no guarantee that everything was cleaned
225 **/
226static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
227 int *work_done, int work_to_do)
228{
229 struct igbvf_ring *rx_ring = adapter->rx_ring;
230 struct net_device *netdev = adapter->netdev;
231 struct pci_dev *pdev = adapter->pdev;
232 union e1000_adv_rx_desc *rx_desc, *next_rxd;
233 struct igbvf_buffer *buffer_info, *next_buffer;
234 struct sk_buff *skb;
235 bool cleaned = false;
236 int cleaned_count = 0;
237 unsigned int total_bytes = 0, total_packets = 0;
238 unsigned int i;
239 u32 length, hlen, staterr;
240
241 i = rx_ring->next_to_clean;
242 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
243 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
244
245 while (staterr & E1000_RXD_STAT_DD) {
246 if (*work_done >= work_to_do)
247 break;
248 (*work_done)++;
249
250 buffer_info = &rx_ring->buffer_info[i];
251
252 /* HW will not DMA in data larger than the given buffer, even
253 * if it parses the (NFS, of course) header to be larger. In
254 * that case, it fills the header buffer and spills the rest
255 * into the page.
256 */
257 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
258 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
259 if (hlen > adapter->rx_ps_hdr_size)
260 hlen = adapter->rx_ps_hdr_size;
261
262 length = le16_to_cpu(rx_desc->wb.upper.length);
263 cleaned = true;
264 cleaned_count++;
265
266 skb = buffer_info->skb;
267 prefetch(skb->data - NET_IP_ALIGN);
268 buffer_info->skb = NULL;
269 if (!adapter->rx_ps_hdr_size) {
270 pci_unmap_single(pdev, buffer_info->dma,
271 adapter->rx_buffer_len,
272 PCI_DMA_FROMDEVICE);
273 buffer_info->dma = 0;
274 skb_put(skb, length);
275 goto send_up;
276 }
277
278 if (!skb_shinfo(skb)->nr_frags) {
279 pci_unmap_single(pdev, buffer_info->dma,
92d947b7 280 adapter->rx_ps_hdr_size,
d4e0fe01
AD
281 PCI_DMA_FROMDEVICE);
282 skb_put(skb, hlen);
283 }
284
285 if (length) {
286 pci_unmap_page(pdev, buffer_info->page_dma,
287 PAGE_SIZE / 2,
288 PCI_DMA_FROMDEVICE);
289 buffer_info->page_dma = 0;
290
291 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
292 buffer_info->page,
293 buffer_info->page_offset,
294 length);
295
296 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
297 (page_count(buffer_info->page) != 1))
298 buffer_info->page = NULL;
299 else
300 get_page(buffer_info->page);
301
302 skb->len += length;
303 skb->data_len += length;
304 skb->truesize += length;
305 }
306send_up:
307 i++;
308 if (i == rx_ring->count)
309 i = 0;
310 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
311 prefetch(next_rxd);
312 next_buffer = &rx_ring->buffer_info[i];
313
314 if (!(staterr & E1000_RXD_STAT_EOP)) {
315 buffer_info->skb = next_buffer->skb;
316 buffer_info->dma = next_buffer->dma;
317 next_buffer->skb = skb;
318 next_buffer->dma = 0;
319 goto next_desc;
320 }
321
322 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
323 dev_kfree_skb_irq(skb);
324 goto next_desc;
325 }
326
327 total_bytes += skb->len;
328 total_packets++;
329
330 igbvf_rx_checksum_adv(adapter, staterr, skb);
331
332 skb->protocol = eth_type_trans(skb, netdev);
333
334 igbvf_receive_skb(adapter, netdev, skb, staterr,
335 rx_desc->wb.upper.vlan);
336
d4e0fe01
AD
337next_desc:
338 rx_desc->wb.upper.status_error = 0;
339
340 /* return some buffers to hardware, one at a time is too slow */
341 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
342 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
343 cleaned_count = 0;
344 }
345
346 /* use prefetched values */
347 rx_desc = next_rxd;
348 buffer_info = next_buffer;
349
350 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
351 }
352
353 rx_ring->next_to_clean = i;
354 cleaned_count = igbvf_desc_unused(rx_ring);
355
356 if (cleaned_count)
357 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
358
359 adapter->total_rx_packets += total_packets;
360 adapter->total_rx_bytes += total_bytes;
361 adapter->net_stats.rx_bytes += total_bytes;
362 adapter->net_stats.rx_packets += total_packets;
363 return cleaned;
364}
365
366static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
367 struct igbvf_buffer *buffer_info)
368{
a7d5ca40
AD
369 if (buffer_info->dma) {
370 if (buffer_info->mapped_as_page)
371 pci_unmap_page(adapter->pdev,
372 buffer_info->dma,
373 buffer_info->length,
374 PCI_DMA_TODEVICE);
375 else
376 pci_unmap_single(adapter->pdev,
377 buffer_info->dma,
378 buffer_info->length,
379 PCI_DMA_TODEVICE);
380 buffer_info->dma = 0;
381 }
d4e0fe01 382 if (buffer_info->skb) {
d4e0fe01
AD
383 dev_kfree_skb_any(buffer_info->skb);
384 buffer_info->skb = NULL;
385 }
386 buffer_info->time_stamp = 0;
387}
388
389static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
390{
391 struct igbvf_ring *tx_ring = adapter->tx_ring;
392 unsigned int i = tx_ring->next_to_clean;
393 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
394 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
395
396 /* detected Tx unit hang */
397 dev_err(&adapter->pdev->dev,
398 "Detected Tx Unit Hang:\n"
399 " TDH <%x>\n"
400 " TDT <%x>\n"
401 " next_to_use <%x>\n"
402 " next_to_clean <%x>\n"
403 "buffer_info[next_to_clean]:\n"
404 " time_stamp <%lx>\n"
405 " next_to_watch <%x>\n"
406 " jiffies <%lx>\n"
407 " next_to_watch.status <%x>\n",
408 readl(adapter->hw.hw_addr + tx_ring->head),
409 readl(adapter->hw.hw_addr + tx_ring->tail),
410 tx_ring->next_to_use,
411 tx_ring->next_to_clean,
412 tx_ring->buffer_info[eop].time_stamp,
413 eop,
414 jiffies,
415 eop_desc->wb.status);
416}
417
418/**
419 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
420 * @adapter: board private structure
421 *
422 * Return 0 on success, negative on failure
423 **/
424int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
425 struct igbvf_ring *tx_ring)
426{
427 struct pci_dev *pdev = adapter->pdev;
428 int size;
429
430 size = sizeof(struct igbvf_buffer) * tx_ring->count;
431 tx_ring->buffer_info = vmalloc(size);
432 if (!tx_ring->buffer_info)
433 goto err;
434 memset(tx_ring->buffer_info, 0, size);
435
436 /* round up to nearest 4K */
437 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
438 tx_ring->size = ALIGN(tx_ring->size, 4096);
439
440 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
441 &tx_ring->dma);
442
443 if (!tx_ring->desc)
444 goto err;
445
446 tx_ring->adapter = adapter;
447 tx_ring->next_to_use = 0;
448 tx_ring->next_to_clean = 0;
449
450 return 0;
451err:
452 vfree(tx_ring->buffer_info);
453 dev_err(&adapter->pdev->dev,
454 "Unable to allocate memory for the transmit descriptor ring\n");
455 return -ENOMEM;
456}
457
458/**
459 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
460 * @adapter: board private structure
461 *
462 * Returns 0 on success, negative on failure
463 **/
464int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
465 struct igbvf_ring *rx_ring)
466{
467 struct pci_dev *pdev = adapter->pdev;
468 int size, desc_len;
469
470 size = sizeof(struct igbvf_buffer) * rx_ring->count;
471 rx_ring->buffer_info = vmalloc(size);
472 if (!rx_ring->buffer_info)
473 goto err;
474 memset(rx_ring->buffer_info, 0, size);
475
476 desc_len = sizeof(union e1000_adv_rx_desc);
477
478 /* Round up to nearest 4K */
479 rx_ring->size = rx_ring->count * desc_len;
480 rx_ring->size = ALIGN(rx_ring->size, 4096);
481
482 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
483 &rx_ring->dma);
484
485 if (!rx_ring->desc)
486 goto err;
487
488 rx_ring->next_to_clean = 0;
489 rx_ring->next_to_use = 0;
490
491 rx_ring->adapter = adapter;
492
493 return 0;
494
495err:
496 vfree(rx_ring->buffer_info);
497 rx_ring->buffer_info = NULL;
498 dev_err(&adapter->pdev->dev,
499 "Unable to allocate memory for the receive descriptor ring\n");
500 return -ENOMEM;
501}
502
503/**
504 * igbvf_clean_tx_ring - Free Tx Buffers
505 * @tx_ring: ring to be cleaned
506 **/
507static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
508{
509 struct igbvf_adapter *adapter = tx_ring->adapter;
510 struct igbvf_buffer *buffer_info;
511 unsigned long size;
512 unsigned int i;
513
514 if (!tx_ring->buffer_info)
515 return;
516
517 /* Free all the Tx ring sk_buffs */
518 for (i = 0; i < tx_ring->count; i++) {
519 buffer_info = &tx_ring->buffer_info[i];
520 igbvf_put_txbuf(adapter, buffer_info);
521 }
522
523 size = sizeof(struct igbvf_buffer) * tx_ring->count;
524 memset(tx_ring->buffer_info, 0, size);
525
526 /* Zero out the descriptor ring */
527 memset(tx_ring->desc, 0, tx_ring->size);
528
529 tx_ring->next_to_use = 0;
530 tx_ring->next_to_clean = 0;
531
532 writel(0, adapter->hw.hw_addr + tx_ring->head);
533 writel(0, adapter->hw.hw_addr + tx_ring->tail);
534}
535
536/**
537 * igbvf_free_tx_resources - Free Tx Resources per Queue
538 * @tx_ring: ring to free resources from
539 *
540 * Free all transmit software resources
541 **/
542void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
543{
544 struct pci_dev *pdev = tx_ring->adapter->pdev;
545
546 igbvf_clean_tx_ring(tx_ring);
547
548 vfree(tx_ring->buffer_info);
549 tx_ring->buffer_info = NULL;
550
551 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
552
553 tx_ring->desc = NULL;
554}
555
556/**
557 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
558 * @adapter: board private structure
559 **/
560static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
561{
562 struct igbvf_adapter *adapter = rx_ring->adapter;
563 struct igbvf_buffer *buffer_info;
564 struct pci_dev *pdev = adapter->pdev;
565 unsigned long size;
566 unsigned int i;
567
568 if (!rx_ring->buffer_info)
569 return;
570
571 /* Free all the Rx ring sk_buffs */
572 for (i = 0; i < rx_ring->count; i++) {
573 buffer_info = &rx_ring->buffer_info[i];
574 if (buffer_info->dma) {
575 if (adapter->rx_ps_hdr_size){
576 pci_unmap_single(pdev, buffer_info->dma,
577 adapter->rx_ps_hdr_size,
578 PCI_DMA_FROMDEVICE);
579 } else {
580 pci_unmap_single(pdev, buffer_info->dma,
581 adapter->rx_buffer_len,
582 PCI_DMA_FROMDEVICE);
583 }
584 buffer_info->dma = 0;
585 }
586
587 if (buffer_info->skb) {
588 dev_kfree_skb(buffer_info->skb);
589 buffer_info->skb = NULL;
590 }
591
592 if (buffer_info->page) {
593 if (buffer_info->page_dma)
594 pci_unmap_page(pdev, buffer_info->page_dma,
595 PAGE_SIZE / 2,
596 PCI_DMA_FROMDEVICE);
597 put_page(buffer_info->page);
598 buffer_info->page = NULL;
599 buffer_info->page_dma = 0;
600 buffer_info->page_offset = 0;
601 }
602 }
603
604 size = sizeof(struct igbvf_buffer) * rx_ring->count;
605 memset(rx_ring->buffer_info, 0, size);
606
607 /* Zero out the descriptor ring */
608 memset(rx_ring->desc, 0, rx_ring->size);
609
610 rx_ring->next_to_clean = 0;
611 rx_ring->next_to_use = 0;
612
613 writel(0, adapter->hw.hw_addr + rx_ring->head);
614 writel(0, adapter->hw.hw_addr + rx_ring->tail);
615}
616
617/**
618 * igbvf_free_rx_resources - Free Rx Resources
619 * @rx_ring: ring to clean the resources from
620 *
621 * Free all receive software resources
622 **/
623
624void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
625{
626 struct pci_dev *pdev = rx_ring->adapter->pdev;
627
628 igbvf_clean_rx_ring(rx_ring);
629
630 vfree(rx_ring->buffer_info);
631 rx_ring->buffer_info = NULL;
632
633 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
634 rx_ring->dma);
635 rx_ring->desc = NULL;
636}
637
638/**
639 * igbvf_update_itr - update the dynamic ITR value based on statistics
640 * @adapter: pointer to adapter
641 * @itr_setting: current adapter->itr
642 * @packets: the number of packets during this measurement interval
643 * @bytes: the number of bytes during this measurement interval
644 *
645 * Stores a new ITR value based on packets and byte
646 * counts during the last interrupt. The advantage of per interrupt
647 * computation is faster updates and more accurate ITR for the current
648 * traffic pattern. Constants in this function were computed
649 * based on theoretical maximum wire speed and thresholds were set based
650 * on testing data as well as attempting to minimize response time
651 * while increasing bulk throughput. This functionality is controlled
652 * by the InterruptThrottleRate module parameter.
653 **/
654static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
655 u16 itr_setting, int packets,
656 int bytes)
657{
658 unsigned int retval = itr_setting;
659
660 if (packets == 0)
661 goto update_itr_done;
662
663 switch (itr_setting) {
664 case lowest_latency:
665 /* handle TSO and jumbo frames */
666 if (bytes/packets > 8000)
667 retval = bulk_latency;
668 else if ((packets < 5) && (bytes > 512))
669 retval = low_latency;
670 break;
671 case low_latency: /* 50 usec aka 20000 ints/s */
672 if (bytes > 10000) {
673 /* this if handles the TSO accounting */
674 if (bytes/packets > 8000)
675 retval = bulk_latency;
676 else if ((packets < 10) || ((bytes/packets) > 1200))
677 retval = bulk_latency;
678 else if ((packets > 35))
679 retval = lowest_latency;
680 } else if (bytes/packets > 2000) {
681 retval = bulk_latency;
682 } else if (packets <= 2 && bytes < 512) {
683 retval = lowest_latency;
684 }
685 break;
686 case bulk_latency: /* 250 usec aka 4000 ints/s */
687 if (bytes > 25000) {
688 if (packets > 35)
689 retval = low_latency;
690 } else if (bytes < 6000) {
691 retval = low_latency;
692 }
693 break;
694 }
695
696update_itr_done:
697 return retval;
698}
699
700static void igbvf_set_itr(struct igbvf_adapter *adapter)
701{
702 struct e1000_hw *hw = &adapter->hw;
703 u16 current_itr;
704 u32 new_itr = adapter->itr;
705
706 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
707 adapter->total_tx_packets,
708 adapter->total_tx_bytes);
709 /* conservative mode (itr 3) eliminates the lowest_latency setting */
710 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
711 adapter->tx_itr = low_latency;
712
713 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
714 adapter->total_rx_packets,
715 adapter->total_rx_bytes);
716 /* conservative mode (itr 3) eliminates the lowest_latency setting */
717 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
718 adapter->rx_itr = low_latency;
719
720 current_itr = max(adapter->rx_itr, adapter->tx_itr);
721
722 switch (current_itr) {
723 /* counts and packets in update_itr are dependent on these numbers */
724 case lowest_latency:
725 new_itr = 70000;
726 break;
727 case low_latency:
728 new_itr = 20000; /* aka hwitr = ~200 */
729 break;
730 case bulk_latency:
731 new_itr = 4000;
732 break;
733 default:
734 break;
735 }
736
737 if (new_itr != adapter->itr) {
738 /*
739 * this attempts to bias the interrupt rate towards Bulk
740 * by adding intermediate steps when interrupt rate is
741 * increasing
742 */
743 new_itr = new_itr > adapter->itr ?
744 min(adapter->itr + (new_itr >> 2), new_itr) :
745 new_itr;
746 adapter->itr = new_itr;
747 adapter->rx_ring->itr_val = 1952;
748
749 if (adapter->msix_entries)
750 adapter->rx_ring->set_itr = 1;
751 else
752 ew32(ITR, 1952);
753 }
754}
755
756/**
757 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
758 * @adapter: board private structure
759 * returns true if ring is completely cleaned
760 **/
761static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
762{
763 struct igbvf_adapter *adapter = tx_ring->adapter;
764 struct e1000_hw *hw = &adapter->hw;
765 struct net_device *netdev = adapter->netdev;
766 struct igbvf_buffer *buffer_info;
767 struct sk_buff *skb;
768 union e1000_adv_tx_desc *tx_desc, *eop_desc;
769 unsigned int total_bytes = 0, total_packets = 0;
770 unsigned int i, eop, count = 0;
771 bool cleaned = false;
772
773 i = tx_ring->next_to_clean;
774 eop = tx_ring->buffer_info[i].next_to_watch;
775 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
776
777 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
778 (count < tx_ring->count)) {
779 for (cleaned = false; !cleaned; count++) {
780 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
781 buffer_info = &tx_ring->buffer_info[i];
782 cleaned = (i == eop);
783 skb = buffer_info->skb;
784
785 if (skb) {
786 unsigned int segs, bytecount;
787
788 /* gso_segs is currently only valid for tcp */
789 segs = skb_shinfo(skb)->gso_segs ?: 1;
790 /* multiply data chunks by size of headers */
791 bytecount = ((segs - 1) * skb_headlen(skb)) +
792 skb->len;
793 total_packets += segs;
794 total_bytes += bytecount;
795 }
796
797 igbvf_put_txbuf(adapter, buffer_info);
798 tx_desc->wb.status = 0;
799
800 i++;
801 if (i == tx_ring->count)
802 i = 0;
803 }
804 eop = tx_ring->buffer_info[i].next_to_watch;
805 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
806 }
807
808 tx_ring->next_to_clean = i;
809
810 if (unlikely(count &&
811 netif_carrier_ok(netdev) &&
812 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
813 /* Make sure that anybody stopping the queue after this
814 * sees the new next_to_clean.
815 */
816 smp_mb();
817 if (netif_queue_stopped(netdev) &&
818 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
819 netif_wake_queue(netdev);
820 ++adapter->restart_queue;
821 }
822 }
823
824 if (adapter->detect_tx_hung) {
825 /* Detect a transmit hang in hardware, this serializes the
826 * check with the clearing of time_stamp and movement of i */
827 adapter->detect_tx_hung = false;
828 if (tx_ring->buffer_info[i].time_stamp &&
829 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
830 (adapter->tx_timeout_factor * HZ)) &&
831 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
d4e0fe01
AD
832
833 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
834 /* detected Tx unit hang */
835 igbvf_print_tx_hang(adapter);
836
837 netif_stop_queue(netdev);
838 }
839 }
840 adapter->net_stats.tx_bytes += total_bytes;
841 adapter->net_stats.tx_packets += total_packets;
842 return (count < tx_ring->count);
843}
844
845static irqreturn_t igbvf_msix_other(int irq, void *data)
846{
847 struct net_device *netdev = data;
848 struct igbvf_adapter *adapter = netdev_priv(netdev);
849 struct e1000_hw *hw = &adapter->hw;
850
851 adapter->int_counter1++;
852
853 netif_carrier_off(netdev);
854 hw->mac.get_link_status = 1;
855 if (!test_bit(__IGBVF_DOWN, &adapter->state))
856 mod_timer(&adapter->watchdog_timer, jiffies + 1);
857
858 ew32(EIMS, adapter->eims_other);
859
860 return IRQ_HANDLED;
861}
862
863static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
864{
865 struct net_device *netdev = data;
866 struct igbvf_adapter *adapter = netdev_priv(netdev);
867 struct e1000_hw *hw = &adapter->hw;
868 struct igbvf_ring *tx_ring = adapter->tx_ring;
869
870
871 adapter->total_tx_bytes = 0;
872 adapter->total_tx_packets = 0;
873
874 /* auto mask will automatically reenable the interrupt when we write
875 * EICS */
876 if (!igbvf_clean_tx_irq(tx_ring))
877 /* Ring was not completely cleaned, so fire another interrupt */
878 ew32(EICS, tx_ring->eims_value);
879 else
880 ew32(EIMS, tx_ring->eims_value);
881
882 return IRQ_HANDLED;
883}
884
885static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
886{
887 struct net_device *netdev = data;
888 struct igbvf_adapter *adapter = netdev_priv(netdev);
889
890 adapter->int_counter0++;
891
892 /* Write the ITR value calculated at the end of the
893 * previous interrupt.
894 */
895 if (adapter->rx_ring->set_itr) {
896 writel(adapter->rx_ring->itr_val,
897 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
898 adapter->rx_ring->set_itr = 0;
899 }
900
901 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
902 adapter->total_rx_bytes = 0;
903 adapter->total_rx_packets = 0;
904 __napi_schedule(&adapter->rx_ring->napi);
905 }
906
907 return IRQ_HANDLED;
908}
909
910#define IGBVF_NO_QUEUE -1
911
912static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
913 int tx_queue, int msix_vector)
914{
915 struct e1000_hw *hw = &adapter->hw;
916 u32 ivar, index;
917
918 /* 82576 uses a table-based method for assigning vectors.
919 Each queue has a single entry in the table to which we write
920 a vector number along with a "valid" bit. Sadly, the layout
921 of the table is somewhat counterintuitive. */
922 if (rx_queue > IGBVF_NO_QUEUE) {
923 index = (rx_queue >> 1);
924 ivar = array_er32(IVAR0, index);
925 if (rx_queue & 0x1) {
926 /* vector goes into third byte of register */
927 ivar = ivar & 0xFF00FFFF;
928 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
929 } else {
930 /* vector goes into low byte of register */
931 ivar = ivar & 0xFFFFFF00;
932 ivar |= msix_vector | E1000_IVAR_VALID;
933 }
934 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
935 array_ew32(IVAR0, index, ivar);
936 }
937 if (tx_queue > IGBVF_NO_QUEUE) {
938 index = (tx_queue >> 1);
939 ivar = array_er32(IVAR0, index);
940 if (tx_queue & 0x1) {
941 /* vector goes into high byte of register */
942 ivar = ivar & 0x00FFFFFF;
943 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
944 } else {
945 /* vector goes into second byte of register */
946 ivar = ivar & 0xFFFF00FF;
947 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
948 }
949 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
950 array_ew32(IVAR0, index, ivar);
951 }
952}
953
954/**
955 * igbvf_configure_msix - Configure MSI-X hardware
956 *
957 * igbvf_configure_msix sets up the hardware to properly
958 * generate MSI-X interrupts.
959 **/
960static void igbvf_configure_msix(struct igbvf_adapter *adapter)
961{
962 u32 tmp;
963 struct e1000_hw *hw = &adapter->hw;
964 struct igbvf_ring *tx_ring = adapter->tx_ring;
965 struct igbvf_ring *rx_ring = adapter->rx_ring;
966 int vector = 0;
967
968 adapter->eims_enable_mask = 0;
969
970 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
971 adapter->eims_enable_mask |= tx_ring->eims_value;
972 if (tx_ring->itr_val)
973 writel(tx_ring->itr_val,
974 hw->hw_addr + tx_ring->itr_register);
975 else
976 writel(1952, hw->hw_addr + tx_ring->itr_register);
977
978 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
979 adapter->eims_enable_mask |= rx_ring->eims_value;
980 if (rx_ring->itr_val)
981 writel(rx_ring->itr_val,
982 hw->hw_addr + rx_ring->itr_register);
983 else
984 writel(1952, hw->hw_addr + rx_ring->itr_register);
985
986 /* set vector for other causes, i.e. link changes */
987
988 tmp = (vector++ | E1000_IVAR_VALID);
989
990 ew32(IVAR_MISC, tmp);
991
992 adapter->eims_enable_mask = (1 << (vector)) - 1;
993 adapter->eims_other = 1 << (vector - 1);
994 e1e_flush();
995}
996
2d165771 997static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
998{
999 if (adapter->msix_entries) {
1000 pci_disable_msix(adapter->pdev);
1001 kfree(adapter->msix_entries);
1002 adapter->msix_entries = NULL;
1003 }
1004}
1005
1006/**
1007 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1008 *
1009 * Attempt to configure interrupts using the best available
1010 * capabilities of the hardware and kernel.
1011 **/
2d165771 1012static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
d4e0fe01
AD
1013{
1014 int err = -ENOMEM;
1015 int i;
1016
1017 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1018 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1019 GFP_KERNEL);
1020 if (adapter->msix_entries) {
1021 for (i = 0; i < 3; i++)
1022 adapter->msix_entries[i].entry = i;
1023
1024 err = pci_enable_msix(adapter->pdev,
1025 adapter->msix_entries, 3);
1026 }
1027
1028 if (err) {
1029 /* MSI-X failed */
1030 dev_err(&adapter->pdev->dev,
1031 "Failed to initialize MSI-X interrupts.\n");
1032 igbvf_reset_interrupt_capability(adapter);
1033 }
1034}
1035
1036/**
1037 * igbvf_request_msix - Initialize MSI-X interrupts
1038 *
1039 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1040 * kernel.
1041 **/
1042static int igbvf_request_msix(struct igbvf_adapter *adapter)
1043{
1044 struct net_device *netdev = adapter->netdev;
1045 int err = 0, vector = 0;
1046
1047 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1048 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1049 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1050 } else {
1051 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1052 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1053 }
1054
1055 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1056 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
d4e0fe01
AD
1057 netdev);
1058 if (err)
1059 goto out;
1060
1061 adapter->tx_ring->itr_register = E1000_EITR(vector);
1062 adapter->tx_ring->itr_val = 1952;
1063 vector++;
1064
1065 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1066 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
d4e0fe01
AD
1067 netdev);
1068 if (err)
1069 goto out;
1070
1071 adapter->rx_ring->itr_register = E1000_EITR(vector);
1072 adapter->rx_ring->itr_val = 1952;
1073 vector++;
1074
1075 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 1076 igbvf_msix_other, 0, netdev->name, netdev);
d4e0fe01
AD
1077 if (err)
1078 goto out;
1079
1080 igbvf_configure_msix(adapter);
1081 return 0;
1082out:
1083 return err;
1084}
1085
1086/**
1087 * igbvf_alloc_queues - Allocate memory for all rings
1088 * @adapter: board private structure to initialize
1089 **/
1090static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1091{
1092 struct net_device *netdev = adapter->netdev;
1093
1094 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1095 if (!adapter->tx_ring)
1096 return -ENOMEM;
1097
1098 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099 if (!adapter->rx_ring) {
1100 kfree(adapter->tx_ring);
1101 return -ENOMEM;
1102 }
1103
1104 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1105
1106 return 0;
1107}
1108
1109/**
1110 * igbvf_request_irq - initialize interrupts
1111 *
1112 * Attempts to configure interrupts using the best available
1113 * capabilities of the hardware and kernel.
1114 **/
1115static int igbvf_request_irq(struct igbvf_adapter *adapter)
1116{
1117 int err = -1;
1118
1119 /* igbvf supports msi-x only */
1120 if (adapter->msix_entries)
1121 err = igbvf_request_msix(adapter);
1122
1123 if (!err)
1124 return err;
1125
1126 dev_err(&adapter->pdev->dev,
1127 "Unable to allocate interrupt, Error: %d\n", err);
1128
1129 return err;
1130}
1131
1132static void igbvf_free_irq(struct igbvf_adapter *adapter)
1133{
1134 struct net_device *netdev = adapter->netdev;
1135 int vector;
1136
1137 if (adapter->msix_entries) {
1138 for (vector = 0; vector < 3; vector++)
1139 free_irq(adapter->msix_entries[vector].vector, netdev);
1140 }
1141}
1142
1143/**
1144 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1145 **/
1146static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1147{
1148 struct e1000_hw *hw = &adapter->hw;
1149
1150 ew32(EIMC, ~0);
1151
1152 if (adapter->msix_entries)
1153 ew32(EIAC, 0);
1154}
1155
1156/**
1157 * igbvf_irq_enable - Enable default interrupt generation settings
1158 **/
1159static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1160{
1161 struct e1000_hw *hw = &adapter->hw;
1162
1163 ew32(EIAC, adapter->eims_enable_mask);
1164 ew32(EIAM, adapter->eims_enable_mask);
1165 ew32(EIMS, adapter->eims_enable_mask);
1166}
1167
1168/**
1169 * igbvf_poll - NAPI Rx polling callback
1170 * @napi: struct associated with this polling callback
1171 * @budget: amount of packets driver is allowed to process this poll
1172 **/
1173static int igbvf_poll(struct napi_struct *napi, int budget)
1174{
1175 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1176 struct igbvf_adapter *adapter = rx_ring->adapter;
1177 struct e1000_hw *hw = &adapter->hw;
1178 int work_done = 0;
1179
1180 igbvf_clean_rx_irq(adapter, &work_done, budget);
1181
1182 /* If not enough Rx work done, exit the polling mode */
1183 if (work_done < budget) {
1184 napi_complete(napi);
1185
1186 if (adapter->itr_setting & 3)
1187 igbvf_set_itr(adapter);
1188
1189 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1190 ew32(EIMS, adapter->rx_ring->eims_value);
1191 }
1192
1193 return work_done;
1194}
1195
1196/**
1197 * igbvf_set_rlpml - set receive large packet maximum length
1198 * @adapter: board private structure
1199 *
1200 * Configure the maximum size of packets that will be received
1201 */
1202static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1203{
1204 int max_frame_size = adapter->max_frame_size;
1205 struct e1000_hw *hw = &adapter->hw;
1206
1207 if (adapter->vlgrp)
1208 max_frame_size += VLAN_TAG_SIZE;
1209
1210 e1000_rlpml_set_vf(hw, max_frame_size);
1211}
1212
1213static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1214{
1215 struct igbvf_adapter *adapter = netdev_priv(netdev);
1216 struct e1000_hw *hw = &adapter->hw;
1217
1218 if (hw->mac.ops.set_vfta(hw, vid, true))
1219 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1220}
1221
1222static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1223{
1224 struct igbvf_adapter *adapter = netdev_priv(netdev);
1225 struct e1000_hw *hw = &adapter->hw;
1226
1227 igbvf_irq_disable(adapter);
1228 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1229
1230 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1231 igbvf_irq_enable(adapter);
1232
1233 if (hw->mac.ops.set_vfta(hw, vid, false))
1234 dev_err(&adapter->pdev->dev,
1235 "Failed to remove vlan id %d\n", vid);
1236}
1237
1238static void igbvf_vlan_rx_register(struct net_device *netdev,
1239 struct vlan_group *grp)
1240{
1241 struct igbvf_adapter *adapter = netdev_priv(netdev);
1242
1243 adapter->vlgrp = grp;
1244}
1245
1246static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1247{
1248 u16 vid;
1249
1250 if (!adapter->vlgrp)
1251 return;
1252
1253 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1254 if (!vlan_group_get_device(adapter->vlgrp, vid))
1255 continue;
1256 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1257 }
1258
1259 igbvf_set_rlpml(adapter);
1260}
1261
1262/**
1263 * igbvf_configure_tx - Configure Transmit Unit after Reset
1264 * @adapter: board private structure
1265 *
1266 * Configure the Tx unit of the MAC after a reset.
1267 **/
1268static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1269{
1270 struct e1000_hw *hw = &adapter->hw;
1271 struct igbvf_ring *tx_ring = adapter->tx_ring;
1272 u64 tdba;
1273 u32 txdctl, dca_txctrl;
1274
1275 /* disable transmits */
1276 txdctl = er32(TXDCTL(0));
1277 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1278 msleep(10);
1279
1280 /* Setup the HW Tx Head and Tail descriptor pointers */
1281 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1282 tdba = tx_ring->dma;
8e20ce94 1283 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1284 ew32(TDBAH(0), (tdba >> 32));
1285 ew32(TDH(0), 0);
1286 ew32(TDT(0), 0);
1287 tx_ring->head = E1000_TDH(0);
1288 tx_ring->tail = E1000_TDT(0);
1289
1290 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1291 * MUST be delivered in order or it will completely screw up
1292 * our bookeeping.
1293 */
1294 dca_txctrl = er32(DCA_TXCTRL(0));
1295 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1296 ew32(DCA_TXCTRL(0), dca_txctrl);
1297
1298 /* enable transmits */
1299 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1300 ew32(TXDCTL(0), txdctl);
1301
1302 /* Setup Transmit Descriptor Settings for eop descriptor */
1303 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1304
1305 /* enable Report Status bit */
1306 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1307
1308 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1309}
1310
1311/**
1312 * igbvf_setup_srrctl - configure the receive control registers
1313 * @adapter: Board private structure
1314 **/
1315static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1316{
1317 struct e1000_hw *hw = &adapter->hw;
1318 u32 srrctl = 0;
1319
1320 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1321 E1000_SRRCTL_BSIZEHDR_MASK |
1322 E1000_SRRCTL_BSIZEPKT_MASK);
1323
1324 /* Enable queue drop to avoid head of line blocking */
1325 srrctl |= E1000_SRRCTL_DROP_EN;
1326
1327 /* Setup buffer sizes */
1328 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1329 E1000_SRRCTL_BSIZEPKT_SHIFT;
1330
1331 if (adapter->rx_buffer_len < 2048) {
1332 adapter->rx_ps_hdr_size = 0;
1333 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1334 } else {
1335 adapter->rx_ps_hdr_size = 128;
1336 srrctl |= adapter->rx_ps_hdr_size <<
1337 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1338 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1339 }
1340
1341 ew32(SRRCTL(0), srrctl);
1342}
1343
1344/**
1345 * igbvf_configure_rx - Configure Receive Unit after Reset
1346 * @adapter: board private structure
1347 *
1348 * Configure the Rx unit of the MAC after a reset.
1349 **/
1350static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1351{
1352 struct e1000_hw *hw = &adapter->hw;
1353 struct igbvf_ring *rx_ring = adapter->rx_ring;
1354 u64 rdba;
1355 u32 rdlen, rxdctl;
1356
1357 /* disable receives */
1358 rxdctl = er32(RXDCTL(0));
1359 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1360 msleep(10);
1361
1362 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1363
1364 /*
1365 * Setup the HW Rx Head and Tail Descriptor Pointers and
1366 * the Base and Length of the Rx Descriptor Ring
1367 */
1368 rdba = rx_ring->dma;
8e20ce94 1369 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
d4e0fe01
AD
1370 ew32(RDBAH(0), (rdba >> 32));
1371 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1372 rx_ring->head = E1000_RDH(0);
1373 rx_ring->tail = E1000_RDT(0);
1374 ew32(RDH(0), 0);
1375 ew32(RDT(0), 0);
1376
1377 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1378 rxdctl &= 0xFFF00000;
1379 rxdctl |= IGBVF_RX_PTHRESH;
1380 rxdctl |= IGBVF_RX_HTHRESH << 8;
1381 rxdctl |= IGBVF_RX_WTHRESH << 16;
1382
1383 igbvf_set_rlpml(adapter);
1384
1385 /* enable receives */
1386 ew32(RXDCTL(0), rxdctl);
1387}
1388
1389/**
1390 * igbvf_set_multi - Multicast and Promiscuous mode set
1391 * @netdev: network interface device structure
1392 *
1393 * The set_multi entry point is called whenever the multicast address
1394 * list or the network interface flags are updated. This routine is
1395 * responsible for configuring the hardware for proper multicast,
1396 * promiscuous mode, and all-multi behavior.
1397 **/
1398static void igbvf_set_multi(struct net_device *netdev)
1399{
1400 struct igbvf_adapter *adapter = netdev_priv(netdev);
1401 struct e1000_hw *hw = &adapter->hw;
1402 struct dev_mc_list *mc_ptr;
1403 u8 *mta_list = NULL;
1404 int i;
1405
1406 if (netdev->mc_count) {
1407 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1408 if (!mta_list) {
1409 dev_err(&adapter->pdev->dev,
1410 "failed to allocate multicast filter list\n");
1411 return;
1412 }
1413 }
1414
1415 /* prepare a packed array of only addresses. */
1416 mc_ptr = netdev->mc_list;
1417
1418 for (i = 0; i < netdev->mc_count; i++) {
1419 if (!mc_ptr)
1420 break;
1421 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1422 ETH_ALEN);
1423 mc_ptr = mc_ptr->next;
1424 }
1425
1426 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427 kfree(mta_list);
1428}
1429
1430/**
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434static void igbvf_configure(struct igbvf_adapter *adapter)
1435{
1436 igbvf_set_multi(adapter->netdev);
1437
1438 igbvf_restore_vlan(adapter);
1439
1440 igbvf_configure_tx(adapter);
1441 igbvf_setup_srrctl(adapter);
1442 igbvf_configure_rx(adapter);
1443 igbvf_alloc_rx_buffers(adapter->rx_ring,
1444 igbvf_desc_unused(adapter->rx_ring));
1445}
1446
1447/* igbvf_reset - bring the hardware into a known good state
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
2d165771 1454static void igbvf_reset(struct igbvf_adapter *adapter)
d4e0fe01
AD
1455{
1456 struct e1000_mac_info *mac = &adapter->hw.mac;
1457 struct net_device *netdev = adapter->netdev;
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* Allow time for pending master requests to run */
1461 if (mac->ops.reset_hw(hw))
1462 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464 mac->ops.init_hw(hw);
1465
1466 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468 netdev->addr_len);
1469 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470 netdev->addr_len);
1471 }
72279093
AD
1472
1473 adapter->last_reset = jiffies;
d4e0fe01
AD
1474}
1475
1476int igbvf_up(struct igbvf_adapter *adapter)
1477{
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* hardware has been reset, we need to reload some things */
1481 igbvf_configure(adapter);
1482
1483 clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485 napi_enable(&adapter->rx_ring->napi);
1486 if (adapter->msix_entries)
1487 igbvf_configure_msix(adapter);
1488
1489 /* Clear any pending interrupts. */
1490 er32(EICR);
1491 igbvf_irq_enable(adapter);
1492
1493 /* start the watchdog */
1494 hw->mac.get_link_status = 1;
1495 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498 return 0;
1499}
1500
1501void igbvf_down(struct igbvf_adapter *adapter)
1502{
1503 struct net_device *netdev = adapter->netdev;
1504 struct e1000_hw *hw = &adapter->hw;
1505 u32 rxdctl, txdctl;
1506
1507 /*
1508 * signal that we're down so the interrupt handler does not
1509 * reschedule our watchdog timer
1510 */
1511 set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513 /* disable receives in the hardware */
1514 rxdctl = er32(RXDCTL(0));
1515 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
1517 netif_stop_queue(netdev);
1518
1519 /* disable transmits in the hardware */
1520 txdctl = er32(TXDCTL(0));
1521 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523 /* flush both disables and wait for them to finish */
1524 e1e_flush();
1525 msleep(10);
1526
1527 napi_disable(&adapter->rx_ring->napi);
1528
1529 igbvf_irq_disable(adapter);
1530
1531 del_timer_sync(&adapter->watchdog_timer);
1532
1533 netdev->tx_queue_len = adapter->tx_queue_len;
1534 netif_carrier_off(netdev);
1535
1536 /* record the stats before reset*/
1537 igbvf_update_stats(adapter);
1538
1539 adapter->link_speed = 0;
1540 adapter->link_duplex = 0;
1541
1542 igbvf_reset(adapter);
1543 igbvf_clean_tx_ring(adapter->tx_ring);
1544 igbvf_clean_rx_ring(adapter->rx_ring);
1545}
1546
1547void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1548{
1549 might_sleep();
1550 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1551 msleep(1);
1552 igbvf_down(adapter);
1553 igbvf_up(adapter);
1554 clear_bit(__IGBVF_RESETTING, &adapter->state);
1555}
1556
1557/**
1558 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1559 * @adapter: board private structure to initialize
1560 *
1561 * igbvf_sw_init initializes the Adapter private data structure.
1562 * Fields are initialized based on PCI device information and
1563 * OS network device settings (MTU size).
1564 **/
1565static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1566{
1567 struct net_device *netdev = adapter->netdev;
1568 s32 rc;
1569
1570 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1571 adapter->rx_ps_hdr_size = 0;
1572 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1573 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1574
1575 adapter->tx_int_delay = 8;
1576 adapter->tx_abs_int_delay = 32;
1577 adapter->rx_int_delay = 0;
1578 adapter->rx_abs_int_delay = 8;
1579 adapter->itr_setting = 3;
1580 adapter->itr = 20000;
1581
1582 /* Set various function pointers */
1583 adapter->ei->init_ops(&adapter->hw);
1584
1585 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1586 if (rc)
1587 return rc;
1588
1589 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1590 if (rc)
1591 return rc;
1592
1593 igbvf_set_interrupt_capability(adapter);
1594
1595 if (igbvf_alloc_queues(adapter))
1596 return -ENOMEM;
1597
1598 spin_lock_init(&adapter->tx_queue_lock);
1599
1600 /* Explicitly disable IRQ since the NIC can be in any state. */
1601 igbvf_irq_disable(adapter);
1602
1603 spin_lock_init(&adapter->stats_lock);
1604
1605 set_bit(__IGBVF_DOWN, &adapter->state);
1606 return 0;
1607}
1608
1609static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1610{
1611 struct e1000_hw *hw = &adapter->hw;
1612
1613 adapter->stats.last_gprc = er32(VFGPRC);
1614 adapter->stats.last_gorc = er32(VFGORC);
1615 adapter->stats.last_gptc = er32(VFGPTC);
1616 adapter->stats.last_gotc = er32(VFGOTC);
1617 adapter->stats.last_mprc = er32(VFMPRC);
1618 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1619 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1620 adapter->stats.last_gorlbc = er32(VFGORLBC);
1621 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1622
1623 adapter->stats.base_gprc = er32(VFGPRC);
1624 adapter->stats.base_gorc = er32(VFGORC);
1625 adapter->stats.base_gptc = er32(VFGPTC);
1626 adapter->stats.base_gotc = er32(VFGOTC);
1627 adapter->stats.base_mprc = er32(VFMPRC);
1628 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1629 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1630 adapter->stats.base_gorlbc = er32(VFGORLBC);
1631 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1632}
1633
1634/**
1635 * igbvf_open - Called when a network interface is made active
1636 * @netdev: network interface device structure
1637 *
1638 * Returns 0 on success, negative value on failure
1639 *
1640 * The open entry point is called when a network interface is made
1641 * active by the system (IFF_UP). At this point all resources needed
1642 * for transmit and receive operations are allocated, the interrupt
1643 * handler is registered with the OS, the watchdog timer is started,
1644 * and the stack is notified that the interface is ready.
1645 **/
1646static int igbvf_open(struct net_device *netdev)
1647{
1648 struct igbvf_adapter *adapter = netdev_priv(netdev);
1649 struct e1000_hw *hw = &adapter->hw;
1650 int err;
1651
1652 /* disallow open during test */
1653 if (test_bit(__IGBVF_TESTING, &adapter->state))
1654 return -EBUSY;
1655
1656 /* allocate transmit descriptors */
1657 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1658 if (err)
1659 goto err_setup_tx;
1660
1661 /* allocate receive descriptors */
1662 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1663 if (err)
1664 goto err_setup_rx;
1665
1666 /*
1667 * before we allocate an interrupt, we must be ready to handle it.
1668 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1669 * as soon as we call pci_request_irq, so we have to setup our
1670 * clean_rx handler before we do so.
1671 */
1672 igbvf_configure(adapter);
1673
1674 err = igbvf_request_irq(adapter);
1675 if (err)
1676 goto err_req_irq;
1677
1678 /* From here on the code is the same as igbvf_up() */
1679 clear_bit(__IGBVF_DOWN, &adapter->state);
1680
1681 napi_enable(&adapter->rx_ring->napi);
1682
1683 /* clear any pending interrupts */
1684 er32(EICR);
1685
1686 igbvf_irq_enable(adapter);
1687
1688 /* start the watchdog */
1689 hw->mac.get_link_status = 1;
1690 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1691
1692 return 0;
1693
1694err_req_irq:
1695 igbvf_free_rx_resources(adapter->rx_ring);
1696err_setup_rx:
1697 igbvf_free_tx_resources(adapter->tx_ring);
1698err_setup_tx:
1699 igbvf_reset(adapter);
1700
1701 return err;
1702}
1703
1704/**
1705 * igbvf_close - Disables a network interface
1706 * @netdev: network interface device structure
1707 *
1708 * Returns 0, this is not allowed to fail
1709 *
1710 * The close entry point is called when an interface is de-activated
1711 * by the OS. The hardware is still under the drivers control, but
1712 * needs to be disabled. A global MAC reset is issued to stop the
1713 * hardware, and all transmit and receive resources are freed.
1714 **/
1715static int igbvf_close(struct net_device *netdev)
1716{
1717 struct igbvf_adapter *adapter = netdev_priv(netdev);
1718
1719 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1720 igbvf_down(adapter);
1721
1722 igbvf_free_irq(adapter);
1723
1724 igbvf_free_tx_resources(adapter->tx_ring);
1725 igbvf_free_rx_resources(adapter->rx_ring);
1726
1727 return 0;
1728}
1729/**
1730 * igbvf_set_mac - Change the Ethernet Address of the NIC
1731 * @netdev: network interface device structure
1732 * @p: pointer to an address structure
1733 *
1734 * Returns 0 on success, negative on failure
1735 **/
1736static int igbvf_set_mac(struct net_device *netdev, void *p)
1737{
1738 struct igbvf_adapter *adapter = netdev_priv(netdev);
1739 struct e1000_hw *hw = &adapter->hw;
1740 struct sockaddr *addr = p;
1741
1742 if (!is_valid_ether_addr(addr->sa_data))
1743 return -EADDRNOTAVAIL;
1744
1745 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1746
1747 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1748
1749 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1750 return -EADDRNOTAVAIL;
1751
1752 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1753
1754 return 0;
1755}
1756
1757#define UPDATE_VF_COUNTER(reg, name) \
1758 { \
1759 u32 current_counter = er32(reg); \
1760 if (current_counter < adapter->stats.last_##name) \
1761 adapter->stats.name += 0x100000000LL; \
1762 adapter->stats.last_##name = current_counter; \
1763 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1764 adapter->stats.name |= current_counter; \
1765 }
1766
1767/**
1768 * igbvf_update_stats - Update the board statistics counters
1769 * @adapter: board private structure
1770**/
1771void igbvf_update_stats(struct igbvf_adapter *adapter)
1772{
1773 struct e1000_hw *hw = &adapter->hw;
1774 struct pci_dev *pdev = adapter->pdev;
1775
1776 /*
1777 * Prevent stats update while adapter is being reset, link is down
1778 * or if the pci connection is down.
1779 */
1780 if (adapter->link_speed == 0)
1781 return;
1782
1783 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1784 return;
1785
1786 if (pci_channel_offline(pdev))
1787 return;
1788
1789 UPDATE_VF_COUNTER(VFGPRC, gprc);
1790 UPDATE_VF_COUNTER(VFGORC, gorc);
1791 UPDATE_VF_COUNTER(VFGPTC, gptc);
1792 UPDATE_VF_COUNTER(VFGOTC, gotc);
1793 UPDATE_VF_COUNTER(VFMPRC, mprc);
1794 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1795 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1796 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1797 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1798
1799 /* Fill out the OS statistics structure */
1800 adapter->net_stats.multicast = adapter->stats.mprc;
1801}
1802
1803static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1804{
1805 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1806 adapter->link_speed,
1807 ((adapter->link_duplex == FULL_DUPLEX) ?
1808 "Full Duplex" : "Half Duplex"));
1809}
1810
1811static bool igbvf_has_link(struct igbvf_adapter *adapter)
1812{
1813 struct e1000_hw *hw = &adapter->hw;
1814 s32 ret_val = E1000_SUCCESS;
1815 bool link_active;
1816
72279093
AD
1817 /* If interface is down, stay link down */
1818 if (test_bit(__IGBVF_DOWN, &adapter->state))
1819 return false;
1820
d4e0fe01
AD
1821 ret_val = hw->mac.ops.check_for_link(hw);
1822 link_active = !hw->mac.get_link_status;
1823
1824 /* if check for link returns error we will need to reset */
72279093 1825 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
d4e0fe01
AD
1826 schedule_work(&adapter->reset_task);
1827
1828 return link_active;
1829}
1830
1831/**
1832 * igbvf_watchdog - Timer Call-back
1833 * @data: pointer to adapter cast into an unsigned long
1834 **/
1835static void igbvf_watchdog(unsigned long data)
1836{
1837 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1838
1839 /* Do the rest outside of interrupt context */
1840 schedule_work(&adapter->watchdog_task);
1841}
1842
1843static void igbvf_watchdog_task(struct work_struct *work)
1844{
1845 struct igbvf_adapter *adapter = container_of(work,
1846 struct igbvf_adapter,
1847 watchdog_task);
1848 struct net_device *netdev = adapter->netdev;
1849 struct e1000_mac_info *mac = &adapter->hw.mac;
1850 struct igbvf_ring *tx_ring = adapter->tx_ring;
1851 struct e1000_hw *hw = &adapter->hw;
1852 u32 link;
1853 int tx_pending = 0;
1854
1855 link = igbvf_has_link(adapter);
1856
1857 if (link) {
1858 if (!netif_carrier_ok(netdev)) {
1859 bool txb2b = 1;
1860
1861 mac->ops.get_link_up_info(&adapter->hw,
1862 &adapter->link_speed,
1863 &adapter->link_duplex);
1864 igbvf_print_link_info(adapter);
1865
1866 /*
1867 * tweak tx_queue_len according to speed/duplex
1868 * and adjust the timeout factor
1869 */
1870 netdev->tx_queue_len = adapter->tx_queue_len;
1871 adapter->tx_timeout_factor = 1;
1872 switch (adapter->link_speed) {
1873 case SPEED_10:
1874 txb2b = 0;
1875 netdev->tx_queue_len = 10;
1876 adapter->tx_timeout_factor = 16;
1877 break;
1878 case SPEED_100:
1879 txb2b = 0;
1880 netdev->tx_queue_len = 100;
1881 /* maybe add some timeout factor ? */
1882 break;
1883 }
1884
1885 netif_carrier_on(netdev);
1886 netif_wake_queue(netdev);
1887 }
1888 } else {
1889 if (netif_carrier_ok(netdev)) {
1890 adapter->link_speed = 0;
1891 adapter->link_duplex = 0;
1892 dev_info(&adapter->pdev->dev, "Link is Down\n");
1893 netif_carrier_off(netdev);
1894 netif_stop_queue(netdev);
1895 }
1896 }
1897
1898 if (netif_carrier_ok(netdev)) {
1899 igbvf_update_stats(adapter);
1900 } else {
1901 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1902 tx_ring->count);
1903 if (tx_pending) {
1904 /*
1905 * We've lost link, so the controller stops DMA,
1906 * but we've got queued Tx work that's never going
1907 * to get done, so reset controller to flush Tx.
1908 * (Do the reset outside of interrupt context).
1909 */
1910 adapter->tx_timeout_count++;
1911 schedule_work(&adapter->reset_task);
1912 }
1913 }
1914
1915 /* Cause software interrupt to ensure Rx ring is cleaned */
1916 ew32(EICS, adapter->rx_ring->eims_value);
1917
1918 /* Force detection of hung controller every watchdog period */
1919 adapter->detect_tx_hung = 1;
1920
1921 /* Reset the timer */
1922 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1923 mod_timer(&adapter->watchdog_timer,
1924 round_jiffies(jiffies + (2 * HZ)));
1925}
1926
1927#define IGBVF_TX_FLAGS_CSUM 0x00000001
1928#define IGBVF_TX_FLAGS_VLAN 0x00000002
1929#define IGBVF_TX_FLAGS_TSO 0x00000004
1930#define IGBVF_TX_FLAGS_IPV4 0x00000008
1931#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1932#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1933
1934static int igbvf_tso(struct igbvf_adapter *adapter,
1935 struct igbvf_ring *tx_ring,
1936 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1937{
1938 struct e1000_adv_tx_context_desc *context_desc;
1939 unsigned int i;
1940 int err;
1941 struct igbvf_buffer *buffer_info;
1942 u32 info = 0, tu_cmd = 0;
1943 u32 mss_l4len_idx, l4len;
1944 *hdr_len = 0;
1945
1946 if (skb_header_cloned(skb)) {
1947 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1948 if (err) {
1949 dev_err(&adapter->pdev->dev,
1950 "igbvf_tso returning an error\n");
1951 return err;
1952 }
1953 }
1954
1955 l4len = tcp_hdrlen(skb);
1956 *hdr_len += l4len;
1957
1958 if (skb->protocol == htons(ETH_P_IP)) {
1959 struct iphdr *iph = ip_hdr(skb);
1960 iph->tot_len = 0;
1961 iph->check = 0;
1962 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1963 iph->daddr, 0,
1964 IPPROTO_TCP,
1965 0);
1966 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
1967 ipv6_hdr(skb)->payload_len = 0;
1968 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1969 &ipv6_hdr(skb)->daddr,
1970 0, IPPROTO_TCP, 0);
1971 }
1972
1973 i = tx_ring->next_to_use;
1974
1975 buffer_info = &tx_ring->buffer_info[i];
1976 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1977 /* VLAN MACLEN IPLEN */
1978 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1979 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1980 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1981 *hdr_len += skb_network_offset(skb);
1982 info |= (skb_transport_header(skb) - skb_network_header(skb));
1983 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1984 context_desc->vlan_macip_lens = cpu_to_le32(info);
1985
1986 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1987 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1988
1989 if (skb->protocol == htons(ETH_P_IP))
1990 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1991 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1992
1993 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1994
1995 /* MSS L4LEN IDX */
1996 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1997 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1998
1999 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2000 context_desc->seqnum_seed = 0;
2001
2002 buffer_info->time_stamp = jiffies;
2003 buffer_info->next_to_watch = i;
2004 buffer_info->dma = 0;
2005 i++;
2006 if (i == tx_ring->count)
2007 i = 0;
2008
2009 tx_ring->next_to_use = i;
2010
2011 return true;
2012}
2013
2014static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2015 struct igbvf_ring *tx_ring,
2016 struct sk_buff *skb, u32 tx_flags)
2017{
2018 struct e1000_adv_tx_context_desc *context_desc;
2019 unsigned int i;
2020 struct igbvf_buffer *buffer_info;
2021 u32 info = 0, tu_cmd = 0;
2022
2023 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2024 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2025 i = tx_ring->next_to_use;
2026 buffer_info = &tx_ring->buffer_info[i];
2027 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2028
2029 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2030 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2031
2032 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2033 if (skb->ip_summed == CHECKSUM_PARTIAL)
2034 info |= (skb_transport_header(skb) -
2035 skb_network_header(skb));
2036
2037
2038 context_desc->vlan_macip_lens = cpu_to_le32(info);
2039
2040 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2041
2042 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2043 switch (skb->protocol) {
2044 case __constant_htons(ETH_P_IP):
2045 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2046 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2047 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2048 break;
2049 case __constant_htons(ETH_P_IPV6):
2050 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2051 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2052 break;
2053 default:
2054 break;
2055 }
2056 }
2057
2058 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2059 context_desc->seqnum_seed = 0;
2060 context_desc->mss_l4len_idx = 0;
2061
2062 buffer_info->time_stamp = jiffies;
2063 buffer_info->next_to_watch = i;
2064 buffer_info->dma = 0;
2065 i++;
2066 if (i == tx_ring->count)
2067 i = 0;
2068 tx_ring->next_to_use = i;
2069
2070 return true;
2071 }
2072
2073 return false;
2074}
2075
2076static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2077{
2078 struct igbvf_adapter *adapter = netdev_priv(netdev);
2079
2080 /* there is enough descriptors then we don't need to worry */
2081 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2082 return 0;
2083
2084 netif_stop_queue(netdev);
2085
2086 smp_mb();
2087
2088 /* We need to check again just in case room has been made available */
2089 if (igbvf_desc_unused(adapter->tx_ring) < size)
2090 return -EBUSY;
2091
2092 netif_wake_queue(netdev);
2093
2094 ++adapter->restart_queue;
2095 return 0;
2096}
2097
2098#define IGBVF_MAX_TXD_PWR 16
2099#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2100
2101static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2102 struct igbvf_ring *tx_ring,
2103 struct sk_buff *skb,
2104 unsigned int first)
2105{
2106 struct igbvf_buffer *buffer_info;
a7d5ca40 2107 struct pci_dev *pdev = adapter->pdev;
d4e0fe01
AD
2108 unsigned int len = skb_headlen(skb);
2109 unsigned int count = 0, i;
2110 unsigned int f;
d4e0fe01
AD
2111
2112 i = tx_ring->next_to_use;
2113
d4e0fe01
AD
2114 buffer_info = &tx_ring->buffer_info[i];
2115 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2116 buffer_info->length = len;
2117 /* set time_stamp *before* dma to help avoid a possible race */
2118 buffer_info->time_stamp = jiffies;
2119 buffer_info->next_to_watch = i;
a7d5ca40
AD
2120 buffer_info->dma = pci_map_single(pdev, skb->data, len,
2121 PCI_DMA_TODEVICE);
2122 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2123 goto dma_error;
2124
d4e0fe01
AD
2125
2126 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2127 struct skb_frag_struct *frag;
2128
2129 i++;
2130 if (i == tx_ring->count)
2131 i = 0;
2132
2133 frag = &skb_shinfo(skb)->frags[f];
2134 len = frag->size;
2135
2136 buffer_info = &tx_ring->buffer_info[i];
2137 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2138 buffer_info->length = len;
2139 buffer_info->time_stamp = jiffies;
2140 buffer_info->next_to_watch = i;
a7d5ca40
AD
2141 buffer_info->mapped_as_page = true;
2142 buffer_info->dma = pci_map_page(pdev,
2143 frag->page,
2144 frag->page_offset,
2145 len,
2146 PCI_DMA_TODEVICE);
2147 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2148 goto dma_error;
d4e0fe01
AD
2149 count++;
2150 }
2151
2152 tx_ring->buffer_info[i].skb = skb;
2153 tx_ring->buffer_info[first].next_to_watch = i;
2154
a7d5ca40
AD
2155 return ++count;
2156
2157dma_error:
2158 dev_err(&pdev->dev, "TX DMA map failed\n");
2159
2160 /* clear timestamp and dma mappings for failed buffer_info mapping */
2161 buffer_info->dma = 0;
2162 buffer_info->time_stamp = 0;
2163 buffer_info->length = 0;
2164 buffer_info->next_to_watch = 0;
2165 buffer_info->mapped_as_page = false;
2166 count--;
2167
2168 /* clear timestamp and dma mappings for remaining portion of packet */
2169 while (count >= 0) {
2170 count--;
2171 i--;
2172 if (i < 0)
2173 i += tx_ring->count;
2174 buffer_info = &tx_ring->buffer_info[i];
2175 igbvf_put_txbuf(adapter, buffer_info);
2176 }
2177
2178 return 0;
d4e0fe01
AD
2179}
2180
2181static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2182 struct igbvf_ring *tx_ring,
2183 int tx_flags, int count, u32 paylen,
2184 u8 hdr_len)
2185{
2186 union e1000_adv_tx_desc *tx_desc = NULL;
2187 struct igbvf_buffer *buffer_info;
2188 u32 olinfo_status = 0, cmd_type_len;
2189 unsigned int i;
2190
2191 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2192 E1000_ADVTXD_DCMD_DEXT);
2193
2194 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2195 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2196
2197 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2198 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2199
2200 /* insert tcp checksum */
2201 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2202
2203 /* insert ip checksum */
2204 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2205 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2206
2207 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2208 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2209 }
2210
2211 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2212
2213 i = tx_ring->next_to_use;
2214 while (count--) {
2215 buffer_info = &tx_ring->buffer_info[i];
2216 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2217 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2218 tx_desc->read.cmd_type_len =
2219 cpu_to_le32(cmd_type_len | buffer_info->length);
2220 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2221 i++;
2222 if (i == tx_ring->count)
2223 i = 0;
2224 }
2225
2226 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2227 /* Force memory writes to complete before letting h/w
2228 * know there are new descriptors to fetch. (Only
2229 * applicable for weak-ordered memory model archs,
2230 * such as IA-64). */
2231 wmb();
2232
2233 tx_ring->next_to_use = i;
2234 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2235 /* we need this if more than one processor can write to our tail
2236 * at a time, it syncronizes IO on IA64/Altix systems */
2237 mmiowb();
2238}
2239
3b29a56d
SH
2240static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2241 struct net_device *netdev,
2242 struct igbvf_ring *tx_ring)
d4e0fe01
AD
2243{
2244 struct igbvf_adapter *adapter = netdev_priv(netdev);
2245 unsigned int first, tx_flags = 0;
2246 u8 hdr_len = 0;
2247 int count = 0;
2248 int tso = 0;
2249
2250 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2251 dev_kfree_skb_any(skb);
2252 return NETDEV_TX_OK;
2253 }
2254
2255 if (skb->len <= 0) {
2256 dev_kfree_skb_any(skb);
2257 return NETDEV_TX_OK;
2258 }
2259
2260 /*
2261 * need: count + 4 desc gap to keep tail from touching
2262 * + 2 desc gap to keep tail from touching head,
2263 * + 1 desc for skb->data,
2264 * + 1 desc for context descriptor,
2265 * head, otherwise try next time
2266 */
2267 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2268 /* this is a hard error */
2269 return NETDEV_TX_BUSY;
2270 }
2271
2272 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2273 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2274 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2275 }
2276
2277 if (skb->protocol == htons(ETH_P_IP))
2278 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2279
2280 first = tx_ring->next_to_use;
2281
2282 tso = skb_is_gso(skb) ?
2283 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2284 if (unlikely(tso < 0)) {
2285 dev_kfree_skb_any(skb);
2286 return NETDEV_TX_OK;
2287 }
2288
2289 if (tso)
2290 tx_flags |= IGBVF_TX_FLAGS_TSO;
2291 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2292 (skb->ip_summed == CHECKSUM_PARTIAL))
2293 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2294
2295 /*
2296 * count reflects descriptors mapped, if 0 then mapping error
2297 * has occured and we need to rewind the descriptor queue
2298 */
2299 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2300
2301 if (count) {
2302 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2303 skb->len, hdr_len);
d4e0fe01
AD
2304 /* Make sure there is space in the ring for the next send. */
2305 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2306 } else {
2307 dev_kfree_skb_any(skb);
2308 tx_ring->buffer_info[first].time_stamp = 0;
2309 tx_ring->next_to_use = first;
2310 }
2311
2312 return NETDEV_TX_OK;
2313}
2314
3b29a56d
SH
2315static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2316 struct net_device *netdev)
d4e0fe01
AD
2317{
2318 struct igbvf_adapter *adapter = netdev_priv(netdev);
2319 struct igbvf_ring *tx_ring;
d4e0fe01
AD
2320
2321 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2322 dev_kfree_skb_any(skb);
2323 return NETDEV_TX_OK;
2324 }
2325
2326 tx_ring = &adapter->tx_ring[0];
2327
3b29a56d 2328 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
d4e0fe01
AD
2329}
2330
2331/**
2332 * igbvf_tx_timeout - Respond to a Tx Hang
2333 * @netdev: network interface device structure
2334 **/
2335static void igbvf_tx_timeout(struct net_device *netdev)
2336{
2337 struct igbvf_adapter *adapter = netdev_priv(netdev);
2338
2339 /* Do the reset outside of interrupt context */
2340 adapter->tx_timeout_count++;
2341 schedule_work(&adapter->reset_task);
2342}
2343
2344static void igbvf_reset_task(struct work_struct *work)
2345{
2346 struct igbvf_adapter *adapter;
2347 adapter = container_of(work, struct igbvf_adapter, reset_task);
2348
2349 igbvf_reinit_locked(adapter);
2350}
2351
2352/**
2353 * igbvf_get_stats - Get System Network Statistics
2354 * @netdev: network interface device structure
2355 *
2356 * Returns the address of the device statistics structure.
2357 * The statistics are actually updated from the timer callback.
2358 **/
2359static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2360{
2361 struct igbvf_adapter *adapter = netdev_priv(netdev);
2362
2363 /* only return the current stats */
2364 return &adapter->net_stats;
2365}
2366
2367/**
2368 * igbvf_change_mtu - Change the Maximum Transfer Unit
2369 * @netdev: network interface device structure
2370 * @new_mtu: new value for maximum frame size
2371 *
2372 * Returns 0 on success, negative on failure
2373 **/
2374static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2375{
2376 struct igbvf_adapter *adapter = netdev_priv(netdev);
2377 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2378
2379 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2380 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2381 return -EINVAL;
2382 }
2383
d4e0fe01
AD
2384#define MAX_STD_JUMBO_FRAME_SIZE 9234
2385 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2386 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2387 return -EINVAL;
2388 }
2389
2390 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2391 msleep(1);
2392 /* igbvf_down has a dependency on max_frame_size */
2393 adapter->max_frame_size = max_frame;
2394 if (netif_running(netdev))
2395 igbvf_down(adapter);
2396
2397 /*
2398 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2399 * means we reserve 2 more, this pushes us to allocate from the next
2400 * larger slab size.
2401 * i.e. RXBUFFER_2048 --> size-4096 slab
2402 * However with the new *_jumbo_rx* routines, jumbo receives will use
2403 * fragmented skbs
2404 */
2405
2406 if (max_frame <= 1024)
2407 adapter->rx_buffer_len = 1024;
2408 else if (max_frame <= 2048)
2409 adapter->rx_buffer_len = 2048;
2410 else
2411#if (PAGE_SIZE / 2) > 16384
2412 adapter->rx_buffer_len = 16384;
2413#else
2414 adapter->rx_buffer_len = PAGE_SIZE / 2;
2415#endif
2416
2417
2418 /* adjust allocation if LPE protects us, and we aren't using SBP */
2419 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2420 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2421 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2422 ETH_FCS_LEN;
2423
2424 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2425 netdev->mtu, new_mtu);
2426 netdev->mtu = new_mtu;
2427
2428 if (netif_running(netdev))
2429 igbvf_up(adapter);
2430 else
2431 igbvf_reset(adapter);
2432
2433 clear_bit(__IGBVF_RESETTING, &adapter->state);
2434
2435 return 0;
2436}
2437
2438static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2439{
2440 switch (cmd) {
2441 default:
2442 return -EOPNOTSUPP;
2443 }
2444}
2445
2446static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2447{
2448 struct net_device *netdev = pci_get_drvdata(pdev);
2449 struct igbvf_adapter *adapter = netdev_priv(netdev);
2450#ifdef CONFIG_PM
2451 int retval = 0;
2452#endif
2453
2454 netif_device_detach(netdev);
2455
2456 if (netif_running(netdev)) {
2457 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2458 igbvf_down(adapter);
2459 igbvf_free_irq(adapter);
2460 }
2461
2462#ifdef CONFIG_PM
2463 retval = pci_save_state(pdev);
2464 if (retval)
2465 return retval;
2466#endif
2467
2468 pci_disable_device(pdev);
2469
2470 return 0;
2471}
2472
2473#ifdef CONFIG_PM
2474static int igbvf_resume(struct pci_dev *pdev)
2475{
2476 struct net_device *netdev = pci_get_drvdata(pdev);
2477 struct igbvf_adapter *adapter = netdev_priv(netdev);
2478 u32 err;
2479
2480 pci_restore_state(pdev);
2481 err = pci_enable_device_mem(pdev);
2482 if (err) {
2483 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2484 return err;
2485 }
2486
2487 pci_set_master(pdev);
2488
2489 if (netif_running(netdev)) {
2490 err = igbvf_request_irq(adapter);
2491 if (err)
2492 return err;
2493 }
2494
2495 igbvf_reset(adapter);
2496
2497 if (netif_running(netdev))
2498 igbvf_up(adapter);
2499
2500 netif_device_attach(netdev);
2501
2502 return 0;
2503}
2504#endif
2505
2506static void igbvf_shutdown(struct pci_dev *pdev)
2507{
2508 igbvf_suspend(pdev, PMSG_SUSPEND);
2509}
2510
2511#ifdef CONFIG_NET_POLL_CONTROLLER
2512/*
2513 * Polling 'interrupt' - used by things like netconsole to send skbs
2514 * without having to re-enable interrupts. It's not called while
2515 * the interrupt routine is executing.
2516 */
2517static void igbvf_netpoll(struct net_device *netdev)
2518{
2519 struct igbvf_adapter *adapter = netdev_priv(netdev);
2520
2521 disable_irq(adapter->pdev->irq);
2522
2523 igbvf_clean_tx_irq(adapter->tx_ring);
2524
2525 enable_irq(adapter->pdev->irq);
2526}
2527#endif
2528
2529/**
2530 * igbvf_io_error_detected - called when PCI error is detected
2531 * @pdev: Pointer to PCI device
2532 * @state: The current pci connection state
2533 *
2534 * This function is called after a PCI bus error affecting
2535 * this device has been detected.
2536 */
2537static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2538 pci_channel_state_t state)
2539{
2540 struct net_device *netdev = pci_get_drvdata(pdev);
2541 struct igbvf_adapter *adapter = netdev_priv(netdev);
2542
2543 netif_device_detach(netdev);
2544
c06c430d
DN
2545 if (state == pci_channel_io_perm_failure)
2546 return PCI_ERS_RESULT_DISCONNECT;
2547
d4e0fe01
AD
2548 if (netif_running(netdev))
2549 igbvf_down(adapter);
2550 pci_disable_device(pdev);
2551
2552 /* Request a slot slot reset. */
2553 return PCI_ERS_RESULT_NEED_RESET;
2554}
2555
2556/**
2557 * igbvf_io_slot_reset - called after the pci bus has been reset.
2558 * @pdev: Pointer to PCI device
2559 *
2560 * Restart the card from scratch, as if from a cold-boot. Implementation
2561 * resembles the first-half of the igbvf_resume routine.
2562 */
2563static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2564{
2565 struct net_device *netdev = pci_get_drvdata(pdev);
2566 struct igbvf_adapter *adapter = netdev_priv(netdev);
2567
2568 if (pci_enable_device_mem(pdev)) {
2569 dev_err(&pdev->dev,
2570 "Cannot re-enable PCI device after reset.\n");
2571 return PCI_ERS_RESULT_DISCONNECT;
2572 }
2573 pci_set_master(pdev);
2574
2575 igbvf_reset(adapter);
2576
2577 return PCI_ERS_RESULT_RECOVERED;
2578}
2579
2580/**
2581 * igbvf_io_resume - called when traffic can start flowing again.
2582 * @pdev: Pointer to PCI device
2583 *
2584 * This callback is called when the error recovery driver tells us that
2585 * its OK to resume normal operation. Implementation resembles the
2586 * second-half of the igbvf_resume routine.
2587 */
2588static void igbvf_io_resume(struct pci_dev *pdev)
2589{
2590 struct net_device *netdev = pci_get_drvdata(pdev);
2591 struct igbvf_adapter *adapter = netdev_priv(netdev);
2592
2593 if (netif_running(netdev)) {
2594 if (igbvf_up(adapter)) {
2595 dev_err(&pdev->dev,
2596 "can't bring device back up after reset\n");
2597 return;
2598 }
2599 }
2600
2601 netif_device_attach(netdev);
2602}
2603
2604static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2605{
2606 struct e1000_hw *hw = &adapter->hw;
2607 struct net_device *netdev = adapter->netdev;
2608 struct pci_dev *pdev = adapter->pdev;
2609
2610 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2611 dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2612 /* MAC address */
2613 netdev->dev_addr[0], netdev->dev_addr[1],
2614 netdev->dev_addr[2], netdev->dev_addr[3],
2615 netdev->dev_addr[4], netdev->dev_addr[5]);
2616 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2617}
2618
2619static const struct net_device_ops igbvf_netdev_ops = {
2620 .ndo_open = igbvf_open,
2621 .ndo_stop = igbvf_close,
2622 .ndo_start_xmit = igbvf_xmit_frame,
2623 .ndo_get_stats = igbvf_get_stats,
2624 .ndo_set_multicast_list = igbvf_set_multi,
2625 .ndo_set_mac_address = igbvf_set_mac,
2626 .ndo_change_mtu = igbvf_change_mtu,
2627 .ndo_do_ioctl = igbvf_ioctl,
2628 .ndo_tx_timeout = igbvf_tx_timeout,
2629 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2630 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2631 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2632#ifdef CONFIG_NET_POLL_CONTROLLER
2633 .ndo_poll_controller = igbvf_netpoll,
2634#endif
2635};
2636
2637/**
2638 * igbvf_probe - Device Initialization Routine
2639 * @pdev: PCI device information struct
2640 * @ent: entry in igbvf_pci_tbl
2641 *
2642 * Returns 0 on success, negative on failure
2643 *
2644 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2645 * The OS initialization, configuring of the adapter private structure,
2646 * and a hardware reset occur.
2647 **/
2648static int __devinit igbvf_probe(struct pci_dev *pdev,
2649 const struct pci_device_id *ent)
2650{
2651 struct net_device *netdev;
2652 struct igbvf_adapter *adapter;
2653 struct e1000_hw *hw;
2654 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2655
2656 static int cards_found;
2657 int err, pci_using_dac;
2658
2659 err = pci_enable_device_mem(pdev);
2660 if (err)
2661 return err;
2662
2663 pci_using_dac = 0;
8e20ce94 2664 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
d4e0fe01 2665 if (!err) {
8e20ce94 2666 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
d4e0fe01
AD
2667 if (!err)
2668 pci_using_dac = 1;
2669 } else {
8e20ce94 2670 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
d4e0fe01 2671 if (err) {
8e20ce94
AM
2672 err = pci_set_consistent_dma_mask(pdev,
2673 DMA_BIT_MASK(32));
d4e0fe01
AD
2674 if (err) {
2675 dev_err(&pdev->dev, "No usable DMA "
2676 "configuration, aborting\n");
2677 goto err_dma;
2678 }
2679 }
2680 }
2681
2682 err = pci_request_regions(pdev, igbvf_driver_name);
2683 if (err)
2684 goto err_pci_reg;
2685
2686 pci_set_master(pdev);
2687
2688 err = -ENOMEM;
2689 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2690 if (!netdev)
2691 goto err_alloc_etherdev;
2692
2693 SET_NETDEV_DEV(netdev, &pdev->dev);
2694
2695 pci_set_drvdata(pdev, netdev);
2696 adapter = netdev_priv(netdev);
2697 hw = &adapter->hw;
2698 adapter->netdev = netdev;
2699 adapter->pdev = pdev;
2700 adapter->ei = ei;
2701 adapter->pba = ei->pba;
2702 adapter->flags = ei->flags;
2703 adapter->hw.back = adapter;
2704 adapter->hw.mac.type = ei->mac;
2705 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2706
2707 /* PCI config space info */
2708
2709 hw->vendor_id = pdev->vendor;
2710 hw->device_id = pdev->device;
2711 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2712 hw->subsystem_device_id = pdev->subsystem_device;
2713
2714 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2715
2716 err = -EIO;
2717 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2718 pci_resource_len(pdev, 0));
2719
2720 if (!adapter->hw.hw_addr)
2721 goto err_ioremap;
2722
2723 if (ei->get_variants) {
2724 err = ei->get_variants(adapter);
2725 if (err)
2726 goto err_ioremap;
2727 }
2728
2729 /* setup adapter struct */
2730 err = igbvf_sw_init(adapter);
2731 if (err)
2732 goto err_sw_init;
2733
2734 /* construct the net_device struct */
2735 netdev->netdev_ops = &igbvf_netdev_ops;
2736
2737 igbvf_set_ethtool_ops(netdev);
2738 netdev->watchdog_timeo = 5 * HZ;
2739 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2740
2741 adapter->bd_number = cards_found++;
2742
2743 netdev->features = NETIF_F_SG |
2744 NETIF_F_IP_CSUM |
2745 NETIF_F_HW_VLAN_TX |
2746 NETIF_F_HW_VLAN_RX |
2747 NETIF_F_HW_VLAN_FILTER;
2748
2749 netdev->features |= NETIF_F_IPV6_CSUM;
2750 netdev->features |= NETIF_F_TSO;
2751 netdev->features |= NETIF_F_TSO6;
2752
2753 if (pci_using_dac)
2754 netdev->features |= NETIF_F_HIGHDMA;
2755
2756 netdev->vlan_features |= NETIF_F_TSO;
2757 netdev->vlan_features |= NETIF_F_TSO6;
2758 netdev->vlan_features |= NETIF_F_IP_CSUM;
2759 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2760 netdev->vlan_features |= NETIF_F_SG;
2761
2762 /*reset the controller to put the device in a known good state */
2763 err = hw->mac.ops.reset_hw(hw);
2764 if (err) {
2765 dev_info(&pdev->dev,
1242b6f3
WM
2766 "PF still in reset state, assigning new address."
2767 " Is the PF interface up?\n");
d4e0fe01
AD
2768 random_ether_addr(hw->mac.addr);
2769 } else {
2770 err = hw->mac.ops.read_mac_addr(hw);
2771 if (err) {
2772 dev_err(&pdev->dev, "Error reading MAC address\n");
2773 goto err_hw_init;
2774 }
2775 }
2776
2777 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2778 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2779
2780 if (!is_valid_ether_addr(netdev->perm_addr)) {
2781 dev_err(&pdev->dev, "Invalid MAC Address: "
2782 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2783 netdev->dev_addr[0], netdev->dev_addr[1],
2784 netdev->dev_addr[2], netdev->dev_addr[3],
2785 netdev->dev_addr[4], netdev->dev_addr[5]);
2786 err = -EIO;
2787 goto err_hw_init;
2788 }
2789
2790 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2791 (unsigned long) adapter);
2792
2793 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2794 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2795
2796 /* ring size defaults */
2797 adapter->rx_ring->count = 1024;
2798 adapter->tx_ring->count = 1024;
2799
2800 /* reset the hardware with the new settings */
2801 igbvf_reset(adapter);
2802
2803 /* tell the stack to leave us alone until igbvf_open() is called */
2804 netif_carrier_off(netdev);
2805 netif_stop_queue(netdev);
2806
2807 strcpy(netdev->name, "eth%d");
2808 err = register_netdev(netdev);
2809 if (err)
2810 goto err_hw_init;
2811
2812 igbvf_print_device_info(adapter);
2813
2814 igbvf_initialize_last_counter_stats(adapter);
2815
2816 return 0;
2817
2818err_hw_init:
2819 kfree(adapter->tx_ring);
2820 kfree(adapter->rx_ring);
2821err_sw_init:
2822 igbvf_reset_interrupt_capability(adapter);
2823 iounmap(adapter->hw.hw_addr);
2824err_ioremap:
2825 free_netdev(netdev);
2826err_alloc_etherdev:
2827 pci_release_regions(pdev);
2828err_pci_reg:
2829err_dma:
2830 pci_disable_device(pdev);
2831 return err;
2832}
2833
2834/**
2835 * igbvf_remove - Device Removal Routine
2836 * @pdev: PCI device information struct
2837 *
2838 * igbvf_remove is called by the PCI subsystem to alert the driver
2839 * that it should release a PCI device. The could be caused by a
2840 * Hot-Plug event, or because the driver is going to be removed from
2841 * memory.
2842 **/
2843static void __devexit igbvf_remove(struct pci_dev *pdev)
2844{
2845 struct net_device *netdev = pci_get_drvdata(pdev);
2846 struct igbvf_adapter *adapter = netdev_priv(netdev);
2847 struct e1000_hw *hw = &adapter->hw;
2848
2849 /*
2850 * flush_scheduled work may reschedule our watchdog task, so
2851 * explicitly disable watchdog tasks from being rescheduled
2852 */
2853 set_bit(__IGBVF_DOWN, &adapter->state);
2854 del_timer_sync(&adapter->watchdog_timer);
2855
2856 flush_scheduled_work();
2857
2858 unregister_netdev(netdev);
2859
2860 igbvf_reset_interrupt_capability(adapter);
2861
2862 /*
2863 * it is important to delete the napi struct prior to freeing the
2864 * rx ring so that you do not end up with null pointer refs
2865 */
2866 netif_napi_del(&adapter->rx_ring->napi);
2867 kfree(adapter->tx_ring);
2868 kfree(adapter->rx_ring);
2869
2870 iounmap(hw->hw_addr);
2871 if (hw->flash_address)
2872 iounmap(hw->flash_address);
2873 pci_release_regions(pdev);
2874
2875 free_netdev(netdev);
2876
2877 pci_disable_device(pdev);
2878}
2879
2880/* PCI Error Recovery (ERS) */
2881static struct pci_error_handlers igbvf_err_handler = {
2882 .error_detected = igbvf_io_error_detected,
2883 .slot_reset = igbvf_io_slot_reset,
2884 .resume = igbvf_io_resume,
2885};
2886
2887static struct pci_device_id igbvf_pci_tbl[] = {
2888 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2889 { } /* terminate list */
2890};
2891MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2892
2893/* PCI Device API Driver */
2894static struct pci_driver igbvf_driver = {
2895 .name = igbvf_driver_name,
2896 .id_table = igbvf_pci_tbl,
2897 .probe = igbvf_probe,
2898 .remove = __devexit_p(igbvf_remove),
2899#ifdef CONFIG_PM
2900 /* Power Management Hooks */
2901 .suspend = igbvf_suspend,
2902 .resume = igbvf_resume,
2903#endif
2904 .shutdown = igbvf_shutdown,
2905 .err_handler = &igbvf_err_handler
2906};
2907
2908/**
2909 * igbvf_init_module - Driver Registration Routine
2910 *
2911 * igbvf_init_module is the first routine called when the driver is
2912 * loaded. All it does is register with the PCI subsystem.
2913 **/
2914static int __init igbvf_init_module(void)
2915{
2916 int ret;
2917 printk(KERN_INFO "%s - version %s\n",
2918 igbvf_driver_string, igbvf_driver_version);
2919 printk(KERN_INFO "%s\n", igbvf_copyright);
2920
2921 ret = pci_register_driver(&igbvf_driver);
2922 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2923 PM_QOS_DEFAULT_VALUE);
2924
2925 return ret;
2926}
2927module_init(igbvf_init_module);
2928
2929/**
2930 * igbvf_exit_module - Driver Exit Cleanup Routine
2931 *
2932 * igbvf_exit_module is called just before the driver is removed
2933 * from memory.
2934 **/
2935static void __exit igbvf_exit_module(void)
2936{
2937 pci_unregister_driver(&igbvf_driver);
2938 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2939}
2940module_exit(igbvf_exit_module);
2941
2942
2943MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2944MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2945MODULE_LICENSE("GPL");
2946MODULE_VERSION(DRV_VERSION);
2947
2948/* netdev.c */