]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_main.c
igb: allow tx of pre-formatted vlan tagged packets
[net-next-2.6.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
86d5d38f 52#define DRV_VERSION "1.3.16-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
63static struct pci_device_id igb_pci_tbl[] = {
2d064c06 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
2d064c06
AD
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
c8ea5ea9 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72 /* required last entry */
73 {0, }
74};
75
76MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78void igb_reset(struct igb_adapter *);
79static int igb_setup_all_tx_resources(struct igb_adapter *);
80static int igb_setup_all_rx_resources(struct igb_adapter *);
81static void igb_free_all_tx_resources(struct igb_adapter *);
82static void igb_free_all_rx_resources(struct igb_adapter *);
9d5c8243
AK
83void igb_update_stats(struct igb_adapter *);
84static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85static void __devexit igb_remove(struct pci_dev *pdev);
86static int igb_sw_init(struct igb_adapter *);
87static int igb_open(struct net_device *);
88static int igb_close(struct net_device *);
89static void igb_configure_tx(struct igb_adapter *);
90static void igb_configure_rx(struct igb_adapter *);
91static void igb_setup_rctl(struct igb_adapter *);
92static void igb_clean_all_tx_rings(struct igb_adapter *);
93static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
94static void igb_clean_tx_ring(struct igb_ring *);
95static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
96static void igb_set_multi(struct net_device *);
97static void igb_update_phy_info(unsigned long);
98static void igb_watchdog(unsigned long);
99static void igb_watchdog_task(struct work_struct *);
100static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101 struct igb_ring *);
102static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103static struct net_device_stats *igb_get_stats(struct net_device *);
104static int igb_change_mtu(struct net_device *, int);
105static int igb_set_mac(struct net_device *, void *);
106static irqreturn_t igb_intr(int irq, void *);
107static irqreturn_t igb_intr_msi(int irq, void *);
108static irqreturn_t igb_msix_other(int irq, void *);
109static irqreturn_t igb_msix_rx(int irq, void *);
110static irqreturn_t igb_msix_tx(int irq, void *);
421e02f0 111#ifdef CONFIG_IGB_DCA
fe4506b6
JC
112static void igb_update_rx_dca(struct igb_ring *);
113static void igb_update_tx_dca(struct igb_ring *);
114static void igb_setup_dca(struct igb_adapter *);
421e02f0 115#endif /* CONFIG_IGB_DCA */
3b644cf6 116static bool igb_clean_tx_irq(struct igb_ring *);
661086df 117static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
118static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
9d5c8243
AK
120static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121static void igb_tx_timeout(struct net_device *);
122static void igb_reset_task(struct work_struct *);
123static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124static void igb_vlan_rx_add_vid(struct net_device *, u16);
125static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126static void igb_restore_vlan(struct igb_adapter *);
4ae196df
AD
127static void igb_ping_all_vfs(struct igb_adapter *);
128static void igb_msg_task(struct igb_adapter *);
129static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
e1739522
AD
130static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
131static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
4ae196df 132static void igb_vmm_control(struct igb_adapter *);
e1739522 133static inline void igb_set_vmolr(struct e1000_hw *, int);
4ae196df
AD
134static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
135static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
9d5c8243
AK
137
138static int igb_suspend(struct pci_dev *, pm_message_t);
139#ifdef CONFIG_PM
140static int igb_resume(struct pci_dev *);
141#endif
142static void igb_shutdown(struct pci_dev *);
421e02f0 143#ifdef CONFIG_IGB_DCA
fe4506b6
JC
144static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
145static struct notifier_block dca_notifier = {
146 .notifier_call = igb_notify_dca,
147 .next = NULL,
148 .priority = 0
149};
150#endif
9d5c8243
AK
151#ifdef CONFIG_NET_POLL_CONTROLLER
152/* for netdump / net console */
153static void igb_netpoll(struct net_device *);
154#endif
155
37680117
AD
156#ifdef CONFIG_PCI_IOV
157static ssize_t igb_set_num_vfs(struct device *, struct device_attribute *,
158 const char *, size_t);
159static ssize_t igb_show_num_vfs(struct device *, struct device_attribute *,
160 char *);
161DEVICE_ATTR(num_vfs, S_IRUGO | S_IWUSR, igb_show_num_vfs, igb_set_num_vfs);
162#endif
9d5c8243
AK
163static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
164 pci_channel_state_t);
165static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
166static void igb_io_resume(struct pci_dev *);
167
168static struct pci_error_handlers igb_err_handler = {
169 .error_detected = igb_io_error_detected,
170 .slot_reset = igb_io_slot_reset,
171 .resume = igb_io_resume,
172};
173
174
175static struct pci_driver igb_driver = {
176 .name = igb_driver_name,
177 .id_table = igb_pci_tbl,
178 .probe = igb_probe,
179 .remove = __devexit_p(igb_remove),
180#ifdef CONFIG_PM
181 /* Power Managment Hooks */
182 .suspend = igb_suspend,
183 .resume = igb_resume,
184#endif
185 .shutdown = igb_shutdown,
186 .err_handler = &igb_err_handler
187};
188
7dfc16fa
AD
189static int global_quad_port_a; /* global quad port a indication */
190
9d5c8243
AK
191MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
192MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
193MODULE_LICENSE("GPL");
194MODULE_VERSION(DRV_VERSION);
195
38c845c7
PO
196/**
197 * Scale the NIC clock cycle by a large factor so that
198 * relatively small clock corrections can be added or
199 * substracted at each clock tick. The drawbacks of a
200 * large factor are a) that the clock register overflows
201 * more quickly (not such a big deal) and b) that the
202 * increment per tick has to fit into 24 bits.
203 *
204 * Note that
205 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
206 * IGB_TSYNC_SCALE
207 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
208 *
209 * The base scale factor is intentionally a power of two
210 * so that the division in %struct timecounter can be done with
211 * a shift.
212 */
213#define IGB_TSYNC_SHIFT (19)
214#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
215
216/**
217 * The duration of one clock cycle of the NIC.
218 *
219 * @todo This hard-coded value is part of the specification and might change
220 * in future hardware revisions. Add revision check.
221 */
222#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
223
224#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
225# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
226#endif
227
228/**
229 * igb_read_clock - read raw cycle counter (to be used by time counter)
230 */
231static cycle_t igb_read_clock(const struct cyclecounter *tc)
232{
233 struct igb_adapter *adapter =
234 container_of(tc, struct igb_adapter, cycles);
235 struct e1000_hw *hw = &adapter->hw;
236 u64 stamp;
237
238 stamp = rd32(E1000_SYSTIML);
239 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
240
241 return stamp;
242}
243
9d5c8243
AK
244#ifdef DEBUG
245/**
246 * igb_get_hw_dev_name - return device name string
247 * used by hardware layer to print debugging information
248 **/
249char *igb_get_hw_dev_name(struct e1000_hw *hw)
250{
251 struct igb_adapter *adapter = hw->back;
252 return adapter->netdev->name;
253}
38c845c7
PO
254
255/**
256 * igb_get_time_str - format current NIC and system time as string
257 */
258static char *igb_get_time_str(struct igb_adapter *adapter,
259 char buffer[160])
260{
261 cycle_t hw = adapter->cycles.read(&adapter->cycles);
262 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
263 struct timespec sys;
264 struct timespec delta;
265 getnstimeofday(&sys);
266
267 delta = timespec_sub(nic, sys);
268
269 sprintf(buffer,
33af6bcc
PO
270 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
271 hw,
38c845c7
PO
272 (long)nic.tv_sec, nic.tv_nsec,
273 (long)sys.tv_sec, sys.tv_nsec,
274 (long)delta.tv_sec, delta.tv_nsec);
275
276 return buffer;
277}
9d5c8243
AK
278#endif
279
280/**
281 * igb_init_module - Driver Registration Routine
282 *
283 * igb_init_module is the first routine called when the driver is
284 * loaded. All it does is register with the PCI subsystem.
285 **/
286static int __init igb_init_module(void)
287{
288 int ret;
289 printk(KERN_INFO "%s - version %s\n",
290 igb_driver_string, igb_driver_version);
291
292 printk(KERN_INFO "%s\n", igb_copyright);
293
7dfc16fa
AD
294 global_quad_port_a = 0;
295
421e02f0 296#ifdef CONFIG_IGB_DCA
fe4506b6
JC
297 dca_register_notify(&dca_notifier);
298#endif
bbd98fe4
AD
299
300 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
301 return ret;
302}
303
304module_init(igb_init_module);
305
306/**
307 * igb_exit_module - Driver Exit Cleanup Routine
308 *
309 * igb_exit_module is called just before the driver is removed
310 * from memory.
311 **/
312static void __exit igb_exit_module(void)
313{
421e02f0 314#ifdef CONFIG_IGB_DCA
fe4506b6
JC
315 dca_unregister_notify(&dca_notifier);
316#endif
9d5c8243
AK
317 pci_unregister_driver(&igb_driver);
318}
319
320module_exit(igb_exit_module);
321
26bc19ec
AD
322#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
323/**
324 * igb_cache_ring_register - Descriptor ring to register mapping
325 * @adapter: board private structure to initialize
326 *
327 * Once we know the feature-set enabled for the device, we'll cache
328 * the register offset the descriptor ring is assigned to.
329 **/
330static void igb_cache_ring_register(struct igb_adapter *adapter)
331{
332 int i;
1bfaf07b 333 unsigned int rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
334
335 switch (adapter->hw.mac.type) {
336 case e1000_82576:
337 /* The queues are allocated for virtualization such that VF 0
338 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
339 * In order to avoid collision we start at the first free queue
340 * and continue consuming queues in the same sequence
341 */
342 for (i = 0; i < adapter->num_rx_queues; i++)
1bfaf07b
AD
343 adapter->rx_ring[i].reg_idx = rbase_offset +
344 Q_IDX_82576(i);
26bc19ec 345 for (i = 0; i < adapter->num_tx_queues; i++)
1bfaf07b
AD
346 adapter->tx_ring[i].reg_idx = rbase_offset +
347 Q_IDX_82576(i);
26bc19ec
AD
348 break;
349 case e1000_82575:
350 default:
351 for (i = 0; i < adapter->num_rx_queues; i++)
352 adapter->rx_ring[i].reg_idx = i;
353 for (i = 0; i < adapter->num_tx_queues; i++)
354 adapter->tx_ring[i].reg_idx = i;
355 break;
356 }
357}
358
9d5c8243
AK
359/**
360 * igb_alloc_queues - Allocate memory for all rings
361 * @adapter: board private structure to initialize
362 *
363 * We allocate one ring per queue at run-time since we don't know the
364 * number of queues at compile-time.
365 **/
366static int igb_alloc_queues(struct igb_adapter *adapter)
367{
368 int i;
369
370 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
371 sizeof(struct igb_ring), GFP_KERNEL);
372 if (!adapter->tx_ring)
373 return -ENOMEM;
374
375 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
376 sizeof(struct igb_ring), GFP_KERNEL);
377 if (!adapter->rx_ring) {
378 kfree(adapter->tx_ring);
379 return -ENOMEM;
380 }
381
6eb5a7f1
AD
382 adapter->rx_ring->buddy = adapter->tx_ring;
383
661086df
PWJ
384 for (i = 0; i < adapter->num_tx_queues; i++) {
385 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 386 ring->count = adapter->tx_ring_count;
661086df
PWJ
387 ring->adapter = adapter;
388 ring->queue_index = i;
389 }
9d5c8243
AK
390 for (i = 0; i < adapter->num_rx_queues; i++) {
391 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 392 ring->count = adapter->rx_ring_count;
9d5c8243 393 ring->adapter = adapter;
844290e5 394 ring->queue_index = i;
9d5c8243
AK
395 ring->itr_register = E1000_ITR;
396
844290e5 397 /* set a default napi handler for each rx_ring */
661086df 398 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243 399 }
26bc19ec
AD
400
401 igb_cache_ring_register(adapter);
9d5c8243
AK
402 return 0;
403}
404
a88f10ec
AD
405static void igb_free_queues(struct igb_adapter *adapter)
406{
407 int i;
408
409 for (i = 0; i < adapter->num_rx_queues; i++)
410 netif_napi_del(&adapter->rx_ring[i].napi);
411
412 kfree(adapter->tx_ring);
413 kfree(adapter->rx_ring);
414}
415
9d5c8243
AK
416#define IGB_N0_QUEUE -1
417static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
418 int tx_queue, int msix_vector)
419{
420 u32 msixbm = 0;
421 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
422 u32 ivar, index;
423
424 switch (hw->mac.type) {
425 case e1000_82575:
9d5c8243
AK
426 /* The 82575 assigns vectors using a bitmask, which matches the
427 bitmask for the EICR/EIMS/EIMC registers. To assign one
428 or more queues to a vector, we write the appropriate bits
429 into the MSIXBM register for that vector. */
430 if (rx_queue > IGB_N0_QUEUE) {
431 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
432 adapter->rx_ring[rx_queue].eims_value = msixbm;
433 }
434 if (tx_queue > IGB_N0_QUEUE) {
435 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
436 adapter->tx_ring[tx_queue].eims_value =
437 E1000_EICR_TX_QUEUE0 << tx_queue;
438 }
439 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
2d064c06
AD
440 break;
441 case e1000_82576:
26bc19ec 442 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
443 Each queue has a single entry in the table to which we write
444 a vector number along with a "valid" bit. Sadly, the layout
445 of the table is somewhat counterintuitive. */
446 if (rx_queue > IGB_N0_QUEUE) {
1bfaf07b 447 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 448 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 449 if (rx_queue & 0x1) {
2d064c06
AD
450 /* vector goes into third byte of register */
451 ivar = ivar & 0xFF00FFFF;
452 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
26bc19ec
AD
453 } else {
454 /* vector goes into low byte of register */
455 ivar = ivar & 0xFFFFFF00;
456 ivar |= msix_vector | E1000_IVAR_VALID;
2d064c06
AD
457 }
458 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
459 array_wr32(E1000_IVAR0, index, ivar);
460 }
461 if (tx_queue > IGB_N0_QUEUE) {
1bfaf07b 462 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 463 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 464 if (tx_queue & 0x1) {
2d064c06
AD
465 /* vector goes into high byte of register */
466 ivar = ivar & 0x00FFFFFF;
467 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
26bc19ec
AD
468 } else {
469 /* vector goes into second byte of register */
470 ivar = ivar & 0xFFFF00FF;
471 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
2d064c06
AD
472 }
473 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
474 array_wr32(E1000_IVAR0, index, ivar);
475 }
476 break;
477 default:
478 BUG();
479 break;
480 }
9d5c8243
AK
481}
482
483/**
484 * igb_configure_msix - Configure MSI-X hardware
485 *
486 * igb_configure_msix sets up the hardware to properly
487 * generate MSI-X interrupts.
488 **/
489static void igb_configure_msix(struct igb_adapter *adapter)
490{
491 u32 tmp;
492 int i, vector = 0;
493 struct e1000_hw *hw = &adapter->hw;
494
495 adapter->eims_enable_mask = 0;
2d064c06
AD
496 if (hw->mac.type == e1000_82576)
497 /* Turn on MSI-X capability first, or our settings
498 * won't stick. And it will take days to debug. */
499 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
eebbbdba 500 E1000_GPIE_PBA | E1000_GPIE_EIAME |
2d064c06 501 E1000_GPIE_NSICR);
9d5c8243
AK
502
503 for (i = 0; i < adapter->num_tx_queues; i++) {
504 struct igb_ring *tx_ring = &adapter->tx_ring[i];
505 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
506 adapter->eims_enable_mask |= tx_ring->eims_value;
507 if (tx_ring->itr_val)
6eb5a7f1 508 writel(tx_ring->itr_val,
9d5c8243
AK
509 hw->hw_addr + tx_ring->itr_register);
510 else
511 writel(1, hw->hw_addr + tx_ring->itr_register);
512 }
513
514 for (i = 0; i < adapter->num_rx_queues; i++) {
515 struct igb_ring *rx_ring = &adapter->rx_ring[i];
25ac3c24 516 rx_ring->buddy = NULL;
9d5c8243
AK
517 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
518 adapter->eims_enable_mask |= rx_ring->eims_value;
519 if (rx_ring->itr_val)
6eb5a7f1 520 writel(rx_ring->itr_val,
9d5c8243
AK
521 hw->hw_addr + rx_ring->itr_register);
522 else
523 writel(1, hw->hw_addr + rx_ring->itr_register);
524 }
525
526
527 /* set vector for other causes, i.e. link changes */
2d064c06
AD
528 switch (hw->mac.type) {
529 case e1000_82575:
9d5c8243
AK
530 array_wr32(E1000_MSIXBM(0), vector++,
531 E1000_EIMS_OTHER);
532
9d5c8243
AK
533 tmp = rd32(E1000_CTRL_EXT);
534 /* enable MSI-X PBA support*/
535 tmp |= E1000_CTRL_EXT_PBA_CLR;
536
537 /* Auto-Mask interrupts upon ICR read. */
538 tmp |= E1000_CTRL_EXT_EIAME;
539 tmp |= E1000_CTRL_EXT_IRCA;
540
541 wr32(E1000_CTRL_EXT, tmp);
542 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 543 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 544
2d064c06
AD
545 break;
546
547 case e1000_82576:
548 tmp = (vector++ | E1000_IVAR_VALID) << 8;
549 wr32(E1000_IVAR_MISC, tmp);
550
551 adapter->eims_enable_mask = (1 << (vector)) - 1;
552 adapter->eims_other = 1 << (vector - 1);
553 break;
554 default:
555 /* do nothing, since nothing else supports MSI-X */
556 break;
557 } /* switch (hw->mac.type) */
9d5c8243
AK
558 wrfl();
559}
560
561/**
562 * igb_request_msix - Initialize MSI-X interrupts
563 *
564 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
565 * kernel.
566 **/
567static int igb_request_msix(struct igb_adapter *adapter)
568{
569 struct net_device *netdev = adapter->netdev;
570 int i, err = 0, vector = 0;
571
572 vector = 0;
573
574 for (i = 0; i < adapter->num_tx_queues; i++) {
575 struct igb_ring *ring = &(adapter->tx_ring[i]);
cb7b48f6 576 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
9d5c8243
AK
577 err = request_irq(adapter->msix_entries[vector].vector,
578 &igb_msix_tx, 0, ring->name,
579 &(adapter->tx_ring[i]));
580 if (err)
581 goto out;
582 ring->itr_register = E1000_EITR(0) + (vector << 2);
6eb5a7f1 583 ring->itr_val = 976; /* ~4000 ints/sec */
9d5c8243
AK
584 vector++;
585 }
586 for (i = 0; i < adapter->num_rx_queues; i++) {
587 struct igb_ring *ring = &(adapter->rx_ring[i]);
588 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 589 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
9d5c8243
AK
590 else
591 memcpy(ring->name, netdev->name, IFNAMSIZ);
592 err = request_irq(adapter->msix_entries[vector].vector,
593 &igb_msix_rx, 0, ring->name,
594 &(adapter->rx_ring[i]));
595 if (err)
596 goto out;
597 ring->itr_register = E1000_EITR(0) + (vector << 2);
598 ring->itr_val = adapter->itr;
599 vector++;
600 }
601
602 err = request_irq(adapter->msix_entries[vector].vector,
603 &igb_msix_other, 0, netdev->name, netdev);
604 if (err)
605 goto out;
606
9d5c8243
AK
607 igb_configure_msix(adapter);
608 return 0;
609out:
610 return err;
611}
612
613static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
614{
615 if (adapter->msix_entries) {
616 pci_disable_msix(adapter->pdev);
617 kfree(adapter->msix_entries);
618 adapter->msix_entries = NULL;
7dfc16fa 619 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
9d5c8243
AK
620 pci_disable_msi(adapter->pdev);
621 return;
622}
623
624
625/**
626 * igb_set_interrupt_capability - set MSI or MSI-X if supported
627 *
628 * Attempt to configure interrupts using the best available
629 * capabilities of the hardware and kernel.
630 **/
631static void igb_set_interrupt_capability(struct igb_adapter *adapter)
632{
633 int err;
634 int numvecs, i;
635
83b7180d
AD
636 /* Number of supported queues. */
637 /* Having more queues than CPUs doesn't make sense. */
638 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
639 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
640
9d5c8243
AK
641 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
642 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
643 GFP_KERNEL);
644 if (!adapter->msix_entries)
645 goto msi_only;
646
647 for (i = 0; i < numvecs; i++)
648 adapter->msix_entries[i].entry = i;
649
650 err = pci_enable_msix(adapter->pdev,
651 adapter->msix_entries,
652 numvecs);
653 if (err == 0)
34a20e89 654 goto out;
9d5c8243
AK
655
656 igb_reset_interrupt_capability(adapter);
657
658 /* If we can't do MSI-X, try MSI */
659msi_only:
660 adapter->num_rx_queues = 1;
661086df 661 adapter->num_tx_queues = 1;
9d5c8243 662 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 663 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 664out:
661086df 665 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 666 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
667 return;
668}
669
670/**
671 * igb_request_irq - initialize interrupts
672 *
673 * Attempts to configure interrupts using the best available
674 * capabilities of the hardware and kernel.
675 **/
676static int igb_request_irq(struct igb_adapter *adapter)
677{
678 struct net_device *netdev = adapter->netdev;
679 struct e1000_hw *hw = &adapter->hw;
680 int err = 0;
681
682 if (adapter->msix_entries) {
683 err = igb_request_msix(adapter);
844290e5 684 if (!err)
9d5c8243 685 goto request_done;
9d5c8243
AK
686 /* fall back to MSI */
687 igb_reset_interrupt_capability(adapter);
688 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 689 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
690 igb_free_all_tx_resources(adapter);
691 igb_free_all_rx_resources(adapter);
692 adapter->num_rx_queues = 1;
693 igb_alloc_queues(adapter);
844290e5 694 } else {
2d064c06
AD
695 switch (hw->mac.type) {
696 case e1000_82575:
697 wr32(E1000_MSIXBM(0),
698 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
699 break;
700 case e1000_82576:
701 wr32(E1000_IVAR0, E1000_IVAR_VALID);
702 break;
703 default:
704 break;
705 }
9d5c8243 706 }
844290e5 707
7dfc16fa 708 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
709 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
710 netdev->name, netdev);
711 if (!err)
712 goto request_done;
713 /* fall back to legacy interrupts */
714 igb_reset_interrupt_capability(adapter);
7dfc16fa 715 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
716 }
717
718 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
719 netdev->name, netdev);
720
6cb5e577 721 if (err)
9d5c8243
AK
722 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
723 err);
9d5c8243
AK
724
725request_done:
726 return err;
727}
728
729static void igb_free_irq(struct igb_adapter *adapter)
730{
731 struct net_device *netdev = adapter->netdev;
732
733 if (adapter->msix_entries) {
734 int vector = 0, i;
735
736 for (i = 0; i < adapter->num_tx_queues; i++)
737 free_irq(adapter->msix_entries[vector++].vector,
738 &(adapter->tx_ring[i]));
739 for (i = 0; i < adapter->num_rx_queues; i++)
740 free_irq(adapter->msix_entries[vector++].vector,
741 &(adapter->rx_ring[i]));
742
743 free_irq(adapter->msix_entries[vector++].vector, netdev);
744 return;
745 }
746
747 free_irq(adapter->pdev->irq, netdev);
748}
749
750/**
751 * igb_irq_disable - Mask off interrupt generation on the NIC
752 * @adapter: board private structure
753 **/
754static void igb_irq_disable(struct igb_adapter *adapter)
755{
756 struct e1000_hw *hw = &adapter->hw;
757
758 if (adapter->msix_entries) {
844290e5 759 wr32(E1000_EIAM, 0);
9d5c8243
AK
760 wr32(E1000_EIMC, ~0);
761 wr32(E1000_EIAC, 0);
762 }
844290e5
PW
763
764 wr32(E1000_IAM, 0);
9d5c8243
AK
765 wr32(E1000_IMC, ~0);
766 wrfl();
767 synchronize_irq(adapter->pdev->irq);
768}
769
770/**
771 * igb_irq_enable - Enable default interrupt generation settings
772 * @adapter: board private structure
773 **/
774static void igb_irq_enable(struct igb_adapter *adapter)
775{
776 struct e1000_hw *hw = &adapter->hw;
777
778 if (adapter->msix_entries) {
844290e5
PW
779 wr32(E1000_EIAC, adapter->eims_enable_mask);
780 wr32(E1000_EIAM, adapter->eims_enable_mask);
781 wr32(E1000_EIMS, adapter->eims_enable_mask);
4ae196df
AD
782 if (adapter->vfs_allocated_count)
783 wr32(E1000_MBVFIMR, 0xFF);
784 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
785 E1000_IMS_DOUTSYNC));
844290e5
PW
786 } else {
787 wr32(E1000_IMS, IMS_ENABLE_MASK);
788 wr32(E1000_IAM, IMS_ENABLE_MASK);
789 }
9d5c8243
AK
790}
791
792static void igb_update_mng_vlan(struct igb_adapter *adapter)
793{
794 struct net_device *netdev = adapter->netdev;
795 u16 vid = adapter->hw.mng_cookie.vlan_id;
796 u16 old_vid = adapter->mng_vlan_id;
797 if (adapter->vlgrp) {
798 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
799 if (adapter->hw.mng_cookie.status &
800 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
801 igb_vlan_rx_add_vid(netdev, vid);
802 adapter->mng_vlan_id = vid;
803 } else
804 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
805
806 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
807 (vid != old_vid) &&
808 !vlan_group_get_device(adapter->vlgrp, old_vid))
809 igb_vlan_rx_kill_vid(netdev, old_vid);
810 } else
811 adapter->mng_vlan_id = vid;
812 }
813}
814
815/**
816 * igb_release_hw_control - release control of the h/w to f/w
817 * @adapter: address of board private structure
818 *
819 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
820 * For ASF and Pass Through versions of f/w this means that the
821 * driver is no longer loaded.
822 *
823 **/
824static void igb_release_hw_control(struct igb_adapter *adapter)
825{
826 struct e1000_hw *hw = &adapter->hw;
827 u32 ctrl_ext;
828
829 /* Let firmware take over control of h/w */
830 ctrl_ext = rd32(E1000_CTRL_EXT);
831 wr32(E1000_CTRL_EXT,
832 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
833}
834
835
836/**
837 * igb_get_hw_control - get control of the h/w from f/w
838 * @adapter: address of board private structure
839 *
840 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
841 * For ASF and Pass Through versions of f/w this means that
842 * the driver is loaded.
843 *
844 **/
845static void igb_get_hw_control(struct igb_adapter *adapter)
846{
847 struct e1000_hw *hw = &adapter->hw;
848 u32 ctrl_ext;
849
850 /* Let firmware know the driver has taken over */
851 ctrl_ext = rd32(E1000_CTRL_EXT);
852 wr32(E1000_CTRL_EXT,
853 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
854}
855
9d5c8243
AK
856/**
857 * igb_configure - configure the hardware for RX and TX
858 * @adapter: private board structure
859 **/
860static void igb_configure(struct igb_adapter *adapter)
861{
862 struct net_device *netdev = adapter->netdev;
863 int i;
864
865 igb_get_hw_control(adapter);
866 igb_set_multi(netdev);
867
868 igb_restore_vlan(adapter);
9d5c8243
AK
869
870 igb_configure_tx(adapter);
871 igb_setup_rctl(adapter);
872 igb_configure_rx(adapter);
662d7205
AD
873
874 igb_rx_fifo_flush_82575(&adapter->hw);
875
9d5c8243
AK
876 /* call IGB_DESC_UNUSED which always leaves
877 * at least 1 descriptor unused to make sure
878 * next_to_use != next_to_clean */
879 for (i = 0; i < adapter->num_rx_queues; i++) {
880 struct igb_ring *ring = &adapter->rx_ring[i];
3b644cf6 881 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
9d5c8243
AK
882 }
883
884
885 adapter->tx_queue_len = netdev->tx_queue_len;
886}
887
888
889/**
890 * igb_up - Open the interface and prepare it to handle traffic
891 * @adapter: board private structure
892 **/
893
894int igb_up(struct igb_adapter *adapter)
895{
896 struct e1000_hw *hw = &adapter->hw;
897 int i;
898
899 /* hardware has been reset, we need to reload some things */
900 igb_configure(adapter);
901
902 clear_bit(__IGB_DOWN, &adapter->state);
903
844290e5
PW
904 for (i = 0; i < adapter->num_rx_queues; i++)
905 napi_enable(&adapter->rx_ring[i].napi);
906 if (adapter->msix_entries)
9d5c8243 907 igb_configure_msix(adapter);
9d5c8243 908
4ae196df 909 igb_vmm_control(adapter);
e1739522
AD
910 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
911 igb_set_vmolr(hw, adapter->vfs_allocated_count);
912
9d5c8243
AK
913 /* Clear any pending interrupts. */
914 rd32(E1000_ICR);
915 igb_irq_enable(adapter);
916
917 /* Fire a link change interrupt to start the watchdog. */
918 wr32(E1000_ICS, E1000_ICS_LSC);
919 return 0;
920}
921
922void igb_down(struct igb_adapter *adapter)
923{
924 struct e1000_hw *hw = &adapter->hw;
925 struct net_device *netdev = adapter->netdev;
926 u32 tctl, rctl;
927 int i;
928
929 /* signal that we're down so the interrupt handler does not
930 * reschedule our watchdog timer */
931 set_bit(__IGB_DOWN, &adapter->state);
932
933 /* disable receives in the hardware */
934 rctl = rd32(E1000_RCTL);
935 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
936 /* flush and sleep below */
937
fd2ea0a7 938 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
939
940 /* disable transmits in the hardware */
941 tctl = rd32(E1000_TCTL);
942 tctl &= ~E1000_TCTL_EN;
943 wr32(E1000_TCTL, tctl);
944 /* flush both disables and wait for them to finish */
945 wrfl();
946 msleep(10);
947
844290e5
PW
948 for (i = 0; i < adapter->num_rx_queues; i++)
949 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 950
9d5c8243
AK
951 igb_irq_disable(adapter);
952
953 del_timer_sync(&adapter->watchdog_timer);
954 del_timer_sync(&adapter->phy_info_timer);
955
956 netdev->tx_queue_len = adapter->tx_queue_len;
957 netif_carrier_off(netdev);
04fe6358
AD
958
959 /* record the stats before reset*/
960 igb_update_stats(adapter);
961
9d5c8243
AK
962 adapter->link_speed = 0;
963 adapter->link_duplex = 0;
964
3023682e
JK
965 if (!pci_channel_offline(adapter->pdev))
966 igb_reset(adapter);
9d5c8243
AK
967 igb_clean_all_tx_rings(adapter);
968 igb_clean_all_rx_rings(adapter);
969}
970
971void igb_reinit_locked(struct igb_adapter *adapter)
972{
973 WARN_ON(in_interrupt());
974 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
975 msleep(1);
976 igb_down(adapter);
977 igb_up(adapter);
978 clear_bit(__IGB_RESETTING, &adapter->state);
979}
980
981void igb_reset(struct igb_adapter *adapter)
982{
983 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
984 struct e1000_mac_info *mac = &hw->mac;
985 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
986 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
987 u16 hwm;
988
989 /* Repartition Pba for greater than 9k mtu
990 * To take effect CTRL.RST is required.
991 */
fa4dfae0
AD
992 switch (mac->type) {
993 case e1000_82576:
2d064c06 994 pba = E1000_PBA_64K;
fa4dfae0
AD
995 break;
996 case e1000_82575:
997 default:
998 pba = E1000_PBA_34K;
999 break;
2d064c06 1000 }
9d5c8243 1001
2d064c06
AD
1002 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1003 (mac->type < e1000_82576)) {
9d5c8243
AK
1004 /* adjust PBA for jumbo frames */
1005 wr32(E1000_PBA, pba);
1006
1007 /* To maintain wire speed transmits, the Tx FIFO should be
1008 * large enough to accommodate two full transmit packets,
1009 * rounded up to the next 1KB and expressed in KB. Likewise,
1010 * the Rx FIFO should be large enough to accommodate at least
1011 * one full receive packet and is similarly rounded up and
1012 * expressed in KB. */
1013 pba = rd32(E1000_PBA);
1014 /* upper 16 bits has Tx packet buffer allocation size in KB */
1015 tx_space = pba >> 16;
1016 /* lower 16 bits has Rx packet buffer allocation size in KB */
1017 pba &= 0xffff;
1018 /* the tx fifo also stores 16 bytes of information about the tx
1019 * but don't include ethernet FCS because hardware appends it */
1020 min_tx_space = (adapter->max_frame_size +
85e8d004 1021 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1022 ETH_FCS_LEN) * 2;
1023 min_tx_space = ALIGN(min_tx_space, 1024);
1024 min_tx_space >>= 10;
1025 /* software strips receive CRC, so leave room for it */
1026 min_rx_space = adapter->max_frame_size;
1027 min_rx_space = ALIGN(min_rx_space, 1024);
1028 min_rx_space >>= 10;
1029
1030 /* If current Tx allocation is less than the min Tx FIFO size,
1031 * and the min Tx FIFO size is less than the current Rx FIFO
1032 * allocation, take space away from current Rx allocation */
1033 if (tx_space < min_tx_space &&
1034 ((min_tx_space - tx_space) < pba)) {
1035 pba = pba - (min_tx_space - tx_space);
1036
1037 /* if short on rx space, rx wins and must trump tx
1038 * adjustment */
1039 if (pba < min_rx_space)
1040 pba = min_rx_space;
1041 }
2d064c06 1042 wr32(E1000_PBA, pba);
9d5c8243 1043 }
9d5c8243
AK
1044
1045 /* flow control settings */
1046 /* The high water mark must be low enough to fit one full frame
1047 * (or the size used for early receive) above it in the Rx FIFO.
1048 * Set it to the lower of:
1049 * - 90% of the Rx FIFO size, or
1050 * - the full Rx FIFO size minus one full frame */
1051 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1052 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1053
2d064c06
AD
1054 if (mac->type < e1000_82576) {
1055 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1056 fc->low_water = fc->high_water - 8;
1057 } else {
1058 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1059 fc->low_water = fc->high_water - 16;
1060 }
9d5c8243
AK
1061 fc->pause_time = 0xFFFF;
1062 fc->send_xon = 1;
1063 fc->type = fc->original_type;
1064
4ae196df
AD
1065 /* disable receive for all VFs and wait one second */
1066 if (adapter->vfs_allocated_count) {
1067 int i;
1068 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1069 adapter->vf_data[i].clear_to_send = false;
1070
1071 /* ping all the active vfs to let them know we are going down */
1072 igb_ping_all_vfs(adapter);
1073
1074 /* disable transmits and receives */
1075 wr32(E1000_VFRE, 0);
1076 wr32(E1000_VFTE, 0);
1077 }
1078
9d5c8243
AK
1079 /* Allow time for pending master requests to run */
1080 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1081 wr32(E1000_WUC, 0);
1082
1083 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1084 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1085
1086 igb_update_mng_vlan(adapter);
1087
1088 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1089 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1090
1091 igb_reset_adaptive(&adapter->hw);
f5f4cf08 1092 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
1093}
1094
2e5c6922
SH
1095static const struct net_device_ops igb_netdev_ops = {
1096 .ndo_open = igb_open,
1097 .ndo_stop = igb_close,
00829823 1098 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922
SH
1099 .ndo_get_stats = igb_get_stats,
1100 .ndo_set_multicast_list = igb_set_multi,
1101 .ndo_set_mac_address = igb_set_mac,
1102 .ndo_change_mtu = igb_change_mtu,
1103 .ndo_do_ioctl = igb_ioctl,
1104 .ndo_tx_timeout = igb_tx_timeout,
1105 .ndo_validate_addr = eth_validate_addr,
1106 .ndo_vlan_rx_register = igb_vlan_rx_register,
1107 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1108 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1109#ifdef CONFIG_NET_POLL_CONTROLLER
1110 .ndo_poll_controller = igb_netpoll,
1111#endif
1112};
1113
9d5c8243
AK
1114/**
1115 * igb_probe - Device Initialization Routine
1116 * @pdev: PCI device information struct
1117 * @ent: entry in igb_pci_tbl
1118 *
1119 * Returns 0 on success, negative on failure
1120 *
1121 * igb_probe initializes an adapter identified by a pci_dev structure.
1122 * The OS initialization, configuring of the adapter private structure,
1123 * and a hardware reset occur.
1124 **/
1125static int __devinit igb_probe(struct pci_dev *pdev,
1126 const struct pci_device_id *ent)
1127{
1128 struct net_device *netdev;
1129 struct igb_adapter *adapter;
1130 struct e1000_hw *hw;
1131 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1132 unsigned long mmio_start, mmio_len;
2d6a5e95 1133 int err, pci_using_dac;
682337fe 1134 u16 eeprom_data = 0;
9d5c8243
AK
1135 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1136 u32 part_num;
1137
aed5dec3 1138 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1139 if (err)
1140 return err;
1141
1142 pci_using_dac = 0;
1143 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1144 if (!err) {
1145 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1146 if (!err)
1147 pci_using_dac = 1;
1148 } else {
1149 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1150 if (err) {
1151 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1152 if (err) {
1153 dev_err(&pdev->dev, "No usable DMA "
1154 "configuration, aborting\n");
1155 goto err_dma;
1156 }
1157 }
1158 }
1159
aed5dec3
AD
1160 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1161 IORESOURCE_MEM),
1162 igb_driver_name);
9d5c8243
AK
1163 if (err)
1164 goto err_pci_reg;
1165
ea943d41
JK
1166 err = pci_enable_pcie_error_reporting(pdev);
1167 if (err) {
1168 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1169 "0x%x\n", err);
1170 /* non-fatal, continue */
1171 }
40a914fa 1172
9d5c8243 1173 pci_set_master(pdev);
c682fc23 1174 pci_save_state(pdev);
9d5c8243
AK
1175
1176 err = -ENOMEM;
1bfaf07b
AD
1177 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1178 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1179 if (!netdev)
1180 goto err_alloc_etherdev;
1181
1182 SET_NETDEV_DEV(netdev, &pdev->dev);
1183
1184 pci_set_drvdata(pdev, netdev);
1185 adapter = netdev_priv(netdev);
1186 adapter->netdev = netdev;
1187 adapter->pdev = pdev;
1188 hw = &adapter->hw;
1189 hw->back = adapter;
1190 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1191
1192 mmio_start = pci_resource_start(pdev, 0);
1193 mmio_len = pci_resource_len(pdev, 0);
1194
1195 err = -EIO;
28b0759c
AD
1196 hw->hw_addr = ioremap(mmio_start, mmio_len);
1197 if (!hw->hw_addr)
9d5c8243
AK
1198 goto err_ioremap;
1199
2e5c6922 1200 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1201 igb_set_ethtool_ops(netdev);
9d5c8243 1202 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1203
1204 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1205
1206 netdev->mem_start = mmio_start;
1207 netdev->mem_end = mmio_start + mmio_len;
1208
9d5c8243
AK
1209 /* PCI config space info */
1210 hw->vendor_id = pdev->vendor;
1211 hw->device_id = pdev->device;
1212 hw->revision_id = pdev->revision;
1213 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1214 hw->subsystem_device_id = pdev->subsystem_device;
1215
1216 /* setup the private structure */
1217 hw->back = adapter;
1218 /* Copy the default MAC, PHY and NVM function pointers */
1219 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1220 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1221 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1222 /* Initialize skew-specific constants */
1223 err = ei->get_invariants(hw);
1224 if (err)
450c87c8 1225 goto err_sw_init;
9d5c8243 1226
450c87c8 1227 /* setup the private structure */
9d5c8243
AK
1228 err = igb_sw_init(adapter);
1229 if (err)
1230 goto err_sw_init;
1231
1232 igb_get_bus_info_pcie(hw);
1233
7dfc16fa
AD
1234 /* set flags */
1235 switch (hw->mac.type) {
7dfc16fa 1236 case e1000_82575:
7dfc16fa
AD
1237 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1238 break;
bbd98fe4 1239 case e1000_82576:
7dfc16fa
AD
1240 default:
1241 break;
1242 }
1243
9d5c8243
AK
1244 hw->phy.autoneg_wait_to_complete = false;
1245 hw->mac.adaptive_ifs = true;
1246
1247 /* Copper options */
1248 if (hw->phy.media_type == e1000_media_type_copper) {
1249 hw->phy.mdix = AUTO_ALL_MODES;
1250 hw->phy.disable_polarity_correction = false;
1251 hw->phy.ms_type = e1000_ms_hw_default;
1252 }
1253
1254 if (igb_check_reset_block(hw))
1255 dev_info(&pdev->dev,
1256 "PHY reset is blocked due to SOL/IDER session.\n");
1257
1258 netdev->features = NETIF_F_SG |
7d8eb29e 1259 NETIF_F_IP_CSUM |
9d5c8243
AK
1260 NETIF_F_HW_VLAN_TX |
1261 NETIF_F_HW_VLAN_RX |
1262 NETIF_F_HW_VLAN_FILTER;
1263
7d8eb29e 1264 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1265 netdev->features |= NETIF_F_TSO;
9d5c8243 1266 netdev->features |= NETIF_F_TSO6;
48f29ffc 1267
5c0999b7 1268 netdev->features |= NETIF_F_GRO;
d3352520 1269
48f29ffc
JK
1270 netdev->vlan_features |= NETIF_F_TSO;
1271 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1272 netdev->vlan_features |= NETIF_F_IP_CSUM;
48f29ffc
JK
1273 netdev->vlan_features |= NETIF_F_SG;
1274
9d5c8243
AK
1275 if (pci_using_dac)
1276 netdev->features |= NETIF_F_HIGHDMA;
1277
9d5c8243
AK
1278 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1279
1280 /* before reading the NVM, reset the controller to put the device in a
1281 * known good starting state */
1282 hw->mac.ops.reset_hw(hw);
1283
1284 /* make sure the NVM is good */
1285 if (igb_validate_nvm_checksum(hw) < 0) {
1286 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1287 err = -EIO;
1288 goto err_eeprom;
1289 }
1290
1291 /* copy the MAC address out of the NVM */
1292 if (hw->mac.ops.read_mac_addr(hw))
1293 dev_err(&pdev->dev, "NVM Read Error\n");
1294
1295 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1296 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1297
1298 if (!is_valid_ether_addr(netdev->perm_addr)) {
1299 dev_err(&pdev->dev, "Invalid MAC Address\n");
1300 err = -EIO;
1301 goto err_eeprom;
1302 }
1303
1304 init_timer(&adapter->watchdog_timer);
1305 adapter->watchdog_timer.function = &igb_watchdog;
1306 adapter->watchdog_timer.data = (unsigned long) adapter;
1307
1308 init_timer(&adapter->phy_info_timer);
1309 adapter->phy_info_timer.function = &igb_update_phy_info;
1310 adapter->phy_info_timer.data = (unsigned long) adapter;
1311
1312 INIT_WORK(&adapter->reset_task, igb_reset_task);
1313 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1314
450c87c8 1315 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1316 adapter->fc_autoneg = true;
1317 hw->mac.autoneg = true;
1318 hw->phy.autoneg_advertised = 0x2f;
1319
1320 hw->fc.original_type = e1000_fc_default;
1321 hw->fc.type = e1000_fc_default;
1322
cbd347ad 1323 adapter->itr_setting = IGB_DEFAULT_ITR;
9d5c8243
AK
1324 adapter->itr = IGB_START_ITR;
1325
1326 igb_validate_mdi_setting(hw);
1327
1328 adapter->rx_csum = 1;
1329
1330 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1331 * enable the ACPI Magic Packet filter
1332 */
1333
a2cf8b6c 1334 if (hw->bus.func == 0)
312c75ae 1335 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
a2cf8b6c
AD
1336 else if (hw->bus.func == 1)
1337 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1338
1339 if (eeprom_data & eeprom_apme_mask)
1340 adapter->eeprom_wol |= E1000_WUFC_MAG;
1341
1342 /* now that we have the eeprom settings, apply the special cases where
1343 * the eeprom may be wrong or the board simply won't support wake on
1344 * lan on a particular port */
1345 switch (pdev->device) {
1346 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1347 adapter->eeprom_wol = 0;
1348 break;
1349 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1350 case E1000_DEV_ID_82576_FIBER:
1351 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1352 /* Wake events only supported on port A for dual fiber
1353 * regardless of eeprom setting */
1354 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1355 adapter->eeprom_wol = 0;
1356 break;
c8ea5ea9
AD
1357 case E1000_DEV_ID_82576_QUAD_COPPER:
1358 /* if quad port adapter, disable WoL on all but port A */
1359 if (global_quad_port_a != 0)
1360 adapter->eeprom_wol = 0;
1361 else
1362 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1363 /* Reset for multiple quad port adapters */
1364 if (++global_quad_port_a == 4)
1365 global_quad_port_a = 0;
1366 break;
9d5c8243
AK
1367 }
1368
1369 /* initialize the wol settings based on the eeprom settings */
1370 adapter->wol = adapter->eeprom_wol;
e1b86d84 1371 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1372
1373 /* reset the hardware with the new settings */
1374 igb_reset(adapter);
1375
1376 /* let the f/w know that the h/w is now under the control of the
1377 * driver. */
1378 igb_get_hw_control(adapter);
1379
1380 /* tell the stack to leave us alone until igb_open() is called */
1381 netif_carrier_off(netdev);
fd2ea0a7 1382 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1383
1384 strcpy(netdev->name, "eth%d");
1385 err = register_netdev(netdev);
1386 if (err)
1387 goto err_register;
1388
37680117
AD
1389#ifdef CONFIG_PCI_IOV
1390 /* since iov functionality isn't critical to base device function we
1391 * can accept failure. If it fails we don't allow iov to be enabled */
1392 if (hw->mac.type == e1000_82576) {
1393 err = pci_enable_sriov(pdev, 0);
1394 if (!err)
1395 err = device_create_file(&netdev->dev,
1396 &dev_attr_num_vfs);
1397 if (err)
1398 dev_err(&pdev->dev, "Failed to initialize IOV\n");
1399 }
1400
1401#endif
421e02f0 1402#ifdef CONFIG_IGB_DCA
bbd98fe4 1403 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1404 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1405 dev_info(&pdev->dev, "DCA enabled\n");
1406 /* Always use CB2 mode, difference is masked
1407 * in the CB driver. */
cbd347ad 1408 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6
JC
1409 igb_setup_dca(adapter);
1410 }
1411#endif
1412
38c845c7
PO
1413 /*
1414 * Initialize hardware timer: we keep it running just in case
1415 * that some program needs it later on.
1416 */
1417 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1418 adapter->cycles.read = igb_read_clock;
1419 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1420 adapter->cycles.mult = 1;
1421 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1422 wr32(E1000_TIMINCA,
1423 (1<<24) |
1424 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1425#if 0
1426 /*
1427 * Avoid rollover while we initialize by resetting the time counter.
1428 */
1429 wr32(E1000_SYSTIML, 0x00000000);
1430 wr32(E1000_SYSTIMH, 0x00000000);
1431#else
1432 /*
1433 * Set registers so that rollover occurs soon to test this.
1434 */
1435 wr32(E1000_SYSTIML, 0x00000000);
1436 wr32(E1000_SYSTIMH, 0xFF800000);
1437#endif
1438 wrfl();
1439 timecounter_init(&adapter->clock,
1440 &adapter->cycles,
1441 ktime_to_ns(ktime_get_real()));
1442
33af6bcc
PO
1443 /*
1444 * Synchronize our NIC clock against system wall clock. NIC
1445 * time stamp reading requires ~3us per sample, each sample
1446 * was pretty stable even under load => only require 10
1447 * samples for each offset comparison.
1448 */
1449 memset(&adapter->compare, 0, sizeof(adapter->compare));
1450 adapter->compare.source = &adapter->clock;
1451 adapter->compare.target = ktime_get_real;
1452 adapter->compare.num_samples = 10;
1453 timecompare_update(&adapter->compare, 0);
1454
38c845c7
PO
1455#ifdef DEBUG
1456 {
1457 char buffer[160];
1458 printk(KERN_DEBUG
1459 "igb: %s: hw %p initialized timer\n",
1460 igb_get_time_str(adapter, buffer),
1461 &adapter->hw);
1462 }
1463#endif
1464
9d5c8243
AK
1465 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1466 /* print bus type/speed/width info */
7c510e4b 1467 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243
AK
1468 netdev->name,
1469 ((hw->bus.speed == e1000_bus_speed_2500)
1470 ? "2.5Gb/s" : "unknown"),
1471 ((hw->bus.width == e1000_bus_width_pcie_x4)
1472 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1473 ? "Width x1" : "unknown"),
7c510e4b 1474 netdev->dev_addr);
9d5c8243
AK
1475
1476 igb_read_part_num(hw, &part_num);
1477 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1478 (part_num >> 8), (part_num & 0xff));
1479
1480 dev_info(&pdev->dev,
1481 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1482 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1483 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1484 adapter->num_rx_queues, adapter->num_tx_queues);
1485
9d5c8243
AK
1486 return 0;
1487
1488err_register:
1489 igb_release_hw_control(adapter);
1490err_eeprom:
1491 if (!igb_check_reset_block(hw))
f5f4cf08 1492 igb_reset_phy(hw);
9d5c8243
AK
1493
1494 if (hw->flash_address)
1495 iounmap(hw->flash_address);
1496
a88f10ec 1497 igb_free_queues(adapter);
9d5c8243 1498err_sw_init:
9d5c8243
AK
1499 iounmap(hw->hw_addr);
1500err_ioremap:
1501 free_netdev(netdev);
1502err_alloc_etherdev:
aed5dec3
AD
1503 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1504 IORESOURCE_MEM));
9d5c8243
AK
1505err_pci_reg:
1506err_dma:
1507 pci_disable_device(pdev);
1508 return err;
1509}
1510
1511/**
1512 * igb_remove - Device Removal Routine
1513 * @pdev: PCI device information struct
1514 *
1515 * igb_remove is called by the PCI subsystem to alert the driver
1516 * that it should release a PCI device. The could be caused by a
1517 * Hot-Plug event, or because the driver is going to be removed from
1518 * memory.
1519 **/
1520static void __devexit igb_remove(struct pci_dev *pdev)
1521{
1522 struct net_device *netdev = pci_get_drvdata(pdev);
1523 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1524 struct e1000_hw *hw = &adapter->hw;
ea943d41 1525 int err;
9d5c8243
AK
1526
1527 /* flush_scheduled work may reschedule our watchdog task, so
1528 * explicitly disable watchdog tasks from being rescheduled */
1529 set_bit(__IGB_DOWN, &adapter->state);
1530 del_timer_sync(&adapter->watchdog_timer);
1531 del_timer_sync(&adapter->phy_info_timer);
1532
1533 flush_scheduled_work();
1534
421e02f0 1535#ifdef CONFIG_IGB_DCA
7dfc16fa 1536 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1537 dev_info(&pdev->dev, "DCA disabled\n");
1538 dca_remove_requester(&pdev->dev);
7dfc16fa 1539 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1540 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1541 }
1542#endif
1543
9d5c8243
AK
1544 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1545 * would have already happened in close and is redundant. */
1546 igb_release_hw_control(adapter);
1547
1548 unregister_netdev(netdev);
1549
f5f4cf08
AD
1550 if (!igb_check_reset_block(&adapter->hw))
1551 igb_reset_phy(&adapter->hw);
9d5c8243 1552
9d5c8243
AK
1553 igb_reset_interrupt_capability(adapter);
1554
a88f10ec 1555 igb_free_queues(adapter);
9d5c8243 1556
37680117
AD
1557#ifdef CONFIG_PCI_IOV
1558 /* reclaim resources allocated to VFs */
1559 if (adapter->vf_data) {
1560 /* disable iov and allow time for transactions to clear */
1561 pci_disable_sriov(pdev);
1562 msleep(500);
1563
1564 kfree(adapter->vf_data);
1565 adapter->vf_data = NULL;
1566 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1567 msleep(100);
1568 dev_info(&pdev->dev, "IOV Disabled\n");
1569 }
1570#endif
28b0759c
AD
1571 iounmap(hw->hw_addr);
1572 if (hw->flash_address)
1573 iounmap(hw->flash_address);
aed5dec3
AD
1574 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1575 IORESOURCE_MEM));
9d5c8243
AK
1576
1577 free_netdev(netdev);
1578
ea943d41
JK
1579 err = pci_disable_pcie_error_reporting(pdev);
1580 if (err)
1581 dev_err(&pdev->dev,
1582 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
40a914fa 1583
9d5c8243
AK
1584 pci_disable_device(pdev);
1585}
1586
1587/**
1588 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1589 * @adapter: board private structure to initialize
1590 *
1591 * igb_sw_init initializes the Adapter private data structure.
1592 * Fields are initialized based on PCI device information and
1593 * OS network device settings (MTU size).
1594 **/
1595static int __devinit igb_sw_init(struct igb_adapter *adapter)
1596{
1597 struct e1000_hw *hw = &adapter->hw;
1598 struct net_device *netdev = adapter->netdev;
1599 struct pci_dev *pdev = adapter->pdev;
1600
1601 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1602
68fd9910
AD
1603 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1604 adapter->rx_ring_count = IGB_DEFAULT_RXD;
9d5c8243
AK
1605 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1606 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1607 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1608 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1609
661086df
PWJ
1610 /* This call may decrease the number of queues depending on
1611 * interrupt mode. */
9d5c8243
AK
1612 igb_set_interrupt_capability(adapter);
1613
1614 if (igb_alloc_queues(adapter)) {
1615 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1616 return -ENOMEM;
1617 }
1618
1619 /* Explicitly disable IRQ since the NIC can be in any state. */
1620 igb_irq_disable(adapter);
1621
1622 set_bit(__IGB_DOWN, &adapter->state);
1623 return 0;
1624}
1625
1626/**
1627 * igb_open - Called when a network interface is made active
1628 * @netdev: network interface device structure
1629 *
1630 * Returns 0 on success, negative value on failure
1631 *
1632 * The open entry point is called when a network interface is made
1633 * active by the system (IFF_UP). At this point all resources needed
1634 * for transmit and receive operations are allocated, the interrupt
1635 * handler is registered with the OS, the watchdog timer is started,
1636 * and the stack is notified that the interface is ready.
1637 **/
1638static int igb_open(struct net_device *netdev)
1639{
1640 struct igb_adapter *adapter = netdev_priv(netdev);
1641 struct e1000_hw *hw = &adapter->hw;
1642 int err;
1643 int i;
1644
1645 /* disallow open during test */
1646 if (test_bit(__IGB_TESTING, &adapter->state))
1647 return -EBUSY;
1648
1649 /* allocate transmit descriptors */
1650 err = igb_setup_all_tx_resources(adapter);
1651 if (err)
1652 goto err_setup_tx;
1653
1654 /* allocate receive descriptors */
1655 err = igb_setup_all_rx_resources(adapter);
1656 if (err)
1657 goto err_setup_rx;
1658
1659 /* e1000_power_up_phy(adapter); */
1660
1661 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1662 if ((adapter->hw.mng_cookie.status &
1663 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1664 igb_update_mng_vlan(adapter);
1665
1666 /* before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so. */
1670 igb_configure(adapter);
1671
4ae196df 1672 igb_vmm_control(adapter);
e1739522
AD
1673 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1674 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1675
9d5c8243
AK
1676 err = igb_request_irq(adapter);
1677 if (err)
1678 goto err_req_irq;
1679
1680 /* From here on the code is the same as igb_up() */
1681 clear_bit(__IGB_DOWN, &adapter->state);
1682
844290e5
PW
1683 for (i = 0; i < adapter->num_rx_queues; i++)
1684 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1685
1686 /* Clear any pending interrupts. */
1687 rd32(E1000_ICR);
844290e5
PW
1688
1689 igb_irq_enable(adapter);
1690
d55b53ff
JK
1691 netif_tx_start_all_queues(netdev);
1692
9d5c8243
AK
1693 /* Fire a link status change interrupt to start the watchdog. */
1694 wr32(E1000_ICS, E1000_ICS_LSC);
1695
1696 return 0;
1697
1698err_req_irq:
1699 igb_release_hw_control(adapter);
1700 /* e1000_power_down_phy(adapter); */
1701 igb_free_all_rx_resources(adapter);
1702err_setup_rx:
1703 igb_free_all_tx_resources(adapter);
1704err_setup_tx:
1705 igb_reset(adapter);
1706
1707 return err;
1708}
1709
1710/**
1711 * igb_close - Disables a network interface
1712 * @netdev: network interface device structure
1713 *
1714 * Returns 0, this is not allowed to fail
1715 *
1716 * The close entry point is called when an interface is de-activated
1717 * by the OS. The hardware is still under the driver's control, but
1718 * needs to be disabled. A global MAC reset is issued to stop the
1719 * hardware, and all transmit and receive resources are freed.
1720 **/
1721static int igb_close(struct net_device *netdev)
1722{
1723 struct igb_adapter *adapter = netdev_priv(netdev);
1724
1725 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1726 igb_down(adapter);
1727
1728 igb_free_irq(adapter);
1729
1730 igb_free_all_tx_resources(adapter);
1731 igb_free_all_rx_resources(adapter);
1732
1733 /* kill manageability vlan ID if supported, but not if a vlan with
1734 * the same ID is registered on the host OS (let 8021q kill it) */
1735 if ((adapter->hw.mng_cookie.status &
1736 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1737 !(adapter->vlgrp &&
1738 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1739 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1740
1741 return 0;
1742}
1743
1744/**
1745 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1746 * @adapter: board private structure
1747 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1748 *
1749 * Return 0 on success, negative on failure
1750 **/
9d5c8243
AK
1751int igb_setup_tx_resources(struct igb_adapter *adapter,
1752 struct igb_ring *tx_ring)
1753{
1754 struct pci_dev *pdev = adapter->pdev;
1755 int size;
1756
1757 size = sizeof(struct igb_buffer) * tx_ring->count;
1758 tx_ring->buffer_info = vmalloc(size);
1759 if (!tx_ring->buffer_info)
1760 goto err;
1761 memset(tx_ring->buffer_info, 0, size);
1762
1763 /* round up to nearest 4K */
85e8d004 1764 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1765 tx_ring->size = ALIGN(tx_ring->size, 4096);
1766
1767 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1768 &tx_ring->dma);
1769
1770 if (!tx_ring->desc)
1771 goto err;
1772
1773 tx_ring->adapter = adapter;
1774 tx_ring->next_to_use = 0;
1775 tx_ring->next_to_clean = 0;
9d5c8243
AK
1776 return 0;
1777
1778err:
1779 vfree(tx_ring->buffer_info);
1780 dev_err(&adapter->pdev->dev,
1781 "Unable to allocate memory for the transmit descriptor ring\n");
1782 return -ENOMEM;
1783}
1784
1785/**
1786 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1787 * (Descriptors) for all queues
1788 * @adapter: board private structure
1789 *
1790 * Return 0 on success, negative on failure
1791 **/
1792static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1793{
1794 int i, err = 0;
661086df 1795 int r_idx;
9d5c8243
AK
1796
1797 for (i = 0; i < adapter->num_tx_queues; i++) {
1798 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1799 if (err) {
1800 dev_err(&adapter->pdev->dev,
1801 "Allocation for Tx Queue %u failed\n", i);
1802 for (i--; i >= 0; i--)
3b644cf6 1803 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1804 break;
1805 }
1806 }
1807
661086df
PWJ
1808 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1809 r_idx = i % adapter->num_tx_queues;
1810 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 1811 }
9d5c8243
AK
1812 return err;
1813}
1814
1815/**
1816 * igb_configure_tx - Configure transmit Unit after Reset
1817 * @adapter: board private structure
1818 *
1819 * Configure the Tx unit of the MAC after a reset.
1820 **/
1821static void igb_configure_tx(struct igb_adapter *adapter)
1822{
0e014cb1 1823 u64 tdba;
9d5c8243
AK
1824 struct e1000_hw *hw = &adapter->hw;
1825 u32 tctl;
1826 u32 txdctl, txctrl;
26bc19ec 1827 int i, j;
9d5c8243
AK
1828
1829 for (i = 0; i < adapter->num_tx_queues; i++) {
73cd78f1 1830 struct igb_ring *ring = &adapter->tx_ring[i];
26bc19ec
AD
1831 j = ring->reg_idx;
1832 wr32(E1000_TDLEN(j),
85e8d004 1833 ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243 1834 tdba = ring->dma;
26bc19ec 1835 wr32(E1000_TDBAL(j),
73cd78f1 1836 tdba & 0x00000000ffffffffULL);
26bc19ec 1837 wr32(E1000_TDBAH(j), tdba >> 32);
9d5c8243 1838
26bc19ec
AD
1839 ring->head = E1000_TDH(j);
1840 ring->tail = E1000_TDT(j);
9d5c8243
AK
1841 writel(0, hw->hw_addr + ring->tail);
1842 writel(0, hw->hw_addr + ring->head);
26bc19ec 1843 txdctl = rd32(E1000_TXDCTL(j));
9d5c8243 1844 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
26bc19ec 1845 wr32(E1000_TXDCTL(j), txdctl);
9d5c8243
AK
1846
1847 /* Turn off Relaxed Ordering on head write-backs. The
1848 * writebacks MUST be delivered in order or it will
1849 * completely screw up our bookeeping.
1850 */
26bc19ec 1851 txctrl = rd32(E1000_DCA_TXCTRL(j));
9d5c8243 1852 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
26bc19ec 1853 wr32(E1000_DCA_TXCTRL(j), txctrl);
9d5c8243
AK
1854 }
1855
e1739522
AD
1856 /* disable queue 0 to prevent tail bump w/o re-configuration */
1857 if (adapter->vfs_allocated_count)
1858 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
1859
1860 /* Program the Transmit Control Register */
9d5c8243
AK
1861 tctl = rd32(E1000_TCTL);
1862 tctl &= ~E1000_TCTL_CT;
1863 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1864 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1865
1866 igb_config_collision_dist(hw);
1867
1868 /* Setup Transmit Descriptor Settings for eop descriptor */
1869 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1870
1871 /* Enable transmits */
1872 tctl |= E1000_TCTL_EN;
1873
1874 wr32(E1000_TCTL, tctl);
1875}
1876
1877/**
1878 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1879 * @adapter: board private structure
1880 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1881 *
1882 * Returns 0 on success, negative on failure
1883 **/
9d5c8243
AK
1884int igb_setup_rx_resources(struct igb_adapter *adapter,
1885 struct igb_ring *rx_ring)
1886{
1887 struct pci_dev *pdev = adapter->pdev;
1888 int size, desc_len;
1889
1890 size = sizeof(struct igb_buffer) * rx_ring->count;
1891 rx_ring->buffer_info = vmalloc(size);
1892 if (!rx_ring->buffer_info)
1893 goto err;
1894 memset(rx_ring->buffer_info, 0, size);
1895
1896 desc_len = sizeof(union e1000_adv_rx_desc);
1897
1898 /* Round up to nearest 4K */
1899 rx_ring->size = rx_ring->count * desc_len;
1900 rx_ring->size = ALIGN(rx_ring->size, 4096);
1901
1902 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1903 &rx_ring->dma);
1904
1905 if (!rx_ring->desc)
1906 goto err;
1907
1908 rx_ring->next_to_clean = 0;
1909 rx_ring->next_to_use = 0;
9d5c8243
AK
1910
1911 rx_ring->adapter = adapter;
9d5c8243
AK
1912
1913 return 0;
1914
1915err:
1916 vfree(rx_ring->buffer_info);
1917 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1918 "the receive descriptor ring\n");
1919 return -ENOMEM;
1920}
1921
1922/**
1923 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1924 * (Descriptors) for all queues
1925 * @adapter: board private structure
1926 *
1927 * Return 0 on success, negative on failure
1928 **/
1929static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1930{
1931 int i, err = 0;
1932
1933 for (i = 0; i < adapter->num_rx_queues; i++) {
1934 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1935 if (err) {
1936 dev_err(&adapter->pdev->dev,
1937 "Allocation for Rx Queue %u failed\n", i);
1938 for (i--; i >= 0; i--)
3b644cf6 1939 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1940 break;
1941 }
1942 }
1943
1944 return err;
1945}
1946
1947/**
1948 * igb_setup_rctl - configure the receive control registers
1949 * @adapter: Board private structure
1950 **/
1951static void igb_setup_rctl(struct igb_adapter *adapter)
1952{
1953 struct e1000_hw *hw = &adapter->hw;
1954 u32 rctl;
1955 u32 srrctl = 0;
26bc19ec 1956 int i, j;
9d5c8243
AK
1957
1958 rctl = rd32(E1000_RCTL);
1959
1960 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 1961 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 1962
69d728ba 1963 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 1964 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 1965
87cb7e8c
AK
1966 /*
1967 * enable stripping of CRC. It's unlikely this will break BMC
1968 * redirection as it did with e1000. Newer features require
1969 * that the HW strips the CRC.
73cd78f1 1970 */
87cb7e8c 1971 rctl |= E1000_RCTL_SECRC;
9d5c8243 1972
9b07f3d3 1973 /*
ec54d7d6 1974 * disable store bad packets and clear size bits.
9b07f3d3 1975 */
ec54d7d6 1976 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 1977
ec54d7d6 1978 /* enable LPE when to prevent packets larger than max_frame_size */
9b07f3d3 1979 rctl |= E1000_RCTL_LPE;
b4557be2
AD
1980
1981 /* Setup buffer sizes */
1982 switch (adapter->rx_buffer_len) {
1983 case IGB_RXBUFFER_256:
1984 rctl |= E1000_RCTL_SZ_256;
1985 break;
1986 case IGB_RXBUFFER_512:
1987 rctl |= E1000_RCTL_SZ_512;
1988 break;
1989 default:
1990 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1991 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1992 break;
9d5c8243
AK
1993 }
1994
1995 /* 82575 and greater support packet-split where the protocol
1996 * header is placed in skb->data and the packet data is
1997 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1998 * In the case of a non-split, skb->data is linearly filled,
1999 * followed by the page buffers. Therefore, skb->data is
2000 * sized to hold the largest protocol header.
2001 */
2002 /* allocations using alloc_page take too long for regular MTU
2003 * so only enable packet split for jumbo frames */
ec54d7d6 2004 if (adapter->netdev->mtu > ETH_DATA_LEN) {
9d5c8243 2005 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
bf36c1a0 2006 srrctl |= adapter->rx_ps_hdr_size <<
9d5c8243 2007 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
9d5c8243
AK
2008 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2009 } else {
2010 adapter->rx_ps_hdr_size = 0;
2011 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2012 }
2013
e1739522
AD
2014 /* Attention!!! For SR-IOV PF driver operations you must enable
2015 * queue drop for all VF and PF queues to prevent head of line blocking
2016 * if an un-trusted VF does not provide descriptors to hardware.
2017 */
2018 if (adapter->vfs_allocated_count) {
2019 u32 vmolr;
2020
2021 j = adapter->rx_ring[0].reg_idx;
2022
2023 /* set all queue drop enable bits */
2024 wr32(E1000_QDE, ALL_QUEUES);
2025 srrctl |= E1000_SRRCTL_DROP_EN;
2026
2027 /* disable queue 0 to prevent tail write w/o re-config */
2028 wr32(E1000_RXDCTL(0), 0);
2029
2030 vmolr = rd32(E1000_VMOLR(j));
2031 if (rctl & E1000_RCTL_LPE)
2032 vmolr |= E1000_VMOLR_LPE;
2033 if (adapter->num_rx_queues > 0)
2034 vmolr |= E1000_VMOLR_RSSE;
2035 wr32(E1000_VMOLR(j), vmolr);
2036 }
2037
26bc19ec
AD
2038 for (i = 0; i < adapter->num_rx_queues; i++) {
2039 j = adapter->rx_ring[i].reg_idx;
2040 wr32(E1000_SRRCTL(j), srrctl);
2041 }
9d5c8243
AK
2042
2043 wr32(E1000_RCTL, rctl);
2044}
2045
e1739522
AD
2046/**
2047 * igb_rlpml_set - set maximum receive packet size
2048 * @adapter: board private structure
2049 *
2050 * Configure maximum receivable packet size.
2051 **/
2052static void igb_rlpml_set(struct igb_adapter *adapter)
2053{
2054 u32 max_frame_size = adapter->max_frame_size;
2055 struct e1000_hw *hw = &adapter->hw;
2056 u16 pf_id = adapter->vfs_allocated_count;
2057
2058 if (adapter->vlgrp)
2059 max_frame_size += VLAN_TAG_SIZE;
2060
2061 /* if vfs are enabled we set RLPML to the largest possible request
2062 * size and set the VMOLR RLPML to the size we need */
2063 if (pf_id) {
2064 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2065 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2066 }
2067
2068 wr32(E1000_RLPML, max_frame_size);
2069}
2070
2071/**
2072 * igb_configure_vt_default_pool - Configure VT default pool
2073 * @adapter: board private structure
2074 *
2075 * Configure the default pool
2076 **/
2077static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2078{
2079 struct e1000_hw *hw = &adapter->hw;
2080 u16 pf_id = adapter->vfs_allocated_count;
2081 u32 vtctl;
2082
2083 /* not in sr-iov mode - do nothing */
2084 if (!pf_id)
2085 return;
2086
2087 vtctl = rd32(E1000_VT_CTL);
2088 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2089 E1000_VT_CTL_DISABLE_DEF_POOL);
2090 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2091 wr32(E1000_VT_CTL, vtctl);
2092}
2093
9d5c8243
AK
2094/**
2095 * igb_configure_rx - Configure receive Unit after Reset
2096 * @adapter: board private structure
2097 *
2098 * Configure the Rx unit of the MAC after a reset.
2099 **/
2100static void igb_configure_rx(struct igb_adapter *adapter)
2101{
2102 u64 rdba;
2103 struct e1000_hw *hw = &adapter->hw;
2104 u32 rctl, rxcsum;
2105 u32 rxdctl;
9107584e 2106 int i;
9d5c8243
AK
2107
2108 /* disable receives while setting up the descriptors */
2109 rctl = rd32(E1000_RCTL);
2110 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2111 wrfl();
2112 mdelay(10);
2113
2114 if (adapter->itr_setting > 3)
6eb5a7f1 2115 wr32(E1000_ITR, adapter->itr);
9d5c8243
AK
2116
2117 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2118 * the Base and Length of the Rx Descriptor Ring */
2119 for (i = 0; i < adapter->num_rx_queues; i++) {
73cd78f1 2120 struct igb_ring *ring = &adapter->rx_ring[i];
9107584e 2121 int j = ring->reg_idx;
9d5c8243 2122 rdba = ring->dma;
26bc19ec 2123 wr32(E1000_RDBAL(j),
73cd78f1 2124 rdba & 0x00000000ffffffffULL);
26bc19ec
AD
2125 wr32(E1000_RDBAH(j), rdba >> 32);
2126 wr32(E1000_RDLEN(j),
73cd78f1 2127 ring->count * sizeof(union e1000_adv_rx_desc));
9d5c8243 2128
26bc19ec
AD
2129 ring->head = E1000_RDH(j);
2130 ring->tail = E1000_RDT(j);
9d5c8243
AK
2131 writel(0, hw->hw_addr + ring->tail);
2132 writel(0, hw->hw_addr + ring->head);
2133
26bc19ec 2134 rxdctl = rd32(E1000_RXDCTL(j));
9d5c8243
AK
2135 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2136 rxdctl &= 0xFFF00000;
2137 rxdctl |= IGB_RX_PTHRESH;
2138 rxdctl |= IGB_RX_HTHRESH << 8;
2139 rxdctl |= IGB_RX_WTHRESH << 16;
26bc19ec 2140 wr32(E1000_RXDCTL(j), rxdctl);
9d5c8243
AK
2141 }
2142
2143 if (adapter->num_rx_queues > 1) {
2144 u32 random[10];
2145 u32 mrqc;
2146 u32 j, shift;
2147 union e1000_reta {
2148 u32 dword;
2149 u8 bytes[4];
2150 } reta;
2151
2152 get_random_bytes(&random[0], 40);
2153
2d064c06
AD
2154 if (hw->mac.type >= e1000_82576)
2155 shift = 0;
2156 else
2157 shift = 6;
9d5c8243
AK
2158 for (j = 0; j < (32 * 4); j++) {
2159 reta.bytes[j & 3] =
26bc19ec 2160 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
9d5c8243
AK
2161 if ((j & 3) == 3)
2162 writel(reta.dword,
2163 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2164 }
e1739522
AD
2165 if (adapter->vfs_allocated_count)
2166 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2167 else
2168 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
9d5c8243
AK
2169
2170 /* Fill out hash function seeds */
2171 for (j = 0; j < 10; j++)
2172 array_wr32(E1000_RSSRK(0), j, random[j]);
2173
2174 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2175 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2176 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2177 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2178 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2179 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2180 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2181 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2182
2183
2184 wr32(E1000_MRQC, mrqc);
2185
2186 /* Multiqueue and raw packet checksumming are mutually
2187 * exclusive. Note that this not the same as TCP/IP
2188 * checksumming, which works fine. */
2189 rxcsum = rd32(E1000_RXCSUM);
2190 rxcsum |= E1000_RXCSUM_PCSD;
2191 wr32(E1000_RXCSUM, rxcsum);
2192 } else {
e1739522
AD
2193 /* Enable multi-queue for sr-iov */
2194 if (adapter->vfs_allocated_count)
2195 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
9d5c8243
AK
2196 /* Enable Receive Checksum Offload for TCP and UDP */
2197 rxcsum = rd32(E1000_RXCSUM);
56fbbb4e
AD
2198 if (adapter->rx_csum)
2199 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2200 else
2201 rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2202
9d5c8243
AK
2203 wr32(E1000_RXCSUM, rxcsum);
2204 }
2205
e1739522
AD
2206 /* Set the default pool for the PF's first queue */
2207 igb_configure_vt_default_pool(adapter);
2208
2209 igb_rlpml_set(adapter);
9d5c8243
AK
2210
2211 /* Enable Receives */
2212 wr32(E1000_RCTL, rctl);
2213}
2214
2215/**
2216 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2217 * @tx_ring: Tx descriptor ring for a specific queue
2218 *
2219 * Free all transmit software resources
2220 **/
68fd9910 2221void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2222{
3b644cf6 2223 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 2224
3b644cf6 2225 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2226
2227 vfree(tx_ring->buffer_info);
2228 tx_ring->buffer_info = NULL;
2229
2230 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2231
2232 tx_ring->desc = NULL;
2233}
2234
2235/**
2236 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2237 * @adapter: board private structure
2238 *
2239 * Free all transmit software resources
2240 **/
2241static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2242{
2243 int i;
2244
2245 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2246 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2247}
2248
2249static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2250 struct igb_buffer *buffer_info)
2251{
2252 if (buffer_info->dma) {
2253 pci_unmap_page(adapter->pdev,
2254 buffer_info->dma,
2255 buffer_info->length,
2256 PCI_DMA_TODEVICE);
2257 buffer_info->dma = 0;
2258 }
2259 if (buffer_info->skb) {
2260 dev_kfree_skb_any(buffer_info->skb);
2261 buffer_info->skb = NULL;
2262 }
2263 buffer_info->time_stamp = 0;
73cd78f1 2264 buffer_info->next_to_watch = 0;
9d5c8243
AK
2265 /* buffer_info must be completely set up in the transmit path */
2266}
2267
2268/**
2269 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2270 * @tx_ring: ring to be cleaned
2271 **/
3b644cf6 2272static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 2273{
3b644cf6 2274 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
2275 struct igb_buffer *buffer_info;
2276 unsigned long size;
2277 unsigned int i;
2278
2279 if (!tx_ring->buffer_info)
2280 return;
2281 /* Free all the Tx ring sk_buffs */
2282
2283 for (i = 0; i < tx_ring->count; i++) {
2284 buffer_info = &tx_ring->buffer_info[i];
2285 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2286 }
2287
2288 size = sizeof(struct igb_buffer) * tx_ring->count;
2289 memset(tx_ring->buffer_info, 0, size);
2290
2291 /* Zero out the descriptor ring */
2292
2293 memset(tx_ring->desc, 0, tx_ring->size);
2294
2295 tx_ring->next_to_use = 0;
2296 tx_ring->next_to_clean = 0;
2297
2298 writel(0, adapter->hw.hw_addr + tx_ring->head);
2299 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2300}
2301
2302/**
2303 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2304 * @adapter: board private structure
2305 **/
2306static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2307{
2308 int i;
2309
2310 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2311 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2312}
2313
2314/**
2315 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2316 * @rx_ring: ring to clean the resources from
2317 *
2318 * Free all receive software resources
2319 **/
68fd9910 2320void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2321{
3b644cf6 2322 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 2323
3b644cf6 2324 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2325
2326 vfree(rx_ring->buffer_info);
2327 rx_ring->buffer_info = NULL;
2328
2329 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2330
2331 rx_ring->desc = NULL;
2332}
2333
2334/**
2335 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2336 * @adapter: board private structure
2337 *
2338 * Free all receive software resources
2339 **/
2340static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2341{
2342 int i;
2343
2344 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2345 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2346}
2347
2348/**
2349 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2350 * @rx_ring: ring to free buffers from
2351 **/
3b644cf6 2352static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2353{
3b644cf6 2354 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2355 struct igb_buffer *buffer_info;
2356 struct pci_dev *pdev = adapter->pdev;
2357 unsigned long size;
2358 unsigned int i;
2359
2360 if (!rx_ring->buffer_info)
2361 return;
2362 /* Free all the Rx ring sk_buffs */
2363 for (i = 0; i < rx_ring->count; i++) {
2364 buffer_info = &rx_ring->buffer_info[i];
2365 if (buffer_info->dma) {
2366 if (adapter->rx_ps_hdr_size)
2367 pci_unmap_single(pdev, buffer_info->dma,
2368 adapter->rx_ps_hdr_size,
2369 PCI_DMA_FROMDEVICE);
2370 else
2371 pci_unmap_single(pdev, buffer_info->dma,
2372 adapter->rx_buffer_len,
2373 PCI_DMA_FROMDEVICE);
2374 buffer_info->dma = 0;
2375 }
2376
2377 if (buffer_info->skb) {
2378 dev_kfree_skb(buffer_info->skb);
2379 buffer_info->skb = NULL;
2380 }
2381 if (buffer_info->page) {
bf36c1a0
AD
2382 if (buffer_info->page_dma)
2383 pci_unmap_page(pdev, buffer_info->page_dma,
2384 PAGE_SIZE / 2,
2385 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2386 put_page(buffer_info->page);
2387 buffer_info->page = NULL;
2388 buffer_info->page_dma = 0;
bf36c1a0 2389 buffer_info->page_offset = 0;
9d5c8243
AK
2390 }
2391 }
2392
9d5c8243
AK
2393 size = sizeof(struct igb_buffer) * rx_ring->count;
2394 memset(rx_ring->buffer_info, 0, size);
2395
2396 /* Zero out the descriptor ring */
2397 memset(rx_ring->desc, 0, rx_ring->size);
2398
2399 rx_ring->next_to_clean = 0;
2400 rx_ring->next_to_use = 0;
2401
2402 writel(0, adapter->hw.hw_addr + rx_ring->head);
2403 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2404}
2405
2406/**
2407 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2408 * @adapter: board private structure
2409 **/
2410static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2411{
2412 int i;
2413
2414 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2415 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2416}
2417
2418/**
2419 * igb_set_mac - Change the Ethernet Address of the NIC
2420 * @netdev: network interface device structure
2421 * @p: pointer to an address structure
2422 *
2423 * Returns 0 on success, negative on failure
2424 **/
2425static int igb_set_mac(struct net_device *netdev, void *p)
2426{
2427 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2428 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2429 struct sockaddr *addr = p;
2430
2431 if (!is_valid_ether_addr(addr->sa_data))
2432 return -EADDRNOTAVAIL;
2433
2434 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2435 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2436
28b0759c 2437 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
9d5c8243 2438
e1739522
AD
2439 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2440
9d5c8243
AK
2441 return 0;
2442}
2443
2444/**
2445 * igb_set_multi - Multicast and Promiscuous mode set
2446 * @netdev: network interface device structure
2447 *
2448 * The set_multi entry point is called whenever the multicast address
2449 * list or the network interface flags are updated. This routine is
2450 * responsible for configuring the hardware for proper multicast,
2451 * promiscuous mode, and all-multi behavior.
2452 **/
2453static void igb_set_multi(struct net_device *netdev)
2454{
2455 struct igb_adapter *adapter = netdev_priv(netdev);
2456 struct e1000_hw *hw = &adapter->hw;
2457 struct e1000_mac_info *mac = &hw->mac;
2458 struct dev_mc_list *mc_ptr;
2459 u8 *mta_list;
2460 u32 rctl;
2461 int i;
2462
2463 /* Check for Promiscuous and All Multicast modes */
2464
2465 rctl = rd32(E1000_RCTL);
2466
746b9f02 2467 if (netdev->flags & IFF_PROMISC) {
9d5c8243 2468 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02
PM
2469 rctl &= ~E1000_RCTL_VFE;
2470 } else {
2471 if (netdev->flags & IFF_ALLMULTI) {
2472 rctl |= E1000_RCTL_MPE;
2473 rctl &= ~E1000_RCTL_UPE;
2474 } else
2475 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
78ed11a5 2476 rctl |= E1000_RCTL_VFE;
746b9f02 2477 }
9d5c8243
AK
2478 wr32(E1000_RCTL, rctl);
2479
2480 if (!netdev->mc_count) {
2481 /* nothing to program, so clear mc list */
8a900862
AD
2482 igb_update_mc_addr_list(hw, NULL, 0, 1,
2483 mac->rar_entry_count);
9d5c8243
AK
2484 return;
2485 }
2486
2487 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2488 if (!mta_list)
2489 return;
2490
2491 /* The shared function expects a packed array of only addresses. */
2492 mc_ptr = netdev->mc_list;
2493
2494 for (i = 0; i < netdev->mc_count; i++) {
2495 if (!mc_ptr)
2496 break;
2497 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2498 mc_ptr = mc_ptr->next;
2499 }
e1739522
AD
2500 igb_update_mc_addr_list(hw, mta_list, i,
2501 adapter->vfs_allocated_count + 1,
2502 mac->rar_entry_count);
2503
2504 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
4ae196df
AD
2505 igb_restore_vf_multicasts(adapter);
2506
9d5c8243
AK
2507 kfree(mta_list);
2508}
2509
2510/* Need to wait a few seconds after link up to get diagnostic information from
2511 * the phy */
2512static void igb_update_phy_info(unsigned long data)
2513{
2514 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 2515 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
2516}
2517
4d6b725e
AD
2518/**
2519 * igb_has_link - check shared code for link and determine up/down
2520 * @adapter: pointer to driver private info
2521 **/
2522static bool igb_has_link(struct igb_adapter *adapter)
2523{
2524 struct e1000_hw *hw = &adapter->hw;
2525 bool link_active = false;
2526 s32 ret_val = 0;
2527
2528 /* get_link_status is set on LSC (link status) interrupt or
2529 * rx sequence error interrupt. get_link_status will stay
2530 * false until the e1000_check_for_link establishes link
2531 * for copper adapters ONLY
2532 */
2533 switch (hw->phy.media_type) {
2534 case e1000_media_type_copper:
2535 if (hw->mac.get_link_status) {
2536 ret_val = hw->mac.ops.check_for_link(hw);
2537 link_active = !hw->mac.get_link_status;
2538 } else {
2539 link_active = true;
2540 }
2541 break;
2542 case e1000_media_type_fiber:
2543 ret_val = hw->mac.ops.check_for_link(hw);
2544 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2545 break;
2546 case e1000_media_type_internal_serdes:
2547 ret_val = hw->mac.ops.check_for_link(hw);
2548 link_active = hw->mac.serdes_has_link;
2549 break;
2550 default:
2551 case e1000_media_type_unknown:
2552 break;
2553 }
2554
2555 return link_active;
2556}
2557
9d5c8243
AK
2558/**
2559 * igb_watchdog - Timer Call-back
2560 * @data: pointer to adapter cast into an unsigned long
2561 **/
2562static void igb_watchdog(unsigned long data)
2563{
2564 struct igb_adapter *adapter = (struct igb_adapter *)data;
2565 /* Do the rest outside of interrupt context */
2566 schedule_work(&adapter->watchdog_task);
2567}
2568
2569static void igb_watchdog_task(struct work_struct *work)
2570{
2571 struct igb_adapter *adapter = container_of(work,
2572 struct igb_adapter, watchdog_task);
2573 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2574 struct net_device *netdev = adapter->netdev;
2575 struct igb_ring *tx_ring = adapter->tx_ring;
9d5c8243 2576 u32 link;
7a6ea550 2577 u32 eics = 0;
7a6ea550 2578 int i;
9d5c8243 2579
4d6b725e
AD
2580 link = igb_has_link(adapter);
2581 if ((netif_carrier_ok(netdev)) && link)
9d5c8243
AK
2582 goto link_up;
2583
9d5c8243
AK
2584 if (link) {
2585 if (!netif_carrier_ok(netdev)) {
2586 u32 ctrl;
2587 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2588 &adapter->link_speed,
2589 &adapter->link_duplex);
2590
2591 ctrl = rd32(E1000_CTRL);
527d47c1
AD
2592 /* Links status message must follow this format */
2593 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 2594 "Flow Control: %s\n",
527d47c1 2595 netdev->name,
9d5c8243
AK
2596 adapter->link_speed,
2597 adapter->link_duplex == FULL_DUPLEX ?
2598 "Full Duplex" : "Half Duplex",
2599 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2600 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2601 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2602 E1000_CTRL_TFCE) ? "TX" : "None")));
2603
2604 /* tweak tx_queue_len according to speed/duplex and
2605 * adjust the timeout factor */
2606 netdev->tx_queue_len = adapter->tx_queue_len;
2607 adapter->tx_timeout_factor = 1;
2608 switch (adapter->link_speed) {
2609 case SPEED_10:
2610 netdev->tx_queue_len = 10;
2611 adapter->tx_timeout_factor = 14;
2612 break;
2613 case SPEED_100:
2614 netdev->tx_queue_len = 100;
2615 /* maybe add some timeout factor ? */
2616 break;
2617 }
2618
2619 netif_carrier_on(netdev);
fd2ea0a7 2620 netif_tx_wake_all_queues(netdev);
9d5c8243 2621
4ae196df
AD
2622 igb_ping_all_vfs(adapter);
2623
4b1a9877 2624 /* link state has changed, schedule phy info update */
9d5c8243
AK
2625 if (!test_bit(__IGB_DOWN, &adapter->state))
2626 mod_timer(&adapter->phy_info_timer,
2627 round_jiffies(jiffies + 2 * HZ));
2628 }
2629 } else {
2630 if (netif_carrier_ok(netdev)) {
2631 adapter->link_speed = 0;
2632 adapter->link_duplex = 0;
527d47c1
AD
2633 /* Links status message must follow this format */
2634 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2635 netdev->name);
9d5c8243 2636 netif_carrier_off(netdev);
fd2ea0a7 2637 netif_tx_stop_all_queues(netdev);
4b1a9877 2638
4ae196df
AD
2639 igb_ping_all_vfs(adapter);
2640
4b1a9877 2641 /* link state has changed, schedule phy info update */
9d5c8243
AK
2642 if (!test_bit(__IGB_DOWN, &adapter->state))
2643 mod_timer(&adapter->phy_info_timer,
2644 round_jiffies(jiffies + 2 * HZ));
2645 }
2646 }
2647
2648link_up:
2649 igb_update_stats(adapter);
2650
4b1a9877 2651 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
9d5c8243 2652 adapter->tpt_old = adapter->stats.tpt;
4b1a9877 2653 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
9d5c8243
AK
2654 adapter->colc_old = adapter->stats.colc;
2655
2656 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2657 adapter->gorc_old = adapter->stats.gorc;
2658 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2659 adapter->gotc_old = adapter->stats.gotc;
2660
2661 igb_update_adaptive(&adapter->hw);
2662
2663 if (!netif_carrier_ok(netdev)) {
2664 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2665 /* We've lost link, so the controller stops DMA,
2666 * but we've got queued Tx work that's never going
2667 * to get done, so reset controller to flush Tx.
2668 * (Do the reset outside of interrupt context). */
2669 adapter->tx_timeout_count++;
2670 schedule_work(&adapter->reset_task);
2671 }
2672 }
2673
2674 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550
AD
2675 if (adapter->msix_entries) {
2676 for (i = 0; i < adapter->num_rx_queues; i++)
2677 eics |= adapter->rx_ring[i].eims_value;
2678 wr32(E1000_EICS, eics);
2679 } else {
2680 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2681 }
9d5c8243
AK
2682
2683 /* Force detection of hung controller every watchdog period */
2684 tx_ring->detect_tx_hung = true;
2685
2686 /* Reset the timer */
2687 if (!test_bit(__IGB_DOWN, &adapter->state))
2688 mod_timer(&adapter->watchdog_timer,
2689 round_jiffies(jiffies + 2 * HZ));
2690}
2691
2692enum latency_range {
2693 lowest_latency = 0,
2694 low_latency = 1,
2695 bulk_latency = 2,
2696 latency_invalid = 255
2697};
2698
2699
6eb5a7f1
AD
2700/**
2701 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2702 *
2703 * Stores a new ITR value based on strictly on packet size. This
2704 * algorithm is less sophisticated than that used in igb_update_itr,
2705 * due to the difficulty of synchronizing statistics across multiple
2706 * receive rings. The divisors and thresholds used by this fuction
2707 * were determined based on theoretical maximum wire speed and testing
2708 * data, in order to minimize response time while increasing bulk
2709 * throughput.
2710 * This functionality is controlled by the InterruptThrottleRate module
2711 * parameter (see igb_param.c)
2712 * NOTE: This function is called only when operating in a multiqueue
2713 * receive environment.
2714 * @rx_ring: pointer to ring
2715 **/
2716static void igb_update_ring_itr(struct igb_ring *rx_ring)
9d5c8243 2717{
6eb5a7f1
AD
2718 int new_val = rx_ring->itr_val;
2719 int avg_wire_size = 0;
2720 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 2721
6eb5a7f1
AD
2722 if (!rx_ring->total_packets)
2723 goto clear_counts; /* no packets, so don't do anything */
9d5c8243 2724
6eb5a7f1
AD
2725 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2726 * ints/sec - ITR timer value of 120 ticks.
2727 */
2728 if (adapter->link_speed != SPEED_1000) {
2729 new_val = 120;
2730 goto set_itr_val;
9d5c8243 2731 }
6eb5a7f1 2732 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
9d5c8243 2733
6eb5a7f1
AD
2734 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2735 avg_wire_size += 24;
2736
2737 /* Don't starve jumbo frames */
2738 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 2739
6eb5a7f1
AD
2740 /* Give a little boost to mid-size frames */
2741 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2742 new_val = avg_wire_size / 3;
2743 else
2744 new_val = avg_wire_size / 2;
9d5c8243 2745
6eb5a7f1 2746set_itr_val:
9d5c8243
AK
2747 if (new_val != rx_ring->itr_val) {
2748 rx_ring->itr_val = new_val;
6eb5a7f1 2749 rx_ring->set_itr = 1;
9d5c8243 2750 }
6eb5a7f1
AD
2751clear_counts:
2752 rx_ring->total_bytes = 0;
2753 rx_ring->total_packets = 0;
9d5c8243
AK
2754}
2755
2756/**
2757 * igb_update_itr - update the dynamic ITR value based on statistics
2758 * Stores a new ITR value based on packets and byte
2759 * counts during the last interrupt. The advantage of per interrupt
2760 * computation is faster updates and more accurate ITR for the current
2761 * traffic pattern. Constants in this function were computed
2762 * based on theoretical maximum wire speed and thresholds were set based
2763 * on testing data as well as attempting to minimize response time
2764 * while increasing bulk throughput.
2765 * this functionality is controlled by the InterruptThrottleRate module
2766 * parameter (see igb_param.c)
2767 * NOTE: These calculations are only valid when operating in a single-
2768 * queue environment.
2769 * @adapter: pointer to adapter
2770 * @itr_setting: current adapter->itr
2771 * @packets: the number of packets during this measurement interval
2772 * @bytes: the number of bytes during this measurement interval
2773 **/
2774static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2775 int packets, int bytes)
2776{
2777 unsigned int retval = itr_setting;
2778
2779 if (packets == 0)
2780 goto update_itr_done;
2781
2782 switch (itr_setting) {
2783 case lowest_latency:
2784 /* handle TSO and jumbo frames */
2785 if (bytes/packets > 8000)
2786 retval = bulk_latency;
2787 else if ((packets < 5) && (bytes > 512))
2788 retval = low_latency;
2789 break;
2790 case low_latency: /* 50 usec aka 20000 ints/s */
2791 if (bytes > 10000) {
2792 /* this if handles the TSO accounting */
2793 if (bytes/packets > 8000) {
2794 retval = bulk_latency;
2795 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2796 retval = bulk_latency;
2797 } else if ((packets > 35)) {
2798 retval = lowest_latency;
2799 }
2800 } else if (bytes/packets > 2000) {
2801 retval = bulk_latency;
2802 } else if (packets <= 2 && bytes < 512) {
2803 retval = lowest_latency;
2804 }
2805 break;
2806 case bulk_latency: /* 250 usec aka 4000 ints/s */
2807 if (bytes > 25000) {
2808 if (packets > 35)
2809 retval = low_latency;
1e5c3d21 2810 } else if (bytes < 1500) {
9d5c8243
AK
2811 retval = low_latency;
2812 }
2813 break;
2814 }
2815
2816update_itr_done:
2817 return retval;
2818}
2819
6eb5a7f1 2820static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243
AK
2821{
2822 u16 current_itr;
2823 u32 new_itr = adapter->itr;
2824
2825 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2826 if (adapter->link_speed != SPEED_1000) {
2827 current_itr = 0;
2828 new_itr = 4000;
2829 goto set_itr_now;
2830 }
2831
2832 adapter->rx_itr = igb_update_itr(adapter,
2833 adapter->rx_itr,
2834 adapter->rx_ring->total_packets,
2835 adapter->rx_ring->total_bytes);
9d5c8243 2836
6eb5a7f1 2837 if (adapter->rx_ring->buddy) {
9d5c8243
AK
2838 adapter->tx_itr = igb_update_itr(adapter,
2839 adapter->tx_itr,
2840 adapter->tx_ring->total_packets,
2841 adapter->tx_ring->total_bytes);
9d5c8243
AK
2842 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2843 } else {
2844 current_itr = adapter->rx_itr;
2845 }
2846
6eb5a7f1 2847 /* conservative mode (itr 3) eliminates the lowest_latency setting */
73cd78f1 2848 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
2849 current_itr = low_latency;
2850
9d5c8243
AK
2851 switch (current_itr) {
2852 /* counts and packets in update_itr are dependent on these numbers */
2853 case lowest_latency:
2854 new_itr = 70000;
2855 break;
2856 case low_latency:
2857 new_itr = 20000; /* aka hwitr = ~200 */
2858 break;
2859 case bulk_latency:
2860 new_itr = 4000;
2861 break;
2862 default:
2863 break;
2864 }
2865
2866set_itr_now:
6eb5a7f1
AD
2867 adapter->rx_ring->total_bytes = 0;
2868 adapter->rx_ring->total_packets = 0;
2869 if (adapter->rx_ring->buddy) {
2870 adapter->rx_ring->buddy->total_bytes = 0;
2871 adapter->rx_ring->buddy->total_packets = 0;
2872 }
2873
9d5c8243
AK
2874 if (new_itr != adapter->itr) {
2875 /* this attempts to bias the interrupt rate towards Bulk
2876 * by adding intermediate steps when interrupt rate is
2877 * increasing */
2878 new_itr = new_itr > adapter->itr ?
2879 min(adapter->itr + (new_itr >> 2), new_itr) :
2880 new_itr;
2881 /* Don't write the value here; it resets the adapter's
2882 * internal timer, and causes us to delay far longer than
2883 * we should between interrupts. Instead, we write the ITR
2884 * value at the beginning of the next interrupt so the timing
2885 * ends up being correct.
2886 */
2887 adapter->itr = new_itr;
6eb5a7f1
AD
2888 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2889 adapter->rx_ring->set_itr = 1;
9d5c8243
AK
2890 }
2891
2892 return;
2893}
2894
2895
2896#define IGB_TX_FLAGS_CSUM 0x00000001
2897#define IGB_TX_FLAGS_VLAN 0x00000002
2898#define IGB_TX_FLAGS_TSO 0x00000004
2899#define IGB_TX_FLAGS_IPV4 0x00000008
33af6bcc 2900#define IGB_TX_FLAGS_TSTAMP 0x00000010
9d5c8243
AK
2901#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2902#define IGB_TX_FLAGS_VLAN_SHIFT 16
2903
2904static inline int igb_tso_adv(struct igb_adapter *adapter,
2905 struct igb_ring *tx_ring,
2906 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2907{
2908 struct e1000_adv_tx_context_desc *context_desc;
2909 unsigned int i;
2910 int err;
2911 struct igb_buffer *buffer_info;
2912 u32 info = 0, tu_cmd = 0;
2913 u32 mss_l4len_idx, l4len;
2914 *hdr_len = 0;
2915
2916 if (skb_header_cloned(skb)) {
2917 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2918 if (err)
2919 return err;
2920 }
2921
2922 l4len = tcp_hdrlen(skb);
2923 *hdr_len += l4len;
2924
2925 if (skb->protocol == htons(ETH_P_IP)) {
2926 struct iphdr *iph = ip_hdr(skb);
2927 iph->tot_len = 0;
2928 iph->check = 0;
2929 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2930 iph->daddr, 0,
2931 IPPROTO_TCP,
2932 0);
2933 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2934 ipv6_hdr(skb)->payload_len = 0;
2935 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2936 &ipv6_hdr(skb)->daddr,
2937 0, IPPROTO_TCP, 0);
2938 }
2939
2940 i = tx_ring->next_to_use;
2941
2942 buffer_info = &tx_ring->buffer_info[i];
2943 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2944 /* VLAN MACLEN IPLEN */
2945 if (tx_flags & IGB_TX_FLAGS_VLAN)
2946 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2947 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2948 *hdr_len += skb_network_offset(skb);
2949 info |= skb_network_header_len(skb);
2950 *hdr_len += skb_network_header_len(skb);
2951 context_desc->vlan_macip_lens = cpu_to_le32(info);
2952
2953 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2954 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2955
2956 if (skb->protocol == htons(ETH_P_IP))
2957 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2958 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2959
2960 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2961
2962 /* MSS L4LEN IDX */
2963 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2964 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2965
73cd78f1 2966 /* For 82575, context index must be unique per ring. */
7dfc16fa
AD
2967 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2968 mss_l4len_idx |= tx_ring->queue_index << 4;
9d5c8243
AK
2969
2970 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2971 context_desc->seqnum_seed = 0;
2972
2973 buffer_info->time_stamp = jiffies;
0e014cb1 2974 buffer_info->next_to_watch = i;
9d5c8243
AK
2975 buffer_info->dma = 0;
2976 i++;
2977 if (i == tx_ring->count)
2978 i = 0;
2979
2980 tx_ring->next_to_use = i;
2981
2982 return true;
2983}
2984
2985static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2986 struct igb_ring *tx_ring,
2987 struct sk_buff *skb, u32 tx_flags)
2988{
2989 struct e1000_adv_tx_context_desc *context_desc;
2990 unsigned int i;
2991 struct igb_buffer *buffer_info;
2992 u32 info = 0, tu_cmd = 0;
2993
2994 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2995 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2996 i = tx_ring->next_to_use;
2997 buffer_info = &tx_ring->buffer_info[i];
2998 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2999
3000 if (tx_flags & IGB_TX_FLAGS_VLAN)
3001 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3002 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3003 if (skb->ip_summed == CHECKSUM_PARTIAL)
3004 info |= skb_network_header_len(skb);
3005
3006 context_desc->vlan_macip_lens = cpu_to_le32(info);
3007
3008 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3009
3010 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3011 __be16 protocol;
3012
3013 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3014 const struct vlan_ethhdr *vhdr =
3015 (const struct vlan_ethhdr*)skb->data;
3016
3017 protocol = vhdr->h_vlan_encapsulated_proto;
3018 } else {
3019 protocol = skb->protocol;
3020 }
3021
3022 switch (protocol) {
09640e63 3023 case cpu_to_be16(ETH_P_IP):
9d5c8243 3024 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3025 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3026 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3027 break;
09640e63 3028 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3029 /* XXX what about other V6 headers?? */
3030 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3031 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3032 break;
3033 default:
3034 if (unlikely(net_ratelimit()))
3035 dev_warn(&adapter->pdev->dev,
3036 "partial checksum but proto=%x!\n",
3037 skb->protocol);
3038 break;
3039 }
9d5c8243
AK
3040 }
3041
3042 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3043 context_desc->seqnum_seed = 0;
7dfc16fa
AD
3044 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3045 context_desc->mss_l4len_idx =
3046 cpu_to_le32(tx_ring->queue_index << 4);
265de409
AD
3047 else
3048 context_desc->mss_l4len_idx = 0;
9d5c8243
AK
3049
3050 buffer_info->time_stamp = jiffies;
0e014cb1 3051 buffer_info->next_to_watch = i;
9d5c8243
AK
3052 buffer_info->dma = 0;
3053
3054 i++;
3055 if (i == tx_ring->count)
3056 i = 0;
3057 tx_ring->next_to_use = i;
3058
3059 return true;
3060 }
9d5c8243
AK
3061 return false;
3062}
3063
3064#define IGB_MAX_TXD_PWR 16
3065#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3066
3067static inline int igb_tx_map_adv(struct igb_adapter *adapter,
0e014cb1
AD
3068 struct igb_ring *tx_ring, struct sk_buff *skb,
3069 unsigned int first)
9d5c8243
AK
3070{
3071 struct igb_buffer *buffer_info;
3072 unsigned int len = skb_headlen(skb);
3073 unsigned int count = 0, i;
3074 unsigned int f;
3075
3076 i = tx_ring->next_to_use;
3077
3078 buffer_info = &tx_ring->buffer_info[i];
3079 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3080 buffer_info->length = len;
3081 /* set time_stamp *before* dma to help avoid a possible race */
3082 buffer_info->time_stamp = jiffies;
0e014cb1 3083 buffer_info->next_to_watch = i;
9d5c8243
AK
3084 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
3085 PCI_DMA_TODEVICE);
3086 count++;
3087 i++;
3088 if (i == tx_ring->count)
3089 i = 0;
3090
3091 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3092 struct skb_frag_struct *frag;
3093
3094 frag = &skb_shinfo(skb)->frags[f];
3095 len = frag->size;
3096
3097 buffer_info = &tx_ring->buffer_info[i];
3098 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3099 buffer_info->length = len;
3100 buffer_info->time_stamp = jiffies;
0e014cb1 3101 buffer_info->next_to_watch = i;
9d5c8243
AK
3102 buffer_info->dma = pci_map_page(adapter->pdev,
3103 frag->page,
3104 frag->page_offset,
3105 len,
3106 PCI_DMA_TODEVICE);
3107
3108 count++;
3109 i++;
3110 if (i == tx_ring->count)
3111 i = 0;
3112 }
3113
0e014cb1 3114 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
9d5c8243 3115 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3116 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243
AK
3117
3118 return count;
3119}
3120
3121static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3122 struct igb_ring *tx_ring,
3123 int tx_flags, int count, u32 paylen,
3124 u8 hdr_len)
3125{
3126 union e1000_adv_tx_desc *tx_desc = NULL;
3127 struct igb_buffer *buffer_info;
3128 u32 olinfo_status = 0, cmd_type_len;
3129 unsigned int i;
3130
3131 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3132 E1000_ADVTXD_DCMD_DEXT);
3133
3134 if (tx_flags & IGB_TX_FLAGS_VLAN)
3135 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3136
33af6bcc
PO
3137 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3138 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3139
9d5c8243
AK
3140 if (tx_flags & IGB_TX_FLAGS_TSO) {
3141 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3142
3143 /* insert tcp checksum */
3144 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3145
3146 /* insert ip checksum */
3147 if (tx_flags & IGB_TX_FLAGS_IPV4)
3148 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3149
3150 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3151 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3152 }
3153
7dfc16fa
AD
3154 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3155 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3156 IGB_TX_FLAGS_VLAN)))
661086df 3157 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
3158
3159 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3160
3161 i = tx_ring->next_to_use;
3162 while (count--) {
3163 buffer_info = &tx_ring->buffer_info[i];
3164 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3165 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3166 tx_desc->read.cmd_type_len =
3167 cpu_to_le32(cmd_type_len | buffer_info->length);
3168 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3169 i++;
3170 if (i == tx_ring->count)
3171 i = 0;
3172 }
3173
3174 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3175 /* Force memory writes to complete before letting h/w
3176 * know there are new descriptors to fetch. (Only
3177 * applicable for weak-ordered memory model archs,
3178 * such as IA-64). */
3179 wmb();
3180
3181 tx_ring->next_to_use = i;
3182 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3183 /* we need this if more than one processor can write to our tail
3184 * at a time, it syncronizes IO on IA64/Altix systems */
3185 mmiowb();
3186}
3187
3188static int __igb_maybe_stop_tx(struct net_device *netdev,
3189 struct igb_ring *tx_ring, int size)
3190{
3191 struct igb_adapter *adapter = netdev_priv(netdev);
3192
661086df 3193 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3194
9d5c8243
AK
3195 /* Herbert's original patch had:
3196 * smp_mb__after_netif_stop_queue();
3197 * but since that doesn't exist yet, just open code it. */
3198 smp_mb();
3199
3200 /* We need to check again in a case another CPU has just
3201 * made room available. */
3202 if (IGB_DESC_UNUSED(tx_ring) < size)
3203 return -EBUSY;
3204
3205 /* A reprieve! */
661086df 3206 netif_wake_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
3207 ++adapter->restart_queue;
3208 return 0;
3209}
3210
3211static int igb_maybe_stop_tx(struct net_device *netdev,
3212 struct igb_ring *tx_ring, int size)
3213{
3214 if (IGB_DESC_UNUSED(tx_ring) >= size)
3215 return 0;
3216 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3217}
3218
9d5c8243
AK
3219static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3220 struct net_device *netdev,
3221 struct igb_ring *tx_ring)
3222{
3223 struct igb_adapter *adapter = netdev_priv(netdev);
0e014cb1 3224 unsigned int first;
9d5c8243 3225 unsigned int tx_flags = 0;
9d5c8243
AK
3226 u8 hdr_len = 0;
3227 int tso = 0;
33af6bcc 3228 union skb_shared_tx *shtx;
9d5c8243 3229
9d5c8243
AK
3230 if (test_bit(__IGB_DOWN, &adapter->state)) {
3231 dev_kfree_skb_any(skb);
3232 return NETDEV_TX_OK;
3233 }
3234
3235 if (skb->len <= 0) {
3236 dev_kfree_skb_any(skb);
3237 return NETDEV_TX_OK;
3238 }
3239
9d5c8243
AK
3240 /* need: 1 descriptor per page,
3241 * + 2 desc gap to keep tail from touching head,
3242 * + 1 desc for skb->data,
3243 * + 1 desc for context descriptor,
3244 * otherwise try next time */
3245 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3246 /* this is a hard error */
9d5c8243
AK
3247 return NETDEV_TX_BUSY;
3248 }
33af6bcc
PO
3249
3250 /*
3251 * TODO: check that there currently is no other packet with
3252 * time stamping in the queue
3253 *
3254 * When doing time stamping, keep the connection to the socket
3255 * a while longer: it is still needed by skb_hwtstamp_tx(),
3256 * called either in igb_tx_hwtstamp() or by our caller when
3257 * doing software time stamping.
3258 */
3259 shtx = skb_tx(skb);
3260 if (unlikely(shtx->hardware)) {
3261 shtx->in_progress = 1;
3262 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3263 }
9d5c8243
AK
3264
3265 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3266 tx_flags |= IGB_TX_FLAGS_VLAN;
3267 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3268 }
3269
661086df
PWJ
3270 if (skb->protocol == htons(ETH_P_IP))
3271 tx_flags |= IGB_TX_FLAGS_IPV4;
3272
0e014cb1 3273 first = tx_ring->next_to_use;
9d5c8243
AK
3274 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3275 &hdr_len) : 0;
3276
3277 if (tso < 0) {
3278 dev_kfree_skb_any(skb);
9d5c8243
AK
3279 return NETDEV_TX_OK;
3280 }
3281
3282 if (tso)
3283 tx_flags |= IGB_TX_FLAGS_TSO;
bc1cbd34
AD
3284 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3285 (skb->ip_summed == CHECKSUM_PARTIAL))
3286 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3287
9d5c8243 3288 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
0e014cb1 3289 igb_tx_map_adv(adapter, tx_ring, skb, first),
9d5c8243
AK
3290 skb->len, hdr_len);
3291
3292 netdev->trans_start = jiffies;
3293
3294 /* Make sure there is space in the ring for the next send. */
3295 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3296
9d5c8243
AK
3297 return NETDEV_TX_OK;
3298}
3299
3300static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3301{
3302 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
3303 struct igb_ring *tx_ring;
3304
661086df 3305 int r_idx = 0;
1bfaf07b 3306 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3307 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3308
3309 /* This goes back to the question of how to logically map a tx queue
3310 * to a flow. Right now, performance is impacted slightly negatively
3311 * if using multiple tx queues. If the stack breaks away from a
3312 * single qdisc implementation, we can look at this again. */
3313 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3314}
3315
3316/**
3317 * igb_tx_timeout - Respond to a Tx Hang
3318 * @netdev: network interface device structure
3319 **/
3320static void igb_tx_timeout(struct net_device *netdev)
3321{
3322 struct igb_adapter *adapter = netdev_priv(netdev);
3323 struct e1000_hw *hw = &adapter->hw;
3324
3325 /* Do the reset outside of interrupt context */
3326 adapter->tx_timeout_count++;
3327 schedule_work(&adapter->reset_task);
265de409
AD
3328 wr32(E1000_EICS,
3329 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3330}
3331
3332static void igb_reset_task(struct work_struct *work)
3333{
3334 struct igb_adapter *adapter;
3335 adapter = container_of(work, struct igb_adapter, reset_task);
3336
3337 igb_reinit_locked(adapter);
3338}
3339
3340/**
3341 * igb_get_stats - Get System Network Statistics
3342 * @netdev: network interface device structure
3343 *
3344 * Returns the address of the device statistics structure.
3345 * The statistics are actually updated from the timer callback.
3346 **/
73cd78f1 3347static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243
AK
3348{
3349 struct igb_adapter *adapter = netdev_priv(netdev);
3350
3351 /* only return the current stats */
3352 return &adapter->net_stats;
3353}
3354
3355/**
3356 * igb_change_mtu - Change the Maximum Transfer Unit
3357 * @netdev: network interface device structure
3358 * @new_mtu: new value for maximum frame size
3359 *
3360 * Returns 0 on success, negative on failure
3361 **/
3362static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3363{
3364 struct igb_adapter *adapter = netdev_priv(netdev);
3365 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3366
3367 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3368 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3369 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3370 return -EINVAL;
3371 }
3372
9d5c8243
AK
3373 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3374 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3375 return -EINVAL;
3376 }
3377
3378 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3379 msleep(1);
73cd78f1 3380
9d5c8243
AK
3381 /* igb_down has a dependency on max_frame_size */
3382 adapter->max_frame_size = max_frame;
3383 if (netif_running(netdev))
3384 igb_down(adapter);
3385
3386 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3387 * means we reserve 2 more, this pushes us to allocate from the next
3388 * larger slab size.
3389 * i.e. RXBUFFER_2048 --> size-4096 slab
3390 */
3391
3392 if (max_frame <= IGB_RXBUFFER_256)
3393 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3394 else if (max_frame <= IGB_RXBUFFER_512)
3395 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3396 else if (max_frame <= IGB_RXBUFFER_1024)
3397 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3398 else if (max_frame <= IGB_RXBUFFER_2048)
3399 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3400 else
bf36c1a0
AD
3401#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3402 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3403#else
3404 adapter->rx_buffer_len = PAGE_SIZE / 2;
3405#endif
e1739522
AD
3406
3407 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3408 if (adapter->vfs_allocated_count &&
3409 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3410 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3411
9d5c8243
AK
3412 /* adjust allocation if LPE protects us, and we aren't using SBP */
3413 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3414 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3415 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3416
3417 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3418 netdev->mtu, new_mtu);
3419 netdev->mtu = new_mtu;
3420
3421 if (netif_running(netdev))
3422 igb_up(adapter);
3423 else
3424 igb_reset(adapter);
3425
3426 clear_bit(__IGB_RESETTING, &adapter->state);
3427
3428 return 0;
3429}
3430
3431/**
3432 * igb_update_stats - Update the board statistics counters
3433 * @adapter: board private structure
3434 **/
3435
3436void igb_update_stats(struct igb_adapter *adapter)
3437{
3438 struct e1000_hw *hw = &adapter->hw;
3439 struct pci_dev *pdev = adapter->pdev;
3440 u16 phy_tmp;
3441
3442#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3443
3444 /*
3445 * Prevent stats update while adapter is being reset, or if the pci
3446 * connection is down.
3447 */
3448 if (adapter->link_speed == 0)
3449 return;
3450 if (pci_channel_offline(pdev))
3451 return;
3452
3453 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3454 adapter->stats.gprc += rd32(E1000_GPRC);
3455 adapter->stats.gorc += rd32(E1000_GORCL);
3456 rd32(E1000_GORCH); /* clear GORCL */
3457 adapter->stats.bprc += rd32(E1000_BPRC);
3458 adapter->stats.mprc += rd32(E1000_MPRC);
3459 adapter->stats.roc += rd32(E1000_ROC);
3460
3461 adapter->stats.prc64 += rd32(E1000_PRC64);
3462 adapter->stats.prc127 += rd32(E1000_PRC127);
3463 adapter->stats.prc255 += rd32(E1000_PRC255);
3464 adapter->stats.prc511 += rd32(E1000_PRC511);
3465 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3466 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3467 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3468 adapter->stats.sec += rd32(E1000_SEC);
3469
3470 adapter->stats.mpc += rd32(E1000_MPC);
3471 adapter->stats.scc += rd32(E1000_SCC);
3472 adapter->stats.ecol += rd32(E1000_ECOL);
3473 adapter->stats.mcc += rd32(E1000_MCC);
3474 adapter->stats.latecol += rd32(E1000_LATECOL);
3475 adapter->stats.dc += rd32(E1000_DC);
3476 adapter->stats.rlec += rd32(E1000_RLEC);
3477 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3478 adapter->stats.xontxc += rd32(E1000_XONTXC);
3479 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3480 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3481 adapter->stats.fcruc += rd32(E1000_FCRUC);
3482 adapter->stats.gptc += rd32(E1000_GPTC);
3483 adapter->stats.gotc += rd32(E1000_GOTCL);
3484 rd32(E1000_GOTCH); /* clear GOTCL */
3485 adapter->stats.rnbc += rd32(E1000_RNBC);
3486 adapter->stats.ruc += rd32(E1000_RUC);
3487 adapter->stats.rfc += rd32(E1000_RFC);
3488 adapter->stats.rjc += rd32(E1000_RJC);
3489 adapter->stats.tor += rd32(E1000_TORH);
3490 adapter->stats.tot += rd32(E1000_TOTH);
3491 adapter->stats.tpr += rd32(E1000_TPR);
3492
3493 adapter->stats.ptc64 += rd32(E1000_PTC64);
3494 adapter->stats.ptc127 += rd32(E1000_PTC127);
3495 adapter->stats.ptc255 += rd32(E1000_PTC255);
3496 adapter->stats.ptc511 += rd32(E1000_PTC511);
3497 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3498 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3499
3500 adapter->stats.mptc += rd32(E1000_MPTC);
3501 adapter->stats.bptc += rd32(E1000_BPTC);
3502
3503 /* used for adaptive IFS */
3504
3505 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3506 adapter->stats.tpt += hw->mac.tx_packet_delta;
3507 hw->mac.collision_delta = rd32(E1000_COLC);
3508 adapter->stats.colc += hw->mac.collision_delta;
3509
3510 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3511 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3512 adapter->stats.tncrs += rd32(E1000_TNCRS);
3513 adapter->stats.tsctc += rd32(E1000_TSCTC);
3514 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3515
3516 adapter->stats.iac += rd32(E1000_IAC);
3517 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3518 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3519 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3520 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3521 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3522 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3523 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3524 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3525
3526 /* Fill out the OS statistics structure */
3527 adapter->net_stats.multicast = adapter->stats.mprc;
3528 adapter->net_stats.collisions = adapter->stats.colc;
3529
3530 /* Rx Errors */
3531
3532 /* RLEC on some newer hardware can be incorrect so build
3533 * our own version based on RUC and ROC */
3534 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3535 adapter->stats.crcerrs + adapter->stats.algnerrc +
3536 adapter->stats.ruc + adapter->stats.roc +
3537 adapter->stats.cexterr;
3538 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3539 adapter->stats.roc;
3540 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3541 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3542 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3543
3544 /* Tx Errors */
3545 adapter->net_stats.tx_errors = adapter->stats.ecol +
3546 adapter->stats.latecol;
3547 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3548 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3549 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3550
3551 /* Tx Dropped needs to be maintained elsewhere */
3552
3553 /* Phy Stats */
3554 if (hw->phy.media_type == e1000_media_type_copper) {
3555 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 3556 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
3557 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3558 adapter->phy_stats.idle_errors += phy_tmp;
3559 }
3560 }
3561
3562 /* Management Stats */
3563 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3564 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3565 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3566}
3567
9d5c8243
AK
3568static irqreturn_t igb_msix_other(int irq, void *data)
3569{
3570 struct net_device *netdev = data;
3571 struct igb_adapter *adapter = netdev_priv(netdev);
3572 struct e1000_hw *hw = &adapter->hw;
844290e5 3573 u32 icr = rd32(E1000_ICR);
9d5c8243 3574
844290e5 3575 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083
AD
3576
3577 if(icr & E1000_ICR_DOUTSYNC) {
3578 /* HW is reporting DMA is out of sync */
3579 adapter->stats.doosync++;
3580 }
eebbbdba 3581
4ae196df
AD
3582 /* Check for a mailbox event */
3583 if (icr & E1000_ICR_VMMB)
3584 igb_msg_task(adapter);
3585
3586 if (icr & E1000_ICR_LSC) {
3587 hw->mac.get_link_status = 1;
3588 /* guard against interrupt when we're going down */
3589 if (!test_bit(__IGB_DOWN, &adapter->state))
3590 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3591 }
3592
3593 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
844290e5 3594 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3595
3596 return IRQ_HANDLED;
3597}
3598
3599static irqreturn_t igb_msix_tx(int irq, void *data)
3600{
3601 struct igb_ring *tx_ring = data;
3602 struct igb_adapter *adapter = tx_ring->adapter;
3603 struct e1000_hw *hw = &adapter->hw;
3604
421e02f0 3605#ifdef CONFIG_IGB_DCA
7dfc16fa 3606 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3607 igb_update_tx_dca(tx_ring);
3608#endif
73cd78f1 3609
9d5c8243
AK
3610 tx_ring->total_bytes = 0;
3611 tx_ring->total_packets = 0;
661086df
PWJ
3612
3613 /* auto mask will automatically reenable the interrupt when we write
3614 * EICS */
3b644cf6 3615 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3616 /* Ring was not completely cleaned, so fire another interrupt */
3617 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3618 else
9d5c8243 3619 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3620
9d5c8243
AK
3621 return IRQ_HANDLED;
3622}
3623
6eb5a7f1
AD
3624static void igb_write_itr(struct igb_ring *ring)
3625{
3626 struct e1000_hw *hw = &ring->adapter->hw;
3627 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3628 switch (hw->mac.type) {
3629 case e1000_82576:
73cd78f1 3630 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3631 0x80000000);
3632 break;
3633 default:
73cd78f1 3634 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3635 (ring->itr_val << 16));
3636 break;
3637 }
3638 ring->set_itr = 0;
3639 }
3640}
3641
9d5c8243
AK
3642static irqreturn_t igb_msix_rx(int irq, void *data)
3643{
3644 struct igb_ring *rx_ring = data;
9d5c8243 3645
844290e5
PW
3646 /* Write the ITR value calculated at the end of the
3647 * previous interrupt.
3648 */
9d5c8243 3649
6eb5a7f1 3650 igb_write_itr(rx_ring);
9d5c8243 3651
288379f0
BH
3652 if (napi_schedule_prep(&rx_ring->napi))
3653 __napi_schedule(&rx_ring->napi);
844290e5 3654
421e02f0 3655#ifdef CONFIG_IGB_DCA
8d253320 3656 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3657 igb_update_rx_dca(rx_ring);
3658#endif
3659 return IRQ_HANDLED;
3660}
3661
421e02f0 3662#ifdef CONFIG_IGB_DCA
fe4506b6
JC
3663static void igb_update_rx_dca(struct igb_ring *rx_ring)
3664{
3665 u32 dca_rxctrl;
3666 struct igb_adapter *adapter = rx_ring->adapter;
3667 struct e1000_hw *hw = &adapter->hw;
3668 int cpu = get_cpu();
26bc19ec 3669 int q = rx_ring->reg_idx;
fe4506b6
JC
3670
3671 if (rx_ring->cpu != cpu) {
3672 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
2d064c06
AD
3673 if (hw->mac.type == e1000_82576) {
3674 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
92be7917 3675 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3676 E1000_DCA_RXCTRL_CPUID_SHIFT;
3677 } else {
3678 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 3679 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3680 }
fe4506b6
JC
3681 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3682 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3683 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3684 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3685 rx_ring->cpu = cpu;
3686 }
3687 put_cpu();
3688}
3689
3690static void igb_update_tx_dca(struct igb_ring *tx_ring)
3691{
3692 u32 dca_txctrl;
3693 struct igb_adapter *adapter = tx_ring->adapter;
3694 struct e1000_hw *hw = &adapter->hw;
3695 int cpu = get_cpu();
26bc19ec 3696 int q = tx_ring->reg_idx;
fe4506b6
JC
3697
3698 if (tx_ring->cpu != cpu) {
3699 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
2d064c06
AD
3700 if (hw->mac.type == e1000_82576) {
3701 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
92be7917 3702 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3703 E1000_DCA_TXCTRL_CPUID_SHIFT;
3704 } else {
3705 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
92be7917 3706 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3707 }
fe4506b6
JC
3708 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3709 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3710 tx_ring->cpu = cpu;
3711 }
3712 put_cpu();
3713}
3714
3715static void igb_setup_dca(struct igb_adapter *adapter)
3716{
3717 int i;
3718
7dfc16fa 3719 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
3720 return;
3721
3722 for (i = 0; i < adapter->num_tx_queues; i++) {
3723 adapter->tx_ring[i].cpu = -1;
3724 igb_update_tx_dca(&adapter->tx_ring[i]);
3725 }
3726 for (i = 0; i < adapter->num_rx_queues; i++) {
3727 adapter->rx_ring[i].cpu = -1;
3728 igb_update_rx_dca(&adapter->rx_ring[i]);
3729 }
3730}
3731
3732static int __igb_notify_dca(struct device *dev, void *data)
3733{
3734 struct net_device *netdev = dev_get_drvdata(dev);
3735 struct igb_adapter *adapter = netdev_priv(netdev);
3736 struct e1000_hw *hw = &adapter->hw;
3737 unsigned long event = *(unsigned long *)data;
3738
3739 switch (event) {
3740 case DCA_PROVIDER_ADD:
3741 /* if already enabled, don't do it again */
7dfc16fa 3742 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 3743 break;
fe4506b6
JC
3744 /* Always use CB2 mode, difference is masked
3745 * in the CB driver. */
cbd347ad 3746 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6 3747 if (dca_add_requester(dev) == 0) {
bbd98fe4 3748 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3749 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3750 igb_setup_dca(adapter);
3751 break;
3752 }
3753 /* Fall Through since DCA is disabled. */
3754 case DCA_PROVIDER_REMOVE:
7dfc16fa 3755 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3756 /* without this a class_device is left
3757 * hanging around in the sysfs model */
3758 dca_remove_requester(dev);
3759 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 3760 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 3761 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
3762 }
3763 break;
3764 }
bbd98fe4 3765
fe4506b6 3766 return 0;
9d5c8243
AK
3767}
3768
fe4506b6
JC
3769static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3770 void *p)
3771{
3772 int ret_val;
3773
3774 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3775 __igb_notify_dca);
3776
3777 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3778}
421e02f0 3779#endif /* CONFIG_IGB_DCA */
9d5c8243 3780
4ae196df
AD
3781static void igb_ping_all_vfs(struct igb_adapter *adapter)
3782{
3783 struct e1000_hw *hw = &adapter->hw;
3784 u32 ping;
3785 int i;
3786
3787 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3788 ping = E1000_PF_CONTROL_MSG;
3789 if (adapter->vf_data[i].clear_to_send)
3790 ping |= E1000_VT_MSGTYPE_CTS;
3791 igb_write_mbx(hw, &ping, 1, i);
3792 }
3793}
3794
3795static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3796 u32 *msgbuf, u32 vf)
3797{
3798 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3799 u16 *hash_list = (u16 *)&msgbuf[1];
3800 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3801 int i;
3802
3803 /* only up to 30 hash values supported */
3804 if (n > 30)
3805 n = 30;
3806
3807 /* salt away the number of multi cast addresses assigned
3808 * to this VF for later use to restore when the PF multi cast
3809 * list changes
3810 */
3811 vf_data->num_vf_mc_hashes = n;
3812
3813 /* VFs are limited to using the MTA hash table for their multicast
3814 * addresses */
3815 for (i = 0; i < n; i++)
3816 vf_data->vf_mc_hashes[i] = hash_list[i];;
3817
3818 /* Flush and reset the mta with the new values */
3819 igb_set_multi(adapter->netdev);
3820
3821 return 0;
3822}
3823
3824static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3825{
3826 struct e1000_hw *hw = &adapter->hw;
3827 struct vf_data_storage *vf_data;
3828 int i, j;
3829
3830 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3831 vf_data = &adapter->vf_data[i];
75f4f382 3832 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4ae196df
AD
3833 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3834 }
3835}
3836
3837static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3838{
3839 struct e1000_hw *hw = &adapter->hw;
3840 u32 pool_mask, reg, vid;
3841 int i;
3842
3843 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3844
3845 /* Find the vlan filter for this id */
3846 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3847 reg = rd32(E1000_VLVF(i));
3848
3849 /* remove the vf from the pool */
3850 reg &= ~pool_mask;
3851
3852 /* if pool is empty then remove entry from vfta */
3853 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3854 (reg & E1000_VLVF_VLANID_ENABLE)) {
3855 reg = 0;
3856 vid = reg & E1000_VLVF_VLANID_MASK;
3857 igb_vfta_set(hw, vid, false);
3858 }
3859
3860 wr32(E1000_VLVF(i), reg);
3861 }
3862}
3863
3864static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3865{
3866 struct e1000_hw *hw = &adapter->hw;
3867 u32 reg, i;
3868
3869 /* It is an error to call this function when VFs are not enabled */
3870 if (!adapter->vfs_allocated_count)
3871 return -1;
3872
3873 /* Find the vlan filter for this id */
3874 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3875 reg = rd32(E1000_VLVF(i));
3876 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3877 vid == (reg & E1000_VLVF_VLANID_MASK))
3878 break;
3879 }
3880
3881 if (add) {
3882 if (i == E1000_VLVF_ARRAY_SIZE) {
3883 /* Did not find a matching VLAN ID entry that was
3884 * enabled. Search for a free filter entry, i.e.
3885 * one without the enable bit set
3886 */
3887 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3888 reg = rd32(E1000_VLVF(i));
3889 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3890 break;
3891 }
3892 }
3893 if (i < E1000_VLVF_ARRAY_SIZE) {
3894 /* Found an enabled/available entry */
3895 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3896
3897 /* if !enabled we need to set this up in vfta */
3898 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
cad6d05f
AD
3899 /* add VID to filter table, if bit already set
3900 * PF must have added it outside of table */
3901 if (igb_vfta_set(hw, vid, true))
3902 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3903 adapter->vfs_allocated_count);
4ae196df
AD
3904 reg |= E1000_VLVF_VLANID_ENABLE;
3905 }
cad6d05f
AD
3906 reg &= ~E1000_VLVF_VLANID_MASK;
3907 reg |= vid;
4ae196df
AD
3908
3909 wr32(E1000_VLVF(i), reg);
3910 return 0;
3911 }
3912 } else {
3913 if (i < E1000_VLVF_ARRAY_SIZE) {
3914 /* remove vf from the pool */
3915 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3916 /* if pool is empty then remove entry from vfta */
3917 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3918 reg = 0;
3919 igb_vfta_set(hw, vid, false);
3920 }
3921 wr32(E1000_VLVF(i), reg);
3922 return 0;
3923 }
3924 }
3925 return -1;
3926}
3927
3928static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3929{
3930 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3931 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3932
3933 return igb_vlvf_set(adapter, vid, add, vf);
3934}
3935
3936static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3937{
3938 struct e1000_hw *hw = &adapter->hw;
3939
3940 /* disable mailbox functionality for vf */
3941 adapter->vf_data[vf].clear_to_send = false;
3942
3943 /* reset offloads to defaults */
3944 igb_set_vmolr(hw, vf);
3945
3946 /* reset vlans for device */
3947 igb_clear_vf_vfta(adapter, vf);
3948
3949 /* reset multicast table array for vf */
3950 adapter->vf_data[vf].num_vf_mc_hashes = 0;
3951
3952 /* Flush and reset the mta with the new values */
3953 igb_set_multi(adapter->netdev);
3954}
3955
3956static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
3957{
3958 struct e1000_hw *hw = &adapter->hw;
3959 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
3960 u32 reg, msgbuf[3];
3961 u8 *addr = (u8 *)(&msgbuf[1]);
3962
3963 /* process all the same items cleared in a function level reset */
3964 igb_vf_reset_event(adapter, vf);
3965
3966 /* set vf mac address */
3967 igb_rar_set(hw, vf_mac, vf + 1);
3968 igb_set_rah_pool(hw, vf, vf + 1);
3969
3970 /* enable transmit and receive for vf */
3971 reg = rd32(E1000_VFTE);
3972 wr32(E1000_VFTE, reg | (1 << vf));
3973 reg = rd32(E1000_VFRE);
3974 wr32(E1000_VFRE, reg | (1 << vf));
3975
3976 /* enable mailbox functionality for vf */
3977 adapter->vf_data[vf].clear_to_send = true;
3978
3979 /* reply to reset with ack and vf mac address */
3980 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
3981 memcpy(addr, vf_mac, 6);
3982 igb_write_mbx(hw, msgbuf, 3, vf);
3983}
3984
3985static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
3986{
3987 unsigned char *addr = (char *)&msg[1];
3988 int err = -1;
3989
3990 if (is_valid_ether_addr(addr))
3991 err = igb_set_vf_mac(adapter, vf, addr);
3992
3993 return err;
3994
3995}
3996
3997static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
3998{
3999 struct e1000_hw *hw = &adapter->hw;
4000 u32 msg = E1000_VT_MSGTYPE_NACK;
4001
4002 /* if device isn't clear to send it shouldn't be reading either */
4003 if (!adapter->vf_data[vf].clear_to_send)
4004 igb_write_mbx(hw, &msg, 1, vf);
4005}
4006
4007
4008static void igb_msg_task(struct igb_adapter *adapter)
4009{
4010 struct e1000_hw *hw = &adapter->hw;
4011 u32 vf;
4012
4013 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4014 /* process any reset requests */
4015 if (!igb_check_for_rst(hw, vf)) {
4016 adapter->vf_data[vf].clear_to_send = false;
4017 igb_vf_reset_event(adapter, vf);
4018 }
4019
4020 /* process any messages pending */
4021 if (!igb_check_for_msg(hw, vf))
4022 igb_rcv_msg_from_vf(adapter, vf);
4023
4024 /* process any acks */
4025 if (!igb_check_for_ack(hw, vf))
4026 igb_rcv_ack_from_vf(adapter, vf);
4027
4028 }
4029}
4030
4031static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4032{
4033 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4034 u32 msgbuf[mbx_size];
4035 struct e1000_hw *hw = &adapter->hw;
4036 s32 retval;
4037
4038 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4039
4040 if (retval)
4041 dev_err(&adapter->pdev->dev,
4042 "Error receiving message from VF\n");
4043
4044 /* this is a message we already processed, do nothing */
4045 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4046 return retval;
4047
4048 /*
4049 * until the vf completes a reset it should not be
4050 * allowed to start any configuration.
4051 */
4052
4053 if (msgbuf[0] == E1000_VF_RESET) {
4054 igb_vf_reset_msg(adapter, vf);
4055
4056 return retval;
4057 }
4058
4059 if (!adapter->vf_data[vf].clear_to_send) {
4060 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4061 igb_write_mbx(hw, msgbuf, 1, vf);
4062 return retval;
4063 }
4064
4065 switch ((msgbuf[0] & 0xFFFF)) {
4066 case E1000_VF_SET_MAC_ADDR:
4067 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4068 break;
4069 case E1000_VF_SET_MULTICAST:
4070 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4071 break;
4072 case E1000_VF_SET_LPE:
4073 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4074 break;
4075 case E1000_VF_SET_VLAN:
4076 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4077 break;
4078 default:
4079 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4080 retval = -1;
4081 break;
4082 }
4083
4084 /* notify the VF of the results of what it sent us */
4085 if (retval)
4086 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4087 else
4088 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4089
4090 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4091
4092 igb_write_mbx(hw, msgbuf, 1, vf);
4093
4094 return retval;
4095}
4096
9d5c8243
AK
4097/**
4098 * igb_intr_msi - Interrupt Handler
4099 * @irq: interrupt number
4100 * @data: pointer to a network interface device structure
4101 **/
4102static irqreturn_t igb_intr_msi(int irq, void *data)
4103{
4104 struct net_device *netdev = data;
4105 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4106 struct e1000_hw *hw = &adapter->hw;
4107 /* read ICR disables interrupts using IAM */
4108 u32 icr = rd32(E1000_ICR);
4109
6eb5a7f1 4110 igb_write_itr(adapter->rx_ring);
9d5c8243 4111
dda0e083
AD
4112 if(icr & E1000_ICR_DOUTSYNC) {
4113 /* HW is reporting DMA is out of sync */
4114 adapter->stats.doosync++;
4115 }
4116
9d5c8243
AK
4117 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4118 hw->mac.get_link_status = 1;
4119 if (!test_bit(__IGB_DOWN, &adapter->state))
4120 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4121 }
4122
288379f0 4123 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4124
4125 return IRQ_HANDLED;
4126}
4127
4128/**
4a3c6433 4129 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4130 * @irq: interrupt number
4131 * @data: pointer to a network interface device structure
4132 **/
4133static irqreturn_t igb_intr(int irq, void *data)
4134{
4135 struct net_device *netdev = data;
4136 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4137 struct e1000_hw *hw = &adapter->hw;
4138 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4139 * need for the IMC write */
4140 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4141 if (!icr)
4142 return IRQ_NONE; /* Not our interrupt */
4143
6eb5a7f1 4144 igb_write_itr(adapter->rx_ring);
9d5c8243
AK
4145
4146 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4147 * not set, then the adapter didn't send an interrupt */
4148 if (!(icr & E1000_ICR_INT_ASSERTED))
4149 return IRQ_NONE;
4150
dda0e083
AD
4151 if(icr & E1000_ICR_DOUTSYNC) {
4152 /* HW is reporting DMA is out of sync */
4153 adapter->stats.doosync++;
4154 }
4155
9d5c8243
AK
4156 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4157 hw->mac.get_link_status = 1;
4158 /* guard against interrupt when we're going down */
4159 if (!test_bit(__IGB_DOWN, &adapter->state))
4160 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4161 }
4162
288379f0 4163 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4164
4165 return IRQ_HANDLED;
4166}
4167
46544258 4168static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
9d5c8243 4169{
661086df 4170 struct igb_adapter *adapter = rx_ring->adapter;
46544258 4171 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4172
46544258
AD
4173 if (adapter->itr_setting & 3) {
4174 if (adapter->num_rx_queues == 1)
6eb5a7f1 4175 igb_set_itr(adapter);
46544258
AD
4176 else
4177 igb_update_ring_itr(rx_ring);
9d5c8243
AK
4178 }
4179
46544258
AD
4180 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4181 if (adapter->msix_entries)
4182 wr32(E1000_EIMS, rx_ring->eims_value);
4183 else
4184 igb_irq_enable(adapter);
4185 }
9d5c8243
AK
4186}
4187
46544258
AD
4188/**
4189 * igb_poll - NAPI Rx polling callback
4190 * @napi: napi polling structure
4191 * @budget: count of how many packets we should handle
4192 **/
4193static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243
AK
4194{
4195 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
9d5c8243
AK
4196 int work_done = 0;
4197
421e02f0 4198#ifdef CONFIG_IGB_DCA
bd38e5d1 4199 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
4200 igb_update_rx_dca(rx_ring);
4201#endif
3b644cf6 4202 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243 4203
46544258
AD
4204 if (rx_ring->buddy) {
4205#ifdef CONFIG_IGB_DCA
bd38e5d1 4206 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
46544258
AD
4207 igb_update_tx_dca(rx_ring->buddy);
4208#endif
4209 if (!igb_clean_tx_irq(rx_ring->buddy))
4210 work_done = budget;
4211 }
4212
9d5c8243 4213 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4214 if (work_done < budget) {
288379f0 4215 napi_complete(napi);
46544258 4216 igb_rx_irq_enable(rx_ring);
9d5c8243
AK
4217 }
4218
46544258 4219 return work_done;
9d5c8243 4220}
6d8126f9 4221
33af6bcc
PO
4222/**
4223 * igb_hwtstamp - utility function which checks for TX time stamp
4224 * @adapter: board private structure
4225 * @skb: packet that was just sent
4226 *
4227 * If we were asked to do hardware stamping and such a time stamp is
4228 * available, then it must have been for this skb here because we only
4229 * allow only one such packet into the queue.
4230 */
4231static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4232{
4233 union skb_shared_tx *shtx = skb_tx(skb);
4234 struct e1000_hw *hw = &adapter->hw;
4235
4236 if (unlikely(shtx->hardware)) {
4237 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4238 if (valid) {
4239 u64 regval = rd32(E1000_TXSTMPL);
4240 u64 ns;
4241 struct skb_shared_hwtstamps shhwtstamps;
4242
4243 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4244 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4245 ns = timecounter_cyc2time(&adapter->clock,
4246 regval);
4247 timecompare_update(&adapter->compare, ns);
4248 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4249 shhwtstamps.syststamp =
4250 timecompare_transform(&adapter->compare, ns);
4251 skb_tstamp_tx(skb, &shhwtstamps);
4252 }
33af6bcc
PO
4253 }
4254}
4255
9d5c8243
AK
4256/**
4257 * igb_clean_tx_irq - Reclaim resources after transmit completes
4258 * @adapter: board private structure
4259 * returns true if ring is completely cleaned
4260 **/
3b644cf6 4261static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 4262{
3b644cf6 4263 struct igb_adapter *adapter = tx_ring->adapter;
3b644cf6 4264 struct net_device *netdev = adapter->netdev;
0e014cb1 4265 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4266 struct igb_buffer *buffer_info;
4267 struct sk_buff *skb;
0e014cb1 4268 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4269 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
4270 unsigned int i, eop, count = 0;
4271 bool cleaned = false;
9d5c8243 4272
9d5c8243 4273 i = tx_ring->next_to_clean;
0e014cb1
AD
4274 eop = tx_ring->buffer_info[i].next_to_watch;
4275 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4276
4277 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4278 (count < tx_ring->count)) {
4279 for (cleaned = false; !cleaned; count++) {
4280 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 4281 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 4282 cleaned = (i == eop);
9d5c8243
AK
4283 skb = buffer_info->skb;
4284
4285 if (skb) {
4286 unsigned int segs, bytecount;
4287 /* gso_segs is currently only valid for tcp */
4288 segs = skb_shinfo(skb)->gso_segs ?: 1;
4289 /* multiply data chunks by size of headers */
4290 bytecount = ((segs - 1) * skb_headlen(skb)) +
4291 skb->len;
4292 total_packets += segs;
4293 total_bytes += bytecount;
33af6bcc
PO
4294
4295 igb_tx_hwtstamp(adapter, skb);
9d5c8243
AK
4296 }
4297
4298 igb_unmap_and_free_tx_resource(adapter, buffer_info);
0e014cb1 4299 tx_desc->wb.status = 0;
9d5c8243
AK
4300
4301 i++;
4302 if (i == tx_ring->count)
4303 i = 0;
9d5c8243 4304 }
0e014cb1
AD
4305 eop = tx_ring->buffer_info[i].next_to_watch;
4306 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4307 }
4308
9d5c8243
AK
4309 tx_ring->next_to_clean = i;
4310
fc7d345d 4311 if (unlikely(count &&
9d5c8243
AK
4312 netif_carrier_ok(netdev) &&
4313 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4314 /* Make sure that anybody stopping the queue after this
4315 * sees the new next_to_clean.
4316 */
4317 smp_mb();
661086df
PWJ
4318 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4319 !(test_bit(__IGB_DOWN, &adapter->state))) {
4320 netif_wake_subqueue(netdev, tx_ring->queue_index);
4321 ++adapter->restart_queue;
4322 }
9d5c8243
AK
4323 }
4324
4325 if (tx_ring->detect_tx_hung) {
4326 /* Detect a transmit hang in hardware, this serializes the
4327 * check with the clearing of time_stamp and movement of i */
4328 tx_ring->detect_tx_hung = false;
4329 if (tx_ring->buffer_info[i].time_stamp &&
4330 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4331 (adapter->tx_timeout_factor * HZ))
4332 && !(rd32(E1000_STATUS) &
4333 E1000_STATUS_TXOFF)) {
4334
9d5c8243
AK
4335 /* detected Tx unit hang */
4336 dev_err(&adapter->pdev->dev,
4337 "Detected Tx Unit Hang\n"
2d064c06 4338 " Tx Queue <%d>\n"
9d5c8243
AK
4339 " TDH <%x>\n"
4340 " TDT <%x>\n"
4341 " next_to_use <%x>\n"
4342 " next_to_clean <%x>\n"
9d5c8243
AK
4343 "buffer_info[next_to_clean]\n"
4344 " time_stamp <%lx>\n"
0e014cb1 4345 " next_to_watch <%x>\n"
9d5c8243
AK
4346 " jiffies <%lx>\n"
4347 " desc.status <%x>\n",
2d064c06 4348 tx_ring->queue_index,
9d5c8243
AK
4349 readl(adapter->hw.hw_addr + tx_ring->head),
4350 readl(adapter->hw.hw_addr + tx_ring->tail),
4351 tx_ring->next_to_use,
4352 tx_ring->next_to_clean,
9d5c8243 4353 tx_ring->buffer_info[i].time_stamp,
0e014cb1 4354 eop,
9d5c8243 4355 jiffies,
0e014cb1 4356 eop_desc->wb.status);
661086df 4357 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
4358 }
4359 }
4360 tx_ring->total_bytes += total_bytes;
4361 tx_ring->total_packets += total_packets;
e21ed353
AD
4362 tx_ring->tx_stats.bytes += total_bytes;
4363 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
4364 adapter->net_stats.tx_bytes += total_bytes;
4365 adapter->net_stats.tx_packets += total_packets;
0e014cb1 4366 return (count < tx_ring->count);
9d5c8243
AK
4367}
4368
9d5c8243
AK
4369/**
4370 * igb_receive_skb - helper function to handle rx indications
eebbbdba 4371 * @ring: pointer to receive ring receving this packet
9d5c8243 4372 * @status: descriptor status field as written by hardware
73cd78f1 4373 * @rx_desc: receive descriptor containing vlan and type information.
9d5c8243
AK
4374 * @skb: pointer to sk_buff to be indicated to stack
4375 **/
d3352520
AD
4376static void igb_receive_skb(struct igb_ring *ring, u8 status,
4377 union e1000_adv_rx_desc * rx_desc,
4378 struct sk_buff *skb)
4379{
4380 struct igb_adapter * adapter = ring->adapter;
4381 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4382
0c8dfc83 4383 skb_record_rx_queue(skb, ring->queue_index);
5c0999b7 4384 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
d3352520 4385 if (vlan_extracted)
5c0999b7
HX
4386 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4387 le16_to_cpu(rx_desc->wb.upper.vlan),
4388 skb);
d3352520 4389 else
5c0999b7 4390 napi_gro_receive(&ring->napi, skb);
d3352520 4391 } else {
d3352520
AD
4392 if (vlan_extracted)
4393 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4394 le16_to_cpu(rx_desc->wb.upper.vlan));
4395 else
d3352520 4396 netif_receive_skb(skb);
d3352520 4397 }
9d5c8243
AK
4398}
4399
9d5c8243
AK
4400static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4401 u32 status_err, struct sk_buff *skb)
4402{
4403 skb->ip_summed = CHECKSUM_NONE;
4404
4405 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4406 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4407 return;
4408 /* TCP/UDP checksum error bit is set */
4409 if (status_err &
4410 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4411 /* let the stack verify checksum errors */
4412 adapter->hw_csum_err++;
4413 return;
4414 }
4415 /* It must be a TCP or UDP packet with a valid checksum */
4416 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4417 skb->ip_summed = CHECKSUM_UNNECESSARY;
4418
4419 adapter->hw_csum_good++;
4420}
4421
3b644cf6
MW
4422static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4423 int *work_done, int budget)
9d5c8243 4424{
3b644cf6 4425 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 4426 struct net_device *netdev = adapter->netdev;
33af6bcc 4427 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4428 struct pci_dev *pdev = adapter->pdev;
4429 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4430 struct igb_buffer *buffer_info , *next_buffer;
4431 struct sk_buff *skb;
9d5c8243
AK
4432 bool cleaned = false;
4433 int cleaned_count = 0;
4434 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1
AD
4435 unsigned int i;
4436 u32 length, hlen, staterr;
9d5c8243
AK
4437
4438 i = rx_ring->next_to_clean;
69d3ca53 4439 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
4440 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4441 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4442
4443 while (staterr & E1000_RXD_STAT_DD) {
4444 if (*work_done >= budget)
4445 break;
4446 (*work_done)++;
9d5c8243 4447
69d3ca53
AD
4448 skb = buffer_info->skb;
4449 prefetch(skb->data - NET_IP_ALIGN);
4450 buffer_info->skb = NULL;
4451
4452 i++;
4453 if (i == rx_ring->count)
4454 i = 0;
4455 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4456 prefetch(next_rxd);
4457 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
4458
4459 length = le16_to_cpu(rx_desc->wb.upper.length);
4460 cleaned = true;
4461 cleaned_count++;
4462
bf36c1a0
AD
4463 if (!adapter->rx_ps_hdr_size) {
4464 pci_unmap_single(pdev, buffer_info->dma,
4465 adapter->rx_buffer_len +
4466 NET_IP_ALIGN,
4467 PCI_DMA_FROMDEVICE);
4468 skb_put(skb, length);
4469 goto send_up;
9d5c8243
AK
4470 }
4471
69d3ca53
AD
4472 /* HW will not DMA in data larger than the given buffer, even
4473 * if it parses the (NFS, of course) header to be larger. In
4474 * that case, it fills the header buffer and spills the rest
4475 * into the page.
4476 */
4477 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4478 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4479 if (hlen > adapter->rx_ps_hdr_size)
4480 hlen = adapter->rx_ps_hdr_size;
4481
bf36c1a0
AD
4482 if (!skb_shinfo(skb)->nr_frags) {
4483 pci_unmap_single(pdev, buffer_info->dma,
73cd78f1 4484 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
bf36c1a0
AD
4485 PCI_DMA_FROMDEVICE);
4486 skb_put(skb, hlen);
4487 }
4488
4489 if (length) {
9d5c8243 4490 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 4491 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 4492 buffer_info->page_dma = 0;
bf36c1a0
AD
4493
4494 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4495 buffer_info->page,
4496 buffer_info->page_offset,
4497 length);
4498
4499 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4500 (page_count(buffer_info->page) != 1))
4501 buffer_info->page = NULL;
4502 else
4503 get_page(buffer_info->page);
9d5c8243
AK
4504
4505 skb->len += length;
4506 skb->data_len += length;
9d5c8243 4507
bf36c1a0 4508 skb->truesize += length;
9d5c8243 4509 }
9d5c8243 4510
bf36c1a0 4511 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
4512 buffer_info->skb = next_buffer->skb;
4513 buffer_info->dma = next_buffer->dma;
4514 next_buffer->skb = skb;
4515 next_buffer->dma = 0;
bf36c1a0
AD
4516 goto next_desc;
4517 }
69d3ca53 4518send_up:
33af6bcc
PO
4519 /*
4520 * If this bit is set, then the RX registers contain
4521 * the time stamp. No other packet will be time
4522 * stamped until we read these registers, so read the
4523 * registers to make them available again. Because
4524 * only one packet can be time stamped at a time, we
4525 * know that the register values must belong to this
4526 * one here and therefore we don't need to compare
4527 * any of the additional attributes stored for it.
4528 *
4529 * If nothing went wrong, then it should have a
4530 * skb_shared_tx that we can turn into a
4531 * skb_shared_hwtstamps.
4532 *
4533 * TODO: can time stamping be triggered (thus locking
4534 * the registers) without the packet reaching this point
4535 * here? In that case RX time stamping would get stuck.
4536 *
4537 * TODO: in "time stamp all packets" mode this bit is
4538 * not set. Need a global flag for this mode and then
4539 * always read the registers. Cannot be done without
4540 * a race condition.
4541 */
4542 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4543 u64 regval;
4544 u64 ns;
4545 struct skb_shared_hwtstamps *shhwtstamps =
4546 skb_hwtstamps(skb);
4547
4548 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4549 "igb: no RX time stamp available for time stamped packet");
4550 regval = rd32(E1000_RXSTMPL);
4551 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4552 ns = timecounter_cyc2time(&adapter->clock, regval);
4553 timecompare_update(&adapter->compare, ns);
4554 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4555 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4556 shhwtstamps->syststamp =
4557 timecompare_transform(&adapter->compare, ns);
4558 }
4559
9d5c8243
AK
4560 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4561 dev_kfree_skb_irq(skb);
4562 goto next_desc;
4563 }
9d5c8243
AK
4564
4565 total_bytes += skb->len;
4566 total_packets++;
4567
4568 igb_rx_checksum_adv(adapter, staterr, skb);
4569
4570 skb->protocol = eth_type_trans(skb, netdev);
4571
d3352520 4572 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
9d5c8243 4573
9d5c8243
AK
4574next_desc:
4575 rx_desc->wb.upper.status_error = 0;
4576
4577 /* return some buffers to hardware, one at a time is too slow */
4578 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 4579 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4580 cleaned_count = 0;
4581 }
4582
4583 /* use prefetched values */
4584 rx_desc = next_rxd;
4585 buffer_info = next_buffer;
9d5c8243
AK
4586 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4587 }
bf36c1a0 4588
9d5c8243
AK
4589 rx_ring->next_to_clean = i;
4590 cleaned_count = IGB_DESC_UNUSED(rx_ring);
4591
4592 if (cleaned_count)
3b644cf6 4593 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4594
4595 rx_ring->total_packets += total_packets;
4596 rx_ring->total_bytes += total_bytes;
4597 rx_ring->rx_stats.packets += total_packets;
4598 rx_ring->rx_stats.bytes += total_bytes;
4599 adapter->net_stats.rx_bytes += total_bytes;
4600 adapter->net_stats.rx_packets += total_packets;
4601 return cleaned;
4602}
4603
9d5c8243
AK
4604/**
4605 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4606 * @adapter: address of board private structure
4607 **/
3b644cf6 4608static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
4609 int cleaned_count)
4610{
3b644cf6 4611 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
4612 struct net_device *netdev = adapter->netdev;
4613 struct pci_dev *pdev = adapter->pdev;
4614 union e1000_adv_rx_desc *rx_desc;
4615 struct igb_buffer *buffer_info;
4616 struct sk_buff *skb;
4617 unsigned int i;
db761762 4618 int bufsz;
9d5c8243
AK
4619
4620 i = rx_ring->next_to_use;
4621 buffer_info = &rx_ring->buffer_info[i];
4622
db761762
AD
4623 if (adapter->rx_ps_hdr_size)
4624 bufsz = adapter->rx_ps_hdr_size;
4625 else
4626 bufsz = adapter->rx_buffer_len;
4627 bufsz += NET_IP_ALIGN;
4628
9d5c8243
AK
4629 while (cleaned_count--) {
4630 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4631
bf36c1a0 4632 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
9d5c8243 4633 if (!buffer_info->page) {
bf36c1a0
AD
4634 buffer_info->page = alloc_page(GFP_ATOMIC);
4635 if (!buffer_info->page) {
4636 adapter->alloc_rx_buff_failed++;
4637 goto no_buffers;
4638 }
4639 buffer_info->page_offset = 0;
4640 } else {
4641 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
4642 }
4643 buffer_info->page_dma =
db761762 4644 pci_map_page(pdev, buffer_info->page,
bf36c1a0
AD
4645 buffer_info->page_offset,
4646 PAGE_SIZE / 2,
9d5c8243
AK
4647 PCI_DMA_FROMDEVICE);
4648 }
4649
4650 if (!buffer_info->skb) {
9d5c8243 4651 skb = netdev_alloc_skb(netdev, bufsz);
9d5c8243
AK
4652 if (!skb) {
4653 adapter->alloc_rx_buff_failed++;
4654 goto no_buffers;
4655 }
4656
4657 /* Make buffer alignment 2 beyond a 16 byte boundary
4658 * this will result in a 16 byte aligned IP header after
4659 * the 14 byte MAC header is removed
4660 */
4661 skb_reserve(skb, NET_IP_ALIGN);
4662
4663 buffer_info->skb = skb;
4664 buffer_info->dma = pci_map_single(pdev, skb->data,
4665 bufsz,
4666 PCI_DMA_FROMDEVICE);
9d5c8243
AK
4667 }
4668 /* Refresh the desc even if buffer_addrs didn't change because
4669 * each write-back erases this info. */
4670 if (adapter->rx_ps_hdr_size) {
4671 rx_desc->read.pkt_addr =
4672 cpu_to_le64(buffer_info->page_dma);
4673 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4674 } else {
4675 rx_desc->read.pkt_addr =
4676 cpu_to_le64(buffer_info->dma);
4677 rx_desc->read.hdr_addr = 0;
4678 }
4679
4680 i++;
4681 if (i == rx_ring->count)
4682 i = 0;
4683 buffer_info = &rx_ring->buffer_info[i];
4684 }
4685
4686no_buffers:
4687 if (rx_ring->next_to_use != i) {
4688 rx_ring->next_to_use = i;
4689 if (i == 0)
4690 i = (rx_ring->count - 1);
4691 else
4692 i--;
4693
4694 /* Force memory writes to complete before letting h/w
4695 * know there are new descriptors to fetch. (Only
4696 * applicable for weak-ordered memory model archs,
4697 * such as IA-64). */
4698 wmb();
4699 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4700 }
4701}
4702
4703/**
4704 * igb_mii_ioctl -
4705 * @netdev:
4706 * @ifreq:
4707 * @cmd:
4708 **/
4709static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4710{
4711 struct igb_adapter *adapter = netdev_priv(netdev);
4712 struct mii_ioctl_data *data = if_mii(ifr);
4713
4714 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4715 return -EOPNOTSUPP;
4716
4717 switch (cmd) {
4718 case SIOCGMIIPHY:
4719 data->phy_id = adapter->hw.phy.addr;
4720 break;
4721 case SIOCGMIIREG:
4722 if (!capable(CAP_NET_ADMIN))
4723 return -EPERM;
f5f4cf08
AD
4724 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4725 &data->val_out))
9d5c8243
AK
4726 return -EIO;
4727 break;
4728 case SIOCSMIIREG:
4729 default:
4730 return -EOPNOTSUPP;
4731 }
4732 return 0;
4733}
4734
c6cb090b
PO
4735/**
4736 * igb_hwtstamp_ioctl - control hardware time stamping
4737 * @netdev:
4738 * @ifreq:
4739 * @cmd:
4740 *
33af6bcc
PO
4741 * Outgoing time stamping can be enabled and disabled. Play nice and
4742 * disable it when requested, although it shouldn't case any overhead
4743 * when no packet needs it. At most one packet in the queue may be
4744 * marked for time stamping, otherwise it would be impossible to tell
4745 * for sure to which packet the hardware time stamp belongs.
4746 *
4747 * Incoming time stamping has to be configured via the hardware
4748 * filters. Not all combinations are supported, in particular event
4749 * type has to be specified. Matching the kind of event packet is
4750 * not supported, with the exception of "all V2 events regardless of
4751 * level 2 or 4".
4752 *
c6cb090b
PO
4753 **/
4754static int igb_hwtstamp_ioctl(struct net_device *netdev,
4755 struct ifreq *ifr, int cmd)
4756{
33af6bcc
PO
4757 struct igb_adapter *adapter = netdev_priv(netdev);
4758 struct e1000_hw *hw = &adapter->hw;
c6cb090b 4759 struct hwtstamp_config config;
33af6bcc
PO
4760 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4761 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4762 u32 tsync_rx_ctl_type = 0;
4763 u32 tsync_rx_cfg = 0;
4764 int is_l4 = 0;
4765 int is_l2 = 0;
4766 short port = 319; /* PTP */
4767 u32 regval;
c6cb090b
PO
4768
4769 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4770 return -EFAULT;
4771
4772 /* reserved for future extensions */
4773 if (config.flags)
4774 return -EINVAL;
4775
33af6bcc
PO
4776 switch (config.tx_type) {
4777 case HWTSTAMP_TX_OFF:
4778 tsync_tx_ctl_bit = 0;
4779 break;
4780 case HWTSTAMP_TX_ON:
4781 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4782 break;
4783 default:
4784 return -ERANGE;
4785 }
4786
4787 switch (config.rx_filter) {
4788 case HWTSTAMP_FILTER_NONE:
4789 tsync_rx_ctl_bit = 0;
4790 break;
4791 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4792 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4793 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4794 case HWTSTAMP_FILTER_ALL:
4795 /*
4796 * register TSYNCRXCFG must be set, therefore it is not
4797 * possible to time stamp both Sync and Delay_Req messages
4798 * => fall back to time stamping all packets
4799 */
4800 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4801 config.rx_filter = HWTSTAMP_FILTER_ALL;
4802 break;
4803 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4804 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4805 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4806 is_l4 = 1;
4807 break;
4808 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4809 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4810 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4811 is_l4 = 1;
4812 break;
4813 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4814 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4815 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4816 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4817 is_l2 = 1;
4818 is_l4 = 1;
4819 config.rx_filter = HWTSTAMP_FILTER_SOME;
4820 break;
4821 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4822 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4823 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4824 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4825 is_l2 = 1;
4826 is_l4 = 1;
4827 config.rx_filter = HWTSTAMP_FILTER_SOME;
4828 break;
4829 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4830 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4831 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4832 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4833 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4834 is_l2 = 1;
4835 break;
4836 default:
4837 return -ERANGE;
4838 }
4839
4840 /* enable/disable TX */
4841 regval = rd32(E1000_TSYNCTXCTL);
4842 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4843 wr32(E1000_TSYNCTXCTL, regval);
4844
4845 /* enable/disable RX, define which PTP packets are time stamped */
4846 regval = rd32(E1000_TSYNCRXCTL);
4847 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4848 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4849 wr32(E1000_TSYNCRXCTL, regval);
4850 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4851
4852 /*
4853 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4854 * (Ethertype to filter on)
4855 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4856 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4857 */
4858 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4859
4860 /* L4 Queue Filter[0]: only filter by source and destination port */
4861 wr32(E1000_SPQF0, htons(port));
4862 wr32(E1000_IMIREXT(0), is_l4 ?
4863 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4864 wr32(E1000_IMIR(0), is_l4 ?
4865 (htons(port)
4866 | (0<<16) /* immediate interrupt disabled */
4867 | 0 /* (1<<17) bit cleared: do not bypass
4868 destination port check */)
4869 : 0);
4870 wr32(E1000_FTQF0, is_l4 ?
4871 (0x11 /* UDP */
4872 | (1<<15) /* VF not compared */
4873 | (1<<27) /* Enable Timestamping */
4874 | (7<<28) /* only source port filter enabled,
4875 source/target address and protocol
4876 masked */)
4877 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4878 enabled */));
4879
4880 wrfl();
4881
4882 adapter->hwtstamp_config = config;
4883
4884 /* clear TX/RX time stamp registers, just to be sure */
4885 regval = rd32(E1000_TXSTMPH);
4886 regval = rd32(E1000_RXSTMPH);
c6cb090b 4887
33af6bcc
PO
4888 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4889 -EFAULT : 0;
c6cb090b
PO
4890}
4891
9d5c8243
AK
4892/**
4893 * igb_ioctl -
4894 * @netdev:
4895 * @ifreq:
4896 * @cmd:
4897 **/
4898static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4899{
4900 switch (cmd) {
4901 case SIOCGMIIPHY:
4902 case SIOCGMIIREG:
4903 case SIOCSMIIREG:
4904 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
4905 case SIOCSHWTSTAMP:
4906 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
4907 default:
4908 return -EOPNOTSUPP;
4909 }
4910}
4911
4912static void igb_vlan_rx_register(struct net_device *netdev,
4913 struct vlan_group *grp)
4914{
4915 struct igb_adapter *adapter = netdev_priv(netdev);
4916 struct e1000_hw *hw = &adapter->hw;
4917 u32 ctrl, rctl;
4918
4919 igb_irq_disable(adapter);
4920 adapter->vlgrp = grp;
4921
4922 if (grp) {
4923 /* enable VLAN tag insert/strip */
4924 ctrl = rd32(E1000_CTRL);
4925 ctrl |= E1000_CTRL_VME;
4926 wr32(E1000_CTRL, ctrl);
4927
4928 /* enable VLAN receive filtering */
4929 rctl = rd32(E1000_RCTL);
9d5c8243
AK
4930 rctl &= ~E1000_RCTL_CFIEN;
4931 wr32(E1000_RCTL, rctl);
4932 igb_update_mng_vlan(adapter);
9d5c8243
AK
4933 } else {
4934 /* disable VLAN tag insert/strip */
4935 ctrl = rd32(E1000_CTRL);
4936 ctrl &= ~E1000_CTRL_VME;
4937 wr32(E1000_CTRL, ctrl);
4938
9d5c8243
AK
4939 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4940 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4941 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4942 }
9d5c8243
AK
4943 }
4944
e1739522
AD
4945 igb_rlpml_set(adapter);
4946
9d5c8243
AK
4947 if (!test_bit(__IGB_DOWN, &adapter->state))
4948 igb_irq_enable(adapter);
4949}
4950
4951static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4952{
4953 struct igb_adapter *adapter = netdev_priv(netdev);
4954 struct e1000_hw *hw = &adapter->hw;
4ae196df 4955 int pf_id = adapter->vfs_allocated_count;
9d5c8243 4956
28b0759c 4957 if ((hw->mng_cookie.status &
9d5c8243
AK
4958 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4959 (vid == adapter->mng_vlan_id))
4960 return;
4ae196df
AD
4961
4962 /* add vid to vlvf if sr-iov is enabled,
4963 * if that fails add directly to filter table */
4964 if (igb_vlvf_set(adapter, vid, true, pf_id))
4965 igb_vfta_set(hw, vid, true);
4966
9d5c8243
AK
4967}
4968
4969static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4970{
4971 struct igb_adapter *adapter = netdev_priv(netdev);
4972 struct e1000_hw *hw = &adapter->hw;
4ae196df 4973 int pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
4974
4975 igb_irq_disable(adapter);
4976 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4977
4978 if (!test_bit(__IGB_DOWN, &adapter->state))
4979 igb_irq_enable(adapter);
4980
4981 if ((adapter->hw.mng_cookie.status &
4982 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4983 (vid == adapter->mng_vlan_id)) {
4984 /* release control to f/w */
4985 igb_release_hw_control(adapter);
4986 return;
4987 }
4988
4ae196df
AD
4989 /* remove vid from vlvf if sr-iov is enabled,
4990 * if not in vlvf remove from vfta */
4991 if (igb_vlvf_set(adapter, vid, false, pf_id))
4992 igb_vfta_set(hw, vid, false);
9d5c8243
AK
4993}
4994
4995static void igb_restore_vlan(struct igb_adapter *adapter)
4996{
4997 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4998
4999 if (adapter->vlgrp) {
5000 u16 vid;
5001 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5002 if (!vlan_group_get_device(adapter->vlgrp, vid))
5003 continue;
5004 igb_vlan_rx_add_vid(adapter->netdev, vid);
5005 }
5006 }
5007}
5008
5009int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5010{
5011 struct e1000_mac_info *mac = &adapter->hw.mac;
5012
5013 mac->autoneg = 0;
5014
5015 /* Fiber NICs only allow 1000 gbps Full duplex */
5016 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5017 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5018 dev_err(&adapter->pdev->dev,
5019 "Unsupported Speed/Duplex configuration\n");
5020 return -EINVAL;
5021 }
5022
5023 switch (spddplx) {
5024 case SPEED_10 + DUPLEX_HALF:
5025 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5026 break;
5027 case SPEED_10 + DUPLEX_FULL:
5028 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5029 break;
5030 case SPEED_100 + DUPLEX_HALF:
5031 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5032 break;
5033 case SPEED_100 + DUPLEX_FULL:
5034 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5035 break;
5036 case SPEED_1000 + DUPLEX_FULL:
5037 mac->autoneg = 1;
5038 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5039 break;
5040 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5041 default:
5042 dev_err(&adapter->pdev->dev,
5043 "Unsupported Speed/Duplex configuration\n");
5044 return -EINVAL;
5045 }
5046 return 0;
5047}
5048
9d5c8243
AK
5049static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5050{
5051 struct net_device *netdev = pci_get_drvdata(pdev);
5052 struct igb_adapter *adapter = netdev_priv(netdev);
5053 struct e1000_hw *hw = &adapter->hw;
2d064c06 5054 u32 ctrl, rctl, status;
9d5c8243
AK
5055 u32 wufc = adapter->wol;
5056#ifdef CONFIG_PM
5057 int retval = 0;
5058#endif
5059
5060 netif_device_detach(netdev);
5061
a88f10ec
AD
5062 if (netif_running(netdev))
5063 igb_close(netdev);
5064
5065 igb_reset_interrupt_capability(adapter);
5066
5067 igb_free_queues(adapter);
9d5c8243
AK
5068
5069#ifdef CONFIG_PM
5070 retval = pci_save_state(pdev);
5071 if (retval)
5072 return retval;
5073#endif
5074
5075 status = rd32(E1000_STATUS);
5076 if (status & E1000_STATUS_LU)
5077 wufc &= ~E1000_WUFC_LNKC;
5078
5079 if (wufc) {
5080 igb_setup_rctl(adapter);
5081 igb_set_multi(netdev);
5082
5083 /* turn on all-multi mode if wake on multicast is enabled */
5084 if (wufc & E1000_WUFC_MC) {
5085 rctl = rd32(E1000_RCTL);
5086 rctl |= E1000_RCTL_MPE;
5087 wr32(E1000_RCTL, rctl);
5088 }
5089
5090 ctrl = rd32(E1000_CTRL);
5091 /* advertise wake from D3Cold */
5092 #define E1000_CTRL_ADVD3WUC 0x00100000
5093 /* phy power management enable */
5094 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5095 ctrl |= E1000_CTRL_ADVD3WUC;
5096 wr32(E1000_CTRL, ctrl);
5097
9d5c8243
AK
5098 /* Allow time for pending master requests to run */
5099 igb_disable_pcie_master(&adapter->hw);
5100
5101 wr32(E1000_WUC, E1000_WUC_PME_EN);
5102 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5103 } else {
5104 wr32(E1000_WUC, 0);
5105 wr32(E1000_WUFC, 0);
9d5c8243
AK
5106 }
5107
2d064c06
AD
5108 /* make sure adapter isn't asleep if manageability/wol is enabled */
5109 if (wufc || adapter->en_mng_pt) {
9d5c8243
AK
5110 pci_enable_wake(pdev, PCI_D3hot, 1);
5111 pci_enable_wake(pdev, PCI_D3cold, 1);
2d064c06
AD
5112 } else {
5113 igb_shutdown_fiber_serdes_link_82575(hw);
5114 pci_enable_wake(pdev, PCI_D3hot, 0);
5115 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243
AK
5116 }
5117
5118 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5119 * would have already happened in close and is redundant. */
5120 igb_release_hw_control(adapter);
5121
5122 pci_disable_device(pdev);
5123
5124 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5125
5126 return 0;
5127}
5128
5129#ifdef CONFIG_PM
5130static int igb_resume(struct pci_dev *pdev)
5131{
5132 struct net_device *netdev = pci_get_drvdata(pdev);
5133 struct igb_adapter *adapter = netdev_priv(netdev);
5134 struct e1000_hw *hw = &adapter->hw;
5135 u32 err;
5136
5137 pci_set_power_state(pdev, PCI_D0);
5138 pci_restore_state(pdev);
42bfd33a 5139
aed5dec3 5140 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5141 if (err) {
5142 dev_err(&pdev->dev,
5143 "igb: Cannot enable PCI device from suspend\n");
5144 return err;
5145 }
5146 pci_set_master(pdev);
5147
5148 pci_enable_wake(pdev, PCI_D3hot, 0);
5149 pci_enable_wake(pdev, PCI_D3cold, 0);
5150
a88f10ec
AD
5151 igb_set_interrupt_capability(adapter);
5152
5153 if (igb_alloc_queues(adapter)) {
5154 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5155 return -ENOMEM;
9d5c8243
AK
5156 }
5157
5158 /* e1000_power_up_phy(adapter); */
5159
5160 igb_reset(adapter);
a8564f03
AD
5161
5162 /* let the f/w know that the h/w is now under the control of the
5163 * driver. */
5164 igb_get_hw_control(adapter);
5165
9d5c8243
AK
5166 wr32(E1000_WUS, ~0);
5167
a88f10ec
AD
5168 if (netif_running(netdev)) {
5169 err = igb_open(netdev);
5170 if (err)
5171 return err;
5172 }
9d5c8243
AK
5173
5174 netif_device_attach(netdev);
5175
9d5c8243
AK
5176 return 0;
5177}
5178#endif
5179
5180static void igb_shutdown(struct pci_dev *pdev)
5181{
5182 igb_suspend(pdev, PMSG_SUSPEND);
5183}
5184
5185#ifdef CONFIG_NET_POLL_CONTROLLER
5186/*
5187 * Polling 'interrupt' - used by things like netconsole to send skbs
5188 * without having to re-enable interrupts. It's not called while
5189 * the interrupt routine is executing.
5190 */
5191static void igb_netpoll(struct net_device *netdev)
5192{
5193 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5194 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5195 int i;
9d5c8243 5196
eebbbdba
AD
5197 if (!adapter->msix_entries) {
5198 igb_irq_disable(adapter);
5199 napi_schedule(&adapter->rx_ring[0].napi);
5200 return;
5201 }
9d5c8243 5202
eebbbdba
AD
5203 for (i = 0; i < adapter->num_tx_queues; i++) {
5204 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5205 wr32(E1000_EIMC, tx_ring->eims_value);
5206 igb_clean_tx_irq(tx_ring);
5207 wr32(E1000_EIMS, tx_ring->eims_value);
5208 }
9d5c8243 5209
eebbbdba
AD
5210 for (i = 0; i < adapter->num_rx_queues; i++) {
5211 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5212 wr32(E1000_EIMC, rx_ring->eims_value);
5213 napi_schedule(&rx_ring->napi);
5214 }
9d5c8243
AK
5215}
5216#endif /* CONFIG_NET_POLL_CONTROLLER */
5217
5218/**
5219 * igb_io_error_detected - called when PCI error is detected
5220 * @pdev: Pointer to PCI device
5221 * @state: The current pci connection state
5222 *
5223 * This function is called after a PCI bus error affecting
5224 * this device has been detected.
5225 */
5226static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5227 pci_channel_state_t state)
5228{
5229 struct net_device *netdev = pci_get_drvdata(pdev);
5230 struct igb_adapter *adapter = netdev_priv(netdev);
5231
5232 netif_device_detach(netdev);
5233
5234 if (netif_running(netdev))
5235 igb_down(adapter);
5236 pci_disable_device(pdev);
5237
5238 /* Request a slot slot reset. */
5239 return PCI_ERS_RESULT_NEED_RESET;
5240}
5241
5242/**
5243 * igb_io_slot_reset - called after the pci bus has been reset.
5244 * @pdev: Pointer to PCI device
5245 *
5246 * Restart the card from scratch, as if from a cold-boot. Implementation
5247 * resembles the first-half of the igb_resume routine.
5248 */
5249static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5250{
5251 struct net_device *netdev = pci_get_drvdata(pdev);
5252 struct igb_adapter *adapter = netdev_priv(netdev);
5253 struct e1000_hw *hw = &adapter->hw;
40a914fa 5254 pci_ers_result_t result;
42bfd33a 5255 int err;
9d5c8243 5256
aed5dec3 5257 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
5258 dev_err(&pdev->dev,
5259 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
5260 result = PCI_ERS_RESULT_DISCONNECT;
5261 } else {
5262 pci_set_master(pdev);
5263 pci_restore_state(pdev);
9d5c8243 5264
40a914fa
AD
5265 pci_enable_wake(pdev, PCI_D3hot, 0);
5266 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 5267
40a914fa
AD
5268 igb_reset(adapter);
5269 wr32(E1000_WUS, ~0);
5270 result = PCI_ERS_RESULT_RECOVERED;
5271 }
9d5c8243 5272
ea943d41
JK
5273 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5274 if (err) {
5275 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5276 "failed 0x%0x\n", err);
5277 /* non-fatal, continue */
5278 }
40a914fa
AD
5279
5280 return result;
9d5c8243
AK
5281}
5282
5283/**
5284 * igb_io_resume - called when traffic can start flowing again.
5285 * @pdev: Pointer to PCI device
5286 *
5287 * This callback is called when the error recovery driver tells us that
5288 * its OK to resume normal operation. Implementation resembles the
5289 * second-half of the igb_resume routine.
5290 */
5291static void igb_io_resume(struct pci_dev *pdev)
5292{
5293 struct net_device *netdev = pci_get_drvdata(pdev);
5294 struct igb_adapter *adapter = netdev_priv(netdev);
5295
9d5c8243
AK
5296 if (netif_running(netdev)) {
5297 if (igb_up(adapter)) {
5298 dev_err(&pdev->dev, "igb_up failed after reset\n");
5299 return;
5300 }
5301 }
5302
5303 netif_device_attach(netdev);
5304
5305 /* let the f/w know that the h/w is now under the control of the
5306 * driver. */
5307 igb_get_hw_control(adapter);
9d5c8243
AK
5308}
5309
e1739522
AD
5310static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5311{
5312 u32 reg_data;
5313
5314 reg_data = rd32(E1000_VMOLR(vfn));
5315 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
5316 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
5317 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
5318 E1000_VMOLR_AUPE | /* Accept untagged packets */
5319 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5320 wr32(E1000_VMOLR(vfn), reg_data);
5321}
5322
4ae196df
AD
5323static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5324 int vfn)
e1739522
AD
5325{
5326 struct e1000_hw *hw = &adapter->hw;
5327 u32 vmolr;
5328
5329 vmolr = rd32(E1000_VMOLR(vfn));
5330 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5331 vmolr |= size | E1000_VMOLR_LPE;
5332 wr32(E1000_VMOLR(vfn), vmolr);
4ae196df
AD
5333
5334 return 0;
e1739522
AD
5335}
5336
5337static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5338{
5339 u32 reg_data;
5340
5341 reg_data = rd32(E1000_RAH(entry));
5342 reg_data &= ~E1000_RAH_POOL_MASK;
5343 reg_data |= E1000_RAH_POOL_1 << pool;;
5344 wr32(E1000_RAH(entry), reg_data);
5345}
5346
5347static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5348 int entry_count, u16 total_rar_filters)
5349{
5350 struct e1000_hw *hw = &adapter->hw;
5351 int i = adapter->vfs_allocated_count + 1;
5352
5353 if ((i + entry_count) < total_rar_filters)
5354 total_rar_filters = i + entry_count;
5355
5356 for (; i < total_rar_filters; i++)
5357 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5358}
5359
4ae196df
AD
5360static int igb_set_vf_mac(struct igb_adapter *adapter,
5361 int vf, unsigned char *mac_addr)
5362{
5363 struct e1000_hw *hw = &adapter->hw;
5364 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5365
5366 igb_rar_set(hw, mac_addr, rar_entry);
5367
37680117 5368 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df
AD
5369
5370 igb_set_rah_pool(hw, vf, rar_entry);
5371
5372 return 0;
5373}
5374
5375static void igb_vmm_control(struct igb_adapter *adapter)
5376{
5377 struct e1000_hw *hw = &adapter->hw;
5378 u32 reg_data;
5379
5380 if (!adapter->vfs_allocated_count)
5381 return;
5382
5383 /* VF's need PF reset indication before they
5384 * can send/receive mail */
5385 reg_data = rd32(E1000_CTRL_EXT);
5386 reg_data |= E1000_CTRL_EXT_PFRSTD;
5387 wr32(E1000_CTRL_EXT, reg_data);
5388
5389 igb_vmdq_set_loopback_pf(hw, true);
5390 igb_vmdq_set_replication_pf(hw, true);
5391}
5392
37680117
AD
5393#ifdef CONFIG_PCI_IOV
5394static ssize_t igb_show_num_vfs(struct device *dev,
5395 struct device_attribute *attr, char *buf)
5396{
5397 struct igb_adapter *adapter = netdev_priv(to_net_dev(dev));
5398
5399 return sprintf(buf, "%d\n", adapter->vfs_allocated_count);
5400}
5401
5402static ssize_t igb_set_num_vfs(struct device *dev,
5403 struct device_attribute *attr,
5404 const char *buf, size_t count)
5405{
5406 struct net_device *netdev = to_net_dev(dev);
5407 struct igb_adapter *adapter = netdev_priv(netdev);
5408 struct e1000_hw *hw = &adapter->hw;
5409 struct pci_dev *pdev = adapter->pdev;
5410 unsigned int num_vfs, i;
5411 unsigned char mac_addr[ETH_ALEN];
5412 int err;
5413
5414 sscanf(buf, "%u", &num_vfs);
5415
5416 if (num_vfs > 7)
5417 num_vfs = 7;
5418
5419 /* value unchanged do nothing */
5420 if (num_vfs == adapter->vfs_allocated_count)
5421 return count;
5422
5423 if (netdev->flags & IFF_UP)
5424 igb_close(netdev);
5425
5426 igb_reset_interrupt_capability(adapter);
5427 igb_free_queues(adapter);
5428 adapter->tx_ring = NULL;
5429 adapter->rx_ring = NULL;
5430 adapter->vfs_allocated_count = 0;
5431
5432 /* reclaim resources allocated to VFs since we are changing count */
5433 if (adapter->vf_data) {
5434 /* disable iov and allow time for transactions to clear */
5435 pci_disable_sriov(pdev);
5436 msleep(500);
5437
5438 kfree(adapter->vf_data);
5439 adapter->vf_data = NULL;
5440 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
5441 msleep(100);
5442 dev_info(&pdev->dev, "IOV Disabled\n");
5443 }
5444
5445 if (num_vfs) {
5446 adapter->vf_data = kcalloc(num_vfs,
5447 sizeof(struct vf_data_storage),
5448 GFP_KERNEL);
5449 if (!adapter->vf_data) {
5450 dev_err(&pdev->dev, "Could not allocate VF private "
5451 "data - IOV enable failed\n");
5452 } else {
5453 err = pci_enable_sriov(pdev, num_vfs);
5454 if (!err) {
5455 adapter->vfs_allocated_count = num_vfs;
5456 dev_info(&pdev->dev, "%d vfs allocated\n", num_vfs);
5457 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5458 random_ether_addr(mac_addr);
5459 igb_set_vf_mac(adapter, i, mac_addr);
5460 }
5461 } else {
5462 kfree(adapter->vf_data);
5463 adapter->vf_data = NULL;
5464 }
5465 }
5466 }
5467
5468 igb_set_interrupt_capability(adapter);
5469 igb_alloc_queues(adapter);
5470 igb_reset(adapter);
5471
5472 if (netdev->flags & IFF_UP)
5473 igb_open(netdev);
5474
5475 return count;
5476}
5477#endif /* CONFIG_PCI_IOV */
9d5c8243 5478/* igb_main.c */