]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_main.c
igb: only support SRRCTL_DROP_EN when using multiple queues
[net-next-2.6.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
55cac248 52#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
a3aa1884 63static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
55cac248
AD
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
2d064c06 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
c8ea5ea9 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79 /* required last entry */
80 {0, }
81};
82
83MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85void igb_reset(struct igb_adapter *);
86static int igb_setup_all_tx_resources(struct igb_adapter *);
87static int igb_setup_all_rx_resources(struct igb_adapter *);
88static void igb_free_all_tx_resources(struct igb_adapter *);
89static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 90static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
91void igb_update_stats(struct igb_adapter *);
92static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93static void __devexit igb_remove(struct pci_dev *pdev);
94static int igb_sw_init(struct igb_adapter *);
95static int igb_open(struct net_device *);
96static int igb_close(struct net_device *);
97static void igb_configure_tx(struct igb_adapter *);
98static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
99static void igb_clean_all_tx_rings(struct igb_adapter *);
100static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
101static void igb_clean_tx_ring(struct igb_ring *);
102static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 103static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
104static void igb_update_phy_info(unsigned long);
105static void igb_watchdog(unsigned long);
106static void igb_watchdog_task(struct work_struct *);
b1a436c3 107static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
108static struct net_device_stats *igb_get_stats(struct net_device *);
109static int igb_change_mtu(struct net_device *, int);
110static int igb_set_mac(struct net_device *, void *);
68d480c4 111static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
112static irqreturn_t igb_intr(int irq, void *);
113static irqreturn_t igb_intr_msi(int irq, void *);
114static irqreturn_t igb_msix_other(int irq, void *);
047e0030 115static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 116#ifdef CONFIG_IGB_DCA
047e0030 117static void igb_update_dca(struct igb_q_vector *);
fe4506b6 118static void igb_setup_dca(struct igb_adapter *);
421e02f0 119#endif /* CONFIG_IGB_DCA */
047e0030 120static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 121static int igb_poll(struct napi_struct *, int);
047e0030 122static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
123static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124static void igb_tx_timeout(struct net_device *);
125static void igb_reset_task(struct work_struct *);
126static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127static void igb_vlan_rx_add_vid(struct net_device *, u16);
128static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129static void igb_restore_vlan(struct igb_adapter *);
26ad9178 130static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
131static void igb_ping_all_vfs(struct igb_adapter *);
132static void igb_msg_task(struct igb_adapter *);
4ae196df 133static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 134static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 135static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
136static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
137static int igb_ndo_set_vf_vlan(struct net_device *netdev,
138 int vf, u16 vlan, u8 qos);
139static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
140static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
141 struct ifla_vf_info *ivi);
9d5c8243 142
9d5c8243 143#ifdef CONFIG_PM
3fe7c4c9 144static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
145static int igb_resume(struct pci_dev *);
146#endif
147static void igb_shutdown(struct pci_dev *);
421e02f0 148#ifdef CONFIG_IGB_DCA
fe4506b6
JC
149static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
150static struct notifier_block dca_notifier = {
151 .notifier_call = igb_notify_dca,
152 .next = NULL,
153 .priority = 0
154};
155#endif
9d5c8243
AK
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void igb_netpoll(struct net_device *);
159#endif
37680117 160#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
161static unsigned int max_vfs = 0;
162module_param(max_vfs, uint, 0);
163MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
164 "per physical function");
165#endif /* CONFIG_PCI_IOV */
166
9d5c8243
AK
167static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
168 pci_channel_state_t);
169static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
170static void igb_io_resume(struct pci_dev *);
171
172static struct pci_error_handlers igb_err_handler = {
173 .error_detected = igb_io_error_detected,
174 .slot_reset = igb_io_slot_reset,
175 .resume = igb_io_resume,
176};
177
178
179static struct pci_driver igb_driver = {
180 .name = igb_driver_name,
181 .id_table = igb_pci_tbl,
182 .probe = igb_probe,
183 .remove = __devexit_p(igb_remove),
184#ifdef CONFIG_PM
185 /* Power Managment Hooks */
186 .suspend = igb_suspend,
187 .resume = igb_resume,
188#endif
189 .shutdown = igb_shutdown,
190 .err_handler = &igb_err_handler
191};
192
193MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
194MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
195MODULE_LICENSE("GPL");
196MODULE_VERSION(DRV_VERSION);
197
38c845c7
PO
198/**
199 * igb_read_clock - read raw cycle counter (to be used by time counter)
200 */
201static cycle_t igb_read_clock(const struct cyclecounter *tc)
202{
203 struct igb_adapter *adapter =
204 container_of(tc, struct igb_adapter, cycles);
205 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
206 u64 stamp = 0;
207 int shift = 0;
38c845c7 208
55cac248
AD
209 /*
210 * The timestamp latches on lowest register read. For the 82580
211 * the lowest register is SYSTIMR instead of SYSTIML. However we never
212 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
213 */
214 if (hw->mac.type == e1000_82580) {
215 stamp = rd32(E1000_SYSTIMR) >> 8;
216 shift = IGB_82580_TSYNC_SHIFT;
217 }
218
c5b9bd5e
AD
219 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
220 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
221 return stamp;
222}
223
9d5c8243
AK
224#ifdef DEBUG
225/**
226 * igb_get_hw_dev_name - return device name string
227 * used by hardware layer to print debugging information
228 **/
229char *igb_get_hw_dev_name(struct e1000_hw *hw)
230{
231 struct igb_adapter *adapter = hw->back;
232 return adapter->netdev->name;
233}
38c845c7
PO
234
235/**
236 * igb_get_time_str - format current NIC and system time as string
237 */
238static char *igb_get_time_str(struct igb_adapter *adapter,
239 char buffer[160])
240{
241 cycle_t hw = adapter->cycles.read(&adapter->cycles);
242 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
243 struct timespec sys;
244 struct timespec delta;
245 getnstimeofday(&sys);
246
247 delta = timespec_sub(nic, sys);
248
249 sprintf(buffer,
33af6bcc
PO
250 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
251 hw,
38c845c7
PO
252 (long)nic.tv_sec, nic.tv_nsec,
253 (long)sys.tv_sec, sys.tv_nsec,
254 (long)delta.tv_sec, delta.tv_nsec);
255
256 return buffer;
257}
9d5c8243
AK
258#endif
259
260/**
261 * igb_init_module - Driver Registration Routine
262 *
263 * igb_init_module is the first routine called when the driver is
264 * loaded. All it does is register with the PCI subsystem.
265 **/
266static int __init igb_init_module(void)
267{
268 int ret;
269 printk(KERN_INFO "%s - version %s\n",
270 igb_driver_string, igb_driver_version);
271
272 printk(KERN_INFO "%s\n", igb_copyright);
273
421e02f0 274#ifdef CONFIG_IGB_DCA
fe4506b6
JC
275 dca_register_notify(&dca_notifier);
276#endif
bbd98fe4 277 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
278 return ret;
279}
280
281module_init(igb_init_module);
282
283/**
284 * igb_exit_module - Driver Exit Cleanup Routine
285 *
286 * igb_exit_module is called just before the driver is removed
287 * from memory.
288 **/
289static void __exit igb_exit_module(void)
290{
421e02f0 291#ifdef CONFIG_IGB_DCA
fe4506b6
JC
292 dca_unregister_notify(&dca_notifier);
293#endif
9d5c8243
AK
294 pci_unregister_driver(&igb_driver);
295}
296
297module_exit(igb_exit_module);
298
26bc19ec
AD
299#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
300/**
301 * igb_cache_ring_register - Descriptor ring to register mapping
302 * @adapter: board private structure to initialize
303 *
304 * Once we know the feature-set enabled for the device, we'll cache
305 * the register offset the descriptor ring is assigned to.
306 **/
307static void igb_cache_ring_register(struct igb_adapter *adapter)
308{
ee1b9f06 309 int i = 0, j = 0;
047e0030 310 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
311
312 switch (adapter->hw.mac.type) {
313 case e1000_82576:
314 /* The queues are allocated for virtualization such that VF 0
315 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
316 * In order to avoid collision we start at the first free queue
317 * and continue consuming queues in the same sequence
318 */
ee1b9f06 319 if (adapter->vfs_allocated_count) {
a99955fc 320 for (; i < adapter->rss_queues; i++)
3025a446
AD
321 adapter->rx_ring[i]->reg_idx = rbase_offset +
322 Q_IDX_82576(i);
a99955fc 323 for (; j < adapter->rss_queues; j++)
3025a446
AD
324 adapter->tx_ring[j]->reg_idx = rbase_offset +
325 Q_IDX_82576(j);
ee1b9f06 326 }
26bc19ec 327 case e1000_82575:
55cac248 328 case e1000_82580:
26bc19ec 329 default:
ee1b9f06 330 for (; i < adapter->num_rx_queues; i++)
3025a446 331 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 332 for (; j < adapter->num_tx_queues; j++)
3025a446 333 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
334 break;
335 }
336}
337
047e0030
AD
338static void igb_free_queues(struct igb_adapter *adapter)
339{
3025a446 340 int i;
047e0030 341
3025a446
AD
342 for (i = 0; i < adapter->num_tx_queues; i++) {
343 kfree(adapter->tx_ring[i]);
344 adapter->tx_ring[i] = NULL;
345 }
346 for (i = 0; i < adapter->num_rx_queues; i++) {
347 kfree(adapter->rx_ring[i]);
348 adapter->rx_ring[i] = NULL;
349 }
047e0030
AD
350 adapter->num_rx_queues = 0;
351 adapter->num_tx_queues = 0;
352}
353
9d5c8243
AK
354/**
355 * igb_alloc_queues - Allocate memory for all rings
356 * @adapter: board private structure to initialize
357 *
358 * We allocate one ring per queue at run-time since we don't know the
359 * number of queues at compile-time.
360 **/
361static int igb_alloc_queues(struct igb_adapter *adapter)
362{
3025a446 363 struct igb_ring *ring;
9d5c8243
AK
364 int i;
365
661086df 366 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
367 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
368 if (!ring)
369 goto err;
68fd9910 370 ring->count = adapter->tx_ring_count;
661086df 371 ring->queue_index = i;
80785298 372 ring->pdev = adapter->pdev;
e694e964 373 ring->netdev = adapter->netdev;
85ad76b2
AD
374 /* For 82575, context index must be unique per ring. */
375 if (adapter->hw.mac.type == e1000_82575)
376 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 377 adapter->tx_ring[i] = ring;
661086df 378 }
85ad76b2 379
9d5c8243 380 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
381 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
382 if (!ring)
383 goto err;
68fd9910 384 ring->count = adapter->rx_ring_count;
844290e5 385 ring->queue_index = i;
80785298 386 ring->pdev = adapter->pdev;
e694e964 387 ring->netdev = adapter->netdev;
4c844851 388 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
389 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
390 /* set flag indicating ring supports SCTP checksum offload */
391 if (adapter->hw.mac.type >= e1000_82576)
392 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 393 adapter->rx_ring[i] = ring;
9d5c8243 394 }
26bc19ec
AD
395
396 igb_cache_ring_register(adapter);
9d5c8243 397
047e0030 398 return 0;
a88f10ec 399
047e0030
AD
400err:
401 igb_free_queues(adapter);
d1a8c9e1 402
047e0030 403 return -ENOMEM;
a88f10ec
AD
404}
405
9d5c8243 406#define IGB_N0_QUEUE -1
047e0030 407static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
408{
409 u32 msixbm = 0;
047e0030 410 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 411 struct e1000_hw *hw = &adapter->hw;
2d064c06 412 u32 ivar, index;
047e0030
AD
413 int rx_queue = IGB_N0_QUEUE;
414 int tx_queue = IGB_N0_QUEUE;
415
416 if (q_vector->rx_ring)
417 rx_queue = q_vector->rx_ring->reg_idx;
418 if (q_vector->tx_ring)
419 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
420
421 switch (hw->mac.type) {
422 case e1000_82575:
9d5c8243
AK
423 /* The 82575 assigns vectors using a bitmask, which matches the
424 bitmask for the EICR/EIMS/EIMC registers. To assign one
425 or more queues to a vector, we write the appropriate bits
426 into the MSIXBM register for that vector. */
047e0030 427 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 428 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 429 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 430 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
431 if (!adapter->msix_entries && msix_vector == 0)
432 msixbm |= E1000_EIMS_OTHER;
9d5c8243 433 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 434 q_vector->eims_value = msixbm;
2d064c06
AD
435 break;
436 case e1000_82576:
26bc19ec 437 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
438 Each queue has a single entry in the table to which we write
439 a vector number along with a "valid" bit. Sadly, the layout
440 of the table is somewhat counterintuitive. */
441 if (rx_queue > IGB_N0_QUEUE) {
047e0030 442 index = (rx_queue & 0x7);
2d064c06 443 ivar = array_rd32(E1000_IVAR0, index);
047e0030 444 if (rx_queue < 8) {
26bc19ec
AD
445 /* vector goes into low byte of register */
446 ivar = ivar & 0xFFFFFF00;
447 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
448 } else {
449 /* vector goes into third byte of register */
450 ivar = ivar & 0xFF00FFFF;
451 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 452 }
2d064c06
AD
453 array_wr32(E1000_IVAR0, index, ivar);
454 }
455 if (tx_queue > IGB_N0_QUEUE) {
047e0030 456 index = (tx_queue & 0x7);
2d064c06 457 ivar = array_rd32(E1000_IVAR0, index);
047e0030 458 if (tx_queue < 8) {
26bc19ec
AD
459 /* vector goes into second byte of register */
460 ivar = ivar & 0xFFFF00FF;
461 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
462 } else {
463 /* vector goes into high byte of register */
464 ivar = ivar & 0x00FFFFFF;
465 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 466 }
2d064c06
AD
467 array_wr32(E1000_IVAR0, index, ivar);
468 }
047e0030 469 q_vector->eims_value = 1 << msix_vector;
2d064c06 470 break;
55cac248
AD
471 case e1000_82580:
472 /* 82580 uses the same table-based approach as 82576 but has fewer
473 entries as a result we carry over for queues greater than 4. */
474 if (rx_queue > IGB_N0_QUEUE) {
475 index = (rx_queue >> 1);
476 ivar = array_rd32(E1000_IVAR0, index);
477 if (rx_queue & 0x1) {
478 /* vector goes into third byte of register */
479 ivar = ivar & 0xFF00FFFF;
480 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
481 } else {
482 /* vector goes into low byte of register */
483 ivar = ivar & 0xFFFFFF00;
484 ivar |= msix_vector | E1000_IVAR_VALID;
485 }
486 array_wr32(E1000_IVAR0, index, ivar);
487 }
488 if (tx_queue > IGB_N0_QUEUE) {
489 index = (tx_queue >> 1);
490 ivar = array_rd32(E1000_IVAR0, index);
491 if (tx_queue & 0x1) {
492 /* vector goes into high byte of register */
493 ivar = ivar & 0x00FFFFFF;
494 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
495 } else {
496 /* vector goes into second byte of register */
497 ivar = ivar & 0xFFFF00FF;
498 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
499 }
500 array_wr32(E1000_IVAR0, index, ivar);
501 }
502 q_vector->eims_value = 1 << msix_vector;
503 break;
2d064c06
AD
504 default:
505 BUG();
506 break;
507 }
26b39276
AD
508
509 /* add q_vector eims value to global eims_enable_mask */
510 adapter->eims_enable_mask |= q_vector->eims_value;
511
512 /* configure q_vector to set itr on first interrupt */
513 q_vector->set_itr = 1;
9d5c8243
AK
514}
515
516/**
517 * igb_configure_msix - Configure MSI-X hardware
518 *
519 * igb_configure_msix sets up the hardware to properly
520 * generate MSI-X interrupts.
521 **/
522static void igb_configure_msix(struct igb_adapter *adapter)
523{
524 u32 tmp;
525 int i, vector = 0;
526 struct e1000_hw *hw = &adapter->hw;
527
528 adapter->eims_enable_mask = 0;
9d5c8243
AK
529
530 /* set vector for other causes, i.e. link changes */
2d064c06
AD
531 switch (hw->mac.type) {
532 case e1000_82575:
9d5c8243
AK
533 tmp = rd32(E1000_CTRL_EXT);
534 /* enable MSI-X PBA support*/
535 tmp |= E1000_CTRL_EXT_PBA_CLR;
536
537 /* Auto-Mask interrupts upon ICR read. */
538 tmp |= E1000_CTRL_EXT_EIAME;
539 tmp |= E1000_CTRL_EXT_IRCA;
540
541 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
542
543 /* enable msix_other interrupt */
544 array_wr32(E1000_MSIXBM(0), vector++,
545 E1000_EIMS_OTHER);
844290e5 546 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 547
2d064c06
AD
548 break;
549
550 case e1000_82576:
55cac248 551 case e1000_82580:
047e0030
AD
552 /* Turn on MSI-X capability first, or our settings
553 * won't stick. And it will take days to debug. */
554 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
555 E1000_GPIE_PBA | E1000_GPIE_EIAME |
556 E1000_GPIE_NSICR);
557
558 /* enable msix_other interrupt */
559 adapter->eims_other = 1 << vector;
2d064c06 560 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 561
047e0030 562 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
563 break;
564 default:
565 /* do nothing, since nothing else supports MSI-X */
566 break;
567 } /* switch (hw->mac.type) */
047e0030
AD
568
569 adapter->eims_enable_mask |= adapter->eims_other;
570
26b39276
AD
571 for (i = 0; i < adapter->num_q_vectors; i++)
572 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 573
9d5c8243
AK
574 wrfl();
575}
576
577/**
578 * igb_request_msix - Initialize MSI-X interrupts
579 *
580 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
581 * kernel.
582 **/
583static int igb_request_msix(struct igb_adapter *adapter)
584{
585 struct net_device *netdev = adapter->netdev;
047e0030 586 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
587 int i, err = 0, vector = 0;
588
047e0030 589 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 590 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
591 if (err)
592 goto out;
593 vector++;
594
595 for (i = 0; i < adapter->num_q_vectors; i++) {
596 struct igb_q_vector *q_vector = adapter->q_vector[i];
597
598 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
599
600 if (q_vector->rx_ring && q_vector->tx_ring)
601 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
602 q_vector->rx_ring->queue_index);
603 else if (q_vector->tx_ring)
604 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
605 q_vector->tx_ring->queue_index);
606 else if (q_vector->rx_ring)
607 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
608 q_vector->rx_ring->queue_index);
9d5c8243 609 else
047e0030
AD
610 sprintf(q_vector->name, "%s-unused", netdev->name);
611
9d5c8243 612 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 613 igb_msix_ring, 0, q_vector->name,
047e0030 614 q_vector);
9d5c8243
AK
615 if (err)
616 goto out;
9d5c8243
AK
617 vector++;
618 }
619
9d5c8243
AK
620 igb_configure_msix(adapter);
621 return 0;
622out:
623 return err;
624}
625
626static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
627{
628 if (adapter->msix_entries) {
629 pci_disable_msix(adapter->pdev);
630 kfree(adapter->msix_entries);
631 adapter->msix_entries = NULL;
047e0030 632 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 633 pci_disable_msi(adapter->pdev);
047e0030 634 }
9d5c8243
AK
635}
636
047e0030
AD
637/**
638 * igb_free_q_vectors - Free memory allocated for interrupt vectors
639 * @adapter: board private structure to initialize
640 *
641 * This function frees the memory allocated to the q_vectors. In addition if
642 * NAPI is enabled it will delete any references to the NAPI struct prior
643 * to freeing the q_vector.
644 **/
645static void igb_free_q_vectors(struct igb_adapter *adapter)
646{
647 int v_idx;
648
649 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
650 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
651 adapter->q_vector[v_idx] = NULL;
652 netif_napi_del(&q_vector->napi);
653 kfree(q_vector);
654 }
655 adapter->num_q_vectors = 0;
656}
657
658/**
659 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
660 *
661 * This function resets the device so that it has 0 rx queues, tx queues, and
662 * MSI-X interrupts allocated.
663 */
664static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
665{
666 igb_free_queues(adapter);
667 igb_free_q_vectors(adapter);
668 igb_reset_interrupt_capability(adapter);
669}
9d5c8243
AK
670
671/**
672 * igb_set_interrupt_capability - set MSI or MSI-X if supported
673 *
674 * Attempt to configure interrupts using the best available
675 * capabilities of the hardware and kernel.
676 **/
677static void igb_set_interrupt_capability(struct igb_adapter *adapter)
678{
679 int err;
680 int numvecs, i;
681
83b7180d 682 /* Number of supported queues. */
a99955fc
AD
683 adapter->num_rx_queues = adapter->rss_queues;
684 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 685
047e0030
AD
686 /* start with one vector for every rx queue */
687 numvecs = adapter->num_rx_queues;
688
689 /* if tx handler is seperate add 1 for every tx queue */
a99955fc
AD
690 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
691 numvecs += adapter->num_tx_queues;
047e0030
AD
692
693 /* store the number of vectors reserved for queues */
694 adapter->num_q_vectors = numvecs;
695
696 /* add 1 vector for link status interrupts */
697 numvecs++;
9d5c8243
AK
698 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
699 GFP_KERNEL);
700 if (!adapter->msix_entries)
701 goto msi_only;
702
703 for (i = 0; i < numvecs; i++)
704 adapter->msix_entries[i].entry = i;
705
706 err = pci_enable_msix(adapter->pdev,
707 adapter->msix_entries,
708 numvecs);
709 if (err == 0)
34a20e89 710 goto out;
9d5c8243
AK
711
712 igb_reset_interrupt_capability(adapter);
713
714 /* If we can't do MSI-X, try MSI */
715msi_only:
2a3abf6d
AD
716#ifdef CONFIG_PCI_IOV
717 /* disable SR-IOV for non MSI-X configurations */
718 if (adapter->vf_data) {
719 struct e1000_hw *hw = &adapter->hw;
720 /* disable iov and allow time for transactions to clear */
721 pci_disable_sriov(adapter->pdev);
722 msleep(500);
723
724 kfree(adapter->vf_data);
725 adapter->vf_data = NULL;
726 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
727 msleep(100);
728 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
729 }
730#endif
4fc82adf 731 adapter->vfs_allocated_count = 0;
a99955fc 732 adapter->rss_queues = 1;
4fc82adf 733 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 734 adapter->num_rx_queues = 1;
661086df 735 adapter->num_tx_queues = 1;
047e0030 736 adapter->num_q_vectors = 1;
9d5c8243 737 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 738 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 739out:
661086df 740 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 741 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
742 return;
743}
744
047e0030
AD
745/**
746 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
747 * @adapter: board private structure to initialize
748 *
749 * We allocate one q_vector per queue interrupt. If allocation fails we
750 * return -ENOMEM.
751 **/
752static int igb_alloc_q_vectors(struct igb_adapter *adapter)
753{
754 struct igb_q_vector *q_vector;
755 struct e1000_hw *hw = &adapter->hw;
756 int v_idx;
757
758 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
759 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
760 if (!q_vector)
761 goto err_out;
762 q_vector->adapter = adapter;
047e0030
AD
763 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
764 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
765 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
766 adapter->q_vector[v_idx] = q_vector;
767 }
768 return 0;
769
770err_out:
771 while (v_idx) {
772 v_idx--;
773 q_vector = adapter->q_vector[v_idx];
774 netif_napi_del(&q_vector->napi);
775 kfree(q_vector);
776 adapter->q_vector[v_idx] = NULL;
777 }
778 return -ENOMEM;
779}
780
781static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
782 int ring_idx, int v_idx)
783{
3025a446 784 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 785
3025a446 786 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 787 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
788 q_vector->itr_val = adapter->rx_itr_setting;
789 if (q_vector->itr_val && q_vector->itr_val <= 3)
790 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
791}
792
793static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
794 int ring_idx, int v_idx)
795{
3025a446 796 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 797
3025a446 798 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 799 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
800 q_vector->itr_val = adapter->tx_itr_setting;
801 if (q_vector->itr_val && q_vector->itr_val <= 3)
802 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
803}
804
805/**
806 * igb_map_ring_to_vector - maps allocated queues to vectors
807 *
808 * This function maps the recently allocated queues to vectors.
809 **/
810static int igb_map_ring_to_vector(struct igb_adapter *adapter)
811{
812 int i;
813 int v_idx = 0;
814
815 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
816 (adapter->num_q_vectors < adapter->num_tx_queues))
817 return -ENOMEM;
818
819 if (adapter->num_q_vectors >=
820 (adapter->num_rx_queues + adapter->num_tx_queues)) {
821 for (i = 0; i < adapter->num_rx_queues; i++)
822 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
823 for (i = 0; i < adapter->num_tx_queues; i++)
824 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
825 } else {
826 for (i = 0; i < adapter->num_rx_queues; i++) {
827 if (i < adapter->num_tx_queues)
828 igb_map_tx_ring_to_vector(adapter, i, v_idx);
829 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
830 }
831 for (; i < adapter->num_tx_queues; i++)
832 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
833 }
834 return 0;
835}
836
837/**
838 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
839 *
840 * This function initializes the interrupts and allocates all of the queues.
841 **/
842static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
843{
844 struct pci_dev *pdev = adapter->pdev;
845 int err;
846
847 igb_set_interrupt_capability(adapter);
848
849 err = igb_alloc_q_vectors(adapter);
850 if (err) {
851 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
852 goto err_alloc_q_vectors;
853 }
854
855 err = igb_alloc_queues(adapter);
856 if (err) {
857 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
858 goto err_alloc_queues;
859 }
860
861 err = igb_map_ring_to_vector(adapter);
862 if (err) {
863 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
864 goto err_map_queues;
865 }
866
867
868 return 0;
869err_map_queues:
870 igb_free_queues(adapter);
871err_alloc_queues:
872 igb_free_q_vectors(adapter);
873err_alloc_q_vectors:
874 igb_reset_interrupt_capability(adapter);
875 return err;
876}
877
9d5c8243
AK
878/**
879 * igb_request_irq - initialize interrupts
880 *
881 * Attempts to configure interrupts using the best available
882 * capabilities of the hardware and kernel.
883 **/
884static int igb_request_irq(struct igb_adapter *adapter)
885{
886 struct net_device *netdev = adapter->netdev;
047e0030 887 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
888 int err = 0;
889
890 if (adapter->msix_entries) {
891 err = igb_request_msix(adapter);
844290e5 892 if (!err)
9d5c8243 893 goto request_done;
9d5c8243 894 /* fall back to MSI */
047e0030 895 igb_clear_interrupt_scheme(adapter);
9d5c8243 896 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 897 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
898 igb_free_all_tx_resources(adapter);
899 igb_free_all_rx_resources(adapter);
047e0030 900 adapter->num_tx_queues = 1;
9d5c8243 901 adapter->num_rx_queues = 1;
047e0030
AD
902 adapter->num_q_vectors = 1;
903 err = igb_alloc_q_vectors(adapter);
904 if (err) {
905 dev_err(&pdev->dev,
906 "Unable to allocate memory for vectors\n");
907 goto request_done;
908 }
909 err = igb_alloc_queues(adapter);
910 if (err) {
911 dev_err(&pdev->dev,
912 "Unable to allocate memory for queues\n");
913 igb_free_q_vectors(adapter);
914 goto request_done;
915 }
916 igb_setup_all_tx_resources(adapter);
917 igb_setup_all_rx_resources(adapter);
844290e5 918 } else {
feeb2721 919 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 920 }
844290e5 921
7dfc16fa 922 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 923 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 924 netdev->name, adapter);
9d5c8243
AK
925 if (!err)
926 goto request_done;
047e0030 927
9d5c8243
AK
928 /* fall back to legacy interrupts */
929 igb_reset_interrupt_capability(adapter);
7dfc16fa 930 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
931 }
932
a0607fd3 933 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 934 netdev->name, adapter);
9d5c8243 935
6cb5e577 936 if (err)
9d5c8243
AK
937 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
938 err);
9d5c8243
AK
939
940request_done:
941 return err;
942}
943
944static void igb_free_irq(struct igb_adapter *adapter)
945{
9d5c8243
AK
946 if (adapter->msix_entries) {
947 int vector = 0, i;
948
047e0030 949 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 950
047e0030
AD
951 for (i = 0; i < adapter->num_q_vectors; i++) {
952 struct igb_q_vector *q_vector = adapter->q_vector[i];
953 free_irq(adapter->msix_entries[vector++].vector,
954 q_vector);
955 }
956 } else {
957 free_irq(adapter->pdev->irq, adapter);
9d5c8243 958 }
9d5c8243
AK
959}
960
961/**
962 * igb_irq_disable - Mask off interrupt generation on the NIC
963 * @adapter: board private structure
964 **/
965static void igb_irq_disable(struct igb_adapter *adapter)
966{
967 struct e1000_hw *hw = &adapter->hw;
968
25568a53
AD
969 /*
970 * we need to be careful when disabling interrupts. The VFs are also
971 * mapped into these registers and so clearing the bits can cause
972 * issues on the VF drivers so we only need to clear what we set
973 */
9d5c8243 974 if (adapter->msix_entries) {
2dfd1212
AD
975 u32 regval = rd32(E1000_EIAM);
976 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
977 wr32(E1000_EIMC, adapter->eims_enable_mask);
978 regval = rd32(E1000_EIAC);
979 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 980 }
844290e5
PW
981
982 wr32(E1000_IAM, 0);
9d5c8243
AK
983 wr32(E1000_IMC, ~0);
984 wrfl();
985 synchronize_irq(adapter->pdev->irq);
986}
987
988/**
989 * igb_irq_enable - Enable default interrupt generation settings
990 * @adapter: board private structure
991 **/
992static void igb_irq_enable(struct igb_adapter *adapter)
993{
994 struct e1000_hw *hw = &adapter->hw;
995
996 if (adapter->msix_entries) {
25568a53 997 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
998 u32 regval = rd32(E1000_EIAC);
999 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1000 regval = rd32(E1000_EIAM);
1001 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1002 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1003 if (adapter->vfs_allocated_count) {
4ae196df 1004 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1005 ims |= E1000_IMS_VMMB;
1006 }
55cac248
AD
1007 if (adapter->hw.mac.type == e1000_82580)
1008 ims |= E1000_IMS_DRSTA;
1009
25568a53 1010 wr32(E1000_IMS, ims);
844290e5 1011 } else {
55cac248
AD
1012 wr32(E1000_IMS, IMS_ENABLE_MASK |
1013 E1000_IMS_DRSTA);
1014 wr32(E1000_IAM, IMS_ENABLE_MASK |
1015 E1000_IMS_DRSTA);
844290e5 1016 }
9d5c8243
AK
1017}
1018
1019static void igb_update_mng_vlan(struct igb_adapter *adapter)
1020{
51466239 1021 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1022 u16 vid = adapter->hw.mng_cookie.vlan_id;
1023 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1024
1025 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1026 /* add VID to filter table */
1027 igb_vfta_set(hw, vid, true);
1028 adapter->mng_vlan_id = vid;
1029 } else {
1030 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1031 }
1032
1033 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1034 (vid != old_vid) &&
1035 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1036 /* remove VID from filter table */
1037 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1038 }
1039}
1040
1041/**
1042 * igb_release_hw_control - release control of the h/w to f/w
1043 * @adapter: address of board private structure
1044 *
1045 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1046 * For ASF and Pass Through versions of f/w this means that the
1047 * driver is no longer loaded.
1048 *
1049 **/
1050static void igb_release_hw_control(struct igb_adapter *adapter)
1051{
1052 struct e1000_hw *hw = &adapter->hw;
1053 u32 ctrl_ext;
1054
1055 /* Let firmware take over control of h/w */
1056 ctrl_ext = rd32(E1000_CTRL_EXT);
1057 wr32(E1000_CTRL_EXT,
1058 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1059}
1060
9d5c8243
AK
1061/**
1062 * igb_get_hw_control - get control of the h/w from f/w
1063 * @adapter: address of board private structure
1064 *
1065 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1066 * For ASF and Pass Through versions of f/w this means that
1067 * the driver is loaded.
1068 *
1069 **/
1070static void igb_get_hw_control(struct igb_adapter *adapter)
1071{
1072 struct e1000_hw *hw = &adapter->hw;
1073 u32 ctrl_ext;
1074
1075 /* Let firmware know the driver has taken over */
1076 ctrl_ext = rd32(E1000_CTRL_EXT);
1077 wr32(E1000_CTRL_EXT,
1078 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1079}
1080
9d5c8243
AK
1081/**
1082 * igb_configure - configure the hardware for RX and TX
1083 * @adapter: private board structure
1084 **/
1085static void igb_configure(struct igb_adapter *adapter)
1086{
1087 struct net_device *netdev = adapter->netdev;
1088 int i;
1089
1090 igb_get_hw_control(adapter);
ff41f8dc 1091 igb_set_rx_mode(netdev);
9d5c8243
AK
1092
1093 igb_restore_vlan(adapter);
9d5c8243 1094
85b430b4 1095 igb_setup_tctl(adapter);
06cf2666 1096 igb_setup_mrqc(adapter);
9d5c8243 1097 igb_setup_rctl(adapter);
85b430b4
AD
1098
1099 igb_configure_tx(adapter);
9d5c8243 1100 igb_configure_rx(adapter);
662d7205
AD
1101
1102 igb_rx_fifo_flush_82575(&adapter->hw);
1103
c493ea45 1104 /* call igb_desc_unused which always leaves
9d5c8243
AK
1105 * at least 1 descriptor unused to make sure
1106 * next_to_use != next_to_clean */
1107 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1108 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1109 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243
AK
1110 }
1111
1112
1113 adapter->tx_queue_len = netdev->tx_queue_len;
1114}
1115
88a268c1
NN
1116/**
1117 * igb_power_up_link - Power up the phy/serdes link
1118 * @adapter: address of board private structure
1119 **/
1120void igb_power_up_link(struct igb_adapter *adapter)
1121{
1122 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1123 igb_power_up_phy_copper(&adapter->hw);
1124 else
1125 igb_power_up_serdes_link_82575(&adapter->hw);
1126}
1127
1128/**
1129 * igb_power_down_link - Power down the phy/serdes link
1130 * @adapter: address of board private structure
1131 */
1132static void igb_power_down_link(struct igb_adapter *adapter)
1133{
1134 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1135 igb_power_down_phy_copper_82575(&adapter->hw);
1136 else
1137 igb_shutdown_serdes_link_82575(&adapter->hw);
1138}
9d5c8243
AK
1139
1140/**
1141 * igb_up - Open the interface and prepare it to handle traffic
1142 * @adapter: board private structure
1143 **/
9d5c8243
AK
1144int igb_up(struct igb_adapter *adapter)
1145{
1146 struct e1000_hw *hw = &adapter->hw;
1147 int i;
1148
1149 /* hardware has been reset, we need to reload some things */
1150 igb_configure(adapter);
1151
1152 clear_bit(__IGB_DOWN, &adapter->state);
1153
047e0030
AD
1154 for (i = 0; i < adapter->num_q_vectors; i++) {
1155 struct igb_q_vector *q_vector = adapter->q_vector[i];
1156 napi_enable(&q_vector->napi);
1157 }
844290e5 1158 if (adapter->msix_entries)
9d5c8243 1159 igb_configure_msix(adapter);
feeb2721
AD
1160 else
1161 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1162
1163 /* Clear any pending interrupts. */
1164 rd32(E1000_ICR);
1165 igb_irq_enable(adapter);
1166
d4960307
AD
1167 /* notify VFs that reset has been completed */
1168 if (adapter->vfs_allocated_count) {
1169 u32 reg_data = rd32(E1000_CTRL_EXT);
1170 reg_data |= E1000_CTRL_EXT_PFRSTD;
1171 wr32(E1000_CTRL_EXT, reg_data);
1172 }
1173
4cb9be7a
JB
1174 netif_tx_start_all_queues(adapter->netdev);
1175
25568a53
AD
1176 /* start the watchdog. */
1177 hw->mac.get_link_status = 1;
1178 schedule_work(&adapter->watchdog_task);
1179
9d5c8243
AK
1180 return 0;
1181}
1182
1183void igb_down(struct igb_adapter *adapter)
1184{
9d5c8243 1185 struct net_device *netdev = adapter->netdev;
330a6d6a 1186 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1187 u32 tctl, rctl;
1188 int i;
1189
1190 /* signal that we're down so the interrupt handler does not
1191 * reschedule our watchdog timer */
1192 set_bit(__IGB_DOWN, &adapter->state);
1193
1194 /* disable receives in the hardware */
1195 rctl = rd32(E1000_RCTL);
1196 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1197 /* flush and sleep below */
1198
fd2ea0a7 1199 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1200
1201 /* disable transmits in the hardware */
1202 tctl = rd32(E1000_TCTL);
1203 tctl &= ~E1000_TCTL_EN;
1204 wr32(E1000_TCTL, tctl);
1205 /* flush both disables and wait for them to finish */
1206 wrfl();
1207 msleep(10);
1208
047e0030
AD
1209 for (i = 0; i < adapter->num_q_vectors; i++) {
1210 struct igb_q_vector *q_vector = adapter->q_vector[i];
1211 napi_disable(&q_vector->napi);
1212 }
9d5c8243 1213
9d5c8243
AK
1214 igb_irq_disable(adapter);
1215
1216 del_timer_sync(&adapter->watchdog_timer);
1217 del_timer_sync(&adapter->phy_info_timer);
1218
1219 netdev->tx_queue_len = adapter->tx_queue_len;
1220 netif_carrier_off(netdev);
04fe6358
AD
1221
1222 /* record the stats before reset*/
1223 igb_update_stats(adapter);
1224
9d5c8243
AK
1225 adapter->link_speed = 0;
1226 adapter->link_duplex = 0;
1227
3023682e
JK
1228 if (!pci_channel_offline(adapter->pdev))
1229 igb_reset(adapter);
9d5c8243
AK
1230 igb_clean_all_tx_rings(adapter);
1231 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1232#ifdef CONFIG_IGB_DCA
1233
1234 /* since we reset the hardware DCA settings were cleared */
1235 igb_setup_dca(adapter);
1236#endif
9d5c8243
AK
1237}
1238
1239void igb_reinit_locked(struct igb_adapter *adapter)
1240{
1241 WARN_ON(in_interrupt());
1242 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1243 msleep(1);
1244 igb_down(adapter);
1245 igb_up(adapter);
1246 clear_bit(__IGB_RESETTING, &adapter->state);
1247}
1248
1249void igb_reset(struct igb_adapter *adapter)
1250{
090b1795 1251 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1252 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1253 struct e1000_mac_info *mac = &hw->mac;
1254 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1255 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1256 u16 hwm;
1257
1258 /* Repartition Pba for greater than 9k mtu
1259 * To take effect CTRL.RST is required.
1260 */
fa4dfae0 1261 switch (mac->type) {
55cac248
AD
1262 case e1000_82580:
1263 pba = rd32(E1000_RXPBS);
1264 pba = igb_rxpbs_adjust_82580(pba);
1265 break;
fa4dfae0 1266 case e1000_82576:
d249be54
AD
1267 pba = rd32(E1000_RXPBS);
1268 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1269 break;
1270 case e1000_82575:
1271 default:
1272 pba = E1000_PBA_34K;
1273 break;
2d064c06 1274 }
9d5c8243 1275
2d064c06
AD
1276 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1277 (mac->type < e1000_82576)) {
9d5c8243
AK
1278 /* adjust PBA for jumbo frames */
1279 wr32(E1000_PBA, pba);
1280
1281 /* To maintain wire speed transmits, the Tx FIFO should be
1282 * large enough to accommodate two full transmit packets,
1283 * rounded up to the next 1KB and expressed in KB. Likewise,
1284 * the Rx FIFO should be large enough to accommodate at least
1285 * one full receive packet and is similarly rounded up and
1286 * expressed in KB. */
1287 pba = rd32(E1000_PBA);
1288 /* upper 16 bits has Tx packet buffer allocation size in KB */
1289 tx_space = pba >> 16;
1290 /* lower 16 bits has Rx packet buffer allocation size in KB */
1291 pba &= 0xffff;
1292 /* the tx fifo also stores 16 bytes of information about the tx
1293 * but don't include ethernet FCS because hardware appends it */
1294 min_tx_space = (adapter->max_frame_size +
85e8d004 1295 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1296 ETH_FCS_LEN) * 2;
1297 min_tx_space = ALIGN(min_tx_space, 1024);
1298 min_tx_space >>= 10;
1299 /* software strips receive CRC, so leave room for it */
1300 min_rx_space = adapter->max_frame_size;
1301 min_rx_space = ALIGN(min_rx_space, 1024);
1302 min_rx_space >>= 10;
1303
1304 /* If current Tx allocation is less than the min Tx FIFO size,
1305 * and the min Tx FIFO size is less than the current Rx FIFO
1306 * allocation, take space away from current Rx allocation */
1307 if (tx_space < min_tx_space &&
1308 ((min_tx_space - tx_space) < pba)) {
1309 pba = pba - (min_tx_space - tx_space);
1310
1311 /* if short on rx space, rx wins and must trump tx
1312 * adjustment */
1313 if (pba < min_rx_space)
1314 pba = min_rx_space;
1315 }
2d064c06 1316 wr32(E1000_PBA, pba);
9d5c8243 1317 }
9d5c8243
AK
1318
1319 /* flow control settings */
1320 /* The high water mark must be low enough to fit one full frame
1321 * (or the size used for early receive) above it in the Rx FIFO.
1322 * Set it to the lower of:
1323 * - 90% of the Rx FIFO size, or
1324 * - the full Rx FIFO size minus one full frame */
1325 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1326 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1327
d405ea3e
AD
1328 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1329 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1330 fc->pause_time = 0xFFFF;
1331 fc->send_xon = 1;
0cce119a 1332 fc->current_mode = fc->requested_mode;
9d5c8243 1333
4ae196df
AD
1334 /* disable receive for all VFs and wait one second */
1335 if (adapter->vfs_allocated_count) {
1336 int i;
1337 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1338 adapter->vf_data[i].flags = 0;
4ae196df
AD
1339
1340 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1341 igb_ping_all_vfs(adapter);
4ae196df
AD
1342
1343 /* disable transmits and receives */
1344 wr32(E1000_VFRE, 0);
1345 wr32(E1000_VFTE, 0);
1346 }
1347
9d5c8243 1348 /* Allow time for pending master requests to run */
330a6d6a 1349 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1350 wr32(E1000_WUC, 0);
1351
330a6d6a 1352 if (hw->mac.ops.init_hw(hw))
090b1795 1353 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1354
55cac248
AD
1355 if (hw->mac.type == e1000_82580) {
1356 u32 reg = rd32(E1000_PCIEMISC);
1357 wr32(E1000_PCIEMISC,
1358 reg & ~E1000_PCIEMISC_LX_DECISION);
1359 }
88a268c1
NN
1360 if (!netif_running(adapter->netdev))
1361 igb_power_down_link(adapter);
1362
9d5c8243
AK
1363 igb_update_mng_vlan(adapter);
1364
1365 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1366 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1367
330a6d6a 1368 igb_get_phy_info(hw);
9d5c8243
AK
1369}
1370
2e5c6922 1371static const struct net_device_ops igb_netdev_ops = {
559e9c49 1372 .ndo_open = igb_open,
2e5c6922 1373 .ndo_stop = igb_close,
00829823 1374 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1375 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1376 .ndo_set_rx_mode = igb_set_rx_mode,
1377 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1378 .ndo_set_mac_address = igb_set_mac,
1379 .ndo_change_mtu = igb_change_mtu,
1380 .ndo_do_ioctl = igb_ioctl,
1381 .ndo_tx_timeout = igb_tx_timeout,
1382 .ndo_validate_addr = eth_validate_addr,
1383 .ndo_vlan_rx_register = igb_vlan_rx_register,
1384 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1385 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1386 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1387 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1388 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1389 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1390#ifdef CONFIG_NET_POLL_CONTROLLER
1391 .ndo_poll_controller = igb_netpoll,
1392#endif
1393};
1394
9d5c8243
AK
1395/**
1396 * igb_probe - Device Initialization Routine
1397 * @pdev: PCI device information struct
1398 * @ent: entry in igb_pci_tbl
1399 *
1400 * Returns 0 on success, negative on failure
1401 *
1402 * igb_probe initializes an adapter identified by a pci_dev structure.
1403 * The OS initialization, configuring of the adapter private structure,
1404 * and a hardware reset occur.
1405 **/
1406static int __devinit igb_probe(struct pci_dev *pdev,
1407 const struct pci_device_id *ent)
1408{
1409 struct net_device *netdev;
1410 struct igb_adapter *adapter;
1411 struct e1000_hw *hw;
4337e993
AD
1412 u16 eeprom_data = 0;
1413 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1414 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1415 unsigned long mmio_start, mmio_len;
2d6a5e95 1416 int err, pci_using_dac;
9d5c8243
AK
1417 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1418 u32 part_num;
1419
aed5dec3 1420 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1421 if (err)
1422 return err;
1423
1424 pci_using_dac = 0;
6a35528a 1425 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243 1426 if (!err) {
6a35528a 1427 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243
AK
1428 if (!err)
1429 pci_using_dac = 1;
1430 } else {
284901a9 1431 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243 1432 if (err) {
284901a9 1433 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243
AK
1434 if (err) {
1435 dev_err(&pdev->dev, "No usable DMA "
1436 "configuration, aborting\n");
1437 goto err_dma;
1438 }
1439 }
1440 }
1441
aed5dec3
AD
1442 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1443 IORESOURCE_MEM),
1444 igb_driver_name);
9d5c8243
AK
1445 if (err)
1446 goto err_pci_reg;
1447
19d5afd4 1448 pci_enable_pcie_error_reporting(pdev);
40a914fa 1449
9d5c8243 1450 pci_set_master(pdev);
c682fc23 1451 pci_save_state(pdev);
9d5c8243
AK
1452
1453 err = -ENOMEM;
1bfaf07b
AD
1454 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1455 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1456 if (!netdev)
1457 goto err_alloc_etherdev;
1458
1459 SET_NETDEV_DEV(netdev, &pdev->dev);
1460
1461 pci_set_drvdata(pdev, netdev);
1462 adapter = netdev_priv(netdev);
1463 adapter->netdev = netdev;
1464 adapter->pdev = pdev;
1465 hw = &adapter->hw;
1466 hw->back = adapter;
1467 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1468
1469 mmio_start = pci_resource_start(pdev, 0);
1470 mmio_len = pci_resource_len(pdev, 0);
1471
1472 err = -EIO;
28b0759c
AD
1473 hw->hw_addr = ioremap(mmio_start, mmio_len);
1474 if (!hw->hw_addr)
9d5c8243
AK
1475 goto err_ioremap;
1476
2e5c6922 1477 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1478 igb_set_ethtool_ops(netdev);
9d5c8243 1479 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1480
1481 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1482
1483 netdev->mem_start = mmio_start;
1484 netdev->mem_end = mmio_start + mmio_len;
1485
9d5c8243
AK
1486 /* PCI config space info */
1487 hw->vendor_id = pdev->vendor;
1488 hw->device_id = pdev->device;
1489 hw->revision_id = pdev->revision;
1490 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1491 hw->subsystem_device_id = pdev->subsystem_device;
1492
9d5c8243
AK
1493 /* Copy the default MAC, PHY and NVM function pointers */
1494 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1495 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1496 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1497 /* Initialize skew-specific constants */
1498 err = ei->get_invariants(hw);
1499 if (err)
450c87c8 1500 goto err_sw_init;
9d5c8243 1501
450c87c8 1502 /* setup the private structure */
9d5c8243
AK
1503 err = igb_sw_init(adapter);
1504 if (err)
1505 goto err_sw_init;
1506
1507 igb_get_bus_info_pcie(hw);
1508
1509 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1510
1511 /* Copper options */
1512 if (hw->phy.media_type == e1000_media_type_copper) {
1513 hw->phy.mdix = AUTO_ALL_MODES;
1514 hw->phy.disable_polarity_correction = false;
1515 hw->phy.ms_type = e1000_ms_hw_default;
1516 }
1517
1518 if (igb_check_reset_block(hw))
1519 dev_info(&pdev->dev,
1520 "PHY reset is blocked due to SOL/IDER session.\n");
1521
1522 netdev->features = NETIF_F_SG |
7d8eb29e 1523 NETIF_F_IP_CSUM |
9d5c8243
AK
1524 NETIF_F_HW_VLAN_TX |
1525 NETIF_F_HW_VLAN_RX |
1526 NETIF_F_HW_VLAN_FILTER;
1527
7d8eb29e 1528 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1529 netdev->features |= NETIF_F_TSO;
9d5c8243 1530 netdev->features |= NETIF_F_TSO6;
5c0999b7 1531 netdev->features |= NETIF_F_GRO;
d3352520 1532
48f29ffc
JK
1533 netdev->vlan_features |= NETIF_F_TSO;
1534 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1535 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1536 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1537 netdev->vlan_features |= NETIF_F_SG;
1538
9d5c8243
AK
1539 if (pci_using_dac)
1540 netdev->features |= NETIF_F_HIGHDMA;
1541
5b043fb0 1542 if (hw->mac.type >= e1000_82576)
b9473560
JB
1543 netdev->features |= NETIF_F_SCTP_CSUM;
1544
330a6d6a 1545 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1546
1547 /* before reading the NVM, reset the controller to put the device in a
1548 * known good starting state */
1549 hw->mac.ops.reset_hw(hw);
1550
1551 /* make sure the NVM is good */
1552 if (igb_validate_nvm_checksum(hw) < 0) {
1553 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1554 err = -EIO;
1555 goto err_eeprom;
1556 }
1557
1558 /* copy the MAC address out of the NVM */
1559 if (hw->mac.ops.read_mac_addr(hw))
1560 dev_err(&pdev->dev, "NVM Read Error\n");
1561
1562 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1563 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1564
1565 if (!is_valid_ether_addr(netdev->perm_addr)) {
1566 dev_err(&pdev->dev, "Invalid MAC Address\n");
1567 err = -EIO;
1568 goto err_eeprom;
1569 }
1570
0e340485
AD
1571 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1572 (unsigned long) adapter);
1573 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1574 (unsigned long) adapter);
9d5c8243
AK
1575
1576 INIT_WORK(&adapter->reset_task, igb_reset_task);
1577 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1578
450c87c8 1579 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1580 adapter->fc_autoneg = true;
1581 hw->mac.autoneg = true;
1582 hw->phy.autoneg_advertised = 0x2f;
1583
0cce119a
AD
1584 hw->fc.requested_mode = e1000_fc_default;
1585 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1586
9d5c8243
AK
1587 igb_validate_mdi_setting(hw);
1588
9d5c8243
AK
1589 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1590 * enable the ACPI Magic Packet filter
1591 */
1592
a2cf8b6c 1593 if (hw->bus.func == 0)
312c75ae 1594 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1595 else if (hw->mac.type == e1000_82580)
1596 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1597 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1598 &eeprom_data);
a2cf8b6c
AD
1599 else if (hw->bus.func == 1)
1600 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1601
1602 if (eeprom_data & eeprom_apme_mask)
1603 adapter->eeprom_wol |= E1000_WUFC_MAG;
1604
1605 /* now that we have the eeprom settings, apply the special cases where
1606 * the eeprom may be wrong or the board simply won't support wake on
1607 * lan on a particular port */
1608 switch (pdev->device) {
1609 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1610 adapter->eeprom_wol = 0;
1611 break;
1612 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1613 case E1000_DEV_ID_82576_FIBER:
1614 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1615 /* Wake events only supported on port A for dual fiber
1616 * regardless of eeprom setting */
1617 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1618 adapter->eeprom_wol = 0;
1619 break;
c8ea5ea9
AD
1620 case E1000_DEV_ID_82576_QUAD_COPPER:
1621 /* if quad port adapter, disable WoL on all but port A */
1622 if (global_quad_port_a != 0)
1623 adapter->eeprom_wol = 0;
1624 else
1625 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1626 /* Reset for multiple quad port adapters */
1627 if (++global_quad_port_a == 4)
1628 global_quad_port_a = 0;
1629 break;
9d5c8243
AK
1630 }
1631
1632 /* initialize the wol settings based on the eeprom settings */
1633 adapter->wol = adapter->eeprom_wol;
e1b86d84 1634 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1635
1636 /* reset the hardware with the new settings */
1637 igb_reset(adapter);
1638
1639 /* let the f/w know that the h/w is now under the control of the
1640 * driver. */
1641 igb_get_hw_control(adapter);
1642
9d5c8243
AK
1643 strcpy(netdev->name, "eth%d");
1644 err = register_netdev(netdev);
1645 if (err)
1646 goto err_register;
1647
b168dfc5
JB
1648 /* carrier off reporting is important to ethtool even BEFORE open */
1649 netif_carrier_off(netdev);
1650
421e02f0 1651#ifdef CONFIG_IGB_DCA
bbd98fe4 1652 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1653 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1654 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1655 igb_setup_dca(adapter);
1656 }
fe4506b6 1657
38c845c7 1658#endif
9d5c8243
AK
1659 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1660 /* print bus type/speed/width info */
7c510e4b 1661 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1662 netdev->name,
559e9c49
AD
1663 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1664 "unknown"),
59c3de89
AD
1665 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1666 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1667 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1668 "unknown"),
7c510e4b 1669 netdev->dev_addr);
9d5c8243
AK
1670
1671 igb_read_part_num(hw, &part_num);
1672 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1673 (part_num >> 8), (part_num & 0xff));
1674
1675 dev_info(&pdev->dev,
1676 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1677 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1678 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1679 adapter->num_rx_queues, adapter->num_tx_queues);
1680
9d5c8243
AK
1681 return 0;
1682
1683err_register:
1684 igb_release_hw_control(adapter);
1685err_eeprom:
1686 if (!igb_check_reset_block(hw))
f5f4cf08 1687 igb_reset_phy(hw);
9d5c8243
AK
1688
1689 if (hw->flash_address)
1690 iounmap(hw->flash_address);
9d5c8243 1691err_sw_init:
047e0030 1692 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
1693 iounmap(hw->hw_addr);
1694err_ioremap:
1695 free_netdev(netdev);
1696err_alloc_etherdev:
559e9c49
AD
1697 pci_release_selected_regions(pdev,
1698 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
1699err_pci_reg:
1700err_dma:
1701 pci_disable_device(pdev);
1702 return err;
1703}
1704
1705/**
1706 * igb_remove - Device Removal Routine
1707 * @pdev: PCI device information struct
1708 *
1709 * igb_remove is called by the PCI subsystem to alert the driver
1710 * that it should release a PCI device. The could be caused by a
1711 * Hot-Plug event, or because the driver is going to be removed from
1712 * memory.
1713 **/
1714static void __devexit igb_remove(struct pci_dev *pdev)
1715{
1716 struct net_device *netdev = pci_get_drvdata(pdev);
1717 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1718 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1719
1720 /* flush_scheduled work may reschedule our watchdog task, so
1721 * explicitly disable watchdog tasks from being rescheduled */
1722 set_bit(__IGB_DOWN, &adapter->state);
1723 del_timer_sync(&adapter->watchdog_timer);
1724 del_timer_sync(&adapter->phy_info_timer);
1725
1726 flush_scheduled_work();
1727
421e02f0 1728#ifdef CONFIG_IGB_DCA
7dfc16fa 1729 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1730 dev_info(&pdev->dev, "DCA disabled\n");
1731 dca_remove_requester(&pdev->dev);
7dfc16fa 1732 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1733 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1734 }
1735#endif
1736
9d5c8243
AK
1737 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1738 * would have already happened in close and is redundant. */
1739 igb_release_hw_control(adapter);
1740
1741 unregister_netdev(netdev);
1742
047e0030 1743 igb_clear_interrupt_scheme(adapter);
9d5c8243 1744
37680117
AD
1745#ifdef CONFIG_PCI_IOV
1746 /* reclaim resources allocated to VFs */
1747 if (adapter->vf_data) {
1748 /* disable iov and allow time for transactions to clear */
1749 pci_disable_sriov(pdev);
1750 msleep(500);
1751
1752 kfree(adapter->vf_data);
1753 adapter->vf_data = NULL;
1754 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1755 msleep(100);
1756 dev_info(&pdev->dev, "IOV Disabled\n");
1757 }
1758#endif
559e9c49 1759
28b0759c
AD
1760 iounmap(hw->hw_addr);
1761 if (hw->flash_address)
1762 iounmap(hw->flash_address);
559e9c49
AD
1763 pci_release_selected_regions(pdev,
1764 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
1765
1766 free_netdev(netdev);
1767
19d5afd4 1768 pci_disable_pcie_error_reporting(pdev);
40a914fa 1769
9d5c8243
AK
1770 pci_disable_device(pdev);
1771}
1772
a6b623e0
AD
1773/**
1774 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1775 * @adapter: board private structure to initialize
1776 *
1777 * This function initializes the vf specific data storage and then attempts to
1778 * allocate the VFs. The reason for ordering it this way is because it is much
1779 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1780 * the memory for the VFs.
1781 **/
1782static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1783{
1784#ifdef CONFIG_PCI_IOV
1785 struct pci_dev *pdev = adapter->pdev;
1786
1787 if (adapter->vfs_allocated_count > 7)
1788 adapter->vfs_allocated_count = 7;
1789
1790 if (adapter->vfs_allocated_count) {
1791 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1792 sizeof(struct vf_data_storage),
1793 GFP_KERNEL);
1794 /* if allocation failed then we do not support SR-IOV */
1795 if (!adapter->vf_data) {
1796 adapter->vfs_allocated_count = 0;
1797 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1798 "Data Storage\n");
1799 }
1800 }
1801
1802 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1803 kfree(adapter->vf_data);
1804 adapter->vf_data = NULL;
1805#endif /* CONFIG_PCI_IOV */
1806 adapter->vfs_allocated_count = 0;
1807#ifdef CONFIG_PCI_IOV
1808 } else {
1809 unsigned char mac_addr[ETH_ALEN];
1810 int i;
1811 dev_info(&pdev->dev, "%d vfs allocated\n",
1812 adapter->vfs_allocated_count);
1813 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1814 random_ether_addr(mac_addr);
1815 igb_set_vf_mac(adapter, i, mac_addr);
1816 }
1817 }
1818#endif /* CONFIG_PCI_IOV */
1819}
1820
115f459a
AD
1821
1822/**
1823 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1824 * @adapter: board private structure to initialize
1825 *
1826 * igb_init_hw_timer initializes the function pointer and values for the hw
1827 * timer found in hardware.
1828 **/
1829static void igb_init_hw_timer(struct igb_adapter *adapter)
1830{
1831 struct e1000_hw *hw = &adapter->hw;
1832
1833 switch (hw->mac.type) {
55cac248
AD
1834 case e1000_82580:
1835 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1836 adapter->cycles.read = igb_read_clock;
1837 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1838 adapter->cycles.mult = 1;
1839 /*
1840 * The 82580 timesync updates the system timer every 8ns by 8ns
1841 * and the value cannot be shifted. Instead we need to shift
1842 * the registers to generate a 64bit timer value. As a result
1843 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1844 * 24 in order to generate a larger value for synchronization.
1845 */
1846 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1847 /* disable system timer temporarily by setting bit 31 */
1848 wr32(E1000_TSAUXC, 0x80000000);
1849 wrfl();
1850
1851 /* Set registers so that rollover occurs soon to test this. */
1852 wr32(E1000_SYSTIMR, 0x00000000);
1853 wr32(E1000_SYSTIML, 0x80000000);
1854 wr32(E1000_SYSTIMH, 0x000000FF);
1855 wrfl();
1856
1857 /* enable system timer by clearing bit 31 */
1858 wr32(E1000_TSAUXC, 0x0);
1859 wrfl();
1860
1861 timecounter_init(&adapter->clock,
1862 &adapter->cycles,
1863 ktime_to_ns(ktime_get_real()));
1864 /*
1865 * Synchronize our NIC clock against system wall clock. NIC
1866 * time stamp reading requires ~3us per sample, each sample
1867 * was pretty stable even under load => only require 10
1868 * samples for each offset comparison.
1869 */
1870 memset(&adapter->compare, 0, sizeof(adapter->compare));
1871 adapter->compare.source = &adapter->clock;
1872 adapter->compare.target = ktime_get_real;
1873 adapter->compare.num_samples = 10;
1874 timecompare_update(&adapter->compare, 0);
1875 break;
115f459a
AD
1876 case e1000_82576:
1877 /*
1878 * Initialize hardware timer: we keep it running just in case
1879 * that some program needs it later on.
1880 */
1881 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1882 adapter->cycles.read = igb_read_clock;
1883 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1884 adapter->cycles.mult = 1;
1885 /**
1886 * Scale the NIC clock cycle by a large factor so that
1887 * relatively small clock corrections can be added or
1888 * substracted at each clock tick. The drawbacks of a large
1889 * factor are a) that the clock register overflows more quickly
1890 * (not such a big deal) and b) that the increment per tick has
1891 * to fit into 24 bits. As a result we need to use a shift of
1892 * 19 so we can fit a value of 16 into the TIMINCA register.
1893 */
1894 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1895 wr32(E1000_TIMINCA,
1896 (1 << E1000_TIMINCA_16NS_SHIFT) |
1897 (16 << IGB_82576_TSYNC_SHIFT));
1898
1899 /* Set registers so that rollover occurs soon to test this. */
1900 wr32(E1000_SYSTIML, 0x00000000);
1901 wr32(E1000_SYSTIMH, 0xFF800000);
1902 wrfl();
1903
1904 timecounter_init(&adapter->clock,
1905 &adapter->cycles,
1906 ktime_to_ns(ktime_get_real()));
1907 /*
1908 * Synchronize our NIC clock against system wall clock. NIC
1909 * time stamp reading requires ~3us per sample, each sample
1910 * was pretty stable even under load => only require 10
1911 * samples for each offset comparison.
1912 */
1913 memset(&adapter->compare, 0, sizeof(adapter->compare));
1914 adapter->compare.source = &adapter->clock;
1915 adapter->compare.target = ktime_get_real;
1916 adapter->compare.num_samples = 10;
1917 timecompare_update(&adapter->compare, 0);
1918 break;
1919 case e1000_82575:
1920 /* 82575 does not support timesync */
1921 default:
1922 break;
1923 }
1924
1925}
1926
9d5c8243
AK
1927/**
1928 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1929 * @adapter: board private structure to initialize
1930 *
1931 * igb_sw_init initializes the Adapter private data structure.
1932 * Fields are initialized based on PCI device information and
1933 * OS network device settings (MTU size).
1934 **/
1935static int __devinit igb_sw_init(struct igb_adapter *adapter)
1936{
1937 struct e1000_hw *hw = &adapter->hw;
1938 struct net_device *netdev = adapter->netdev;
1939 struct pci_dev *pdev = adapter->pdev;
1940
1941 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1942
68fd9910
AD
1943 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1944 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
1945 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1946 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1947
9d5c8243
AK
1948 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1949 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1950
a6b623e0
AD
1951#ifdef CONFIG_PCI_IOV
1952 if (hw->mac.type == e1000_82576)
1953 adapter->vfs_allocated_count = max_vfs;
1954
1955#endif /* CONFIG_PCI_IOV */
a99955fc
AD
1956 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1957
1958 /*
1959 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1960 * then we should combine the queues into a queue pair in order to
1961 * conserve interrupts due to limited supply
1962 */
1963 if ((adapter->rss_queues > 4) ||
1964 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1965 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1966
a6b623e0 1967 /* This call may decrease the number of queues */
047e0030 1968 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
1969 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1970 return -ENOMEM;
1971 }
1972
115f459a 1973 igb_init_hw_timer(adapter);
a6b623e0
AD
1974 igb_probe_vfs(adapter);
1975
9d5c8243
AK
1976 /* Explicitly disable IRQ since the NIC can be in any state. */
1977 igb_irq_disable(adapter);
1978
1979 set_bit(__IGB_DOWN, &adapter->state);
1980 return 0;
1981}
1982
1983/**
1984 * igb_open - Called when a network interface is made active
1985 * @netdev: network interface device structure
1986 *
1987 * Returns 0 on success, negative value on failure
1988 *
1989 * The open entry point is called when a network interface is made
1990 * active by the system (IFF_UP). At this point all resources needed
1991 * for transmit and receive operations are allocated, the interrupt
1992 * handler is registered with the OS, the watchdog timer is started,
1993 * and the stack is notified that the interface is ready.
1994 **/
1995static int igb_open(struct net_device *netdev)
1996{
1997 struct igb_adapter *adapter = netdev_priv(netdev);
1998 struct e1000_hw *hw = &adapter->hw;
1999 int err;
2000 int i;
2001
2002 /* disallow open during test */
2003 if (test_bit(__IGB_TESTING, &adapter->state))
2004 return -EBUSY;
2005
b168dfc5
JB
2006 netif_carrier_off(netdev);
2007
9d5c8243
AK
2008 /* allocate transmit descriptors */
2009 err = igb_setup_all_tx_resources(adapter);
2010 if (err)
2011 goto err_setup_tx;
2012
2013 /* allocate receive descriptors */
2014 err = igb_setup_all_rx_resources(adapter);
2015 if (err)
2016 goto err_setup_rx;
2017
88a268c1 2018 igb_power_up_link(adapter);
9d5c8243 2019
9d5c8243
AK
2020 /* before we allocate an interrupt, we must be ready to handle it.
2021 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2022 * as soon as we call pci_request_irq, so we have to setup our
2023 * clean_rx handler before we do so. */
2024 igb_configure(adapter);
2025
2026 err = igb_request_irq(adapter);
2027 if (err)
2028 goto err_req_irq;
2029
2030 /* From here on the code is the same as igb_up() */
2031 clear_bit(__IGB_DOWN, &adapter->state);
2032
047e0030
AD
2033 for (i = 0; i < adapter->num_q_vectors; i++) {
2034 struct igb_q_vector *q_vector = adapter->q_vector[i];
2035 napi_enable(&q_vector->napi);
2036 }
9d5c8243
AK
2037
2038 /* Clear any pending interrupts. */
2039 rd32(E1000_ICR);
844290e5
PW
2040
2041 igb_irq_enable(adapter);
2042
d4960307
AD
2043 /* notify VFs that reset has been completed */
2044 if (adapter->vfs_allocated_count) {
2045 u32 reg_data = rd32(E1000_CTRL_EXT);
2046 reg_data |= E1000_CTRL_EXT_PFRSTD;
2047 wr32(E1000_CTRL_EXT, reg_data);
2048 }
2049
d55b53ff
JK
2050 netif_tx_start_all_queues(netdev);
2051
25568a53
AD
2052 /* start the watchdog. */
2053 hw->mac.get_link_status = 1;
2054 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2055
2056 return 0;
2057
2058err_req_irq:
2059 igb_release_hw_control(adapter);
88a268c1 2060 igb_power_down_link(adapter);
9d5c8243
AK
2061 igb_free_all_rx_resources(adapter);
2062err_setup_rx:
2063 igb_free_all_tx_resources(adapter);
2064err_setup_tx:
2065 igb_reset(adapter);
2066
2067 return err;
2068}
2069
2070/**
2071 * igb_close - Disables a network interface
2072 * @netdev: network interface device structure
2073 *
2074 * Returns 0, this is not allowed to fail
2075 *
2076 * The close entry point is called when an interface is de-activated
2077 * by the OS. The hardware is still under the driver's control, but
2078 * needs to be disabled. A global MAC reset is issued to stop the
2079 * hardware, and all transmit and receive resources are freed.
2080 **/
2081static int igb_close(struct net_device *netdev)
2082{
2083 struct igb_adapter *adapter = netdev_priv(netdev);
2084
2085 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2086 igb_down(adapter);
2087
2088 igb_free_irq(adapter);
2089
2090 igb_free_all_tx_resources(adapter);
2091 igb_free_all_rx_resources(adapter);
2092
9d5c8243
AK
2093 return 0;
2094}
2095
2096/**
2097 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2098 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2099 *
2100 * Return 0 on success, negative on failure
2101 **/
80785298 2102int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2103{
80785298 2104 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
2105 int size;
2106
2107 size = sizeof(struct igb_buffer) * tx_ring->count;
2108 tx_ring->buffer_info = vmalloc(size);
2109 if (!tx_ring->buffer_info)
2110 goto err;
2111 memset(tx_ring->buffer_info, 0, size);
2112
2113 /* round up to nearest 4K */
85e8d004 2114 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2115 tx_ring->size = ALIGN(tx_ring->size, 4096);
2116
439705e1
AD
2117 tx_ring->desc = pci_alloc_consistent(pdev,
2118 tx_ring->size,
9d5c8243
AK
2119 &tx_ring->dma);
2120
2121 if (!tx_ring->desc)
2122 goto err;
2123
9d5c8243
AK
2124 tx_ring->next_to_use = 0;
2125 tx_ring->next_to_clean = 0;
9d5c8243
AK
2126 return 0;
2127
2128err:
2129 vfree(tx_ring->buffer_info);
047e0030 2130 dev_err(&pdev->dev,
9d5c8243
AK
2131 "Unable to allocate memory for the transmit descriptor ring\n");
2132 return -ENOMEM;
2133}
2134
2135/**
2136 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2137 * (Descriptors) for all queues
2138 * @adapter: board private structure
2139 *
2140 * Return 0 on success, negative on failure
2141 **/
2142static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2143{
439705e1 2144 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2145 int i, err = 0;
2146
2147 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2148 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2149 if (err) {
439705e1 2150 dev_err(&pdev->dev,
9d5c8243
AK
2151 "Allocation for Tx Queue %u failed\n", i);
2152 for (i--; i >= 0; i--)
3025a446 2153 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2154 break;
2155 }
2156 }
2157
a99955fc 2158 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2159 int r_idx = i % adapter->num_tx_queues;
3025a446 2160 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2161 }
9d5c8243
AK
2162 return err;
2163}
2164
2165/**
85b430b4
AD
2166 * igb_setup_tctl - configure the transmit control registers
2167 * @adapter: Board private structure
9d5c8243 2168 **/
d7ee5b3a 2169void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2170{
9d5c8243
AK
2171 struct e1000_hw *hw = &adapter->hw;
2172 u32 tctl;
9d5c8243 2173
85b430b4
AD
2174 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2175 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2176
2177 /* Program the Transmit Control Register */
9d5c8243
AK
2178 tctl = rd32(E1000_TCTL);
2179 tctl &= ~E1000_TCTL_CT;
2180 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2181 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2182
2183 igb_config_collision_dist(hw);
2184
9d5c8243
AK
2185 /* Enable transmits */
2186 tctl |= E1000_TCTL_EN;
2187
2188 wr32(E1000_TCTL, tctl);
2189}
2190
85b430b4
AD
2191/**
2192 * igb_configure_tx_ring - Configure transmit ring after Reset
2193 * @adapter: board private structure
2194 * @ring: tx ring to configure
2195 *
2196 * Configure a transmit ring after a reset.
2197 **/
d7ee5b3a
AD
2198void igb_configure_tx_ring(struct igb_adapter *adapter,
2199 struct igb_ring *ring)
85b430b4
AD
2200{
2201 struct e1000_hw *hw = &adapter->hw;
2202 u32 txdctl;
2203 u64 tdba = ring->dma;
2204 int reg_idx = ring->reg_idx;
2205
2206 /* disable the queue */
2207 txdctl = rd32(E1000_TXDCTL(reg_idx));
2208 wr32(E1000_TXDCTL(reg_idx),
2209 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2210 wrfl();
2211 mdelay(10);
2212
2213 wr32(E1000_TDLEN(reg_idx),
2214 ring->count * sizeof(union e1000_adv_tx_desc));
2215 wr32(E1000_TDBAL(reg_idx),
2216 tdba & 0x00000000ffffffffULL);
2217 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2218
fce99e34
AD
2219 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2220 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2221 writel(0, ring->head);
2222 writel(0, ring->tail);
85b430b4
AD
2223
2224 txdctl |= IGB_TX_PTHRESH;
2225 txdctl |= IGB_TX_HTHRESH << 8;
2226 txdctl |= IGB_TX_WTHRESH << 16;
2227
2228 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2229 wr32(E1000_TXDCTL(reg_idx), txdctl);
2230}
2231
2232/**
2233 * igb_configure_tx - Configure transmit Unit after Reset
2234 * @adapter: board private structure
2235 *
2236 * Configure the Tx unit of the MAC after a reset.
2237 **/
2238static void igb_configure_tx(struct igb_adapter *adapter)
2239{
2240 int i;
2241
2242 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2243 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2244}
2245
9d5c8243
AK
2246/**
2247 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2248 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2249 *
2250 * Returns 0 on success, negative on failure
2251 **/
80785298 2252int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2253{
80785298 2254 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
2255 int size, desc_len;
2256
2257 size = sizeof(struct igb_buffer) * rx_ring->count;
2258 rx_ring->buffer_info = vmalloc(size);
2259 if (!rx_ring->buffer_info)
2260 goto err;
2261 memset(rx_ring->buffer_info, 0, size);
2262
2263 desc_len = sizeof(union e1000_adv_rx_desc);
2264
2265 /* Round up to nearest 4K */
2266 rx_ring->size = rx_ring->count * desc_len;
2267 rx_ring->size = ALIGN(rx_ring->size, 4096);
2268
2269 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2270 &rx_ring->dma);
2271
2272 if (!rx_ring->desc)
2273 goto err;
2274
2275 rx_ring->next_to_clean = 0;
2276 rx_ring->next_to_use = 0;
9d5c8243 2277
9d5c8243
AK
2278 return 0;
2279
2280err:
2281 vfree(rx_ring->buffer_info);
439705e1 2282 rx_ring->buffer_info = NULL;
80785298 2283 dev_err(&pdev->dev, "Unable to allocate memory for "
9d5c8243
AK
2284 "the receive descriptor ring\n");
2285 return -ENOMEM;
2286}
2287
2288/**
2289 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2290 * (Descriptors) for all queues
2291 * @adapter: board private structure
2292 *
2293 * Return 0 on success, negative on failure
2294 **/
2295static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2296{
439705e1 2297 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2298 int i, err = 0;
2299
2300 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2301 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2302 if (err) {
439705e1 2303 dev_err(&pdev->dev,
9d5c8243
AK
2304 "Allocation for Rx Queue %u failed\n", i);
2305 for (i--; i >= 0; i--)
3025a446 2306 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2307 break;
2308 }
2309 }
2310
2311 return err;
2312}
2313
06cf2666
AD
2314/**
2315 * igb_setup_mrqc - configure the multiple receive queue control registers
2316 * @adapter: Board private structure
2317 **/
2318static void igb_setup_mrqc(struct igb_adapter *adapter)
2319{
2320 struct e1000_hw *hw = &adapter->hw;
2321 u32 mrqc, rxcsum;
2322 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2323 union e1000_reta {
2324 u32 dword;
2325 u8 bytes[4];
2326 } reta;
2327 static const u8 rsshash[40] = {
2328 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2329 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2330 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2331 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2332
2333 /* Fill out hash function seeds */
2334 for (j = 0; j < 10; j++) {
2335 u32 rsskey = rsshash[(j * 4)];
2336 rsskey |= rsshash[(j * 4) + 1] << 8;
2337 rsskey |= rsshash[(j * 4) + 2] << 16;
2338 rsskey |= rsshash[(j * 4) + 3] << 24;
2339 array_wr32(E1000_RSSRK(0), j, rsskey);
2340 }
2341
a99955fc 2342 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2343
2344 if (adapter->vfs_allocated_count) {
2345 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2346 switch (hw->mac.type) {
55cac248
AD
2347 case e1000_82580:
2348 num_rx_queues = 1;
2349 shift = 0;
2350 break;
06cf2666
AD
2351 case e1000_82576:
2352 shift = 3;
2353 num_rx_queues = 2;
2354 break;
2355 case e1000_82575:
2356 shift = 2;
2357 shift2 = 6;
2358 default:
2359 break;
2360 }
2361 } else {
2362 if (hw->mac.type == e1000_82575)
2363 shift = 6;
2364 }
2365
2366 for (j = 0; j < (32 * 4); j++) {
2367 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2368 if (shift2)
2369 reta.bytes[j & 3] |= num_rx_queues << shift2;
2370 if ((j & 3) == 3)
2371 wr32(E1000_RETA(j >> 2), reta.dword);
2372 }
2373
2374 /*
2375 * Disable raw packet checksumming so that RSS hash is placed in
2376 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2377 * offloads as they are enabled by default
2378 */
2379 rxcsum = rd32(E1000_RXCSUM);
2380 rxcsum |= E1000_RXCSUM_PCSD;
2381
2382 if (adapter->hw.mac.type >= e1000_82576)
2383 /* Enable Receive Checksum Offload for SCTP */
2384 rxcsum |= E1000_RXCSUM_CRCOFL;
2385
2386 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2387 wr32(E1000_RXCSUM, rxcsum);
2388
2389 /* If VMDq is enabled then we set the appropriate mode for that, else
2390 * we default to RSS so that an RSS hash is calculated per packet even
2391 * if we are only using one queue */
2392 if (adapter->vfs_allocated_count) {
2393 if (hw->mac.type > e1000_82575) {
2394 /* Set the default pool for the PF's first queue */
2395 u32 vtctl = rd32(E1000_VT_CTL);
2396 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2397 E1000_VT_CTL_DISABLE_DEF_POOL);
2398 vtctl |= adapter->vfs_allocated_count <<
2399 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2400 wr32(E1000_VT_CTL, vtctl);
2401 }
a99955fc 2402 if (adapter->rss_queues > 1)
06cf2666
AD
2403 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2404 else
2405 mrqc = E1000_MRQC_ENABLE_VMDQ;
2406 } else {
2407 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2408 }
2409 igb_vmm_control(adapter);
2410
2411 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2412 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2413 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2414 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2415 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2416 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2417 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2418 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2419
2420 wr32(E1000_MRQC, mrqc);
2421}
2422
9d5c8243
AK
2423/**
2424 * igb_setup_rctl - configure the receive control registers
2425 * @adapter: Board private structure
2426 **/
d7ee5b3a 2427void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2428{
2429 struct e1000_hw *hw = &adapter->hw;
2430 u32 rctl;
9d5c8243
AK
2431
2432 rctl = rd32(E1000_RCTL);
2433
2434 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2435 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2436
69d728ba 2437 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2438 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2439
87cb7e8c
AK
2440 /*
2441 * enable stripping of CRC. It's unlikely this will break BMC
2442 * redirection as it did with e1000. Newer features require
2443 * that the HW strips the CRC.
73cd78f1 2444 */
87cb7e8c 2445 rctl |= E1000_RCTL_SECRC;
9d5c8243 2446
559e9c49 2447 /* disable store bad packets and clear size bits. */
ec54d7d6 2448 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2449
6ec43fe6
AD
2450 /* enable LPE to prevent packets larger than max_frame_size */
2451 rctl |= E1000_RCTL_LPE;
9d5c8243 2452
952f72a8
AD
2453 /* disable queue 0 to prevent tail write w/o re-config */
2454 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2455
e1739522
AD
2456 /* Attention!!! For SR-IOV PF driver operations you must enable
2457 * queue drop for all VF and PF queues to prevent head of line blocking
2458 * if an un-trusted VF does not provide descriptors to hardware.
2459 */
2460 if (adapter->vfs_allocated_count) {
e1739522
AD
2461 /* set all queue drop enable bits */
2462 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2463 }
2464
9d5c8243
AK
2465 wr32(E1000_RCTL, rctl);
2466}
2467
7d5753f0
AD
2468static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2469 int vfn)
2470{
2471 struct e1000_hw *hw = &adapter->hw;
2472 u32 vmolr;
2473
2474 /* if it isn't the PF check to see if VFs are enabled and
2475 * increase the size to support vlan tags */
2476 if (vfn < adapter->vfs_allocated_count &&
2477 adapter->vf_data[vfn].vlans_enabled)
2478 size += VLAN_TAG_SIZE;
2479
2480 vmolr = rd32(E1000_VMOLR(vfn));
2481 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2482 vmolr |= size | E1000_VMOLR_LPE;
2483 wr32(E1000_VMOLR(vfn), vmolr);
2484
2485 return 0;
2486}
2487
e1739522
AD
2488/**
2489 * igb_rlpml_set - set maximum receive packet size
2490 * @adapter: board private structure
2491 *
2492 * Configure maximum receivable packet size.
2493 **/
2494static void igb_rlpml_set(struct igb_adapter *adapter)
2495{
2496 u32 max_frame_size = adapter->max_frame_size;
2497 struct e1000_hw *hw = &adapter->hw;
2498 u16 pf_id = adapter->vfs_allocated_count;
2499
2500 if (adapter->vlgrp)
2501 max_frame_size += VLAN_TAG_SIZE;
2502
2503 /* if vfs are enabled we set RLPML to the largest possible request
2504 * size and set the VMOLR RLPML to the size we need */
2505 if (pf_id) {
2506 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2507 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2508 }
2509
2510 wr32(E1000_RLPML, max_frame_size);
2511}
2512
8151d294
WM
2513static inline void igb_set_vmolr(struct igb_adapter *adapter,
2514 int vfn, bool aupe)
7d5753f0
AD
2515{
2516 struct e1000_hw *hw = &adapter->hw;
2517 u32 vmolr;
2518
2519 /*
2520 * This register exists only on 82576 and newer so if we are older then
2521 * we should exit and do nothing
2522 */
2523 if (hw->mac.type < e1000_82576)
2524 return;
2525
2526 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2527 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2528 if (aupe)
2529 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2530 else
2531 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2532
2533 /* clear all bits that might not be set */
2534 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2535
a99955fc 2536 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2537 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2538 /*
2539 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2540 * multicast packets
2541 */
2542 if (vfn <= adapter->vfs_allocated_count)
2543 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2544
2545 wr32(E1000_VMOLR(vfn), vmolr);
2546}
2547
85b430b4
AD
2548/**
2549 * igb_configure_rx_ring - Configure a receive ring after Reset
2550 * @adapter: board private structure
2551 * @ring: receive ring to be configured
2552 *
2553 * Configure the Rx unit of the MAC after a reset.
2554 **/
d7ee5b3a
AD
2555void igb_configure_rx_ring(struct igb_adapter *adapter,
2556 struct igb_ring *ring)
85b430b4
AD
2557{
2558 struct e1000_hw *hw = &adapter->hw;
2559 u64 rdba = ring->dma;
2560 int reg_idx = ring->reg_idx;
952f72a8 2561 u32 srrctl, rxdctl;
85b430b4
AD
2562
2563 /* disable the queue */
2564 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2565 wr32(E1000_RXDCTL(reg_idx),
2566 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2567
2568 /* Set DMA base address registers */
2569 wr32(E1000_RDBAL(reg_idx),
2570 rdba & 0x00000000ffffffffULL);
2571 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2572 wr32(E1000_RDLEN(reg_idx),
2573 ring->count * sizeof(union e1000_adv_rx_desc));
2574
2575 /* initialize head and tail */
fce99e34
AD
2576 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2577 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2578 writel(0, ring->head);
2579 writel(0, ring->tail);
85b430b4 2580
952f72a8 2581 /* set descriptor configuration */
4c844851
AD
2582 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2583 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2584 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2585#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2586 srrctl |= IGB_RXBUFFER_16384 >>
2587 E1000_SRRCTL_BSIZEPKT_SHIFT;
2588#else
2589 srrctl |= (PAGE_SIZE / 2) >>
2590 E1000_SRRCTL_BSIZEPKT_SHIFT;
2591#endif
2592 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2593 } else {
4c844851 2594 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2595 E1000_SRRCTL_BSIZEPKT_SHIFT;
2596 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2597 }
e6bdb6fe
NN
2598 /* Only set Drop Enable if we are supporting multiple queues */
2599 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2600 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2601
2602 wr32(E1000_SRRCTL(reg_idx), srrctl);
2603
7d5753f0 2604 /* set filtering for VMDQ pools */
8151d294 2605 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2606
85b430b4
AD
2607 /* enable receive descriptor fetching */
2608 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2609 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2610 rxdctl &= 0xFFF00000;
2611 rxdctl |= IGB_RX_PTHRESH;
2612 rxdctl |= IGB_RX_HTHRESH << 8;
2613 rxdctl |= IGB_RX_WTHRESH << 16;
2614 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2615}
2616
9d5c8243
AK
2617/**
2618 * igb_configure_rx - Configure receive Unit after Reset
2619 * @adapter: board private structure
2620 *
2621 * Configure the Rx unit of the MAC after a reset.
2622 **/
2623static void igb_configure_rx(struct igb_adapter *adapter)
2624{
9107584e 2625 int i;
9d5c8243 2626
68d480c4
AD
2627 /* set UTA to appropriate mode */
2628 igb_set_uta(adapter);
2629
26ad9178
AD
2630 /* set the correct pool for the PF default MAC address in entry 0 */
2631 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2632 adapter->vfs_allocated_count);
2633
06cf2666
AD
2634 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2635 * the Base and Length of the Rx Descriptor Ring */
2636 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2637 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2638}
2639
2640/**
2641 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2642 * @tx_ring: Tx descriptor ring for a specific queue
2643 *
2644 * Free all transmit software resources
2645 **/
68fd9910 2646void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2647{
3b644cf6 2648 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2649
2650 vfree(tx_ring->buffer_info);
2651 tx_ring->buffer_info = NULL;
2652
439705e1
AD
2653 /* if not set, then don't free */
2654 if (!tx_ring->desc)
2655 return;
2656
80785298
AD
2657 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2658 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2659
2660 tx_ring->desc = NULL;
2661}
2662
2663/**
2664 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2665 * @adapter: board private structure
2666 *
2667 * Free all transmit software resources
2668 **/
2669static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2670{
2671 int i;
2672
2673 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2674 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2675}
2676
b1a436c3
AD
2677void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2678 struct igb_buffer *buffer_info)
9d5c8243 2679{
6366ad33
AD
2680 if (buffer_info->dma) {
2681 if (buffer_info->mapped_as_page)
2682 pci_unmap_page(tx_ring->pdev,
2683 buffer_info->dma,
2684 buffer_info->length,
2685 PCI_DMA_TODEVICE);
2686 else
2687 pci_unmap_single(tx_ring->pdev,
2688 buffer_info->dma,
2689 buffer_info->length,
2690 PCI_DMA_TODEVICE);
2691 buffer_info->dma = 0;
2692 }
9d5c8243
AK
2693 if (buffer_info->skb) {
2694 dev_kfree_skb_any(buffer_info->skb);
2695 buffer_info->skb = NULL;
2696 }
2697 buffer_info->time_stamp = 0;
6366ad33
AD
2698 buffer_info->length = 0;
2699 buffer_info->next_to_watch = 0;
2700 buffer_info->mapped_as_page = false;
9d5c8243
AK
2701}
2702
2703/**
2704 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2705 * @tx_ring: ring to be cleaned
2706 **/
3b644cf6 2707static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
2708{
2709 struct igb_buffer *buffer_info;
2710 unsigned long size;
2711 unsigned int i;
2712
2713 if (!tx_ring->buffer_info)
2714 return;
2715 /* Free all the Tx ring sk_buffs */
2716
2717 for (i = 0; i < tx_ring->count; i++) {
2718 buffer_info = &tx_ring->buffer_info[i];
80785298 2719 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
2720 }
2721
2722 size = sizeof(struct igb_buffer) * tx_ring->count;
2723 memset(tx_ring->buffer_info, 0, size);
2724
2725 /* Zero out the descriptor ring */
9d5c8243
AK
2726 memset(tx_ring->desc, 0, tx_ring->size);
2727
2728 tx_ring->next_to_use = 0;
2729 tx_ring->next_to_clean = 0;
9d5c8243
AK
2730}
2731
2732/**
2733 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2734 * @adapter: board private structure
2735 **/
2736static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2737{
2738 int i;
2739
2740 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2741 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
2742}
2743
2744/**
2745 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2746 * @rx_ring: ring to clean the resources from
2747 *
2748 * Free all receive software resources
2749 **/
68fd9910 2750void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2751{
3b644cf6 2752 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2753
2754 vfree(rx_ring->buffer_info);
2755 rx_ring->buffer_info = NULL;
2756
439705e1
AD
2757 /* if not set, then don't free */
2758 if (!rx_ring->desc)
2759 return;
2760
80785298
AD
2761 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2762 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
2763
2764 rx_ring->desc = NULL;
2765}
2766
2767/**
2768 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2769 * @adapter: board private structure
2770 *
2771 * Free all receive software resources
2772 **/
2773static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2774{
2775 int i;
2776
2777 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2778 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2779}
2780
2781/**
2782 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2783 * @rx_ring: ring to free buffers from
2784 **/
3b644cf6 2785static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
2786{
2787 struct igb_buffer *buffer_info;
9d5c8243
AK
2788 unsigned long size;
2789 unsigned int i;
2790
2791 if (!rx_ring->buffer_info)
2792 return;
439705e1 2793
9d5c8243
AK
2794 /* Free all the Rx ring sk_buffs */
2795 for (i = 0; i < rx_ring->count; i++) {
2796 buffer_info = &rx_ring->buffer_info[i];
2797 if (buffer_info->dma) {
80785298
AD
2798 pci_unmap_single(rx_ring->pdev,
2799 buffer_info->dma,
4c844851 2800 rx_ring->rx_buffer_len,
6ec43fe6 2801 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2802 buffer_info->dma = 0;
2803 }
2804
2805 if (buffer_info->skb) {
2806 dev_kfree_skb(buffer_info->skb);
2807 buffer_info->skb = NULL;
2808 }
6ec43fe6 2809 if (buffer_info->page_dma) {
80785298
AD
2810 pci_unmap_page(rx_ring->pdev,
2811 buffer_info->page_dma,
6ec43fe6
AD
2812 PAGE_SIZE / 2,
2813 PCI_DMA_FROMDEVICE);
2814 buffer_info->page_dma = 0;
2815 }
9d5c8243 2816 if (buffer_info->page) {
9d5c8243
AK
2817 put_page(buffer_info->page);
2818 buffer_info->page = NULL;
bf36c1a0 2819 buffer_info->page_offset = 0;
9d5c8243
AK
2820 }
2821 }
2822
9d5c8243
AK
2823 size = sizeof(struct igb_buffer) * rx_ring->count;
2824 memset(rx_ring->buffer_info, 0, size);
2825
2826 /* Zero out the descriptor ring */
2827 memset(rx_ring->desc, 0, rx_ring->size);
2828
2829 rx_ring->next_to_clean = 0;
2830 rx_ring->next_to_use = 0;
9d5c8243
AK
2831}
2832
2833/**
2834 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2835 * @adapter: board private structure
2836 **/
2837static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2838{
2839 int i;
2840
2841 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2842 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
2843}
2844
2845/**
2846 * igb_set_mac - Change the Ethernet Address of the NIC
2847 * @netdev: network interface device structure
2848 * @p: pointer to an address structure
2849 *
2850 * Returns 0 on success, negative on failure
2851 **/
2852static int igb_set_mac(struct net_device *netdev, void *p)
2853{
2854 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2855 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2856 struct sockaddr *addr = p;
2857
2858 if (!is_valid_ether_addr(addr->sa_data))
2859 return -EADDRNOTAVAIL;
2860
2861 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2862 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2863
26ad9178
AD
2864 /* set the correct pool for the new PF MAC address in entry 0 */
2865 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2866 adapter->vfs_allocated_count);
e1739522 2867
9d5c8243
AK
2868 return 0;
2869}
2870
2871/**
68d480c4 2872 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
2873 * @netdev: network interface device structure
2874 *
68d480c4
AD
2875 * Writes multicast address list to the MTA hash table.
2876 * Returns: -ENOMEM on failure
2877 * 0 on no addresses written
2878 * X on writing X addresses to MTA
9d5c8243 2879 **/
68d480c4 2880static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
2881{
2882 struct igb_adapter *adapter = netdev_priv(netdev);
2883 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 2884 struct dev_mc_list *mc_ptr = netdev->mc_list;
68d480c4
AD
2885 u8 *mta_list;
2886 u32 vmolr = 0;
9d5c8243
AK
2887 int i;
2888
4cd24eaf 2889 if (netdev_mc_empty(netdev)) {
68d480c4
AD
2890 /* nothing to program, so clear mc list */
2891 igb_update_mc_addr_list(hw, NULL, 0);
2892 igb_restore_vf_multicasts(adapter);
2893 return 0;
2894 }
9d5c8243 2895
4cd24eaf 2896 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
2897 if (!mta_list)
2898 return -ENOMEM;
ff41f8dc 2899
68d480c4
AD
2900 /* set vmolr receive overflow multicast bit */
2901 vmolr |= E1000_VMOLR_ROMPE;
2902
2903 /* The shared function expects a packed array of only addresses. */
2904 mc_ptr = netdev->mc_list;
2905
4cd24eaf 2906 for (i = 0; i < netdev_mc_count(netdev); i++) {
68d480c4
AD
2907 if (!mc_ptr)
2908 break;
2909 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2910 mc_ptr = mc_ptr->next;
746b9f02 2911 }
68d480c4
AD
2912 igb_update_mc_addr_list(hw, mta_list, i);
2913 kfree(mta_list);
2914
4cd24eaf 2915 return netdev_mc_count(netdev);
68d480c4
AD
2916}
2917
2918/**
2919 * igb_write_uc_addr_list - write unicast addresses to RAR table
2920 * @netdev: network interface device structure
2921 *
2922 * Writes unicast address list to the RAR table.
2923 * Returns: -ENOMEM on failure/insufficient address space
2924 * 0 on no addresses written
2925 * X on writing X addresses to the RAR table
2926 **/
2927static int igb_write_uc_addr_list(struct net_device *netdev)
2928{
2929 struct igb_adapter *adapter = netdev_priv(netdev);
2930 struct e1000_hw *hw = &adapter->hw;
2931 unsigned int vfn = adapter->vfs_allocated_count;
2932 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2933 int count = 0;
2934
2935 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 2936 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 2937 return -ENOMEM;
9d5c8243 2938
32e7bfc4 2939 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 2940 struct netdev_hw_addr *ha;
32e7bfc4
JP
2941
2942 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
2943 if (!rar_entries)
2944 break;
26ad9178
AD
2945 igb_rar_set_qsel(adapter, ha->addr,
2946 rar_entries--,
68d480c4
AD
2947 vfn);
2948 count++;
ff41f8dc
AD
2949 }
2950 }
2951 /* write the addresses in reverse order to avoid write combining */
2952 for (; rar_entries > 0 ; rar_entries--) {
2953 wr32(E1000_RAH(rar_entries), 0);
2954 wr32(E1000_RAL(rar_entries), 0);
2955 }
2956 wrfl();
2957
68d480c4
AD
2958 return count;
2959}
2960
2961/**
2962 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2963 * @netdev: network interface device structure
2964 *
2965 * The set_rx_mode entry point is called whenever the unicast or multicast
2966 * address lists or the network interface flags are updated. This routine is
2967 * responsible for configuring the hardware for proper unicast, multicast,
2968 * promiscuous mode, and all-multi behavior.
2969 **/
2970static void igb_set_rx_mode(struct net_device *netdev)
2971{
2972 struct igb_adapter *adapter = netdev_priv(netdev);
2973 struct e1000_hw *hw = &adapter->hw;
2974 unsigned int vfn = adapter->vfs_allocated_count;
2975 u32 rctl, vmolr = 0;
2976 int count;
2977
2978 /* Check for Promiscuous and All Multicast modes */
2979 rctl = rd32(E1000_RCTL);
2980
2981 /* clear the effected bits */
2982 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2983
2984 if (netdev->flags & IFF_PROMISC) {
2985 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2986 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2987 } else {
2988 if (netdev->flags & IFF_ALLMULTI) {
2989 rctl |= E1000_RCTL_MPE;
2990 vmolr |= E1000_VMOLR_MPME;
2991 } else {
2992 /*
2993 * Write addresses to the MTA, if the attempt fails
2994 * then we should just turn on promiscous mode so
2995 * that we can at least receive multicast traffic
2996 */
2997 count = igb_write_mc_addr_list(netdev);
2998 if (count < 0) {
2999 rctl |= E1000_RCTL_MPE;
3000 vmolr |= E1000_VMOLR_MPME;
3001 } else if (count) {
3002 vmolr |= E1000_VMOLR_ROMPE;
3003 }
3004 }
3005 /*
3006 * Write addresses to available RAR registers, if there is not
3007 * sufficient space to store all the addresses then enable
3008 * unicast promiscous mode
3009 */
3010 count = igb_write_uc_addr_list(netdev);
3011 if (count < 0) {
3012 rctl |= E1000_RCTL_UPE;
3013 vmolr |= E1000_VMOLR_ROPE;
3014 }
3015 rctl |= E1000_RCTL_VFE;
28fc06f5 3016 }
68d480c4 3017 wr32(E1000_RCTL, rctl);
28fc06f5 3018
68d480c4
AD
3019 /*
3020 * In order to support SR-IOV and eventually VMDq it is necessary to set
3021 * the VMOLR to enable the appropriate modes. Without this workaround
3022 * we will have issues with VLAN tag stripping not being done for frames
3023 * that are only arriving because we are the default pool
3024 */
3025 if (hw->mac.type < e1000_82576)
28fc06f5 3026 return;
9d5c8243 3027
68d480c4
AD
3028 vmolr |= rd32(E1000_VMOLR(vfn)) &
3029 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3030 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3031 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3032}
3033
3034/* Need to wait a few seconds after link up to get diagnostic information from
3035 * the phy */
3036static void igb_update_phy_info(unsigned long data)
3037{
3038 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3039 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3040}
3041
4d6b725e
AD
3042/**
3043 * igb_has_link - check shared code for link and determine up/down
3044 * @adapter: pointer to driver private info
3045 **/
3145535a 3046bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3047{
3048 struct e1000_hw *hw = &adapter->hw;
3049 bool link_active = false;
3050 s32 ret_val = 0;
3051
3052 /* get_link_status is set on LSC (link status) interrupt or
3053 * rx sequence error interrupt. get_link_status will stay
3054 * false until the e1000_check_for_link establishes link
3055 * for copper adapters ONLY
3056 */
3057 switch (hw->phy.media_type) {
3058 case e1000_media_type_copper:
3059 if (hw->mac.get_link_status) {
3060 ret_val = hw->mac.ops.check_for_link(hw);
3061 link_active = !hw->mac.get_link_status;
3062 } else {
3063 link_active = true;
3064 }
3065 break;
4d6b725e
AD
3066 case e1000_media_type_internal_serdes:
3067 ret_val = hw->mac.ops.check_for_link(hw);
3068 link_active = hw->mac.serdes_has_link;
3069 break;
3070 default:
3071 case e1000_media_type_unknown:
3072 break;
3073 }
3074
3075 return link_active;
3076}
3077
9d5c8243
AK
3078/**
3079 * igb_watchdog - Timer Call-back
3080 * @data: pointer to adapter cast into an unsigned long
3081 **/
3082static void igb_watchdog(unsigned long data)
3083{
3084 struct igb_adapter *adapter = (struct igb_adapter *)data;
3085 /* Do the rest outside of interrupt context */
3086 schedule_work(&adapter->watchdog_task);
3087}
3088
3089static void igb_watchdog_task(struct work_struct *work)
3090{
3091 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3092 struct igb_adapter,
3093 watchdog_task);
9d5c8243 3094 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3095 struct net_device *netdev = adapter->netdev;
9d5c8243 3096 u32 link;
7a6ea550 3097 int i;
9d5c8243 3098
4d6b725e 3099 link = igb_has_link(adapter);
9d5c8243
AK
3100 if (link) {
3101 if (!netif_carrier_ok(netdev)) {
3102 u32 ctrl;
330a6d6a
AD
3103 hw->mac.ops.get_speed_and_duplex(hw,
3104 &adapter->link_speed,
3105 &adapter->link_duplex);
9d5c8243
AK
3106
3107 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3108 /* Links status message must follow this format */
3109 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3110 "Flow Control: %s\n",
559e9c49
AD
3111 netdev->name,
3112 adapter->link_speed,
3113 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3114 "Full Duplex" : "Half Duplex",
559e9c49
AD
3115 ((ctrl & E1000_CTRL_TFCE) &&
3116 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3117 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3118 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243
AK
3119
3120 /* tweak tx_queue_len according to speed/duplex and
3121 * adjust the timeout factor */
3122 netdev->tx_queue_len = adapter->tx_queue_len;
3123 adapter->tx_timeout_factor = 1;
3124 switch (adapter->link_speed) {
3125 case SPEED_10:
3126 netdev->tx_queue_len = 10;
3127 adapter->tx_timeout_factor = 14;
3128 break;
3129 case SPEED_100:
3130 netdev->tx_queue_len = 100;
3131 /* maybe add some timeout factor ? */
3132 break;
3133 }
3134
3135 netif_carrier_on(netdev);
9d5c8243 3136
4ae196df
AD
3137 igb_ping_all_vfs(adapter);
3138
4b1a9877 3139 /* link state has changed, schedule phy info update */
9d5c8243
AK
3140 if (!test_bit(__IGB_DOWN, &adapter->state))
3141 mod_timer(&adapter->phy_info_timer,
3142 round_jiffies(jiffies + 2 * HZ));
3143 }
3144 } else {
3145 if (netif_carrier_ok(netdev)) {
3146 adapter->link_speed = 0;
3147 adapter->link_duplex = 0;
527d47c1
AD
3148 /* Links status message must follow this format */
3149 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3150 netdev->name);
9d5c8243 3151 netif_carrier_off(netdev);
4b1a9877 3152
4ae196df
AD
3153 igb_ping_all_vfs(adapter);
3154
4b1a9877 3155 /* link state has changed, schedule phy info update */
9d5c8243
AK
3156 if (!test_bit(__IGB_DOWN, &adapter->state))
3157 mod_timer(&adapter->phy_info_timer,
3158 round_jiffies(jiffies + 2 * HZ));
3159 }
3160 }
3161
9d5c8243 3162 igb_update_stats(adapter);
9d5c8243 3163
dbabb065 3164 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3165 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3166 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3167 /* We've lost link, so the controller stops DMA,
3168 * but we've got queued Tx work that's never going
3169 * to get done, so reset controller to flush Tx.
3170 * (Do the reset outside of interrupt context). */
dbabb065
AD
3171 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3172 adapter->tx_timeout_count++;
3173 schedule_work(&adapter->reset_task);
3174 /* return immediately since reset is imminent */
3175 return;
3176 }
9d5c8243 3177 }
9d5c8243 3178
dbabb065
AD
3179 /* Force detection of hung controller every watchdog period */
3180 tx_ring->detect_tx_hung = true;
3181 }
f7ba205e 3182
9d5c8243 3183 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3184 if (adapter->msix_entries) {
047e0030
AD
3185 u32 eics = 0;
3186 for (i = 0; i < adapter->num_q_vectors; i++) {
3187 struct igb_q_vector *q_vector = adapter->q_vector[i];
3188 eics |= q_vector->eims_value;
3189 }
7a6ea550
AD
3190 wr32(E1000_EICS, eics);
3191 } else {
3192 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3193 }
9d5c8243 3194
9d5c8243
AK
3195 /* Reset the timer */
3196 if (!test_bit(__IGB_DOWN, &adapter->state))
3197 mod_timer(&adapter->watchdog_timer,
3198 round_jiffies(jiffies + 2 * HZ));
3199}
3200
3201enum latency_range {
3202 lowest_latency = 0,
3203 low_latency = 1,
3204 bulk_latency = 2,
3205 latency_invalid = 255
3206};
3207
6eb5a7f1
AD
3208/**
3209 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3210 *
3211 * Stores a new ITR value based on strictly on packet size. This
3212 * algorithm is less sophisticated than that used in igb_update_itr,
3213 * due to the difficulty of synchronizing statistics across multiple
3214 * receive rings. The divisors and thresholds used by this fuction
3215 * were determined based on theoretical maximum wire speed and testing
3216 * data, in order to minimize response time while increasing bulk
3217 * throughput.
3218 * This functionality is controlled by the InterruptThrottleRate module
3219 * parameter (see igb_param.c)
3220 * NOTE: This function is called only when operating in a multiqueue
3221 * receive environment.
047e0030 3222 * @q_vector: pointer to q_vector
6eb5a7f1 3223 **/
047e0030 3224static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3225{
047e0030 3226 int new_val = q_vector->itr_val;
6eb5a7f1 3227 int avg_wire_size = 0;
047e0030 3228 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3229
6eb5a7f1
AD
3230 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3231 * ints/sec - ITR timer value of 120 ticks.
3232 */
3233 if (adapter->link_speed != SPEED_1000) {
047e0030 3234 new_val = 976;
6eb5a7f1 3235 goto set_itr_val;
9d5c8243 3236 }
047e0030
AD
3237
3238 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3239 struct igb_ring *ring = q_vector->rx_ring;
3240 avg_wire_size = ring->total_bytes / ring->total_packets;
3241 }
3242
3243 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3244 struct igb_ring *ring = q_vector->tx_ring;
3245 avg_wire_size = max_t(u32, avg_wire_size,
3246 (ring->total_bytes /
3247 ring->total_packets));
3248 }
3249
3250 /* if avg_wire_size isn't set no work was done */
3251 if (!avg_wire_size)
3252 goto clear_counts;
9d5c8243 3253
6eb5a7f1
AD
3254 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3255 avg_wire_size += 24;
3256
3257 /* Don't starve jumbo frames */
3258 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3259
6eb5a7f1
AD
3260 /* Give a little boost to mid-size frames */
3261 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3262 new_val = avg_wire_size / 3;
3263 else
3264 new_val = avg_wire_size / 2;
9d5c8243 3265
abe1c363
NN
3266 /* when in itr mode 3 do not exceed 20K ints/sec */
3267 if (adapter->rx_itr_setting == 3 && new_val < 196)
3268 new_val = 196;
3269
6eb5a7f1 3270set_itr_val:
047e0030
AD
3271 if (new_val != q_vector->itr_val) {
3272 q_vector->itr_val = new_val;
3273 q_vector->set_itr = 1;
9d5c8243 3274 }
6eb5a7f1 3275clear_counts:
047e0030
AD
3276 if (q_vector->rx_ring) {
3277 q_vector->rx_ring->total_bytes = 0;
3278 q_vector->rx_ring->total_packets = 0;
3279 }
3280 if (q_vector->tx_ring) {
3281 q_vector->tx_ring->total_bytes = 0;
3282 q_vector->tx_ring->total_packets = 0;
3283 }
9d5c8243
AK
3284}
3285
3286/**
3287 * igb_update_itr - update the dynamic ITR value based on statistics
3288 * Stores a new ITR value based on packets and byte
3289 * counts during the last interrupt. The advantage of per interrupt
3290 * computation is faster updates and more accurate ITR for the current
3291 * traffic pattern. Constants in this function were computed
3292 * based on theoretical maximum wire speed and thresholds were set based
3293 * on testing data as well as attempting to minimize response time
3294 * while increasing bulk throughput.
3295 * this functionality is controlled by the InterruptThrottleRate module
3296 * parameter (see igb_param.c)
3297 * NOTE: These calculations are only valid when operating in a single-
3298 * queue environment.
3299 * @adapter: pointer to adapter
047e0030 3300 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3301 * @packets: the number of packets during this measurement interval
3302 * @bytes: the number of bytes during this measurement interval
3303 **/
3304static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3305 int packets, int bytes)
3306{
3307 unsigned int retval = itr_setting;
3308
3309 if (packets == 0)
3310 goto update_itr_done;
3311
3312 switch (itr_setting) {
3313 case lowest_latency:
3314 /* handle TSO and jumbo frames */
3315 if (bytes/packets > 8000)
3316 retval = bulk_latency;
3317 else if ((packets < 5) && (bytes > 512))
3318 retval = low_latency;
3319 break;
3320 case low_latency: /* 50 usec aka 20000 ints/s */
3321 if (bytes > 10000) {
3322 /* this if handles the TSO accounting */
3323 if (bytes/packets > 8000) {
3324 retval = bulk_latency;
3325 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3326 retval = bulk_latency;
3327 } else if ((packets > 35)) {
3328 retval = lowest_latency;
3329 }
3330 } else if (bytes/packets > 2000) {
3331 retval = bulk_latency;
3332 } else if (packets <= 2 && bytes < 512) {
3333 retval = lowest_latency;
3334 }
3335 break;
3336 case bulk_latency: /* 250 usec aka 4000 ints/s */
3337 if (bytes > 25000) {
3338 if (packets > 35)
3339 retval = low_latency;
1e5c3d21 3340 } else if (bytes < 1500) {
9d5c8243
AK
3341 retval = low_latency;
3342 }
3343 break;
3344 }
3345
3346update_itr_done:
3347 return retval;
3348}
3349
6eb5a7f1 3350static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3351{
047e0030 3352 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3353 u16 current_itr;
047e0030 3354 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3355
3356 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3357 if (adapter->link_speed != SPEED_1000) {
3358 current_itr = 0;
3359 new_itr = 4000;
3360 goto set_itr_now;
3361 }
3362
3363 adapter->rx_itr = igb_update_itr(adapter,
3364 adapter->rx_itr,
3025a446
AD
3365 q_vector->rx_ring->total_packets,
3366 q_vector->rx_ring->total_bytes);
9d5c8243 3367
047e0030
AD
3368 adapter->tx_itr = igb_update_itr(adapter,
3369 adapter->tx_itr,
3025a446
AD
3370 q_vector->tx_ring->total_packets,
3371 q_vector->tx_ring->total_bytes);
047e0030 3372 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3373
6eb5a7f1 3374 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3375 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3376 current_itr = low_latency;
3377
9d5c8243
AK
3378 switch (current_itr) {
3379 /* counts and packets in update_itr are dependent on these numbers */
3380 case lowest_latency:
78b1f607 3381 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3382 break;
3383 case low_latency:
78b1f607 3384 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3385 break;
3386 case bulk_latency:
78b1f607 3387 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3388 break;
3389 default:
3390 break;
3391 }
3392
3393set_itr_now:
3025a446
AD
3394 q_vector->rx_ring->total_bytes = 0;
3395 q_vector->rx_ring->total_packets = 0;
3396 q_vector->tx_ring->total_bytes = 0;
3397 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3398
047e0030 3399 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3400 /* this attempts to bias the interrupt rate towards Bulk
3401 * by adding intermediate steps when interrupt rate is
3402 * increasing */
047e0030
AD
3403 new_itr = new_itr > q_vector->itr_val ?
3404 max((new_itr * q_vector->itr_val) /
3405 (new_itr + (q_vector->itr_val >> 2)),
3406 new_itr) :
9d5c8243
AK
3407 new_itr;
3408 /* Don't write the value here; it resets the adapter's
3409 * internal timer, and causes us to delay far longer than
3410 * we should between interrupts. Instead, we write the ITR
3411 * value at the beginning of the next interrupt so the timing
3412 * ends up being correct.
3413 */
047e0030
AD
3414 q_vector->itr_val = new_itr;
3415 q_vector->set_itr = 1;
9d5c8243
AK
3416 }
3417
3418 return;
3419}
3420
9d5c8243
AK
3421#define IGB_TX_FLAGS_CSUM 0x00000001
3422#define IGB_TX_FLAGS_VLAN 0x00000002
3423#define IGB_TX_FLAGS_TSO 0x00000004
3424#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3425#define IGB_TX_FLAGS_TSTAMP 0x00000010
3426#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3427#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3428
85ad76b2 3429static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3430 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3431{
3432 struct e1000_adv_tx_context_desc *context_desc;
3433 unsigned int i;
3434 int err;
3435 struct igb_buffer *buffer_info;
3436 u32 info = 0, tu_cmd = 0;
3437 u32 mss_l4len_idx, l4len;
3438 *hdr_len = 0;
3439
3440 if (skb_header_cloned(skb)) {
3441 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3442 if (err)
3443 return err;
3444 }
3445
3446 l4len = tcp_hdrlen(skb);
3447 *hdr_len += l4len;
3448
3449 if (skb->protocol == htons(ETH_P_IP)) {
3450 struct iphdr *iph = ip_hdr(skb);
3451 iph->tot_len = 0;
3452 iph->check = 0;
3453 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3454 iph->daddr, 0,
3455 IPPROTO_TCP,
3456 0);
8e1e8a47 3457 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3458 ipv6_hdr(skb)->payload_len = 0;
3459 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3460 &ipv6_hdr(skb)->daddr,
3461 0, IPPROTO_TCP, 0);
3462 }
3463
3464 i = tx_ring->next_to_use;
3465
3466 buffer_info = &tx_ring->buffer_info[i];
3467 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3468 /* VLAN MACLEN IPLEN */
3469 if (tx_flags & IGB_TX_FLAGS_VLAN)
3470 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3471 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3472 *hdr_len += skb_network_offset(skb);
3473 info |= skb_network_header_len(skb);
3474 *hdr_len += skb_network_header_len(skb);
3475 context_desc->vlan_macip_lens = cpu_to_le32(info);
3476
3477 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3478 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3479
3480 if (skb->protocol == htons(ETH_P_IP))
3481 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3482 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3483
3484 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3485
3486 /* MSS L4LEN IDX */
3487 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3488 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3489
73cd78f1 3490 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3491 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3492 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3493
3494 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3495 context_desc->seqnum_seed = 0;
3496
3497 buffer_info->time_stamp = jiffies;
0e014cb1 3498 buffer_info->next_to_watch = i;
9d5c8243
AK
3499 buffer_info->dma = 0;
3500 i++;
3501 if (i == tx_ring->count)
3502 i = 0;
3503
3504 tx_ring->next_to_use = i;
3505
3506 return true;
3507}
3508
85ad76b2
AD
3509static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3510 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3511{
3512 struct e1000_adv_tx_context_desc *context_desc;
80785298 3513 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3514 struct igb_buffer *buffer_info;
3515 u32 info = 0, tu_cmd = 0;
80785298 3516 unsigned int i;
9d5c8243
AK
3517
3518 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3519 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3520 i = tx_ring->next_to_use;
3521 buffer_info = &tx_ring->buffer_info[i];
3522 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3523
3524 if (tx_flags & IGB_TX_FLAGS_VLAN)
3525 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3526
9d5c8243
AK
3527 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3528 if (skb->ip_summed == CHECKSUM_PARTIAL)
3529 info |= skb_network_header_len(skb);
3530
3531 context_desc->vlan_macip_lens = cpu_to_le32(info);
3532
3533 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3534
3535 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3536 __be16 protocol;
3537
3538 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3539 const struct vlan_ethhdr *vhdr =
3540 (const struct vlan_ethhdr*)skb->data;
3541
3542 protocol = vhdr->h_vlan_encapsulated_proto;
3543 } else {
3544 protocol = skb->protocol;
3545 }
3546
3547 switch (protocol) {
09640e63 3548 case cpu_to_be16(ETH_P_IP):
9d5c8243 3549 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3550 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3551 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3552 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3553 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3554 break;
09640e63 3555 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3556 /* XXX what about other V6 headers?? */
3557 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3558 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3559 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3560 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3561 break;
3562 default:
3563 if (unlikely(net_ratelimit()))
80785298 3564 dev_warn(&pdev->dev,
44b0cda3
MW
3565 "partial checksum but proto=%x!\n",
3566 skb->protocol);
3567 break;
3568 }
9d5c8243
AK
3569 }
3570
3571 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3572 context_desc->seqnum_seed = 0;
85ad76b2 3573 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3574 context_desc->mss_l4len_idx =
85ad76b2 3575 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3576
3577 buffer_info->time_stamp = jiffies;
0e014cb1 3578 buffer_info->next_to_watch = i;
9d5c8243
AK
3579 buffer_info->dma = 0;
3580
3581 i++;
3582 if (i == tx_ring->count)
3583 i = 0;
3584 tx_ring->next_to_use = i;
3585
3586 return true;
3587 }
9d5c8243
AK
3588 return false;
3589}
3590
3591#define IGB_MAX_TXD_PWR 16
3592#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3593
80785298 3594static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3595 unsigned int first)
9d5c8243
AK
3596{
3597 struct igb_buffer *buffer_info;
80785298 3598 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3599 unsigned int len = skb_headlen(skb);
3600 unsigned int count = 0, i;
3601 unsigned int f;
3602
3603 i = tx_ring->next_to_use;
3604
3605 buffer_info = &tx_ring->buffer_info[i];
3606 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3607 buffer_info->length = len;
3608 /* set time_stamp *before* dma to help avoid a possible race */
3609 buffer_info->time_stamp = jiffies;
0e014cb1 3610 buffer_info->next_to_watch = i;
6366ad33
AD
3611 buffer_info->dma = pci_map_single(pdev, skb->data, len,
3612 PCI_DMA_TODEVICE);
3613 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3614 goto dma_error;
9d5c8243
AK
3615
3616 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3617 struct skb_frag_struct *frag;
3618
8581145f 3619 count++;
65689fef
AD
3620 i++;
3621 if (i == tx_ring->count)
3622 i = 0;
3623
9d5c8243
AK
3624 frag = &skb_shinfo(skb)->frags[f];
3625 len = frag->size;
3626
3627 buffer_info = &tx_ring->buffer_info[i];
3628 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3629 buffer_info->length = len;
3630 buffer_info->time_stamp = jiffies;
0e014cb1 3631 buffer_info->next_to_watch = i;
6366ad33
AD
3632 buffer_info->mapped_as_page = true;
3633 buffer_info->dma = pci_map_page(pdev,
3634 frag->page,
3635 frag->page_offset,
3636 len,
3637 PCI_DMA_TODEVICE);
3638 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3639 goto dma_error;
3640
9d5c8243
AK
3641 }
3642
9d5c8243 3643 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3644 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3645
cdfd01fc 3646 return ++count;
6366ad33
AD
3647
3648dma_error:
3649 dev_err(&pdev->dev, "TX DMA map failed\n");
3650
3651 /* clear timestamp and dma mappings for failed buffer_info mapping */
3652 buffer_info->dma = 0;
3653 buffer_info->time_stamp = 0;
3654 buffer_info->length = 0;
3655 buffer_info->next_to_watch = 0;
3656 buffer_info->mapped_as_page = false;
3657 count--;
3658
3659 /* clear timestamp and dma mappings for remaining portion of packet */
3660 while (count >= 0) {
3661 count--;
3662 i--;
3663 if (i < 0)
3664 i += tx_ring->count;
3665 buffer_info = &tx_ring->buffer_info[i];
3666 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3667 }
3668
3669 return 0;
9d5c8243
AK
3670}
3671
85ad76b2 3672static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3673 int tx_flags, int count, u32 paylen,
3674 u8 hdr_len)
3675{
cdfd01fc 3676 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
3677 struct igb_buffer *buffer_info;
3678 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 3679 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
3680
3681 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3682 E1000_ADVTXD_DCMD_DEXT);
3683
3684 if (tx_flags & IGB_TX_FLAGS_VLAN)
3685 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3686
33af6bcc
PO
3687 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3688 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3689
9d5c8243
AK
3690 if (tx_flags & IGB_TX_FLAGS_TSO) {
3691 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3692
3693 /* insert tcp checksum */
3694 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3695
3696 /* insert ip checksum */
3697 if (tx_flags & IGB_TX_FLAGS_IPV4)
3698 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3699
3700 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3701 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3702 }
3703
85ad76b2
AD
3704 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3705 (tx_flags & (IGB_TX_FLAGS_CSUM |
3706 IGB_TX_FLAGS_TSO |
7dfc16fa 3707 IGB_TX_FLAGS_VLAN)))
85ad76b2 3708 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
3709
3710 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3711
cdfd01fc 3712 do {
9d5c8243
AK
3713 buffer_info = &tx_ring->buffer_info[i];
3714 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3715 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3716 tx_desc->read.cmd_type_len =
3717 cpu_to_le32(cmd_type_len | buffer_info->length);
3718 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 3719 count--;
9d5c8243
AK
3720 i++;
3721 if (i == tx_ring->count)
3722 i = 0;
cdfd01fc 3723 } while (count > 0);
9d5c8243 3724
85ad76b2 3725 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
3726 /* Force memory writes to complete before letting h/w
3727 * know there are new descriptors to fetch. (Only
3728 * applicable for weak-ordered memory model archs,
3729 * such as IA-64). */
3730 wmb();
3731
3732 tx_ring->next_to_use = i;
fce99e34 3733 writel(i, tx_ring->tail);
9d5c8243
AK
3734 /* we need this if more than one processor can write to our tail
3735 * at a time, it syncronizes IO on IA64/Altix systems */
3736 mmiowb();
3737}
3738
e694e964 3739static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3740{
e694e964
AD
3741 struct net_device *netdev = tx_ring->netdev;
3742
661086df 3743 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3744
9d5c8243
AK
3745 /* Herbert's original patch had:
3746 * smp_mb__after_netif_stop_queue();
3747 * but since that doesn't exist yet, just open code it. */
3748 smp_mb();
3749
3750 /* We need to check again in a case another CPU has just
3751 * made room available. */
c493ea45 3752 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
3753 return -EBUSY;
3754
3755 /* A reprieve! */
661086df 3756 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 3757 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
3758 return 0;
3759}
3760
e694e964 3761static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3762{
c493ea45 3763 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 3764 return 0;
e694e964 3765 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
3766}
3767
b1a436c3
AD
3768netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3769 struct igb_ring *tx_ring)
9d5c8243 3770{
e694e964 3771 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
0e014cb1 3772 unsigned int first;
9d5c8243 3773 unsigned int tx_flags = 0;
9d5c8243 3774 u8 hdr_len = 0;
cdfd01fc 3775 int tso = 0, count;
c5b9bd5e 3776 union skb_shared_tx *shtx = skb_tx(skb);
9d5c8243 3777
9d5c8243
AK
3778 /* need: 1 descriptor per page,
3779 * + 2 desc gap to keep tail from touching head,
3780 * + 1 desc for skb->data,
3781 * + 1 desc for context descriptor,
3782 * otherwise try next time */
e694e964 3783 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 3784 /* this is a hard error */
9d5c8243
AK
3785 return NETDEV_TX_BUSY;
3786 }
33af6bcc 3787
33af6bcc
PO
3788 if (unlikely(shtx->hardware)) {
3789 shtx->in_progress = 1;
3790 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3791 }
9d5c8243 3792
cdfd01fc 3793 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
9d5c8243
AK
3794 tx_flags |= IGB_TX_FLAGS_VLAN;
3795 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3796 }
3797
661086df
PWJ
3798 if (skb->protocol == htons(ETH_P_IP))
3799 tx_flags |= IGB_TX_FLAGS_IPV4;
3800
0e014cb1 3801 first = tx_ring->next_to_use;
85ad76b2
AD
3802 if (skb_is_gso(skb)) {
3803 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 3804
85ad76b2
AD
3805 if (tso < 0) {
3806 dev_kfree_skb_any(skb);
3807 return NETDEV_TX_OK;
3808 }
9d5c8243
AK
3809 }
3810
3811 if (tso)
3812 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 3813 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
3814 (skb->ip_summed == CHECKSUM_PARTIAL))
3815 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3816
65689fef 3817 /*
cdfd01fc 3818 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
3819 * has occured and we need to rewind the descriptor queue
3820 */
80785298 3821 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 3822 if (!count) {
65689fef
AD
3823 dev_kfree_skb_any(skb);
3824 tx_ring->buffer_info[first].time_stamp = 0;
3825 tx_ring->next_to_use = first;
85ad76b2 3826 return NETDEV_TX_OK;
65689fef 3827 }
9d5c8243 3828
85ad76b2
AD
3829 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3830
3831 /* Make sure there is space in the ring for the next send. */
e694e964 3832 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 3833
9d5c8243
AK
3834 return NETDEV_TX_OK;
3835}
3836
3b29a56d
SH
3837static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3838 struct net_device *netdev)
9d5c8243
AK
3839{
3840 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 3841 struct igb_ring *tx_ring;
661086df 3842 int r_idx = 0;
b1a436c3
AD
3843
3844 if (test_bit(__IGB_DOWN, &adapter->state)) {
3845 dev_kfree_skb_any(skb);
3846 return NETDEV_TX_OK;
3847 }
3848
3849 if (skb->len <= 0) {
3850 dev_kfree_skb_any(skb);
3851 return NETDEV_TX_OK;
3852 }
3853
1bfaf07b 3854 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3855 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3856
3857 /* This goes back to the question of how to logically map a tx queue
3858 * to a flow. Right now, performance is impacted slightly negatively
3859 * if using multiple tx queues. If the stack breaks away from a
3860 * single qdisc implementation, we can look at this again. */
e694e964 3861 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
3862}
3863
3864/**
3865 * igb_tx_timeout - Respond to a Tx Hang
3866 * @netdev: network interface device structure
3867 **/
3868static void igb_tx_timeout(struct net_device *netdev)
3869{
3870 struct igb_adapter *adapter = netdev_priv(netdev);
3871 struct e1000_hw *hw = &adapter->hw;
3872
3873 /* Do the reset outside of interrupt context */
3874 adapter->tx_timeout_count++;
f7ba205e 3875
55cac248
AD
3876 if (hw->mac.type == e1000_82580)
3877 hw->dev_spec._82575.global_device_reset = true;
3878
9d5c8243 3879 schedule_work(&adapter->reset_task);
265de409
AD
3880 wr32(E1000_EICS,
3881 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3882}
3883
3884static void igb_reset_task(struct work_struct *work)
3885{
3886 struct igb_adapter *adapter;
3887 adapter = container_of(work, struct igb_adapter, reset_task);
3888
3889 igb_reinit_locked(adapter);
3890}
3891
3892/**
3893 * igb_get_stats - Get System Network Statistics
3894 * @netdev: network interface device structure
3895 *
3896 * Returns the address of the device statistics structure.
3897 * The statistics are actually updated from the timer callback.
3898 **/
73cd78f1 3899static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 3900{
9d5c8243 3901 /* only return the current stats */
8d24e933 3902 return &netdev->stats;
9d5c8243
AK
3903}
3904
3905/**
3906 * igb_change_mtu - Change the Maximum Transfer Unit
3907 * @netdev: network interface device structure
3908 * @new_mtu: new value for maximum frame size
3909 *
3910 * Returns 0 on success, negative on failure
3911 **/
3912static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3913{
3914 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 3915 struct pci_dev *pdev = adapter->pdev;
9d5c8243 3916 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 3917 u32 rx_buffer_len, i;
9d5c8243 3918
c809d227 3919 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 3920 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
3921 return -EINVAL;
3922 }
3923
9d5c8243 3924 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 3925 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
3926 return -EINVAL;
3927 }
3928
3929 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3930 msleep(1);
73cd78f1 3931
9d5c8243
AK
3932 /* igb_down has a dependency on max_frame_size */
3933 adapter->max_frame_size = max_frame;
559e9c49 3934
9d5c8243
AK
3935 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3936 * means we reserve 2 more, this pushes us to allocate from the next
3937 * larger slab size.
3938 * i.e. RXBUFFER_2048 --> size-4096 slab
3939 */
3940
7d95b717 3941 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 3942 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 3943 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 3944 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 3945 else
4c844851
AD
3946 rx_buffer_len = IGB_RXBUFFER_128;
3947
3948 if (netif_running(netdev))
3949 igb_down(adapter);
9d5c8243 3950
090b1795 3951 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
3952 netdev->mtu, new_mtu);
3953 netdev->mtu = new_mtu;
3954
4c844851 3955 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3956 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 3957
9d5c8243
AK
3958 if (netif_running(netdev))
3959 igb_up(adapter);
3960 else
3961 igb_reset(adapter);
3962
3963 clear_bit(__IGB_RESETTING, &adapter->state);
3964
3965 return 0;
3966}
3967
3968/**
3969 * igb_update_stats - Update the board statistics counters
3970 * @adapter: board private structure
3971 **/
3972
3973void igb_update_stats(struct igb_adapter *adapter)
3974{
128e45eb 3975 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
9d5c8243
AK
3976 struct e1000_hw *hw = &adapter->hw;
3977 struct pci_dev *pdev = adapter->pdev;
3f9c0164 3978 u32 rnbc;
9d5c8243 3979 u16 phy_tmp;
3f9c0164
AD
3980 int i;
3981 u64 bytes, packets;
9d5c8243
AK
3982
3983#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3984
3985 /*
3986 * Prevent stats update while adapter is being reset, or if the pci
3987 * connection is down.
3988 */
3989 if (adapter->link_speed == 0)
3990 return;
3991 if (pci_channel_offline(pdev))
3992 return;
3993
3f9c0164
AD
3994 bytes = 0;
3995 packets = 0;
3996 for (i = 0; i < adapter->num_rx_queues; i++) {
3997 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446
AD
3998 struct igb_ring *ring = adapter->rx_ring[i];
3999 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4000 net_stats->rx_fifo_errors += rqdpc_tmp;
3025a446
AD
4001 bytes += ring->rx_stats.bytes;
4002 packets += ring->rx_stats.packets;
3f9c0164
AD
4003 }
4004
128e45eb
AD
4005 net_stats->rx_bytes = bytes;
4006 net_stats->rx_packets = packets;
3f9c0164
AD
4007
4008 bytes = 0;
4009 packets = 0;
4010 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
4011 struct igb_ring *ring = adapter->tx_ring[i];
4012 bytes += ring->tx_stats.bytes;
4013 packets += ring->tx_stats.packets;
3f9c0164 4014 }
128e45eb
AD
4015 net_stats->tx_bytes = bytes;
4016 net_stats->tx_packets = packets;
3f9c0164
AD
4017
4018 /* read stats registers */
9d5c8243
AK
4019 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4020 adapter->stats.gprc += rd32(E1000_GPRC);
4021 adapter->stats.gorc += rd32(E1000_GORCL);
4022 rd32(E1000_GORCH); /* clear GORCL */
4023 adapter->stats.bprc += rd32(E1000_BPRC);
4024 adapter->stats.mprc += rd32(E1000_MPRC);
4025 adapter->stats.roc += rd32(E1000_ROC);
4026
4027 adapter->stats.prc64 += rd32(E1000_PRC64);
4028 adapter->stats.prc127 += rd32(E1000_PRC127);
4029 adapter->stats.prc255 += rd32(E1000_PRC255);
4030 adapter->stats.prc511 += rd32(E1000_PRC511);
4031 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4032 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4033 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4034 adapter->stats.sec += rd32(E1000_SEC);
4035
4036 adapter->stats.mpc += rd32(E1000_MPC);
4037 adapter->stats.scc += rd32(E1000_SCC);
4038 adapter->stats.ecol += rd32(E1000_ECOL);
4039 adapter->stats.mcc += rd32(E1000_MCC);
4040 adapter->stats.latecol += rd32(E1000_LATECOL);
4041 adapter->stats.dc += rd32(E1000_DC);
4042 adapter->stats.rlec += rd32(E1000_RLEC);
4043 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4044 adapter->stats.xontxc += rd32(E1000_XONTXC);
4045 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4046 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4047 adapter->stats.fcruc += rd32(E1000_FCRUC);
4048 adapter->stats.gptc += rd32(E1000_GPTC);
4049 adapter->stats.gotc += rd32(E1000_GOTCL);
4050 rd32(E1000_GOTCH); /* clear GOTCL */
3f9c0164
AD
4051 rnbc = rd32(E1000_RNBC);
4052 adapter->stats.rnbc += rnbc;
128e45eb 4053 net_stats->rx_fifo_errors += rnbc;
9d5c8243
AK
4054 adapter->stats.ruc += rd32(E1000_RUC);
4055 adapter->stats.rfc += rd32(E1000_RFC);
4056 adapter->stats.rjc += rd32(E1000_RJC);
4057 adapter->stats.tor += rd32(E1000_TORH);
4058 adapter->stats.tot += rd32(E1000_TOTH);
4059 adapter->stats.tpr += rd32(E1000_TPR);
4060
4061 adapter->stats.ptc64 += rd32(E1000_PTC64);
4062 adapter->stats.ptc127 += rd32(E1000_PTC127);
4063 adapter->stats.ptc255 += rd32(E1000_PTC255);
4064 adapter->stats.ptc511 += rd32(E1000_PTC511);
4065 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4066 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4067
4068 adapter->stats.mptc += rd32(E1000_MPTC);
4069 adapter->stats.bptc += rd32(E1000_BPTC);
4070
2d0b0f69
NN
4071 adapter->stats.tpt += rd32(E1000_TPT);
4072 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4073
4074 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4075 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4076 adapter->stats.tncrs += rd32(E1000_TNCRS);
4077 adapter->stats.tsctc += rd32(E1000_TSCTC);
4078 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4079
4080 adapter->stats.iac += rd32(E1000_IAC);
4081 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4082 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4083 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4084 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4085 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4086 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4087 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4088 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4089
4090 /* Fill out the OS statistics structure */
128e45eb
AD
4091 net_stats->multicast = adapter->stats.mprc;
4092 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4093
4094 /* Rx Errors */
4095
4096 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4097 * our own version based on RUC and ROC */
128e45eb 4098 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4099 adapter->stats.crcerrs + adapter->stats.algnerrc +
4100 adapter->stats.ruc + adapter->stats.roc +
4101 adapter->stats.cexterr;
128e45eb
AD
4102 net_stats->rx_length_errors = adapter->stats.ruc +
4103 adapter->stats.roc;
4104 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4105 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4106 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4107
4108 /* Tx Errors */
128e45eb
AD
4109 net_stats->tx_errors = adapter->stats.ecol +
4110 adapter->stats.latecol;
4111 net_stats->tx_aborted_errors = adapter->stats.ecol;
4112 net_stats->tx_window_errors = adapter->stats.latecol;
4113 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4114
4115 /* Tx Dropped needs to be maintained elsewhere */
4116
4117 /* Phy Stats */
4118 if (hw->phy.media_type == e1000_media_type_copper) {
4119 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4120 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4121 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4122 adapter->phy_stats.idle_errors += phy_tmp;
4123 }
4124 }
4125
4126 /* Management Stats */
4127 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4128 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4129 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4130}
4131
9d5c8243
AK
4132static irqreturn_t igb_msix_other(int irq, void *data)
4133{
047e0030 4134 struct igb_adapter *adapter = data;
9d5c8243 4135 struct e1000_hw *hw = &adapter->hw;
844290e5 4136 u32 icr = rd32(E1000_ICR);
844290e5 4137 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4138
7f081d40
AD
4139 if (icr & E1000_ICR_DRSTA)
4140 schedule_work(&adapter->reset_task);
4141
047e0030 4142 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4143 /* HW is reporting DMA is out of sync */
4144 adapter->stats.doosync++;
4145 }
eebbbdba 4146
4ae196df
AD
4147 /* Check for a mailbox event */
4148 if (icr & E1000_ICR_VMMB)
4149 igb_msg_task(adapter);
4150
4151 if (icr & E1000_ICR_LSC) {
4152 hw->mac.get_link_status = 1;
4153 /* guard against interrupt when we're going down */
4154 if (!test_bit(__IGB_DOWN, &adapter->state))
4155 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4156 }
4157
25568a53
AD
4158 if (adapter->vfs_allocated_count)
4159 wr32(E1000_IMS, E1000_IMS_LSC |
4160 E1000_IMS_VMMB |
4161 E1000_IMS_DOUTSYNC);
4162 else
4163 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4164 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4165
4166 return IRQ_HANDLED;
4167}
4168
047e0030 4169static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4170{
26b39276 4171 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4172 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4173
047e0030
AD
4174 if (!q_vector->set_itr)
4175 return;
73cd78f1 4176
047e0030
AD
4177 if (!itr_val)
4178 itr_val = 0x4;
661086df 4179
26b39276
AD
4180 if (adapter->hw.mac.type == e1000_82575)
4181 itr_val |= itr_val << 16;
661086df 4182 else
047e0030 4183 itr_val |= 0x8000000;
661086df 4184
047e0030
AD
4185 writel(itr_val, q_vector->itr_register);
4186 q_vector->set_itr = 0;
6eb5a7f1
AD
4187}
4188
047e0030 4189static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4190{
047e0030 4191 struct igb_q_vector *q_vector = data;
9d5c8243 4192
047e0030
AD
4193 /* Write the ITR value calculated from the previous interrupt. */
4194 igb_write_itr(q_vector);
9d5c8243 4195
047e0030 4196 napi_schedule(&q_vector->napi);
844290e5 4197
047e0030 4198 return IRQ_HANDLED;
fe4506b6
JC
4199}
4200
421e02f0 4201#ifdef CONFIG_IGB_DCA
047e0030 4202static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4203{
047e0030 4204 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4205 struct e1000_hw *hw = &adapter->hw;
4206 int cpu = get_cpu();
fe4506b6 4207
047e0030
AD
4208 if (q_vector->cpu == cpu)
4209 goto out_no_update;
4210
4211 if (q_vector->tx_ring) {
4212 int q = q_vector->tx_ring->reg_idx;
4213 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4214 if (hw->mac.type == e1000_82575) {
4215 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4216 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4217 } else {
047e0030
AD
4218 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4219 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4220 E1000_DCA_TXCTRL_CPUID_SHIFT;
4221 }
4222 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4223 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4224 }
4225 if (q_vector->rx_ring) {
4226 int q = q_vector->rx_ring->reg_idx;
4227 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4228 if (hw->mac.type == e1000_82575) {
2d064c06 4229 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4230 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4231 } else {
4232 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4233 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4234 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4235 }
fe4506b6
JC
4236 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4237 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4238 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4239 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4240 }
047e0030
AD
4241 q_vector->cpu = cpu;
4242out_no_update:
fe4506b6
JC
4243 put_cpu();
4244}
4245
4246static void igb_setup_dca(struct igb_adapter *adapter)
4247{
7e0e99ef 4248 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4249 int i;
4250
7dfc16fa 4251 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4252 return;
4253
7e0e99ef
AD
4254 /* Always use CB2 mode, difference is masked in the CB driver. */
4255 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4256
047e0030 4257 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4258 adapter->q_vector[i]->cpu = -1;
4259 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4260 }
4261}
4262
4263static int __igb_notify_dca(struct device *dev, void *data)
4264{
4265 struct net_device *netdev = dev_get_drvdata(dev);
4266 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4267 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4268 struct e1000_hw *hw = &adapter->hw;
4269 unsigned long event = *(unsigned long *)data;
4270
4271 switch (event) {
4272 case DCA_PROVIDER_ADD:
4273 /* if already enabled, don't do it again */
7dfc16fa 4274 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4275 break;
fe4506b6 4276 if (dca_add_requester(dev) == 0) {
bbd98fe4 4277 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4278 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4279 igb_setup_dca(adapter);
4280 break;
4281 }
4282 /* Fall Through since DCA is disabled. */
4283 case DCA_PROVIDER_REMOVE:
7dfc16fa 4284 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4285 /* without this a class_device is left
047e0030 4286 * hanging around in the sysfs model */
fe4506b6 4287 dca_remove_requester(dev);
090b1795 4288 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4289 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4290 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4291 }
4292 break;
4293 }
bbd98fe4 4294
fe4506b6 4295 return 0;
9d5c8243
AK
4296}
4297
fe4506b6
JC
4298static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4299 void *p)
4300{
4301 int ret_val;
4302
4303 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4304 __igb_notify_dca);
4305
4306 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4307}
421e02f0 4308#endif /* CONFIG_IGB_DCA */
9d5c8243 4309
4ae196df
AD
4310static void igb_ping_all_vfs(struct igb_adapter *adapter)
4311{
4312 struct e1000_hw *hw = &adapter->hw;
4313 u32 ping;
4314 int i;
4315
4316 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4317 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4318 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4319 ping |= E1000_VT_MSGTYPE_CTS;
4320 igb_write_mbx(hw, &ping, 1, i);
4321 }
4322}
4323
7d5753f0
AD
4324static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4325{
4326 struct e1000_hw *hw = &adapter->hw;
4327 u32 vmolr = rd32(E1000_VMOLR(vf));
4328 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4329
4330 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4331 IGB_VF_FLAG_MULTI_PROMISC);
4332 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4333
4334 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4335 vmolr |= E1000_VMOLR_MPME;
4336 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4337 } else {
4338 /*
4339 * if we have hashes and we are clearing a multicast promisc
4340 * flag we need to write the hashes to the MTA as this step
4341 * was previously skipped
4342 */
4343 if (vf_data->num_vf_mc_hashes > 30) {
4344 vmolr |= E1000_VMOLR_MPME;
4345 } else if (vf_data->num_vf_mc_hashes) {
4346 int j;
4347 vmolr |= E1000_VMOLR_ROMPE;
4348 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4349 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4350 }
4351 }
4352
4353 wr32(E1000_VMOLR(vf), vmolr);
4354
4355 /* there are flags left unprocessed, likely not supported */
4356 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4357 return -EINVAL;
4358
4359 return 0;
4360
4361}
4362
4ae196df
AD
4363static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4364 u32 *msgbuf, u32 vf)
4365{
4366 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4367 u16 *hash_list = (u16 *)&msgbuf[1];
4368 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4369 int i;
4370
7d5753f0 4371 /* salt away the number of multicast addresses assigned
4ae196df
AD
4372 * to this VF for later use to restore when the PF multi cast
4373 * list changes
4374 */
4375 vf_data->num_vf_mc_hashes = n;
4376
7d5753f0
AD
4377 /* only up to 30 hash values supported */
4378 if (n > 30)
4379 n = 30;
4380
4381 /* store the hashes for later use */
4ae196df 4382 for (i = 0; i < n; i++)
a419aef8 4383 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4384
4385 /* Flush and reset the mta with the new values */
ff41f8dc 4386 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4387
4388 return 0;
4389}
4390
4391static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4392{
4393 struct e1000_hw *hw = &adapter->hw;
4394 struct vf_data_storage *vf_data;
4395 int i, j;
4396
4397 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4398 u32 vmolr = rd32(E1000_VMOLR(i));
4399 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4400
4ae196df 4401 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4402
4403 if ((vf_data->num_vf_mc_hashes > 30) ||
4404 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4405 vmolr |= E1000_VMOLR_MPME;
4406 } else if (vf_data->num_vf_mc_hashes) {
4407 vmolr |= E1000_VMOLR_ROMPE;
4408 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4409 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4410 }
4411 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4412 }
4413}
4414
4415static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4416{
4417 struct e1000_hw *hw = &adapter->hw;
4418 u32 pool_mask, reg, vid;
4419 int i;
4420
4421 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4422
4423 /* Find the vlan filter for this id */
4424 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4425 reg = rd32(E1000_VLVF(i));
4426
4427 /* remove the vf from the pool */
4428 reg &= ~pool_mask;
4429
4430 /* if pool is empty then remove entry from vfta */
4431 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4432 (reg & E1000_VLVF_VLANID_ENABLE)) {
4433 reg = 0;
4434 vid = reg & E1000_VLVF_VLANID_MASK;
4435 igb_vfta_set(hw, vid, false);
4436 }
4437
4438 wr32(E1000_VLVF(i), reg);
4439 }
ae641bdc
AD
4440
4441 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4442}
4443
4444static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4445{
4446 struct e1000_hw *hw = &adapter->hw;
4447 u32 reg, i;
4448
51466239
AD
4449 /* The vlvf table only exists on 82576 hardware and newer */
4450 if (hw->mac.type < e1000_82576)
4451 return -1;
4452
4453 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4454 if (!adapter->vfs_allocated_count)
4455 return -1;
4456
4457 /* Find the vlan filter for this id */
4458 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4459 reg = rd32(E1000_VLVF(i));
4460 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4461 vid == (reg & E1000_VLVF_VLANID_MASK))
4462 break;
4463 }
4464
4465 if (add) {
4466 if (i == E1000_VLVF_ARRAY_SIZE) {
4467 /* Did not find a matching VLAN ID entry that was
4468 * enabled. Search for a free filter entry, i.e.
4469 * one without the enable bit set
4470 */
4471 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4472 reg = rd32(E1000_VLVF(i));
4473 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4474 break;
4475 }
4476 }
4477 if (i < E1000_VLVF_ARRAY_SIZE) {
4478 /* Found an enabled/available entry */
4479 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4480
4481 /* if !enabled we need to set this up in vfta */
4482 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4483 /* add VID to filter table */
4484 igb_vfta_set(hw, vid, true);
4ae196df
AD
4485 reg |= E1000_VLVF_VLANID_ENABLE;
4486 }
cad6d05f
AD
4487 reg &= ~E1000_VLVF_VLANID_MASK;
4488 reg |= vid;
4ae196df 4489 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4490
4491 /* do not modify RLPML for PF devices */
4492 if (vf >= adapter->vfs_allocated_count)
4493 return 0;
4494
4495 if (!adapter->vf_data[vf].vlans_enabled) {
4496 u32 size;
4497 reg = rd32(E1000_VMOLR(vf));
4498 size = reg & E1000_VMOLR_RLPML_MASK;
4499 size += 4;
4500 reg &= ~E1000_VMOLR_RLPML_MASK;
4501 reg |= size;
4502 wr32(E1000_VMOLR(vf), reg);
4503 }
ae641bdc 4504
51466239 4505 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4506 return 0;
4507 }
4508 } else {
4509 if (i < E1000_VLVF_ARRAY_SIZE) {
4510 /* remove vf from the pool */
4511 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4512 /* if pool is empty then remove entry from vfta */
4513 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4514 reg = 0;
4515 igb_vfta_set(hw, vid, false);
4516 }
4517 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4518
4519 /* do not modify RLPML for PF devices */
4520 if (vf >= adapter->vfs_allocated_count)
4521 return 0;
4522
4523 adapter->vf_data[vf].vlans_enabled--;
4524 if (!adapter->vf_data[vf].vlans_enabled) {
4525 u32 size;
4526 reg = rd32(E1000_VMOLR(vf));
4527 size = reg & E1000_VMOLR_RLPML_MASK;
4528 size -= 4;
4529 reg &= ~E1000_VMOLR_RLPML_MASK;
4530 reg |= size;
4531 wr32(E1000_VMOLR(vf), reg);
4532 }
4ae196df
AD
4533 }
4534 }
8151d294
WM
4535 return 0;
4536}
4537
4538static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4539{
4540 struct e1000_hw *hw = &adapter->hw;
4541
4542 if (vid)
4543 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4544 else
4545 wr32(E1000_VMVIR(vf), 0);
4546}
4547
4548static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4549 int vf, u16 vlan, u8 qos)
4550{
4551 int err = 0;
4552 struct igb_adapter *adapter = netdev_priv(netdev);
4553
4554 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4555 return -EINVAL;
4556 if (vlan || qos) {
4557 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4558 if (err)
4559 goto out;
4560 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4561 igb_set_vmolr(adapter, vf, !vlan);
4562 adapter->vf_data[vf].pf_vlan = vlan;
4563 adapter->vf_data[vf].pf_qos = qos;
4564 dev_info(&adapter->pdev->dev,
4565 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4566 if (test_bit(__IGB_DOWN, &adapter->state)) {
4567 dev_warn(&adapter->pdev->dev,
4568 "The VF VLAN has been set,"
4569 " but the PF device is not up.\n");
4570 dev_warn(&adapter->pdev->dev,
4571 "Bring the PF device up before"
4572 " attempting to use the VF device.\n");
4573 }
4574 } else {
4575 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4576 false, vf);
4577 igb_set_vmvir(adapter, vlan, vf);
4578 igb_set_vmolr(adapter, vf, true);
4579 adapter->vf_data[vf].pf_vlan = 0;
4580 adapter->vf_data[vf].pf_qos = 0;
4581 }
4582out:
4583 return err;
4ae196df
AD
4584}
4585
4586static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4587{
4588 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4589 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4590
4591 return igb_vlvf_set(adapter, vid, add, vf);
4592}
4593
f2ca0dbe 4594static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4595{
8151d294
WM
4596 /* clear flags */
4597 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
f2ca0dbe 4598 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4599
4600 /* reset offloads to defaults */
8151d294 4601 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
4602
4603 /* reset vlans for device */
4604 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
4605 if (adapter->vf_data[vf].pf_vlan)
4606 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4607 adapter->vf_data[vf].pf_vlan,
4608 adapter->vf_data[vf].pf_qos);
4609 else
4610 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
4611
4612 /* reset multicast table array for vf */
4613 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4614
4615 /* Flush and reset the mta with the new values */
ff41f8dc 4616 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4617}
4618
f2ca0dbe
AD
4619static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4620{
4621 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4622
4623 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
4624 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4625 random_ether_addr(vf_mac);
f2ca0dbe
AD
4626
4627 /* process remaining reset events */
4628 igb_vf_reset(adapter, vf);
4629}
4630
4631static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4632{
4633 struct e1000_hw *hw = &adapter->hw;
4634 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4635 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4636 u32 reg, msgbuf[3];
4637 u8 *addr = (u8 *)(&msgbuf[1]);
4638
4639 /* process all the same items cleared in a function level reset */
f2ca0dbe 4640 igb_vf_reset(adapter, vf);
4ae196df
AD
4641
4642 /* set vf mac address */
26ad9178 4643 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4644
4645 /* enable transmit and receive for vf */
4646 reg = rd32(E1000_VFTE);
4647 wr32(E1000_VFTE, reg | (1 << vf));
4648 reg = rd32(E1000_VFRE);
4649 wr32(E1000_VFRE, reg | (1 << vf));
4650
f2ca0dbe 4651 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4652
4653 /* reply to reset with ack and vf mac address */
4654 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4655 memcpy(addr, vf_mac, 6);
4656 igb_write_mbx(hw, msgbuf, 3, vf);
4657}
4658
4659static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4660{
f2ca0dbe
AD
4661 unsigned char *addr = (char *)&msg[1];
4662 int err = -1;
4ae196df 4663
f2ca0dbe
AD
4664 if (is_valid_ether_addr(addr))
4665 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 4666
f2ca0dbe 4667 return err;
4ae196df
AD
4668}
4669
4670static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4671{
4672 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4673 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4674 u32 msg = E1000_VT_MSGTYPE_NACK;
4675
4676 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
4677 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4678 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 4679 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 4680 vf_data->last_nack = jiffies;
4ae196df
AD
4681 }
4682}
4683
f2ca0dbe 4684static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 4685{
f2ca0dbe
AD
4686 struct pci_dev *pdev = adapter->pdev;
4687 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 4688 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4689 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4690 s32 retval;
4691
f2ca0dbe 4692 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 4693
fef45f4c
AD
4694 if (retval) {
4695 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 4696 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
4697 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4698 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4699 return;
4700 goto out;
4701 }
4ae196df
AD
4702
4703 /* this is a message we already processed, do nothing */
4704 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 4705 return;
4ae196df
AD
4706
4707 /*
4708 * until the vf completes a reset it should not be
4709 * allowed to start any configuration.
4710 */
4711
4712 if (msgbuf[0] == E1000_VF_RESET) {
4713 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 4714 return;
4ae196df
AD
4715 }
4716
f2ca0dbe 4717 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
4718 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4719 return;
4720 retval = -1;
4721 goto out;
4ae196df
AD
4722 }
4723
4724 switch ((msgbuf[0] & 0xFFFF)) {
4725 case E1000_VF_SET_MAC_ADDR:
4726 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4727 break;
7d5753f0
AD
4728 case E1000_VF_SET_PROMISC:
4729 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4730 break;
4ae196df
AD
4731 case E1000_VF_SET_MULTICAST:
4732 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4733 break;
4734 case E1000_VF_SET_LPE:
4735 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4736 break;
4737 case E1000_VF_SET_VLAN:
8151d294
WM
4738 if (adapter->vf_data[vf].pf_vlan)
4739 retval = -1;
4740 else
4741 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
4742 break;
4743 default:
090b1795 4744 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
4745 retval = -1;
4746 break;
4747 }
4748
fef45f4c
AD
4749 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4750out:
4ae196df
AD
4751 /* notify the VF of the results of what it sent us */
4752 if (retval)
4753 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4754 else
4755 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4756
4ae196df 4757 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 4758}
4ae196df 4759
f2ca0dbe
AD
4760static void igb_msg_task(struct igb_adapter *adapter)
4761{
4762 struct e1000_hw *hw = &adapter->hw;
4763 u32 vf;
4764
4765 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4766 /* process any reset requests */
4767 if (!igb_check_for_rst(hw, vf))
4768 igb_vf_reset_event(adapter, vf);
4769
4770 /* process any messages pending */
4771 if (!igb_check_for_msg(hw, vf))
4772 igb_rcv_msg_from_vf(adapter, vf);
4773
4774 /* process any acks */
4775 if (!igb_check_for_ack(hw, vf))
4776 igb_rcv_ack_from_vf(adapter, vf);
4777 }
4ae196df
AD
4778}
4779
68d480c4
AD
4780/**
4781 * igb_set_uta - Set unicast filter table address
4782 * @adapter: board private structure
4783 *
4784 * The unicast table address is a register array of 32-bit registers.
4785 * The table is meant to be used in a way similar to how the MTA is used
4786 * however due to certain limitations in the hardware it is necessary to
4787 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4788 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4789 **/
4790static void igb_set_uta(struct igb_adapter *adapter)
4791{
4792 struct e1000_hw *hw = &adapter->hw;
4793 int i;
4794
4795 /* The UTA table only exists on 82576 hardware and newer */
4796 if (hw->mac.type < e1000_82576)
4797 return;
4798
4799 /* we only need to do this if VMDq is enabled */
4800 if (!adapter->vfs_allocated_count)
4801 return;
4802
4803 for (i = 0; i < hw->mac.uta_reg_count; i++)
4804 array_wr32(E1000_UTA, i, ~0);
4805}
4806
9d5c8243
AK
4807/**
4808 * igb_intr_msi - Interrupt Handler
4809 * @irq: interrupt number
4810 * @data: pointer to a network interface device structure
4811 **/
4812static irqreturn_t igb_intr_msi(int irq, void *data)
4813{
047e0030
AD
4814 struct igb_adapter *adapter = data;
4815 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4816 struct e1000_hw *hw = &adapter->hw;
4817 /* read ICR disables interrupts using IAM */
4818 u32 icr = rd32(E1000_ICR);
4819
047e0030 4820 igb_write_itr(q_vector);
9d5c8243 4821
7f081d40
AD
4822 if (icr & E1000_ICR_DRSTA)
4823 schedule_work(&adapter->reset_task);
4824
047e0030 4825 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4826 /* HW is reporting DMA is out of sync */
4827 adapter->stats.doosync++;
4828 }
4829
9d5c8243
AK
4830 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4831 hw->mac.get_link_status = 1;
4832 if (!test_bit(__IGB_DOWN, &adapter->state))
4833 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4834 }
4835
047e0030 4836 napi_schedule(&q_vector->napi);
9d5c8243
AK
4837
4838 return IRQ_HANDLED;
4839}
4840
4841/**
4a3c6433 4842 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4843 * @irq: interrupt number
4844 * @data: pointer to a network interface device structure
4845 **/
4846static irqreturn_t igb_intr(int irq, void *data)
4847{
047e0030
AD
4848 struct igb_adapter *adapter = data;
4849 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4850 struct e1000_hw *hw = &adapter->hw;
4851 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4852 * need for the IMC write */
4853 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4854 if (!icr)
4855 return IRQ_NONE; /* Not our interrupt */
4856
047e0030 4857 igb_write_itr(q_vector);
9d5c8243
AK
4858
4859 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4860 * not set, then the adapter didn't send an interrupt */
4861 if (!(icr & E1000_ICR_INT_ASSERTED))
4862 return IRQ_NONE;
4863
7f081d40
AD
4864 if (icr & E1000_ICR_DRSTA)
4865 schedule_work(&adapter->reset_task);
4866
047e0030 4867 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4868 /* HW is reporting DMA is out of sync */
4869 adapter->stats.doosync++;
4870 }
4871
9d5c8243
AK
4872 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4873 hw->mac.get_link_status = 1;
4874 /* guard against interrupt when we're going down */
4875 if (!test_bit(__IGB_DOWN, &adapter->state))
4876 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4877 }
4878
047e0030 4879 napi_schedule(&q_vector->napi);
9d5c8243
AK
4880
4881 return IRQ_HANDLED;
4882}
4883
047e0030 4884static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 4885{
047e0030 4886 struct igb_adapter *adapter = q_vector->adapter;
46544258 4887 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4888
4fc82adf
AD
4889 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4890 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 4891 if (!adapter->msix_entries)
6eb5a7f1 4892 igb_set_itr(adapter);
46544258 4893 else
047e0030 4894 igb_update_ring_itr(q_vector);
9d5c8243
AK
4895 }
4896
46544258
AD
4897 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4898 if (adapter->msix_entries)
047e0030 4899 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
4900 else
4901 igb_irq_enable(adapter);
4902 }
9d5c8243
AK
4903}
4904
46544258
AD
4905/**
4906 * igb_poll - NAPI Rx polling callback
4907 * @napi: napi polling structure
4908 * @budget: count of how many packets we should handle
4909 **/
4910static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 4911{
047e0030
AD
4912 struct igb_q_vector *q_vector = container_of(napi,
4913 struct igb_q_vector,
4914 napi);
4915 int tx_clean_complete = 1, work_done = 0;
9d5c8243 4916
421e02f0 4917#ifdef CONFIG_IGB_DCA
047e0030
AD
4918 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4919 igb_update_dca(q_vector);
fe4506b6 4920#endif
047e0030
AD
4921 if (q_vector->tx_ring)
4922 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 4923
047e0030
AD
4924 if (q_vector->rx_ring)
4925 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4926
4927 if (!tx_clean_complete)
4928 work_done = budget;
46544258 4929
9d5c8243 4930 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4931 if (work_done < budget) {
288379f0 4932 napi_complete(napi);
047e0030 4933 igb_ring_irq_enable(q_vector);
9d5c8243
AK
4934 }
4935
46544258 4936 return work_done;
9d5c8243 4937}
6d8126f9 4938
33af6bcc 4939/**
c5b9bd5e 4940 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 4941 * @adapter: board private structure
c5b9bd5e
AD
4942 * @shhwtstamps: timestamp structure to update
4943 * @regval: unsigned 64bit system time value.
4944 *
4945 * We need to convert the system time value stored in the RX/TXSTMP registers
4946 * into a hwtstamp which can be used by the upper level timestamping functions
4947 */
4948static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4949 struct skb_shared_hwtstamps *shhwtstamps,
4950 u64 regval)
4951{
4952 u64 ns;
4953
55cac248
AD
4954 /*
4955 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4956 * 24 to match clock shift we setup earlier.
4957 */
4958 if (adapter->hw.mac.type == e1000_82580)
4959 regval <<= IGB_82580_TSYNC_SHIFT;
4960
c5b9bd5e
AD
4961 ns = timecounter_cyc2time(&adapter->clock, regval);
4962 timecompare_update(&adapter->compare, ns);
4963 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4964 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4965 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4966}
4967
4968/**
4969 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4970 * @q_vector: pointer to q_vector containing needed info
33af6bcc
PO
4971 * @skb: packet that was just sent
4972 *
4973 * If we were asked to do hardware stamping and such a time stamp is
4974 * available, then it must have been for this skb here because we only
4975 * allow only one such packet into the queue.
4976 */
c5b9bd5e 4977static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
33af6bcc 4978{
c5b9bd5e 4979 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc
PO
4980 union skb_shared_tx *shtx = skb_tx(skb);
4981 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
4982 struct skb_shared_hwtstamps shhwtstamps;
4983 u64 regval;
33af6bcc 4984
c5b9bd5e
AD
4985 /* if skb does not support hw timestamp or TX stamp not valid exit */
4986 if (likely(!shtx->hardware) ||
4987 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4988 return;
4989
4990 regval = rd32(E1000_TXSTMPL);
4991 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4992
4993 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4994 skb_tstamp_tx(skb, &shhwtstamps);
33af6bcc
PO
4995}
4996
9d5c8243
AK
4997/**
4998 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 4999 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5000 * returns true if ring is completely cleaned
5001 **/
047e0030 5002static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5003{
047e0030
AD
5004 struct igb_adapter *adapter = q_vector->adapter;
5005 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5006 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5007 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
5008 struct igb_buffer *buffer_info;
5009 struct sk_buff *skb;
0e014cb1 5010 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5011 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5012 unsigned int i, eop, count = 0;
5013 bool cleaned = false;
9d5c8243 5014
9d5c8243 5015 i = tx_ring->next_to_clean;
0e014cb1
AD
5016 eop = tx_ring->buffer_info[i].next_to_watch;
5017 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5018
5019 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5020 (count < tx_ring->count)) {
5021 for (cleaned = false; !cleaned; count++) {
5022 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5023 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5024 cleaned = (i == eop);
9d5c8243
AK
5025 skb = buffer_info->skb;
5026
5027 if (skb) {
5028 unsigned int segs, bytecount;
5029 /* gso_segs is currently only valid for tcp */
5030 segs = skb_shinfo(skb)->gso_segs ?: 1;
5031 /* multiply data chunks by size of headers */
5032 bytecount = ((segs - 1) * skb_headlen(skb)) +
5033 skb->len;
5034 total_packets += segs;
5035 total_bytes += bytecount;
33af6bcc 5036
c5b9bd5e 5037 igb_tx_hwtstamp(q_vector, skb);
9d5c8243
AK
5038 }
5039
80785298 5040 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5041 tx_desc->wb.status = 0;
9d5c8243
AK
5042
5043 i++;
5044 if (i == tx_ring->count)
5045 i = 0;
9d5c8243 5046 }
0e014cb1
AD
5047 eop = tx_ring->buffer_info[i].next_to_watch;
5048 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5049 }
5050
9d5c8243
AK
5051 tx_ring->next_to_clean = i;
5052
fc7d345d 5053 if (unlikely(count &&
9d5c8243 5054 netif_carrier_ok(netdev) &&
c493ea45 5055 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5056 /* Make sure that anybody stopping the queue after this
5057 * sees the new next_to_clean.
5058 */
5059 smp_mb();
661086df
PWJ
5060 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5061 !(test_bit(__IGB_DOWN, &adapter->state))) {
5062 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 5063 tx_ring->tx_stats.restart_queue++;
661086df 5064 }
9d5c8243
AK
5065 }
5066
5067 if (tx_ring->detect_tx_hung) {
5068 /* Detect a transmit hang in hardware, this serializes the
5069 * check with the clearing of time_stamp and movement of i */
5070 tx_ring->detect_tx_hung = false;
5071 if (tx_ring->buffer_info[i].time_stamp &&
5072 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5073 (adapter->tx_timeout_factor * HZ)) &&
5074 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5075
9d5c8243 5076 /* detected Tx unit hang */
80785298 5077 dev_err(&tx_ring->pdev->dev,
9d5c8243 5078 "Detected Tx Unit Hang\n"
2d064c06 5079 " Tx Queue <%d>\n"
9d5c8243
AK
5080 " TDH <%x>\n"
5081 " TDT <%x>\n"
5082 " next_to_use <%x>\n"
5083 " next_to_clean <%x>\n"
9d5c8243
AK
5084 "buffer_info[next_to_clean]\n"
5085 " time_stamp <%lx>\n"
0e014cb1 5086 " next_to_watch <%x>\n"
9d5c8243
AK
5087 " jiffies <%lx>\n"
5088 " desc.status <%x>\n",
2d064c06 5089 tx_ring->queue_index,
fce99e34
AD
5090 readl(tx_ring->head),
5091 readl(tx_ring->tail),
9d5c8243
AK
5092 tx_ring->next_to_use,
5093 tx_ring->next_to_clean,
f7ba205e 5094 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5095 eop,
9d5c8243 5096 jiffies,
0e014cb1 5097 eop_desc->wb.status);
661086df 5098 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5099 }
5100 }
5101 tx_ring->total_bytes += total_bytes;
5102 tx_ring->total_packets += total_packets;
e21ed353
AD
5103 tx_ring->tx_stats.bytes += total_bytes;
5104 tx_ring->tx_stats.packets += total_packets;
0e014cb1 5105 return (count < tx_ring->count);
9d5c8243
AK
5106}
5107
9d5c8243
AK
5108/**
5109 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5110 * @q_vector: structure containing interrupt and ring information
5111 * @skb: packet to send up
5112 * @vlan_tag: vlan tag for packet
9d5c8243 5113 **/
047e0030
AD
5114static void igb_receive_skb(struct igb_q_vector *q_vector,
5115 struct sk_buff *skb,
5116 u16 vlan_tag)
5117{
5118 struct igb_adapter *adapter = q_vector->adapter;
5119
5120 if (vlan_tag)
5121 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5122 vlan_tag, skb);
182ff8df 5123 else
047e0030 5124 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5125}
5126
04a5fcaa 5127static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5128 u32 status_err, struct sk_buff *skb)
5129{
5130 skb->ip_summed = CHECKSUM_NONE;
5131
5132 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5133 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5134 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5135 return;
85ad76b2 5136
9d5c8243
AK
5137 /* TCP/UDP checksum error bit is set */
5138 if (status_err &
5139 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5140 /*
5141 * work around errata with sctp packets where the TCPE aka
5142 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5143 * packets, (aka let the stack check the crc32c)
5144 */
85ad76b2
AD
5145 if ((skb->len == 60) &&
5146 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 5147 ring->rx_stats.csum_err++;
85ad76b2 5148
9d5c8243 5149 /* let the stack verify checksum errors */
9d5c8243
AK
5150 return;
5151 }
5152 /* It must be a TCP or UDP packet with a valid checksum */
5153 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5154 skb->ip_summed = CHECKSUM_UNNECESSARY;
5155
85ad76b2 5156 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5157}
5158
c5b9bd5e
AD
5159static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5160 struct sk_buff *skb)
5161{
5162 struct igb_adapter *adapter = q_vector->adapter;
5163 struct e1000_hw *hw = &adapter->hw;
5164 u64 regval;
5165
5166 /*
5167 * If this bit is set, then the RX registers contain the time stamp. No
5168 * other packet will be time stamped until we read these registers, so
5169 * read the registers to make them available again. Because only one
5170 * packet can be time stamped at a time, we know that the register
5171 * values must belong to this one here and therefore we don't need to
5172 * compare any of the additional attributes stored for it.
5173 *
5174 * If nothing went wrong, then it should have a skb_shared_tx that we
5175 * can turn into a skb_shared_hwtstamps.
5176 */
5177 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5178 return;
5179 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5180 return;
5181
5182 regval = rd32(E1000_RXSTMPL);
5183 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5184
5185 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5186}
4c844851 5187static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5188 union e1000_adv_rx_desc *rx_desc)
5189{
5190 /* HW will not DMA in data larger than the given buffer, even if it
5191 * parses the (NFS, of course) header to be larger. In that case, it
5192 * fills the header buffer and spills the rest into the page.
5193 */
5194 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5195 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5196 if (hlen > rx_ring->rx_buffer_len)
5197 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5198 return hlen;
5199}
5200
047e0030
AD
5201static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5202 int *work_done, int budget)
9d5c8243 5203{
047e0030 5204 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5205 struct net_device *netdev = rx_ring->netdev;
80785298 5206 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
5207 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5208 struct igb_buffer *buffer_info , *next_buffer;
5209 struct sk_buff *skb;
9d5c8243
AK
5210 bool cleaned = false;
5211 int cleaned_count = 0;
d1eff350 5212 int current_node = numa_node_id();
9d5c8243 5213 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5214 unsigned int i;
2d94d8ab
AD
5215 u32 staterr;
5216 u16 length;
047e0030 5217 u16 vlan_tag;
9d5c8243
AK
5218
5219 i = rx_ring->next_to_clean;
69d3ca53 5220 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5221 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5222 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5223
5224 while (staterr & E1000_RXD_STAT_DD) {
5225 if (*work_done >= budget)
5226 break;
5227 (*work_done)++;
9d5c8243 5228
69d3ca53
AD
5229 skb = buffer_info->skb;
5230 prefetch(skb->data - NET_IP_ALIGN);
5231 buffer_info->skb = NULL;
5232
5233 i++;
5234 if (i == rx_ring->count)
5235 i = 0;
42d0781a 5236
69d3ca53
AD
5237 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5238 prefetch(next_rxd);
5239 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5240
5241 length = le16_to_cpu(rx_desc->wb.upper.length);
5242 cleaned = true;
5243 cleaned_count++;
5244
2d94d8ab 5245 if (buffer_info->dma) {
bf36c1a0 5246 pci_unmap_single(pdev, buffer_info->dma,
4c844851 5247 rx_ring->rx_buffer_len,
bf36c1a0 5248 PCI_DMA_FROMDEVICE);
91615f76 5249 buffer_info->dma = 0;
4c844851 5250 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5251 skb_put(skb, length);
5252 goto send_up;
5253 }
4c844851 5254 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5255 }
5256
5257 if (length) {
9d5c8243 5258 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 5259 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 5260 buffer_info->page_dma = 0;
bf36c1a0
AD
5261
5262 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5263 buffer_info->page,
5264 buffer_info->page_offset,
5265 length);
5266
d1eff350
AD
5267 if ((page_count(buffer_info->page) != 1) ||
5268 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5269 buffer_info->page = NULL;
5270 else
5271 get_page(buffer_info->page);
9d5c8243
AK
5272
5273 skb->len += length;
5274 skb->data_len += length;
bf36c1a0 5275 skb->truesize += length;
9d5c8243 5276 }
9d5c8243 5277
bf36c1a0 5278 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5279 buffer_info->skb = next_buffer->skb;
5280 buffer_info->dma = next_buffer->dma;
5281 next_buffer->skb = skb;
5282 next_buffer->dma = 0;
bf36c1a0
AD
5283 goto next_desc;
5284 }
69d3ca53 5285send_up:
9d5c8243
AK
5286 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5287 dev_kfree_skb_irq(skb);
5288 goto next_desc;
5289 }
9d5c8243 5290
c5b9bd5e 5291 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5292 total_bytes += skb->len;
5293 total_packets++;
5294
85ad76b2 5295 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5296
5297 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5298 skb_record_rx_queue(skb, rx_ring->queue_index);
5299
5300 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5301 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5302
047e0030 5303 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5304
9d5c8243
AK
5305next_desc:
5306 rx_desc->wb.upper.status_error = 0;
5307
5308 /* return some buffers to hardware, one at a time is too slow */
5309 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5310 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5311 cleaned_count = 0;
5312 }
5313
5314 /* use prefetched values */
5315 rx_desc = next_rxd;
5316 buffer_info = next_buffer;
9d5c8243
AK
5317 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5318 }
bf36c1a0 5319
9d5c8243 5320 rx_ring->next_to_clean = i;
c493ea45 5321 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5322
5323 if (cleaned_count)
3b644cf6 5324 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5325
5326 rx_ring->total_packets += total_packets;
5327 rx_ring->total_bytes += total_bytes;
5328 rx_ring->rx_stats.packets += total_packets;
5329 rx_ring->rx_stats.bytes += total_bytes;
9d5c8243
AK
5330 return cleaned;
5331}
5332
9d5c8243
AK
5333/**
5334 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5335 * @adapter: address of board private structure
5336 **/
d7ee5b3a 5337void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5338{
e694e964 5339 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5340 union e1000_adv_rx_desc *rx_desc;
5341 struct igb_buffer *buffer_info;
5342 struct sk_buff *skb;
5343 unsigned int i;
db761762 5344 int bufsz;
9d5c8243
AK
5345
5346 i = rx_ring->next_to_use;
5347 buffer_info = &rx_ring->buffer_info[i];
5348
4c844851 5349 bufsz = rx_ring->rx_buffer_len;
db761762 5350
9d5c8243
AK
5351 while (cleaned_count--) {
5352 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5353
6ec43fe6 5354 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5355 if (!buffer_info->page) {
42d0781a 5356 buffer_info->page = netdev_alloc_page(netdev);
bf36c1a0 5357 if (!buffer_info->page) {
04a5fcaa 5358 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5359 goto no_buffers;
5360 }
5361 buffer_info->page_offset = 0;
5362 } else {
5363 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5364 }
5365 buffer_info->page_dma =
80785298 5366 pci_map_page(rx_ring->pdev, buffer_info->page,
bf36c1a0
AD
5367 buffer_info->page_offset,
5368 PAGE_SIZE / 2,
9d5c8243 5369 PCI_DMA_FROMDEVICE);
42d0781a
AD
5370 if (pci_dma_mapping_error(rx_ring->pdev,
5371 buffer_info->page_dma)) {
5372 buffer_info->page_dma = 0;
5373 rx_ring->rx_stats.alloc_failed++;
5374 goto no_buffers;
5375 }
9d5c8243
AK
5376 }
5377
42d0781a
AD
5378 skb = buffer_info->skb;
5379 if (!skb) {
89d71a66 5380 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5381 if (!skb) {
04a5fcaa 5382 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5383 goto no_buffers;
5384 }
5385
9d5c8243 5386 buffer_info->skb = skb;
42d0781a
AD
5387 }
5388 if (!buffer_info->dma) {
80785298
AD
5389 buffer_info->dma = pci_map_single(rx_ring->pdev,
5390 skb->data,
9d5c8243
AK
5391 bufsz,
5392 PCI_DMA_FROMDEVICE);
42d0781a
AD
5393 if (pci_dma_mapping_error(rx_ring->pdev,
5394 buffer_info->dma)) {
5395 buffer_info->dma = 0;
5396 rx_ring->rx_stats.alloc_failed++;
5397 goto no_buffers;
5398 }
9d5c8243
AK
5399 }
5400 /* Refresh the desc even if buffer_addrs didn't change because
5401 * each write-back erases this info. */
6ec43fe6 5402 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5403 rx_desc->read.pkt_addr =
5404 cpu_to_le64(buffer_info->page_dma);
5405 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5406 } else {
42d0781a 5407 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5408 rx_desc->read.hdr_addr = 0;
5409 }
5410
5411 i++;
5412 if (i == rx_ring->count)
5413 i = 0;
5414 buffer_info = &rx_ring->buffer_info[i];
5415 }
5416
5417no_buffers:
5418 if (rx_ring->next_to_use != i) {
5419 rx_ring->next_to_use = i;
5420 if (i == 0)
5421 i = (rx_ring->count - 1);
5422 else
5423 i--;
5424
5425 /* Force memory writes to complete before letting h/w
5426 * know there are new descriptors to fetch. (Only
5427 * applicable for weak-ordered memory model archs,
5428 * such as IA-64). */
5429 wmb();
fce99e34 5430 writel(i, rx_ring->tail);
9d5c8243
AK
5431 }
5432}
5433
5434/**
5435 * igb_mii_ioctl -
5436 * @netdev:
5437 * @ifreq:
5438 * @cmd:
5439 **/
5440static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5441{
5442 struct igb_adapter *adapter = netdev_priv(netdev);
5443 struct mii_ioctl_data *data = if_mii(ifr);
5444
5445 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5446 return -EOPNOTSUPP;
5447
5448 switch (cmd) {
5449 case SIOCGMIIPHY:
5450 data->phy_id = adapter->hw.phy.addr;
5451 break;
5452 case SIOCGMIIREG:
f5f4cf08
AD
5453 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5454 &data->val_out))
9d5c8243
AK
5455 return -EIO;
5456 break;
5457 case SIOCSMIIREG:
5458 default:
5459 return -EOPNOTSUPP;
5460 }
5461 return 0;
5462}
5463
c6cb090b
PO
5464/**
5465 * igb_hwtstamp_ioctl - control hardware time stamping
5466 * @netdev:
5467 * @ifreq:
5468 * @cmd:
5469 *
33af6bcc
PO
5470 * Outgoing time stamping can be enabled and disabled. Play nice and
5471 * disable it when requested, although it shouldn't case any overhead
5472 * when no packet needs it. At most one packet in the queue may be
5473 * marked for time stamping, otherwise it would be impossible to tell
5474 * for sure to which packet the hardware time stamp belongs.
5475 *
5476 * Incoming time stamping has to be configured via the hardware
5477 * filters. Not all combinations are supported, in particular event
5478 * type has to be specified. Matching the kind of event packet is
5479 * not supported, with the exception of "all V2 events regardless of
5480 * level 2 or 4".
5481 *
c6cb090b
PO
5482 **/
5483static int igb_hwtstamp_ioctl(struct net_device *netdev,
5484 struct ifreq *ifr, int cmd)
5485{
33af6bcc
PO
5486 struct igb_adapter *adapter = netdev_priv(netdev);
5487 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5488 struct hwtstamp_config config;
c5b9bd5e
AD
5489 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5490 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5491 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5492 bool is_l4 = false;
5493 bool is_l2 = false;
33af6bcc 5494 u32 regval;
c6cb090b
PO
5495
5496 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5497 return -EFAULT;
5498
5499 /* reserved for future extensions */
5500 if (config.flags)
5501 return -EINVAL;
5502
33af6bcc
PO
5503 switch (config.tx_type) {
5504 case HWTSTAMP_TX_OFF:
c5b9bd5e 5505 tsync_tx_ctl = 0;
33af6bcc 5506 case HWTSTAMP_TX_ON:
33af6bcc
PO
5507 break;
5508 default:
5509 return -ERANGE;
5510 }
5511
5512 switch (config.rx_filter) {
5513 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5514 tsync_rx_ctl = 0;
33af6bcc
PO
5515 break;
5516 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5517 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5518 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5519 case HWTSTAMP_FILTER_ALL:
5520 /*
5521 * register TSYNCRXCFG must be set, therefore it is not
5522 * possible to time stamp both Sync and Delay_Req messages
5523 * => fall back to time stamping all packets
5524 */
c5b9bd5e 5525 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5526 config.rx_filter = HWTSTAMP_FILTER_ALL;
5527 break;
5528 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5529 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5530 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5531 is_l4 = true;
33af6bcc
PO
5532 break;
5533 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5534 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5535 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5536 is_l4 = true;
33af6bcc
PO
5537 break;
5538 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5539 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5540 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5541 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5542 is_l2 = true;
5543 is_l4 = true;
33af6bcc
PO
5544 config.rx_filter = HWTSTAMP_FILTER_SOME;
5545 break;
5546 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5547 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5548 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5549 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5550 is_l2 = true;
5551 is_l4 = true;
33af6bcc
PO
5552 config.rx_filter = HWTSTAMP_FILTER_SOME;
5553 break;
5554 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5555 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5556 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5557 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5558 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5559 is_l2 = true;
33af6bcc
PO
5560 break;
5561 default:
5562 return -ERANGE;
5563 }
5564
c5b9bd5e
AD
5565 if (hw->mac.type == e1000_82575) {
5566 if (tsync_rx_ctl | tsync_tx_ctl)
5567 return -EINVAL;
5568 return 0;
5569 }
5570
33af6bcc
PO
5571 /* enable/disable TX */
5572 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5573 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5574 regval |= tsync_tx_ctl;
33af6bcc
PO
5575 wr32(E1000_TSYNCTXCTL, regval);
5576
c5b9bd5e 5577 /* enable/disable RX */
33af6bcc 5578 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5579 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5580 regval |= tsync_rx_ctl;
33af6bcc 5581 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5582
c5b9bd5e
AD
5583 /* define which PTP packets are time stamped */
5584 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5585
c5b9bd5e
AD
5586 /* define ethertype filter for timestamped packets */
5587 if (is_l2)
5588 wr32(E1000_ETQF(3),
5589 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5590 E1000_ETQF_1588 | /* enable timestamping */
5591 ETH_P_1588)); /* 1588 eth protocol type */
5592 else
5593 wr32(E1000_ETQF(3), 0);
5594
5595#define PTP_PORT 319
5596 /* L4 Queue Filter[3]: filter by destination port and protocol */
5597 if (is_l4) {
5598 u32 ftqf = (IPPROTO_UDP /* UDP */
5599 | E1000_FTQF_VF_BP /* VF not compared */
5600 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5601 | E1000_FTQF_MASK); /* mask all inputs */
5602 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5603
5604 wr32(E1000_IMIR(3), htons(PTP_PORT));
5605 wr32(E1000_IMIREXT(3),
5606 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5607 if (hw->mac.type == e1000_82576) {
5608 /* enable source port check */
5609 wr32(E1000_SPQF(3), htons(PTP_PORT));
5610 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5611 }
5612 wr32(E1000_FTQF(3), ftqf);
5613 } else {
5614 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5615 }
33af6bcc
PO
5616 wrfl();
5617
5618 adapter->hwtstamp_config = config;
5619
5620 /* clear TX/RX time stamp registers, just to be sure */
5621 regval = rd32(E1000_TXSTMPH);
5622 regval = rd32(E1000_RXSTMPH);
c6cb090b 5623
33af6bcc
PO
5624 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5625 -EFAULT : 0;
c6cb090b
PO
5626}
5627
9d5c8243
AK
5628/**
5629 * igb_ioctl -
5630 * @netdev:
5631 * @ifreq:
5632 * @cmd:
5633 **/
5634static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5635{
5636 switch (cmd) {
5637 case SIOCGMIIPHY:
5638 case SIOCGMIIREG:
5639 case SIOCSMIIREG:
5640 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5641 case SIOCSHWTSTAMP:
5642 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5643 default:
5644 return -EOPNOTSUPP;
5645 }
5646}
5647
009bc06e
AD
5648s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5649{
5650 struct igb_adapter *adapter = hw->back;
5651 u16 cap_offset;
5652
5653 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5654 if (!cap_offset)
5655 return -E1000_ERR_CONFIG;
5656
5657 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5658
5659 return 0;
5660}
5661
5662s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5663{
5664 struct igb_adapter *adapter = hw->back;
5665 u16 cap_offset;
5666
5667 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5668 if (!cap_offset)
5669 return -E1000_ERR_CONFIG;
5670
5671 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5672
5673 return 0;
5674}
5675
9d5c8243
AK
5676static void igb_vlan_rx_register(struct net_device *netdev,
5677 struct vlan_group *grp)
5678{
5679 struct igb_adapter *adapter = netdev_priv(netdev);
5680 struct e1000_hw *hw = &adapter->hw;
5681 u32 ctrl, rctl;
5682
5683 igb_irq_disable(adapter);
5684 adapter->vlgrp = grp;
5685
5686 if (grp) {
5687 /* enable VLAN tag insert/strip */
5688 ctrl = rd32(E1000_CTRL);
5689 ctrl |= E1000_CTRL_VME;
5690 wr32(E1000_CTRL, ctrl);
5691
51466239 5692 /* Disable CFI check */
9d5c8243 5693 rctl = rd32(E1000_RCTL);
9d5c8243
AK
5694 rctl &= ~E1000_RCTL_CFIEN;
5695 wr32(E1000_RCTL, rctl);
9d5c8243
AK
5696 } else {
5697 /* disable VLAN tag insert/strip */
5698 ctrl = rd32(E1000_CTRL);
5699 ctrl &= ~E1000_CTRL_VME;
5700 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
5701 }
5702
e1739522
AD
5703 igb_rlpml_set(adapter);
5704
9d5c8243
AK
5705 if (!test_bit(__IGB_DOWN, &adapter->state))
5706 igb_irq_enable(adapter);
5707}
5708
5709static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5710{
5711 struct igb_adapter *adapter = netdev_priv(netdev);
5712 struct e1000_hw *hw = &adapter->hw;
4ae196df 5713 int pf_id = adapter->vfs_allocated_count;
9d5c8243 5714
51466239
AD
5715 /* attempt to add filter to vlvf array */
5716 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 5717
51466239
AD
5718 /* add the filter since PF can receive vlans w/o entry in vlvf */
5719 igb_vfta_set(hw, vid, true);
9d5c8243
AK
5720}
5721
5722static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5723{
5724 struct igb_adapter *adapter = netdev_priv(netdev);
5725 struct e1000_hw *hw = &adapter->hw;
4ae196df 5726 int pf_id = adapter->vfs_allocated_count;
51466239 5727 s32 err;
9d5c8243
AK
5728
5729 igb_irq_disable(adapter);
5730 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5731
5732 if (!test_bit(__IGB_DOWN, &adapter->state))
5733 igb_irq_enable(adapter);
5734
51466239
AD
5735 /* remove vlan from VLVF table array */
5736 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 5737
51466239
AD
5738 /* if vid was not present in VLVF just remove it from table */
5739 if (err)
4ae196df 5740 igb_vfta_set(hw, vid, false);
9d5c8243
AK
5741}
5742
5743static void igb_restore_vlan(struct igb_adapter *adapter)
5744{
5745 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5746
5747 if (adapter->vlgrp) {
5748 u16 vid;
5749 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5750 if (!vlan_group_get_device(adapter->vlgrp, vid))
5751 continue;
5752 igb_vlan_rx_add_vid(adapter->netdev, vid);
5753 }
5754 }
5755}
5756
5757int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5758{
090b1795 5759 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
5760 struct e1000_mac_info *mac = &adapter->hw.mac;
5761
5762 mac->autoneg = 0;
5763
9d5c8243
AK
5764 switch (spddplx) {
5765 case SPEED_10 + DUPLEX_HALF:
5766 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5767 break;
5768 case SPEED_10 + DUPLEX_FULL:
5769 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5770 break;
5771 case SPEED_100 + DUPLEX_HALF:
5772 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5773 break;
5774 case SPEED_100 + DUPLEX_FULL:
5775 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5776 break;
5777 case SPEED_1000 + DUPLEX_FULL:
5778 mac->autoneg = 1;
5779 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5780 break;
5781 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5782 default:
090b1795 5783 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
5784 return -EINVAL;
5785 }
5786 return 0;
5787}
5788
3fe7c4c9 5789static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
5790{
5791 struct net_device *netdev = pci_get_drvdata(pdev);
5792 struct igb_adapter *adapter = netdev_priv(netdev);
5793 struct e1000_hw *hw = &adapter->hw;
2d064c06 5794 u32 ctrl, rctl, status;
9d5c8243
AK
5795 u32 wufc = adapter->wol;
5796#ifdef CONFIG_PM
5797 int retval = 0;
5798#endif
5799
5800 netif_device_detach(netdev);
5801
a88f10ec
AD
5802 if (netif_running(netdev))
5803 igb_close(netdev);
5804
047e0030 5805 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
5806
5807#ifdef CONFIG_PM
5808 retval = pci_save_state(pdev);
5809 if (retval)
5810 return retval;
5811#endif
5812
5813 status = rd32(E1000_STATUS);
5814 if (status & E1000_STATUS_LU)
5815 wufc &= ~E1000_WUFC_LNKC;
5816
5817 if (wufc) {
5818 igb_setup_rctl(adapter);
ff41f8dc 5819 igb_set_rx_mode(netdev);
9d5c8243
AK
5820
5821 /* turn on all-multi mode if wake on multicast is enabled */
5822 if (wufc & E1000_WUFC_MC) {
5823 rctl = rd32(E1000_RCTL);
5824 rctl |= E1000_RCTL_MPE;
5825 wr32(E1000_RCTL, rctl);
5826 }
5827
5828 ctrl = rd32(E1000_CTRL);
5829 /* advertise wake from D3Cold */
5830 #define E1000_CTRL_ADVD3WUC 0x00100000
5831 /* phy power management enable */
5832 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5833 ctrl |= E1000_CTRL_ADVD3WUC;
5834 wr32(E1000_CTRL, ctrl);
5835
9d5c8243 5836 /* Allow time for pending master requests to run */
330a6d6a 5837 igb_disable_pcie_master(hw);
9d5c8243
AK
5838
5839 wr32(E1000_WUC, E1000_WUC_PME_EN);
5840 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5841 } else {
5842 wr32(E1000_WUC, 0);
5843 wr32(E1000_WUFC, 0);
9d5c8243
AK
5844 }
5845
3fe7c4c9
RW
5846 *enable_wake = wufc || adapter->en_mng_pt;
5847 if (!*enable_wake)
88a268c1
NN
5848 igb_power_down_link(adapter);
5849 else
5850 igb_power_up_link(adapter);
9d5c8243
AK
5851
5852 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5853 * would have already happened in close and is redundant. */
5854 igb_release_hw_control(adapter);
5855
5856 pci_disable_device(pdev);
5857
9d5c8243
AK
5858 return 0;
5859}
5860
5861#ifdef CONFIG_PM
3fe7c4c9
RW
5862static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5863{
5864 int retval;
5865 bool wake;
5866
5867 retval = __igb_shutdown(pdev, &wake);
5868 if (retval)
5869 return retval;
5870
5871 if (wake) {
5872 pci_prepare_to_sleep(pdev);
5873 } else {
5874 pci_wake_from_d3(pdev, false);
5875 pci_set_power_state(pdev, PCI_D3hot);
5876 }
5877
5878 return 0;
5879}
5880
9d5c8243
AK
5881static int igb_resume(struct pci_dev *pdev)
5882{
5883 struct net_device *netdev = pci_get_drvdata(pdev);
5884 struct igb_adapter *adapter = netdev_priv(netdev);
5885 struct e1000_hw *hw = &adapter->hw;
5886 u32 err;
5887
5888 pci_set_power_state(pdev, PCI_D0);
5889 pci_restore_state(pdev);
b94f2d77 5890 pci_save_state(pdev);
42bfd33a 5891
aed5dec3 5892 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5893 if (err) {
5894 dev_err(&pdev->dev,
5895 "igb: Cannot enable PCI device from suspend\n");
5896 return err;
5897 }
5898 pci_set_master(pdev);
5899
5900 pci_enable_wake(pdev, PCI_D3hot, 0);
5901 pci_enable_wake(pdev, PCI_D3cold, 0);
5902
047e0030 5903 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
5904 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5905 return -ENOMEM;
9d5c8243
AK
5906 }
5907
9d5c8243 5908 igb_reset(adapter);
a8564f03
AD
5909
5910 /* let the f/w know that the h/w is now under the control of the
5911 * driver. */
5912 igb_get_hw_control(adapter);
5913
9d5c8243
AK
5914 wr32(E1000_WUS, ~0);
5915
a88f10ec
AD
5916 if (netif_running(netdev)) {
5917 err = igb_open(netdev);
5918 if (err)
5919 return err;
5920 }
9d5c8243
AK
5921
5922 netif_device_attach(netdev);
5923
9d5c8243
AK
5924 return 0;
5925}
5926#endif
5927
5928static void igb_shutdown(struct pci_dev *pdev)
5929{
3fe7c4c9
RW
5930 bool wake;
5931
5932 __igb_shutdown(pdev, &wake);
5933
5934 if (system_state == SYSTEM_POWER_OFF) {
5935 pci_wake_from_d3(pdev, wake);
5936 pci_set_power_state(pdev, PCI_D3hot);
5937 }
9d5c8243
AK
5938}
5939
5940#ifdef CONFIG_NET_POLL_CONTROLLER
5941/*
5942 * Polling 'interrupt' - used by things like netconsole to send skbs
5943 * without having to re-enable interrupts. It's not called while
5944 * the interrupt routine is executing.
5945 */
5946static void igb_netpoll(struct net_device *netdev)
5947{
5948 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5949 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5950 int i;
9d5c8243 5951
eebbbdba 5952 if (!adapter->msix_entries) {
047e0030 5953 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 5954 igb_irq_disable(adapter);
047e0030 5955 napi_schedule(&q_vector->napi);
eebbbdba
AD
5956 return;
5957 }
9d5c8243 5958
047e0030
AD
5959 for (i = 0; i < adapter->num_q_vectors; i++) {
5960 struct igb_q_vector *q_vector = adapter->q_vector[i];
5961 wr32(E1000_EIMC, q_vector->eims_value);
5962 napi_schedule(&q_vector->napi);
eebbbdba 5963 }
9d5c8243
AK
5964}
5965#endif /* CONFIG_NET_POLL_CONTROLLER */
5966
5967/**
5968 * igb_io_error_detected - called when PCI error is detected
5969 * @pdev: Pointer to PCI device
5970 * @state: The current pci connection state
5971 *
5972 * This function is called after a PCI bus error affecting
5973 * this device has been detected.
5974 */
5975static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5976 pci_channel_state_t state)
5977{
5978 struct net_device *netdev = pci_get_drvdata(pdev);
5979 struct igb_adapter *adapter = netdev_priv(netdev);
5980
5981 netif_device_detach(netdev);
5982
59ed6eec
AD
5983 if (state == pci_channel_io_perm_failure)
5984 return PCI_ERS_RESULT_DISCONNECT;
5985
9d5c8243
AK
5986 if (netif_running(netdev))
5987 igb_down(adapter);
5988 pci_disable_device(pdev);
5989
5990 /* Request a slot slot reset. */
5991 return PCI_ERS_RESULT_NEED_RESET;
5992}
5993
5994/**
5995 * igb_io_slot_reset - called after the pci bus has been reset.
5996 * @pdev: Pointer to PCI device
5997 *
5998 * Restart the card from scratch, as if from a cold-boot. Implementation
5999 * resembles the first-half of the igb_resume routine.
6000 */
6001static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6002{
6003 struct net_device *netdev = pci_get_drvdata(pdev);
6004 struct igb_adapter *adapter = netdev_priv(netdev);
6005 struct e1000_hw *hw = &adapter->hw;
40a914fa 6006 pci_ers_result_t result;
42bfd33a 6007 int err;
9d5c8243 6008
aed5dec3 6009 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6010 dev_err(&pdev->dev,
6011 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6012 result = PCI_ERS_RESULT_DISCONNECT;
6013 } else {
6014 pci_set_master(pdev);
6015 pci_restore_state(pdev);
b94f2d77 6016 pci_save_state(pdev);
9d5c8243 6017
40a914fa
AD
6018 pci_enable_wake(pdev, PCI_D3hot, 0);
6019 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6020
40a914fa
AD
6021 igb_reset(adapter);
6022 wr32(E1000_WUS, ~0);
6023 result = PCI_ERS_RESULT_RECOVERED;
6024 }
9d5c8243 6025
ea943d41
JK
6026 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6027 if (err) {
6028 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6029 "failed 0x%0x\n", err);
6030 /* non-fatal, continue */
6031 }
40a914fa
AD
6032
6033 return result;
9d5c8243
AK
6034}
6035
6036/**
6037 * igb_io_resume - called when traffic can start flowing again.
6038 * @pdev: Pointer to PCI device
6039 *
6040 * This callback is called when the error recovery driver tells us that
6041 * its OK to resume normal operation. Implementation resembles the
6042 * second-half of the igb_resume routine.
6043 */
6044static void igb_io_resume(struct pci_dev *pdev)
6045{
6046 struct net_device *netdev = pci_get_drvdata(pdev);
6047 struct igb_adapter *adapter = netdev_priv(netdev);
6048
9d5c8243
AK
6049 if (netif_running(netdev)) {
6050 if (igb_up(adapter)) {
6051 dev_err(&pdev->dev, "igb_up failed after reset\n");
6052 return;
6053 }
6054 }
6055
6056 netif_device_attach(netdev);
6057
6058 /* let the f/w know that the h/w is now under the control of the
6059 * driver. */
6060 igb_get_hw_control(adapter);
9d5c8243
AK
6061}
6062
26ad9178
AD
6063static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6064 u8 qsel)
6065{
6066 u32 rar_low, rar_high;
6067 struct e1000_hw *hw = &adapter->hw;
6068
6069 /* HW expects these in little endian so we reverse the byte order
6070 * from network order (big endian) to little endian
6071 */
6072 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6073 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6074 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6075
6076 /* Indicate to hardware the Address is Valid. */
6077 rar_high |= E1000_RAH_AV;
6078
6079 if (hw->mac.type == e1000_82575)
6080 rar_high |= E1000_RAH_POOL_1 * qsel;
6081 else
6082 rar_high |= E1000_RAH_POOL_1 << qsel;
6083
6084 wr32(E1000_RAL(index), rar_low);
6085 wrfl();
6086 wr32(E1000_RAH(index), rar_high);
6087 wrfl();
6088}
6089
4ae196df
AD
6090static int igb_set_vf_mac(struct igb_adapter *adapter,
6091 int vf, unsigned char *mac_addr)
6092{
6093 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6094 /* VF MAC addresses start at end of receive addresses and moves
6095 * torwards the first, as a result a collision should not be possible */
6096 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6097
37680117 6098 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6099
26ad9178 6100 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6101
6102 return 0;
6103}
6104
8151d294
WM
6105static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6106{
6107 struct igb_adapter *adapter = netdev_priv(netdev);
6108 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6109 return -EINVAL;
6110 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6111 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6112 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6113 " change effective.");
6114 if (test_bit(__IGB_DOWN, &adapter->state)) {
6115 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6116 " but the PF device is not up.\n");
6117 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6118 " attempting to use the VF device.\n");
6119 }
6120 return igb_set_vf_mac(adapter, vf, mac);
6121}
6122
6123static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6124{
6125 return -EOPNOTSUPP;
6126}
6127
6128static int igb_ndo_get_vf_config(struct net_device *netdev,
6129 int vf, struct ifla_vf_info *ivi)
6130{
6131 struct igb_adapter *adapter = netdev_priv(netdev);
6132 if (vf >= adapter->vfs_allocated_count)
6133 return -EINVAL;
6134 ivi->vf = vf;
6135 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6136 ivi->tx_rate = 0;
6137 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6138 ivi->qos = adapter->vf_data[vf].pf_qos;
6139 return 0;
6140}
6141
4ae196df
AD
6142static void igb_vmm_control(struct igb_adapter *adapter)
6143{
6144 struct e1000_hw *hw = &adapter->hw;
10d8e907 6145 u32 reg;
4ae196df 6146
d4960307
AD
6147 /* replication is not supported for 82575 */
6148 if (hw->mac.type == e1000_82575)
4ae196df
AD
6149 return;
6150
10d8e907
AD
6151 /* enable replication vlan tag stripping */
6152 reg = rd32(E1000_RPLOLR);
6153 reg |= E1000_RPLOLR_STRVLAN;
6154 wr32(E1000_RPLOLR, reg);
6155
6156 /* notify HW that the MAC is adding vlan tags */
6157 reg = rd32(E1000_DTXCTL);
6158 reg |= E1000_DTXCTL_VLAN_ADDED;
6159 wr32(E1000_DTXCTL, reg);
6160
d4960307
AD
6161 if (adapter->vfs_allocated_count) {
6162 igb_vmdq_set_loopback_pf(hw, true);
6163 igb_vmdq_set_replication_pf(hw, true);
6164 } else {
6165 igb_vmdq_set_loopback_pf(hw, false);
6166 igb_vmdq_set_replication_pf(hw, false);
6167 }
4ae196df
AD
6168}
6169
9d5c8243 6170/* igb_main.c */