]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_main.c
drivers/net: avoid some skb->ip_summed initializations
[net-next-2.6.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
55cac248 53#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
54char igb_driver_name[] = "igb";
55char igb_driver_version[] = DRV_VERSION;
56static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 58static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 59
9d5c8243
AK
60static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62};
63
a3aa1884 64static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
2d064c06 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
85 /* required last entry */
86 {0, }
87};
88
89MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
90
91void igb_reset(struct igb_adapter *);
92static int igb_setup_all_tx_resources(struct igb_adapter *);
93static int igb_setup_all_rx_resources(struct igb_adapter *);
94static void igb_free_all_tx_resources(struct igb_adapter *);
95static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 96static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
97void igb_update_stats(struct igb_adapter *);
98static int igb_probe(struct pci_dev *, const struct pci_device_id *);
99static void __devexit igb_remove(struct pci_dev *pdev);
100static int igb_sw_init(struct igb_adapter *);
101static int igb_open(struct net_device *);
102static int igb_close(struct net_device *);
103static void igb_configure_tx(struct igb_adapter *);
104static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
105static void igb_clean_all_tx_rings(struct igb_adapter *);
106static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
107static void igb_clean_tx_ring(struct igb_ring *);
108static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 109static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
110static void igb_update_phy_info(unsigned long);
111static void igb_watchdog(unsigned long);
112static void igb_watchdog_task(struct work_struct *);
b1a436c3 113static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
114static struct net_device_stats *igb_get_stats(struct net_device *);
115static int igb_change_mtu(struct net_device *, int);
116static int igb_set_mac(struct net_device *, void *);
68d480c4 117static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
118static irqreturn_t igb_intr(int irq, void *);
119static irqreturn_t igb_intr_msi(int irq, void *);
120static irqreturn_t igb_msix_other(int irq, void *);
047e0030 121static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 122#ifdef CONFIG_IGB_DCA
047e0030 123static void igb_update_dca(struct igb_q_vector *);
fe4506b6 124static void igb_setup_dca(struct igb_adapter *);
421e02f0 125#endif /* CONFIG_IGB_DCA */
047e0030 126static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 127static int igb_poll(struct napi_struct *, int);
047e0030 128static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
129static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
130static void igb_tx_timeout(struct net_device *);
131static void igb_reset_task(struct work_struct *);
132static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
133static void igb_vlan_rx_add_vid(struct net_device *, u16);
134static void igb_vlan_rx_kill_vid(struct net_device *, u16);
135static void igb_restore_vlan(struct igb_adapter *);
26ad9178 136static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
137static void igb_ping_all_vfs(struct igb_adapter *);
138static void igb_msg_task(struct igb_adapter *);
4ae196df 139static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 140static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 141static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
142static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
143static int igb_ndo_set_vf_vlan(struct net_device *netdev,
144 int vf, u16 vlan, u8 qos);
145static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
146static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
147 struct ifla_vf_info *ivi);
9d5c8243 148
9d5c8243 149#ifdef CONFIG_PM
3fe7c4c9 150static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
151static int igb_resume(struct pci_dev *);
152#endif
153static void igb_shutdown(struct pci_dev *);
421e02f0 154#ifdef CONFIG_IGB_DCA
fe4506b6
JC
155static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
156static struct notifier_block dca_notifier = {
157 .notifier_call = igb_notify_dca,
158 .next = NULL,
159 .priority = 0
160};
161#endif
9d5c8243
AK
162#ifdef CONFIG_NET_POLL_CONTROLLER
163/* for netdump / net console */
164static void igb_netpoll(struct net_device *);
165#endif
37680117 166#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
167static unsigned int max_vfs = 0;
168module_param(max_vfs, uint, 0);
169MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
170 "per physical function");
171#endif /* CONFIG_PCI_IOV */
172
9d5c8243
AK
173static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
174 pci_channel_state_t);
175static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
176static void igb_io_resume(struct pci_dev *);
177
178static struct pci_error_handlers igb_err_handler = {
179 .error_detected = igb_io_error_detected,
180 .slot_reset = igb_io_slot_reset,
181 .resume = igb_io_resume,
182};
183
184
185static struct pci_driver igb_driver = {
186 .name = igb_driver_name,
187 .id_table = igb_pci_tbl,
188 .probe = igb_probe,
189 .remove = __devexit_p(igb_remove),
190#ifdef CONFIG_PM
191 /* Power Managment Hooks */
192 .suspend = igb_suspend,
193 .resume = igb_resume,
194#endif
195 .shutdown = igb_shutdown,
196 .err_handler = &igb_err_handler
197};
198
199MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
200MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
201MODULE_LICENSE("GPL");
202MODULE_VERSION(DRV_VERSION);
203
c97ec42a
TI
204struct igb_reg_info {
205 u32 ofs;
206 char *name;
207};
208
209static const struct igb_reg_info igb_reg_info_tbl[] = {
210
211 /* General Registers */
212 {E1000_CTRL, "CTRL"},
213 {E1000_STATUS, "STATUS"},
214 {E1000_CTRL_EXT, "CTRL_EXT"},
215
216 /* Interrupt Registers */
217 {E1000_ICR, "ICR"},
218
219 /* RX Registers */
220 {E1000_RCTL, "RCTL"},
221 {E1000_RDLEN(0), "RDLEN"},
222 {E1000_RDH(0), "RDH"},
223 {E1000_RDT(0), "RDT"},
224 {E1000_RXDCTL(0), "RXDCTL"},
225 {E1000_RDBAL(0), "RDBAL"},
226 {E1000_RDBAH(0), "RDBAH"},
227
228 /* TX Registers */
229 {E1000_TCTL, "TCTL"},
230 {E1000_TDBAL(0), "TDBAL"},
231 {E1000_TDBAH(0), "TDBAH"},
232 {E1000_TDLEN(0), "TDLEN"},
233 {E1000_TDH(0), "TDH"},
234 {E1000_TDT(0), "TDT"},
235 {E1000_TXDCTL(0), "TXDCTL"},
236 {E1000_TDFH, "TDFH"},
237 {E1000_TDFT, "TDFT"},
238 {E1000_TDFHS, "TDFHS"},
239 {E1000_TDFPC, "TDFPC"},
240
241 /* List Terminator */
242 {}
243};
244
245/*
246 * igb_regdump - register printout routine
247 */
248static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
249{
250 int n = 0;
251 char rname[16];
252 u32 regs[8];
253
254 switch (reginfo->ofs) {
255 case E1000_RDLEN(0):
256 for (n = 0; n < 4; n++)
257 regs[n] = rd32(E1000_RDLEN(n));
258 break;
259 case E1000_RDH(0):
260 for (n = 0; n < 4; n++)
261 regs[n] = rd32(E1000_RDH(n));
262 break;
263 case E1000_RDT(0):
264 for (n = 0; n < 4; n++)
265 regs[n] = rd32(E1000_RDT(n));
266 break;
267 case E1000_RXDCTL(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RXDCTL(n));
270 break;
271 case E1000_RDBAL(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDBAL(n));
274 break;
275 case E1000_RDBAH(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDBAH(n));
278 break;
279 case E1000_TDBAL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RDBAL(n));
282 break;
283 case E1000_TDBAH(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_TDBAH(n));
286 break;
287 case E1000_TDLEN(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_TDLEN(n));
290 break;
291 case E1000_TDH(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_TDH(n));
294 break;
295 case E1000_TDT(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDT(n));
298 break;
299 case E1000_TXDCTL(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TXDCTL(n));
302 break;
303 default:
304 printk(KERN_INFO "%-15s %08x\n",
305 reginfo->name, rd32(reginfo->ofs));
306 return;
307 }
308
309 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
310 printk(KERN_INFO "%-15s ", rname);
311 for (n = 0; n < 4; n++)
312 printk(KERN_CONT "%08x ", regs[n]);
313 printk(KERN_CONT "\n");
314}
315
316/*
317 * igb_dump - Print registers, tx-rings and rx-rings
318 */
319static void igb_dump(struct igb_adapter *adapter)
320{
321 struct net_device *netdev = adapter->netdev;
322 struct e1000_hw *hw = &adapter->hw;
323 struct igb_reg_info *reginfo;
324 int n = 0;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { u64 a; u64 b; } *u0;
328 struct igb_buffer *buffer_info;
329 struct igb_ring *rx_ring;
330 union e1000_adv_rx_desc *rx_desc;
331 u32 staterr;
332 int i = 0;
333
334 if (!netif_msg_hw(adapter))
335 return;
336
337 /* Print netdevice Info */
338 if (netdev) {
339 dev_info(&adapter->pdev->dev, "Net device Info\n");
340 printk(KERN_INFO "Device Name state "
341 "trans_start last_rx\n");
342 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
343 netdev->name,
344 netdev->state,
345 netdev->trans_start,
346 netdev->last_rx);
347 }
348
349 /* Print Registers */
350 dev_info(&adapter->pdev->dev, "Register Dump\n");
351 printk(KERN_INFO " Register Name Value\n");
352 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
353 reginfo->name; reginfo++) {
354 igb_regdump(hw, reginfo);
355 }
356
357 /* Print TX Ring Summary */
358 if (!netdev || !netif_running(netdev))
359 goto exit;
360
361 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
362 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
363 " leng ntw timestamp\n");
364 for (n = 0; n < adapter->num_tx_queues; n++) {
365 tx_ring = adapter->tx_ring[n];
366 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
367 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
368 n, tx_ring->next_to_use, tx_ring->next_to_clean,
369 (u64)buffer_info->dma,
370 buffer_info->length,
371 buffer_info->next_to_watch,
372 (u64)buffer_info->time_stamp);
373 }
374
375 /* Print TX Rings */
376 if (!netif_msg_tx_done(adapter))
377 goto rx_ring_summary;
378
379 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
380
381 /* Transmit Descriptor Formats
382 *
383 * Advanced Transmit Descriptor
384 * +--------------------------------------------------------------+
385 * 0 | Buffer Address [63:0] |
386 * +--------------------------------------------------------------+
387 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
388 * +--------------------------------------------------------------+
389 * 63 46 45 40 39 38 36 35 32 31 24 15 0
390 */
391
392 for (n = 0; n < adapter->num_tx_queues; n++) {
393 tx_ring = adapter->tx_ring[n];
394 printk(KERN_INFO "------------------------------------\n");
395 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "T [desc] [address 63:0 ] "
398 "[PlPOCIStDDM Ln] [bi->dma ] "
399 "leng ntw timestamp bi->skb\n");
400
401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
402 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
403 buffer_info = &tx_ring->buffer_info[i];
404 u0 = (struct my_u0 *)tx_desc;
405 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
406 " %04X %3X %016llX %p", i,
407 le64_to_cpu(u0->a),
408 le64_to_cpu(u0->b),
409 (u64)buffer_info->dma,
410 buffer_info->length,
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp,
413 buffer_info->skb);
414 if (i == tx_ring->next_to_use &&
415 i == tx_ring->next_to_clean)
416 printk(KERN_CONT " NTC/U\n");
417 else if (i == tx_ring->next_to_use)
418 printk(KERN_CONT " NTU\n");
419 else if (i == tx_ring->next_to_clean)
420 printk(KERN_CONT " NTC\n");
421 else
422 printk(KERN_CONT "\n");
423
424 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
425 print_hex_dump(KERN_INFO, "",
426 DUMP_PREFIX_ADDRESS,
427 16, 1, phys_to_virt(buffer_info->dma),
428 buffer_info->length, true);
429 }
430 }
431
432 /* Print RX Rings Summary */
433rx_ring_summary:
434 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
435 printk(KERN_INFO "Queue [NTU] [NTC]\n");
436 for (n = 0; n < adapter->num_rx_queues; n++) {
437 rx_ring = adapter->rx_ring[n];
438 printk(KERN_INFO " %5d %5X %5X\n", n,
439 rx_ring->next_to_use, rx_ring->next_to_clean);
440 }
441
442 /* Print RX Rings */
443 if (!netif_msg_rx_status(adapter))
444 goto exit;
445
446 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
447
448 /* Advanced Receive Descriptor (Read) Format
449 * 63 1 0
450 * +-----------------------------------------------------+
451 * 0 | Packet Buffer Address [63:1] |A0/NSE|
452 * +----------------------------------------------+------+
453 * 8 | Header Buffer Address [63:1] | DD |
454 * +-----------------------------------------------------+
455 *
456 *
457 * Advanced Receive Descriptor (Write-Back) Format
458 *
459 * 63 48 47 32 31 30 21 20 17 16 4 3 0
460 * +------------------------------------------------------+
461 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
462 * | Checksum Ident | | | | Type | Type |
463 * +------------------------------------------------------+
464 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
465 * +------------------------------------------------------+
466 * 63 48 47 32 31 20 19 0
467 */
468
469 for (n = 0; n < adapter->num_rx_queues; n++) {
470 rx_ring = adapter->rx_ring[n];
471 printk(KERN_INFO "------------------------------------\n");
472 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "R [desc] [ PktBuf A0] "
475 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
476 "<-- Adv Rx Read format\n");
477 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
478 "[vl er S cks ln] ---------------- [bi->skb] "
479 "<-- Adv Rx Write-Back format\n");
480
481 for (i = 0; i < rx_ring->count; i++) {
482 buffer_info = &rx_ring->buffer_info[i];
483 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
484 u0 = (struct my_u0 *)rx_desc;
485 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
486 if (staterr & E1000_RXD_STAT_DD) {
487 /* Descriptor Done */
488 printk(KERN_INFO "RWB[0x%03X] %016llX "
489 "%016llX ---------------- %p", i,
490 le64_to_cpu(u0->a),
491 le64_to_cpu(u0->b),
492 buffer_info->skb);
493 } else {
494 printk(KERN_INFO "R [0x%03X] %016llX "
495 "%016llX %016llX %p", i,
496 le64_to_cpu(u0->a),
497 le64_to_cpu(u0->b),
498 (u64)buffer_info->dma,
499 buffer_info->skb);
500
501 if (netif_msg_pktdata(adapter)) {
502 print_hex_dump(KERN_INFO, "",
503 DUMP_PREFIX_ADDRESS,
504 16, 1,
505 phys_to_virt(buffer_info->dma),
506 rx_ring->rx_buffer_len, true);
507 if (rx_ring->rx_buffer_len
508 < IGB_RXBUFFER_1024)
509 print_hex_dump(KERN_INFO, "",
510 DUMP_PREFIX_ADDRESS,
511 16, 1,
512 phys_to_virt(
513 buffer_info->page_dma +
514 buffer_info->page_offset),
515 PAGE_SIZE/2, true);
516 }
517 }
518
519 if (i == rx_ring->next_to_use)
520 printk(KERN_CONT " NTU\n");
521 else if (i == rx_ring->next_to_clean)
522 printk(KERN_CONT " NTC\n");
523 else
524 printk(KERN_CONT "\n");
525
526 }
527 }
528
529exit:
530 return;
531}
532
533
38c845c7
PO
534/**
535 * igb_read_clock - read raw cycle counter (to be used by time counter)
536 */
537static cycle_t igb_read_clock(const struct cyclecounter *tc)
538{
539 struct igb_adapter *adapter =
540 container_of(tc, struct igb_adapter, cycles);
541 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
542 u64 stamp = 0;
543 int shift = 0;
38c845c7 544
55cac248
AD
545 /*
546 * The timestamp latches on lowest register read. For the 82580
547 * the lowest register is SYSTIMR instead of SYSTIML. However we never
548 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
549 */
550 if (hw->mac.type == e1000_82580) {
551 stamp = rd32(E1000_SYSTIMR) >> 8;
552 shift = IGB_82580_TSYNC_SHIFT;
553 }
554
c5b9bd5e
AD
555 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
556 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
557 return stamp;
558}
559
9d5c8243 560/**
c041076a 561 * igb_get_hw_dev - return device
9d5c8243
AK
562 * used by hardware layer to print debugging information
563 **/
c041076a 564struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
565{
566 struct igb_adapter *adapter = hw->back;
c041076a 567 return adapter->netdev;
9d5c8243 568}
38c845c7 569
9d5c8243
AK
570/**
571 * igb_init_module - Driver Registration Routine
572 *
573 * igb_init_module is the first routine called when the driver is
574 * loaded. All it does is register with the PCI subsystem.
575 **/
576static int __init igb_init_module(void)
577{
578 int ret;
579 printk(KERN_INFO "%s - version %s\n",
580 igb_driver_string, igb_driver_version);
581
582 printk(KERN_INFO "%s\n", igb_copyright);
583
421e02f0 584#ifdef CONFIG_IGB_DCA
fe4506b6
JC
585 dca_register_notify(&dca_notifier);
586#endif
bbd98fe4 587 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
588 return ret;
589}
590
591module_init(igb_init_module);
592
593/**
594 * igb_exit_module - Driver Exit Cleanup Routine
595 *
596 * igb_exit_module is called just before the driver is removed
597 * from memory.
598 **/
599static void __exit igb_exit_module(void)
600{
421e02f0 601#ifdef CONFIG_IGB_DCA
fe4506b6
JC
602 dca_unregister_notify(&dca_notifier);
603#endif
9d5c8243
AK
604 pci_unregister_driver(&igb_driver);
605}
606
607module_exit(igb_exit_module);
608
26bc19ec
AD
609#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
610/**
611 * igb_cache_ring_register - Descriptor ring to register mapping
612 * @adapter: board private structure to initialize
613 *
614 * Once we know the feature-set enabled for the device, we'll cache
615 * the register offset the descriptor ring is assigned to.
616 **/
617static void igb_cache_ring_register(struct igb_adapter *adapter)
618{
ee1b9f06 619 int i = 0, j = 0;
047e0030 620 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
621
622 switch (adapter->hw.mac.type) {
623 case e1000_82576:
624 /* The queues are allocated for virtualization such that VF 0
625 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
626 * In order to avoid collision we start at the first free queue
627 * and continue consuming queues in the same sequence
628 */
ee1b9f06 629 if (adapter->vfs_allocated_count) {
a99955fc 630 for (; i < adapter->rss_queues; i++)
3025a446
AD
631 adapter->rx_ring[i]->reg_idx = rbase_offset +
632 Q_IDX_82576(i);
ee1b9f06 633 }
26bc19ec 634 case e1000_82575:
55cac248 635 case e1000_82580:
d2ba2ed8 636 case e1000_i350:
26bc19ec 637 default:
ee1b9f06 638 for (; i < adapter->num_rx_queues; i++)
3025a446 639 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 640 for (; j < adapter->num_tx_queues; j++)
3025a446 641 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
642 break;
643 }
644}
645
047e0030
AD
646static void igb_free_queues(struct igb_adapter *adapter)
647{
3025a446 648 int i;
047e0030 649
3025a446
AD
650 for (i = 0; i < adapter->num_tx_queues; i++) {
651 kfree(adapter->tx_ring[i]);
652 adapter->tx_ring[i] = NULL;
653 }
654 for (i = 0; i < adapter->num_rx_queues; i++) {
655 kfree(adapter->rx_ring[i]);
656 adapter->rx_ring[i] = NULL;
657 }
047e0030
AD
658 adapter->num_rx_queues = 0;
659 adapter->num_tx_queues = 0;
660}
661
9d5c8243
AK
662/**
663 * igb_alloc_queues - Allocate memory for all rings
664 * @adapter: board private structure to initialize
665 *
666 * We allocate one ring per queue at run-time since we don't know the
667 * number of queues at compile-time.
668 **/
669static int igb_alloc_queues(struct igb_adapter *adapter)
670{
3025a446 671 struct igb_ring *ring;
9d5c8243
AK
672 int i;
673
661086df 674 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
675 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
676 if (!ring)
677 goto err;
68fd9910 678 ring->count = adapter->tx_ring_count;
661086df 679 ring->queue_index = i;
59d71989 680 ring->dev = &adapter->pdev->dev;
e694e964 681 ring->netdev = adapter->netdev;
85ad76b2
AD
682 /* For 82575, context index must be unique per ring. */
683 if (adapter->hw.mac.type == e1000_82575)
684 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 685 adapter->tx_ring[i] = ring;
661086df 686 }
85ad76b2 687
9d5c8243 688 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
689 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
690 if (!ring)
691 goto err;
68fd9910 692 ring->count = adapter->rx_ring_count;
844290e5 693 ring->queue_index = i;
59d71989 694 ring->dev = &adapter->pdev->dev;
e694e964 695 ring->netdev = adapter->netdev;
4c844851 696 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
697 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
698 /* set flag indicating ring supports SCTP checksum offload */
699 if (adapter->hw.mac.type >= e1000_82576)
700 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 701 adapter->rx_ring[i] = ring;
9d5c8243 702 }
26bc19ec
AD
703
704 igb_cache_ring_register(adapter);
9d5c8243 705
047e0030 706 return 0;
a88f10ec 707
047e0030
AD
708err:
709 igb_free_queues(adapter);
d1a8c9e1 710
047e0030 711 return -ENOMEM;
a88f10ec
AD
712}
713
9d5c8243 714#define IGB_N0_QUEUE -1
047e0030 715static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
716{
717 u32 msixbm = 0;
047e0030 718 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 719 struct e1000_hw *hw = &adapter->hw;
2d064c06 720 u32 ivar, index;
047e0030
AD
721 int rx_queue = IGB_N0_QUEUE;
722 int tx_queue = IGB_N0_QUEUE;
723
724 if (q_vector->rx_ring)
725 rx_queue = q_vector->rx_ring->reg_idx;
726 if (q_vector->tx_ring)
727 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
728
729 switch (hw->mac.type) {
730 case e1000_82575:
9d5c8243
AK
731 /* The 82575 assigns vectors using a bitmask, which matches the
732 bitmask for the EICR/EIMS/EIMC registers. To assign one
733 or more queues to a vector, we write the appropriate bits
734 into the MSIXBM register for that vector. */
047e0030 735 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 736 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 737 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 738 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
739 if (!adapter->msix_entries && msix_vector == 0)
740 msixbm |= E1000_EIMS_OTHER;
9d5c8243 741 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 742 q_vector->eims_value = msixbm;
2d064c06
AD
743 break;
744 case e1000_82576:
26bc19ec 745 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
746 Each queue has a single entry in the table to which we write
747 a vector number along with a "valid" bit. Sadly, the layout
748 of the table is somewhat counterintuitive. */
749 if (rx_queue > IGB_N0_QUEUE) {
047e0030 750 index = (rx_queue & 0x7);
2d064c06 751 ivar = array_rd32(E1000_IVAR0, index);
047e0030 752 if (rx_queue < 8) {
26bc19ec
AD
753 /* vector goes into low byte of register */
754 ivar = ivar & 0xFFFFFF00;
755 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
756 } else {
757 /* vector goes into third byte of register */
758 ivar = ivar & 0xFF00FFFF;
759 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 760 }
2d064c06
AD
761 array_wr32(E1000_IVAR0, index, ivar);
762 }
763 if (tx_queue > IGB_N0_QUEUE) {
047e0030 764 index = (tx_queue & 0x7);
2d064c06 765 ivar = array_rd32(E1000_IVAR0, index);
047e0030 766 if (tx_queue < 8) {
26bc19ec
AD
767 /* vector goes into second byte of register */
768 ivar = ivar & 0xFFFF00FF;
769 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
770 } else {
771 /* vector goes into high byte of register */
772 ivar = ivar & 0x00FFFFFF;
773 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 774 }
2d064c06
AD
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
047e0030 777 q_vector->eims_value = 1 << msix_vector;
2d064c06 778 break;
55cac248 779 case e1000_82580:
d2ba2ed8 780 case e1000_i350:
55cac248
AD
781 /* 82580 uses the same table-based approach as 82576 but has fewer
782 entries as a result we carry over for queues greater than 4. */
783 if (rx_queue > IGB_N0_QUEUE) {
784 index = (rx_queue >> 1);
785 ivar = array_rd32(E1000_IVAR0, index);
786 if (rx_queue & 0x1) {
787 /* vector goes into third byte of register */
788 ivar = ivar & 0xFF00FFFF;
789 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
790 } else {
791 /* vector goes into low byte of register */
792 ivar = ivar & 0xFFFFFF00;
793 ivar |= msix_vector | E1000_IVAR_VALID;
794 }
795 array_wr32(E1000_IVAR0, index, ivar);
796 }
797 if (tx_queue > IGB_N0_QUEUE) {
798 index = (tx_queue >> 1);
799 ivar = array_rd32(E1000_IVAR0, index);
800 if (tx_queue & 0x1) {
801 /* vector goes into high byte of register */
802 ivar = ivar & 0x00FFFFFF;
803 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
804 } else {
805 /* vector goes into second byte of register */
806 ivar = ivar & 0xFFFF00FF;
807 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
808 }
809 array_wr32(E1000_IVAR0, index, ivar);
810 }
811 q_vector->eims_value = 1 << msix_vector;
812 break;
2d064c06
AD
813 default:
814 BUG();
815 break;
816 }
26b39276
AD
817
818 /* add q_vector eims value to global eims_enable_mask */
819 adapter->eims_enable_mask |= q_vector->eims_value;
820
821 /* configure q_vector to set itr on first interrupt */
822 q_vector->set_itr = 1;
9d5c8243
AK
823}
824
825/**
826 * igb_configure_msix - Configure MSI-X hardware
827 *
828 * igb_configure_msix sets up the hardware to properly
829 * generate MSI-X interrupts.
830 **/
831static void igb_configure_msix(struct igb_adapter *adapter)
832{
833 u32 tmp;
834 int i, vector = 0;
835 struct e1000_hw *hw = &adapter->hw;
836
837 adapter->eims_enable_mask = 0;
9d5c8243
AK
838
839 /* set vector for other causes, i.e. link changes */
2d064c06
AD
840 switch (hw->mac.type) {
841 case e1000_82575:
9d5c8243
AK
842 tmp = rd32(E1000_CTRL_EXT);
843 /* enable MSI-X PBA support*/
844 tmp |= E1000_CTRL_EXT_PBA_CLR;
845
846 /* Auto-Mask interrupts upon ICR read. */
847 tmp |= E1000_CTRL_EXT_EIAME;
848 tmp |= E1000_CTRL_EXT_IRCA;
849
850 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
851
852 /* enable msix_other interrupt */
853 array_wr32(E1000_MSIXBM(0), vector++,
854 E1000_EIMS_OTHER);
844290e5 855 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 856
2d064c06
AD
857 break;
858
859 case e1000_82576:
55cac248 860 case e1000_82580:
d2ba2ed8 861 case e1000_i350:
047e0030
AD
862 /* Turn on MSI-X capability first, or our settings
863 * won't stick. And it will take days to debug. */
864 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
865 E1000_GPIE_PBA | E1000_GPIE_EIAME |
866 E1000_GPIE_NSICR);
867
868 /* enable msix_other interrupt */
869 adapter->eims_other = 1 << vector;
2d064c06 870 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 871
047e0030 872 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
873 break;
874 default:
875 /* do nothing, since nothing else supports MSI-X */
876 break;
877 } /* switch (hw->mac.type) */
047e0030
AD
878
879 adapter->eims_enable_mask |= adapter->eims_other;
880
26b39276
AD
881 for (i = 0; i < adapter->num_q_vectors; i++)
882 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 883
9d5c8243
AK
884 wrfl();
885}
886
887/**
888 * igb_request_msix - Initialize MSI-X interrupts
889 *
890 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
891 * kernel.
892 **/
893static int igb_request_msix(struct igb_adapter *adapter)
894{
895 struct net_device *netdev = adapter->netdev;
047e0030 896 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
897 int i, err = 0, vector = 0;
898
047e0030 899 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 900 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
901 if (err)
902 goto out;
903 vector++;
904
905 for (i = 0; i < adapter->num_q_vectors; i++) {
906 struct igb_q_vector *q_vector = adapter->q_vector[i];
907
908 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
909
910 if (q_vector->rx_ring && q_vector->tx_ring)
911 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
912 q_vector->rx_ring->queue_index);
913 else if (q_vector->tx_ring)
914 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
915 q_vector->tx_ring->queue_index);
916 else if (q_vector->rx_ring)
917 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
918 q_vector->rx_ring->queue_index);
9d5c8243 919 else
047e0030
AD
920 sprintf(q_vector->name, "%s-unused", netdev->name);
921
9d5c8243 922 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 923 igb_msix_ring, 0, q_vector->name,
047e0030 924 q_vector);
9d5c8243
AK
925 if (err)
926 goto out;
9d5c8243
AK
927 vector++;
928 }
929
9d5c8243
AK
930 igb_configure_msix(adapter);
931 return 0;
932out:
933 return err;
934}
935
936static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
937{
938 if (adapter->msix_entries) {
939 pci_disable_msix(adapter->pdev);
940 kfree(adapter->msix_entries);
941 adapter->msix_entries = NULL;
047e0030 942 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 943 pci_disable_msi(adapter->pdev);
047e0030 944 }
9d5c8243
AK
945}
946
047e0030
AD
947/**
948 * igb_free_q_vectors - Free memory allocated for interrupt vectors
949 * @adapter: board private structure to initialize
950 *
951 * This function frees the memory allocated to the q_vectors. In addition if
952 * NAPI is enabled it will delete any references to the NAPI struct prior
953 * to freeing the q_vector.
954 **/
955static void igb_free_q_vectors(struct igb_adapter *adapter)
956{
957 int v_idx;
958
959 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
960 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
961 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
962 if (!q_vector)
963 continue;
047e0030
AD
964 netif_napi_del(&q_vector->napi);
965 kfree(q_vector);
966 }
967 adapter->num_q_vectors = 0;
968}
969
970/**
971 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
972 *
973 * This function resets the device so that it has 0 rx queues, tx queues, and
974 * MSI-X interrupts allocated.
975 */
976static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
977{
978 igb_free_queues(adapter);
979 igb_free_q_vectors(adapter);
980 igb_reset_interrupt_capability(adapter);
981}
9d5c8243
AK
982
983/**
984 * igb_set_interrupt_capability - set MSI or MSI-X if supported
985 *
986 * Attempt to configure interrupts using the best available
987 * capabilities of the hardware and kernel.
988 **/
989static void igb_set_interrupt_capability(struct igb_adapter *adapter)
990{
991 int err;
992 int numvecs, i;
993
83b7180d 994 /* Number of supported queues. */
a99955fc 995 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
996 if (adapter->vfs_allocated_count)
997 adapter->num_tx_queues = 1;
998 else
999 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1000
047e0030
AD
1001 /* start with one vector for every rx queue */
1002 numvecs = adapter->num_rx_queues;
1003
3ad2f3fb 1004 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1005 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1006 numvecs += adapter->num_tx_queues;
047e0030
AD
1007
1008 /* store the number of vectors reserved for queues */
1009 adapter->num_q_vectors = numvecs;
1010
1011 /* add 1 vector for link status interrupts */
1012 numvecs++;
9d5c8243
AK
1013 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1014 GFP_KERNEL);
1015 if (!adapter->msix_entries)
1016 goto msi_only;
1017
1018 for (i = 0; i < numvecs; i++)
1019 adapter->msix_entries[i].entry = i;
1020
1021 err = pci_enable_msix(adapter->pdev,
1022 adapter->msix_entries,
1023 numvecs);
1024 if (err == 0)
34a20e89 1025 goto out;
9d5c8243
AK
1026
1027 igb_reset_interrupt_capability(adapter);
1028
1029 /* If we can't do MSI-X, try MSI */
1030msi_only:
2a3abf6d
AD
1031#ifdef CONFIG_PCI_IOV
1032 /* disable SR-IOV for non MSI-X configurations */
1033 if (adapter->vf_data) {
1034 struct e1000_hw *hw = &adapter->hw;
1035 /* disable iov and allow time for transactions to clear */
1036 pci_disable_sriov(adapter->pdev);
1037 msleep(500);
1038
1039 kfree(adapter->vf_data);
1040 adapter->vf_data = NULL;
1041 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1042 msleep(100);
1043 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1044 }
1045#endif
4fc82adf 1046 adapter->vfs_allocated_count = 0;
a99955fc 1047 adapter->rss_queues = 1;
4fc82adf 1048 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1049 adapter->num_rx_queues = 1;
661086df 1050 adapter->num_tx_queues = 1;
047e0030 1051 adapter->num_q_vectors = 1;
9d5c8243 1052 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1053 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1054out:
661086df 1055 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 1056 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
1057}
1058
047e0030
AD
1059/**
1060 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * We allocate one q_vector per queue interrupt. If allocation fails we
1064 * return -ENOMEM.
1065 **/
1066static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1067{
1068 struct igb_q_vector *q_vector;
1069 struct e1000_hw *hw = &adapter->hw;
1070 int v_idx;
1071
1072 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1073 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1074 if (!q_vector)
1075 goto err_out;
1076 q_vector->adapter = adapter;
047e0030
AD
1077 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1078 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1079 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1080 adapter->q_vector[v_idx] = q_vector;
1081 }
1082 return 0;
1083
1084err_out:
fe0592b4 1085 igb_free_q_vectors(adapter);
047e0030
AD
1086 return -ENOMEM;
1087}
1088
1089static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1090 int ring_idx, int v_idx)
1091{
3025a446 1092 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1093
3025a446 1094 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1095 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1096 q_vector->itr_val = adapter->rx_itr_setting;
1097 if (q_vector->itr_val && q_vector->itr_val <= 3)
1098 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1099}
1100
1101static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1102 int ring_idx, int v_idx)
1103{
3025a446 1104 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1105
3025a446 1106 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1107 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1108 q_vector->itr_val = adapter->tx_itr_setting;
1109 if (q_vector->itr_val && q_vector->itr_val <= 3)
1110 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1111}
1112
1113/**
1114 * igb_map_ring_to_vector - maps allocated queues to vectors
1115 *
1116 * This function maps the recently allocated queues to vectors.
1117 **/
1118static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1119{
1120 int i;
1121 int v_idx = 0;
1122
1123 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1124 (adapter->num_q_vectors < adapter->num_tx_queues))
1125 return -ENOMEM;
1126
1127 if (adapter->num_q_vectors >=
1128 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1129 for (i = 0; i < adapter->num_rx_queues; i++)
1130 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1131 for (i = 0; i < adapter->num_tx_queues; i++)
1132 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1133 } else {
1134 for (i = 0; i < adapter->num_rx_queues; i++) {
1135 if (i < adapter->num_tx_queues)
1136 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1137 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1138 }
1139 for (; i < adapter->num_tx_queues; i++)
1140 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1141 }
1142 return 0;
1143}
1144
1145/**
1146 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1147 *
1148 * This function initializes the interrupts and allocates all of the queues.
1149 **/
1150static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1151{
1152 struct pci_dev *pdev = adapter->pdev;
1153 int err;
1154
1155 igb_set_interrupt_capability(adapter);
1156
1157 err = igb_alloc_q_vectors(adapter);
1158 if (err) {
1159 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1160 goto err_alloc_q_vectors;
1161 }
1162
1163 err = igb_alloc_queues(adapter);
1164 if (err) {
1165 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1166 goto err_alloc_queues;
1167 }
1168
1169 err = igb_map_ring_to_vector(adapter);
1170 if (err) {
1171 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1172 goto err_map_queues;
1173 }
1174
1175
1176 return 0;
1177err_map_queues:
1178 igb_free_queues(adapter);
1179err_alloc_queues:
1180 igb_free_q_vectors(adapter);
1181err_alloc_q_vectors:
1182 igb_reset_interrupt_capability(adapter);
1183 return err;
1184}
1185
9d5c8243
AK
1186/**
1187 * igb_request_irq - initialize interrupts
1188 *
1189 * Attempts to configure interrupts using the best available
1190 * capabilities of the hardware and kernel.
1191 **/
1192static int igb_request_irq(struct igb_adapter *adapter)
1193{
1194 struct net_device *netdev = adapter->netdev;
047e0030 1195 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1196 int err = 0;
1197
1198 if (adapter->msix_entries) {
1199 err = igb_request_msix(adapter);
844290e5 1200 if (!err)
9d5c8243 1201 goto request_done;
9d5c8243 1202 /* fall back to MSI */
047e0030 1203 igb_clear_interrupt_scheme(adapter);
9d5c8243 1204 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1205 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1206 igb_free_all_tx_resources(adapter);
1207 igb_free_all_rx_resources(adapter);
047e0030 1208 adapter->num_tx_queues = 1;
9d5c8243 1209 adapter->num_rx_queues = 1;
047e0030
AD
1210 adapter->num_q_vectors = 1;
1211 err = igb_alloc_q_vectors(adapter);
1212 if (err) {
1213 dev_err(&pdev->dev,
1214 "Unable to allocate memory for vectors\n");
1215 goto request_done;
1216 }
1217 err = igb_alloc_queues(adapter);
1218 if (err) {
1219 dev_err(&pdev->dev,
1220 "Unable to allocate memory for queues\n");
1221 igb_free_q_vectors(adapter);
1222 goto request_done;
1223 }
1224 igb_setup_all_tx_resources(adapter);
1225 igb_setup_all_rx_resources(adapter);
844290e5 1226 } else {
feeb2721 1227 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1228 }
844290e5 1229
7dfc16fa 1230 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1231 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1232 netdev->name, adapter);
9d5c8243
AK
1233 if (!err)
1234 goto request_done;
047e0030 1235
9d5c8243
AK
1236 /* fall back to legacy interrupts */
1237 igb_reset_interrupt_capability(adapter);
7dfc16fa 1238 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1239 }
1240
a0607fd3 1241 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1242 netdev->name, adapter);
9d5c8243 1243
6cb5e577 1244 if (err)
9d5c8243
AK
1245 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1246 err);
9d5c8243
AK
1247
1248request_done:
1249 return err;
1250}
1251
1252static void igb_free_irq(struct igb_adapter *adapter)
1253{
9d5c8243
AK
1254 if (adapter->msix_entries) {
1255 int vector = 0, i;
1256
047e0030 1257 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1258
047e0030
AD
1259 for (i = 0; i < adapter->num_q_vectors; i++) {
1260 struct igb_q_vector *q_vector = adapter->q_vector[i];
1261 free_irq(adapter->msix_entries[vector++].vector,
1262 q_vector);
1263 }
1264 } else {
1265 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1266 }
9d5c8243
AK
1267}
1268
1269/**
1270 * igb_irq_disable - Mask off interrupt generation on the NIC
1271 * @adapter: board private structure
1272 **/
1273static void igb_irq_disable(struct igb_adapter *adapter)
1274{
1275 struct e1000_hw *hw = &adapter->hw;
1276
25568a53
AD
1277 /*
1278 * we need to be careful when disabling interrupts. The VFs are also
1279 * mapped into these registers and so clearing the bits can cause
1280 * issues on the VF drivers so we only need to clear what we set
1281 */
9d5c8243 1282 if (adapter->msix_entries) {
2dfd1212
AD
1283 u32 regval = rd32(E1000_EIAM);
1284 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1285 wr32(E1000_EIMC, adapter->eims_enable_mask);
1286 regval = rd32(E1000_EIAC);
1287 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1288 }
844290e5
PW
1289
1290 wr32(E1000_IAM, 0);
9d5c8243
AK
1291 wr32(E1000_IMC, ~0);
1292 wrfl();
81a61859
ET
1293 if (adapter->msix_entries) {
1294 int i;
1295 for (i = 0; i < adapter->num_q_vectors; i++)
1296 synchronize_irq(adapter->msix_entries[i].vector);
1297 } else {
1298 synchronize_irq(adapter->pdev->irq);
1299 }
9d5c8243
AK
1300}
1301
1302/**
1303 * igb_irq_enable - Enable default interrupt generation settings
1304 * @adapter: board private structure
1305 **/
1306static void igb_irq_enable(struct igb_adapter *adapter)
1307{
1308 struct e1000_hw *hw = &adapter->hw;
1309
1310 if (adapter->msix_entries) {
25568a53 1311 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1312 u32 regval = rd32(E1000_EIAC);
1313 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1314 regval = rd32(E1000_EIAM);
1315 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1316 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1317 if (adapter->vfs_allocated_count) {
4ae196df 1318 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1319 ims |= E1000_IMS_VMMB;
1320 }
55cac248
AD
1321 if (adapter->hw.mac.type == e1000_82580)
1322 ims |= E1000_IMS_DRSTA;
1323
25568a53 1324 wr32(E1000_IMS, ims);
844290e5 1325 } else {
55cac248
AD
1326 wr32(E1000_IMS, IMS_ENABLE_MASK |
1327 E1000_IMS_DRSTA);
1328 wr32(E1000_IAM, IMS_ENABLE_MASK |
1329 E1000_IMS_DRSTA);
844290e5 1330 }
9d5c8243
AK
1331}
1332
1333static void igb_update_mng_vlan(struct igb_adapter *adapter)
1334{
51466239 1335 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1336 u16 vid = adapter->hw.mng_cookie.vlan_id;
1337 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1338
1339 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1340 /* add VID to filter table */
1341 igb_vfta_set(hw, vid, true);
1342 adapter->mng_vlan_id = vid;
1343 } else {
1344 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1345 }
1346
1347 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1348 (vid != old_vid) &&
1349 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1350 /* remove VID from filter table */
1351 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1352 }
1353}
1354
1355/**
1356 * igb_release_hw_control - release control of the h/w to f/w
1357 * @adapter: address of board private structure
1358 *
1359 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1360 * For ASF and Pass Through versions of f/w this means that the
1361 * driver is no longer loaded.
1362 *
1363 **/
1364static void igb_release_hw_control(struct igb_adapter *adapter)
1365{
1366 struct e1000_hw *hw = &adapter->hw;
1367 u32 ctrl_ext;
1368
1369 /* Let firmware take over control of h/w */
1370 ctrl_ext = rd32(E1000_CTRL_EXT);
1371 wr32(E1000_CTRL_EXT,
1372 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1373}
1374
9d5c8243
AK
1375/**
1376 * igb_get_hw_control - get control of the h/w from f/w
1377 * @adapter: address of board private structure
1378 *
1379 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1380 * For ASF and Pass Through versions of f/w this means that
1381 * the driver is loaded.
1382 *
1383 **/
1384static void igb_get_hw_control(struct igb_adapter *adapter)
1385{
1386 struct e1000_hw *hw = &adapter->hw;
1387 u32 ctrl_ext;
1388
1389 /* Let firmware know the driver has taken over */
1390 ctrl_ext = rd32(E1000_CTRL_EXT);
1391 wr32(E1000_CTRL_EXT,
1392 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1393}
1394
9d5c8243
AK
1395/**
1396 * igb_configure - configure the hardware for RX and TX
1397 * @adapter: private board structure
1398 **/
1399static void igb_configure(struct igb_adapter *adapter)
1400{
1401 struct net_device *netdev = adapter->netdev;
1402 int i;
1403
1404 igb_get_hw_control(adapter);
ff41f8dc 1405 igb_set_rx_mode(netdev);
9d5c8243
AK
1406
1407 igb_restore_vlan(adapter);
9d5c8243 1408
85b430b4 1409 igb_setup_tctl(adapter);
06cf2666 1410 igb_setup_mrqc(adapter);
9d5c8243 1411 igb_setup_rctl(adapter);
85b430b4
AD
1412
1413 igb_configure_tx(adapter);
9d5c8243 1414 igb_configure_rx(adapter);
662d7205
AD
1415
1416 igb_rx_fifo_flush_82575(&adapter->hw);
1417
c493ea45 1418 /* call igb_desc_unused which always leaves
9d5c8243
AK
1419 * at least 1 descriptor unused to make sure
1420 * next_to_use != next_to_clean */
1421 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1422 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1423 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1424 }
9d5c8243
AK
1425}
1426
88a268c1
NN
1427/**
1428 * igb_power_up_link - Power up the phy/serdes link
1429 * @adapter: address of board private structure
1430 **/
1431void igb_power_up_link(struct igb_adapter *adapter)
1432{
1433 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1434 igb_power_up_phy_copper(&adapter->hw);
1435 else
1436 igb_power_up_serdes_link_82575(&adapter->hw);
1437}
1438
1439/**
1440 * igb_power_down_link - Power down the phy/serdes link
1441 * @adapter: address of board private structure
1442 */
1443static void igb_power_down_link(struct igb_adapter *adapter)
1444{
1445 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1446 igb_power_down_phy_copper_82575(&adapter->hw);
1447 else
1448 igb_shutdown_serdes_link_82575(&adapter->hw);
1449}
9d5c8243
AK
1450
1451/**
1452 * igb_up - Open the interface and prepare it to handle traffic
1453 * @adapter: board private structure
1454 **/
9d5c8243
AK
1455int igb_up(struct igb_adapter *adapter)
1456{
1457 struct e1000_hw *hw = &adapter->hw;
1458 int i;
1459
1460 /* hardware has been reset, we need to reload some things */
1461 igb_configure(adapter);
1462
1463 clear_bit(__IGB_DOWN, &adapter->state);
1464
047e0030
AD
1465 for (i = 0; i < adapter->num_q_vectors; i++) {
1466 struct igb_q_vector *q_vector = adapter->q_vector[i];
1467 napi_enable(&q_vector->napi);
1468 }
844290e5 1469 if (adapter->msix_entries)
9d5c8243 1470 igb_configure_msix(adapter);
feeb2721
AD
1471 else
1472 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1473
1474 /* Clear any pending interrupts. */
1475 rd32(E1000_ICR);
1476 igb_irq_enable(adapter);
1477
d4960307
AD
1478 /* notify VFs that reset has been completed */
1479 if (adapter->vfs_allocated_count) {
1480 u32 reg_data = rd32(E1000_CTRL_EXT);
1481 reg_data |= E1000_CTRL_EXT_PFRSTD;
1482 wr32(E1000_CTRL_EXT, reg_data);
1483 }
1484
4cb9be7a
JB
1485 netif_tx_start_all_queues(adapter->netdev);
1486
25568a53
AD
1487 /* start the watchdog. */
1488 hw->mac.get_link_status = 1;
1489 schedule_work(&adapter->watchdog_task);
1490
9d5c8243
AK
1491 return 0;
1492}
1493
1494void igb_down(struct igb_adapter *adapter)
1495{
9d5c8243 1496 struct net_device *netdev = adapter->netdev;
330a6d6a 1497 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1498 u32 tctl, rctl;
1499 int i;
1500
1501 /* signal that we're down so the interrupt handler does not
1502 * reschedule our watchdog timer */
1503 set_bit(__IGB_DOWN, &adapter->state);
1504
1505 /* disable receives in the hardware */
1506 rctl = rd32(E1000_RCTL);
1507 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1508 /* flush and sleep below */
1509
fd2ea0a7 1510 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1511
1512 /* disable transmits in the hardware */
1513 tctl = rd32(E1000_TCTL);
1514 tctl &= ~E1000_TCTL_EN;
1515 wr32(E1000_TCTL, tctl);
1516 /* flush both disables and wait for them to finish */
1517 wrfl();
1518 msleep(10);
1519
047e0030
AD
1520 for (i = 0; i < adapter->num_q_vectors; i++) {
1521 struct igb_q_vector *q_vector = adapter->q_vector[i];
1522 napi_disable(&q_vector->napi);
1523 }
9d5c8243 1524
9d5c8243
AK
1525 igb_irq_disable(adapter);
1526
1527 del_timer_sync(&adapter->watchdog_timer);
1528 del_timer_sync(&adapter->phy_info_timer);
1529
9d5c8243 1530 netif_carrier_off(netdev);
04fe6358
AD
1531
1532 /* record the stats before reset*/
1533 igb_update_stats(adapter);
1534
9d5c8243
AK
1535 adapter->link_speed = 0;
1536 adapter->link_duplex = 0;
1537
3023682e
JK
1538 if (!pci_channel_offline(adapter->pdev))
1539 igb_reset(adapter);
9d5c8243
AK
1540 igb_clean_all_tx_rings(adapter);
1541 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1542#ifdef CONFIG_IGB_DCA
1543
1544 /* since we reset the hardware DCA settings were cleared */
1545 igb_setup_dca(adapter);
1546#endif
9d5c8243
AK
1547}
1548
1549void igb_reinit_locked(struct igb_adapter *adapter)
1550{
1551 WARN_ON(in_interrupt());
1552 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1553 msleep(1);
1554 igb_down(adapter);
1555 igb_up(adapter);
1556 clear_bit(__IGB_RESETTING, &adapter->state);
1557}
1558
1559void igb_reset(struct igb_adapter *adapter)
1560{
090b1795 1561 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1562 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1563 struct e1000_mac_info *mac = &hw->mac;
1564 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1565 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1566 u16 hwm;
1567
1568 /* Repartition Pba for greater than 9k mtu
1569 * To take effect CTRL.RST is required.
1570 */
fa4dfae0 1571 switch (mac->type) {
d2ba2ed8 1572 case e1000_i350:
55cac248
AD
1573 case e1000_82580:
1574 pba = rd32(E1000_RXPBS);
1575 pba = igb_rxpbs_adjust_82580(pba);
1576 break;
fa4dfae0 1577 case e1000_82576:
d249be54
AD
1578 pba = rd32(E1000_RXPBS);
1579 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1580 break;
1581 case e1000_82575:
1582 default:
1583 pba = E1000_PBA_34K;
1584 break;
2d064c06 1585 }
9d5c8243 1586
2d064c06
AD
1587 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1588 (mac->type < e1000_82576)) {
9d5c8243
AK
1589 /* adjust PBA for jumbo frames */
1590 wr32(E1000_PBA, pba);
1591
1592 /* To maintain wire speed transmits, the Tx FIFO should be
1593 * large enough to accommodate two full transmit packets,
1594 * rounded up to the next 1KB and expressed in KB. Likewise,
1595 * the Rx FIFO should be large enough to accommodate at least
1596 * one full receive packet and is similarly rounded up and
1597 * expressed in KB. */
1598 pba = rd32(E1000_PBA);
1599 /* upper 16 bits has Tx packet buffer allocation size in KB */
1600 tx_space = pba >> 16;
1601 /* lower 16 bits has Rx packet buffer allocation size in KB */
1602 pba &= 0xffff;
1603 /* the tx fifo also stores 16 bytes of information about the tx
1604 * but don't include ethernet FCS because hardware appends it */
1605 min_tx_space = (adapter->max_frame_size +
85e8d004 1606 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1607 ETH_FCS_LEN) * 2;
1608 min_tx_space = ALIGN(min_tx_space, 1024);
1609 min_tx_space >>= 10;
1610 /* software strips receive CRC, so leave room for it */
1611 min_rx_space = adapter->max_frame_size;
1612 min_rx_space = ALIGN(min_rx_space, 1024);
1613 min_rx_space >>= 10;
1614
1615 /* If current Tx allocation is less than the min Tx FIFO size,
1616 * and the min Tx FIFO size is less than the current Rx FIFO
1617 * allocation, take space away from current Rx allocation */
1618 if (tx_space < min_tx_space &&
1619 ((min_tx_space - tx_space) < pba)) {
1620 pba = pba - (min_tx_space - tx_space);
1621
1622 /* if short on rx space, rx wins and must trump tx
1623 * adjustment */
1624 if (pba < min_rx_space)
1625 pba = min_rx_space;
1626 }
2d064c06 1627 wr32(E1000_PBA, pba);
9d5c8243 1628 }
9d5c8243
AK
1629
1630 /* flow control settings */
1631 /* The high water mark must be low enough to fit one full frame
1632 * (or the size used for early receive) above it in the Rx FIFO.
1633 * Set it to the lower of:
1634 * - 90% of the Rx FIFO size, or
1635 * - the full Rx FIFO size minus one full frame */
1636 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1637 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1638
d405ea3e
AD
1639 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1640 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1641 fc->pause_time = 0xFFFF;
1642 fc->send_xon = 1;
0cce119a 1643 fc->current_mode = fc->requested_mode;
9d5c8243 1644
4ae196df
AD
1645 /* disable receive for all VFs and wait one second */
1646 if (adapter->vfs_allocated_count) {
1647 int i;
1648 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1649 adapter->vf_data[i].flags = 0;
4ae196df
AD
1650
1651 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1652 igb_ping_all_vfs(adapter);
4ae196df
AD
1653
1654 /* disable transmits and receives */
1655 wr32(E1000_VFRE, 0);
1656 wr32(E1000_VFTE, 0);
1657 }
1658
9d5c8243 1659 /* Allow time for pending master requests to run */
330a6d6a 1660 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1661 wr32(E1000_WUC, 0);
1662
330a6d6a 1663 if (hw->mac.ops.init_hw(hw))
090b1795 1664 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1665
55cac248
AD
1666 if (hw->mac.type == e1000_82580) {
1667 u32 reg = rd32(E1000_PCIEMISC);
1668 wr32(E1000_PCIEMISC,
1669 reg & ~E1000_PCIEMISC_LX_DECISION);
1670 }
88a268c1
NN
1671 if (!netif_running(adapter->netdev))
1672 igb_power_down_link(adapter);
1673
9d5c8243
AK
1674 igb_update_mng_vlan(adapter);
1675
1676 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1677 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1678
330a6d6a 1679 igb_get_phy_info(hw);
9d5c8243
AK
1680}
1681
2e5c6922 1682static const struct net_device_ops igb_netdev_ops = {
559e9c49 1683 .ndo_open = igb_open,
2e5c6922 1684 .ndo_stop = igb_close,
00829823 1685 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1686 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1687 .ndo_set_rx_mode = igb_set_rx_mode,
1688 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1689 .ndo_set_mac_address = igb_set_mac,
1690 .ndo_change_mtu = igb_change_mtu,
1691 .ndo_do_ioctl = igb_ioctl,
1692 .ndo_tx_timeout = igb_tx_timeout,
1693 .ndo_validate_addr = eth_validate_addr,
1694 .ndo_vlan_rx_register = igb_vlan_rx_register,
1695 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1696 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1697 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1698 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1699 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1700 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1701#ifdef CONFIG_NET_POLL_CONTROLLER
1702 .ndo_poll_controller = igb_netpoll,
1703#endif
1704};
1705
9d5c8243
AK
1706/**
1707 * igb_probe - Device Initialization Routine
1708 * @pdev: PCI device information struct
1709 * @ent: entry in igb_pci_tbl
1710 *
1711 * Returns 0 on success, negative on failure
1712 *
1713 * igb_probe initializes an adapter identified by a pci_dev structure.
1714 * The OS initialization, configuring of the adapter private structure,
1715 * and a hardware reset occur.
1716 **/
1717static int __devinit igb_probe(struct pci_dev *pdev,
1718 const struct pci_device_id *ent)
1719{
1720 struct net_device *netdev;
1721 struct igb_adapter *adapter;
1722 struct e1000_hw *hw;
4337e993
AD
1723 u16 eeprom_data = 0;
1724 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1725 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1726 unsigned long mmio_start, mmio_len;
2d6a5e95 1727 int err, pci_using_dac;
9d5c8243
AK
1728 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1729 u32 part_num;
1730
bded64a7
AG
1731 /* Catch broken hardware that put the wrong VF device ID in
1732 * the PCIe SR-IOV capability.
1733 */
1734 if (pdev->is_virtfn) {
1735 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1736 pci_name(pdev), pdev->vendor, pdev->device);
1737 return -EINVAL;
1738 }
1739
aed5dec3 1740 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1741 if (err)
1742 return err;
1743
1744 pci_using_dac = 0;
59d71989 1745 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1746 if (!err) {
59d71989 1747 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1748 if (!err)
1749 pci_using_dac = 1;
1750 } else {
59d71989 1751 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1752 if (err) {
59d71989 1753 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1754 if (err) {
1755 dev_err(&pdev->dev, "No usable DMA "
1756 "configuration, aborting\n");
1757 goto err_dma;
1758 }
1759 }
1760 }
1761
aed5dec3
AD
1762 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1763 IORESOURCE_MEM),
1764 igb_driver_name);
9d5c8243
AK
1765 if (err)
1766 goto err_pci_reg;
1767
19d5afd4 1768 pci_enable_pcie_error_reporting(pdev);
40a914fa 1769
9d5c8243 1770 pci_set_master(pdev);
c682fc23 1771 pci_save_state(pdev);
9d5c8243
AK
1772
1773 err = -ENOMEM;
1bfaf07b
AD
1774 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1775 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1776 if (!netdev)
1777 goto err_alloc_etherdev;
1778
1779 SET_NETDEV_DEV(netdev, &pdev->dev);
1780
1781 pci_set_drvdata(pdev, netdev);
1782 adapter = netdev_priv(netdev);
1783 adapter->netdev = netdev;
1784 adapter->pdev = pdev;
1785 hw = &adapter->hw;
1786 hw->back = adapter;
1787 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1788
1789 mmio_start = pci_resource_start(pdev, 0);
1790 mmio_len = pci_resource_len(pdev, 0);
1791
1792 err = -EIO;
28b0759c
AD
1793 hw->hw_addr = ioremap(mmio_start, mmio_len);
1794 if (!hw->hw_addr)
9d5c8243
AK
1795 goto err_ioremap;
1796
2e5c6922 1797 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1798 igb_set_ethtool_ops(netdev);
9d5c8243 1799 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1800
1801 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1802
1803 netdev->mem_start = mmio_start;
1804 netdev->mem_end = mmio_start + mmio_len;
1805
9d5c8243
AK
1806 /* PCI config space info */
1807 hw->vendor_id = pdev->vendor;
1808 hw->device_id = pdev->device;
1809 hw->revision_id = pdev->revision;
1810 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1811 hw->subsystem_device_id = pdev->subsystem_device;
1812
9d5c8243
AK
1813 /* Copy the default MAC, PHY and NVM function pointers */
1814 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1815 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1816 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1817 /* Initialize skew-specific constants */
1818 err = ei->get_invariants(hw);
1819 if (err)
450c87c8 1820 goto err_sw_init;
9d5c8243 1821
450c87c8 1822 /* setup the private structure */
9d5c8243
AK
1823 err = igb_sw_init(adapter);
1824 if (err)
1825 goto err_sw_init;
1826
1827 igb_get_bus_info_pcie(hw);
1828
1829 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1830
1831 /* Copper options */
1832 if (hw->phy.media_type == e1000_media_type_copper) {
1833 hw->phy.mdix = AUTO_ALL_MODES;
1834 hw->phy.disable_polarity_correction = false;
1835 hw->phy.ms_type = e1000_ms_hw_default;
1836 }
1837
1838 if (igb_check_reset_block(hw))
1839 dev_info(&pdev->dev,
1840 "PHY reset is blocked due to SOL/IDER session.\n");
1841
1842 netdev->features = NETIF_F_SG |
7d8eb29e 1843 NETIF_F_IP_CSUM |
9d5c8243
AK
1844 NETIF_F_HW_VLAN_TX |
1845 NETIF_F_HW_VLAN_RX |
1846 NETIF_F_HW_VLAN_FILTER;
1847
7d8eb29e 1848 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1849 netdev->features |= NETIF_F_TSO;
9d5c8243 1850 netdev->features |= NETIF_F_TSO6;
5c0999b7 1851 netdev->features |= NETIF_F_GRO;
d3352520 1852
48f29ffc
JK
1853 netdev->vlan_features |= NETIF_F_TSO;
1854 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1855 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1856 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1857 netdev->vlan_features |= NETIF_F_SG;
1858
9d5c8243
AK
1859 if (pci_using_dac)
1860 netdev->features |= NETIF_F_HIGHDMA;
1861
5b043fb0 1862 if (hw->mac.type >= e1000_82576)
b9473560
JB
1863 netdev->features |= NETIF_F_SCTP_CSUM;
1864
330a6d6a 1865 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1866
1867 /* before reading the NVM, reset the controller to put the device in a
1868 * known good starting state */
1869 hw->mac.ops.reset_hw(hw);
1870
1871 /* make sure the NVM is good */
1872 if (igb_validate_nvm_checksum(hw) < 0) {
1873 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1874 err = -EIO;
1875 goto err_eeprom;
1876 }
1877
1878 /* copy the MAC address out of the NVM */
1879 if (hw->mac.ops.read_mac_addr(hw))
1880 dev_err(&pdev->dev, "NVM Read Error\n");
1881
1882 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1883 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1884
1885 if (!is_valid_ether_addr(netdev->perm_addr)) {
1886 dev_err(&pdev->dev, "Invalid MAC Address\n");
1887 err = -EIO;
1888 goto err_eeprom;
1889 }
1890
c061b18d 1891 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1892 (unsigned long) adapter);
c061b18d 1893 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1894 (unsigned long) adapter);
9d5c8243
AK
1895
1896 INIT_WORK(&adapter->reset_task, igb_reset_task);
1897 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1898
450c87c8 1899 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1900 adapter->fc_autoneg = true;
1901 hw->mac.autoneg = true;
1902 hw->phy.autoneg_advertised = 0x2f;
1903
0cce119a
AD
1904 hw->fc.requested_mode = e1000_fc_default;
1905 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1906
9d5c8243
AK
1907 igb_validate_mdi_setting(hw);
1908
9d5c8243
AK
1909 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1910 * enable the ACPI Magic Packet filter
1911 */
1912
a2cf8b6c 1913 if (hw->bus.func == 0)
312c75ae 1914 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1915 else if (hw->mac.type == e1000_82580)
1916 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1917 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1918 &eeprom_data);
a2cf8b6c
AD
1919 else if (hw->bus.func == 1)
1920 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1921
1922 if (eeprom_data & eeprom_apme_mask)
1923 adapter->eeprom_wol |= E1000_WUFC_MAG;
1924
1925 /* now that we have the eeprom settings, apply the special cases where
1926 * the eeprom may be wrong or the board simply won't support wake on
1927 * lan on a particular port */
1928 switch (pdev->device) {
1929 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1930 adapter->eeprom_wol = 0;
1931 break;
1932 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1933 case E1000_DEV_ID_82576_FIBER:
1934 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1935 /* Wake events only supported on port A for dual fiber
1936 * regardless of eeprom setting */
1937 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1938 adapter->eeprom_wol = 0;
1939 break;
c8ea5ea9 1940 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 1941 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
1942 /* if quad port adapter, disable WoL on all but port A */
1943 if (global_quad_port_a != 0)
1944 adapter->eeprom_wol = 0;
1945 else
1946 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1947 /* Reset for multiple quad port adapters */
1948 if (++global_quad_port_a == 4)
1949 global_quad_port_a = 0;
1950 break;
9d5c8243
AK
1951 }
1952
1953 /* initialize the wol settings based on the eeprom settings */
1954 adapter->wol = adapter->eeprom_wol;
e1b86d84 1955 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1956
1957 /* reset the hardware with the new settings */
1958 igb_reset(adapter);
1959
1960 /* let the f/w know that the h/w is now under the control of the
1961 * driver. */
1962 igb_get_hw_control(adapter);
1963
9d5c8243
AK
1964 strcpy(netdev->name, "eth%d");
1965 err = register_netdev(netdev);
1966 if (err)
1967 goto err_register;
1968
b168dfc5
JB
1969 /* carrier off reporting is important to ethtool even BEFORE open */
1970 netif_carrier_off(netdev);
1971
421e02f0 1972#ifdef CONFIG_IGB_DCA
bbd98fe4 1973 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1974 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1975 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1976 igb_setup_dca(adapter);
1977 }
fe4506b6 1978
38c845c7 1979#endif
9d5c8243
AK
1980 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1981 /* print bus type/speed/width info */
7c510e4b 1982 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1983 netdev->name,
559e9c49 1984 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 1985 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 1986 "unknown"),
59c3de89
AD
1987 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1988 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1989 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1990 "unknown"),
7c510e4b 1991 netdev->dev_addr);
9d5c8243
AK
1992
1993 igb_read_part_num(hw, &part_num);
1994 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1995 (part_num >> 8), (part_num & 0xff));
1996
1997 dev_info(&pdev->dev,
1998 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1999 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2000 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
2001 adapter->num_rx_queues, adapter->num_tx_queues);
2002
9d5c8243
AK
2003 return 0;
2004
2005err_register:
2006 igb_release_hw_control(adapter);
2007err_eeprom:
2008 if (!igb_check_reset_block(hw))
f5f4cf08 2009 igb_reset_phy(hw);
9d5c8243
AK
2010
2011 if (hw->flash_address)
2012 iounmap(hw->flash_address);
9d5c8243 2013err_sw_init:
047e0030 2014 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2015 iounmap(hw->hw_addr);
2016err_ioremap:
2017 free_netdev(netdev);
2018err_alloc_etherdev:
559e9c49
AD
2019 pci_release_selected_regions(pdev,
2020 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2021err_pci_reg:
2022err_dma:
2023 pci_disable_device(pdev);
2024 return err;
2025}
2026
2027/**
2028 * igb_remove - Device Removal Routine
2029 * @pdev: PCI device information struct
2030 *
2031 * igb_remove is called by the PCI subsystem to alert the driver
2032 * that it should release a PCI device. The could be caused by a
2033 * Hot-Plug event, or because the driver is going to be removed from
2034 * memory.
2035 **/
2036static void __devexit igb_remove(struct pci_dev *pdev)
2037{
2038 struct net_device *netdev = pci_get_drvdata(pdev);
2039 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2040 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2041
2042 /* flush_scheduled work may reschedule our watchdog task, so
2043 * explicitly disable watchdog tasks from being rescheduled */
2044 set_bit(__IGB_DOWN, &adapter->state);
2045 del_timer_sync(&adapter->watchdog_timer);
2046 del_timer_sync(&adapter->phy_info_timer);
2047
2048 flush_scheduled_work();
2049
421e02f0 2050#ifdef CONFIG_IGB_DCA
7dfc16fa 2051 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2052 dev_info(&pdev->dev, "DCA disabled\n");
2053 dca_remove_requester(&pdev->dev);
7dfc16fa 2054 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2055 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2056 }
2057#endif
2058
9d5c8243
AK
2059 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2060 * would have already happened in close and is redundant. */
2061 igb_release_hw_control(adapter);
2062
2063 unregister_netdev(netdev);
2064
047e0030 2065 igb_clear_interrupt_scheme(adapter);
9d5c8243 2066
37680117
AD
2067#ifdef CONFIG_PCI_IOV
2068 /* reclaim resources allocated to VFs */
2069 if (adapter->vf_data) {
2070 /* disable iov and allow time for transactions to clear */
2071 pci_disable_sriov(pdev);
2072 msleep(500);
2073
2074 kfree(adapter->vf_data);
2075 adapter->vf_data = NULL;
2076 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2077 msleep(100);
2078 dev_info(&pdev->dev, "IOV Disabled\n");
2079 }
2080#endif
559e9c49 2081
28b0759c
AD
2082 iounmap(hw->hw_addr);
2083 if (hw->flash_address)
2084 iounmap(hw->flash_address);
559e9c49
AD
2085 pci_release_selected_regions(pdev,
2086 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2087
2088 free_netdev(netdev);
2089
19d5afd4 2090 pci_disable_pcie_error_reporting(pdev);
40a914fa 2091
9d5c8243
AK
2092 pci_disable_device(pdev);
2093}
2094
a6b623e0
AD
2095/**
2096 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2097 * @adapter: board private structure to initialize
2098 *
2099 * This function initializes the vf specific data storage and then attempts to
2100 * allocate the VFs. The reason for ordering it this way is because it is much
2101 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2102 * the memory for the VFs.
2103 **/
2104static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2105{
2106#ifdef CONFIG_PCI_IOV
2107 struct pci_dev *pdev = adapter->pdev;
2108
a6b623e0
AD
2109 if (adapter->vfs_allocated_count) {
2110 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2111 sizeof(struct vf_data_storage),
2112 GFP_KERNEL);
2113 /* if allocation failed then we do not support SR-IOV */
2114 if (!adapter->vf_data) {
2115 adapter->vfs_allocated_count = 0;
2116 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2117 "Data Storage\n");
2118 }
2119 }
2120
2121 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2122 kfree(adapter->vf_data);
2123 adapter->vf_data = NULL;
2124#endif /* CONFIG_PCI_IOV */
2125 adapter->vfs_allocated_count = 0;
2126#ifdef CONFIG_PCI_IOV
2127 } else {
2128 unsigned char mac_addr[ETH_ALEN];
2129 int i;
2130 dev_info(&pdev->dev, "%d vfs allocated\n",
2131 adapter->vfs_allocated_count);
2132 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2133 random_ether_addr(mac_addr);
2134 igb_set_vf_mac(adapter, i, mac_addr);
2135 }
2136 }
2137#endif /* CONFIG_PCI_IOV */
2138}
2139
115f459a
AD
2140
2141/**
2142 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2143 * @adapter: board private structure to initialize
2144 *
2145 * igb_init_hw_timer initializes the function pointer and values for the hw
2146 * timer found in hardware.
2147 **/
2148static void igb_init_hw_timer(struct igb_adapter *adapter)
2149{
2150 struct e1000_hw *hw = &adapter->hw;
2151
2152 switch (hw->mac.type) {
d2ba2ed8 2153 case e1000_i350:
55cac248
AD
2154 case e1000_82580:
2155 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2156 adapter->cycles.read = igb_read_clock;
2157 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2158 adapter->cycles.mult = 1;
2159 /*
2160 * The 82580 timesync updates the system timer every 8ns by 8ns
2161 * and the value cannot be shifted. Instead we need to shift
2162 * the registers to generate a 64bit timer value. As a result
2163 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2164 * 24 in order to generate a larger value for synchronization.
2165 */
2166 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2167 /* disable system timer temporarily by setting bit 31 */
2168 wr32(E1000_TSAUXC, 0x80000000);
2169 wrfl();
2170
2171 /* Set registers so that rollover occurs soon to test this. */
2172 wr32(E1000_SYSTIMR, 0x00000000);
2173 wr32(E1000_SYSTIML, 0x80000000);
2174 wr32(E1000_SYSTIMH, 0x000000FF);
2175 wrfl();
2176
2177 /* enable system timer by clearing bit 31 */
2178 wr32(E1000_TSAUXC, 0x0);
2179 wrfl();
2180
2181 timecounter_init(&adapter->clock,
2182 &adapter->cycles,
2183 ktime_to_ns(ktime_get_real()));
2184 /*
2185 * Synchronize our NIC clock against system wall clock. NIC
2186 * time stamp reading requires ~3us per sample, each sample
2187 * was pretty stable even under load => only require 10
2188 * samples for each offset comparison.
2189 */
2190 memset(&adapter->compare, 0, sizeof(adapter->compare));
2191 adapter->compare.source = &adapter->clock;
2192 adapter->compare.target = ktime_get_real;
2193 adapter->compare.num_samples = 10;
2194 timecompare_update(&adapter->compare, 0);
2195 break;
115f459a
AD
2196 case e1000_82576:
2197 /*
2198 * Initialize hardware timer: we keep it running just in case
2199 * that some program needs it later on.
2200 */
2201 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2202 adapter->cycles.read = igb_read_clock;
2203 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2204 adapter->cycles.mult = 1;
2205 /**
2206 * Scale the NIC clock cycle by a large factor so that
2207 * relatively small clock corrections can be added or
2208 * substracted at each clock tick. The drawbacks of a large
2209 * factor are a) that the clock register overflows more quickly
2210 * (not such a big deal) and b) that the increment per tick has
2211 * to fit into 24 bits. As a result we need to use a shift of
2212 * 19 so we can fit a value of 16 into the TIMINCA register.
2213 */
2214 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2215 wr32(E1000_TIMINCA,
2216 (1 << E1000_TIMINCA_16NS_SHIFT) |
2217 (16 << IGB_82576_TSYNC_SHIFT));
2218
2219 /* Set registers so that rollover occurs soon to test this. */
2220 wr32(E1000_SYSTIML, 0x00000000);
2221 wr32(E1000_SYSTIMH, 0xFF800000);
2222 wrfl();
2223
2224 timecounter_init(&adapter->clock,
2225 &adapter->cycles,
2226 ktime_to_ns(ktime_get_real()));
2227 /*
2228 * Synchronize our NIC clock against system wall clock. NIC
2229 * time stamp reading requires ~3us per sample, each sample
2230 * was pretty stable even under load => only require 10
2231 * samples for each offset comparison.
2232 */
2233 memset(&adapter->compare, 0, sizeof(adapter->compare));
2234 adapter->compare.source = &adapter->clock;
2235 adapter->compare.target = ktime_get_real;
2236 adapter->compare.num_samples = 10;
2237 timecompare_update(&adapter->compare, 0);
2238 break;
2239 case e1000_82575:
2240 /* 82575 does not support timesync */
2241 default:
2242 break;
2243 }
2244
2245}
2246
9d5c8243
AK
2247/**
2248 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2249 * @adapter: board private structure to initialize
2250 *
2251 * igb_sw_init initializes the Adapter private data structure.
2252 * Fields are initialized based on PCI device information and
2253 * OS network device settings (MTU size).
2254 **/
2255static int __devinit igb_sw_init(struct igb_adapter *adapter)
2256{
2257 struct e1000_hw *hw = &adapter->hw;
2258 struct net_device *netdev = adapter->netdev;
2259 struct pci_dev *pdev = adapter->pdev;
2260
2261 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2262
68fd9910
AD
2263 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2264 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2265 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2266 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2267
9d5c8243
AK
2268 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2269 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2270
a6b623e0
AD
2271#ifdef CONFIG_PCI_IOV
2272 if (hw->mac.type == e1000_82576)
c0f2276f 2273 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
a6b623e0
AD
2274
2275#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2276 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2277
2278 /*
2279 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2280 * then we should combine the queues into a queue pair in order to
2281 * conserve interrupts due to limited supply
2282 */
2283 if ((adapter->rss_queues > 4) ||
2284 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2285 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2286
a6b623e0 2287 /* This call may decrease the number of queues */
047e0030 2288 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2289 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2290 return -ENOMEM;
2291 }
2292
115f459a 2293 igb_init_hw_timer(adapter);
a6b623e0
AD
2294 igb_probe_vfs(adapter);
2295
9d5c8243
AK
2296 /* Explicitly disable IRQ since the NIC can be in any state. */
2297 igb_irq_disable(adapter);
2298
2299 set_bit(__IGB_DOWN, &adapter->state);
2300 return 0;
2301}
2302
2303/**
2304 * igb_open - Called when a network interface is made active
2305 * @netdev: network interface device structure
2306 *
2307 * Returns 0 on success, negative value on failure
2308 *
2309 * The open entry point is called when a network interface is made
2310 * active by the system (IFF_UP). At this point all resources needed
2311 * for transmit and receive operations are allocated, the interrupt
2312 * handler is registered with the OS, the watchdog timer is started,
2313 * and the stack is notified that the interface is ready.
2314 **/
2315static int igb_open(struct net_device *netdev)
2316{
2317 struct igb_adapter *adapter = netdev_priv(netdev);
2318 struct e1000_hw *hw = &adapter->hw;
2319 int err;
2320 int i;
2321
2322 /* disallow open during test */
2323 if (test_bit(__IGB_TESTING, &adapter->state))
2324 return -EBUSY;
2325
b168dfc5
JB
2326 netif_carrier_off(netdev);
2327
9d5c8243
AK
2328 /* allocate transmit descriptors */
2329 err = igb_setup_all_tx_resources(adapter);
2330 if (err)
2331 goto err_setup_tx;
2332
2333 /* allocate receive descriptors */
2334 err = igb_setup_all_rx_resources(adapter);
2335 if (err)
2336 goto err_setup_rx;
2337
88a268c1 2338 igb_power_up_link(adapter);
9d5c8243 2339
9d5c8243
AK
2340 /* before we allocate an interrupt, we must be ready to handle it.
2341 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2342 * as soon as we call pci_request_irq, so we have to setup our
2343 * clean_rx handler before we do so. */
2344 igb_configure(adapter);
2345
2346 err = igb_request_irq(adapter);
2347 if (err)
2348 goto err_req_irq;
2349
2350 /* From here on the code is the same as igb_up() */
2351 clear_bit(__IGB_DOWN, &adapter->state);
2352
047e0030
AD
2353 for (i = 0; i < adapter->num_q_vectors; i++) {
2354 struct igb_q_vector *q_vector = adapter->q_vector[i];
2355 napi_enable(&q_vector->napi);
2356 }
9d5c8243
AK
2357
2358 /* Clear any pending interrupts. */
2359 rd32(E1000_ICR);
844290e5
PW
2360
2361 igb_irq_enable(adapter);
2362
d4960307
AD
2363 /* notify VFs that reset has been completed */
2364 if (adapter->vfs_allocated_count) {
2365 u32 reg_data = rd32(E1000_CTRL_EXT);
2366 reg_data |= E1000_CTRL_EXT_PFRSTD;
2367 wr32(E1000_CTRL_EXT, reg_data);
2368 }
2369
d55b53ff
JK
2370 netif_tx_start_all_queues(netdev);
2371
25568a53
AD
2372 /* start the watchdog. */
2373 hw->mac.get_link_status = 1;
2374 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2375
2376 return 0;
2377
2378err_req_irq:
2379 igb_release_hw_control(adapter);
88a268c1 2380 igb_power_down_link(adapter);
9d5c8243
AK
2381 igb_free_all_rx_resources(adapter);
2382err_setup_rx:
2383 igb_free_all_tx_resources(adapter);
2384err_setup_tx:
2385 igb_reset(adapter);
2386
2387 return err;
2388}
2389
2390/**
2391 * igb_close - Disables a network interface
2392 * @netdev: network interface device structure
2393 *
2394 * Returns 0, this is not allowed to fail
2395 *
2396 * The close entry point is called when an interface is de-activated
2397 * by the OS. The hardware is still under the driver's control, but
2398 * needs to be disabled. A global MAC reset is issued to stop the
2399 * hardware, and all transmit and receive resources are freed.
2400 **/
2401static int igb_close(struct net_device *netdev)
2402{
2403 struct igb_adapter *adapter = netdev_priv(netdev);
2404
2405 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2406 igb_down(adapter);
2407
2408 igb_free_irq(adapter);
2409
2410 igb_free_all_tx_resources(adapter);
2411 igb_free_all_rx_resources(adapter);
2412
9d5c8243
AK
2413 return 0;
2414}
2415
2416/**
2417 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2418 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2419 *
2420 * Return 0 on success, negative on failure
2421 **/
80785298 2422int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2423{
59d71989 2424 struct device *dev = tx_ring->dev;
9d5c8243
AK
2425 int size;
2426
2427 size = sizeof(struct igb_buffer) * tx_ring->count;
2428 tx_ring->buffer_info = vmalloc(size);
2429 if (!tx_ring->buffer_info)
2430 goto err;
2431 memset(tx_ring->buffer_info, 0, size);
2432
2433 /* round up to nearest 4K */
85e8d004 2434 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2435 tx_ring->size = ALIGN(tx_ring->size, 4096);
2436
59d71989
AD
2437 tx_ring->desc = dma_alloc_coherent(dev,
2438 tx_ring->size,
2439 &tx_ring->dma,
2440 GFP_KERNEL);
9d5c8243
AK
2441
2442 if (!tx_ring->desc)
2443 goto err;
2444
9d5c8243
AK
2445 tx_ring->next_to_use = 0;
2446 tx_ring->next_to_clean = 0;
9d5c8243
AK
2447 return 0;
2448
2449err:
2450 vfree(tx_ring->buffer_info);
59d71989 2451 dev_err(dev,
9d5c8243
AK
2452 "Unable to allocate memory for the transmit descriptor ring\n");
2453 return -ENOMEM;
2454}
2455
2456/**
2457 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2458 * (Descriptors) for all queues
2459 * @adapter: board private structure
2460 *
2461 * Return 0 on success, negative on failure
2462 **/
2463static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2464{
439705e1 2465 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2466 int i, err = 0;
2467
2468 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2469 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2470 if (err) {
439705e1 2471 dev_err(&pdev->dev,
9d5c8243
AK
2472 "Allocation for Tx Queue %u failed\n", i);
2473 for (i--; i >= 0; i--)
3025a446 2474 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2475 break;
2476 }
2477 }
2478
a99955fc 2479 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2480 int r_idx = i % adapter->num_tx_queues;
3025a446 2481 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2482 }
9d5c8243
AK
2483 return err;
2484}
2485
2486/**
85b430b4
AD
2487 * igb_setup_tctl - configure the transmit control registers
2488 * @adapter: Board private structure
9d5c8243 2489 **/
d7ee5b3a 2490void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2491{
9d5c8243
AK
2492 struct e1000_hw *hw = &adapter->hw;
2493 u32 tctl;
9d5c8243 2494
85b430b4
AD
2495 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2496 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2497
2498 /* Program the Transmit Control Register */
9d5c8243
AK
2499 tctl = rd32(E1000_TCTL);
2500 tctl &= ~E1000_TCTL_CT;
2501 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2502 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2503
2504 igb_config_collision_dist(hw);
2505
9d5c8243
AK
2506 /* Enable transmits */
2507 tctl |= E1000_TCTL_EN;
2508
2509 wr32(E1000_TCTL, tctl);
2510}
2511
85b430b4
AD
2512/**
2513 * igb_configure_tx_ring - Configure transmit ring after Reset
2514 * @adapter: board private structure
2515 * @ring: tx ring to configure
2516 *
2517 * Configure a transmit ring after a reset.
2518 **/
d7ee5b3a
AD
2519void igb_configure_tx_ring(struct igb_adapter *adapter,
2520 struct igb_ring *ring)
85b430b4
AD
2521{
2522 struct e1000_hw *hw = &adapter->hw;
2523 u32 txdctl;
2524 u64 tdba = ring->dma;
2525 int reg_idx = ring->reg_idx;
2526
2527 /* disable the queue */
2528 txdctl = rd32(E1000_TXDCTL(reg_idx));
2529 wr32(E1000_TXDCTL(reg_idx),
2530 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2531 wrfl();
2532 mdelay(10);
2533
2534 wr32(E1000_TDLEN(reg_idx),
2535 ring->count * sizeof(union e1000_adv_tx_desc));
2536 wr32(E1000_TDBAL(reg_idx),
2537 tdba & 0x00000000ffffffffULL);
2538 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2539
fce99e34
AD
2540 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2541 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2542 writel(0, ring->head);
2543 writel(0, ring->tail);
85b430b4
AD
2544
2545 txdctl |= IGB_TX_PTHRESH;
2546 txdctl |= IGB_TX_HTHRESH << 8;
2547 txdctl |= IGB_TX_WTHRESH << 16;
2548
2549 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2550 wr32(E1000_TXDCTL(reg_idx), txdctl);
2551}
2552
2553/**
2554 * igb_configure_tx - Configure transmit Unit after Reset
2555 * @adapter: board private structure
2556 *
2557 * Configure the Tx unit of the MAC after a reset.
2558 **/
2559static void igb_configure_tx(struct igb_adapter *adapter)
2560{
2561 int i;
2562
2563 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2564 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2565}
2566
9d5c8243
AK
2567/**
2568 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2569 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2570 *
2571 * Returns 0 on success, negative on failure
2572 **/
80785298 2573int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2574{
59d71989 2575 struct device *dev = rx_ring->dev;
9d5c8243
AK
2576 int size, desc_len;
2577
2578 size = sizeof(struct igb_buffer) * rx_ring->count;
2579 rx_ring->buffer_info = vmalloc(size);
2580 if (!rx_ring->buffer_info)
2581 goto err;
2582 memset(rx_ring->buffer_info, 0, size);
2583
2584 desc_len = sizeof(union e1000_adv_rx_desc);
2585
2586 /* Round up to nearest 4K */
2587 rx_ring->size = rx_ring->count * desc_len;
2588 rx_ring->size = ALIGN(rx_ring->size, 4096);
2589
59d71989
AD
2590 rx_ring->desc = dma_alloc_coherent(dev,
2591 rx_ring->size,
2592 &rx_ring->dma,
2593 GFP_KERNEL);
9d5c8243
AK
2594
2595 if (!rx_ring->desc)
2596 goto err;
2597
2598 rx_ring->next_to_clean = 0;
2599 rx_ring->next_to_use = 0;
9d5c8243 2600
9d5c8243
AK
2601 return 0;
2602
2603err:
2604 vfree(rx_ring->buffer_info);
439705e1 2605 rx_ring->buffer_info = NULL;
59d71989
AD
2606 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2607 " ring\n");
9d5c8243
AK
2608 return -ENOMEM;
2609}
2610
2611/**
2612 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2613 * (Descriptors) for all queues
2614 * @adapter: board private structure
2615 *
2616 * Return 0 on success, negative on failure
2617 **/
2618static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2619{
439705e1 2620 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2621 int i, err = 0;
2622
2623 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2624 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2625 if (err) {
439705e1 2626 dev_err(&pdev->dev,
9d5c8243
AK
2627 "Allocation for Rx Queue %u failed\n", i);
2628 for (i--; i >= 0; i--)
3025a446 2629 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2630 break;
2631 }
2632 }
2633
2634 return err;
2635}
2636
06cf2666
AD
2637/**
2638 * igb_setup_mrqc - configure the multiple receive queue control registers
2639 * @adapter: Board private structure
2640 **/
2641static void igb_setup_mrqc(struct igb_adapter *adapter)
2642{
2643 struct e1000_hw *hw = &adapter->hw;
2644 u32 mrqc, rxcsum;
2645 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2646 union e1000_reta {
2647 u32 dword;
2648 u8 bytes[4];
2649 } reta;
2650 static const u8 rsshash[40] = {
2651 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2652 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2653 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2654 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2655
2656 /* Fill out hash function seeds */
2657 for (j = 0; j < 10; j++) {
2658 u32 rsskey = rsshash[(j * 4)];
2659 rsskey |= rsshash[(j * 4) + 1] << 8;
2660 rsskey |= rsshash[(j * 4) + 2] << 16;
2661 rsskey |= rsshash[(j * 4) + 3] << 24;
2662 array_wr32(E1000_RSSRK(0), j, rsskey);
2663 }
2664
a99955fc 2665 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2666
2667 if (adapter->vfs_allocated_count) {
2668 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2669 switch (hw->mac.type) {
d2ba2ed8 2670 case e1000_i350:
55cac248
AD
2671 case e1000_82580:
2672 num_rx_queues = 1;
2673 shift = 0;
2674 break;
06cf2666
AD
2675 case e1000_82576:
2676 shift = 3;
2677 num_rx_queues = 2;
2678 break;
2679 case e1000_82575:
2680 shift = 2;
2681 shift2 = 6;
2682 default:
2683 break;
2684 }
2685 } else {
2686 if (hw->mac.type == e1000_82575)
2687 shift = 6;
2688 }
2689
2690 for (j = 0; j < (32 * 4); j++) {
2691 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2692 if (shift2)
2693 reta.bytes[j & 3] |= num_rx_queues << shift2;
2694 if ((j & 3) == 3)
2695 wr32(E1000_RETA(j >> 2), reta.dword);
2696 }
2697
2698 /*
2699 * Disable raw packet checksumming so that RSS hash is placed in
2700 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2701 * offloads as they are enabled by default
2702 */
2703 rxcsum = rd32(E1000_RXCSUM);
2704 rxcsum |= E1000_RXCSUM_PCSD;
2705
2706 if (adapter->hw.mac.type >= e1000_82576)
2707 /* Enable Receive Checksum Offload for SCTP */
2708 rxcsum |= E1000_RXCSUM_CRCOFL;
2709
2710 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2711 wr32(E1000_RXCSUM, rxcsum);
2712
2713 /* If VMDq is enabled then we set the appropriate mode for that, else
2714 * we default to RSS so that an RSS hash is calculated per packet even
2715 * if we are only using one queue */
2716 if (adapter->vfs_allocated_count) {
2717 if (hw->mac.type > e1000_82575) {
2718 /* Set the default pool for the PF's first queue */
2719 u32 vtctl = rd32(E1000_VT_CTL);
2720 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2721 E1000_VT_CTL_DISABLE_DEF_POOL);
2722 vtctl |= adapter->vfs_allocated_count <<
2723 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2724 wr32(E1000_VT_CTL, vtctl);
2725 }
a99955fc 2726 if (adapter->rss_queues > 1)
06cf2666
AD
2727 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2728 else
2729 mrqc = E1000_MRQC_ENABLE_VMDQ;
2730 } else {
2731 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2732 }
2733 igb_vmm_control(adapter);
2734
4478a9cd
AD
2735 /*
2736 * Generate RSS hash based on TCP port numbers and/or
2737 * IPv4/v6 src and dst addresses since UDP cannot be
2738 * hashed reliably due to IP fragmentation
2739 */
2740 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2741 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2742 E1000_MRQC_RSS_FIELD_IPV6 |
2743 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2744 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2745
2746 wr32(E1000_MRQC, mrqc);
2747}
2748
9d5c8243
AK
2749/**
2750 * igb_setup_rctl - configure the receive control registers
2751 * @adapter: Board private structure
2752 **/
d7ee5b3a 2753void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2754{
2755 struct e1000_hw *hw = &adapter->hw;
2756 u32 rctl;
9d5c8243
AK
2757
2758 rctl = rd32(E1000_RCTL);
2759
2760 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2761 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2762
69d728ba 2763 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2764 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2765
87cb7e8c
AK
2766 /*
2767 * enable stripping of CRC. It's unlikely this will break BMC
2768 * redirection as it did with e1000. Newer features require
2769 * that the HW strips the CRC.
73cd78f1 2770 */
87cb7e8c 2771 rctl |= E1000_RCTL_SECRC;
9d5c8243 2772
559e9c49 2773 /* disable store bad packets and clear size bits. */
ec54d7d6 2774 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2775
6ec43fe6
AD
2776 /* enable LPE to prevent packets larger than max_frame_size */
2777 rctl |= E1000_RCTL_LPE;
9d5c8243 2778
952f72a8
AD
2779 /* disable queue 0 to prevent tail write w/o re-config */
2780 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2781
e1739522
AD
2782 /* Attention!!! For SR-IOV PF driver operations you must enable
2783 * queue drop for all VF and PF queues to prevent head of line blocking
2784 * if an un-trusted VF does not provide descriptors to hardware.
2785 */
2786 if (adapter->vfs_allocated_count) {
e1739522
AD
2787 /* set all queue drop enable bits */
2788 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2789 }
2790
9d5c8243
AK
2791 wr32(E1000_RCTL, rctl);
2792}
2793
7d5753f0
AD
2794static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2795 int vfn)
2796{
2797 struct e1000_hw *hw = &adapter->hw;
2798 u32 vmolr;
2799
2800 /* if it isn't the PF check to see if VFs are enabled and
2801 * increase the size to support vlan tags */
2802 if (vfn < adapter->vfs_allocated_count &&
2803 adapter->vf_data[vfn].vlans_enabled)
2804 size += VLAN_TAG_SIZE;
2805
2806 vmolr = rd32(E1000_VMOLR(vfn));
2807 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2808 vmolr |= size | E1000_VMOLR_LPE;
2809 wr32(E1000_VMOLR(vfn), vmolr);
2810
2811 return 0;
2812}
2813
e1739522
AD
2814/**
2815 * igb_rlpml_set - set maximum receive packet size
2816 * @adapter: board private structure
2817 *
2818 * Configure maximum receivable packet size.
2819 **/
2820static void igb_rlpml_set(struct igb_adapter *adapter)
2821{
2822 u32 max_frame_size = adapter->max_frame_size;
2823 struct e1000_hw *hw = &adapter->hw;
2824 u16 pf_id = adapter->vfs_allocated_count;
2825
2826 if (adapter->vlgrp)
2827 max_frame_size += VLAN_TAG_SIZE;
2828
2829 /* if vfs are enabled we set RLPML to the largest possible request
2830 * size and set the VMOLR RLPML to the size we need */
2831 if (pf_id) {
2832 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2833 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2834 }
2835
2836 wr32(E1000_RLPML, max_frame_size);
2837}
2838
8151d294
WM
2839static inline void igb_set_vmolr(struct igb_adapter *adapter,
2840 int vfn, bool aupe)
7d5753f0
AD
2841{
2842 struct e1000_hw *hw = &adapter->hw;
2843 u32 vmolr;
2844
2845 /*
2846 * This register exists only on 82576 and newer so if we are older then
2847 * we should exit and do nothing
2848 */
2849 if (hw->mac.type < e1000_82576)
2850 return;
2851
2852 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2853 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2854 if (aupe)
2855 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2856 else
2857 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2858
2859 /* clear all bits that might not be set */
2860 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2861
a99955fc 2862 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2863 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2864 /*
2865 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2866 * multicast packets
2867 */
2868 if (vfn <= adapter->vfs_allocated_count)
2869 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2870
2871 wr32(E1000_VMOLR(vfn), vmolr);
2872}
2873
85b430b4
AD
2874/**
2875 * igb_configure_rx_ring - Configure a receive ring after Reset
2876 * @adapter: board private structure
2877 * @ring: receive ring to be configured
2878 *
2879 * Configure the Rx unit of the MAC after a reset.
2880 **/
d7ee5b3a
AD
2881void igb_configure_rx_ring(struct igb_adapter *adapter,
2882 struct igb_ring *ring)
85b430b4
AD
2883{
2884 struct e1000_hw *hw = &adapter->hw;
2885 u64 rdba = ring->dma;
2886 int reg_idx = ring->reg_idx;
952f72a8 2887 u32 srrctl, rxdctl;
85b430b4
AD
2888
2889 /* disable the queue */
2890 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2891 wr32(E1000_RXDCTL(reg_idx),
2892 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2893
2894 /* Set DMA base address registers */
2895 wr32(E1000_RDBAL(reg_idx),
2896 rdba & 0x00000000ffffffffULL);
2897 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2898 wr32(E1000_RDLEN(reg_idx),
2899 ring->count * sizeof(union e1000_adv_rx_desc));
2900
2901 /* initialize head and tail */
fce99e34
AD
2902 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2903 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2904 writel(0, ring->head);
2905 writel(0, ring->tail);
85b430b4 2906
952f72a8 2907 /* set descriptor configuration */
4c844851
AD
2908 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2909 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2910 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2911#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2912 srrctl |= IGB_RXBUFFER_16384 >>
2913 E1000_SRRCTL_BSIZEPKT_SHIFT;
2914#else
2915 srrctl |= (PAGE_SIZE / 2) >>
2916 E1000_SRRCTL_BSIZEPKT_SHIFT;
2917#endif
2918 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2919 } else {
4c844851 2920 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2921 E1000_SRRCTL_BSIZEPKT_SHIFT;
2922 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2923 }
757b77e2
NN
2924 if (hw->mac.type == e1000_82580)
2925 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
2926 /* Only set Drop Enable if we are supporting multiple queues */
2927 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2928 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2929
2930 wr32(E1000_SRRCTL(reg_idx), srrctl);
2931
7d5753f0 2932 /* set filtering for VMDQ pools */
8151d294 2933 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2934
85b430b4
AD
2935 /* enable receive descriptor fetching */
2936 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2937 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2938 rxdctl &= 0xFFF00000;
2939 rxdctl |= IGB_RX_PTHRESH;
2940 rxdctl |= IGB_RX_HTHRESH << 8;
2941 rxdctl |= IGB_RX_WTHRESH << 16;
2942 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2943}
2944
9d5c8243
AK
2945/**
2946 * igb_configure_rx - Configure receive Unit after Reset
2947 * @adapter: board private structure
2948 *
2949 * Configure the Rx unit of the MAC after a reset.
2950 **/
2951static void igb_configure_rx(struct igb_adapter *adapter)
2952{
9107584e 2953 int i;
9d5c8243 2954
68d480c4
AD
2955 /* set UTA to appropriate mode */
2956 igb_set_uta(adapter);
2957
26ad9178
AD
2958 /* set the correct pool for the PF default MAC address in entry 0 */
2959 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2960 adapter->vfs_allocated_count);
2961
06cf2666
AD
2962 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2963 * the Base and Length of the Rx Descriptor Ring */
2964 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2965 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2966}
2967
2968/**
2969 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2970 * @tx_ring: Tx descriptor ring for a specific queue
2971 *
2972 * Free all transmit software resources
2973 **/
68fd9910 2974void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2975{
3b644cf6 2976 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2977
2978 vfree(tx_ring->buffer_info);
2979 tx_ring->buffer_info = NULL;
2980
439705e1
AD
2981 /* if not set, then don't free */
2982 if (!tx_ring->desc)
2983 return;
2984
59d71989
AD
2985 dma_free_coherent(tx_ring->dev, tx_ring->size,
2986 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2987
2988 tx_ring->desc = NULL;
2989}
2990
2991/**
2992 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2993 * @adapter: board private structure
2994 *
2995 * Free all transmit software resources
2996 **/
2997static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2998{
2999 int i;
3000
3001 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3002 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3003}
3004
b1a436c3
AD
3005void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3006 struct igb_buffer *buffer_info)
9d5c8243 3007{
6366ad33
AD
3008 if (buffer_info->dma) {
3009 if (buffer_info->mapped_as_page)
59d71989 3010 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3011 buffer_info->dma,
3012 buffer_info->length,
59d71989 3013 DMA_TO_DEVICE);
6366ad33 3014 else
59d71989 3015 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3016 buffer_info->dma,
3017 buffer_info->length,
59d71989 3018 DMA_TO_DEVICE);
6366ad33
AD
3019 buffer_info->dma = 0;
3020 }
9d5c8243
AK
3021 if (buffer_info->skb) {
3022 dev_kfree_skb_any(buffer_info->skb);
3023 buffer_info->skb = NULL;
3024 }
3025 buffer_info->time_stamp = 0;
6366ad33
AD
3026 buffer_info->length = 0;
3027 buffer_info->next_to_watch = 0;
3028 buffer_info->mapped_as_page = false;
9d5c8243
AK
3029}
3030
3031/**
3032 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3033 * @tx_ring: ring to be cleaned
3034 **/
3b644cf6 3035static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3036{
3037 struct igb_buffer *buffer_info;
3038 unsigned long size;
3039 unsigned int i;
3040
3041 if (!tx_ring->buffer_info)
3042 return;
3043 /* Free all the Tx ring sk_buffs */
3044
3045 for (i = 0; i < tx_ring->count; i++) {
3046 buffer_info = &tx_ring->buffer_info[i];
80785298 3047 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3048 }
3049
3050 size = sizeof(struct igb_buffer) * tx_ring->count;
3051 memset(tx_ring->buffer_info, 0, size);
3052
3053 /* Zero out the descriptor ring */
9d5c8243
AK
3054 memset(tx_ring->desc, 0, tx_ring->size);
3055
3056 tx_ring->next_to_use = 0;
3057 tx_ring->next_to_clean = 0;
9d5c8243
AK
3058}
3059
3060/**
3061 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3062 * @adapter: board private structure
3063 **/
3064static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3065{
3066 int i;
3067
3068 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3069 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3070}
3071
3072/**
3073 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3074 * @rx_ring: ring to clean the resources from
3075 *
3076 * Free all receive software resources
3077 **/
68fd9910 3078void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3079{
3b644cf6 3080 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3081
3082 vfree(rx_ring->buffer_info);
3083 rx_ring->buffer_info = NULL;
3084
439705e1
AD
3085 /* if not set, then don't free */
3086 if (!rx_ring->desc)
3087 return;
3088
59d71989
AD
3089 dma_free_coherent(rx_ring->dev, rx_ring->size,
3090 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3091
3092 rx_ring->desc = NULL;
3093}
3094
3095/**
3096 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3097 * @adapter: board private structure
3098 *
3099 * Free all receive software resources
3100 **/
3101static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3102{
3103 int i;
3104
3105 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3106 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3107}
3108
3109/**
3110 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3111 * @rx_ring: ring to free buffers from
3112 **/
3b644cf6 3113static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3114{
3115 struct igb_buffer *buffer_info;
9d5c8243
AK
3116 unsigned long size;
3117 unsigned int i;
3118
3119 if (!rx_ring->buffer_info)
3120 return;
439705e1 3121
9d5c8243
AK
3122 /* Free all the Rx ring sk_buffs */
3123 for (i = 0; i < rx_ring->count; i++) {
3124 buffer_info = &rx_ring->buffer_info[i];
3125 if (buffer_info->dma) {
59d71989 3126 dma_unmap_single(rx_ring->dev,
80785298 3127 buffer_info->dma,
4c844851 3128 rx_ring->rx_buffer_len,
59d71989 3129 DMA_FROM_DEVICE);
9d5c8243
AK
3130 buffer_info->dma = 0;
3131 }
3132
3133 if (buffer_info->skb) {
3134 dev_kfree_skb(buffer_info->skb);
3135 buffer_info->skb = NULL;
3136 }
6ec43fe6 3137 if (buffer_info->page_dma) {
59d71989 3138 dma_unmap_page(rx_ring->dev,
80785298 3139 buffer_info->page_dma,
6ec43fe6 3140 PAGE_SIZE / 2,
59d71989 3141 DMA_FROM_DEVICE);
6ec43fe6
AD
3142 buffer_info->page_dma = 0;
3143 }
9d5c8243 3144 if (buffer_info->page) {
9d5c8243
AK
3145 put_page(buffer_info->page);
3146 buffer_info->page = NULL;
bf36c1a0 3147 buffer_info->page_offset = 0;
9d5c8243
AK
3148 }
3149 }
3150
9d5c8243
AK
3151 size = sizeof(struct igb_buffer) * rx_ring->count;
3152 memset(rx_ring->buffer_info, 0, size);
3153
3154 /* Zero out the descriptor ring */
3155 memset(rx_ring->desc, 0, rx_ring->size);
3156
3157 rx_ring->next_to_clean = 0;
3158 rx_ring->next_to_use = 0;
9d5c8243
AK
3159}
3160
3161/**
3162 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3163 * @adapter: board private structure
3164 **/
3165static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3166{
3167 int i;
3168
3169 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3170 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3171}
3172
3173/**
3174 * igb_set_mac - Change the Ethernet Address of the NIC
3175 * @netdev: network interface device structure
3176 * @p: pointer to an address structure
3177 *
3178 * Returns 0 on success, negative on failure
3179 **/
3180static int igb_set_mac(struct net_device *netdev, void *p)
3181{
3182 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3183 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3184 struct sockaddr *addr = p;
3185
3186 if (!is_valid_ether_addr(addr->sa_data))
3187 return -EADDRNOTAVAIL;
3188
3189 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3190 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3191
26ad9178
AD
3192 /* set the correct pool for the new PF MAC address in entry 0 */
3193 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3194 adapter->vfs_allocated_count);
e1739522 3195
9d5c8243
AK
3196 return 0;
3197}
3198
3199/**
68d480c4 3200 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3201 * @netdev: network interface device structure
3202 *
68d480c4
AD
3203 * Writes multicast address list to the MTA hash table.
3204 * Returns: -ENOMEM on failure
3205 * 0 on no addresses written
3206 * X on writing X addresses to MTA
9d5c8243 3207 **/
68d480c4 3208static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3209{
3210 struct igb_adapter *adapter = netdev_priv(netdev);
3211 struct e1000_hw *hw = &adapter->hw;
22bedad3 3212 struct netdev_hw_addr *ha;
68d480c4 3213 u8 *mta_list;
9d5c8243
AK
3214 int i;
3215
4cd24eaf 3216 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3217 /* nothing to program, so clear mc list */
3218 igb_update_mc_addr_list(hw, NULL, 0);
3219 igb_restore_vf_multicasts(adapter);
3220 return 0;
3221 }
9d5c8243 3222
4cd24eaf 3223 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3224 if (!mta_list)
3225 return -ENOMEM;
ff41f8dc 3226
68d480c4 3227 /* The shared function expects a packed array of only addresses. */
48e2f183 3228 i = 0;
22bedad3
JP
3229 netdev_for_each_mc_addr(ha, netdev)
3230 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3231
68d480c4
AD
3232 igb_update_mc_addr_list(hw, mta_list, i);
3233 kfree(mta_list);
3234
4cd24eaf 3235 return netdev_mc_count(netdev);
68d480c4
AD
3236}
3237
3238/**
3239 * igb_write_uc_addr_list - write unicast addresses to RAR table
3240 * @netdev: network interface device structure
3241 *
3242 * Writes unicast address list to the RAR table.
3243 * Returns: -ENOMEM on failure/insufficient address space
3244 * 0 on no addresses written
3245 * X on writing X addresses to the RAR table
3246 **/
3247static int igb_write_uc_addr_list(struct net_device *netdev)
3248{
3249 struct igb_adapter *adapter = netdev_priv(netdev);
3250 struct e1000_hw *hw = &adapter->hw;
3251 unsigned int vfn = adapter->vfs_allocated_count;
3252 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3253 int count = 0;
3254
3255 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3256 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3257 return -ENOMEM;
9d5c8243 3258
32e7bfc4 3259 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3260 struct netdev_hw_addr *ha;
32e7bfc4
JP
3261
3262 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3263 if (!rar_entries)
3264 break;
26ad9178
AD
3265 igb_rar_set_qsel(adapter, ha->addr,
3266 rar_entries--,
68d480c4
AD
3267 vfn);
3268 count++;
ff41f8dc
AD
3269 }
3270 }
3271 /* write the addresses in reverse order to avoid write combining */
3272 for (; rar_entries > 0 ; rar_entries--) {
3273 wr32(E1000_RAH(rar_entries), 0);
3274 wr32(E1000_RAL(rar_entries), 0);
3275 }
3276 wrfl();
3277
68d480c4
AD
3278 return count;
3279}
3280
3281/**
3282 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3283 * @netdev: network interface device structure
3284 *
3285 * The set_rx_mode entry point is called whenever the unicast or multicast
3286 * address lists or the network interface flags are updated. This routine is
3287 * responsible for configuring the hardware for proper unicast, multicast,
3288 * promiscuous mode, and all-multi behavior.
3289 **/
3290static void igb_set_rx_mode(struct net_device *netdev)
3291{
3292 struct igb_adapter *adapter = netdev_priv(netdev);
3293 struct e1000_hw *hw = &adapter->hw;
3294 unsigned int vfn = adapter->vfs_allocated_count;
3295 u32 rctl, vmolr = 0;
3296 int count;
3297
3298 /* Check for Promiscuous and All Multicast modes */
3299 rctl = rd32(E1000_RCTL);
3300
3301 /* clear the effected bits */
3302 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3303
3304 if (netdev->flags & IFF_PROMISC) {
3305 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3306 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3307 } else {
3308 if (netdev->flags & IFF_ALLMULTI) {
3309 rctl |= E1000_RCTL_MPE;
3310 vmolr |= E1000_VMOLR_MPME;
3311 } else {
3312 /*
3313 * Write addresses to the MTA, if the attempt fails
3314 * then we should just turn on promiscous mode so
3315 * that we can at least receive multicast traffic
3316 */
3317 count = igb_write_mc_addr_list(netdev);
3318 if (count < 0) {
3319 rctl |= E1000_RCTL_MPE;
3320 vmolr |= E1000_VMOLR_MPME;
3321 } else if (count) {
3322 vmolr |= E1000_VMOLR_ROMPE;
3323 }
3324 }
3325 /*
3326 * Write addresses to available RAR registers, if there is not
3327 * sufficient space to store all the addresses then enable
3328 * unicast promiscous mode
3329 */
3330 count = igb_write_uc_addr_list(netdev);
3331 if (count < 0) {
3332 rctl |= E1000_RCTL_UPE;
3333 vmolr |= E1000_VMOLR_ROPE;
3334 }
3335 rctl |= E1000_RCTL_VFE;
28fc06f5 3336 }
68d480c4 3337 wr32(E1000_RCTL, rctl);
28fc06f5 3338
68d480c4
AD
3339 /*
3340 * In order to support SR-IOV and eventually VMDq it is necessary to set
3341 * the VMOLR to enable the appropriate modes. Without this workaround
3342 * we will have issues with VLAN tag stripping not being done for frames
3343 * that are only arriving because we are the default pool
3344 */
3345 if (hw->mac.type < e1000_82576)
28fc06f5 3346 return;
9d5c8243 3347
68d480c4
AD
3348 vmolr |= rd32(E1000_VMOLR(vfn)) &
3349 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3350 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3351 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3352}
3353
3354/* Need to wait a few seconds after link up to get diagnostic information from
3355 * the phy */
3356static void igb_update_phy_info(unsigned long data)
3357{
3358 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3359 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3360}
3361
4d6b725e
AD
3362/**
3363 * igb_has_link - check shared code for link and determine up/down
3364 * @adapter: pointer to driver private info
3365 **/
3145535a 3366bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3367{
3368 struct e1000_hw *hw = &adapter->hw;
3369 bool link_active = false;
3370 s32 ret_val = 0;
3371
3372 /* get_link_status is set on LSC (link status) interrupt or
3373 * rx sequence error interrupt. get_link_status will stay
3374 * false until the e1000_check_for_link establishes link
3375 * for copper adapters ONLY
3376 */
3377 switch (hw->phy.media_type) {
3378 case e1000_media_type_copper:
3379 if (hw->mac.get_link_status) {
3380 ret_val = hw->mac.ops.check_for_link(hw);
3381 link_active = !hw->mac.get_link_status;
3382 } else {
3383 link_active = true;
3384 }
3385 break;
4d6b725e
AD
3386 case e1000_media_type_internal_serdes:
3387 ret_val = hw->mac.ops.check_for_link(hw);
3388 link_active = hw->mac.serdes_has_link;
3389 break;
3390 default:
3391 case e1000_media_type_unknown:
3392 break;
3393 }
3394
3395 return link_active;
3396}
3397
9d5c8243
AK
3398/**
3399 * igb_watchdog - Timer Call-back
3400 * @data: pointer to adapter cast into an unsigned long
3401 **/
3402static void igb_watchdog(unsigned long data)
3403{
3404 struct igb_adapter *adapter = (struct igb_adapter *)data;
3405 /* Do the rest outside of interrupt context */
3406 schedule_work(&adapter->watchdog_task);
3407}
3408
3409static void igb_watchdog_task(struct work_struct *work)
3410{
3411 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3412 struct igb_adapter,
3413 watchdog_task);
9d5c8243 3414 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3415 struct net_device *netdev = adapter->netdev;
9d5c8243 3416 u32 link;
7a6ea550 3417 int i;
9d5c8243 3418
4d6b725e 3419 link = igb_has_link(adapter);
9d5c8243
AK
3420 if (link) {
3421 if (!netif_carrier_ok(netdev)) {
3422 u32 ctrl;
330a6d6a
AD
3423 hw->mac.ops.get_speed_and_duplex(hw,
3424 &adapter->link_speed,
3425 &adapter->link_duplex);
9d5c8243
AK
3426
3427 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3428 /* Links status message must follow this format */
3429 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3430 "Flow Control: %s\n",
559e9c49
AD
3431 netdev->name,
3432 adapter->link_speed,
3433 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3434 "Full Duplex" : "Half Duplex",
559e9c49
AD
3435 ((ctrl & E1000_CTRL_TFCE) &&
3436 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3437 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3438 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3439
d07f3e37 3440 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3441 adapter->tx_timeout_factor = 1;
3442 switch (adapter->link_speed) {
3443 case SPEED_10:
9d5c8243
AK
3444 adapter->tx_timeout_factor = 14;
3445 break;
3446 case SPEED_100:
9d5c8243
AK
3447 /* maybe add some timeout factor ? */
3448 break;
3449 }
3450
3451 netif_carrier_on(netdev);
9d5c8243 3452
4ae196df
AD
3453 igb_ping_all_vfs(adapter);
3454
4b1a9877 3455 /* link state has changed, schedule phy info update */
9d5c8243
AK
3456 if (!test_bit(__IGB_DOWN, &adapter->state))
3457 mod_timer(&adapter->phy_info_timer,
3458 round_jiffies(jiffies + 2 * HZ));
3459 }
3460 } else {
3461 if (netif_carrier_ok(netdev)) {
3462 adapter->link_speed = 0;
3463 adapter->link_duplex = 0;
527d47c1
AD
3464 /* Links status message must follow this format */
3465 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3466 netdev->name);
9d5c8243 3467 netif_carrier_off(netdev);
4b1a9877 3468
4ae196df
AD
3469 igb_ping_all_vfs(adapter);
3470
4b1a9877 3471 /* link state has changed, schedule phy info update */
9d5c8243
AK
3472 if (!test_bit(__IGB_DOWN, &adapter->state))
3473 mod_timer(&adapter->phy_info_timer,
3474 round_jiffies(jiffies + 2 * HZ));
3475 }
3476 }
3477
9d5c8243 3478 igb_update_stats(adapter);
9d5c8243 3479
dbabb065 3480 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3481 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3482 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3483 /* We've lost link, so the controller stops DMA,
3484 * but we've got queued Tx work that's never going
3485 * to get done, so reset controller to flush Tx.
3486 * (Do the reset outside of interrupt context). */
dbabb065
AD
3487 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3488 adapter->tx_timeout_count++;
3489 schedule_work(&adapter->reset_task);
3490 /* return immediately since reset is imminent */
3491 return;
3492 }
9d5c8243 3493 }
9d5c8243 3494
dbabb065
AD
3495 /* Force detection of hung controller every watchdog period */
3496 tx_ring->detect_tx_hung = true;
3497 }
f7ba205e 3498
9d5c8243 3499 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3500 if (adapter->msix_entries) {
047e0030
AD
3501 u32 eics = 0;
3502 for (i = 0; i < adapter->num_q_vectors; i++) {
3503 struct igb_q_vector *q_vector = adapter->q_vector[i];
3504 eics |= q_vector->eims_value;
3505 }
7a6ea550
AD
3506 wr32(E1000_EICS, eics);
3507 } else {
3508 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3509 }
9d5c8243 3510
9d5c8243
AK
3511 /* Reset the timer */
3512 if (!test_bit(__IGB_DOWN, &adapter->state))
3513 mod_timer(&adapter->watchdog_timer,
3514 round_jiffies(jiffies + 2 * HZ));
3515}
3516
3517enum latency_range {
3518 lowest_latency = 0,
3519 low_latency = 1,
3520 bulk_latency = 2,
3521 latency_invalid = 255
3522};
3523
6eb5a7f1
AD
3524/**
3525 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3526 *
3527 * Stores a new ITR value based on strictly on packet size. This
3528 * algorithm is less sophisticated than that used in igb_update_itr,
3529 * due to the difficulty of synchronizing statistics across multiple
3530 * receive rings. The divisors and thresholds used by this fuction
3531 * were determined based on theoretical maximum wire speed and testing
3532 * data, in order to minimize response time while increasing bulk
3533 * throughput.
3534 * This functionality is controlled by the InterruptThrottleRate module
3535 * parameter (see igb_param.c)
3536 * NOTE: This function is called only when operating in a multiqueue
3537 * receive environment.
047e0030 3538 * @q_vector: pointer to q_vector
6eb5a7f1 3539 **/
047e0030 3540static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3541{
047e0030 3542 int new_val = q_vector->itr_val;
6eb5a7f1 3543 int avg_wire_size = 0;
047e0030 3544 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3545
6eb5a7f1
AD
3546 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3547 * ints/sec - ITR timer value of 120 ticks.
3548 */
3549 if (adapter->link_speed != SPEED_1000) {
047e0030 3550 new_val = 976;
6eb5a7f1 3551 goto set_itr_val;
9d5c8243 3552 }
047e0030
AD
3553
3554 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3555 struct igb_ring *ring = q_vector->rx_ring;
3556 avg_wire_size = ring->total_bytes / ring->total_packets;
3557 }
3558
3559 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3560 struct igb_ring *ring = q_vector->tx_ring;
3561 avg_wire_size = max_t(u32, avg_wire_size,
3562 (ring->total_bytes /
3563 ring->total_packets));
3564 }
3565
3566 /* if avg_wire_size isn't set no work was done */
3567 if (!avg_wire_size)
3568 goto clear_counts;
9d5c8243 3569
6eb5a7f1
AD
3570 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3571 avg_wire_size += 24;
3572
3573 /* Don't starve jumbo frames */
3574 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3575
6eb5a7f1
AD
3576 /* Give a little boost to mid-size frames */
3577 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3578 new_val = avg_wire_size / 3;
3579 else
3580 new_val = avg_wire_size / 2;
9d5c8243 3581
abe1c363
NN
3582 /* when in itr mode 3 do not exceed 20K ints/sec */
3583 if (adapter->rx_itr_setting == 3 && new_val < 196)
3584 new_val = 196;
3585
6eb5a7f1 3586set_itr_val:
047e0030
AD
3587 if (new_val != q_vector->itr_val) {
3588 q_vector->itr_val = new_val;
3589 q_vector->set_itr = 1;
9d5c8243 3590 }
6eb5a7f1 3591clear_counts:
047e0030
AD
3592 if (q_vector->rx_ring) {
3593 q_vector->rx_ring->total_bytes = 0;
3594 q_vector->rx_ring->total_packets = 0;
3595 }
3596 if (q_vector->tx_ring) {
3597 q_vector->tx_ring->total_bytes = 0;
3598 q_vector->tx_ring->total_packets = 0;
3599 }
9d5c8243
AK
3600}
3601
3602/**
3603 * igb_update_itr - update the dynamic ITR value based on statistics
3604 * Stores a new ITR value based on packets and byte
3605 * counts during the last interrupt. The advantage of per interrupt
3606 * computation is faster updates and more accurate ITR for the current
3607 * traffic pattern. Constants in this function were computed
3608 * based on theoretical maximum wire speed and thresholds were set based
3609 * on testing data as well as attempting to minimize response time
3610 * while increasing bulk throughput.
3611 * this functionality is controlled by the InterruptThrottleRate module
3612 * parameter (see igb_param.c)
3613 * NOTE: These calculations are only valid when operating in a single-
3614 * queue environment.
3615 * @adapter: pointer to adapter
047e0030 3616 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3617 * @packets: the number of packets during this measurement interval
3618 * @bytes: the number of bytes during this measurement interval
3619 **/
3620static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3621 int packets, int bytes)
3622{
3623 unsigned int retval = itr_setting;
3624
3625 if (packets == 0)
3626 goto update_itr_done;
3627
3628 switch (itr_setting) {
3629 case lowest_latency:
3630 /* handle TSO and jumbo frames */
3631 if (bytes/packets > 8000)
3632 retval = bulk_latency;
3633 else if ((packets < 5) && (bytes > 512))
3634 retval = low_latency;
3635 break;
3636 case low_latency: /* 50 usec aka 20000 ints/s */
3637 if (bytes > 10000) {
3638 /* this if handles the TSO accounting */
3639 if (bytes/packets > 8000) {
3640 retval = bulk_latency;
3641 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3642 retval = bulk_latency;
3643 } else if ((packets > 35)) {
3644 retval = lowest_latency;
3645 }
3646 } else if (bytes/packets > 2000) {
3647 retval = bulk_latency;
3648 } else if (packets <= 2 && bytes < 512) {
3649 retval = lowest_latency;
3650 }
3651 break;
3652 case bulk_latency: /* 250 usec aka 4000 ints/s */
3653 if (bytes > 25000) {
3654 if (packets > 35)
3655 retval = low_latency;
1e5c3d21 3656 } else if (bytes < 1500) {
9d5c8243
AK
3657 retval = low_latency;
3658 }
3659 break;
3660 }
3661
3662update_itr_done:
3663 return retval;
3664}
3665
6eb5a7f1 3666static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3667{
047e0030 3668 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3669 u16 current_itr;
047e0030 3670 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3671
3672 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3673 if (adapter->link_speed != SPEED_1000) {
3674 current_itr = 0;
3675 new_itr = 4000;
3676 goto set_itr_now;
3677 }
3678
3679 adapter->rx_itr = igb_update_itr(adapter,
3680 adapter->rx_itr,
3025a446
AD
3681 q_vector->rx_ring->total_packets,
3682 q_vector->rx_ring->total_bytes);
9d5c8243 3683
047e0030
AD
3684 adapter->tx_itr = igb_update_itr(adapter,
3685 adapter->tx_itr,
3025a446
AD
3686 q_vector->tx_ring->total_packets,
3687 q_vector->tx_ring->total_bytes);
047e0030 3688 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3689
6eb5a7f1 3690 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3691 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3692 current_itr = low_latency;
3693
9d5c8243
AK
3694 switch (current_itr) {
3695 /* counts and packets in update_itr are dependent on these numbers */
3696 case lowest_latency:
78b1f607 3697 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3698 break;
3699 case low_latency:
78b1f607 3700 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3701 break;
3702 case bulk_latency:
78b1f607 3703 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3704 break;
3705 default:
3706 break;
3707 }
3708
3709set_itr_now:
3025a446
AD
3710 q_vector->rx_ring->total_bytes = 0;
3711 q_vector->rx_ring->total_packets = 0;
3712 q_vector->tx_ring->total_bytes = 0;
3713 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3714
047e0030 3715 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3716 /* this attempts to bias the interrupt rate towards Bulk
3717 * by adding intermediate steps when interrupt rate is
3718 * increasing */
047e0030
AD
3719 new_itr = new_itr > q_vector->itr_val ?
3720 max((new_itr * q_vector->itr_val) /
3721 (new_itr + (q_vector->itr_val >> 2)),
3722 new_itr) :
9d5c8243
AK
3723 new_itr;
3724 /* Don't write the value here; it resets the adapter's
3725 * internal timer, and causes us to delay far longer than
3726 * we should between interrupts. Instead, we write the ITR
3727 * value at the beginning of the next interrupt so the timing
3728 * ends up being correct.
3729 */
047e0030
AD
3730 q_vector->itr_val = new_itr;
3731 q_vector->set_itr = 1;
9d5c8243 3732 }
9d5c8243
AK
3733}
3734
9d5c8243
AK
3735#define IGB_TX_FLAGS_CSUM 0x00000001
3736#define IGB_TX_FLAGS_VLAN 0x00000002
3737#define IGB_TX_FLAGS_TSO 0x00000004
3738#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3739#define IGB_TX_FLAGS_TSTAMP 0x00000010
3740#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3741#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3742
85ad76b2 3743static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3744 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3745{
3746 struct e1000_adv_tx_context_desc *context_desc;
3747 unsigned int i;
3748 int err;
3749 struct igb_buffer *buffer_info;
3750 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3751 u32 mss_l4len_idx;
3752 u8 l4len;
9d5c8243
AK
3753
3754 if (skb_header_cloned(skb)) {
3755 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3756 if (err)
3757 return err;
3758 }
3759
3760 l4len = tcp_hdrlen(skb);
3761 *hdr_len += l4len;
3762
3763 if (skb->protocol == htons(ETH_P_IP)) {
3764 struct iphdr *iph = ip_hdr(skb);
3765 iph->tot_len = 0;
3766 iph->check = 0;
3767 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3768 iph->daddr, 0,
3769 IPPROTO_TCP,
3770 0);
8e1e8a47 3771 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3772 ipv6_hdr(skb)->payload_len = 0;
3773 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3774 &ipv6_hdr(skb)->daddr,
3775 0, IPPROTO_TCP, 0);
3776 }
3777
3778 i = tx_ring->next_to_use;
3779
3780 buffer_info = &tx_ring->buffer_info[i];
3781 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3782 /* VLAN MACLEN IPLEN */
3783 if (tx_flags & IGB_TX_FLAGS_VLAN)
3784 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3785 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3786 *hdr_len += skb_network_offset(skb);
3787 info |= skb_network_header_len(skb);
3788 *hdr_len += skb_network_header_len(skb);
3789 context_desc->vlan_macip_lens = cpu_to_le32(info);
3790
3791 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3792 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3793
3794 if (skb->protocol == htons(ETH_P_IP))
3795 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3796 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3797
3798 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3799
3800 /* MSS L4LEN IDX */
3801 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3802 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3803
73cd78f1 3804 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3805 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3806 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3807
3808 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3809 context_desc->seqnum_seed = 0;
3810
3811 buffer_info->time_stamp = jiffies;
0e014cb1 3812 buffer_info->next_to_watch = i;
9d5c8243
AK
3813 buffer_info->dma = 0;
3814 i++;
3815 if (i == tx_ring->count)
3816 i = 0;
3817
3818 tx_ring->next_to_use = i;
3819
3820 return true;
3821}
3822
85ad76b2
AD
3823static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3824 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3825{
3826 struct e1000_adv_tx_context_desc *context_desc;
59d71989 3827 struct device *dev = tx_ring->dev;
9d5c8243
AK
3828 struct igb_buffer *buffer_info;
3829 u32 info = 0, tu_cmd = 0;
80785298 3830 unsigned int i;
9d5c8243
AK
3831
3832 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3833 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3834 i = tx_ring->next_to_use;
3835 buffer_info = &tx_ring->buffer_info[i];
3836 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3837
3838 if (tx_flags & IGB_TX_FLAGS_VLAN)
3839 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3840
9d5c8243
AK
3841 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3842 if (skb->ip_summed == CHECKSUM_PARTIAL)
3843 info |= skb_network_header_len(skb);
3844
3845 context_desc->vlan_macip_lens = cpu_to_le32(info);
3846
3847 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3848
3849 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3850 __be16 protocol;
3851
3852 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3853 const struct vlan_ethhdr *vhdr =
3854 (const struct vlan_ethhdr*)skb->data;
3855
3856 protocol = vhdr->h_vlan_encapsulated_proto;
3857 } else {
3858 protocol = skb->protocol;
3859 }
3860
3861 switch (protocol) {
09640e63 3862 case cpu_to_be16(ETH_P_IP):
9d5c8243 3863 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3864 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3865 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3866 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3867 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3868 break;
09640e63 3869 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3870 /* XXX what about other V6 headers?? */
3871 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3872 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3873 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3874 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3875 break;
3876 default:
3877 if (unlikely(net_ratelimit()))
59d71989 3878 dev_warn(dev,
44b0cda3
MW
3879 "partial checksum but proto=%x!\n",
3880 skb->protocol);
3881 break;
3882 }
9d5c8243
AK
3883 }
3884
3885 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3886 context_desc->seqnum_seed = 0;
85ad76b2 3887 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3888 context_desc->mss_l4len_idx =
85ad76b2 3889 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3890
3891 buffer_info->time_stamp = jiffies;
0e014cb1 3892 buffer_info->next_to_watch = i;
9d5c8243
AK
3893 buffer_info->dma = 0;
3894
3895 i++;
3896 if (i == tx_ring->count)
3897 i = 0;
3898 tx_ring->next_to_use = i;
3899
3900 return true;
3901 }
9d5c8243
AK
3902 return false;
3903}
3904
3905#define IGB_MAX_TXD_PWR 16
3906#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3907
80785298 3908static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3909 unsigned int first)
9d5c8243
AK
3910{
3911 struct igb_buffer *buffer_info;
59d71989 3912 struct device *dev = tx_ring->dev;
2873957d 3913 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
3914 unsigned int count = 0, i;
3915 unsigned int f;
2873957d 3916 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
3917
3918 i = tx_ring->next_to_use;
3919
3920 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
3921 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3922 buffer_info->length = hlen;
9d5c8243
AK
3923 /* set time_stamp *before* dma to help avoid a possible race */
3924 buffer_info->time_stamp = jiffies;
0e014cb1 3925 buffer_info->next_to_watch = i;
2873957d 3926 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
3927 DMA_TO_DEVICE);
3928 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 3929 goto dma_error;
9d5c8243
AK
3930
3931 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
3932 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3933 unsigned int len = frag->size;
9d5c8243 3934
8581145f 3935 count++;
65689fef
AD
3936 i++;
3937 if (i == tx_ring->count)
3938 i = 0;
3939
9d5c8243
AK
3940 buffer_info = &tx_ring->buffer_info[i];
3941 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3942 buffer_info->length = len;
3943 buffer_info->time_stamp = jiffies;
0e014cb1 3944 buffer_info->next_to_watch = i;
6366ad33 3945 buffer_info->mapped_as_page = true;
59d71989 3946 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
3947 frag->page,
3948 frag->page_offset,
3949 len,
59d71989
AD
3950 DMA_TO_DEVICE);
3951 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
3952 goto dma_error;
3953
9d5c8243
AK
3954 }
3955
9d5c8243 3956 tx_ring->buffer_info[i].skb = skb;
2244d07b 3957 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
3958 /* multiply data chunks by size of headers */
3959 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3960 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 3961 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3962
cdfd01fc 3963 return ++count;
6366ad33
AD
3964
3965dma_error:
59d71989 3966 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
3967
3968 /* clear timestamp and dma mappings for failed buffer_info mapping */
3969 buffer_info->dma = 0;
3970 buffer_info->time_stamp = 0;
3971 buffer_info->length = 0;
3972 buffer_info->next_to_watch = 0;
3973 buffer_info->mapped_as_page = false;
6366ad33
AD
3974
3975 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
3976 while (count--) {
3977 if (i == 0)
3978 i = tx_ring->count;
6366ad33 3979 i--;
6366ad33
AD
3980 buffer_info = &tx_ring->buffer_info[i];
3981 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3982 }
3983
3984 return 0;
9d5c8243
AK
3985}
3986
85ad76b2 3987static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 3988 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
3989 u8 hdr_len)
3990{
cdfd01fc 3991 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
3992 struct igb_buffer *buffer_info;
3993 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 3994 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
3995
3996 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3997 E1000_ADVTXD_DCMD_DEXT);
3998
3999 if (tx_flags & IGB_TX_FLAGS_VLAN)
4000 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4001
33af6bcc
PO
4002 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4003 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4004
9d5c8243
AK
4005 if (tx_flags & IGB_TX_FLAGS_TSO) {
4006 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4007
4008 /* insert tcp checksum */
4009 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4010
4011 /* insert ip checksum */
4012 if (tx_flags & IGB_TX_FLAGS_IPV4)
4013 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4014
4015 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4016 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4017 }
4018
85ad76b2
AD
4019 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4020 (tx_flags & (IGB_TX_FLAGS_CSUM |
4021 IGB_TX_FLAGS_TSO |
7dfc16fa 4022 IGB_TX_FLAGS_VLAN)))
85ad76b2 4023 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4024
4025 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4026
cdfd01fc 4027 do {
9d5c8243
AK
4028 buffer_info = &tx_ring->buffer_info[i];
4029 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4030 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4031 tx_desc->read.cmd_type_len =
4032 cpu_to_le32(cmd_type_len | buffer_info->length);
4033 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4034 count--;
9d5c8243
AK
4035 i++;
4036 if (i == tx_ring->count)
4037 i = 0;
cdfd01fc 4038 } while (count > 0);
9d5c8243 4039
85ad76b2 4040 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4041 /* Force memory writes to complete before letting h/w
4042 * know there are new descriptors to fetch. (Only
4043 * applicable for weak-ordered memory model archs,
4044 * such as IA-64). */
4045 wmb();
4046
4047 tx_ring->next_to_use = i;
fce99e34 4048 writel(i, tx_ring->tail);
9d5c8243
AK
4049 /* we need this if more than one processor can write to our tail
4050 * at a time, it syncronizes IO on IA64/Altix systems */
4051 mmiowb();
4052}
4053
e694e964 4054static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4055{
e694e964
AD
4056 struct net_device *netdev = tx_ring->netdev;
4057
661086df 4058 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4059
9d5c8243
AK
4060 /* Herbert's original patch had:
4061 * smp_mb__after_netif_stop_queue();
4062 * but since that doesn't exist yet, just open code it. */
4063 smp_mb();
4064
4065 /* We need to check again in a case another CPU has just
4066 * made room available. */
c493ea45 4067 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4068 return -EBUSY;
4069
4070 /* A reprieve! */
661086df 4071 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 4072 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
4073 return 0;
4074}
4075
717ba089 4076static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4077{
c493ea45 4078 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4079 return 0;
e694e964 4080 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4081}
4082
b1a436c3
AD
4083netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4084 struct igb_ring *tx_ring)
9d5c8243 4085{
e694e964 4086 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
cdfd01fc 4087 int tso = 0, count;
91d4ee33
NN
4088 u32 tx_flags = 0;
4089 u16 first;
4090 u8 hdr_len = 0;
9d5c8243 4091
9d5c8243
AK
4092 /* need: 1 descriptor per page,
4093 * + 2 desc gap to keep tail from touching head,
4094 * + 1 desc for skb->data,
4095 * + 1 desc for context descriptor,
4096 * otherwise try next time */
e694e964 4097 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4098 /* this is a hard error */
9d5c8243
AK
4099 return NETDEV_TX_BUSY;
4100 }
33af6bcc 4101
2244d07b
OH
4102 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4103 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4104 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4105 }
9d5c8243 4106
cdfd01fc 4107 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
9d5c8243
AK
4108 tx_flags |= IGB_TX_FLAGS_VLAN;
4109 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4110 }
4111
661086df
PWJ
4112 if (skb->protocol == htons(ETH_P_IP))
4113 tx_flags |= IGB_TX_FLAGS_IPV4;
4114
0e014cb1 4115 first = tx_ring->next_to_use;
85ad76b2
AD
4116 if (skb_is_gso(skb)) {
4117 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4118
85ad76b2
AD
4119 if (tso < 0) {
4120 dev_kfree_skb_any(skb);
4121 return NETDEV_TX_OK;
4122 }
9d5c8243
AK
4123 }
4124
4125 if (tso)
4126 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4127 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4128 (skb->ip_summed == CHECKSUM_PARTIAL))
4129 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4130
65689fef 4131 /*
cdfd01fc 4132 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
4133 * has occured and we need to rewind the descriptor queue
4134 */
80785298 4135 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4136 if (!count) {
65689fef
AD
4137 dev_kfree_skb_any(skb);
4138 tx_ring->buffer_info[first].time_stamp = 0;
4139 tx_ring->next_to_use = first;
85ad76b2 4140 return NETDEV_TX_OK;
65689fef 4141 }
9d5c8243 4142
85ad76b2
AD
4143 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4144
4145 /* Make sure there is space in the ring for the next send. */
e694e964 4146 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4147
9d5c8243
AK
4148 return NETDEV_TX_OK;
4149}
4150
3b29a56d
SH
4151static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4152 struct net_device *netdev)
9d5c8243
AK
4153{
4154 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4155 struct igb_ring *tx_ring;
661086df 4156 int r_idx = 0;
b1a436c3
AD
4157
4158 if (test_bit(__IGB_DOWN, &adapter->state)) {
4159 dev_kfree_skb_any(skb);
4160 return NETDEV_TX_OK;
4161 }
4162
4163 if (skb->len <= 0) {
4164 dev_kfree_skb_any(skb);
4165 return NETDEV_TX_OK;
4166 }
4167
1bfaf07b 4168 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4169 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4170
4171 /* This goes back to the question of how to logically map a tx queue
4172 * to a flow. Right now, performance is impacted slightly negatively
4173 * if using multiple tx queues. If the stack breaks away from a
4174 * single qdisc implementation, we can look at this again. */
e694e964 4175 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4176}
4177
4178/**
4179 * igb_tx_timeout - Respond to a Tx Hang
4180 * @netdev: network interface device structure
4181 **/
4182static void igb_tx_timeout(struct net_device *netdev)
4183{
4184 struct igb_adapter *adapter = netdev_priv(netdev);
4185 struct e1000_hw *hw = &adapter->hw;
4186
4187 /* Do the reset outside of interrupt context */
4188 adapter->tx_timeout_count++;
f7ba205e 4189
55cac248
AD
4190 if (hw->mac.type == e1000_82580)
4191 hw->dev_spec._82575.global_device_reset = true;
4192
9d5c8243 4193 schedule_work(&adapter->reset_task);
265de409
AD
4194 wr32(E1000_EICS,
4195 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4196}
4197
4198static void igb_reset_task(struct work_struct *work)
4199{
4200 struct igb_adapter *adapter;
4201 adapter = container_of(work, struct igb_adapter, reset_task);
4202
c97ec42a
TI
4203 igb_dump(adapter);
4204 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4205 igb_reinit_locked(adapter);
4206}
4207
4208/**
4209 * igb_get_stats - Get System Network Statistics
4210 * @netdev: network interface device structure
4211 *
4212 * Returns the address of the device statistics structure.
4213 * The statistics are actually updated from the timer callback.
4214 **/
73cd78f1 4215static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 4216{
9d5c8243 4217 /* only return the current stats */
8d24e933 4218 return &netdev->stats;
9d5c8243
AK
4219}
4220
4221/**
4222 * igb_change_mtu - Change the Maximum Transfer Unit
4223 * @netdev: network interface device structure
4224 * @new_mtu: new value for maximum frame size
4225 *
4226 * Returns 0 on success, negative on failure
4227 **/
4228static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4229{
4230 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4231 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4232 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4233 u32 rx_buffer_len, i;
9d5c8243 4234
c809d227 4235 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4236 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4237 return -EINVAL;
4238 }
4239
9d5c8243 4240 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4241 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4242 return -EINVAL;
4243 }
4244
4245 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4246 msleep(1);
73cd78f1 4247
9d5c8243
AK
4248 /* igb_down has a dependency on max_frame_size */
4249 adapter->max_frame_size = max_frame;
559e9c49 4250
9d5c8243
AK
4251 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4252 * means we reserve 2 more, this pushes us to allocate from the next
4253 * larger slab size.
4254 * i.e. RXBUFFER_2048 --> size-4096 slab
4255 */
4256
757b77e2
NN
4257 if (adapter->hw.mac.type == e1000_82580)
4258 max_frame += IGB_TS_HDR_LEN;
4259
7d95b717 4260 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4261 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4262 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4263 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4264 else
4c844851
AD
4265 rx_buffer_len = IGB_RXBUFFER_128;
4266
757b77e2
NN
4267 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4268 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4269 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4270
4271 if ((adapter->hw.mac.type == e1000_82580) &&
4272 (rx_buffer_len == IGB_RXBUFFER_128))
4273 rx_buffer_len += IGB_RXBUFFER_64;
4274
4c844851
AD
4275 if (netif_running(netdev))
4276 igb_down(adapter);
9d5c8243 4277
090b1795 4278 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4279 netdev->mtu, new_mtu);
4280 netdev->mtu = new_mtu;
4281
4c844851 4282 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4283 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4284
9d5c8243
AK
4285 if (netif_running(netdev))
4286 igb_up(adapter);
4287 else
4288 igb_reset(adapter);
4289
4290 clear_bit(__IGB_RESETTING, &adapter->state);
4291
4292 return 0;
4293}
4294
4295/**
4296 * igb_update_stats - Update the board statistics counters
4297 * @adapter: board private structure
4298 **/
4299
4300void igb_update_stats(struct igb_adapter *adapter)
4301{
128e45eb 4302 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
9d5c8243
AK
4303 struct e1000_hw *hw = &adapter->hw;
4304 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4305 u32 reg, mpc;
9d5c8243 4306 u16 phy_tmp;
3f9c0164
AD
4307 int i;
4308 u64 bytes, packets;
9d5c8243
AK
4309
4310#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4311
4312 /*
4313 * Prevent stats update while adapter is being reset, or if the pci
4314 * connection is down.
4315 */
4316 if (adapter->link_speed == 0)
4317 return;
4318 if (pci_channel_offline(pdev))
4319 return;
4320
3f9c0164
AD
4321 bytes = 0;
4322 packets = 0;
4323 for (i = 0; i < adapter->num_rx_queues; i++) {
4324 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446
AD
4325 struct igb_ring *ring = adapter->rx_ring[i];
4326 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4327 net_stats->rx_fifo_errors += rqdpc_tmp;
3025a446
AD
4328 bytes += ring->rx_stats.bytes;
4329 packets += ring->rx_stats.packets;
3f9c0164
AD
4330 }
4331
128e45eb
AD
4332 net_stats->rx_bytes = bytes;
4333 net_stats->rx_packets = packets;
3f9c0164
AD
4334
4335 bytes = 0;
4336 packets = 0;
4337 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
4338 struct igb_ring *ring = adapter->tx_ring[i];
4339 bytes += ring->tx_stats.bytes;
4340 packets += ring->tx_stats.packets;
3f9c0164 4341 }
128e45eb
AD
4342 net_stats->tx_bytes = bytes;
4343 net_stats->tx_packets = packets;
3f9c0164
AD
4344
4345 /* read stats registers */
9d5c8243
AK
4346 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4347 adapter->stats.gprc += rd32(E1000_GPRC);
4348 adapter->stats.gorc += rd32(E1000_GORCL);
4349 rd32(E1000_GORCH); /* clear GORCL */
4350 adapter->stats.bprc += rd32(E1000_BPRC);
4351 adapter->stats.mprc += rd32(E1000_MPRC);
4352 adapter->stats.roc += rd32(E1000_ROC);
4353
4354 adapter->stats.prc64 += rd32(E1000_PRC64);
4355 adapter->stats.prc127 += rd32(E1000_PRC127);
4356 adapter->stats.prc255 += rd32(E1000_PRC255);
4357 adapter->stats.prc511 += rd32(E1000_PRC511);
4358 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4359 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4360 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4361 adapter->stats.sec += rd32(E1000_SEC);
4362
fa3d9a6d
MW
4363 mpc = rd32(E1000_MPC);
4364 adapter->stats.mpc += mpc;
4365 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4366 adapter->stats.scc += rd32(E1000_SCC);
4367 adapter->stats.ecol += rd32(E1000_ECOL);
4368 adapter->stats.mcc += rd32(E1000_MCC);
4369 adapter->stats.latecol += rd32(E1000_LATECOL);
4370 adapter->stats.dc += rd32(E1000_DC);
4371 adapter->stats.rlec += rd32(E1000_RLEC);
4372 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4373 adapter->stats.xontxc += rd32(E1000_XONTXC);
4374 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4375 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4376 adapter->stats.fcruc += rd32(E1000_FCRUC);
4377 adapter->stats.gptc += rd32(E1000_GPTC);
4378 adapter->stats.gotc += rd32(E1000_GOTCL);
4379 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4380 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4381 adapter->stats.ruc += rd32(E1000_RUC);
4382 adapter->stats.rfc += rd32(E1000_RFC);
4383 adapter->stats.rjc += rd32(E1000_RJC);
4384 adapter->stats.tor += rd32(E1000_TORH);
4385 adapter->stats.tot += rd32(E1000_TOTH);
4386 adapter->stats.tpr += rd32(E1000_TPR);
4387
4388 adapter->stats.ptc64 += rd32(E1000_PTC64);
4389 adapter->stats.ptc127 += rd32(E1000_PTC127);
4390 adapter->stats.ptc255 += rd32(E1000_PTC255);
4391 adapter->stats.ptc511 += rd32(E1000_PTC511);
4392 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4393 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4394
4395 adapter->stats.mptc += rd32(E1000_MPTC);
4396 adapter->stats.bptc += rd32(E1000_BPTC);
4397
2d0b0f69
NN
4398 adapter->stats.tpt += rd32(E1000_TPT);
4399 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4400
4401 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4402 /* read internal phy specific stats */
4403 reg = rd32(E1000_CTRL_EXT);
4404 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4405 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4406 adapter->stats.tncrs += rd32(E1000_TNCRS);
4407 }
4408
9d5c8243
AK
4409 adapter->stats.tsctc += rd32(E1000_TSCTC);
4410 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4411
4412 adapter->stats.iac += rd32(E1000_IAC);
4413 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4414 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4415 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4416 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4417 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4418 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4419 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4420 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4421
4422 /* Fill out the OS statistics structure */
128e45eb
AD
4423 net_stats->multicast = adapter->stats.mprc;
4424 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4425
4426 /* Rx Errors */
4427
4428 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4429 * our own version based on RUC and ROC */
128e45eb 4430 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4431 adapter->stats.crcerrs + adapter->stats.algnerrc +
4432 adapter->stats.ruc + adapter->stats.roc +
4433 adapter->stats.cexterr;
128e45eb
AD
4434 net_stats->rx_length_errors = adapter->stats.ruc +
4435 adapter->stats.roc;
4436 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4437 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4438 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4439
4440 /* Tx Errors */
128e45eb
AD
4441 net_stats->tx_errors = adapter->stats.ecol +
4442 adapter->stats.latecol;
4443 net_stats->tx_aborted_errors = adapter->stats.ecol;
4444 net_stats->tx_window_errors = adapter->stats.latecol;
4445 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4446
4447 /* Tx Dropped needs to be maintained elsewhere */
4448
4449 /* Phy Stats */
4450 if (hw->phy.media_type == e1000_media_type_copper) {
4451 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4452 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4453 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4454 adapter->phy_stats.idle_errors += phy_tmp;
4455 }
4456 }
4457
4458 /* Management Stats */
4459 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4460 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4461 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4462}
4463
9d5c8243
AK
4464static irqreturn_t igb_msix_other(int irq, void *data)
4465{
047e0030 4466 struct igb_adapter *adapter = data;
9d5c8243 4467 struct e1000_hw *hw = &adapter->hw;
844290e5 4468 u32 icr = rd32(E1000_ICR);
844290e5 4469 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4470
7f081d40
AD
4471 if (icr & E1000_ICR_DRSTA)
4472 schedule_work(&adapter->reset_task);
4473
047e0030 4474 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4475 /* HW is reporting DMA is out of sync */
4476 adapter->stats.doosync++;
4477 }
eebbbdba 4478
4ae196df
AD
4479 /* Check for a mailbox event */
4480 if (icr & E1000_ICR_VMMB)
4481 igb_msg_task(adapter);
4482
4483 if (icr & E1000_ICR_LSC) {
4484 hw->mac.get_link_status = 1;
4485 /* guard against interrupt when we're going down */
4486 if (!test_bit(__IGB_DOWN, &adapter->state))
4487 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4488 }
4489
25568a53
AD
4490 if (adapter->vfs_allocated_count)
4491 wr32(E1000_IMS, E1000_IMS_LSC |
4492 E1000_IMS_VMMB |
4493 E1000_IMS_DOUTSYNC);
4494 else
4495 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4496 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4497
4498 return IRQ_HANDLED;
4499}
4500
047e0030 4501static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4502{
26b39276 4503 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4504 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4505
047e0030
AD
4506 if (!q_vector->set_itr)
4507 return;
73cd78f1 4508
047e0030
AD
4509 if (!itr_val)
4510 itr_val = 0x4;
661086df 4511
26b39276
AD
4512 if (adapter->hw.mac.type == e1000_82575)
4513 itr_val |= itr_val << 16;
661086df 4514 else
047e0030 4515 itr_val |= 0x8000000;
661086df 4516
047e0030
AD
4517 writel(itr_val, q_vector->itr_register);
4518 q_vector->set_itr = 0;
6eb5a7f1
AD
4519}
4520
047e0030 4521static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4522{
047e0030 4523 struct igb_q_vector *q_vector = data;
9d5c8243 4524
047e0030
AD
4525 /* Write the ITR value calculated from the previous interrupt. */
4526 igb_write_itr(q_vector);
9d5c8243 4527
047e0030 4528 napi_schedule(&q_vector->napi);
844290e5 4529
047e0030 4530 return IRQ_HANDLED;
fe4506b6
JC
4531}
4532
421e02f0 4533#ifdef CONFIG_IGB_DCA
047e0030 4534static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4535{
047e0030 4536 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4537 struct e1000_hw *hw = &adapter->hw;
4538 int cpu = get_cpu();
fe4506b6 4539
047e0030
AD
4540 if (q_vector->cpu == cpu)
4541 goto out_no_update;
4542
4543 if (q_vector->tx_ring) {
4544 int q = q_vector->tx_ring->reg_idx;
4545 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4546 if (hw->mac.type == e1000_82575) {
4547 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4548 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4549 } else {
047e0030
AD
4550 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4551 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4552 E1000_DCA_TXCTRL_CPUID_SHIFT;
4553 }
4554 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4555 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4556 }
4557 if (q_vector->rx_ring) {
4558 int q = q_vector->rx_ring->reg_idx;
4559 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4560 if (hw->mac.type == e1000_82575) {
2d064c06 4561 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4562 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4563 } else {
4564 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4565 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4566 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4567 }
fe4506b6
JC
4568 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4569 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4570 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4571 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4572 }
047e0030
AD
4573 q_vector->cpu = cpu;
4574out_no_update:
fe4506b6
JC
4575 put_cpu();
4576}
4577
4578static void igb_setup_dca(struct igb_adapter *adapter)
4579{
7e0e99ef 4580 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4581 int i;
4582
7dfc16fa 4583 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4584 return;
4585
7e0e99ef
AD
4586 /* Always use CB2 mode, difference is masked in the CB driver. */
4587 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4588
047e0030 4589 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4590 adapter->q_vector[i]->cpu = -1;
4591 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4592 }
4593}
4594
4595static int __igb_notify_dca(struct device *dev, void *data)
4596{
4597 struct net_device *netdev = dev_get_drvdata(dev);
4598 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4599 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4600 struct e1000_hw *hw = &adapter->hw;
4601 unsigned long event = *(unsigned long *)data;
4602
4603 switch (event) {
4604 case DCA_PROVIDER_ADD:
4605 /* if already enabled, don't do it again */
7dfc16fa 4606 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4607 break;
fe4506b6 4608 if (dca_add_requester(dev) == 0) {
bbd98fe4 4609 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4610 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4611 igb_setup_dca(adapter);
4612 break;
4613 }
4614 /* Fall Through since DCA is disabled. */
4615 case DCA_PROVIDER_REMOVE:
7dfc16fa 4616 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4617 /* without this a class_device is left
047e0030 4618 * hanging around in the sysfs model */
fe4506b6 4619 dca_remove_requester(dev);
090b1795 4620 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4621 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4622 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4623 }
4624 break;
4625 }
bbd98fe4 4626
fe4506b6 4627 return 0;
9d5c8243
AK
4628}
4629
fe4506b6
JC
4630static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4631 void *p)
4632{
4633 int ret_val;
4634
4635 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4636 __igb_notify_dca);
4637
4638 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4639}
421e02f0 4640#endif /* CONFIG_IGB_DCA */
9d5c8243 4641
4ae196df
AD
4642static void igb_ping_all_vfs(struct igb_adapter *adapter)
4643{
4644 struct e1000_hw *hw = &adapter->hw;
4645 u32 ping;
4646 int i;
4647
4648 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4649 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4650 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4651 ping |= E1000_VT_MSGTYPE_CTS;
4652 igb_write_mbx(hw, &ping, 1, i);
4653 }
4654}
4655
7d5753f0
AD
4656static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4657{
4658 struct e1000_hw *hw = &adapter->hw;
4659 u32 vmolr = rd32(E1000_VMOLR(vf));
4660 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4661
4662 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4663 IGB_VF_FLAG_MULTI_PROMISC);
4664 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4665
4666 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4667 vmolr |= E1000_VMOLR_MPME;
4668 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4669 } else {
4670 /*
4671 * if we have hashes and we are clearing a multicast promisc
4672 * flag we need to write the hashes to the MTA as this step
4673 * was previously skipped
4674 */
4675 if (vf_data->num_vf_mc_hashes > 30) {
4676 vmolr |= E1000_VMOLR_MPME;
4677 } else if (vf_data->num_vf_mc_hashes) {
4678 int j;
4679 vmolr |= E1000_VMOLR_ROMPE;
4680 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4681 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4682 }
4683 }
4684
4685 wr32(E1000_VMOLR(vf), vmolr);
4686
4687 /* there are flags left unprocessed, likely not supported */
4688 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4689 return -EINVAL;
4690
4691 return 0;
4692
4693}
4694
4ae196df
AD
4695static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4696 u32 *msgbuf, u32 vf)
4697{
4698 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4699 u16 *hash_list = (u16 *)&msgbuf[1];
4700 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4701 int i;
4702
7d5753f0 4703 /* salt away the number of multicast addresses assigned
4ae196df
AD
4704 * to this VF for later use to restore when the PF multi cast
4705 * list changes
4706 */
4707 vf_data->num_vf_mc_hashes = n;
4708
7d5753f0
AD
4709 /* only up to 30 hash values supported */
4710 if (n > 30)
4711 n = 30;
4712
4713 /* store the hashes for later use */
4ae196df 4714 for (i = 0; i < n; i++)
a419aef8 4715 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4716
4717 /* Flush and reset the mta with the new values */
ff41f8dc 4718 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4719
4720 return 0;
4721}
4722
4723static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4724{
4725 struct e1000_hw *hw = &adapter->hw;
4726 struct vf_data_storage *vf_data;
4727 int i, j;
4728
4729 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4730 u32 vmolr = rd32(E1000_VMOLR(i));
4731 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4732
4ae196df 4733 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4734
4735 if ((vf_data->num_vf_mc_hashes > 30) ||
4736 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4737 vmolr |= E1000_VMOLR_MPME;
4738 } else if (vf_data->num_vf_mc_hashes) {
4739 vmolr |= E1000_VMOLR_ROMPE;
4740 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4741 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4742 }
4743 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4744 }
4745}
4746
4747static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4748{
4749 struct e1000_hw *hw = &adapter->hw;
4750 u32 pool_mask, reg, vid;
4751 int i;
4752
4753 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4754
4755 /* Find the vlan filter for this id */
4756 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4757 reg = rd32(E1000_VLVF(i));
4758
4759 /* remove the vf from the pool */
4760 reg &= ~pool_mask;
4761
4762 /* if pool is empty then remove entry from vfta */
4763 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4764 (reg & E1000_VLVF_VLANID_ENABLE)) {
4765 reg = 0;
4766 vid = reg & E1000_VLVF_VLANID_MASK;
4767 igb_vfta_set(hw, vid, false);
4768 }
4769
4770 wr32(E1000_VLVF(i), reg);
4771 }
ae641bdc
AD
4772
4773 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4774}
4775
4776static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4777{
4778 struct e1000_hw *hw = &adapter->hw;
4779 u32 reg, i;
4780
51466239
AD
4781 /* The vlvf table only exists on 82576 hardware and newer */
4782 if (hw->mac.type < e1000_82576)
4783 return -1;
4784
4785 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4786 if (!adapter->vfs_allocated_count)
4787 return -1;
4788
4789 /* Find the vlan filter for this id */
4790 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4791 reg = rd32(E1000_VLVF(i));
4792 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4793 vid == (reg & E1000_VLVF_VLANID_MASK))
4794 break;
4795 }
4796
4797 if (add) {
4798 if (i == E1000_VLVF_ARRAY_SIZE) {
4799 /* Did not find a matching VLAN ID entry that was
4800 * enabled. Search for a free filter entry, i.e.
4801 * one without the enable bit set
4802 */
4803 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4804 reg = rd32(E1000_VLVF(i));
4805 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4806 break;
4807 }
4808 }
4809 if (i < E1000_VLVF_ARRAY_SIZE) {
4810 /* Found an enabled/available entry */
4811 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4812
4813 /* if !enabled we need to set this up in vfta */
4814 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4815 /* add VID to filter table */
4816 igb_vfta_set(hw, vid, true);
4ae196df
AD
4817 reg |= E1000_VLVF_VLANID_ENABLE;
4818 }
cad6d05f
AD
4819 reg &= ~E1000_VLVF_VLANID_MASK;
4820 reg |= vid;
4ae196df 4821 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4822
4823 /* do not modify RLPML for PF devices */
4824 if (vf >= adapter->vfs_allocated_count)
4825 return 0;
4826
4827 if (!adapter->vf_data[vf].vlans_enabled) {
4828 u32 size;
4829 reg = rd32(E1000_VMOLR(vf));
4830 size = reg & E1000_VMOLR_RLPML_MASK;
4831 size += 4;
4832 reg &= ~E1000_VMOLR_RLPML_MASK;
4833 reg |= size;
4834 wr32(E1000_VMOLR(vf), reg);
4835 }
ae641bdc 4836
51466239 4837 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4838 return 0;
4839 }
4840 } else {
4841 if (i < E1000_VLVF_ARRAY_SIZE) {
4842 /* remove vf from the pool */
4843 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4844 /* if pool is empty then remove entry from vfta */
4845 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4846 reg = 0;
4847 igb_vfta_set(hw, vid, false);
4848 }
4849 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4850
4851 /* do not modify RLPML for PF devices */
4852 if (vf >= adapter->vfs_allocated_count)
4853 return 0;
4854
4855 adapter->vf_data[vf].vlans_enabled--;
4856 if (!adapter->vf_data[vf].vlans_enabled) {
4857 u32 size;
4858 reg = rd32(E1000_VMOLR(vf));
4859 size = reg & E1000_VMOLR_RLPML_MASK;
4860 size -= 4;
4861 reg &= ~E1000_VMOLR_RLPML_MASK;
4862 reg |= size;
4863 wr32(E1000_VMOLR(vf), reg);
4864 }
4ae196df
AD
4865 }
4866 }
8151d294
WM
4867 return 0;
4868}
4869
4870static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4871{
4872 struct e1000_hw *hw = &adapter->hw;
4873
4874 if (vid)
4875 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4876 else
4877 wr32(E1000_VMVIR(vf), 0);
4878}
4879
4880static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4881 int vf, u16 vlan, u8 qos)
4882{
4883 int err = 0;
4884 struct igb_adapter *adapter = netdev_priv(netdev);
4885
4886 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4887 return -EINVAL;
4888 if (vlan || qos) {
4889 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4890 if (err)
4891 goto out;
4892 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4893 igb_set_vmolr(adapter, vf, !vlan);
4894 adapter->vf_data[vf].pf_vlan = vlan;
4895 adapter->vf_data[vf].pf_qos = qos;
4896 dev_info(&adapter->pdev->dev,
4897 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4898 if (test_bit(__IGB_DOWN, &adapter->state)) {
4899 dev_warn(&adapter->pdev->dev,
4900 "The VF VLAN has been set,"
4901 " but the PF device is not up.\n");
4902 dev_warn(&adapter->pdev->dev,
4903 "Bring the PF device up before"
4904 " attempting to use the VF device.\n");
4905 }
4906 } else {
4907 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4908 false, vf);
4909 igb_set_vmvir(adapter, vlan, vf);
4910 igb_set_vmolr(adapter, vf, true);
4911 adapter->vf_data[vf].pf_vlan = 0;
4912 adapter->vf_data[vf].pf_qos = 0;
4913 }
4914out:
4915 return err;
4ae196df
AD
4916}
4917
4918static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4919{
4920 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4921 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4922
4923 return igb_vlvf_set(adapter, vid, add, vf);
4924}
4925
f2ca0dbe 4926static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4927{
8151d294
WM
4928 /* clear flags */
4929 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
f2ca0dbe 4930 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4931
4932 /* reset offloads to defaults */
8151d294 4933 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
4934
4935 /* reset vlans for device */
4936 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
4937 if (adapter->vf_data[vf].pf_vlan)
4938 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4939 adapter->vf_data[vf].pf_vlan,
4940 adapter->vf_data[vf].pf_qos);
4941 else
4942 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
4943
4944 /* reset multicast table array for vf */
4945 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4946
4947 /* Flush and reset the mta with the new values */
ff41f8dc 4948 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4949}
4950
f2ca0dbe
AD
4951static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4952{
4953 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4954
4955 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
4956 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4957 random_ether_addr(vf_mac);
f2ca0dbe
AD
4958
4959 /* process remaining reset events */
4960 igb_vf_reset(adapter, vf);
4961}
4962
4963static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4964{
4965 struct e1000_hw *hw = &adapter->hw;
4966 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4967 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4968 u32 reg, msgbuf[3];
4969 u8 *addr = (u8 *)(&msgbuf[1]);
4970
4971 /* process all the same items cleared in a function level reset */
f2ca0dbe 4972 igb_vf_reset(adapter, vf);
4ae196df
AD
4973
4974 /* set vf mac address */
26ad9178 4975 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4976
4977 /* enable transmit and receive for vf */
4978 reg = rd32(E1000_VFTE);
4979 wr32(E1000_VFTE, reg | (1 << vf));
4980 reg = rd32(E1000_VFRE);
4981 wr32(E1000_VFRE, reg | (1 << vf));
4982
f2ca0dbe 4983 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4984
4985 /* reply to reset with ack and vf mac address */
4986 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4987 memcpy(addr, vf_mac, 6);
4988 igb_write_mbx(hw, msgbuf, 3, vf);
4989}
4990
4991static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4992{
de42edde
GR
4993 /*
4994 * The VF MAC Address is stored in a packed array of bytes
4995 * starting at the second 32 bit word of the msg array
4996 */
f2ca0dbe
AD
4997 unsigned char *addr = (char *)&msg[1];
4998 int err = -1;
4ae196df 4999
f2ca0dbe
AD
5000 if (is_valid_ether_addr(addr))
5001 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5002
f2ca0dbe 5003 return err;
4ae196df
AD
5004}
5005
5006static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5007{
5008 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5009 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5010 u32 msg = E1000_VT_MSGTYPE_NACK;
5011
5012 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5013 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5014 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5015 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5016 vf_data->last_nack = jiffies;
4ae196df
AD
5017 }
5018}
5019
f2ca0dbe 5020static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5021{
f2ca0dbe
AD
5022 struct pci_dev *pdev = adapter->pdev;
5023 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5024 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5025 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5026 s32 retval;
5027
f2ca0dbe 5028 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5029
fef45f4c
AD
5030 if (retval) {
5031 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5032 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5033 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5034 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5035 return;
5036 goto out;
5037 }
4ae196df
AD
5038
5039 /* this is a message we already processed, do nothing */
5040 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5041 return;
4ae196df
AD
5042
5043 /*
5044 * until the vf completes a reset it should not be
5045 * allowed to start any configuration.
5046 */
5047
5048 if (msgbuf[0] == E1000_VF_RESET) {
5049 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5050 return;
4ae196df
AD
5051 }
5052
f2ca0dbe 5053 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5054 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5055 return;
5056 retval = -1;
5057 goto out;
4ae196df
AD
5058 }
5059
5060 switch ((msgbuf[0] & 0xFFFF)) {
5061 case E1000_VF_SET_MAC_ADDR:
5062 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5063 break;
7d5753f0
AD
5064 case E1000_VF_SET_PROMISC:
5065 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5066 break;
4ae196df
AD
5067 case E1000_VF_SET_MULTICAST:
5068 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5069 break;
5070 case E1000_VF_SET_LPE:
5071 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5072 break;
5073 case E1000_VF_SET_VLAN:
8151d294
WM
5074 if (adapter->vf_data[vf].pf_vlan)
5075 retval = -1;
5076 else
5077 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5078 break;
5079 default:
090b1795 5080 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5081 retval = -1;
5082 break;
5083 }
5084
fef45f4c
AD
5085 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5086out:
4ae196df
AD
5087 /* notify the VF of the results of what it sent us */
5088 if (retval)
5089 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5090 else
5091 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5092
4ae196df 5093 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5094}
4ae196df 5095
f2ca0dbe
AD
5096static void igb_msg_task(struct igb_adapter *adapter)
5097{
5098 struct e1000_hw *hw = &adapter->hw;
5099 u32 vf;
5100
5101 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5102 /* process any reset requests */
5103 if (!igb_check_for_rst(hw, vf))
5104 igb_vf_reset_event(adapter, vf);
5105
5106 /* process any messages pending */
5107 if (!igb_check_for_msg(hw, vf))
5108 igb_rcv_msg_from_vf(adapter, vf);
5109
5110 /* process any acks */
5111 if (!igb_check_for_ack(hw, vf))
5112 igb_rcv_ack_from_vf(adapter, vf);
5113 }
4ae196df
AD
5114}
5115
68d480c4
AD
5116/**
5117 * igb_set_uta - Set unicast filter table address
5118 * @adapter: board private structure
5119 *
5120 * The unicast table address is a register array of 32-bit registers.
5121 * The table is meant to be used in a way similar to how the MTA is used
5122 * however due to certain limitations in the hardware it is necessary to
5123 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5124 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5125 **/
5126static void igb_set_uta(struct igb_adapter *adapter)
5127{
5128 struct e1000_hw *hw = &adapter->hw;
5129 int i;
5130
5131 /* The UTA table only exists on 82576 hardware and newer */
5132 if (hw->mac.type < e1000_82576)
5133 return;
5134
5135 /* we only need to do this if VMDq is enabled */
5136 if (!adapter->vfs_allocated_count)
5137 return;
5138
5139 for (i = 0; i < hw->mac.uta_reg_count; i++)
5140 array_wr32(E1000_UTA, i, ~0);
5141}
5142
9d5c8243
AK
5143/**
5144 * igb_intr_msi - Interrupt Handler
5145 * @irq: interrupt number
5146 * @data: pointer to a network interface device structure
5147 **/
5148static irqreturn_t igb_intr_msi(int irq, void *data)
5149{
047e0030
AD
5150 struct igb_adapter *adapter = data;
5151 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5152 struct e1000_hw *hw = &adapter->hw;
5153 /* read ICR disables interrupts using IAM */
5154 u32 icr = rd32(E1000_ICR);
5155
047e0030 5156 igb_write_itr(q_vector);
9d5c8243 5157
7f081d40
AD
5158 if (icr & E1000_ICR_DRSTA)
5159 schedule_work(&adapter->reset_task);
5160
047e0030 5161 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5162 /* HW is reporting DMA is out of sync */
5163 adapter->stats.doosync++;
5164 }
5165
9d5c8243
AK
5166 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5167 hw->mac.get_link_status = 1;
5168 if (!test_bit(__IGB_DOWN, &adapter->state))
5169 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5170 }
5171
047e0030 5172 napi_schedule(&q_vector->napi);
9d5c8243
AK
5173
5174 return IRQ_HANDLED;
5175}
5176
5177/**
4a3c6433 5178 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5179 * @irq: interrupt number
5180 * @data: pointer to a network interface device structure
5181 **/
5182static irqreturn_t igb_intr(int irq, void *data)
5183{
047e0030
AD
5184 struct igb_adapter *adapter = data;
5185 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5186 struct e1000_hw *hw = &adapter->hw;
5187 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5188 * need for the IMC write */
5189 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5190 if (!icr)
5191 return IRQ_NONE; /* Not our interrupt */
5192
047e0030 5193 igb_write_itr(q_vector);
9d5c8243
AK
5194
5195 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5196 * not set, then the adapter didn't send an interrupt */
5197 if (!(icr & E1000_ICR_INT_ASSERTED))
5198 return IRQ_NONE;
5199
7f081d40
AD
5200 if (icr & E1000_ICR_DRSTA)
5201 schedule_work(&adapter->reset_task);
5202
047e0030 5203 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5204 /* HW is reporting DMA is out of sync */
5205 adapter->stats.doosync++;
5206 }
5207
9d5c8243
AK
5208 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5209 hw->mac.get_link_status = 1;
5210 /* guard against interrupt when we're going down */
5211 if (!test_bit(__IGB_DOWN, &adapter->state))
5212 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5213 }
5214
047e0030 5215 napi_schedule(&q_vector->napi);
9d5c8243
AK
5216
5217 return IRQ_HANDLED;
5218}
5219
047e0030 5220static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5221{
047e0030 5222 struct igb_adapter *adapter = q_vector->adapter;
46544258 5223 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5224
4fc82adf
AD
5225 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5226 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5227 if (!adapter->msix_entries)
6eb5a7f1 5228 igb_set_itr(adapter);
46544258 5229 else
047e0030 5230 igb_update_ring_itr(q_vector);
9d5c8243
AK
5231 }
5232
46544258
AD
5233 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5234 if (adapter->msix_entries)
047e0030 5235 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5236 else
5237 igb_irq_enable(adapter);
5238 }
9d5c8243
AK
5239}
5240
46544258
AD
5241/**
5242 * igb_poll - NAPI Rx polling callback
5243 * @napi: napi polling structure
5244 * @budget: count of how many packets we should handle
5245 **/
5246static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5247{
047e0030
AD
5248 struct igb_q_vector *q_vector = container_of(napi,
5249 struct igb_q_vector,
5250 napi);
5251 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5252
421e02f0 5253#ifdef CONFIG_IGB_DCA
047e0030
AD
5254 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5255 igb_update_dca(q_vector);
fe4506b6 5256#endif
047e0030
AD
5257 if (q_vector->tx_ring)
5258 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5259
047e0030
AD
5260 if (q_vector->rx_ring)
5261 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5262
5263 if (!tx_clean_complete)
5264 work_done = budget;
46544258 5265
9d5c8243 5266 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5267 if (work_done < budget) {
288379f0 5268 napi_complete(napi);
047e0030 5269 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5270 }
5271
46544258 5272 return work_done;
9d5c8243 5273}
6d8126f9 5274
33af6bcc 5275/**
c5b9bd5e 5276 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5277 * @adapter: board private structure
c5b9bd5e
AD
5278 * @shhwtstamps: timestamp structure to update
5279 * @regval: unsigned 64bit system time value.
5280 *
5281 * We need to convert the system time value stored in the RX/TXSTMP registers
5282 * into a hwtstamp which can be used by the upper level timestamping functions
5283 */
5284static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5285 struct skb_shared_hwtstamps *shhwtstamps,
5286 u64 regval)
5287{
5288 u64 ns;
5289
55cac248
AD
5290 /*
5291 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5292 * 24 to match clock shift we setup earlier.
5293 */
5294 if (adapter->hw.mac.type == e1000_82580)
5295 regval <<= IGB_82580_TSYNC_SHIFT;
5296
c5b9bd5e
AD
5297 ns = timecounter_cyc2time(&adapter->clock, regval);
5298 timecompare_update(&adapter->compare, ns);
5299 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5300 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5301 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5302}
5303
5304/**
5305 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5306 * @q_vector: pointer to q_vector containing needed info
2873957d 5307 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5308 *
5309 * If we were asked to do hardware stamping and such a time stamp is
5310 * available, then it must have been for this skb here because we only
5311 * allow only one such packet into the queue.
5312 */
2873957d 5313static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5314{
c5b9bd5e 5315 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5316 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5317 struct skb_shared_hwtstamps shhwtstamps;
5318 u64 regval;
33af6bcc 5319
c5b9bd5e 5320 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5321 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5322 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5323 return;
5324
5325 regval = rd32(E1000_TXSTMPL);
5326 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5327
5328 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5329 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5330}
5331
9d5c8243
AK
5332/**
5333 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5334 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5335 * returns true if ring is completely cleaned
5336 **/
047e0030 5337static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5338{
047e0030
AD
5339 struct igb_adapter *adapter = q_vector->adapter;
5340 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5341 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5342 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5343 struct igb_buffer *buffer_info;
0e014cb1 5344 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5345 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5346 unsigned int i, eop, count = 0;
5347 bool cleaned = false;
9d5c8243 5348
9d5c8243 5349 i = tx_ring->next_to_clean;
0e014cb1
AD
5350 eop = tx_ring->buffer_info[i].next_to_watch;
5351 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5352
5353 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5354 (count < tx_ring->count)) {
2d0bb1c1 5355 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5356 for (cleaned = false; !cleaned; count++) {
5357 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5358 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5359 cleaned = (i == eop);
9d5c8243 5360
2873957d
NN
5361 if (buffer_info->skb) {
5362 total_bytes += buffer_info->bytecount;
9d5c8243 5363 /* gso_segs is currently only valid for tcp */
2873957d
NN
5364 total_packets += buffer_info->gso_segs;
5365 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5366 }
5367
80785298 5368 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5369 tx_desc->wb.status = 0;
9d5c8243
AK
5370
5371 i++;
5372 if (i == tx_ring->count)
5373 i = 0;
9d5c8243 5374 }
0e014cb1
AD
5375 eop = tx_ring->buffer_info[i].next_to_watch;
5376 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5377 }
5378
9d5c8243
AK
5379 tx_ring->next_to_clean = i;
5380
fc7d345d 5381 if (unlikely(count &&
9d5c8243 5382 netif_carrier_ok(netdev) &&
c493ea45 5383 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5384 /* Make sure that anybody stopping the queue after this
5385 * sees the new next_to_clean.
5386 */
5387 smp_mb();
661086df
PWJ
5388 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5389 !(test_bit(__IGB_DOWN, &adapter->state))) {
5390 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 5391 tx_ring->tx_stats.restart_queue++;
661086df 5392 }
9d5c8243
AK
5393 }
5394
5395 if (tx_ring->detect_tx_hung) {
5396 /* Detect a transmit hang in hardware, this serializes the
5397 * check with the clearing of time_stamp and movement of i */
5398 tx_ring->detect_tx_hung = false;
5399 if (tx_ring->buffer_info[i].time_stamp &&
5400 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5401 (adapter->tx_timeout_factor * HZ)) &&
5402 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5403
9d5c8243 5404 /* detected Tx unit hang */
59d71989 5405 dev_err(tx_ring->dev,
9d5c8243 5406 "Detected Tx Unit Hang\n"
2d064c06 5407 " Tx Queue <%d>\n"
9d5c8243
AK
5408 " TDH <%x>\n"
5409 " TDT <%x>\n"
5410 " next_to_use <%x>\n"
5411 " next_to_clean <%x>\n"
9d5c8243
AK
5412 "buffer_info[next_to_clean]\n"
5413 " time_stamp <%lx>\n"
0e014cb1 5414 " next_to_watch <%x>\n"
9d5c8243
AK
5415 " jiffies <%lx>\n"
5416 " desc.status <%x>\n",
2d064c06 5417 tx_ring->queue_index,
fce99e34
AD
5418 readl(tx_ring->head),
5419 readl(tx_ring->tail),
9d5c8243
AK
5420 tx_ring->next_to_use,
5421 tx_ring->next_to_clean,
f7ba205e 5422 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5423 eop,
9d5c8243 5424 jiffies,
0e014cb1 5425 eop_desc->wb.status);
661086df 5426 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5427 }
5428 }
5429 tx_ring->total_bytes += total_bytes;
5430 tx_ring->total_packets += total_packets;
e21ed353
AD
5431 tx_ring->tx_stats.bytes += total_bytes;
5432 tx_ring->tx_stats.packets += total_packets;
0e014cb1 5433 return (count < tx_ring->count);
9d5c8243
AK
5434}
5435
9d5c8243
AK
5436/**
5437 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5438 * @q_vector: structure containing interrupt and ring information
5439 * @skb: packet to send up
5440 * @vlan_tag: vlan tag for packet
9d5c8243 5441 **/
047e0030
AD
5442static void igb_receive_skb(struct igb_q_vector *q_vector,
5443 struct sk_buff *skb,
5444 u16 vlan_tag)
5445{
5446 struct igb_adapter *adapter = q_vector->adapter;
5447
31b24b95 5448 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5449 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5450 vlan_tag, skb);
182ff8df 5451 else
047e0030 5452 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5453}
5454
04a5fcaa 5455static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5456 u32 status_err, struct sk_buff *skb)
5457{
bc8acf2c 5458 skb_checksum_none_assert(skb);
9d5c8243
AK
5459
5460 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5461 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5462 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5463 return;
85ad76b2 5464
9d5c8243
AK
5465 /* TCP/UDP checksum error bit is set */
5466 if (status_err &
5467 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5468 /*
5469 * work around errata with sctp packets where the TCPE aka
5470 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5471 * packets, (aka let the stack check the crc32c)
5472 */
85ad76b2
AD
5473 if ((skb->len == 60) &&
5474 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 5475 ring->rx_stats.csum_err++;
85ad76b2 5476
9d5c8243 5477 /* let the stack verify checksum errors */
9d5c8243
AK
5478 return;
5479 }
5480 /* It must be a TCP or UDP packet with a valid checksum */
5481 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5482 skb->ip_summed = CHECKSUM_UNNECESSARY;
5483
59d71989 5484 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5485}
5486
757b77e2 5487static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5488 struct sk_buff *skb)
5489{
5490 struct igb_adapter *adapter = q_vector->adapter;
5491 struct e1000_hw *hw = &adapter->hw;
5492 u64 regval;
5493
5494 /*
5495 * If this bit is set, then the RX registers contain the time stamp. No
5496 * other packet will be time stamped until we read these registers, so
5497 * read the registers to make them available again. Because only one
5498 * packet can be time stamped at a time, we know that the register
5499 * values must belong to this one here and therefore we don't need to
5500 * compare any of the additional attributes stored for it.
5501 *
2244d07b 5502 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5503 * can turn into a skb_shared_hwtstamps.
5504 */
757b77e2
NN
5505 if (staterr & E1000_RXDADV_STAT_TSIP) {
5506 u32 *stamp = (u32 *)skb->data;
5507 regval = le32_to_cpu(*(stamp + 2));
5508 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5509 skb_pull(skb, IGB_TS_HDR_LEN);
5510 } else {
5511 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5512 return;
c5b9bd5e 5513
757b77e2
NN
5514 regval = rd32(E1000_RXSTMPL);
5515 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5516 }
c5b9bd5e
AD
5517
5518 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5519}
4c844851 5520static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5521 union e1000_adv_rx_desc *rx_desc)
5522{
5523 /* HW will not DMA in data larger than the given buffer, even if it
5524 * parses the (NFS, of course) header to be larger. In that case, it
5525 * fills the header buffer and spills the rest into the page.
5526 */
5527 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5528 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5529 if (hlen > rx_ring->rx_buffer_len)
5530 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5531 return hlen;
5532}
5533
047e0030
AD
5534static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5535 int *work_done, int budget)
9d5c8243 5536{
047e0030 5537 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5538 struct net_device *netdev = rx_ring->netdev;
59d71989 5539 struct device *dev = rx_ring->dev;
9d5c8243
AK
5540 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5541 struct igb_buffer *buffer_info , *next_buffer;
5542 struct sk_buff *skb;
9d5c8243
AK
5543 bool cleaned = false;
5544 int cleaned_count = 0;
d1eff350 5545 int current_node = numa_node_id();
9d5c8243 5546 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5547 unsigned int i;
2d94d8ab
AD
5548 u32 staterr;
5549 u16 length;
047e0030 5550 u16 vlan_tag;
9d5c8243
AK
5551
5552 i = rx_ring->next_to_clean;
69d3ca53 5553 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5554 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5555 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5556
5557 while (staterr & E1000_RXD_STAT_DD) {
5558 if (*work_done >= budget)
5559 break;
5560 (*work_done)++;
2d0bb1c1 5561 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5562
69d3ca53
AD
5563 skb = buffer_info->skb;
5564 prefetch(skb->data - NET_IP_ALIGN);
5565 buffer_info->skb = NULL;
5566
5567 i++;
5568 if (i == rx_ring->count)
5569 i = 0;
42d0781a 5570
69d3ca53
AD
5571 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5572 prefetch(next_rxd);
5573 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5574
5575 length = le16_to_cpu(rx_desc->wb.upper.length);
5576 cleaned = true;
5577 cleaned_count++;
5578
2d94d8ab 5579 if (buffer_info->dma) {
59d71989 5580 dma_unmap_single(dev, buffer_info->dma,
4c844851 5581 rx_ring->rx_buffer_len,
59d71989 5582 DMA_FROM_DEVICE);
91615f76 5583 buffer_info->dma = 0;
4c844851 5584 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5585 skb_put(skb, length);
5586 goto send_up;
5587 }
4c844851 5588 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5589 }
5590
5591 if (length) {
59d71989
AD
5592 dma_unmap_page(dev, buffer_info->page_dma,
5593 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5594 buffer_info->page_dma = 0;
bf36c1a0 5595
aa913403 5596 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5597 buffer_info->page,
5598 buffer_info->page_offset,
5599 length);
5600
d1eff350
AD
5601 if ((page_count(buffer_info->page) != 1) ||
5602 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5603 buffer_info->page = NULL;
5604 else
5605 get_page(buffer_info->page);
9d5c8243
AK
5606
5607 skb->len += length;
5608 skb->data_len += length;
bf36c1a0 5609 skb->truesize += length;
9d5c8243 5610 }
9d5c8243 5611
bf36c1a0 5612 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5613 buffer_info->skb = next_buffer->skb;
5614 buffer_info->dma = next_buffer->dma;
5615 next_buffer->skb = skb;
5616 next_buffer->dma = 0;
bf36c1a0
AD
5617 goto next_desc;
5618 }
69d3ca53 5619send_up:
9d5c8243
AK
5620 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5621 dev_kfree_skb_irq(skb);
5622 goto next_desc;
5623 }
9d5c8243 5624
757b77e2
NN
5625 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5626 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5627 total_bytes += skb->len;
5628 total_packets++;
5629
85ad76b2 5630 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5631
5632 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5633 skb_record_rx_queue(skb, rx_ring->queue_index);
5634
5635 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5636 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5637
047e0030 5638 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5639
9d5c8243
AK
5640next_desc:
5641 rx_desc->wb.upper.status_error = 0;
5642
5643 /* return some buffers to hardware, one at a time is too slow */
5644 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5645 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5646 cleaned_count = 0;
5647 }
5648
5649 /* use prefetched values */
5650 rx_desc = next_rxd;
5651 buffer_info = next_buffer;
9d5c8243
AK
5652 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5653 }
bf36c1a0 5654
9d5c8243 5655 rx_ring->next_to_clean = i;
c493ea45 5656 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5657
5658 if (cleaned_count)
3b644cf6 5659 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5660
5661 rx_ring->total_packets += total_packets;
5662 rx_ring->total_bytes += total_bytes;
5663 rx_ring->rx_stats.packets += total_packets;
5664 rx_ring->rx_stats.bytes += total_bytes;
9d5c8243
AK
5665 return cleaned;
5666}
5667
9d5c8243
AK
5668/**
5669 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5670 * @adapter: address of board private structure
5671 **/
d7ee5b3a 5672void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5673{
e694e964 5674 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5675 union e1000_adv_rx_desc *rx_desc;
5676 struct igb_buffer *buffer_info;
5677 struct sk_buff *skb;
5678 unsigned int i;
db761762 5679 int bufsz;
9d5c8243
AK
5680
5681 i = rx_ring->next_to_use;
5682 buffer_info = &rx_ring->buffer_info[i];
5683
4c844851 5684 bufsz = rx_ring->rx_buffer_len;
db761762 5685
9d5c8243
AK
5686 while (cleaned_count--) {
5687 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5688
6ec43fe6 5689 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5690 if (!buffer_info->page) {
42d0781a 5691 buffer_info->page = netdev_alloc_page(netdev);
bf36c1a0 5692 if (!buffer_info->page) {
04a5fcaa 5693 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5694 goto no_buffers;
5695 }
5696 buffer_info->page_offset = 0;
5697 } else {
5698 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5699 }
5700 buffer_info->page_dma =
59d71989 5701 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5702 buffer_info->page_offset,
5703 PAGE_SIZE / 2,
59d71989
AD
5704 DMA_FROM_DEVICE);
5705 if (dma_mapping_error(rx_ring->dev,
5706 buffer_info->page_dma)) {
42d0781a
AD
5707 buffer_info->page_dma = 0;
5708 rx_ring->rx_stats.alloc_failed++;
5709 goto no_buffers;
5710 }
9d5c8243
AK
5711 }
5712
42d0781a
AD
5713 skb = buffer_info->skb;
5714 if (!skb) {
89d71a66 5715 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5716 if (!skb) {
04a5fcaa 5717 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5718 goto no_buffers;
5719 }
5720
9d5c8243 5721 buffer_info->skb = skb;
42d0781a
AD
5722 }
5723 if (!buffer_info->dma) {
59d71989 5724 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5725 skb->data,
9d5c8243 5726 bufsz,
59d71989
AD
5727 DMA_FROM_DEVICE);
5728 if (dma_mapping_error(rx_ring->dev,
5729 buffer_info->dma)) {
42d0781a
AD
5730 buffer_info->dma = 0;
5731 rx_ring->rx_stats.alloc_failed++;
5732 goto no_buffers;
5733 }
9d5c8243
AK
5734 }
5735 /* Refresh the desc even if buffer_addrs didn't change because
5736 * each write-back erases this info. */
6ec43fe6 5737 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5738 rx_desc->read.pkt_addr =
5739 cpu_to_le64(buffer_info->page_dma);
5740 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5741 } else {
42d0781a 5742 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5743 rx_desc->read.hdr_addr = 0;
5744 }
5745
5746 i++;
5747 if (i == rx_ring->count)
5748 i = 0;
5749 buffer_info = &rx_ring->buffer_info[i];
5750 }
5751
5752no_buffers:
5753 if (rx_ring->next_to_use != i) {
5754 rx_ring->next_to_use = i;
5755 if (i == 0)
5756 i = (rx_ring->count - 1);
5757 else
5758 i--;
5759
5760 /* Force memory writes to complete before letting h/w
5761 * know there are new descriptors to fetch. (Only
5762 * applicable for weak-ordered memory model archs,
5763 * such as IA-64). */
5764 wmb();
fce99e34 5765 writel(i, rx_ring->tail);
9d5c8243
AK
5766 }
5767}
5768
5769/**
5770 * igb_mii_ioctl -
5771 * @netdev:
5772 * @ifreq:
5773 * @cmd:
5774 **/
5775static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5776{
5777 struct igb_adapter *adapter = netdev_priv(netdev);
5778 struct mii_ioctl_data *data = if_mii(ifr);
5779
5780 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5781 return -EOPNOTSUPP;
5782
5783 switch (cmd) {
5784 case SIOCGMIIPHY:
5785 data->phy_id = adapter->hw.phy.addr;
5786 break;
5787 case SIOCGMIIREG:
f5f4cf08
AD
5788 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5789 &data->val_out))
9d5c8243
AK
5790 return -EIO;
5791 break;
5792 case SIOCSMIIREG:
5793 default:
5794 return -EOPNOTSUPP;
5795 }
5796 return 0;
5797}
5798
c6cb090b
PO
5799/**
5800 * igb_hwtstamp_ioctl - control hardware time stamping
5801 * @netdev:
5802 * @ifreq:
5803 * @cmd:
5804 *
33af6bcc
PO
5805 * Outgoing time stamping can be enabled and disabled. Play nice and
5806 * disable it when requested, although it shouldn't case any overhead
5807 * when no packet needs it. At most one packet in the queue may be
5808 * marked for time stamping, otherwise it would be impossible to tell
5809 * for sure to which packet the hardware time stamp belongs.
5810 *
5811 * Incoming time stamping has to be configured via the hardware
5812 * filters. Not all combinations are supported, in particular event
5813 * type has to be specified. Matching the kind of event packet is
5814 * not supported, with the exception of "all V2 events regardless of
5815 * level 2 or 4".
5816 *
c6cb090b
PO
5817 **/
5818static int igb_hwtstamp_ioctl(struct net_device *netdev,
5819 struct ifreq *ifr, int cmd)
5820{
33af6bcc
PO
5821 struct igb_adapter *adapter = netdev_priv(netdev);
5822 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5823 struct hwtstamp_config config;
c5b9bd5e
AD
5824 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5825 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5826 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5827 bool is_l4 = false;
5828 bool is_l2 = false;
33af6bcc 5829 u32 regval;
c6cb090b
PO
5830
5831 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5832 return -EFAULT;
5833
5834 /* reserved for future extensions */
5835 if (config.flags)
5836 return -EINVAL;
5837
33af6bcc
PO
5838 switch (config.tx_type) {
5839 case HWTSTAMP_TX_OFF:
c5b9bd5e 5840 tsync_tx_ctl = 0;
33af6bcc 5841 case HWTSTAMP_TX_ON:
33af6bcc
PO
5842 break;
5843 default:
5844 return -ERANGE;
5845 }
5846
5847 switch (config.rx_filter) {
5848 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5849 tsync_rx_ctl = 0;
33af6bcc
PO
5850 break;
5851 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5852 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5853 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5854 case HWTSTAMP_FILTER_ALL:
5855 /*
5856 * register TSYNCRXCFG must be set, therefore it is not
5857 * possible to time stamp both Sync and Delay_Req messages
5858 * => fall back to time stamping all packets
5859 */
c5b9bd5e 5860 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5861 config.rx_filter = HWTSTAMP_FILTER_ALL;
5862 break;
5863 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5864 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5865 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5866 is_l4 = true;
33af6bcc
PO
5867 break;
5868 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5869 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5870 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5871 is_l4 = true;
33af6bcc
PO
5872 break;
5873 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5874 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5875 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5876 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5877 is_l2 = true;
5878 is_l4 = true;
33af6bcc
PO
5879 config.rx_filter = HWTSTAMP_FILTER_SOME;
5880 break;
5881 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5882 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5883 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5884 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5885 is_l2 = true;
5886 is_l4 = true;
33af6bcc
PO
5887 config.rx_filter = HWTSTAMP_FILTER_SOME;
5888 break;
5889 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5890 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5891 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5892 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5893 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5894 is_l2 = true;
33af6bcc
PO
5895 break;
5896 default:
5897 return -ERANGE;
5898 }
5899
c5b9bd5e
AD
5900 if (hw->mac.type == e1000_82575) {
5901 if (tsync_rx_ctl | tsync_tx_ctl)
5902 return -EINVAL;
5903 return 0;
5904 }
5905
757b77e2
NN
5906 /*
5907 * Per-packet timestamping only works if all packets are
5908 * timestamped, so enable timestamping in all packets as
5909 * long as one rx filter was configured.
5910 */
5911 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5912 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5913 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5914 }
5915
33af6bcc
PO
5916 /* enable/disable TX */
5917 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5918 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5919 regval |= tsync_tx_ctl;
33af6bcc
PO
5920 wr32(E1000_TSYNCTXCTL, regval);
5921
c5b9bd5e 5922 /* enable/disable RX */
33af6bcc 5923 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5924 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5925 regval |= tsync_rx_ctl;
33af6bcc 5926 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5927
c5b9bd5e
AD
5928 /* define which PTP packets are time stamped */
5929 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5930
c5b9bd5e
AD
5931 /* define ethertype filter for timestamped packets */
5932 if (is_l2)
5933 wr32(E1000_ETQF(3),
5934 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5935 E1000_ETQF_1588 | /* enable timestamping */
5936 ETH_P_1588)); /* 1588 eth protocol type */
5937 else
5938 wr32(E1000_ETQF(3), 0);
5939
5940#define PTP_PORT 319
5941 /* L4 Queue Filter[3]: filter by destination port and protocol */
5942 if (is_l4) {
5943 u32 ftqf = (IPPROTO_UDP /* UDP */
5944 | E1000_FTQF_VF_BP /* VF not compared */
5945 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5946 | E1000_FTQF_MASK); /* mask all inputs */
5947 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5948
5949 wr32(E1000_IMIR(3), htons(PTP_PORT));
5950 wr32(E1000_IMIREXT(3),
5951 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5952 if (hw->mac.type == e1000_82576) {
5953 /* enable source port check */
5954 wr32(E1000_SPQF(3), htons(PTP_PORT));
5955 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5956 }
5957 wr32(E1000_FTQF(3), ftqf);
5958 } else {
5959 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5960 }
33af6bcc
PO
5961 wrfl();
5962
5963 adapter->hwtstamp_config = config;
5964
5965 /* clear TX/RX time stamp registers, just to be sure */
5966 regval = rd32(E1000_TXSTMPH);
5967 regval = rd32(E1000_RXSTMPH);
c6cb090b 5968
33af6bcc
PO
5969 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5970 -EFAULT : 0;
c6cb090b
PO
5971}
5972
9d5c8243
AK
5973/**
5974 * igb_ioctl -
5975 * @netdev:
5976 * @ifreq:
5977 * @cmd:
5978 **/
5979static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5980{
5981 switch (cmd) {
5982 case SIOCGMIIPHY:
5983 case SIOCGMIIREG:
5984 case SIOCSMIIREG:
5985 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5986 case SIOCSHWTSTAMP:
5987 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5988 default:
5989 return -EOPNOTSUPP;
5990 }
5991}
5992
009bc06e
AD
5993s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5994{
5995 struct igb_adapter *adapter = hw->back;
5996 u16 cap_offset;
5997
5998 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5999 if (!cap_offset)
6000 return -E1000_ERR_CONFIG;
6001
6002 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6003
6004 return 0;
6005}
6006
6007s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6008{
6009 struct igb_adapter *adapter = hw->back;
6010 u16 cap_offset;
6011
6012 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6013 if (!cap_offset)
6014 return -E1000_ERR_CONFIG;
6015
6016 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6017
6018 return 0;
6019}
6020
9d5c8243
AK
6021static void igb_vlan_rx_register(struct net_device *netdev,
6022 struct vlan_group *grp)
6023{
6024 struct igb_adapter *adapter = netdev_priv(netdev);
6025 struct e1000_hw *hw = &adapter->hw;
6026 u32 ctrl, rctl;
6027
6028 igb_irq_disable(adapter);
6029 adapter->vlgrp = grp;
6030
6031 if (grp) {
6032 /* enable VLAN tag insert/strip */
6033 ctrl = rd32(E1000_CTRL);
6034 ctrl |= E1000_CTRL_VME;
6035 wr32(E1000_CTRL, ctrl);
6036
51466239 6037 /* Disable CFI check */
9d5c8243 6038 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6039 rctl &= ~E1000_RCTL_CFIEN;
6040 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6041 } else {
6042 /* disable VLAN tag insert/strip */
6043 ctrl = rd32(E1000_CTRL);
6044 ctrl &= ~E1000_CTRL_VME;
6045 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6046 }
6047
e1739522
AD
6048 igb_rlpml_set(adapter);
6049
9d5c8243
AK
6050 if (!test_bit(__IGB_DOWN, &adapter->state))
6051 igb_irq_enable(adapter);
6052}
6053
6054static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6055{
6056 struct igb_adapter *adapter = netdev_priv(netdev);
6057 struct e1000_hw *hw = &adapter->hw;
4ae196df 6058 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6059
51466239
AD
6060 /* attempt to add filter to vlvf array */
6061 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6062
51466239
AD
6063 /* add the filter since PF can receive vlans w/o entry in vlvf */
6064 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6065}
6066
6067static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6068{
6069 struct igb_adapter *adapter = netdev_priv(netdev);
6070 struct e1000_hw *hw = &adapter->hw;
4ae196df 6071 int pf_id = adapter->vfs_allocated_count;
51466239 6072 s32 err;
9d5c8243
AK
6073
6074 igb_irq_disable(adapter);
6075 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6076
6077 if (!test_bit(__IGB_DOWN, &adapter->state))
6078 igb_irq_enable(adapter);
6079
51466239
AD
6080 /* remove vlan from VLVF table array */
6081 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6082
51466239
AD
6083 /* if vid was not present in VLVF just remove it from table */
6084 if (err)
4ae196df 6085 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6086}
6087
6088static void igb_restore_vlan(struct igb_adapter *adapter)
6089{
6090 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6091
6092 if (adapter->vlgrp) {
6093 u16 vid;
6094 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
6095 if (!vlan_group_get_device(adapter->vlgrp, vid))
6096 continue;
6097 igb_vlan_rx_add_vid(adapter->netdev, vid);
6098 }
6099 }
6100}
6101
6102int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6103{
090b1795 6104 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6105 struct e1000_mac_info *mac = &adapter->hw.mac;
6106
6107 mac->autoneg = 0;
6108
9d5c8243
AK
6109 switch (spddplx) {
6110 case SPEED_10 + DUPLEX_HALF:
6111 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6112 break;
6113 case SPEED_10 + DUPLEX_FULL:
6114 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6115 break;
6116 case SPEED_100 + DUPLEX_HALF:
6117 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6118 break;
6119 case SPEED_100 + DUPLEX_FULL:
6120 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6121 break;
6122 case SPEED_1000 + DUPLEX_FULL:
6123 mac->autoneg = 1;
6124 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6125 break;
6126 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6127 default:
090b1795 6128 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
6129 return -EINVAL;
6130 }
6131 return 0;
6132}
6133
3fe7c4c9 6134static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6135{
6136 struct net_device *netdev = pci_get_drvdata(pdev);
6137 struct igb_adapter *adapter = netdev_priv(netdev);
6138 struct e1000_hw *hw = &adapter->hw;
2d064c06 6139 u32 ctrl, rctl, status;
9d5c8243
AK
6140 u32 wufc = adapter->wol;
6141#ifdef CONFIG_PM
6142 int retval = 0;
6143#endif
6144
6145 netif_device_detach(netdev);
6146
a88f10ec
AD
6147 if (netif_running(netdev))
6148 igb_close(netdev);
6149
047e0030 6150 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6151
6152#ifdef CONFIG_PM
6153 retval = pci_save_state(pdev);
6154 if (retval)
6155 return retval;
6156#endif
6157
6158 status = rd32(E1000_STATUS);
6159 if (status & E1000_STATUS_LU)
6160 wufc &= ~E1000_WUFC_LNKC;
6161
6162 if (wufc) {
6163 igb_setup_rctl(adapter);
ff41f8dc 6164 igb_set_rx_mode(netdev);
9d5c8243
AK
6165
6166 /* turn on all-multi mode if wake on multicast is enabled */
6167 if (wufc & E1000_WUFC_MC) {
6168 rctl = rd32(E1000_RCTL);
6169 rctl |= E1000_RCTL_MPE;
6170 wr32(E1000_RCTL, rctl);
6171 }
6172
6173 ctrl = rd32(E1000_CTRL);
6174 /* advertise wake from D3Cold */
6175 #define E1000_CTRL_ADVD3WUC 0x00100000
6176 /* phy power management enable */
6177 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6178 ctrl |= E1000_CTRL_ADVD3WUC;
6179 wr32(E1000_CTRL, ctrl);
6180
9d5c8243 6181 /* Allow time for pending master requests to run */
330a6d6a 6182 igb_disable_pcie_master(hw);
9d5c8243
AK
6183
6184 wr32(E1000_WUC, E1000_WUC_PME_EN);
6185 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6186 } else {
6187 wr32(E1000_WUC, 0);
6188 wr32(E1000_WUFC, 0);
9d5c8243
AK
6189 }
6190
3fe7c4c9
RW
6191 *enable_wake = wufc || adapter->en_mng_pt;
6192 if (!*enable_wake)
88a268c1
NN
6193 igb_power_down_link(adapter);
6194 else
6195 igb_power_up_link(adapter);
9d5c8243
AK
6196
6197 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6198 * would have already happened in close and is redundant. */
6199 igb_release_hw_control(adapter);
6200
6201 pci_disable_device(pdev);
6202
9d5c8243
AK
6203 return 0;
6204}
6205
6206#ifdef CONFIG_PM
3fe7c4c9
RW
6207static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6208{
6209 int retval;
6210 bool wake;
6211
6212 retval = __igb_shutdown(pdev, &wake);
6213 if (retval)
6214 return retval;
6215
6216 if (wake) {
6217 pci_prepare_to_sleep(pdev);
6218 } else {
6219 pci_wake_from_d3(pdev, false);
6220 pci_set_power_state(pdev, PCI_D3hot);
6221 }
6222
6223 return 0;
6224}
6225
9d5c8243
AK
6226static int igb_resume(struct pci_dev *pdev)
6227{
6228 struct net_device *netdev = pci_get_drvdata(pdev);
6229 struct igb_adapter *adapter = netdev_priv(netdev);
6230 struct e1000_hw *hw = &adapter->hw;
6231 u32 err;
6232
6233 pci_set_power_state(pdev, PCI_D0);
6234 pci_restore_state(pdev);
b94f2d77 6235 pci_save_state(pdev);
42bfd33a 6236
aed5dec3 6237 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6238 if (err) {
6239 dev_err(&pdev->dev,
6240 "igb: Cannot enable PCI device from suspend\n");
6241 return err;
6242 }
6243 pci_set_master(pdev);
6244
6245 pci_enable_wake(pdev, PCI_D3hot, 0);
6246 pci_enable_wake(pdev, PCI_D3cold, 0);
6247
047e0030 6248 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6249 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6250 return -ENOMEM;
9d5c8243
AK
6251 }
6252
9d5c8243 6253 igb_reset(adapter);
a8564f03
AD
6254
6255 /* let the f/w know that the h/w is now under the control of the
6256 * driver. */
6257 igb_get_hw_control(adapter);
6258
9d5c8243
AK
6259 wr32(E1000_WUS, ~0);
6260
a88f10ec
AD
6261 if (netif_running(netdev)) {
6262 err = igb_open(netdev);
6263 if (err)
6264 return err;
6265 }
9d5c8243
AK
6266
6267 netif_device_attach(netdev);
6268
9d5c8243
AK
6269 return 0;
6270}
6271#endif
6272
6273static void igb_shutdown(struct pci_dev *pdev)
6274{
3fe7c4c9
RW
6275 bool wake;
6276
6277 __igb_shutdown(pdev, &wake);
6278
6279 if (system_state == SYSTEM_POWER_OFF) {
6280 pci_wake_from_d3(pdev, wake);
6281 pci_set_power_state(pdev, PCI_D3hot);
6282 }
9d5c8243
AK
6283}
6284
6285#ifdef CONFIG_NET_POLL_CONTROLLER
6286/*
6287 * Polling 'interrupt' - used by things like netconsole to send skbs
6288 * without having to re-enable interrupts. It's not called while
6289 * the interrupt routine is executing.
6290 */
6291static void igb_netpoll(struct net_device *netdev)
6292{
6293 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6294 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6295 int i;
9d5c8243 6296
eebbbdba 6297 if (!adapter->msix_entries) {
047e0030 6298 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6299 igb_irq_disable(adapter);
047e0030 6300 napi_schedule(&q_vector->napi);
eebbbdba
AD
6301 return;
6302 }
9d5c8243 6303
047e0030
AD
6304 for (i = 0; i < adapter->num_q_vectors; i++) {
6305 struct igb_q_vector *q_vector = adapter->q_vector[i];
6306 wr32(E1000_EIMC, q_vector->eims_value);
6307 napi_schedule(&q_vector->napi);
eebbbdba 6308 }
9d5c8243
AK
6309}
6310#endif /* CONFIG_NET_POLL_CONTROLLER */
6311
6312/**
6313 * igb_io_error_detected - called when PCI error is detected
6314 * @pdev: Pointer to PCI device
6315 * @state: The current pci connection state
6316 *
6317 * This function is called after a PCI bus error affecting
6318 * this device has been detected.
6319 */
6320static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6321 pci_channel_state_t state)
6322{
6323 struct net_device *netdev = pci_get_drvdata(pdev);
6324 struct igb_adapter *adapter = netdev_priv(netdev);
6325
6326 netif_device_detach(netdev);
6327
59ed6eec
AD
6328 if (state == pci_channel_io_perm_failure)
6329 return PCI_ERS_RESULT_DISCONNECT;
6330
9d5c8243
AK
6331 if (netif_running(netdev))
6332 igb_down(adapter);
6333 pci_disable_device(pdev);
6334
6335 /* Request a slot slot reset. */
6336 return PCI_ERS_RESULT_NEED_RESET;
6337}
6338
6339/**
6340 * igb_io_slot_reset - called after the pci bus has been reset.
6341 * @pdev: Pointer to PCI device
6342 *
6343 * Restart the card from scratch, as if from a cold-boot. Implementation
6344 * resembles the first-half of the igb_resume routine.
6345 */
6346static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6347{
6348 struct net_device *netdev = pci_get_drvdata(pdev);
6349 struct igb_adapter *adapter = netdev_priv(netdev);
6350 struct e1000_hw *hw = &adapter->hw;
40a914fa 6351 pci_ers_result_t result;
42bfd33a 6352 int err;
9d5c8243 6353
aed5dec3 6354 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6355 dev_err(&pdev->dev,
6356 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6357 result = PCI_ERS_RESULT_DISCONNECT;
6358 } else {
6359 pci_set_master(pdev);
6360 pci_restore_state(pdev);
b94f2d77 6361 pci_save_state(pdev);
9d5c8243 6362
40a914fa
AD
6363 pci_enable_wake(pdev, PCI_D3hot, 0);
6364 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6365
40a914fa
AD
6366 igb_reset(adapter);
6367 wr32(E1000_WUS, ~0);
6368 result = PCI_ERS_RESULT_RECOVERED;
6369 }
9d5c8243 6370
ea943d41
JK
6371 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6372 if (err) {
6373 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6374 "failed 0x%0x\n", err);
6375 /* non-fatal, continue */
6376 }
40a914fa
AD
6377
6378 return result;
9d5c8243
AK
6379}
6380
6381/**
6382 * igb_io_resume - called when traffic can start flowing again.
6383 * @pdev: Pointer to PCI device
6384 *
6385 * This callback is called when the error recovery driver tells us that
6386 * its OK to resume normal operation. Implementation resembles the
6387 * second-half of the igb_resume routine.
6388 */
6389static void igb_io_resume(struct pci_dev *pdev)
6390{
6391 struct net_device *netdev = pci_get_drvdata(pdev);
6392 struct igb_adapter *adapter = netdev_priv(netdev);
6393
9d5c8243
AK
6394 if (netif_running(netdev)) {
6395 if (igb_up(adapter)) {
6396 dev_err(&pdev->dev, "igb_up failed after reset\n");
6397 return;
6398 }
6399 }
6400
6401 netif_device_attach(netdev);
6402
6403 /* let the f/w know that the h/w is now under the control of the
6404 * driver. */
6405 igb_get_hw_control(adapter);
9d5c8243
AK
6406}
6407
26ad9178
AD
6408static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6409 u8 qsel)
6410{
6411 u32 rar_low, rar_high;
6412 struct e1000_hw *hw = &adapter->hw;
6413
6414 /* HW expects these in little endian so we reverse the byte order
6415 * from network order (big endian) to little endian
6416 */
6417 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6418 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6419 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6420
6421 /* Indicate to hardware the Address is Valid. */
6422 rar_high |= E1000_RAH_AV;
6423
6424 if (hw->mac.type == e1000_82575)
6425 rar_high |= E1000_RAH_POOL_1 * qsel;
6426 else
6427 rar_high |= E1000_RAH_POOL_1 << qsel;
6428
6429 wr32(E1000_RAL(index), rar_low);
6430 wrfl();
6431 wr32(E1000_RAH(index), rar_high);
6432 wrfl();
6433}
6434
4ae196df
AD
6435static int igb_set_vf_mac(struct igb_adapter *adapter,
6436 int vf, unsigned char *mac_addr)
6437{
6438 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6439 /* VF MAC addresses start at end of receive addresses and moves
6440 * torwards the first, as a result a collision should not be possible */
6441 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6442
37680117 6443 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6444
26ad9178 6445 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6446
6447 return 0;
6448}
6449
8151d294
WM
6450static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6451{
6452 struct igb_adapter *adapter = netdev_priv(netdev);
6453 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6454 return -EINVAL;
6455 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6456 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6457 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6458 " change effective.");
6459 if (test_bit(__IGB_DOWN, &adapter->state)) {
6460 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6461 " but the PF device is not up.\n");
6462 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6463 " attempting to use the VF device.\n");
6464 }
6465 return igb_set_vf_mac(adapter, vf, mac);
6466}
6467
6468static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6469{
6470 return -EOPNOTSUPP;
6471}
6472
6473static int igb_ndo_get_vf_config(struct net_device *netdev,
6474 int vf, struct ifla_vf_info *ivi)
6475{
6476 struct igb_adapter *adapter = netdev_priv(netdev);
6477 if (vf >= adapter->vfs_allocated_count)
6478 return -EINVAL;
6479 ivi->vf = vf;
6480 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6481 ivi->tx_rate = 0;
6482 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6483 ivi->qos = adapter->vf_data[vf].pf_qos;
6484 return 0;
6485}
6486
4ae196df
AD
6487static void igb_vmm_control(struct igb_adapter *adapter)
6488{
6489 struct e1000_hw *hw = &adapter->hw;
10d8e907 6490 u32 reg;
4ae196df 6491
52a1dd4d
AD
6492 switch (hw->mac.type) {
6493 case e1000_82575:
6494 default:
6495 /* replication is not supported for 82575 */
4ae196df 6496 return;
52a1dd4d
AD
6497 case e1000_82576:
6498 /* notify HW that the MAC is adding vlan tags */
6499 reg = rd32(E1000_DTXCTL);
6500 reg |= E1000_DTXCTL_VLAN_ADDED;
6501 wr32(E1000_DTXCTL, reg);
6502 case e1000_82580:
6503 /* enable replication vlan tag stripping */
6504 reg = rd32(E1000_RPLOLR);
6505 reg |= E1000_RPLOLR_STRVLAN;
6506 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6507 case e1000_i350:
6508 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6509 break;
6510 }
10d8e907 6511
d4960307
AD
6512 if (adapter->vfs_allocated_count) {
6513 igb_vmdq_set_loopback_pf(hw, true);
6514 igb_vmdq_set_replication_pf(hw, true);
6515 } else {
6516 igb_vmdq_set_loopback_pf(hw, false);
6517 igb_vmdq_set_replication_pf(hw, false);
6518 }
4ae196df
AD
6519}
6520
9d5c8243 6521/* igb_main.c */