]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_main.c
drivers/net/: use DEFINE_PCI_DEVICE_TABLE()
[net-next-2.6.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
55cac248 52#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
a3aa1884 63static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
55cac248
AD
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
2d064c06 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
c8ea5ea9 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79 /* required last entry */
80 {0, }
81};
82
83MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85void igb_reset(struct igb_adapter *);
86static int igb_setup_all_tx_resources(struct igb_adapter *);
87static int igb_setup_all_rx_resources(struct igb_adapter *);
88static void igb_free_all_tx_resources(struct igb_adapter *);
89static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 90static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
91void igb_update_stats(struct igb_adapter *);
92static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93static void __devexit igb_remove(struct pci_dev *pdev);
94static int igb_sw_init(struct igb_adapter *);
95static int igb_open(struct net_device *);
96static int igb_close(struct net_device *);
97static void igb_configure_tx(struct igb_adapter *);
98static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
99static void igb_clean_all_tx_rings(struct igb_adapter *);
100static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
101static void igb_clean_tx_ring(struct igb_ring *);
102static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 103static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
104static void igb_update_phy_info(unsigned long);
105static void igb_watchdog(unsigned long);
106static void igb_watchdog_task(struct work_struct *);
b1a436c3 107static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
108static struct net_device_stats *igb_get_stats(struct net_device *);
109static int igb_change_mtu(struct net_device *, int);
110static int igb_set_mac(struct net_device *, void *);
68d480c4 111static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
112static irqreturn_t igb_intr(int irq, void *);
113static irqreturn_t igb_intr_msi(int irq, void *);
114static irqreturn_t igb_msix_other(int irq, void *);
047e0030 115static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 116#ifdef CONFIG_IGB_DCA
047e0030 117static void igb_update_dca(struct igb_q_vector *);
fe4506b6 118static void igb_setup_dca(struct igb_adapter *);
421e02f0 119#endif /* CONFIG_IGB_DCA */
047e0030 120static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 121static int igb_poll(struct napi_struct *, int);
047e0030 122static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
123static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124static void igb_tx_timeout(struct net_device *);
125static void igb_reset_task(struct work_struct *);
126static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127static void igb_vlan_rx_add_vid(struct net_device *, u16);
128static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129static void igb_restore_vlan(struct igb_adapter *);
26ad9178 130static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
131static void igb_ping_all_vfs(struct igb_adapter *);
132static void igb_msg_task(struct igb_adapter *);
4ae196df 133static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 134static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 135static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
9d5c8243 136
9d5c8243 137#ifdef CONFIG_PM
3fe7c4c9 138static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
139static int igb_resume(struct pci_dev *);
140#endif
141static void igb_shutdown(struct pci_dev *);
421e02f0 142#ifdef CONFIG_IGB_DCA
fe4506b6
JC
143static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
144static struct notifier_block dca_notifier = {
145 .notifier_call = igb_notify_dca,
146 .next = NULL,
147 .priority = 0
148};
149#endif
9d5c8243
AK
150#ifdef CONFIG_NET_POLL_CONTROLLER
151/* for netdump / net console */
152static void igb_netpoll(struct net_device *);
153#endif
37680117 154#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
155static unsigned int max_vfs = 0;
156module_param(max_vfs, uint, 0);
157MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
158 "per physical function");
159#endif /* CONFIG_PCI_IOV */
160
9d5c8243
AK
161static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162 pci_channel_state_t);
163static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164static void igb_io_resume(struct pci_dev *);
165
166static struct pci_error_handlers igb_err_handler = {
167 .error_detected = igb_io_error_detected,
168 .slot_reset = igb_io_slot_reset,
169 .resume = igb_io_resume,
170};
171
172
173static struct pci_driver igb_driver = {
174 .name = igb_driver_name,
175 .id_table = igb_pci_tbl,
176 .probe = igb_probe,
177 .remove = __devexit_p(igb_remove),
178#ifdef CONFIG_PM
179 /* Power Managment Hooks */
180 .suspend = igb_suspend,
181 .resume = igb_resume,
182#endif
183 .shutdown = igb_shutdown,
184 .err_handler = &igb_err_handler
185};
186
187MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
188MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
189MODULE_LICENSE("GPL");
190MODULE_VERSION(DRV_VERSION);
191
38c845c7
PO
192/**
193 * igb_read_clock - read raw cycle counter (to be used by time counter)
194 */
195static cycle_t igb_read_clock(const struct cyclecounter *tc)
196{
197 struct igb_adapter *adapter =
198 container_of(tc, struct igb_adapter, cycles);
199 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
200 u64 stamp = 0;
201 int shift = 0;
38c845c7 202
55cac248
AD
203 /*
204 * The timestamp latches on lowest register read. For the 82580
205 * the lowest register is SYSTIMR instead of SYSTIML. However we never
206 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
207 */
208 if (hw->mac.type == e1000_82580) {
209 stamp = rd32(E1000_SYSTIMR) >> 8;
210 shift = IGB_82580_TSYNC_SHIFT;
211 }
212
c5b9bd5e
AD
213 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
214 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
215 return stamp;
216}
217
9d5c8243
AK
218#ifdef DEBUG
219/**
220 * igb_get_hw_dev_name - return device name string
221 * used by hardware layer to print debugging information
222 **/
223char *igb_get_hw_dev_name(struct e1000_hw *hw)
224{
225 struct igb_adapter *adapter = hw->back;
226 return adapter->netdev->name;
227}
38c845c7
PO
228
229/**
230 * igb_get_time_str - format current NIC and system time as string
231 */
232static char *igb_get_time_str(struct igb_adapter *adapter,
233 char buffer[160])
234{
235 cycle_t hw = adapter->cycles.read(&adapter->cycles);
236 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
237 struct timespec sys;
238 struct timespec delta;
239 getnstimeofday(&sys);
240
241 delta = timespec_sub(nic, sys);
242
243 sprintf(buffer,
33af6bcc
PO
244 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
245 hw,
38c845c7
PO
246 (long)nic.tv_sec, nic.tv_nsec,
247 (long)sys.tv_sec, sys.tv_nsec,
248 (long)delta.tv_sec, delta.tv_nsec);
249
250 return buffer;
251}
9d5c8243
AK
252#endif
253
254/**
255 * igb_init_module - Driver Registration Routine
256 *
257 * igb_init_module is the first routine called when the driver is
258 * loaded. All it does is register with the PCI subsystem.
259 **/
260static int __init igb_init_module(void)
261{
262 int ret;
263 printk(KERN_INFO "%s - version %s\n",
264 igb_driver_string, igb_driver_version);
265
266 printk(KERN_INFO "%s\n", igb_copyright);
267
421e02f0 268#ifdef CONFIG_IGB_DCA
fe4506b6
JC
269 dca_register_notify(&dca_notifier);
270#endif
bbd98fe4 271 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
272 return ret;
273}
274
275module_init(igb_init_module);
276
277/**
278 * igb_exit_module - Driver Exit Cleanup Routine
279 *
280 * igb_exit_module is called just before the driver is removed
281 * from memory.
282 **/
283static void __exit igb_exit_module(void)
284{
421e02f0 285#ifdef CONFIG_IGB_DCA
fe4506b6
JC
286 dca_unregister_notify(&dca_notifier);
287#endif
9d5c8243
AK
288 pci_unregister_driver(&igb_driver);
289}
290
291module_exit(igb_exit_module);
292
26bc19ec
AD
293#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
294/**
295 * igb_cache_ring_register - Descriptor ring to register mapping
296 * @adapter: board private structure to initialize
297 *
298 * Once we know the feature-set enabled for the device, we'll cache
299 * the register offset the descriptor ring is assigned to.
300 **/
301static void igb_cache_ring_register(struct igb_adapter *adapter)
302{
ee1b9f06 303 int i = 0, j = 0;
047e0030 304 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
305
306 switch (adapter->hw.mac.type) {
307 case e1000_82576:
308 /* The queues are allocated for virtualization such that VF 0
309 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
310 * In order to avoid collision we start at the first free queue
311 * and continue consuming queues in the same sequence
312 */
ee1b9f06 313 if (adapter->vfs_allocated_count) {
a99955fc 314 for (; i < adapter->rss_queues; i++)
ee1b9f06
AD
315 adapter->rx_ring[i].reg_idx = rbase_offset +
316 Q_IDX_82576(i);
a99955fc 317 for (; j < adapter->rss_queues; j++)
ee1b9f06
AD
318 adapter->tx_ring[j].reg_idx = rbase_offset +
319 Q_IDX_82576(j);
320 }
26bc19ec 321 case e1000_82575:
55cac248 322 case e1000_82580:
26bc19ec 323 default:
ee1b9f06
AD
324 for (; i < adapter->num_rx_queues; i++)
325 adapter->rx_ring[i].reg_idx = rbase_offset + i;
326 for (; j < adapter->num_tx_queues; j++)
327 adapter->tx_ring[j].reg_idx = rbase_offset + j;
26bc19ec
AD
328 break;
329 }
330}
331
047e0030
AD
332static void igb_free_queues(struct igb_adapter *adapter)
333{
334 kfree(adapter->tx_ring);
335 kfree(adapter->rx_ring);
336
337 adapter->tx_ring = NULL;
338 adapter->rx_ring = NULL;
339
340 adapter->num_rx_queues = 0;
341 adapter->num_tx_queues = 0;
342}
343
9d5c8243
AK
344/**
345 * igb_alloc_queues - Allocate memory for all rings
346 * @adapter: board private structure to initialize
347 *
348 * We allocate one ring per queue at run-time since we don't know the
349 * number of queues at compile-time.
350 **/
351static int igb_alloc_queues(struct igb_adapter *adapter)
352{
353 int i;
354
355 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
356 sizeof(struct igb_ring), GFP_KERNEL);
357 if (!adapter->tx_ring)
047e0030 358 goto err;
9d5c8243
AK
359
360 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
361 sizeof(struct igb_ring), GFP_KERNEL);
047e0030
AD
362 if (!adapter->rx_ring)
363 goto err;
6eb5a7f1 364
661086df
PWJ
365 for (i = 0; i < adapter->num_tx_queues; i++) {
366 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 367 ring->count = adapter->tx_ring_count;
661086df 368 ring->queue_index = i;
80785298 369 ring->pdev = adapter->pdev;
e694e964 370 ring->netdev = adapter->netdev;
85ad76b2
AD
371 /* For 82575, context index must be unique per ring. */
372 if (adapter->hw.mac.type == e1000_82575)
373 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
661086df 374 }
85ad76b2 375
9d5c8243
AK
376 for (i = 0; i < adapter->num_rx_queues; i++) {
377 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 378 ring->count = adapter->rx_ring_count;
844290e5 379 ring->queue_index = i;
80785298 380 ring->pdev = adapter->pdev;
e694e964 381 ring->netdev = adapter->netdev;
4c844851 382 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
383 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
384 /* set flag indicating ring supports SCTP checksum offload */
385 if (adapter->hw.mac.type >= e1000_82576)
386 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
9d5c8243 387 }
26bc19ec
AD
388
389 igb_cache_ring_register(adapter);
9d5c8243 390
047e0030 391 return 0;
a88f10ec 392
047e0030
AD
393err:
394 igb_free_queues(adapter);
d1a8c9e1 395
047e0030 396 return -ENOMEM;
a88f10ec
AD
397}
398
9d5c8243 399#define IGB_N0_QUEUE -1
047e0030 400static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
401{
402 u32 msixbm = 0;
047e0030 403 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 404 struct e1000_hw *hw = &adapter->hw;
2d064c06 405 u32 ivar, index;
047e0030
AD
406 int rx_queue = IGB_N0_QUEUE;
407 int tx_queue = IGB_N0_QUEUE;
408
409 if (q_vector->rx_ring)
410 rx_queue = q_vector->rx_ring->reg_idx;
411 if (q_vector->tx_ring)
412 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
413
414 switch (hw->mac.type) {
415 case e1000_82575:
9d5c8243
AK
416 /* The 82575 assigns vectors using a bitmask, which matches the
417 bitmask for the EICR/EIMS/EIMC registers. To assign one
418 or more queues to a vector, we write the appropriate bits
419 into the MSIXBM register for that vector. */
047e0030 420 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 421 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 422 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 423 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
9d5c8243 424 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 425 q_vector->eims_value = msixbm;
2d064c06
AD
426 break;
427 case e1000_82576:
26bc19ec 428 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
429 Each queue has a single entry in the table to which we write
430 a vector number along with a "valid" bit. Sadly, the layout
431 of the table is somewhat counterintuitive. */
432 if (rx_queue > IGB_N0_QUEUE) {
047e0030 433 index = (rx_queue & 0x7);
2d064c06 434 ivar = array_rd32(E1000_IVAR0, index);
047e0030 435 if (rx_queue < 8) {
26bc19ec
AD
436 /* vector goes into low byte of register */
437 ivar = ivar & 0xFFFFFF00;
438 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
439 } else {
440 /* vector goes into third byte of register */
441 ivar = ivar & 0xFF00FFFF;
442 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 443 }
2d064c06
AD
444 array_wr32(E1000_IVAR0, index, ivar);
445 }
446 if (tx_queue > IGB_N0_QUEUE) {
047e0030 447 index = (tx_queue & 0x7);
2d064c06 448 ivar = array_rd32(E1000_IVAR0, index);
047e0030 449 if (tx_queue < 8) {
26bc19ec
AD
450 /* vector goes into second byte of register */
451 ivar = ivar & 0xFFFF00FF;
452 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
453 } else {
454 /* vector goes into high byte of register */
455 ivar = ivar & 0x00FFFFFF;
456 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 457 }
2d064c06
AD
458 array_wr32(E1000_IVAR0, index, ivar);
459 }
047e0030 460 q_vector->eims_value = 1 << msix_vector;
2d064c06 461 break;
55cac248
AD
462 case e1000_82580:
463 /* 82580 uses the same table-based approach as 82576 but has fewer
464 entries as a result we carry over for queues greater than 4. */
465 if (rx_queue > IGB_N0_QUEUE) {
466 index = (rx_queue >> 1);
467 ivar = array_rd32(E1000_IVAR0, index);
468 if (rx_queue & 0x1) {
469 /* vector goes into third byte of register */
470 ivar = ivar & 0xFF00FFFF;
471 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
472 } else {
473 /* vector goes into low byte of register */
474 ivar = ivar & 0xFFFFFF00;
475 ivar |= msix_vector | E1000_IVAR_VALID;
476 }
477 array_wr32(E1000_IVAR0, index, ivar);
478 }
479 if (tx_queue > IGB_N0_QUEUE) {
480 index = (tx_queue >> 1);
481 ivar = array_rd32(E1000_IVAR0, index);
482 if (tx_queue & 0x1) {
483 /* vector goes into high byte of register */
484 ivar = ivar & 0x00FFFFFF;
485 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
486 } else {
487 /* vector goes into second byte of register */
488 ivar = ivar & 0xFFFF00FF;
489 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
490 }
491 array_wr32(E1000_IVAR0, index, ivar);
492 }
493 q_vector->eims_value = 1 << msix_vector;
494 break;
2d064c06
AD
495 default:
496 BUG();
497 break;
498 }
9d5c8243
AK
499}
500
501/**
502 * igb_configure_msix - Configure MSI-X hardware
503 *
504 * igb_configure_msix sets up the hardware to properly
505 * generate MSI-X interrupts.
506 **/
507static void igb_configure_msix(struct igb_adapter *adapter)
508{
509 u32 tmp;
510 int i, vector = 0;
511 struct e1000_hw *hw = &adapter->hw;
512
513 adapter->eims_enable_mask = 0;
9d5c8243
AK
514
515 /* set vector for other causes, i.e. link changes */
2d064c06
AD
516 switch (hw->mac.type) {
517 case e1000_82575:
9d5c8243
AK
518 tmp = rd32(E1000_CTRL_EXT);
519 /* enable MSI-X PBA support*/
520 tmp |= E1000_CTRL_EXT_PBA_CLR;
521
522 /* Auto-Mask interrupts upon ICR read. */
523 tmp |= E1000_CTRL_EXT_EIAME;
524 tmp |= E1000_CTRL_EXT_IRCA;
525
526 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
527
528 /* enable msix_other interrupt */
529 array_wr32(E1000_MSIXBM(0), vector++,
530 E1000_EIMS_OTHER);
844290e5 531 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 532
2d064c06
AD
533 break;
534
535 case e1000_82576:
55cac248 536 case e1000_82580:
047e0030
AD
537 /* Turn on MSI-X capability first, or our settings
538 * won't stick. And it will take days to debug. */
539 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
540 E1000_GPIE_PBA | E1000_GPIE_EIAME |
541 E1000_GPIE_NSICR);
542
543 /* enable msix_other interrupt */
544 adapter->eims_other = 1 << vector;
2d064c06 545 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 546
047e0030 547 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
548 break;
549 default:
550 /* do nothing, since nothing else supports MSI-X */
551 break;
552 } /* switch (hw->mac.type) */
047e0030
AD
553
554 adapter->eims_enable_mask |= adapter->eims_other;
555
556 for (i = 0; i < adapter->num_q_vectors; i++) {
557 struct igb_q_vector *q_vector = adapter->q_vector[i];
558 igb_assign_vector(q_vector, vector++);
559 adapter->eims_enable_mask |= q_vector->eims_value;
560 }
561
9d5c8243
AK
562 wrfl();
563}
564
565/**
566 * igb_request_msix - Initialize MSI-X interrupts
567 *
568 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
569 * kernel.
570 **/
571static int igb_request_msix(struct igb_adapter *adapter)
572{
573 struct net_device *netdev = adapter->netdev;
047e0030 574 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
575 int i, err = 0, vector = 0;
576
047e0030 577 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 578 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
579 if (err)
580 goto out;
581 vector++;
582
583 for (i = 0; i < adapter->num_q_vectors; i++) {
584 struct igb_q_vector *q_vector = adapter->q_vector[i];
585
586 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
587
588 if (q_vector->rx_ring && q_vector->tx_ring)
589 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
590 q_vector->rx_ring->queue_index);
591 else if (q_vector->tx_ring)
592 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
593 q_vector->tx_ring->queue_index);
594 else if (q_vector->rx_ring)
595 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
596 q_vector->rx_ring->queue_index);
9d5c8243 597 else
047e0030
AD
598 sprintf(q_vector->name, "%s-unused", netdev->name);
599
9d5c8243 600 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 601 igb_msix_ring, 0, q_vector->name,
047e0030 602 q_vector);
9d5c8243
AK
603 if (err)
604 goto out;
9d5c8243
AK
605 vector++;
606 }
607
9d5c8243
AK
608 igb_configure_msix(adapter);
609 return 0;
610out:
611 return err;
612}
613
614static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
615{
616 if (adapter->msix_entries) {
617 pci_disable_msix(adapter->pdev);
618 kfree(adapter->msix_entries);
619 adapter->msix_entries = NULL;
047e0030 620 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 621 pci_disable_msi(adapter->pdev);
047e0030 622 }
9d5c8243
AK
623}
624
047e0030
AD
625/**
626 * igb_free_q_vectors - Free memory allocated for interrupt vectors
627 * @adapter: board private structure to initialize
628 *
629 * This function frees the memory allocated to the q_vectors. In addition if
630 * NAPI is enabled it will delete any references to the NAPI struct prior
631 * to freeing the q_vector.
632 **/
633static void igb_free_q_vectors(struct igb_adapter *adapter)
634{
635 int v_idx;
636
637 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
638 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
639 adapter->q_vector[v_idx] = NULL;
640 netif_napi_del(&q_vector->napi);
641 kfree(q_vector);
642 }
643 adapter->num_q_vectors = 0;
644}
645
646/**
647 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
648 *
649 * This function resets the device so that it has 0 rx queues, tx queues, and
650 * MSI-X interrupts allocated.
651 */
652static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
653{
654 igb_free_queues(adapter);
655 igb_free_q_vectors(adapter);
656 igb_reset_interrupt_capability(adapter);
657}
9d5c8243
AK
658
659/**
660 * igb_set_interrupt_capability - set MSI or MSI-X if supported
661 *
662 * Attempt to configure interrupts using the best available
663 * capabilities of the hardware and kernel.
664 **/
665static void igb_set_interrupt_capability(struct igb_adapter *adapter)
666{
667 int err;
668 int numvecs, i;
669
83b7180d 670 /* Number of supported queues. */
a99955fc
AD
671 adapter->num_rx_queues = adapter->rss_queues;
672 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 673
047e0030
AD
674 /* start with one vector for every rx queue */
675 numvecs = adapter->num_rx_queues;
676
677 /* if tx handler is seperate add 1 for every tx queue */
a99955fc
AD
678 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
679 numvecs += adapter->num_tx_queues;
047e0030
AD
680
681 /* store the number of vectors reserved for queues */
682 adapter->num_q_vectors = numvecs;
683
684 /* add 1 vector for link status interrupts */
685 numvecs++;
9d5c8243
AK
686 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
687 GFP_KERNEL);
688 if (!adapter->msix_entries)
689 goto msi_only;
690
691 for (i = 0; i < numvecs; i++)
692 adapter->msix_entries[i].entry = i;
693
694 err = pci_enable_msix(adapter->pdev,
695 adapter->msix_entries,
696 numvecs);
697 if (err == 0)
34a20e89 698 goto out;
9d5c8243
AK
699
700 igb_reset_interrupt_capability(adapter);
701
702 /* If we can't do MSI-X, try MSI */
703msi_only:
2a3abf6d
AD
704#ifdef CONFIG_PCI_IOV
705 /* disable SR-IOV for non MSI-X configurations */
706 if (adapter->vf_data) {
707 struct e1000_hw *hw = &adapter->hw;
708 /* disable iov and allow time for transactions to clear */
709 pci_disable_sriov(adapter->pdev);
710 msleep(500);
711
712 kfree(adapter->vf_data);
713 adapter->vf_data = NULL;
714 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
715 msleep(100);
716 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
717 }
718#endif
4fc82adf 719 adapter->vfs_allocated_count = 0;
a99955fc 720 adapter->rss_queues = 1;
4fc82adf 721 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 722 adapter->num_rx_queues = 1;
661086df 723 adapter->num_tx_queues = 1;
047e0030 724 adapter->num_q_vectors = 1;
9d5c8243 725 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 726 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 727out:
661086df 728 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 729 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
730 return;
731}
732
047e0030
AD
733/**
734 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
735 * @adapter: board private structure to initialize
736 *
737 * We allocate one q_vector per queue interrupt. If allocation fails we
738 * return -ENOMEM.
739 **/
740static int igb_alloc_q_vectors(struct igb_adapter *adapter)
741{
742 struct igb_q_vector *q_vector;
743 struct e1000_hw *hw = &adapter->hw;
744 int v_idx;
745
746 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
747 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
748 if (!q_vector)
749 goto err_out;
750 q_vector->adapter = adapter;
751 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
752 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
753 q_vector->itr_val = IGB_START_ITR;
754 q_vector->set_itr = 1;
755 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
756 adapter->q_vector[v_idx] = q_vector;
757 }
758 return 0;
759
760err_out:
761 while (v_idx) {
762 v_idx--;
763 q_vector = adapter->q_vector[v_idx];
764 netif_napi_del(&q_vector->napi);
765 kfree(q_vector);
766 adapter->q_vector[v_idx] = NULL;
767 }
768 return -ENOMEM;
769}
770
771static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
772 int ring_idx, int v_idx)
773{
774 struct igb_q_vector *q_vector;
775
776 q_vector = adapter->q_vector[v_idx];
777 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
778 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
779 q_vector->itr_val = adapter->rx_itr_setting;
780 if (q_vector->itr_val && q_vector->itr_val <= 3)
781 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
782}
783
784static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
785 int ring_idx, int v_idx)
786{
787 struct igb_q_vector *q_vector;
788
789 q_vector = adapter->q_vector[v_idx];
790 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
791 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
792 q_vector->itr_val = adapter->tx_itr_setting;
793 if (q_vector->itr_val && q_vector->itr_val <= 3)
794 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
795}
796
797/**
798 * igb_map_ring_to_vector - maps allocated queues to vectors
799 *
800 * This function maps the recently allocated queues to vectors.
801 **/
802static int igb_map_ring_to_vector(struct igb_adapter *adapter)
803{
804 int i;
805 int v_idx = 0;
806
807 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
808 (adapter->num_q_vectors < adapter->num_tx_queues))
809 return -ENOMEM;
810
811 if (adapter->num_q_vectors >=
812 (adapter->num_rx_queues + adapter->num_tx_queues)) {
813 for (i = 0; i < adapter->num_rx_queues; i++)
814 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
815 for (i = 0; i < adapter->num_tx_queues; i++)
816 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
817 } else {
818 for (i = 0; i < adapter->num_rx_queues; i++) {
819 if (i < adapter->num_tx_queues)
820 igb_map_tx_ring_to_vector(adapter, i, v_idx);
821 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
822 }
823 for (; i < adapter->num_tx_queues; i++)
824 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
825 }
826 return 0;
827}
828
829/**
830 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
831 *
832 * This function initializes the interrupts and allocates all of the queues.
833 **/
834static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
835{
836 struct pci_dev *pdev = adapter->pdev;
837 int err;
838
839 igb_set_interrupt_capability(adapter);
840
841 err = igb_alloc_q_vectors(adapter);
842 if (err) {
843 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
844 goto err_alloc_q_vectors;
845 }
846
847 err = igb_alloc_queues(adapter);
848 if (err) {
849 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
850 goto err_alloc_queues;
851 }
852
853 err = igb_map_ring_to_vector(adapter);
854 if (err) {
855 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
856 goto err_map_queues;
857 }
858
859
860 return 0;
861err_map_queues:
862 igb_free_queues(adapter);
863err_alloc_queues:
864 igb_free_q_vectors(adapter);
865err_alloc_q_vectors:
866 igb_reset_interrupt_capability(adapter);
867 return err;
868}
869
9d5c8243
AK
870/**
871 * igb_request_irq - initialize interrupts
872 *
873 * Attempts to configure interrupts using the best available
874 * capabilities of the hardware and kernel.
875 **/
876static int igb_request_irq(struct igb_adapter *adapter)
877{
878 struct net_device *netdev = adapter->netdev;
047e0030 879 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
880 struct e1000_hw *hw = &adapter->hw;
881 int err = 0;
882
883 if (adapter->msix_entries) {
884 err = igb_request_msix(adapter);
844290e5 885 if (!err)
9d5c8243 886 goto request_done;
9d5c8243 887 /* fall back to MSI */
047e0030 888 igb_clear_interrupt_scheme(adapter);
9d5c8243 889 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 890 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
891 igb_free_all_tx_resources(adapter);
892 igb_free_all_rx_resources(adapter);
047e0030 893 adapter->num_tx_queues = 1;
9d5c8243 894 adapter->num_rx_queues = 1;
047e0030
AD
895 adapter->num_q_vectors = 1;
896 err = igb_alloc_q_vectors(adapter);
897 if (err) {
898 dev_err(&pdev->dev,
899 "Unable to allocate memory for vectors\n");
900 goto request_done;
901 }
902 err = igb_alloc_queues(adapter);
903 if (err) {
904 dev_err(&pdev->dev,
905 "Unable to allocate memory for queues\n");
906 igb_free_q_vectors(adapter);
907 goto request_done;
908 }
909 igb_setup_all_tx_resources(adapter);
910 igb_setup_all_rx_resources(adapter);
844290e5 911 } else {
2d064c06
AD
912 switch (hw->mac.type) {
913 case e1000_82575:
914 wr32(E1000_MSIXBM(0),
047e0030
AD
915 (E1000_EICR_RX_QUEUE0 |
916 E1000_EICR_TX_QUEUE0 |
917 E1000_EIMS_OTHER));
2d064c06 918 break;
55cac248 919 case e1000_82580:
2d064c06
AD
920 case e1000_82576:
921 wr32(E1000_IVAR0, E1000_IVAR_VALID);
922 break;
923 default:
924 break;
925 }
9d5c8243 926 }
844290e5 927
7dfc16fa 928 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 929 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 930 netdev->name, adapter);
9d5c8243
AK
931 if (!err)
932 goto request_done;
047e0030 933
9d5c8243
AK
934 /* fall back to legacy interrupts */
935 igb_reset_interrupt_capability(adapter);
7dfc16fa 936 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
937 }
938
a0607fd3 939 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 940 netdev->name, adapter);
9d5c8243 941
6cb5e577 942 if (err)
9d5c8243
AK
943 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
944 err);
9d5c8243
AK
945
946request_done:
947 return err;
948}
949
950static void igb_free_irq(struct igb_adapter *adapter)
951{
9d5c8243
AK
952 if (adapter->msix_entries) {
953 int vector = 0, i;
954
047e0030 955 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 956
047e0030
AD
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959 free_irq(adapter->msix_entries[vector++].vector,
960 q_vector);
961 }
962 } else {
963 free_irq(adapter->pdev->irq, adapter);
9d5c8243 964 }
9d5c8243
AK
965}
966
967/**
968 * igb_irq_disable - Mask off interrupt generation on the NIC
969 * @adapter: board private structure
970 **/
971static void igb_irq_disable(struct igb_adapter *adapter)
972{
973 struct e1000_hw *hw = &adapter->hw;
974
25568a53
AD
975 /*
976 * we need to be careful when disabling interrupts. The VFs are also
977 * mapped into these registers and so clearing the bits can cause
978 * issues on the VF drivers so we only need to clear what we set
979 */
9d5c8243 980 if (adapter->msix_entries) {
2dfd1212
AD
981 u32 regval = rd32(E1000_EIAM);
982 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
983 wr32(E1000_EIMC, adapter->eims_enable_mask);
984 regval = rd32(E1000_EIAC);
985 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 986 }
844290e5
PW
987
988 wr32(E1000_IAM, 0);
9d5c8243
AK
989 wr32(E1000_IMC, ~0);
990 wrfl();
991 synchronize_irq(adapter->pdev->irq);
992}
993
994/**
995 * igb_irq_enable - Enable default interrupt generation settings
996 * @adapter: board private structure
997 **/
998static void igb_irq_enable(struct igb_adapter *adapter)
999{
1000 struct e1000_hw *hw = &adapter->hw;
1001
1002 if (adapter->msix_entries) {
25568a53 1003 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1004 u32 regval = rd32(E1000_EIAC);
1005 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1006 regval = rd32(E1000_EIAM);
1007 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1008 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1009 if (adapter->vfs_allocated_count) {
4ae196df 1010 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1011 ims |= E1000_IMS_VMMB;
1012 }
55cac248
AD
1013 if (adapter->hw.mac.type == e1000_82580)
1014 ims |= E1000_IMS_DRSTA;
1015
25568a53 1016 wr32(E1000_IMS, ims);
844290e5 1017 } else {
55cac248
AD
1018 wr32(E1000_IMS, IMS_ENABLE_MASK |
1019 E1000_IMS_DRSTA);
1020 wr32(E1000_IAM, IMS_ENABLE_MASK |
1021 E1000_IMS_DRSTA);
844290e5 1022 }
9d5c8243
AK
1023}
1024
1025static void igb_update_mng_vlan(struct igb_adapter *adapter)
1026{
51466239 1027 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1028 u16 vid = adapter->hw.mng_cookie.vlan_id;
1029 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1030
1031 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1032 /* add VID to filter table */
1033 igb_vfta_set(hw, vid, true);
1034 adapter->mng_vlan_id = vid;
1035 } else {
1036 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1037 }
1038
1039 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1040 (vid != old_vid) &&
1041 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1042 /* remove VID from filter table */
1043 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1044 }
1045}
1046
1047/**
1048 * igb_release_hw_control - release control of the h/w to f/w
1049 * @adapter: address of board private structure
1050 *
1051 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1052 * For ASF and Pass Through versions of f/w this means that the
1053 * driver is no longer loaded.
1054 *
1055 **/
1056static void igb_release_hw_control(struct igb_adapter *adapter)
1057{
1058 struct e1000_hw *hw = &adapter->hw;
1059 u32 ctrl_ext;
1060
1061 /* Let firmware take over control of h/w */
1062 ctrl_ext = rd32(E1000_CTRL_EXT);
1063 wr32(E1000_CTRL_EXT,
1064 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1065}
1066
9d5c8243
AK
1067/**
1068 * igb_get_hw_control - get control of the h/w from f/w
1069 * @adapter: address of board private structure
1070 *
1071 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1072 * For ASF and Pass Through versions of f/w this means that
1073 * the driver is loaded.
1074 *
1075 **/
1076static void igb_get_hw_control(struct igb_adapter *adapter)
1077{
1078 struct e1000_hw *hw = &adapter->hw;
1079 u32 ctrl_ext;
1080
1081 /* Let firmware know the driver has taken over */
1082 ctrl_ext = rd32(E1000_CTRL_EXT);
1083 wr32(E1000_CTRL_EXT,
1084 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1085}
1086
9d5c8243
AK
1087/**
1088 * igb_configure - configure the hardware for RX and TX
1089 * @adapter: private board structure
1090 **/
1091static void igb_configure(struct igb_adapter *adapter)
1092{
1093 struct net_device *netdev = adapter->netdev;
1094 int i;
1095
1096 igb_get_hw_control(adapter);
ff41f8dc 1097 igb_set_rx_mode(netdev);
9d5c8243
AK
1098
1099 igb_restore_vlan(adapter);
9d5c8243 1100
85b430b4 1101 igb_setup_tctl(adapter);
06cf2666 1102 igb_setup_mrqc(adapter);
9d5c8243 1103 igb_setup_rctl(adapter);
85b430b4
AD
1104
1105 igb_configure_tx(adapter);
9d5c8243 1106 igb_configure_rx(adapter);
662d7205
AD
1107
1108 igb_rx_fifo_flush_82575(&adapter->hw);
1109
c493ea45 1110 /* call igb_desc_unused which always leaves
9d5c8243
AK
1111 * at least 1 descriptor unused to make sure
1112 * next_to_use != next_to_clean */
1113 for (i = 0; i < adapter->num_rx_queues; i++) {
1114 struct igb_ring *ring = &adapter->rx_ring[i];
c493ea45 1115 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243
AK
1116 }
1117
1118
1119 adapter->tx_queue_len = netdev->tx_queue_len;
1120}
1121
1122
1123/**
1124 * igb_up - Open the interface and prepare it to handle traffic
1125 * @adapter: board private structure
1126 **/
9d5c8243
AK
1127int igb_up(struct igb_adapter *adapter)
1128{
1129 struct e1000_hw *hw = &adapter->hw;
1130 int i;
1131
1132 /* hardware has been reset, we need to reload some things */
1133 igb_configure(adapter);
1134
1135 clear_bit(__IGB_DOWN, &adapter->state);
1136
047e0030
AD
1137 for (i = 0; i < adapter->num_q_vectors; i++) {
1138 struct igb_q_vector *q_vector = adapter->q_vector[i];
1139 napi_enable(&q_vector->napi);
1140 }
844290e5 1141 if (adapter->msix_entries)
9d5c8243 1142 igb_configure_msix(adapter);
9d5c8243
AK
1143
1144 /* Clear any pending interrupts. */
1145 rd32(E1000_ICR);
1146 igb_irq_enable(adapter);
1147
d4960307
AD
1148 /* notify VFs that reset has been completed */
1149 if (adapter->vfs_allocated_count) {
1150 u32 reg_data = rd32(E1000_CTRL_EXT);
1151 reg_data |= E1000_CTRL_EXT_PFRSTD;
1152 wr32(E1000_CTRL_EXT, reg_data);
1153 }
1154
4cb9be7a
JB
1155 netif_tx_start_all_queues(adapter->netdev);
1156
25568a53
AD
1157 /* start the watchdog. */
1158 hw->mac.get_link_status = 1;
1159 schedule_work(&adapter->watchdog_task);
1160
9d5c8243
AK
1161 return 0;
1162}
1163
1164void igb_down(struct igb_adapter *adapter)
1165{
9d5c8243 1166 struct net_device *netdev = adapter->netdev;
330a6d6a 1167 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1168 u32 tctl, rctl;
1169 int i;
1170
1171 /* signal that we're down so the interrupt handler does not
1172 * reschedule our watchdog timer */
1173 set_bit(__IGB_DOWN, &adapter->state);
1174
1175 /* disable receives in the hardware */
1176 rctl = rd32(E1000_RCTL);
1177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1178 /* flush and sleep below */
1179
fd2ea0a7 1180 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1181
1182 /* disable transmits in the hardware */
1183 tctl = rd32(E1000_TCTL);
1184 tctl &= ~E1000_TCTL_EN;
1185 wr32(E1000_TCTL, tctl);
1186 /* flush both disables and wait for them to finish */
1187 wrfl();
1188 msleep(10);
1189
047e0030
AD
1190 for (i = 0; i < adapter->num_q_vectors; i++) {
1191 struct igb_q_vector *q_vector = adapter->q_vector[i];
1192 napi_disable(&q_vector->napi);
1193 }
9d5c8243 1194
9d5c8243
AK
1195 igb_irq_disable(adapter);
1196
1197 del_timer_sync(&adapter->watchdog_timer);
1198 del_timer_sync(&adapter->phy_info_timer);
1199
1200 netdev->tx_queue_len = adapter->tx_queue_len;
1201 netif_carrier_off(netdev);
04fe6358
AD
1202
1203 /* record the stats before reset*/
1204 igb_update_stats(adapter);
1205
9d5c8243
AK
1206 adapter->link_speed = 0;
1207 adapter->link_duplex = 0;
1208
3023682e
JK
1209 if (!pci_channel_offline(adapter->pdev))
1210 igb_reset(adapter);
9d5c8243
AK
1211 igb_clean_all_tx_rings(adapter);
1212 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1213#ifdef CONFIG_IGB_DCA
1214
1215 /* since we reset the hardware DCA settings were cleared */
1216 igb_setup_dca(adapter);
1217#endif
9d5c8243
AK
1218}
1219
1220void igb_reinit_locked(struct igb_adapter *adapter)
1221{
1222 WARN_ON(in_interrupt());
1223 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1224 msleep(1);
1225 igb_down(adapter);
1226 igb_up(adapter);
1227 clear_bit(__IGB_RESETTING, &adapter->state);
1228}
1229
1230void igb_reset(struct igb_adapter *adapter)
1231{
090b1795 1232 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1233 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1234 struct e1000_mac_info *mac = &hw->mac;
1235 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1236 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1237 u16 hwm;
1238
1239 /* Repartition Pba for greater than 9k mtu
1240 * To take effect CTRL.RST is required.
1241 */
fa4dfae0 1242 switch (mac->type) {
55cac248
AD
1243 case e1000_82580:
1244 pba = rd32(E1000_RXPBS);
1245 pba = igb_rxpbs_adjust_82580(pba);
1246 break;
fa4dfae0 1247 case e1000_82576:
d249be54
AD
1248 pba = rd32(E1000_RXPBS);
1249 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1250 break;
1251 case e1000_82575:
1252 default:
1253 pba = E1000_PBA_34K;
1254 break;
2d064c06 1255 }
9d5c8243 1256
2d064c06
AD
1257 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1258 (mac->type < e1000_82576)) {
9d5c8243
AK
1259 /* adjust PBA for jumbo frames */
1260 wr32(E1000_PBA, pba);
1261
1262 /* To maintain wire speed transmits, the Tx FIFO should be
1263 * large enough to accommodate two full transmit packets,
1264 * rounded up to the next 1KB and expressed in KB. Likewise,
1265 * the Rx FIFO should be large enough to accommodate at least
1266 * one full receive packet and is similarly rounded up and
1267 * expressed in KB. */
1268 pba = rd32(E1000_PBA);
1269 /* upper 16 bits has Tx packet buffer allocation size in KB */
1270 tx_space = pba >> 16;
1271 /* lower 16 bits has Rx packet buffer allocation size in KB */
1272 pba &= 0xffff;
1273 /* the tx fifo also stores 16 bytes of information about the tx
1274 * but don't include ethernet FCS because hardware appends it */
1275 min_tx_space = (adapter->max_frame_size +
85e8d004 1276 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1277 ETH_FCS_LEN) * 2;
1278 min_tx_space = ALIGN(min_tx_space, 1024);
1279 min_tx_space >>= 10;
1280 /* software strips receive CRC, so leave room for it */
1281 min_rx_space = adapter->max_frame_size;
1282 min_rx_space = ALIGN(min_rx_space, 1024);
1283 min_rx_space >>= 10;
1284
1285 /* If current Tx allocation is less than the min Tx FIFO size,
1286 * and the min Tx FIFO size is less than the current Rx FIFO
1287 * allocation, take space away from current Rx allocation */
1288 if (tx_space < min_tx_space &&
1289 ((min_tx_space - tx_space) < pba)) {
1290 pba = pba - (min_tx_space - tx_space);
1291
1292 /* if short on rx space, rx wins and must trump tx
1293 * adjustment */
1294 if (pba < min_rx_space)
1295 pba = min_rx_space;
1296 }
2d064c06 1297 wr32(E1000_PBA, pba);
9d5c8243 1298 }
9d5c8243
AK
1299
1300 /* flow control settings */
1301 /* The high water mark must be low enough to fit one full frame
1302 * (or the size used for early receive) above it in the Rx FIFO.
1303 * Set it to the lower of:
1304 * - 90% of the Rx FIFO size, or
1305 * - the full Rx FIFO size minus one full frame */
1306 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1307 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1308
2d064c06
AD
1309 if (mac->type < e1000_82576) {
1310 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1311 fc->low_water = fc->high_water - 8;
1312 } else {
1313 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1314 fc->low_water = fc->high_water - 16;
1315 }
9d5c8243
AK
1316 fc->pause_time = 0xFFFF;
1317 fc->send_xon = 1;
0cce119a 1318 fc->current_mode = fc->requested_mode;
9d5c8243 1319
4ae196df
AD
1320 /* disable receive for all VFs and wait one second */
1321 if (adapter->vfs_allocated_count) {
1322 int i;
1323 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1324 adapter->vf_data[i].flags = 0;
4ae196df
AD
1325
1326 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1327 igb_ping_all_vfs(adapter);
4ae196df
AD
1328
1329 /* disable transmits and receives */
1330 wr32(E1000_VFRE, 0);
1331 wr32(E1000_VFTE, 0);
1332 }
1333
9d5c8243 1334 /* Allow time for pending master requests to run */
330a6d6a 1335 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1336 wr32(E1000_WUC, 0);
1337
330a6d6a 1338 if (hw->mac.ops.init_hw(hw))
090b1795 1339 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1340
55cac248
AD
1341 if (hw->mac.type == e1000_82580) {
1342 u32 reg = rd32(E1000_PCIEMISC);
1343 wr32(E1000_PCIEMISC,
1344 reg & ~E1000_PCIEMISC_LX_DECISION);
1345 }
9d5c8243
AK
1346 igb_update_mng_vlan(adapter);
1347
1348 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1349 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1350
330a6d6a
AD
1351 igb_reset_adaptive(hw);
1352 igb_get_phy_info(hw);
9d5c8243
AK
1353}
1354
2e5c6922 1355static const struct net_device_ops igb_netdev_ops = {
559e9c49 1356 .ndo_open = igb_open,
2e5c6922 1357 .ndo_stop = igb_close,
00829823 1358 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1359 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1360 .ndo_set_rx_mode = igb_set_rx_mode,
1361 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1362 .ndo_set_mac_address = igb_set_mac,
1363 .ndo_change_mtu = igb_change_mtu,
1364 .ndo_do_ioctl = igb_ioctl,
1365 .ndo_tx_timeout = igb_tx_timeout,
1366 .ndo_validate_addr = eth_validate_addr,
1367 .ndo_vlan_rx_register = igb_vlan_rx_register,
1368 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1369 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1370#ifdef CONFIG_NET_POLL_CONTROLLER
1371 .ndo_poll_controller = igb_netpoll,
1372#endif
1373};
1374
9d5c8243
AK
1375/**
1376 * igb_probe - Device Initialization Routine
1377 * @pdev: PCI device information struct
1378 * @ent: entry in igb_pci_tbl
1379 *
1380 * Returns 0 on success, negative on failure
1381 *
1382 * igb_probe initializes an adapter identified by a pci_dev structure.
1383 * The OS initialization, configuring of the adapter private structure,
1384 * and a hardware reset occur.
1385 **/
1386static int __devinit igb_probe(struct pci_dev *pdev,
1387 const struct pci_device_id *ent)
1388{
1389 struct net_device *netdev;
1390 struct igb_adapter *adapter;
1391 struct e1000_hw *hw;
4337e993
AD
1392 u16 eeprom_data = 0;
1393 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1394 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1395 unsigned long mmio_start, mmio_len;
2d6a5e95 1396 int err, pci_using_dac;
9d5c8243
AK
1397 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1398 u32 part_num;
1399
aed5dec3 1400 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1401 if (err)
1402 return err;
1403
1404 pci_using_dac = 0;
6a35528a 1405 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243 1406 if (!err) {
6a35528a 1407 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243
AK
1408 if (!err)
1409 pci_using_dac = 1;
1410 } else {
284901a9 1411 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243 1412 if (err) {
284901a9 1413 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243
AK
1414 if (err) {
1415 dev_err(&pdev->dev, "No usable DMA "
1416 "configuration, aborting\n");
1417 goto err_dma;
1418 }
1419 }
1420 }
1421
aed5dec3
AD
1422 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1423 IORESOURCE_MEM),
1424 igb_driver_name);
9d5c8243
AK
1425 if (err)
1426 goto err_pci_reg;
1427
19d5afd4 1428 pci_enable_pcie_error_reporting(pdev);
40a914fa 1429
9d5c8243 1430 pci_set_master(pdev);
c682fc23 1431 pci_save_state(pdev);
9d5c8243
AK
1432
1433 err = -ENOMEM;
1bfaf07b
AD
1434 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1435 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1436 if (!netdev)
1437 goto err_alloc_etherdev;
1438
1439 SET_NETDEV_DEV(netdev, &pdev->dev);
1440
1441 pci_set_drvdata(pdev, netdev);
1442 adapter = netdev_priv(netdev);
1443 adapter->netdev = netdev;
1444 adapter->pdev = pdev;
1445 hw = &adapter->hw;
1446 hw->back = adapter;
1447 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1448
1449 mmio_start = pci_resource_start(pdev, 0);
1450 mmio_len = pci_resource_len(pdev, 0);
1451
1452 err = -EIO;
28b0759c
AD
1453 hw->hw_addr = ioremap(mmio_start, mmio_len);
1454 if (!hw->hw_addr)
9d5c8243
AK
1455 goto err_ioremap;
1456
2e5c6922 1457 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1458 igb_set_ethtool_ops(netdev);
9d5c8243 1459 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1460
1461 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1462
1463 netdev->mem_start = mmio_start;
1464 netdev->mem_end = mmio_start + mmio_len;
1465
9d5c8243
AK
1466 /* PCI config space info */
1467 hw->vendor_id = pdev->vendor;
1468 hw->device_id = pdev->device;
1469 hw->revision_id = pdev->revision;
1470 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1471 hw->subsystem_device_id = pdev->subsystem_device;
1472
9d5c8243
AK
1473 /* Copy the default MAC, PHY and NVM function pointers */
1474 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1475 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1476 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1477 /* Initialize skew-specific constants */
1478 err = ei->get_invariants(hw);
1479 if (err)
450c87c8 1480 goto err_sw_init;
9d5c8243 1481
450c87c8 1482 /* setup the private structure */
9d5c8243
AK
1483 err = igb_sw_init(adapter);
1484 if (err)
1485 goto err_sw_init;
1486
1487 igb_get_bus_info_pcie(hw);
1488
1489 hw->phy.autoneg_wait_to_complete = false;
1490 hw->mac.adaptive_ifs = true;
1491
1492 /* Copper options */
1493 if (hw->phy.media_type == e1000_media_type_copper) {
1494 hw->phy.mdix = AUTO_ALL_MODES;
1495 hw->phy.disable_polarity_correction = false;
1496 hw->phy.ms_type = e1000_ms_hw_default;
1497 }
1498
1499 if (igb_check_reset_block(hw))
1500 dev_info(&pdev->dev,
1501 "PHY reset is blocked due to SOL/IDER session.\n");
1502
1503 netdev->features = NETIF_F_SG |
7d8eb29e 1504 NETIF_F_IP_CSUM |
9d5c8243
AK
1505 NETIF_F_HW_VLAN_TX |
1506 NETIF_F_HW_VLAN_RX |
1507 NETIF_F_HW_VLAN_FILTER;
1508
7d8eb29e 1509 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1510 netdev->features |= NETIF_F_TSO;
9d5c8243 1511 netdev->features |= NETIF_F_TSO6;
5c0999b7 1512 netdev->features |= NETIF_F_GRO;
d3352520 1513
48f29ffc
JK
1514 netdev->vlan_features |= NETIF_F_TSO;
1515 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1516 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1517 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1518 netdev->vlan_features |= NETIF_F_SG;
1519
9d5c8243
AK
1520 if (pci_using_dac)
1521 netdev->features |= NETIF_F_HIGHDMA;
1522
5b043fb0 1523 if (hw->mac.type >= e1000_82576)
b9473560
JB
1524 netdev->features |= NETIF_F_SCTP_CSUM;
1525
330a6d6a 1526 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1527
1528 /* before reading the NVM, reset the controller to put the device in a
1529 * known good starting state */
1530 hw->mac.ops.reset_hw(hw);
1531
1532 /* make sure the NVM is good */
1533 if (igb_validate_nvm_checksum(hw) < 0) {
1534 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1535 err = -EIO;
1536 goto err_eeprom;
1537 }
1538
1539 /* copy the MAC address out of the NVM */
1540 if (hw->mac.ops.read_mac_addr(hw))
1541 dev_err(&pdev->dev, "NVM Read Error\n");
1542
1543 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1544 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1545
1546 if (!is_valid_ether_addr(netdev->perm_addr)) {
1547 dev_err(&pdev->dev, "Invalid MAC Address\n");
1548 err = -EIO;
1549 goto err_eeprom;
1550 }
1551
0e340485
AD
1552 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1553 (unsigned long) adapter);
1554 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1555 (unsigned long) adapter);
9d5c8243
AK
1556
1557 INIT_WORK(&adapter->reset_task, igb_reset_task);
1558 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1559
450c87c8 1560 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1561 adapter->fc_autoneg = true;
1562 hw->mac.autoneg = true;
1563 hw->phy.autoneg_advertised = 0x2f;
1564
0cce119a
AD
1565 hw->fc.requested_mode = e1000_fc_default;
1566 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1567
9d5c8243
AK
1568 igb_validate_mdi_setting(hw);
1569
9d5c8243
AK
1570 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1571 * enable the ACPI Magic Packet filter
1572 */
1573
a2cf8b6c 1574 if (hw->bus.func == 0)
312c75ae 1575 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1576 else if (hw->mac.type == e1000_82580)
1577 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1578 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1579 &eeprom_data);
a2cf8b6c
AD
1580 else if (hw->bus.func == 1)
1581 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1582
1583 if (eeprom_data & eeprom_apme_mask)
1584 adapter->eeprom_wol |= E1000_WUFC_MAG;
1585
1586 /* now that we have the eeprom settings, apply the special cases where
1587 * the eeprom may be wrong or the board simply won't support wake on
1588 * lan on a particular port */
1589 switch (pdev->device) {
1590 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1591 adapter->eeprom_wol = 0;
1592 break;
1593 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1594 case E1000_DEV_ID_82576_FIBER:
1595 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1596 /* Wake events only supported on port A for dual fiber
1597 * regardless of eeprom setting */
1598 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1599 adapter->eeprom_wol = 0;
1600 break;
c8ea5ea9
AD
1601 case E1000_DEV_ID_82576_QUAD_COPPER:
1602 /* if quad port adapter, disable WoL on all but port A */
1603 if (global_quad_port_a != 0)
1604 adapter->eeprom_wol = 0;
1605 else
1606 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1607 /* Reset for multiple quad port adapters */
1608 if (++global_quad_port_a == 4)
1609 global_quad_port_a = 0;
1610 break;
9d5c8243
AK
1611 }
1612
1613 /* initialize the wol settings based on the eeprom settings */
1614 adapter->wol = adapter->eeprom_wol;
e1b86d84 1615 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1616
1617 /* reset the hardware with the new settings */
1618 igb_reset(adapter);
1619
1620 /* let the f/w know that the h/w is now under the control of the
1621 * driver. */
1622 igb_get_hw_control(adapter);
1623
9d5c8243
AK
1624 strcpy(netdev->name, "eth%d");
1625 err = register_netdev(netdev);
1626 if (err)
1627 goto err_register;
1628
b168dfc5
JB
1629 /* carrier off reporting is important to ethtool even BEFORE open */
1630 netif_carrier_off(netdev);
1631
421e02f0 1632#ifdef CONFIG_IGB_DCA
bbd98fe4 1633 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1634 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1635 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1636 igb_setup_dca(adapter);
1637 }
fe4506b6 1638
38c845c7 1639#endif
9d5c8243
AK
1640 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1641 /* print bus type/speed/width info */
7c510e4b 1642 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1643 netdev->name,
559e9c49
AD
1644 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1645 "unknown"),
59c3de89
AD
1646 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1647 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1648 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1649 "unknown"),
7c510e4b 1650 netdev->dev_addr);
9d5c8243
AK
1651
1652 igb_read_part_num(hw, &part_num);
1653 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1654 (part_num >> 8), (part_num & 0xff));
1655
1656 dev_info(&pdev->dev,
1657 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1658 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1659 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1660 adapter->num_rx_queues, adapter->num_tx_queues);
1661
9d5c8243
AK
1662 return 0;
1663
1664err_register:
1665 igb_release_hw_control(adapter);
1666err_eeprom:
1667 if (!igb_check_reset_block(hw))
f5f4cf08 1668 igb_reset_phy(hw);
9d5c8243
AK
1669
1670 if (hw->flash_address)
1671 iounmap(hw->flash_address);
9d5c8243 1672err_sw_init:
047e0030 1673 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
1674 iounmap(hw->hw_addr);
1675err_ioremap:
1676 free_netdev(netdev);
1677err_alloc_etherdev:
559e9c49
AD
1678 pci_release_selected_regions(pdev,
1679 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
1680err_pci_reg:
1681err_dma:
1682 pci_disable_device(pdev);
1683 return err;
1684}
1685
1686/**
1687 * igb_remove - Device Removal Routine
1688 * @pdev: PCI device information struct
1689 *
1690 * igb_remove is called by the PCI subsystem to alert the driver
1691 * that it should release a PCI device. The could be caused by a
1692 * Hot-Plug event, or because the driver is going to be removed from
1693 * memory.
1694 **/
1695static void __devexit igb_remove(struct pci_dev *pdev)
1696{
1697 struct net_device *netdev = pci_get_drvdata(pdev);
1698 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1699 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1700
1701 /* flush_scheduled work may reschedule our watchdog task, so
1702 * explicitly disable watchdog tasks from being rescheduled */
1703 set_bit(__IGB_DOWN, &adapter->state);
1704 del_timer_sync(&adapter->watchdog_timer);
1705 del_timer_sync(&adapter->phy_info_timer);
1706
1707 flush_scheduled_work();
1708
421e02f0 1709#ifdef CONFIG_IGB_DCA
7dfc16fa 1710 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1711 dev_info(&pdev->dev, "DCA disabled\n");
1712 dca_remove_requester(&pdev->dev);
7dfc16fa 1713 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1714 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1715 }
1716#endif
1717
9d5c8243
AK
1718 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1719 * would have already happened in close and is redundant. */
1720 igb_release_hw_control(adapter);
1721
1722 unregister_netdev(netdev);
1723
330a6d6a
AD
1724 if (!igb_check_reset_block(hw))
1725 igb_reset_phy(hw);
9d5c8243 1726
047e0030 1727 igb_clear_interrupt_scheme(adapter);
9d5c8243 1728
37680117
AD
1729#ifdef CONFIG_PCI_IOV
1730 /* reclaim resources allocated to VFs */
1731 if (adapter->vf_data) {
1732 /* disable iov and allow time for transactions to clear */
1733 pci_disable_sriov(pdev);
1734 msleep(500);
1735
1736 kfree(adapter->vf_data);
1737 adapter->vf_data = NULL;
1738 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1739 msleep(100);
1740 dev_info(&pdev->dev, "IOV Disabled\n");
1741 }
1742#endif
559e9c49 1743
28b0759c
AD
1744 iounmap(hw->hw_addr);
1745 if (hw->flash_address)
1746 iounmap(hw->flash_address);
559e9c49
AD
1747 pci_release_selected_regions(pdev,
1748 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
1749
1750 free_netdev(netdev);
1751
19d5afd4 1752 pci_disable_pcie_error_reporting(pdev);
40a914fa 1753
9d5c8243
AK
1754 pci_disable_device(pdev);
1755}
1756
a6b623e0
AD
1757/**
1758 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1759 * @adapter: board private structure to initialize
1760 *
1761 * This function initializes the vf specific data storage and then attempts to
1762 * allocate the VFs. The reason for ordering it this way is because it is much
1763 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1764 * the memory for the VFs.
1765 **/
1766static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1767{
1768#ifdef CONFIG_PCI_IOV
1769 struct pci_dev *pdev = adapter->pdev;
1770
1771 if (adapter->vfs_allocated_count > 7)
1772 adapter->vfs_allocated_count = 7;
1773
1774 if (adapter->vfs_allocated_count) {
1775 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1776 sizeof(struct vf_data_storage),
1777 GFP_KERNEL);
1778 /* if allocation failed then we do not support SR-IOV */
1779 if (!adapter->vf_data) {
1780 adapter->vfs_allocated_count = 0;
1781 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1782 "Data Storage\n");
1783 }
1784 }
1785
1786 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1787 kfree(adapter->vf_data);
1788 adapter->vf_data = NULL;
1789#endif /* CONFIG_PCI_IOV */
1790 adapter->vfs_allocated_count = 0;
1791#ifdef CONFIG_PCI_IOV
1792 } else {
1793 unsigned char mac_addr[ETH_ALEN];
1794 int i;
1795 dev_info(&pdev->dev, "%d vfs allocated\n",
1796 adapter->vfs_allocated_count);
1797 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1798 random_ether_addr(mac_addr);
1799 igb_set_vf_mac(adapter, i, mac_addr);
1800 }
1801 }
1802#endif /* CONFIG_PCI_IOV */
1803}
1804
115f459a
AD
1805
1806/**
1807 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1808 * @adapter: board private structure to initialize
1809 *
1810 * igb_init_hw_timer initializes the function pointer and values for the hw
1811 * timer found in hardware.
1812 **/
1813static void igb_init_hw_timer(struct igb_adapter *adapter)
1814{
1815 struct e1000_hw *hw = &adapter->hw;
1816
1817 switch (hw->mac.type) {
55cac248
AD
1818 case e1000_82580:
1819 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1820 adapter->cycles.read = igb_read_clock;
1821 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1822 adapter->cycles.mult = 1;
1823 /*
1824 * The 82580 timesync updates the system timer every 8ns by 8ns
1825 * and the value cannot be shifted. Instead we need to shift
1826 * the registers to generate a 64bit timer value. As a result
1827 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1828 * 24 in order to generate a larger value for synchronization.
1829 */
1830 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1831 /* disable system timer temporarily by setting bit 31 */
1832 wr32(E1000_TSAUXC, 0x80000000);
1833 wrfl();
1834
1835 /* Set registers so that rollover occurs soon to test this. */
1836 wr32(E1000_SYSTIMR, 0x00000000);
1837 wr32(E1000_SYSTIML, 0x80000000);
1838 wr32(E1000_SYSTIMH, 0x000000FF);
1839 wrfl();
1840
1841 /* enable system timer by clearing bit 31 */
1842 wr32(E1000_TSAUXC, 0x0);
1843 wrfl();
1844
1845 timecounter_init(&adapter->clock,
1846 &adapter->cycles,
1847 ktime_to_ns(ktime_get_real()));
1848 /*
1849 * Synchronize our NIC clock against system wall clock. NIC
1850 * time stamp reading requires ~3us per sample, each sample
1851 * was pretty stable even under load => only require 10
1852 * samples for each offset comparison.
1853 */
1854 memset(&adapter->compare, 0, sizeof(adapter->compare));
1855 adapter->compare.source = &adapter->clock;
1856 adapter->compare.target = ktime_get_real;
1857 adapter->compare.num_samples = 10;
1858 timecompare_update(&adapter->compare, 0);
1859 break;
115f459a
AD
1860 case e1000_82576:
1861 /*
1862 * Initialize hardware timer: we keep it running just in case
1863 * that some program needs it later on.
1864 */
1865 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1866 adapter->cycles.read = igb_read_clock;
1867 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1868 adapter->cycles.mult = 1;
1869 /**
1870 * Scale the NIC clock cycle by a large factor so that
1871 * relatively small clock corrections can be added or
1872 * substracted at each clock tick. The drawbacks of a large
1873 * factor are a) that the clock register overflows more quickly
1874 * (not such a big deal) and b) that the increment per tick has
1875 * to fit into 24 bits. As a result we need to use a shift of
1876 * 19 so we can fit a value of 16 into the TIMINCA register.
1877 */
1878 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1879 wr32(E1000_TIMINCA,
1880 (1 << E1000_TIMINCA_16NS_SHIFT) |
1881 (16 << IGB_82576_TSYNC_SHIFT));
1882
1883 /* Set registers so that rollover occurs soon to test this. */
1884 wr32(E1000_SYSTIML, 0x00000000);
1885 wr32(E1000_SYSTIMH, 0xFF800000);
1886 wrfl();
1887
1888 timecounter_init(&adapter->clock,
1889 &adapter->cycles,
1890 ktime_to_ns(ktime_get_real()));
1891 /*
1892 * Synchronize our NIC clock against system wall clock. NIC
1893 * time stamp reading requires ~3us per sample, each sample
1894 * was pretty stable even under load => only require 10
1895 * samples for each offset comparison.
1896 */
1897 memset(&adapter->compare, 0, sizeof(adapter->compare));
1898 adapter->compare.source = &adapter->clock;
1899 adapter->compare.target = ktime_get_real;
1900 adapter->compare.num_samples = 10;
1901 timecompare_update(&adapter->compare, 0);
1902 break;
1903 case e1000_82575:
1904 /* 82575 does not support timesync */
1905 default:
1906 break;
1907 }
1908
1909}
1910
9d5c8243
AK
1911/**
1912 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1913 * @adapter: board private structure to initialize
1914 *
1915 * igb_sw_init initializes the Adapter private data structure.
1916 * Fields are initialized based on PCI device information and
1917 * OS network device settings (MTU size).
1918 **/
1919static int __devinit igb_sw_init(struct igb_adapter *adapter)
1920{
1921 struct e1000_hw *hw = &adapter->hw;
1922 struct net_device *netdev = adapter->netdev;
1923 struct pci_dev *pdev = adapter->pdev;
1924
1925 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1926
68fd9910
AD
1927 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1928 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
1929 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1930 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1931
9d5c8243
AK
1932 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1933 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1934
a6b623e0
AD
1935#ifdef CONFIG_PCI_IOV
1936 if (hw->mac.type == e1000_82576)
1937 adapter->vfs_allocated_count = max_vfs;
1938
1939#endif /* CONFIG_PCI_IOV */
a99955fc
AD
1940 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1941
1942 /*
1943 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1944 * then we should combine the queues into a queue pair in order to
1945 * conserve interrupts due to limited supply
1946 */
1947 if ((adapter->rss_queues > 4) ||
1948 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1949 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1950
a6b623e0 1951 /* This call may decrease the number of queues */
047e0030 1952 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
1953 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1954 return -ENOMEM;
1955 }
1956
115f459a 1957 igb_init_hw_timer(adapter);
a6b623e0
AD
1958 igb_probe_vfs(adapter);
1959
9d5c8243
AK
1960 /* Explicitly disable IRQ since the NIC can be in any state. */
1961 igb_irq_disable(adapter);
1962
1963 set_bit(__IGB_DOWN, &adapter->state);
1964 return 0;
1965}
1966
1967/**
1968 * igb_open - Called when a network interface is made active
1969 * @netdev: network interface device structure
1970 *
1971 * Returns 0 on success, negative value on failure
1972 *
1973 * The open entry point is called when a network interface is made
1974 * active by the system (IFF_UP). At this point all resources needed
1975 * for transmit and receive operations are allocated, the interrupt
1976 * handler is registered with the OS, the watchdog timer is started,
1977 * and the stack is notified that the interface is ready.
1978 **/
1979static int igb_open(struct net_device *netdev)
1980{
1981 struct igb_adapter *adapter = netdev_priv(netdev);
1982 struct e1000_hw *hw = &adapter->hw;
1983 int err;
1984 int i;
1985
1986 /* disallow open during test */
1987 if (test_bit(__IGB_TESTING, &adapter->state))
1988 return -EBUSY;
1989
b168dfc5
JB
1990 netif_carrier_off(netdev);
1991
9d5c8243
AK
1992 /* allocate transmit descriptors */
1993 err = igb_setup_all_tx_resources(adapter);
1994 if (err)
1995 goto err_setup_tx;
1996
1997 /* allocate receive descriptors */
1998 err = igb_setup_all_rx_resources(adapter);
1999 if (err)
2000 goto err_setup_rx;
2001
2002 /* e1000_power_up_phy(adapter); */
2003
9d5c8243
AK
2004 /* before we allocate an interrupt, we must be ready to handle it.
2005 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2006 * as soon as we call pci_request_irq, so we have to setup our
2007 * clean_rx handler before we do so. */
2008 igb_configure(adapter);
2009
2010 err = igb_request_irq(adapter);
2011 if (err)
2012 goto err_req_irq;
2013
2014 /* From here on the code is the same as igb_up() */
2015 clear_bit(__IGB_DOWN, &adapter->state);
2016
047e0030
AD
2017 for (i = 0; i < adapter->num_q_vectors; i++) {
2018 struct igb_q_vector *q_vector = adapter->q_vector[i];
2019 napi_enable(&q_vector->napi);
2020 }
9d5c8243
AK
2021
2022 /* Clear any pending interrupts. */
2023 rd32(E1000_ICR);
844290e5
PW
2024
2025 igb_irq_enable(adapter);
2026
d4960307
AD
2027 /* notify VFs that reset has been completed */
2028 if (adapter->vfs_allocated_count) {
2029 u32 reg_data = rd32(E1000_CTRL_EXT);
2030 reg_data |= E1000_CTRL_EXT_PFRSTD;
2031 wr32(E1000_CTRL_EXT, reg_data);
2032 }
2033
d55b53ff
JK
2034 netif_tx_start_all_queues(netdev);
2035
25568a53
AD
2036 /* start the watchdog. */
2037 hw->mac.get_link_status = 1;
2038 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2039
2040 return 0;
2041
2042err_req_irq:
2043 igb_release_hw_control(adapter);
2044 /* e1000_power_down_phy(adapter); */
2045 igb_free_all_rx_resources(adapter);
2046err_setup_rx:
2047 igb_free_all_tx_resources(adapter);
2048err_setup_tx:
2049 igb_reset(adapter);
2050
2051 return err;
2052}
2053
2054/**
2055 * igb_close - Disables a network interface
2056 * @netdev: network interface device structure
2057 *
2058 * Returns 0, this is not allowed to fail
2059 *
2060 * The close entry point is called when an interface is de-activated
2061 * by the OS. The hardware is still under the driver's control, but
2062 * needs to be disabled. A global MAC reset is issued to stop the
2063 * hardware, and all transmit and receive resources are freed.
2064 **/
2065static int igb_close(struct net_device *netdev)
2066{
2067 struct igb_adapter *adapter = netdev_priv(netdev);
2068
2069 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2070 igb_down(adapter);
2071
2072 igb_free_irq(adapter);
2073
2074 igb_free_all_tx_resources(adapter);
2075 igb_free_all_rx_resources(adapter);
2076
9d5c8243
AK
2077 return 0;
2078}
2079
2080/**
2081 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2082 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2083 *
2084 * Return 0 on success, negative on failure
2085 **/
80785298 2086int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2087{
80785298 2088 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
2089 int size;
2090
2091 size = sizeof(struct igb_buffer) * tx_ring->count;
2092 tx_ring->buffer_info = vmalloc(size);
2093 if (!tx_ring->buffer_info)
2094 goto err;
2095 memset(tx_ring->buffer_info, 0, size);
2096
2097 /* round up to nearest 4K */
85e8d004 2098 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2099 tx_ring->size = ALIGN(tx_ring->size, 4096);
2100
439705e1
AD
2101 tx_ring->desc = pci_alloc_consistent(pdev,
2102 tx_ring->size,
9d5c8243
AK
2103 &tx_ring->dma);
2104
2105 if (!tx_ring->desc)
2106 goto err;
2107
9d5c8243
AK
2108 tx_ring->next_to_use = 0;
2109 tx_ring->next_to_clean = 0;
9d5c8243
AK
2110 return 0;
2111
2112err:
2113 vfree(tx_ring->buffer_info);
047e0030 2114 dev_err(&pdev->dev,
9d5c8243
AK
2115 "Unable to allocate memory for the transmit descriptor ring\n");
2116 return -ENOMEM;
2117}
2118
2119/**
2120 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2121 * (Descriptors) for all queues
2122 * @adapter: board private structure
2123 *
2124 * Return 0 on success, negative on failure
2125 **/
2126static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2127{
439705e1 2128 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2129 int i, err = 0;
2130
2131 for (i = 0; i < adapter->num_tx_queues; i++) {
80785298 2132 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
9d5c8243 2133 if (err) {
439705e1 2134 dev_err(&pdev->dev,
9d5c8243
AK
2135 "Allocation for Tx Queue %u failed\n", i);
2136 for (i--; i >= 0; i--)
3b644cf6 2137 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2138 break;
2139 }
2140 }
2141
a99955fc 2142 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2143 int r_idx = i % adapter->num_tx_queues;
661086df 2144 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 2145 }
9d5c8243
AK
2146 return err;
2147}
2148
2149/**
85b430b4
AD
2150 * igb_setup_tctl - configure the transmit control registers
2151 * @adapter: Board private structure
9d5c8243 2152 **/
d7ee5b3a 2153void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2154{
9d5c8243
AK
2155 struct e1000_hw *hw = &adapter->hw;
2156 u32 tctl;
9d5c8243 2157
85b430b4
AD
2158 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2159 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2160
2161 /* Program the Transmit Control Register */
9d5c8243
AK
2162 tctl = rd32(E1000_TCTL);
2163 tctl &= ~E1000_TCTL_CT;
2164 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2165 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2166
2167 igb_config_collision_dist(hw);
2168
9d5c8243
AK
2169 /* Enable transmits */
2170 tctl |= E1000_TCTL_EN;
2171
2172 wr32(E1000_TCTL, tctl);
2173}
2174
85b430b4
AD
2175/**
2176 * igb_configure_tx_ring - Configure transmit ring after Reset
2177 * @adapter: board private structure
2178 * @ring: tx ring to configure
2179 *
2180 * Configure a transmit ring after a reset.
2181 **/
d7ee5b3a
AD
2182void igb_configure_tx_ring(struct igb_adapter *adapter,
2183 struct igb_ring *ring)
85b430b4
AD
2184{
2185 struct e1000_hw *hw = &adapter->hw;
2186 u32 txdctl;
2187 u64 tdba = ring->dma;
2188 int reg_idx = ring->reg_idx;
2189
2190 /* disable the queue */
2191 txdctl = rd32(E1000_TXDCTL(reg_idx));
2192 wr32(E1000_TXDCTL(reg_idx),
2193 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2194 wrfl();
2195 mdelay(10);
2196
2197 wr32(E1000_TDLEN(reg_idx),
2198 ring->count * sizeof(union e1000_adv_tx_desc));
2199 wr32(E1000_TDBAL(reg_idx),
2200 tdba & 0x00000000ffffffffULL);
2201 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2202
fce99e34
AD
2203 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2204 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2205 writel(0, ring->head);
2206 writel(0, ring->tail);
85b430b4
AD
2207
2208 txdctl |= IGB_TX_PTHRESH;
2209 txdctl |= IGB_TX_HTHRESH << 8;
2210 txdctl |= IGB_TX_WTHRESH << 16;
2211
2212 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2213 wr32(E1000_TXDCTL(reg_idx), txdctl);
2214}
2215
2216/**
2217 * igb_configure_tx - Configure transmit Unit after Reset
2218 * @adapter: board private structure
2219 *
2220 * Configure the Tx unit of the MAC after a reset.
2221 **/
2222static void igb_configure_tx(struct igb_adapter *adapter)
2223{
2224 int i;
2225
2226 for (i = 0; i < adapter->num_tx_queues; i++)
2227 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
85b430b4
AD
2228}
2229
9d5c8243
AK
2230/**
2231 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2232 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2233 *
2234 * Returns 0 on success, negative on failure
2235 **/
80785298 2236int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2237{
80785298 2238 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
2239 int size, desc_len;
2240
2241 size = sizeof(struct igb_buffer) * rx_ring->count;
2242 rx_ring->buffer_info = vmalloc(size);
2243 if (!rx_ring->buffer_info)
2244 goto err;
2245 memset(rx_ring->buffer_info, 0, size);
2246
2247 desc_len = sizeof(union e1000_adv_rx_desc);
2248
2249 /* Round up to nearest 4K */
2250 rx_ring->size = rx_ring->count * desc_len;
2251 rx_ring->size = ALIGN(rx_ring->size, 4096);
2252
2253 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2254 &rx_ring->dma);
2255
2256 if (!rx_ring->desc)
2257 goto err;
2258
2259 rx_ring->next_to_clean = 0;
2260 rx_ring->next_to_use = 0;
9d5c8243 2261
9d5c8243
AK
2262 return 0;
2263
2264err:
2265 vfree(rx_ring->buffer_info);
439705e1 2266 rx_ring->buffer_info = NULL;
80785298 2267 dev_err(&pdev->dev, "Unable to allocate memory for "
9d5c8243
AK
2268 "the receive descriptor ring\n");
2269 return -ENOMEM;
2270}
2271
2272/**
2273 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2274 * (Descriptors) for all queues
2275 * @adapter: board private structure
2276 *
2277 * Return 0 on success, negative on failure
2278 **/
2279static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2280{
439705e1 2281 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2282 int i, err = 0;
2283
2284 for (i = 0; i < adapter->num_rx_queues; i++) {
80785298 2285 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
9d5c8243 2286 if (err) {
439705e1 2287 dev_err(&pdev->dev,
9d5c8243
AK
2288 "Allocation for Rx Queue %u failed\n", i);
2289 for (i--; i >= 0; i--)
3b644cf6 2290 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2291 break;
2292 }
2293 }
2294
2295 return err;
2296}
2297
06cf2666
AD
2298/**
2299 * igb_setup_mrqc - configure the multiple receive queue control registers
2300 * @adapter: Board private structure
2301 **/
2302static void igb_setup_mrqc(struct igb_adapter *adapter)
2303{
2304 struct e1000_hw *hw = &adapter->hw;
2305 u32 mrqc, rxcsum;
2306 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2307 union e1000_reta {
2308 u32 dword;
2309 u8 bytes[4];
2310 } reta;
2311 static const u8 rsshash[40] = {
2312 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2313 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2314 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2315 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2316
2317 /* Fill out hash function seeds */
2318 for (j = 0; j < 10; j++) {
2319 u32 rsskey = rsshash[(j * 4)];
2320 rsskey |= rsshash[(j * 4) + 1] << 8;
2321 rsskey |= rsshash[(j * 4) + 2] << 16;
2322 rsskey |= rsshash[(j * 4) + 3] << 24;
2323 array_wr32(E1000_RSSRK(0), j, rsskey);
2324 }
2325
a99955fc 2326 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2327
2328 if (adapter->vfs_allocated_count) {
2329 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2330 switch (hw->mac.type) {
55cac248
AD
2331 case e1000_82580:
2332 num_rx_queues = 1;
2333 shift = 0;
2334 break;
06cf2666
AD
2335 case e1000_82576:
2336 shift = 3;
2337 num_rx_queues = 2;
2338 break;
2339 case e1000_82575:
2340 shift = 2;
2341 shift2 = 6;
2342 default:
2343 break;
2344 }
2345 } else {
2346 if (hw->mac.type == e1000_82575)
2347 shift = 6;
2348 }
2349
2350 for (j = 0; j < (32 * 4); j++) {
2351 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2352 if (shift2)
2353 reta.bytes[j & 3] |= num_rx_queues << shift2;
2354 if ((j & 3) == 3)
2355 wr32(E1000_RETA(j >> 2), reta.dword);
2356 }
2357
2358 /*
2359 * Disable raw packet checksumming so that RSS hash is placed in
2360 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2361 * offloads as they are enabled by default
2362 */
2363 rxcsum = rd32(E1000_RXCSUM);
2364 rxcsum |= E1000_RXCSUM_PCSD;
2365
2366 if (adapter->hw.mac.type >= e1000_82576)
2367 /* Enable Receive Checksum Offload for SCTP */
2368 rxcsum |= E1000_RXCSUM_CRCOFL;
2369
2370 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2371 wr32(E1000_RXCSUM, rxcsum);
2372
2373 /* If VMDq is enabled then we set the appropriate mode for that, else
2374 * we default to RSS so that an RSS hash is calculated per packet even
2375 * if we are only using one queue */
2376 if (adapter->vfs_allocated_count) {
2377 if (hw->mac.type > e1000_82575) {
2378 /* Set the default pool for the PF's first queue */
2379 u32 vtctl = rd32(E1000_VT_CTL);
2380 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2381 E1000_VT_CTL_DISABLE_DEF_POOL);
2382 vtctl |= adapter->vfs_allocated_count <<
2383 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2384 wr32(E1000_VT_CTL, vtctl);
2385 }
a99955fc 2386 if (adapter->rss_queues > 1)
06cf2666
AD
2387 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2388 else
2389 mrqc = E1000_MRQC_ENABLE_VMDQ;
2390 } else {
2391 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2392 }
2393 igb_vmm_control(adapter);
2394
2395 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2396 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2397 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2398 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2399 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2400 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2401 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2402 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2403
2404 wr32(E1000_MRQC, mrqc);
2405}
2406
9d5c8243
AK
2407/**
2408 * igb_setup_rctl - configure the receive control registers
2409 * @adapter: Board private structure
2410 **/
d7ee5b3a 2411void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2412{
2413 struct e1000_hw *hw = &adapter->hw;
2414 u32 rctl;
9d5c8243
AK
2415
2416 rctl = rd32(E1000_RCTL);
2417
2418 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2419 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2420
69d728ba 2421 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2422 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2423
87cb7e8c
AK
2424 /*
2425 * enable stripping of CRC. It's unlikely this will break BMC
2426 * redirection as it did with e1000. Newer features require
2427 * that the HW strips the CRC.
73cd78f1 2428 */
87cb7e8c 2429 rctl |= E1000_RCTL_SECRC;
9d5c8243 2430
559e9c49 2431 /* disable store bad packets and clear size bits. */
ec54d7d6 2432 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2433
6ec43fe6
AD
2434 /* enable LPE to prevent packets larger than max_frame_size */
2435 rctl |= E1000_RCTL_LPE;
9d5c8243 2436
952f72a8
AD
2437 /* disable queue 0 to prevent tail write w/o re-config */
2438 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2439
e1739522
AD
2440 /* Attention!!! For SR-IOV PF driver operations you must enable
2441 * queue drop for all VF and PF queues to prevent head of line blocking
2442 * if an un-trusted VF does not provide descriptors to hardware.
2443 */
2444 if (adapter->vfs_allocated_count) {
e1739522
AD
2445 /* set all queue drop enable bits */
2446 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2447 }
2448
9d5c8243
AK
2449 wr32(E1000_RCTL, rctl);
2450}
2451
7d5753f0
AD
2452static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2453 int vfn)
2454{
2455 struct e1000_hw *hw = &adapter->hw;
2456 u32 vmolr;
2457
2458 /* if it isn't the PF check to see if VFs are enabled and
2459 * increase the size to support vlan tags */
2460 if (vfn < adapter->vfs_allocated_count &&
2461 adapter->vf_data[vfn].vlans_enabled)
2462 size += VLAN_TAG_SIZE;
2463
2464 vmolr = rd32(E1000_VMOLR(vfn));
2465 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2466 vmolr |= size | E1000_VMOLR_LPE;
2467 wr32(E1000_VMOLR(vfn), vmolr);
2468
2469 return 0;
2470}
2471
e1739522
AD
2472/**
2473 * igb_rlpml_set - set maximum receive packet size
2474 * @adapter: board private structure
2475 *
2476 * Configure maximum receivable packet size.
2477 **/
2478static void igb_rlpml_set(struct igb_adapter *adapter)
2479{
2480 u32 max_frame_size = adapter->max_frame_size;
2481 struct e1000_hw *hw = &adapter->hw;
2482 u16 pf_id = adapter->vfs_allocated_count;
2483
2484 if (adapter->vlgrp)
2485 max_frame_size += VLAN_TAG_SIZE;
2486
2487 /* if vfs are enabled we set RLPML to the largest possible request
2488 * size and set the VMOLR RLPML to the size we need */
2489 if (pf_id) {
2490 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2491 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2492 }
2493
2494 wr32(E1000_RLPML, max_frame_size);
2495}
2496
7d5753f0
AD
2497static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2498{
2499 struct e1000_hw *hw = &adapter->hw;
2500 u32 vmolr;
2501
2502 /*
2503 * This register exists only on 82576 and newer so if we are older then
2504 * we should exit and do nothing
2505 */
2506 if (hw->mac.type < e1000_82576)
2507 return;
2508
2509 vmolr = rd32(E1000_VMOLR(vfn));
2510 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2511 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2512
2513 /* clear all bits that might not be set */
2514 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2515
a99955fc 2516 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2517 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2518 /*
2519 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2520 * multicast packets
2521 */
2522 if (vfn <= adapter->vfs_allocated_count)
2523 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2524
2525 wr32(E1000_VMOLR(vfn), vmolr);
2526}
2527
85b430b4
AD
2528/**
2529 * igb_configure_rx_ring - Configure a receive ring after Reset
2530 * @adapter: board private structure
2531 * @ring: receive ring to be configured
2532 *
2533 * Configure the Rx unit of the MAC after a reset.
2534 **/
d7ee5b3a
AD
2535void igb_configure_rx_ring(struct igb_adapter *adapter,
2536 struct igb_ring *ring)
85b430b4
AD
2537{
2538 struct e1000_hw *hw = &adapter->hw;
2539 u64 rdba = ring->dma;
2540 int reg_idx = ring->reg_idx;
952f72a8 2541 u32 srrctl, rxdctl;
85b430b4
AD
2542
2543 /* disable the queue */
2544 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2545 wr32(E1000_RXDCTL(reg_idx),
2546 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2547
2548 /* Set DMA base address registers */
2549 wr32(E1000_RDBAL(reg_idx),
2550 rdba & 0x00000000ffffffffULL);
2551 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2552 wr32(E1000_RDLEN(reg_idx),
2553 ring->count * sizeof(union e1000_adv_rx_desc));
2554
2555 /* initialize head and tail */
fce99e34
AD
2556 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2557 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2558 writel(0, ring->head);
2559 writel(0, ring->tail);
85b430b4 2560
952f72a8 2561 /* set descriptor configuration */
4c844851
AD
2562 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2563 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2564 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2565#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2566 srrctl |= IGB_RXBUFFER_16384 >>
2567 E1000_SRRCTL_BSIZEPKT_SHIFT;
2568#else
2569 srrctl |= (PAGE_SIZE / 2) >>
2570 E1000_SRRCTL_BSIZEPKT_SHIFT;
2571#endif
2572 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2573 } else {
4c844851 2574 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2575 E1000_SRRCTL_BSIZEPKT_SHIFT;
2576 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2577 }
2578
2579 wr32(E1000_SRRCTL(reg_idx), srrctl);
2580
7d5753f0
AD
2581 /* set filtering for VMDQ pools */
2582 igb_set_vmolr(adapter, reg_idx & 0x7);
2583
85b430b4
AD
2584 /* enable receive descriptor fetching */
2585 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2586 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2587 rxdctl &= 0xFFF00000;
2588 rxdctl |= IGB_RX_PTHRESH;
2589 rxdctl |= IGB_RX_HTHRESH << 8;
2590 rxdctl |= IGB_RX_WTHRESH << 16;
2591 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2592}
2593
9d5c8243
AK
2594/**
2595 * igb_configure_rx - Configure receive Unit after Reset
2596 * @adapter: board private structure
2597 *
2598 * Configure the Rx unit of the MAC after a reset.
2599 **/
2600static void igb_configure_rx(struct igb_adapter *adapter)
2601{
9107584e 2602 int i;
9d5c8243 2603
68d480c4
AD
2604 /* set UTA to appropriate mode */
2605 igb_set_uta(adapter);
2606
26ad9178
AD
2607 /* set the correct pool for the PF default MAC address in entry 0 */
2608 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2609 adapter->vfs_allocated_count);
2610
06cf2666
AD
2611 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2612 * the Base and Length of the Rx Descriptor Ring */
2613 for (i = 0; i < adapter->num_rx_queues; i++)
2614 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
9d5c8243
AK
2615}
2616
2617/**
2618 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2619 * @tx_ring: Tx descriptor ring for a specific queue
2620 *
2621 * Free all transmit software resources
2622 **/
68fd9910 2623void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2624{
3b644cf6 2625 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2626
2627 vfree(tx_ring->buffer_info);
2628 tx_ring->buffer_info = NULL;
2629
439705e1
AD
2630 /* if not set, then don't free */
2631 if (!tx_ring->desc)
2632 return;
2633
80785298
AD
2634 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2635 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2636
2637 tx_ring->desc = NULL;
2638}
2639
2640/**
2641 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2642 * @adapter: board private structure
2643 *
2644 * Free all transmit software resources
2645 **/
2646static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2647{
2648 int i;
2649
2650 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2651 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2652}
2653
b1a436c3
AD
2654void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2655 struct igb_buffer *buffer_info)
9d5c8243 2656{
6366ad33
AD
2657 if (buffer_info->dma) {
2658 if (buffer_info->mapped_as_page)
2659 pci_unmap_page(tx_ring->pdev,
2660 buffer_info->dma,
2661 buffer_info->length,
2662 PCI_DMA_TODEVICE);
2663 else
2664 pci_unmap_single(tx_ring->pdev,
2665 buffer_info->dma,
2666 buffer_info->length,
2667 PCI_DMA_TODEVICE);
2668 buffer_info->dma = 0;
2669 }
9d5c8243
AK
2670 if (buffer_info->skb) {
2671 dev_kfree_skb_any(buffer_info->skb);
2672 buffer_info->skb = NULL;
2673 }
2674 buffer_info->time_stamp = 0;
6366ad33
AD
2675 buffer_info->length = 0;
2676 buffer_info->next_to_watch = 0;
2677 buffer_info->mapped_as_page = false;
9d5c8243
AK
2678}
2679
2680/**
2681 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2682 * @tx_ring: ring to be cleaned
2683 **/
3b644cf6 2684static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
2685{
2686 struct igb_buffer *buffer_info;
2687 unsigned long size;
2688 unsigned int i;
2689
2690 if (!tx_ring->buffer_info)
2691 return;
2692 /* Free all the Tx ring sk_buffs */
2693
2694 for (i = 0; i < tx_ring->count; i++) {
2695 buffer_info = &tx_ring->buffer_info[i];
80785298 2696 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
2697 }
2698
2699 size = sizeof(struct igb_buffer) * tx_ring->count;
2700 memset(tx_ring->buffer_info, 0, size);
2701
2702 /* Zero out the descriptor ring */
9d5c8243
AK
2703 memset(tx_ring->desc, 0, tx_ring->size);
2704
2705 tx_ring->next_to_use = 0;
2706 tx_ring->next_to_clean = 0;
9d5c8243
AK
2707}
2708
2709/**
2710 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2711 * @adapter: board private structure
2712 **/
2713static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2714{
2715 int i;
2716
2717 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2718 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2719}
2720
2721/**
2722 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2723 * @rx_ring: ring to clean the resources from
2724 *
2725 * Free all receive software resources
2726 **/
68fd9910 2727void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2728{
3b644cf6 2729 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2730
2731 vfree(rx_ring->buffer_info);
2732 rx_ring->buffer_info = NULL;
2733
439705e1
AD
2734 /* if not set, then don't free */
2735 if (!rx_ring->desc)
2736 return;
2737
80785298
AD
2738 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2739 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
2740
2741 rx_ring->desc = NULL;
2742}
2743
2744/**
2745 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2746 * @adapter: board private structure
2747 *
2748 * Free all receive software resources
2749 **/
2750static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2751{
2752 int i;
2753
2754 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2755 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2756}
2757
2758/**
2759 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2760 * @rx_ring: ring to free buffers from
2761 **/
3b644cf6 2762static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
2763{
2764 struct igb_buffer *buffer_info;
9d5c8243
AK
2765 unsigned long size;
2766 unsigned int i;
2767
2768 if (!rx_ring->buffer_info)
2769 return;
439705e1 2770
9d5c8243
AK
2771 /* Free all the Rx ring sk_buffs */
2772 for (i = 0; i < rx_ring->count; i++) {
2773 buffer_info = &rx_ring->buffer_info[i];
2774 if (buffer_info->dma) {
80785298
AD
2775 pci_unmap_single(rx_ring->pdev,
2776 buffer_info->dma,
4c844851 2777 rx_ring->rx_buffer_len,
6ec43fe6 2778 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2779 buffer_info->dma = 0;
2780 }
2781
2782 if (buffer_info->skb) {
2783 dev_kfree_skb(buffer_info->skb);
2784 buffer_info->skb = NULL;
2785 }
6ec43fe6 2786 if (buffer_info->page_dma) {
80785298
AD
2787 pci_unmap_page(rx_ring->pdev,
2788 buffer_info->page_dma,
6ec43fe6
AD
2789 PAGE_SIZE / 2,
2790 PCI_DMA_FROMDEVICE);
2791 buffer_info->page_dma = 0;
2792 }
9d5c8243 2793 if (buffer_info->page) {
9d5c8243
AK
2794 put_page(buffer_info->page);
2795 buffer_info->page = NULL;
bf36c1a0 2796 buffer_info->page_offset = 0;
9d5c8243
AK
2797 }
2798 }
2799
9d5c8243
AK
2800 size = sizeof(struct igb_buffer) * rx_ring->count;
2801 memset(rx_ring->buffer_info, 0, size);
2802
2803 /* Zero out the descriptor ring */
2804 memset(rx_ring->desc, 0, rx_ring->size);
2805
2806 rx_ring->next_to_clean = 0;
2807 rx_ring->next_to_use = 0;
9d5c8243
AK
2808}
2809
2810/**
2811 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2812 * @adapter: board private structure
2813 **/
2814static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2815{
2816 int i;
2817
2818 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2819 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2820}
2821
2822/**
2823 * igb_set_mac - Change the Ethernet Address of the NIC
2824 * @netdev: network interface device structure
2825 * @p: pointer to an address structure
2826 *
2827 * Returns 0 on success, negative on failure
2828 **/
2829static int igb_set_mac(struct net_device *netdev, void *p)
2830{
2831 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2832 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2833 struct sockaddr *addr = p;
2834
2835 if (!is_valid_ether_addr(addr->sa_data))
2836 return -EADDRNOTAVAIL;
2837
2838 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2839 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2840
26ad9178
AD
2841 /* set the correct pool for the new PF MAC address in entry 0 */
2842 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2843 adapter->vfs_allocated_count);
e1739522 2844
9d5c8243
AK
2845 return 0;
2846}
2847
2848/**
68d480c4 2849 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
2850 * @netdev: network interface device structure
2851 *
68d480c4
AD
2852 * Writes multicast address list to the MTA hash table.
2853 * Returns: -ENOMEM on failure
2854 * 0 on no addresses written
2855 * X on writing X addresses to MTA
9d5c8243 2856 **/
68d480c4 2857static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
2858{
2859 struct igb_adapter *adapter = netdev_priv(netdev);
2860 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 2861 struct dev_mc_list *mc_ptr = netdev->mc_list;
68d480c4
AD
2862 u8 *mta_list;
2863 u32 vmolr = 0;
9d5c8243
AK
2864 int i;
2865
68d480c4
AD
2866 if (!netdev->mc_count) {
2867 /* nothing to program, so clear mc list */
2868 igb_update_mc_addr_list(hw, NULL, 0);
2869 igb_restore_vf_multicasts(adapter);
2870 return 0;
2871 }
9d5c8243 2872
68d480c4
AD
2873 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2874 if (!mta_list)
2875 return -ENOMEM;
ff41f8dc 2876
68d480c4
AD
2877 /* set vmolr receive overflow multicast bit */
2878 vmolr |= E1000_VMOLR_ROMPE;
2879
2880 /* The shared function expects a packed array of only addresses. */
2881 mc_ptr = netdev->mc_list;
2882
2883 for (i = 0; i < netdev->mc_count; i++) {
2884 if (!mc_ptr)
2885 break;
2886 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2887 mc_ptr = mc_ptr->next;
746b9f02 2888 }
68d480c4
AD
2889 igb_update_mc_addr_list(hw, mta_list, i);
2890 kfree(mta_list);
2891
2892 return netdev->mc_count;
2893}
2894
2895/**
2896 * igb_write_uc_addr_list - write unicast addresses to RAR table
2897 * @netdev: network interface device structure
2898 *
2899 * Writes unicast address list to the RAR table.
2900 * Returns: -ENOMEM on failure/insufficient address space
2901 * 0 on no addresses written
2902 * X on writing X addresses to the RAR table
2903 **/
2904static int igb_write_uc_addr_list(struct net_device *netdev)
2905{
2906 struct igb_adapter *adapter = netdev_priv(netdev);
2907 struct e1000_hw *hw = &adapter->hw;
2908 unsigned int vfn = adapter->vfs_allocated_count;
2909 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2910 int count = 0;
2911
2912 /* return ENOMEM indicating insufficient memory for addresses */
2913 if (netdev->uc.count > rar_entries)
2914 return -ENOMEM;
9d5c8243 2915
ff41f8dc
AD
2916 if (netdev->uc.count && rar_entries) {
2917 struct netdev_hw_addr *ha;
2918 list_for_each_entry(ha, &netdev->uc.list, list) {
2919 if (!rar_entries)
2920 break;
26ad9178
AD
2921 igb_rar_set_qsel(adapter, ha->addr,
2922 rar_entries--,
68d480c4
AD
2923 vfn);
2924 count++;
ff41f8dc
AD
2925 }
2926 }
2927 /* write the addresses in reverse order to avoid write combining */
2928 for (; rar_entries > 0 ; rar_entries--) {
2929 wr32(E1000_RAH(rar_entries), 0);
2930 wr32(E1000_RAL(rar_entries), 0);
2931 }
2932 wrfl();
2933
68d480c4
AD
2934 return count;
2935}
2936
2937/**
2938 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2939 * @netdev: network interface device structure
2940 *
2941 * The set_rx_mode entry point is called whenever the unicast or multicast
2942 * address lists or the network interface flags are updated. This routine is
2943 * responsible for configuring the hardware for proper unicast, multicast,
2944 * promiscuous mode, and all-multi behavior.
2945 **/
2946static void igb_set_rx_mode(struct net_device *netdev)
2947{
2948 struct igb_adapter *adapter = netdev_priv(netdev);
2949 struct e1000_hw *hw = &adapter->hw;
2950 unsigned int vfn = adapter->vfs_allocated_count;
2951 u32 rctl, vmolr = 0;
2952 int count;
2953
2954 /* Check for Promiscuous and All Multicast modes */
2955 rctl = rd32(E1000_RCTL);
2956
2957 /* clear the effected bits */
2958 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2959
2960 if (netdev->flags & IFF_PROMISC) {
2961 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2962 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2963 } else {
2964 if (netdev->flags & IFF_ALLMULTI) {
2965 rctl |= E1000_RCTL_MPE;
2966 vmolr |= E1000_VMOLR_MPME;
2967 } else {
2968 /*
2969 * Write addresses to the MTA, if the attempt fails
2970 * then we should just turn on promiscous mode so
2971 * that we can at least receive multicast traffic
2972 */
2973 count = igb_write_mc_addr_list(netdev);
2974 if (count < 0) {
2975 rctl |= E1000_RCTL_MPE;
2976 vmolr |= E1000_VMOLR_MPME;
2977 } else if (count) {
2978 vmolr |= E1000_VMOLR_ROMPE;
2979 }
2980 }
2981 /*
2982 * Write addresses to available RAR registers, if there is not
2983 * sufficient space to store all the addresses then enable
2984 * unicast promiscous mode
2985 */
2986 count = igb_write_uc_addr_list(netdev);
2987 if (count < 0) {
2988 rctl |= E1000_RCTL_UPE;
2989 vmolr |= E1000_VMOLR_ROPE;
2990 }
2991 rctl |= E1000_RCTL_VFE;
28fc06f5 2992 }
68d480c4 2993 wr32(E1000_RCTL, rctl);
28fc06f5 2994
68d480c4
AD
2995 /*
2996 * In order to support SR-IOV and eventually VMDq it is necessary to set
2997 * the VMOLR to enable the appropriate modes. Without this workaround
2998 * we will have issues with VLAN tag stripping not being done for frames
2999 * that are only arriving because we are the default pool
3000 */
3001 if (hw->mac.type < e1000_82576)
28fc06f5 3002 return;
9d5c8243 3003
68d480c4
AD
3004 vmolr |= rd32(E1000_VMOLR(vfn)) &
3005 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3006 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3007 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3008}
3009
3010/* Need to wait a few seconds after link up to get diagnostic information from
3011 * the phy */
3012static void igb_update_phy_info(unsigned long data)
3013{
3014 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3015 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3016}
3017
4d6b725e
AD
3018/**
3019 * igb_has_link - check shared code for link and determine up/down
3020 * @adapter: pointer to driver private info
3021 **/
3022static bool igb_has_link(struct igb_adapter *adapter)
3023{
3024 struct e1000_hw *hw = &adapter->hw;
3025 bool link_active = false;
3026 s32 ret_val = 0;
3027
3028 /* get_link_status is set on LSC (link status) interrupt or
3029 * rx sequence error interrupt. get_link_status will stay
3030 * false until the e1000_check_for_link establishes link
3031 * for copper adapters ONLY
3032 */
3033 switch (hw->phy.media_type) {
3034 case e1000_media_type_copper:
3035 if (hw->mac.get_link_status) {
3036 ret_val = hw->mac.ops.check_for_link(hw);
3037 link_active = !hw->mac.get_link_status;
3038 } else {
3039 link_active = true;
3040 }
3041 break;
4d6b725e
AD
3042 case e1000_media_type_internal_serdes:
3043 ret_val = hw->mac.ops.check_for_link(hw);
3044 link_active = hw->mac.serdes_has_link;
3045 break;
3046 default:
3047 case e1000_media_type_unknown:
3048 break;
3049 }
3050
3051 return link_active;
3052}
3053
9d5c8243
AK
3054/**
3055 * igb_watchdog - Timer Call-back
3056 * @data: pointer to adapter cast into an unsigned long
3057 **/
3058static void igb_watchdog(unsigned long data)
3059{
3060 struct igb_adapter *adapter = (struct igb_adapter *)data;
3061 /* Do the rest outside of interrupt context */
3062 schedule_work(&adapter->watchdog_task);
3063}
3064
3065static void igb_watchdog_task(struct work_struct *work)
3066{
3067 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3068 struct igb_adapter,
3069 watchdog_task);
9d5c8243 3070 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3071 struct net_device *netdev = adapter->netdev;
9d5c8243 3072 u32 link;
7a6ea550 3073 int i;
9d5c8243 3074
4d6b725e 3075 link = igb_has_link(adapter);
9d5c8243
AK
3076 if (link) {
3077 if (!netif_carrier_ok(netdev)) {
3078 u32 ctrl;
330a6d6a
AD
3079 hw->mac.ops.get_speed_and_duplex(hw,
3080 &adapter->link_speed,
3081 &adapter->link_duplex);
9d5c8243
AK
3082
3083 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3084 /* Links status message must follow this format */
3085 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3086 "Flow Control: %s\n",
559e9c49
AD
3087 netdev->name,
3088 adapter->link_speed,
3089 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3090 "Full Duplex" : "Half Duplex",
559e9c49
AD
3091 ((ctrl & E1000_CTRL_TFCE) &&
3092 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3093 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3094 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243
AK
3095
3096 /* tweak tx_queue_len according to speed/duplex and
3097 * adjust the timeout factor */
3098 netdev->tx_queue_len = adapter->tx_queue_len;
3099 adapter->tx_timeout_factor = 1;
3100 switch (adapter->link_speed) {
3101 case SPEED_10:
3102 netdev->tx_queue_len = 10;
3103 adapter->tx_timeout_factor = 14;
3104 break;
3105 case SPEED_100:
3106 netdev->tx_queue_len = 100;
3107 /* maybe add some timeout factor ? */
3108 break;
3109 }
3110
3111 netif_carrier_on(netdev);
9d5c8243 3112
4ae196df
AD
3113 igb_ping_all_vfs(adapter);
3114
4b1a9877 3115 /* link state has changed, schedule phy info update */
9d5c8243
AK
3116 if (!test_bit(__IGB_DOWN, &adapter->state))
3117 mod_timer(&adapter->phy_info_timer,
3118 round_jiffies(jiffies + 2 * HZ));
3119 }
3120 } else {
3121 if (netif_carrier_ok(netdev)) {
3122 adapter->link_speed = 0;
3123 adapter->link_duplex = 0;
527d47c1
AD
3124 /* Links status message must follow this format */
3125 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3126 netdev->name);
9d5c8243 3127 netif_carrier_off(netdev);
4b1a9877 3128
4ae196df
AD
3129 igb_ping_all_vfs(adapter);
3130
4b1a9877 3131 /* link state has changed, schedule phy info update */
9d5c8243
AK
3132 if (!test_bit(__IGB_DOWN, &adapter->state))
3133 mod_timer(&adapter->phy_info_timer,
3134 round_jiffies(jiffies + 2 * HZ));
3135 }
3136 }
3137
9d5c8243 3138 igb_update_stats(adapter);
645a3abd 3139 igb_update_adaptive(hw);
9d5c8243 3140
dbabb065
AD
3141 for (i = 0; i < adapter->num_tx_queues; i++) {
3142 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3143 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3144 /* We've lost link, so the controller stops DMA,
3145 * but we've got queued Tx work that's never going
3146 * to get done, so reset controller to flush Tx.
3147 * (Do the reset outside of interrupt context). */
dbabb065
AD
3148 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3149 adapter->tx_timeout_count++;
3150 schedule_work(&adapter->reset_task);
3151 /* return immediately since reset is imminent */
3152 return;
3153 }
9d5c8243 3154 }
9d5c8243 3155
dbabb065
AD
3156 /* Force detection of hung controller every watchdog period */
3157 tx_ring->detect_tx_hung = true;
3158 }
f7ba205e 3159
9d5c8243 3160 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3161 if (adapter->msix_entries) {
047e0030
AD
3162 u32 eics = 0;
3163 for (i = 0; i < adapter->num_q_vectors; i++) {
3164 struct igb_q_vector *q_vector = adapter->q_vector[i];
3165 eics |= q_vector->eims_value;
3166 }
7a6ea550
AD
3167 wr32(E1000_EICS, eics);
3168 } else {
3169 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3170 }
9d5c8243 3171
9d5c8243
AK
3172 /* Reset the timer */
3173 if (!test_bit(__IGB_DOWN, &adapter->state))
3174 mod_timer(&adapter->watchdog_timer,
3175 round_jiffies(jiffies + 2 * HZ));
3176}
3177
3178enum latency_range {
3179 lowest_latency = 0,
3180 low_latency = 1,
3181 bulk_latency = 2,
3182 latency_invalid = 255
3183};
3184
6eb5a7f1
AD
3185/**
3186 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3187 *
3188 * Stores a new ITR value based on strictly on packet size. This
3189 * algorithm is less sophisticated than that used in igb_update_itr,
3190 * due to the difficulty of synchronizing statistics across multiple
3191 * receive rings. The divisors and thresholds used by this fuction
3192 * were determined based on theoretical maximum wire speed and testing
3193 * data, in order to minimize response time while increasing bulk
3194 * throughput.
3195 * This functionality is controlled by the InterruptThrottleRate module
3196 * parameter (see igb_param.c)
3197 * NOTE: This function is called only when operating in a multiqueue
3198 * receive environment.
047e0030 3199 * @q_vector: pointer to q_vector
6eb5a7f1 3200 **/
047e0030 3201static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3202{
047e0030 3203 int new_val = q_vector->itr_val;
6eb5a7f1 3204 int avg_wire_size = 0;
047e0030 3205 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3206
6eb5a7f1
AD
3207 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3208 * ints/sec - ITR timer value of 120 ticks.
3209 */
3210 if (adapter->link_speed != SPEED_1000) {
047e0030 3211 new_val = 976;
6eb5a7f1 3212 goto set_itr_val;
9d5c8243 3213 }
047e0030
AD
3214
3215 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3216 struct igb_ring *ring = q_vector->rx_ring;
3217 avg_wire_size = ring->total_bytes / ring->total_packets;
3218 }
3219
3220 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3221 struct igb_ring *ring = q_vector->tx_ring;
3222 avg_wire_size = max_t(u32, avg_wire_size,
3223 (ring->total_bytes /
3224 ring->total_packets));
3225 }
3226
3227 /* if avg_wire_size isn't set no work was done */
3228 if (!avg_wire_size)
3229 goto clear_counts;
9d5c8243 3230
6eb5a7f1
AD
3231 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3232 avg_wire_size += 24;
3233
3234 /* Don't starve jumbo frames */
3235 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3236
6eb5a7f1
AD
3237 /* Give a little boost to mid-size frames */
3238 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3239 new_val = avg_wire_size / 3;
3240 else
3241 new_val = avg_wire_size / 2;
9d5c8243 3242
6eb5a7f1 3243set_itr_val:
047e0030
AD
3244 if (new_val != q_vector->itr_val) {
3245 q_vector->itr_val = new_val;
3246 q_vector->set_itr = 1;
9d5c8243 3247 }
6eb5a7f1 3248clear_counts:
047e0030
AD
3249 if (q_vector->rx_ring) {
3250 q_vector->rx_ring->total_bytes = 0;
3251 q_vector->rx_ring->total_packets = 0;
3252 }
3253 if (q_vector->tx_ring) {
3254 q_vector->tx_ring->total_bytes = 0;
3255 q_vector->tx_ring->total_packets = 0;
3256 }
9d5c8243
AK
3257}
3258
3259/**
3260 * igb_update_itr - update the dynamic ITR value based on statistics
3261 * Stores a new ITR value based on packets and byte
3262 * counts during the last interrupt. The advantage of per interrupt
3263 * computation is faster updates and more accurate ITR for the current
3264 * traffic pattern. Constants in this function were computed
3265 * based on theoretical maximum wire speed and thresholds were set based
3266 * on testing data as well as attempting to minimize response time
3267 * while increasing bulk throughput.
3268 * this functionality is controlled by the InterruptThrottleRate module
3269 * parameter (see igb_param.c)
3270 * NOTE: These calculations are only valid when operating in a single-
3271 * queue environment.
3272 * @adapter: pointer to adapter
047e0030 3273 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3274 * @packets: the number of packets during this measurement interval
3275 * @bytes: the number of bytes during this measurement interval
3276 **/
3277static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3278 int packets, int bytes)
3279{
3280 unsigned int retval = itr_setting;
3281
3282 if (packets == 0)
3283 goto update_itr_done;
3284
3285 switch (itr_setting) {
3286 case lowest_latency:
3287 /* handle TSO and jumbo frames */
3288 if (bytes/packets > 8000)
3289 retval = bulk_latency;
3290 else if ((packets < 5) && (bytes > 512))
3291 retval = low_latency;
3292 break;
3293 case low_latency: /* 50 usec aka 20000 ints/s */
3294 if (bytes > 10000) {
3295 /* this if handles the TSO accounting */
3296 if (bytes/packets > 8000) {
3297 retval = bulk_latency;
3298 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3299 retval = bulk_latency;
3300 } else if ((packets > 35)) {
3301 retval = lowest_latency;
3302 }
3303 } else if (bytes/packets > 2000) {
3304 retval = bulk_latency;
3305 } else if (packets <= 2 && bytes < 512) {
3306 retval = lowest_latency;
3307 }
3308 break;
3309 case bulk_latency: /* 250 usec aka 4000 ints/s */
3310 if (bytes > 25000) {
3311 if (packets > 35)
3312 retval = low_latency;
1e5c3d21 3313 } else if (bytes < 1500) {
9d5c8243
AK
3314 retval = low_latency;
3315 }
3316 break;
3317 }
3318
3319update_itr_done:
3320 return retval;
3321}
3322
6eb5a7f1 3323static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3324{
047e0030 3325 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3326 u16 current_itr;
047e0030 3327 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3328
3329 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3330 if (adapter->link_speed != SPEED_1000) {
3331 current_itr = 0;
3332 new_itr = 4000;
3333 goto set_itr_now;
3334 }
3335
3336 adapter->rx_itr = igb_update_itr(adapter,
3337 adapter->rx_itr,
3338 adapter->rx_ring->total_packets,
3339 adapter->rx_ring->total_bytes);
9d5c8243 3340
047e0030
AD
3341 adapter->tx_itr = igb_update_itr(adapter,
3342 adapter->tx_itr,
3343 adapter->tx_ring->total_packets,
3344 adapter->tx_ring->total_bytes);
3345 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3346
6eb5a7f1 3347 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3348 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3349 current_itr = low_latency;
3350
9d5c8243
AK
3351 switch (current_itr) {
3352 /* counts and packets in update_itr are dependent on these numbers */
3353 case lowest_latency:
78b1f607 3354 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3355 break;
3356 case low_latency:
78b1f607 3357 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3358 break;
3359 case bulk_latency:
78b1f607 3360 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3361 break;
3362 default:
3363 break;
3364 }
3365
3366set_itr_now:
6eb5a7f1
AD
3367 adapter->rx_ring->total_bytes = 0;
3368 adapter->rx_ring->total_packets = 0;
047e0030
AD
3369 adapter->tx_ring->total_bytes = 0;
3370 adapter->tx_ring->total_packets = 0;
6eb5a7f1 3371
047e0030 3372 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3373 /* this attempts to bias the interrupt rate towards Bulk
3374 * by adding intermediate steps when interrupt rate is
3375 * increasing */
047e0030
AD
3376 new_itr = new_itr > q_vector->itr_val ?
3377 max((new_itr * q_vector->itr_val) /
3378 (new_itr + (q_vector->itr_val >> 2)),
3379 new_itr) :
9d5c8243
AK
3380 new_itr;
3381 /* Don't write the value here; it resets the adapter's
3382 * internal timer, and causes us to delay far longer than
3383 * we should between interrupts. Instead, we write the ITR
3384 * value at the beginning of the next interrupt so the timing
3385 * ends up being correct.
3386 */
047e0030
AD
3387 q_vector->itr_val = new_itr;
3388 q_vector->set_itr = 1;
9d5c8243
AK
3389 }
3390
3391 return;
3392}
3393
9d5c8243
AK
3394#define IGB_TX_FLAGS_CSUM 0x00000001
3395#define IGB_TX_FLAGS_VLAN 0x00000002
3396#define IGB_TX_FLAGS_TSO 0x00000004
3397#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3398#define IGB_TX_FLAGS_TSTAMP 0x00000010
3399#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3400#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3401
85ad76b2 3402static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3403 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3404{
3405 struct e1000_adv_tx_context_desc *context_desc;
3406 unsigned int i;
3407 int err;
3408 struct igb_buffer *buffer_info;
3409 u32 info = 0, tu_cmd = 0;
3410 u32 mss_l4len_idx, l4len;
3411 *hdr_len = 0;
3412
3413 if (skb_header_cloned(skb)) {
3414 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3415 if (err)
3416 return err;
3417 }
3418
3419 l4len = tcp_hdrlen(skb);
3420 *hdr_len += l4len;
3421
3422 if (skb->protocol == htons(ETH_P_IP)) {
3423 struct iphdr *iph = ip_hdr(skb);
3424 iph->tot_len = 0;
3425 iph->check = 0;
3426 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3427 iph->daddr, 0,
3428 IPPROTO_TCP,
3429 0);
3430 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3431 ipv6_hdr(skb)->payload_len = 0;
3432 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3433 &ipv6_hdr(skb)->daddr,
3434 0, IPPROTO_TCP, 0);
3435 }
3436
3437 i = tx_ring->next_to_use;
3438
3439 buffer_info = &tx_ring->buffer_info[i];
3440 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3441 /* VLAN MACLEN IPLEN */
3442 if (tx_flags & IGB_TX_FLAGS_VLAN)
3443 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3444 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3445 *hdr_len += skb_network_offset(skb);
3446 info |= skb_network_header_len(skb);
3447 *hdr_len += skb_network_header_len(skb);
3448 context_desc->vlan_macip_lens = cpu_to_le32(info);
3449
3450 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3451 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3452
3453 if (skb->protocol == htons(ETH_P_IP))
3454 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3455 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3456
3457 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3458
3459 /* MSS L4LEN IDX */
3460 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3461 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3462
73cd78f1 3463 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3464 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3465 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3466
3467 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3468 context_desc->seqnum_seed = 0;
3469
3470 buffer_info->time_stamp = jiffies;
0e014cb1 3471 buffer_info->next_to_watch = i;
9d5c8243
AK
3472 buffer_info->dma = 0;
3473 i++;
3474 if (i == tx_ring->count)
3475 i = 0;
3476
3477 tx_ring->next_to_use = i;
3478
3479 return true;
3480}
3481
85ad76b2
AD
3482static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3483 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3484{
3485 struct e1000_adv_tx_context_desc *context_desc;
80785298 3486 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3487 struct igb_buffer *buffer_info;
3488 u32 info = 0, tu_cmd = 0;
80785298 3489 unsigned int i;
9d5c8243
AK
3490
3491 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3492 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3493 i = tx_ring->next_to_use;
3494 buffer_info = &tx_ring->buffer_info[i];
3495 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3496
3497 if (tx_flags & IGB_TX_FLAGS_VLAN)
3498 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3499
9d5c8243
AK
3500 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3501 if (skb->ip_summed == CHECKSUM_PARTIAL)
3502 info |= skb_network_header_len(skb);
3503
3504 context_desc->vlan_macip_lens = cpu_to_le32(info);
3505
3506 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3507
3508 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3509 __be16 protocol;
3510
3511 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3512 const struct vlan_ethhdr *vhdr =
3513 (const struct vlan_ethhdr*)skb->data;
3514
3515 protocol = vhdr->h_vlan_encapsulated_proto;
3516 } else {
3517 protocol = skb->protocol;
3518 }
3519
3520 switch (protocol) {
09640e63 3521 case cpu_to_be16(ETH_P_IP):
9d5c8243 3522 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3523 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3524 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3525 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3526 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3527 break;
09640e63 3528 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3529 /* XXX what about other V6 headers?? */
3530 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3531 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3532 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3533 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3534 break;
3535 default:
3536 if (unlikely(net_ratelimit()))
80785298 3537 dev_warn(&pdev->dev,
44b0cda3
MW
3538 "partial checksum but proto=%x!\n",
3539 skb->protocol);
3540 break;
3541 }
9d5c8243
AK
3542 }
3543
3544 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3545 context_desc->seqnum_seed = 0;
85ad76b2 3546 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3547 context_desc->mss_l4len_idx =
85ad76b2 3548 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3549
3550 buffer_info->time_stamp = jiffies;
0e014cb1 3551 buffer_info->next_to_watch = i;
9d5c8243
AK
3552 buffer_info->dma = 0;
3553
3554 i++;
3555 if (i == tx_ring->count)
3556 i = 0;
3557 tx_ring->next_to_use = i;
3558
3559 return true;
3560 }
9d5c8243
AK
3561 return false;
3562}
3563
3564#define IGB_MAX_TXD_PWR 16
3565#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3566
80785298 3567static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3568 unsigned int first)
9d5c8243
AK
3569{
3570 struct igb_buffer *buffer_info;
80785298 3571 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3572 unsigned int len = skb_headlen(skb);
3573 unsigned int count = 0, i;
3574 unsigned int f;
3575
3576 i = tx_ring->next_to_use;
3577
3578 buffer_info = &tx_ring->buffer_info[i];
3579 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3580 buffer_info->length = len;
3581 /* set time_stamp *before* dma to help avoid a possible race */
3582 buffer_info->time_stamp = jiffies;
0e014cb1 3583 buffer_info->next_to_watch = i;
6366ad33
AD
3584 buffer_info->dma = pci_map_single(pdev, skb->data, len,
3585 PCI_DMA_TODEVICE);
3586 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3587 goto dma_error;
9d5c8243
AK
3588
3589 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3590 struct skb_frag_struct *frag;
3591
65689fef
AD
3592 i++;
3593 if (i == tx_ring->count)
3594 i = 0;
3595
9d5c8243
AK
3596 frag = &skb_shinfo(skb)->frags[f];
3597 len = frag->size;
3598
3599 buffer_info = &tx_ring->buffer_info[i];
3600 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3601 buffer_info->length = len;
3602 buffer_info->time_stamp = jiffies;
0e014cb1 3603 buffer_info->next_to_watch = i;
6366ad33
AD
3604 buffer_info->mapped_as_page = true;
3605 buffer_info->dma = pci_map_page(pdev,
3606 frag->page,
3607 frag->page_offset,
3608 len,
3609 PCI_DMA_TODEVICE);
3610 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3611 goto dma_error;
3612
9d5c8243 3613 count++;
9d5c8243
AK
3614 }
3615
9d5c8243 3616 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3617 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3618
cdfd01fc 3619 return ++count;
6366ad33
AD
3620
3621dma_error:
3622 dev_err(&pdev->dev, "TX DMA map failed\n");
3623
3624 /* clear timestamp and dma mappings for failed buffer_info mapping */
3625 buffer_info->dma = 0;
3626 buffer_info->time_stamp = 0;
3627 buffer_info->length = 0;
3628 buffer_info->next_to_watch = 0;
3629 buffer_info->mapped_as_page = false;
3630 count--;
3631
3632 /* clear timestamp and dma mappings for remaining portion of packet */
3633 while (count >= 0) {
3634 count--;
3635 i--;
3636 if (i < 0)
3637 i += tx_ring->count;
3638 buffer_info = &tx_ring->buffer_info[i];
3639 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3640 }
3641
3642 return 0;
9d5c8243
AK
3643}
3644
85ad76b2 3645static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3646 int tx_flags, int count, u32 paylen,
3647 u8 hdr_len)
3648{
cdfd01fc 3649 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
3650 struct igb_buffer *buffer_info;
3651 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 3652 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
3653
3654 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3655 E1000_ADVTXD_DCMD_DEXT);
3656
3657 if (tx_flags & IGB_TX_FLAGS_VLAN)
3658 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3659
33af6bcc
PO
3660 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3661 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3662
9d5c8243
AK
3663 if (tx_flags & IGB_TX_FLAGS_TSO) {
3664 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3665
3666 /* insert tcp checksum */
3667 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3668
3669 /* insert ip checksum */
3670 if (tx_flags & IGB_TX_FLAGS_IPV4)
3671 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3672
3673 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3674 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3675 }
3676
85ad76b2
AD
3677 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3678 (tx_flags & (IGB_TX_FLAGS_CSUM |
3679 IGB_TX_FLAGS_TSO |
7dfc16fa 3680 IGB_TX_FLAGS_VLAN)))
85ad76b2 3681 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
3682
3683 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3684
cdfd01fc 3685 do {
9d5c8243
AK
3686 buffer_info = &tx_ring->buffer_info[i];
3687 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3688 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3689 tx_desc->read.cmd_type_len =
3690 cpu_to_le32(cmd_type_len | buffer_info->length);
3691 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 3692 count--;
9d5c8243
AK
3693 i++;
3694 if (i == tx_ring->count)
3695 i = 0;
cdfd01fc 3696 } while (count > 0);
9d5c8243 3697
85ad76b2 3698 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
3699 /* Force memory writes to complete before letting h/w
3700 * know there are new descriptors to fetch. (Only
3701 * applicable for weak-ordered memory model archs,
3702 * such as IA-64). */
3703 wmb();
3704
3705 tx_ring->next_to_use = i;
fce99e34 3706 writel(i, tx_ring->tail);
9d5c8243
AK
3707 /* we need this if more than one processor can write to our tail
3708 * at a time, it syncronizes IO on IA64/Altix systems */
3709 mmiowb();
3710}
3711
e694e964 3712static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3713{
e694e964
AD
3714 struct net_device *netdev = tx_ring->netdev;
3715
661086df 3716 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3717
9d5c8243
AK
3718 /* Herbert's original patch had:
3719 * smp_mb__after_netif_stop_queue();
3720 * but since that doesn't exist yet, just open code it. */
3721 smp_mb();
3722
3723 /* We need to check again in a case another CPU has just
3724 * made room available. */
c493ea45 3725 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
3726 return -EBUSY;
3727
3728 /* A reprieve! */
661086df 3729 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 3730 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
3731 return 0;
3732}
3733
e694e964 3734static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3735{
c493ea45 3736 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 3737 return 0;
e694e964 3738 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
3739}
3740
b1a436c3
AD
3741netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3742 struct igb_ring *tx_ring)
9d5c8243 3743{
e694e964 3744 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
0e014cb1 3745 unsigned int first;
9d5c8243 3746 unsigned int tx_flags = 0;
9d5c8243 3747 u8 hdr_len = 0;
cdfd01fc 3748 int tso = 0, count;
c5b9bd5e 3749 union skb_shared_tx *shtx = skb_tx(skb);
9d5c8243 3750
9d5c8243
AK
3751 /* need: 1 descriptor per page,
3752 * + 2 desc gap to keep tail from touching head,
3753 * + 1 desc for skb->data,
3754 * + 1 desc for context descriptor,
3755 * otherwise try next time */
e694e964 3756 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 3757 /* this is a hard error */
9d5c8243
AK
3758 return NETDEV_TX_BUSY;
3759 }
33af6bcc 3760
33af6bcc
PO
3761 if (unlikely(shtx->hardware)) {
3762 shtx->in_progress = 1;
3763 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3764 }
9d5c8243 3765
cdfd01fc 3766 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
9d5c8243
AK
3767 tx_flags |= IGB_TX_FLAGS_VLAN;
3768 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3769 }
3770
661086df
PWJ
3771 if (skb->protocol == htons(ETH_P_IP))
3772 tx_flags |= IGB_TX_FLAGS_IPV4;
3773
0e014cb1 3774 first = tx_ring->next_to_use;
85ad76b2
AD
3775 if (skb_is_gso(skb)) {
3776 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 3777
85ad76b2
AD
3778 if (tso < 0) {
3779 dev_kfree_skb_any(skb);
3780 return NETDEV_TX_OK;
3781 }
9d5c8243
AK
3782 }
3783
3784 if (tso)
3785 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 3786 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
3787 (skb->ip_summed == CHECKSUM_PARTIAL))
3788 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3789
65689fef 3790 /*
cdfd01fc 3791 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
3792 * has occured and we need to rewind the descriptor queue
3793 */
80785298 3794 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 3795 if (!count) {
65689fef
AD
3796 dev_kfree_skb_any(skb);
3797 tx_ring->buffer_info[first].time_stamp = 0;
3798 tx_ring->next_to_use = first;
85ad76b2 3799 return NETDEV_TX_OK;
65689fef 3800 }
9d5c8243 3801
85ad76b2
AD
3802 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3803
3804 /* Make sure there is space in the ring for the next send. */
e694e964 3805 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 3806
9d5c8243
AK
3807 return NETDEV_TX_OK;
3808}
3809
3b29a56d
SH
3810static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3811 struct net_device *netdev)
9d5c8243
AK
3812{
3813 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 3814 struct igb_ring *tx_ring;
661086df 3815 int r_idx = 0;
b1a436c3
AD
3816
3817 if (test_bit(__IGB_DOWN, &adapter->state)) {
3818 dev_kfree_skb_any(skb);
3819 return NETDEV_TX_OK;
3820 }
3821
3822 if (skb->len <= 0) {
3823 dev_kfree_skb_any(skb);
3824 return NETDEV_TX_OK;
3825 }
3826
1bfaf07b 3827 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3828 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3829
3830 /* This goes back to the question of how to logically map a tx queue
3831 * to a flow. Right now, performance is impacted slightly negatively
3832 * if using multiple tx queues. If the stack breaks away from a
3833 * single qdisc implementation, we can look at this again. */
e694e964 3834 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
3835}
3836
3837/**
3838 * igb_tx_timeout - Respond to a Tx Hang
3839 * @netdev: network interface device structure
3840 **/
3841static void igb_tx_timeout(struct net_device *netdev)
3842{
3843 struct igb_adapter *adapter = netdev_priv(netdev);
3844 struct e1000_hw *hw = &adapter->hw;
3845
3846 /* Do the reset outside of interrupt context */
3847 adapter->tx_timeout_count++;
f7ba205e 3848
55cac248
AD
3849 if (hw->mac.type == e1000_82580)
3850 hw->dev_spec._82575.global_device_reset = true;
3851
9d5c8243 3852 schedule_work(&adapter->reset_task);
265de409
AD
3853 wr32(E1000_EICS,
3854 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3855}
3856
3857static void igb_reset_task(struct work_struct *work)
3858{
3859 struct igb_adapter *adapter;
3860 adapter = container_of(work, struct igb_adapter, reset_task);
3861
3862 igb_reinit_locked(adapter);
3863}
3864
3865/**
3866 * igb_get_stats - Get System Network Statistics
3867 * @netdev: network interface device structure
3868 *
3869 * Returns the address of the device statistics structure.
3870 * The statistics are actually updated from the timer callback.
3871 **/
73cd78f1 3872static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 3873{
9d5c8243 3874 /* only return the current stats */
8d24e933 3875 return &netdev->stats;
9d5c8243
AK
3876}
3877
3878/**
3879 * igb_change_mtu - Change the Maximum Transfer Unit
3880 * @netdev: network interface device structure
3881 * @new_mtu: new value for maximum frame size
3882 *
3883 * Returns 0 on success, negative on failure
3884 **/
3885static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3886{
3887 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 3888 struct pci_dev *pdev = adapter->pdev;
9d5c8243 3889 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 3890 u32 rx_buffer_len, i;
9d5c8243 3891
c809d227 3892 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 3893 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
3894 return -EINVAL;
3895 }
3896
9d5c8243 3897 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 3898 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
3899 return -EINVAL;
3900 }
3901
3902 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3903 msleep(1);
73cd78f1 3904
9d5c8243
AK
3905 /* igb_down has a dependency on max_frame_size */
3906 adapter->max_frame_size = max_frame;
559e9c49 3907
9d5c8243
AK
3908 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3909 * means we reserve 2 more, this pushes us to allocate from the next
3910 * larger slab size.
3911 * i.e. RXBUFFER_2048 --> size-4096 slab
3912 */
3913
7d95b717 3914 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 3915 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 3916 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 3917 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 3918 else
4c844851
AD
3919 rx_buffer_len = IGB_RXBUFFER_128;
3920
3921 if (netif_running(netdev))
3922 igb_down(adapter);
9d5c8243 3923
090b1795 3924 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
3925 netdev->mtu, new_mtu);
3926 netdev->mtu = new_mtu;
3927
4c844851
AD
3928 for (i = 0; i < adapter->num_rx_queues; i++)
3929 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3930
9d5c8243
AK
3931 if (netif_running(netdev))
3932 igb_up(adapter);
3933 else
3934 igb_reset(adapter);
3935
3936 clear_bit(__IGB_RESETTING, &adapter->state);
3937
3938 return 0;
3939}
3940
3941/**
3942 * igb_update_stats - Update the board statistics counters
3943 * @adapter: board private structure
3944 **/
3945
3946void igb_update_stats(struct igb_adapter *adapter)
3947{
128e45eb 3948 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
9d5c8243
AK
3949 struct e1000_hw *hw = &adapter->hw;
3950 struct pci_dev *pdev = adapter->pdev;
3f9c0164 3951 u32 rnbc;
9d5c8243 3952 u16 phy_tmp;
3f9c0164
AD
3953 int i;
3954 u64 bytes, packets;
9d5c8243
AK
3955
3956#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3957
3958 /*
3959 * Prevent stats update while adapter is being reset, or if the pci
3960 * connection is down.
3961 */
3962 if (adapter->link_speed == 0)
3963 return;
3964 if (pci_channel_offline(pdev))
3965 return;
3966
3f9c0164
AD
3967 bytes = 0;
3968 packets = 0;
3969 for (i = 0; i < adapter->num_rx_queues; i++) {
3970 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3971 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
128e45eb 3972 net_stats->rx_fifo_errors += rqdpc_tmp;
3f9c0164
AD
3973 bytes += adapter->rx_ring[i].rx_stats.bytes;
3974 packets += adapter->rx_ring[i].rx_stats.packets;
3975 }
3976
128e45eb
AD
3977 net_stats->rx_bytes = bytes;
3978 net_stats->rx_packets = packets;
3f9c0164
AD
3979
3980 bytes = 0;
3981 packets = 0;
3982 for (i = 0; i < adapter->num_tx_queues; i++) {
3983 bytes += adapter->tx_ring[i].tx_stats.bytes;
3984 packets += adapter->tx_ring[i].tx_stats.packets;
3985 }
128e45eb
AD
3986 net_stats->tx_bytes = bytes;
3987 net_stats->tx_packets = packets;
3f9c0164
AD
3988
3989 /* read stats registers */
9d5c8243
AK
3990 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3991 adapter->stats.gprc += rd32(E1000_GPRC);
3992 adapter->stats.gorc += rd32(E1000_GORCL);
3993 rd32(E1000_GORCH); /* clear GORCL */
3994 adapter->stats.bprc += rd32(E1000_BPRC);
3995 adapter->stats.mprc += rd32(E1000_MPRC);
3996 adapter->stats.roc += rd32(E1000_ROC);
3997
3998 adapter->stats.prc64 += rd32(E1000_PRC64);
3999 adapter->stats.prc127 += rd32(E1000_PRC127);
4000 adapter->stats.prc255 += rd32(E1000_PRC255);
4001 adapter->stats.prc511 += rd32(E1000_PRC511);
4002 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4003 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4004 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4005 adapter->stats.sec += rd32(E1000_SEC);
4006
4007 adapter->stats.mpc += rd32(E1000_MPC);
4008 adapter->stats.scc += rd32(E1000_SCC);
4009 adapter->stats.ecol += rd32(E1000_ECOL);
4010 adapter->stats.mcc += rd32(E1000_MCC);
4011 adapter->stats.latecol += rd32(E1000_LATECOL);
4012 adapter->stats.dc += rd32(E1000_DC);
4013 adapter->stats.rlec += rd32(E1000_RLEC);
4014 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4015 adapter->stats.xontxc += rd32(E1000_XONTXC);
4016 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4017 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4018 adapter->stats.fcruc += rd32(E1000_FCRUC);
4019 adapter->stats.gptc += rd32(E1000_GPTC);
4020 adapter->stats.gotc += rd32(E1000_GOTCL);
4021 rd32(E1000_GOTCH); /* clear GOTCL */
3f9c0164
AD
4022 rnbc = rd32(E1000_RNBC);
4023 adapter->stats.rnbc += rnbc;
128e45eb 4024 net_stats->rx_fifo_errors += rnbc;
9d5c8243
AK
4025 adapter->stats.ruc += rd32(E1000_RUC);
4026 adapter->stats.rfc += rd32(E1000_RFC);
4027 adapter->stats.rjc += rd32(E1000_RJC);
4028 adapter->stats.tor += rd32(E1000_TORH);
4029 adapter->stats.tot += rd32(E1000_TOTH);
4030 adapter->stats.tpr += rd32(E1000_TPR);
4031
4032 adapter->stats.ptc64 += rd32(E1000_PTC64);
4033 adapter->stats.ptc127 += rd32(E1000_PTC127);
4034 adapter->stats.ptc255 += rd32(E1000_PTC255);
4035 adapter->stats.ptc511 += rd32(E1000_PTC511);
4036 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4037 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4038
4039 adapter->stats.mptc += rd32(E1000_MPTC);
4040 adapter->stats.bptc += rd32(E1000_BPTC);
4041
4042 /* used for adaptive IFS */
9d5c8243
AK
4043 hw->mac.tx_packet_delta = rd32(E1000_TPT);
4044 adapter->stats.tpt += hw->mac.tx_packet_delta;
4045 hw->mac.collision_delta = rd32(E1000_COLC);
4046 adapter->stats.colc += hw->mac.collision_delta;
4047
4048 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4049 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4050 adapter->stats.tncrs += rd32(E1000_TNCRS);
4051 adapter->stats.tsctc += rd32(E1000_TSCTC);
4052 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4053
4054 adapter->stats.iac += rd32(E1000_IAC);
4055 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4056 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4057 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4058 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4059 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4060 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4061 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4062 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4063
4064 /* Fill out the OS statistics structure */
128e45eb
AD
4065 net_stats->multicast = adapter->stats.mprc;
4066 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4067
4068 /* Rx Errors */
4069
4070 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4071 * our own version based on RUC and ROC */
128e45eb 4072 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4073 adapter->stats.crcerrs + adapter->stats.algnerrc +
4074 adapter->stats.ruc + adapter->stats.roc +
4075 adapter->stats.cexterr;
128e45eb
AD
4076 net_stats->rx_length_errors = adapter->stats.ruc +
4077 adapter->stats.roc;
4078 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4079 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4080 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4081
4082 /* Tx Errors */
128e45eb
AD
4083 net_stats->tx_errors = adapter->stats.ecol +
4084 adapter->stats.latecol;
4085 net_stats->tx_aborted_errors = adapter->stats.ecol;
4086 net_stats->tx_window_errors = adapter->stats.latecol;
4087 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4088
4089 /* Tx Dropped needs to be maintained elsewhere */
4090
4091 /* Phy Stats */
4092 if (hw->phy.media_type == e1000_media_type_copper) {
4093 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4094 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4095 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4096 adapter->phy_stats.idle_errors += phy_tmp;
4097 }
4098 }
4099
4100 /* Management Stats */
4101 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4102 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4103 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4104}
4105
9d5c8243
AK
4106static irqreturn_t igb_msix_other(int irq, void *data)
4107{
047e0030 4108 struct igb_adapter *adapter = data;
9d5c8243 4109 struct e1000_hw *hw = &adapter->hw;
844290e5 4110 u32 icr = rd32(E1000_ICR);
844290e5 4111 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4112
047e0030 4113 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4114 /* HW is reporting DMA is out of sync */
4115 adapter->stats.doosync++;
4116 }
eebbbdba 4117
4ae196df
AD
4118 /* Check for a mailbox event */
4119 if (icr & E1000_ICR_VMMB)
4120 igb_msg_task(adapter);
4121
4122 if (icr & E1000_ICR_LSC) {
4123 hw->mac.get_link_status = 1;
4124 /* guard against interrupt when we're going down */
4125 if (!test_bit(__IGB_DOWN, &adapter->state))
4126 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4127 }
4128
25568a53
AD
4129 if (adapter->vfs_allocated_count)
4130 wr32(E1000_IMS, E1000_IMS_LSC |
4131 E1000_IMS_VMMB |
4132 E1000_IMS_DOUTSYNC);
4133 else
4134 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4135 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4136
4137 return IRQ_HANDLED;
4138}
4139
047e0030 4140static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4141{
047e0030 4142 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4143
047e0030
AD
4144 if (!q_vector->set_itr)
4145 return;
73cd78f1 4146
047e0030
AD
4147 if (!itr_val)
4148 itr_val = 0x4;
661086df 4149
047e0030
AD
4150 if (q_vector->itr_shift)
4151 itr_val |= itr_val << q_vector->itr_shift;
661086df 4152 else
047e0030 4153 itr_val |= 0x8000000;
661086df 4154
047e0030
AD
4155 writel(itr_val, q_vector->itr_register);
4156 q_vector->set_itr = 0;
6eb5a7f1
AD
4157}
4158
047e0030 4159static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4160{
047e0030 4161 struct igb_q_vector *q_vector = data;
9d5c8243 4162
047e0030
AD
4163 /* Write the ITR value calculated from the previous interrupt. */
4164 igb_write_itr(q_vector);
9d5c8243 4165
047e0030 4166 napi_schedule(&q_vector->napi);
844290e5 4167
047e0030 4168 return IRQ_HANDLED;
fe4506b6
JC
4169}
4170
421e02f0 4171#ifdef CONFIG_IGB_DCA
047e0030 4172static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4173{
047e0030 4174 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4175 struct e1000_hw *hw = &adapter->hw;
4176 int cpu = get_cpu();
fe4506b6 4177
047e0030
AD
4178 if (q_vector->cpu == cpu)
4179 goto out_no_update;
4180
4181 if (q_vector->tx_ring) {
4182 int q = q_vector->tx_ring->reg_idx;
4183 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4184 if (hw->mac.type == e1000_82575) {
4185 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4186 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4187 } else {
047e0030
AD
4188 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4189 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4190 E1000_DCA_TXCTRL_CPUID_SHIFT;
4191 }
4192 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4193 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4194 }
4195 if (q_vector->rx_ring) {
4196 int q = q_vector->rx_ring->reg_idx;
4197 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4198 if (hw->mac.type == e1000_82575) {
2d064c06 4199 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4200 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4201 } else {
4202 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4203 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4204 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4205 }
fe4506b6
JC
4206 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4207 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4208 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4209 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4210 }
047e0030
AD
4211 q_vector->cpu = cpu;
4212out_no_update:
fe4506b6
JC
4213 put_cpu();
4214}
4215
4216static void igb_setup_dca(struct igb_adapter *adapter)
4217{
7e0e99ef 4218 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4219 int i;
4220
7dfc16fa 4221 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4222 return;
4223
7e0e99ef
AD
4224 /* Always use CB2 mode, difference is masked in the CB driver. */
4225 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4226
047e0030
AD
4227 for (i = 0; i < adapter->num_q_vectors; i++) {
4228 struct igb_q_vector *q_vector = adapter->q_vector[i];
4229 q_vector->cpu = -1;
4230 igb_update_dca(q_vector);
fe4506b6
JC
4231 }
4232}
4233
4234static int __igb_notify_dca(struct device *dev, void *data)
4235{
4236 struct net_device *netdev = dev_get_drvdata(dev);
4237 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4238 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4239 struct e1000_hw *hw = &adapter->hw;
4240 unsigned long event = *(unsigned long *)data;
4241
4242 switch (event) {
4243 case DCA_PROVIDER_ADD:
4244 /* if already enabled, don't do it again */
7dfc16fa 4245 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4246 break;
fe4506b6 4247 if (dca_add_requester(dev) == 0) {
bbd98fe4 4248 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4249 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4250 igb_setup_dca(adapter);
4251 break;
4252 }
4253 /* Fall Through since DCA is disabled. */
4254 case DCA_PROVIDER_REMOVE:
7dfc16fa 4255 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4256 /* without this a class_device is left
047e0030 4257 * hanging around in the sysfs model */
fe4506b6 4258 dca_remove_requester(dev);
090b1795 4259 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4260 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4261 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4262 }
4263 break;
4264 }
bbd98fe4 4265
fe4506b6 4266 return 0;
9d5c8243
AK
4267}
4268
fe4506b6
JC
4269static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4270 void *p)
4271{
4272 int ret_val;
4273
4274 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4275 __igb_notify_dca);
4276
4277 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4278}
421e02f0 4279#endif /* CONFIG_IGB_DCA */
9d5c8243 4280
4ae196df
AD
4281static void igb_ping_all_vfs(struct igb_adapter *adapter)
4282{
4283 struct e1000_hw *hw = &adapter->hw;
4284 u32 ping;
4285 int i;
4286
4287 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4288 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4289 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4290 ping |= E1000_VT_MSGTYPE_CTS;
4291 igb_write_mbx(hw, &ping, 1, i);
4292 }
4293}
4294
7d5753f0
AD
4295static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4296{
4297 struct e1000_hw *hw = &adapter->hw;
4298 u32 vmolr = rd32(E1000_VMOLR(vf));
4299 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4300
4301 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4302 IGB_VF_FLAG_MULTI_PROMISC);
4303 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4304
4305 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4306 vmolr |= E1000_VMOLR_MPME;
4307 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4308 } else {
4309 /*
4310 * if we have hashes and we are clearing a multicast promisc
4311 * flag we need to write the hashes to the MTA as this step
4312 * was previously skipped
4313 */
4314 if (vf_data->num_vf_mc_hashes > 30) {
4315 vmolr |= E1000_VMOLR_MPME;
4316 } else if (vf_data->num_vf_mc_hashes) {
4317 int j;
4318 vmolr |= E1000_VMOLR_ROMPE;
4319 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4320 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4321 }
4322 }
4323
4324 wr32(E1000_VMOLR(vf), vmolr);
4325
4326 /* there are flags left unprocessed, likely not supported */
4327 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4328 return -EINVAL;
4329
4330 return 0;
4331
4332}
4333
4ae196df
AD
4334static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4335 u32 *msgbuf, u32 vf)
4336{
4337 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4338 u16 *hash_list = (u16 *)&msgbuf[1];
4339 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4340 int i;
4341
7d5753f0 4342 /* salt away the number of multicast addresses assigned
4ae196df
AD
4343 * to this VF for later use to restore when the PF multi cast
4344 * list changes
4345 */
4346 vf_data->num_vf_mc_hashes = n;
4347
7d5753f0
AD
4348 /* only up to 30 hash values supported */
4349 if (n > 30)
4350 n = 30;
4351
4352 /* store the hashes for later use */
4ae196df 4353 for (i = 0; i < n; i++)
a419aef8 4354 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4355
4356 /* Flush and reset the mta with the new values */
ff41f8dc 4357 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4358
4359 return 0;
4360}
4361
4362static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4363{
4364 struct e1000_hw *hw = &adapter->hw;
4365 struct vf_data_storage *vf_data;
4366 int i, j;
4367
4368 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4369 u32 vmolr = rd32(E1000_VMOLR(i));
4370 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4371
4ae196df 4372 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4373
4374 if ((vf_data->num_vf_mc_hashes > 30) ||
4375 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4376 vmolr |= E1000_VMOLR_MPME;
4377 } else if (vf_data->num_vf_mc_hashes) {
4378 vmolr |= E1000_VMOLR_ROMPE;
4379 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4380 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4381 }
4382 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4383 }
4384}
4385
4386static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4387{
4388 struct e1000_hw *hw = &adapter->hw;
4389 u32 pool_mask, reg, vid;
4390 int i;
4391
4392 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4393
4394 /* Find the vlan filter for this id */
4395 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4396 reg = rd32(E1000_VLVF(i));
4397
4398 /* remove the vf from the pool */
4399 reg &= ~pool_mask;
4400
4401 /* if pool is empty then remove entry from vfta */
4402 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4403 (reg & E1000_VLVF_VLANID_ENABLE)) {
4404 reg = 0;
4405 vid = reg & E1000_VLVF_VLANID_MASK;
4406 igb_vfta_set(hw, vid, false);
4407 }
4408
4409 wr32(E1000_VLVF(i), reg);
4410 }
ae641bdc
AD
4411
4412 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4413}
4414
4415static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4416{
4417 struct e1000_hw *hw = &adapter->hw;
4418 u32 reg, i;
4419
51466239
AD
4420 /* The vlvf table only exists on 82576 hardware and newer */
4421 if (hw->mac.type < e1000_82576)
4422 return -1;
4423
4424 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4425 if (!adapter->vfs_allocated_count)
4426 return -1;
4427
4428 /* Find the vlan filter for this id */
4429 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4430 reg = rd32(E1000_VLVF(i));
4431 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4432 vid == (reg & E1000_VLVF_VLANID_MASK))
4433 break;
4434 }
4435
4436 if (add) {
4437 if (i == E1000_VLVF_ARRAY_SIZE) {
4438 /* Did not find a matching VLAN ID entry that was
4439 * enabled. Search for a free filter entry, i.e.
4440 * one without the enable bit set
4441 */
4442 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4443 reg = rd32(E1000_VLVF(i));
4444 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4445 break;
4446 }
4447 }
4448 if (i < E1000_VLVF_ARRAY_SIZE) {
4449 /* Found an enabled/available entry */
4450 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4451
4452 /* if !enabled we need to set this up in vfta */
4453 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4454 /* add VID to filter table */
4455 igb_vfta_set(hw, vid, true);
4ae196df
AD
4456 reg |= E1000_VLVF_VLANID_ENABLE;
4457 }
cad6d05f
AD
4458 reg &= ~E1000_VLVF_VLANID_MASK;
4459 reg |= vid;
4ae196df 4460 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4461
4462 /* do not modify RLPML for PF devices */
4463 if (vf >= adapter->vfs_allocated_count)
4464 return 0;
4465
4466 if (!adapter->vf_data[vf].vlans_enabled) {
4467 u32 size;
4468 reg = rd32(E1000_VMOLR(vf));
4469 size = reg & E1000_VMOLR_RLPML_MASK;
4470 size += 4;
4471 reg &= ~E1000_VMOLR_RLPML_MASK;
4472 reg |= size;
4473 wr32(E1000_VMOLR(vf), reg);
4474 }
ae641bdc 4475
51466239 4476 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4477 return 0;
4478 }
4479 } else {
4480 if (i < E1000_VLVF_ARRAY_SIZE) {
4481 /* remove vf from the pool */
4482 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4483 /* if pool is empty then remove entry from vfta */
4484 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4485 reg = 0;
4486 igb_vfta_set(hw, vid, false);
4487 }
4488 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4489
4490 /* do not modify RLPML for PF devices */
4491 if (vf >= adapter->vfs_allocated_count)
4492 return 0;
4493
4494 adapter->vf_data[vf].vlans_enabled--;
4495 if (!adapter->vf_data[vf].vlans_enabled) {
4496 u32 size;
4497 reg = rd32(E1000_VMOLR(vf));
4498 size = reg & E1000_VMOLR_RLPML_MASK;
4499 size -= 4;
4500 reg &= ~E1000_VMOLR_RLPML_MASK;
4501 reg |= size;
4502 wr32(E1000_VMOLR(vf), reg);
4503 }
4ae196df
AD
4504 return 0;
4505 }
4506 }
4507 return -1;
4508}
4509
4510static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4511{
4512 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4513 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4514
4515 return igb_vlvf_set(adapter, vid, add, vf);
4516}
4517
f2ca0dbe 4518static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4519{
f2ca0dbe
AD
4520 /* clear all flags */
4521 adapter->vf_data[vf].flags = 0;
4522 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4523
4524 /* reset offloads to defaults */
7d5753f0 4525 igb_set_vmolr(adapter, vf);
4ae196df
AD
4526
4527 /* reset vlans for device */
4528 igb_clear_vf_vfta(adapter, vf);
4529
4530 /* reset multicast table array for vf */
4531 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4532
4533 /* Flush and reset the mta with the new values */
ff41f8dc 4534 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4535}
4536
f2ca0dbe
AD
4537static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4538{
4539 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4540
4541 /* generate a new mac address as we were hotplug removed/added */
4542 random_ether_addr(vf_mac);
4543
4544 /* process remaining reset events */
4545 igb_vf_reset(adapter, vf);
4546}
4547
4548static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4549{
4550 struct e1000_hw *hw = &adapter->hw;
4551 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4552 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4553 u32 reg, msgbuf[3];
4554 u8 *addr = (u8 *)(&msgbuf[1]);
4555
4556 /* process all the same items cleared in a function level reset */
f2ca0dbe 4557 igb_vf_reset(adapter, vf);
4ae196df
AD
4558
4559 /* set vf mac address */
26ad9178 4560 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4561
4562 /* enable transmit and receive for vf */
4563 reg = rd32(E1000_VFTE);
4564 wr32(E1000_VFTE, reg | (1 << vf));
4565 reg = rd32(E1000_VFRE);
4566 wr32(E1000_VFRE, reg | (1 << vf));
4567
f2ca0dbe 4568 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4569
4570 /* reply to reset with ack and vf mac address */
4571 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4572 memcpy(addr, vf_mac, 6);
4573 igb_write_mbx(hw, msgbuf, 3, vf);
4574}
4575
4576static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4577{
f2ca0dbe
AD
4578 unsigned char *addr = (char *)&msg[1];
4579 int err = -1;
4ae196df 4580
f2ca0dbe
AD
4581 if (is_valid_ether_addr(addr))
4582 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 4583
f2ca0dbe 4584 return err;
4ae196df
AD
4585}
4586
4587static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4588{
4589 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4590 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4591 u32 msg = E1000_VT_MSGTYPE_NACK;
4592
4593 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
4594 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4595 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 4596 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 4597 vf_data->last_nack = jiffies;
4ae196df
AD
4598 }
4599}
4600
f2ca0dbe 4601static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 4602{
f2ca0dbe
AD
4603 struct pci_dev *pdev = adapter->pdev;
4604 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 4605 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4606 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4607 s32 retval;
4608
f2ca0dbe 4609 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 4610
fef45f4c
AD
4611 if (retval) {
4612 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 4613 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
4614 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4615 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4616 return;
4617 goto out;
4618 }
4ae196df
AD
4619
4620 /* this is a message we already processed, do nothing */
4621 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 4622 return;
4ae196df
AD
4623
4624 /*
4625 * until the vf completes a reset it should not be
4626 * allowed to start any configuration.
4627 */
4628
4629 if (msgbuf[0] == E1000_VF_RESET) {
4630 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 4631 return;
4ae196df
AD
4632 }
4633
f2ca0dbe 4634 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
4635 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4636 return;
4637 retval = -1;
4638 goto out;
4ae196df
AD
4639 }
4640
4641 switch ((msgbuf[0] & 0xFFFF)) {
4642 case E1000_VF_SET_MAC_ADDR:
4643 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4644 break;
7d5753f0
AD
4645 case E1000_VF_SET_PROMISC:
4646 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4647 break;
4ae196df
AD
4648 case E1000_VF_SET_MULTICAST:
4649 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4650 break;
4651 case E1000_VF_SET_LPE:
4652 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4653 break;
4654 case E1000_VF_SET_VLAN:
4655 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4656 break;
4657 default:
090b1795 4658 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
4659 retval = -1;
4660 break;
4661 }
4662
fef45f4c
AD
4663 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4664out:
4ae196df
AD
4665 /* notify the VF of the results of what it sent us */
4666 if (retval)
4667 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4668 else
4669 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4670
4ae196df 4671 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 4672}
4ae196df 4673
f2ca0dbe
AD
4674static void igb_msg_task(struct igb_adapter *adapter)
4675{
4676 struct e1000_hw *hw = &adapter->hw;
4677 u32 vf;
4678
4679 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4680 /* process any reset requests */
4681 if (!igb_check_for_rst(hw, vf))
4682 igb_vf_reset_event(adapter, vf);
4683
4684 /* process any messages pending */
4685 if (!igb_check_for_msg(hw, vf))
4686 igb_rcv_msg_from_vf(adapter, vf);
4687
4688 /* process any acks */
4689 if (!igb_check_for_ack(hw, vf))
4690 igb_rcv_ack_from_vf(adapter, vf);
4691 }
4ae196df
AD
4692}
4693
68d480c4
AD
4694/**
4695 * igb_set_uta - Set unicast filter table address
4696 * @adapter: board private structure
4697 *
4698 * The unicast table address is a register array of 32-bit registers.
4699 * The table is meant to be used in a way similar to how the MTA is used
4700 * however due to certain limitations in the hardware it is necessary to
4701 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4702 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4703 **/
4704static void igb_set_uta(struct igb_adapter *adapter)
4705{
4706 struct e1000_hw *hw = &adapter->hw;
4707 int i;
4708
4709 /* The UTA table only exists on 82576 hardware and newer */
4710 if (hw->mac.type < e1000_82576)
4711 return;
4712
4713 /* we only need to do this if VMDq is enabled */
4714 if (!adapter->vfs_allocated_count)
4715 return;
4716
4717 for (i = 0; i < hw->mac.uta_reg_count; i++)
4718 array_wr32(E1000_UTA, i, ~0);
4719}
4720
9d5c8243
AK
4721/**
4722 * igb_intr_msi - Interrupt Handler
4723 * @irq: interrupt number
4724 * @data: pointer to a network interface device structure
4725 **/
4726static irqreturn_t igb_intr_msi(int irq, void *data)
4727{
047e0030
AD
4728 struct igb_adapter *adapter = data;
4729 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4730 struct e1000_hw *hw = &adapter->hw;
4731 /* read ICR disables interrupts using IAM */
4732 u32 icr = rd32(E1000_ICR);
4733
047e0030 4734 igb_write_itr(q_vector);
9d5c8243 4735
047e0030 4736 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4737 /* HW is reporting DMA is out of sync */
4738 adapter->stats.doosync++;
4739 }
4740
9d5c8243
AK
4741 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4742 hw->mac.get_link_status = 1;
4743 if (!test_bit(__IGB_DOWN, &adapter->state))
4744 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4745 }
4746
047e0030 4747 napi_schedule(&q_vector->napi);
9d5c8243
AK
4748
4749 return IRQ_HANDLED;
4750}
4751
4752/**
4a3c6433 4753 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4754 * @irq: interrupt number
4755 * @data: pointer to a network interface device structure
4756 **/
4757static irqreturn_t igb_intr(int irq, void *data)
4758{
047e0030
AD
4759 struct igb_adapter *adapter = data;
4760 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4761 struct e1000_hw *hw = &adapter->hw;
4762 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4763 * need for the IMC write */
4764 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4765 if (!icr)
4766 return IRQ_NONE; /* Not our interrupt */
4767
047e0030 4768 igb_write_itr(q_vector);
9d5c8243
AK
4769
4770 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4771 * not set, then the adapter didn't send an interrupt */
4772 if (!(icr & E1000_ICR_INT_ASSERTED))
4773 return IRQ_NONE;
4774
047e0030 4775 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4776 /* HW is reporting DMA is out of sync */
4777 adapter->stats.doosync++;
4778 }
4779
9d5c8243
AK
4780 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4781 hw->mac.get_link_status = 1;
4782 /* guard against interrupt when we're going down */
4783 if (!test_bit(__IGB_DOWN, &adapter->state))
4784 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4785 }
4786
047e0030 4787 napi_schedule(&q_vector->napi);
9d5c8243
AK
4788
4789 return IRQ_HANDLED;
4790}
4791
047e0030 4792static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 4793{
047e0030 4794 struct igb_adapter *adapter = q_vector->adapter;
46544258 4795 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4796
4fc82adf
AD
4797 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4798 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 4799 if (!adapter->msix_entries)
6eb5a7f1 4800 igb_set_itr(adapter);
46544258 4801 else
047e0030 4802 igb_update_ring_itr(q_vector);
9d5c8243
AK
4803 }
4804
46544258
AD
4805 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4806 if (adapter->msix_entries)
047e0030 4807 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
4808 else
4809 igb_irq_enable(adapter);
4810 }
9d5c8243
AK
4811}
4812
46544258
AD
4813/**
4814 * igb_poll - NAPI Rx polling callback
4815 * @napi: napi polling structure
4816 * @budget: count of how many packets we should handle
4817 **/
4818static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 4819{
047e0030
AD
4820 struct igb_q_vector *q_vector = container_of(napi,
4821 struct igb_q_vector,
4822 napi);
4823 int tx_clean_complete = 1, work_done = 0;
9d5c8243 4824
421e02f0 4825#ifdef CONFIG_IGB_DCA
047e0030
AD
4826 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4827 igb_update_dca(q_vector);
fe4506b6 4828#endif
047e0030
AD
4829 if (q_vector->tx_ring)
4830 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 4831
047e0030
AD
4832 if (q_vector->rx_ring)
4833 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4834
4835 if (!tx_clean_complete)
4836 work_done = budget;
46544258 4837
9d5c8243 4838 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4839 if (work_done < budget) {
288379f0 4840 napi_complete(napi);
047e0030 4841 igb_ring_irq_enable(q_vector);
9d5c8243
AK
4842 }
4843
46544258 4844 return work_done;
9d5c8243 4845}
6d8126f9 4846
33af6bcc 4847/**
c5b9bd5e 4848 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 4849 * @adapter: board private structure
c5b9bd5e
AD
4850 * @shhwtstamps: timestamp structure to update
4851 * @regval: unsigned 64bit system time value.
4852 *
4853 * We need to convert the system time value stored in the RX/TXSTMP registers
4854 * into a hwtstamp which can be used by the upper level timestamping functions
4855 */
4856static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4857 struct skb_shared_hwtstamps *shhwtstamps,
4858 u64 regval)
4859{
4860 u64 ns;
4861
55cac248
AD
4862 /*
4863 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4864 * 24 to match clock shift we setup earlier.
4865 */
4866 if (adapter->hw.mac.type == e1000_82580)
4867 regval <<= IGB_82580_TSYNC_SHIFT;
4868
c5b9bd5e
AD
4869 ns = timecounter_cyc2time(&adapter->clock, regval);
4870 timecompare_update(&adapter->compare, ns);
4871 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4872 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4873 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4874}
4875
4876/**
4877 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4878 * @q_vector: pointer to q_vector containing needed info
33af6bcc
PO
4879 * @skb: packet that was just sent
4880 *
4881 * If we were asked to do hardware stamping and such a time stamp is
4882 * available, then it must have been for this skb here because we only
4883 * allow only one such packet into the queue.
4884 */
c5b9bd5e 4885static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
33af6bcc 4886{
c5b9bd5e 4887 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc
PO
4888 union skb_shared_tx *shtx = skb_tx(skb);
4889 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
4890 struct skb_shared_hwtstamps shhwtstamps;
4891 u64 regval;
33af6bcc 4892
c5b9bd5e
AD
4893 /* if skb does not support hw timestamp or TX stamp not valid exit */
4894 if (likely(!shtx->hardware) ||
4895 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4896 return;
4897
4898 regval = rd32(E1000_TXSTMPL);
4899 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4900
4901 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4902 skb_tstamp_tx(skb, &shhwtstamps);
33af6bcc
PO
4903}
4904
9d5c8243
AK
4905/**
4906 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 4907 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
4908 * returns true if ring is completely cleaned
4909 **/
047e0030 4910static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 4911{
047e0030
AD
4912 struct igb_adapter *adapter = q_vector->adapter;
4913 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 4914 struct net_device *netdev = tx_ring->netdev;
0e014cb1 4915 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4916 struct igb_buffer *buffer_info;
4917 struct sk_buff *skb;
0e014cb1 4918 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4919 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
4920 unsigned int i, eop, count = 0;
4921 bool cleaned = false;
9d5c8243 4922
9d5c8243 4923 i = tx_ring->next_to_clean;
0e014cb1
AD
4924 eop = tx_ring->buffer_info[i].next_to_watch;
4925 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4926
4927 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4928 (count < tx_ring->count)) {
4929 for (cleaned = false; !cleaned; count++) {
4930 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 4931 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 4932 cleaned = (i == eop);
9d5c8243
AK
4933 skb = buffer_info->skb;
4934
4935 if (skb) {
4936 unsigned int segs, bytecount;
4937 /* gso_segs is currently only valid for tcp */
4938 segs = skb_shinfo(skb)->gso_segs ?: 1;
4939 /* multiply data chunks by size of headers */
4940 bytecount = ((segs - 1) * skb_headlen(skb)) +
4941 skb->len;
4942 total_packets += segs;
4943 total_bytes += bytecount;
33af6bcc 4944
c5b9bd5e 4945 igb_tx_hwtstamp(q_vector, skb);
9d5c8243
AK
4946 }
4947
80785298 4948 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 4949 tx_desc->wb.status = 0;
9d5c8243
AK
4950
4951 i++;
4952 if (i == tx_ring->count)
4953 i = 0;
9d5c8243 4954 }
0e014cb1
AD
4955 eop = tx_ring->buffer_info[i].next_to_watch;
4956 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4957 }
4958
9d5c8243
AK
4959 tx_ring->next_to_clean = i;
4960
fc7d345d 4961 if (unlikely(count &&
9d5c8243 4962 netif_carrier_ok(netdev) &&
c493ea45 4963 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
4964 /* Make sure that anybody stopping the queue after this
4965 * sees the new next_to_clean.
4966 */
4967 smp_mb();
661086df
PWJ
4968 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4969 !(test_bit(__IGB_DOWN, &adapter->state))) {
4970 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 4971 tx_ring->tx_stats.restart_queue++;
661086df 4972 }
9d5c8243
AK
4973 }
4974
4975 if (tx_ring->detect_tx_hung) {
4976 /* Detect a transmit hang in hardware, this serializes the
4977 * check with the clearing of time_stamp and movement of i */
4978 tx_ring->detect_tx_hung = false;
4979 if (tx_ring->buffer_info[i].time_stamp &&
4980 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
4981 (adapter->tx_timeout_factor * HZ)) &&
4982 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 4983
9d5c8243 4984 /* detected Tx unit hang */
80785298 4985 dev_err(&tx_ring->pdev->dev,
9d5c8243 4986 "Detected Tx Unit Hang\n"
2d064c06 4987 " Tx Queue <%d>\n"
9d5c8243
AK
4988 " TDH <%x>\n"
4989 " TDT <%x>\n"
4990 " next_to_use <%x>\n"
4991 " next_to_clean <%x>\n"
9d5c8243
AK
4992 "buffer_info[next_to_clean]\n"
4993 " time_stamp <%lx>\n"
0e014cb1 4994 " next_to_watch <%x>\n"
9d5c8243
AK
4995 " jiffies <%lx>\n"
4996 " desc.status <%x>\n",
2d064c06 4997 tx_ring->queue_index,
fce99e34
AD
4998 readl(tx_ring->head),
4999 readl(tx_ring->tail),
9d5c8243
AK
5000 tx_ring->next_to_use,
5001 tx_ring->next_to_clean,
f7ba205e 5002 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5003 eop,
9d5c8243 5004 jiffies,
0e014cb1 5005 eop_desc->wb.status);
661086df 5006 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5007 }
5008 }
5009 tx_ring->total_bytes += total_bytes;
5010 tx_ring->total_packets += total_packets;
e21ed353
AD
5011 tx_ring->tx_stats.bytes += total_bytes;
5012 tx_ring->tx_stats.packets += total_packets;
0e014cb1 5013 return (count < tx_ring->count);
9d5c8243
AK
5014}
5015
9d5c8243
AK
5016/**
5017 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5018 * @q_vector: structure containing interrupt and ring information
5019 * @skb: packet to send up
5020 * @vlan_tag: vlan tag for packet
9d5c8243 5021 **/
047e0030
AD
5022static void igb_receive_skb(struct igb_q_vector *q_vector,
5023 struct sk_buff *skb,
5024 u16 vlan_tag)
5025{
5026 struct igb_adapter *adapter = q_vector->adapter;
5027
5028 if (vlan_tag)
5029 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5030 vlan_tag, skb);
182ff8df 5031 else
047e0030 5032 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5033}
5034
04a5fcaa 5035static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5036 u32 status_err, struct sk_buff *skb)
5037{
5038 skb->ip_summed = CHECKSUM_NONE;
5039
5040 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5041 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5042 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5043 return;
85ad76b2 5044
9d5c8243
AK
5045 /* TCP/UDP checksum error bit is set */
5046 if (status_err &
5047 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5048 /*
5049 * work around errata with sctp packets where the TCPE aka
5050 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5051 * packets, (aka let the stack check the crc32c)
5052 */
85ad76b2
AD
5053 if ((skb->len == 60) &&
5054 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 5055 ring->rx_stats.csum_err++;
85ad76b2 5056
9d5c8243 5057 /* let the stack verify checksum errors */
9d5c8243
AK
5058 return;
5059 }
5060 /* It must be a TCP or UDP packet with a valid checksum */
5061 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5062 skb->ip_summed = CHECKSUM_UNNECESSARY;
5063
85ad76b2 5064 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5065}
5066
c5b9bd5e
AD
5067static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5068 struct sk_buff *skb)
5069{
5070 struct igb_adapter *adapter = q_vector->adapter;
5071 struct e1000_hw *hw = &adapter->hw;
5072 u64 regval;
5073
5074 /*
5075 * If this bit is set, then the RX registers contain the time stamp. No
5076 * other packet will be time stamped until we read these registers, so
5077 * read the registers to make them available again. Because only one
5078 * packet can be time stamped at a time, we know that the register
5079 * values must belong to this one here and therefore we don't need to
5080 * compare any of the additional attributes stored for it.
5081 *
5082 * If nothing went wrong, then it should have a skb_shared_tx that we
5083 * can turn into a skb_shared_hwtstamps.
5084 */
5085 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5086 return;
5087 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5088 return;
5089
5090 regval = rd32(E1000_RXSTMPL);
5091 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5092
5093 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5094}
4c844851 5095static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5096 union e1000_adv_rx_desc *rx_desc)
5097{
5098 /* HW will not DMA in data larger than the given buffer, even if it
5099 * parses the (NFS, of course) header to be larger. In that case, it
5100 * fills the header buffer and spills the rest into the page.
5101 */
5102 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5103 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5104 if (hlen > rx_ring->rx_buffer_len)
5105 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5106 return hlen;
5107}
5108
047e0030
AD
5109static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5110 int *work_done, int budget)
9d5c8243 5111{
047e0030 5112 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5113 struct net_device *netdev = rx_ring->netdev;
80785298 5114 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
5115 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5116 struct igb_buffer *buffer_info , *next_buffer;
5117 struct sk_buff *skb;
9d5c8243
AK
5118 bool cleaned = false;
5119 int cleaned_count = 0;
d1eff350 5120 int current_node = numa_node_id();
9d5c8243 5121 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5122 unsigned int i;
2d94d8ab
AD
5123 u32 staterr;
5124 u16 length;
047e0030 5125 u16 vlan_tag;
9d5c8243
AK
5126
5127 i = rx_ring->next_to_clean;
69d3ca53 5128 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5129 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5130 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5131
5132 while (staterr & E1000_RXD_STAT_DD) {
5133 if (*work_done >= budget)
5134 break;
5135 (*work_done)++;
9d5c8243 5136
69d3ca53
AD
5137 skb = buffer_info->skb;
5138 prefetch(skb->data - NET_IP_ALIGN);
5139 buffer_info->skb = NULL;
5140
5141 i++;
5142 if (i == rx_ring->count)
5143 i = 0;
42d0781a 5144
69d3ca53
AD
5145 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5146 prefetch(next_rxd);
5147 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5148
5149 length = le16_to_cpu(rx_desc->wb.upper.length);
5150 cleaned = true;
5151 cleaned_count++;
5152
2d94d8ab 5153 if (buffer_info->dma) {
bf36c1a0 5154 pci_unmap_single(pdev, buffer_info->dma,
4c844851 5155 rx_ring->rx_buffer_len,
bf36c1a0 5156 PCI_DMA_FROMDEVICE);
91615f76 5157 buffer_info->dma = 0;
4c844851 5158 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5159 skb_put(skb, length);
5160 goto send_up;
5161 }
4c844851 5162 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5163 }
5164
5165 if (length) {
9d5c8243 5166 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 5167 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 5168 buffer_info->page_dma = 0;
bf36c1a0
AD
5169
5170 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5171 buffer_info->page,
5172 buffer_info->page_offset,
5173 length);
5174
d1eff350
AD
5175 if ((page_count(buffer_info->page) != 1) ||
5176 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5177 buffer_info->page = NULL;
5178 else
5179 get_page(buffer_info->page);
9d5c8243
AK
5180
5181 skb->len += length;
5182 skb->data_len += length;
bf36c1a0 5183 skb->truesize += length;
9d5c8243 5184 }
9d5c8243 5185
bf36c1a0 5186 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5187 buffer_info->skb = next_buffer->skb;
5188 buffer_info->dma = next_buffer->dma;
5189 next_buffer->skb = skb;
5190 next_buffer->dma = 0;
bf36c1a0
AD
5191 goto next_desc;
5192 }
69d3ca53 5193send_up:
9d5c8243
AK
5194 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5195 dev_kfree_skb_irq(skb);
5196 goto next_desc;
5197 }
9d5c8243 5198
c5b9bd5e 5199 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5200 total_bytes += skb->len;
5201 total_packets++;
5202
85ad76b2 5203 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5204
5205 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5206 skb_record_rx_queue(skb, rx_ring->queue_index);
5207
5208 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5209 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5210
047e0030 5211 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5212
9d5c8243
AK
5213next_desc:
5214 rx_desc->wb.upper.status_error = 0;
5215
5216 /* return some buffers to hardware, one at a time is too slow */
5217 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5218 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5219 cleaned_count = 0;
5220 }
5221
5222 /* use prefetched values */
5223 rx_desc = next_rxd;
5224 buffer_info = next_buffer;
9d5c8243
AK
5225 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5226 }
bf36c1a0 5227
9d5c8243 5228 rx_ring->next_to_clean = i;
c493ea45 5229 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5230
5231 if (cleaned_count)
3b644cf6 5232 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5233
5234 rx_ring->total_packets += total_packets;
5235 rx_ring->total_bytes += total_bytes;
5236 rx_ring->rx_stats.packets += total_packets;
5237 rx_ring->rx_stats.bytes += total_bytes;
9d5c8243
AK
5238 return cleaned;
5239}
5240
9d5c8243
AK
5241/**
5242 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5243 * @adapter: address of board private structure
5244 **/
d7ee5b3a 5245void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5246{
e694e964 5247 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5248 union e1000_adv_rx_desc *rx_desc;
5249 struct igb_buffer *buffer_info;
5250 struct sk_buff *skb;
5251 unsigned int i;
db761762 5252 int bufsz;
9d5c8243
AK
5253
5254 i = rx_ring->next_to_use;
5255 buffer_info = &rx_ring->buffer_info[i];
5256
4c844851 5257 bufsz = rx_ring->rx_buffer_len;
db761762 5258
9d5c8243
AK
5259 while (cleaned_count--) {
5260 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5261
6ec43fe6 5262 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5263 if (!buffer_info->page) {
42d0781a 5264 buffer_info->page = netdev_alloc_page(netdev);
bf36c1a0 5265 if (!buffer_info->page) {
04a5fcaa 5266 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5267 goto no_buffers;
5268 }
5269 buffer_info->page_offset = 0;
5270 } else {
5271 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5272 }
5273 buffer_info->page_dma =
80785298 5274 pci_map_page(rx_ring->pdev, buffer_info->page,
bf36c1a0
AD
5275 buffer_info->page_offset,
5276 PAGE_SIZE / 2,
9d5c8243 5277 PCI_DMA_FROMDEVICE);
42d0781a
AD
5278 if (pci_dma_mapping_error(rx_ring->pdev,
5279 buffer_info->page_dma)) {
5280 buffer_info->page_dma = 0;
5281 rx_ring->rx_stats.alloc_failed++;
5282 goto no_buffers;
5283 }
9d5c8243
AK
5284 }
5285
42d0781a
AD
5286 skb = buffer_info->skb;
5287 if (!skb) {
89d71a66 5288 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5289 if (!skb) {
04a5fcaa 5290 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5291 goto no_buffers;
5292 }
5293
9d5c8243 5294 buffer_info->skb = skb;
42d0781a
AD
5295 }
5296 if (!buffer_info->dma) {
80785298
AD
5297 buffer_info->dma = pci_map_single(rx_ring->pdev,
5298 skb->data,
9d5c8243
AK
5299 bufsz,
5300 PCI_DMA_FROMDEVICE);
42d0781a
AD
5301 if (pci_dma_mapping_error(rx_ring->pdev,
5302 buffer_info->dma)) {
5303 buffer_info->dma = 0;
5304 rx_ring->rx_stats.alloc_failed++;
5305 goto no_buffers;
5306 }
9d5c8243
AK
5307 }
5308 /* Refresh the desc even if buffer_addrs didn't change because
5309 * each write-back erases this info. */
6ec43fe6 5310 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5311 rx_desc->read.pkt_addr =
5312 cpu_to_le64(buffer_info->page_dma);
5313 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5314 } else {
42d0781a 5315 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5316 rx_desc->read.hdr_addr = 0;
5317 }
5318
5319 i++;
5320 if (i == rx_ring->count)
5321 i = 0;
5322 buffer_info = &rx_ring->buffer_info[i];
5323 }
5324
5325no_buffers:
5326 if (rx_ring->next_to_use != i) {
5327 rx_ring->next_to_use = i;
5328 if (i == 0)
5329 i = (rx_ring->count - 1);
5330 else
5331 i--;
5332
5333 /* Force memory writes to complete before letting h/w
5334 * know there are new descriptors to fetch. (Only
5335 * applicable for weak-ordered memory model archs,
5336 * such as IA-64). */
5337 wmb();
fce99e34 5338 writel(i, rx_ring->tail);
9d5c8243
AK
5339 }
5340}
5341
5342/**
5343 * igb_mii_ioctl -
5344 * @netdev:
5345 * @ifreq:
5346 * @cmd:
5347 **/
5348static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5349{
5350 struct igb_adapter *adapter = netdev_priv(netdev);
5351 struct mii_ioctl_data *data = if_mii(ifr);
5352
5353 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5354 return -EOPNOTSUPP;
5355
5356 switch (cmd) {
5357 case SIOCGMIIPHY:
5358 data->phy_id = adapter->hw.phy.addr;
5359 break;
5360 case SIOCGMIIREG:
f5f4cf08
AD
5361 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5362 &data->val_out))
9d5c8243
AK
5363 return -EIO;
5364 break;
5365 case SIOCSMIIREG:
5366 default:
5367 return -EOPNOTSUPP;
5368 }
5369 return 0;
5370}
5371
c6cb090b
PO
5372/**
5373 * igb_hwtstamp_ioctl - control hardware time stamping
5374 * @netdev:
5375 * @ifreq:
5376 * @cmd:
5377 *
33af6bcc
PO
5378 * Outgoing time stamping can be enabled and disabled. Play nice and
5379 * disable it when requested, although it shouldn't case any overhead
5380 * when no packet needs it. At most one packet in the queue may be
5381 * marked for time stamping, otherwise it would be impossible to tell
5382 * for sure to which packet the hardware time stamp belongs.
5383 *
5384 * Incoming time stamping has to be configured via the hardware
5385 * filters. Not all combinations are supported, in particular event
5386 * type has to be specified. Matching the kind of event packet is
5387 * not supported, with the exception of "all V2 events regardless of
5388 * level 2 or 4".
5389 *
c6cb090b
PO
5390 **/
5391static int igb_hwtstamp_ioctl(struct net_device *netdev,
5392 struct ifreq *ifr, int cmd)
5393{
33af6bcc
PO
5394 struct igb_adapter *adapter = netdev_priv(netdev);
5395 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5396 struct hwtstamp_config config;
c5b9bd5e
AD
5397 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5398 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5399 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5400 bool is_l4 = false;
5401 bool is_l2 = false;
33af6bcc 5402 u32 regval;
c6cb090b
PO
5403
5404 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5405 return -EFAULT;
5406
5407 /* reserved for future extensions */
5408 if (config.flags)
5409 return -EINVAL;
5410
33af6bcc
PO
5411 switch (config.tx_type) {
5412 case HWTSTAMP_TX_OFF:
c5b9bd5e 5413 tsync_tx_ctl = 0;
33af6bcc 5414 case HWTSTAMP_TX_ON:
33af6bcc
PO
5415 break;
5416 default:
5417 return -ERANGE;
5418 }
5419
5420 switch (config.rx_filter) {
5421 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5422 tsync_rx_ctl = 0;
33af6bcc
PO
5423 break;
5424 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5425 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5426 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5427 case HWTSTAMP_FILTER_ALL:
5428 /*
5429 * register TSYNCRXCFG must be set, therefore it is not
5430 * possible to time stamp both Sync and Delay_Req messages
5431 * => fall back to time stamping all packets
5432 */
c5b9bd5e 5433 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5434 config.rx_filter = HWTSTAMP_FILTER_ALL;
5435 break;
5436 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5437 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5438 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5439 is_l4 = true;
33af6bcc
PO
5440 break;
5441 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5442 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5443 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5444 is_l4 = true;
33af6bcc
PO
5445 break;
5446 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5447 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5448 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5449 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5450 is_l2 = true;
5451 is_l4 = true;
33af6bcc
PO
5452 config.rx_filter = HWTSTAMP_FILTER_SOME;
5453 break;
5454 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5455 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5456 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5457 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5458 is_l2 = true;
5459 is_l4 = true;
33af6bcc
PO
5460 config.rx_filter = HWTSTAMP_FILTER_SOME;
5461 break;
5462 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5463 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5464 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5465 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5466 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5467 is_l2 = true;
33af6bcc
PO
5468 break;
5469 default:
5470 return -ERANGE;
5471 }
5472
c5b9bd5e
AD
5473 if (hw->mac.type == e1000_82575) {
5474 if (tsync_rx_ctl | tsync_tx_ctl)
5475 return -EINVAL;
5476 return 0;
5477 }
5478
33af6bcc
PO
5479 /* enable/disable TX */
5480 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5481 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5482 regval |= tsync_tx_ctl;
33af6bcc
PO
5483 wr32(E1000_TSYNCTXCTL, regval);
5484
c5b9bd5e 5485 /* enable/disable RX */
33af6bcc 5486 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5487 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5488 regval |= tsync_rx_ctl;
33af6bcc 5489 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5490
c5b9bd5e
AD
5491 /* define which PTP packets are time stamped */
5492 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5493
c5b9bd5e
AD
5494 /* define ethertype filter for timestamped packets */
5495 if (is_l2)
5496 wr32(E1000_ETQF(3),
5497 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5498 E1000_ETQF_1588 | /* enable timestamping */
5499 ETH_P_1588)); /* 1588 eth protocol type */
5500 else
5501 wr32(E1000_ETQF(3), 0);
5502
5503#define PTP_PORT 319
5504 /* L4 Queue Filter[3]: filter by destination port and protocol */
5505 if (is_l4) {
5506 u32 ftqf = (IPPROTO_UDP /* UDP */
5507 | E1000_FTQF_VF_BP /* VF not compared */
5508 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5509 | E1000_FTQF_MASK); /* mask all inputs */
5510 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5511
5512 wr32(E1000_IMIR(3), htons(PTP_PORT));
5513 wr32(E1000_IMIREXT(3),
5514 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5515 if (hw->mac.type == e1000_82576) {
5516 /* enable source port check */
5517 wr32(E1000_SPQF(3), htons(PTP_PORT));
5518 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5519 }
5520 wr32(E1000_FTQF(3), ftqf);
5521 } else {
5522 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5523 }
33af6bcc
PO
5524 wrfl();
5525
5526 adapter->hwtstamp_config = config;
5527
5528 /* clear TX/RX time stamp registers, just to be sure */
5529 regval = rd32(E1000_TXSTMPH);
5530 regval = rd32(E1000_RXSTMPH);
c6cb090b 5531
33af6bcc
PO
5532 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5533 -EFAULT : 0;
c6cb090b
PO
5534}
5535
9d5c8243
AK
5536/**
5537 * igb_ioctl -
5538 * @netdev:
5539 * @ifreq:
5540 * @cmd:
5541 **/
5542static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5543{
5544 switch (cmd) {
5545 case SIOCGMIIPHY:
5546 case SIOCGMIIREG:
5547 case SIOCSMIIREG:
5548 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5549 case SIOCSHWTSTAMP:
5550 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5551 default:
5552 return -EOPNOTSUPP;
5553 }
5554}
5555
009bc06e
AD
5556s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5557{
5558 struct igb_adapter *adapter = hw->back;
5559 u16 cap_offset;
5560
5561 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5562 if (!cap_offset)
5563 return -E1000_ERR_CONFIG;
5564
5565 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5566
5567 return 0;
5568}
5569
5570s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5571{
5572 struct igb_adapter *adapter = hw->back;
5573 u16 cap_offset;
5574
5575 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5576 if (!cap_offset)
5577 return -E1000_ERR_CONFIG;
5578
5579 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5580
5581 return 0;
5582}
5583
9d5c8243
AK
5584static void igb_vlan_rx_register(struct net_device *netdev,
5585 struct vlan_group *grp)
5586{
5587 struct igb_adapter *adapter = netdev_priv(netdev);
5588 struct e1000_hw *hw = &adapter->hw;
5589 u32 ctrl, rctl;
5590
5591 igb_irq_disable(adapter);
5592 adapter->vlgrp = grp;
5593
5594 if (grp) {
5595 /* enable VLAN tag insert/strip */
5596 ctrl = rd32(E1000_CTRL);
5597 ctrl |= E1000_CTRL_VME;
5598 wr32(E1000_CTRL, ctrl);
5599
51466239 5600 /* Disable CFI check */
9d5c8243 5601 rctl = rd32(E1000_RCTL);
9d5c8243
AK
5602 rctl &= ~E1000_RCTL_CFIEN;
5603 wr32(E1000_RCTL, rctl);
9d5c8243
AK
5604 } else {
5605 /* disable VLAN tag insert/strip */
5606 ctrl = rd32(E1000_CTRL);
5607 ctrl &= ~E1000_CTRL_VME;
5608 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
5609 }
5610
e1739522
AD
5611 igb_rlpml_set(adapter);
5612
9d5c8243
AK
5613 if (!test_bit(__IGB_DOWN, &adapter->state))
5614 igb_irq_enable(adapter);
5615}
5616
5617static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5618{
5619 struct igb_adapter *adapter = netdev_priv(netdev);
5620 struct e1000_hw *hw = &adapter->hw;
4ae196df 5621 int pf_id = adapter->vfs_allocated_count;
9d5c8243 5622
51466239
AD
5623 /* attempt to add filter to vlvf array */
5624 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 5625
51466239
AD
5626 /* add the filter since PF can receive vlans w/o entry in vlvf */
5627 igb_vfta_set(hw, vid, true);
9d5c8243
AK
5628}
5629
5630static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5631{
5632 struct igb_adapter *adapter = netdev_priv(netdev);
5633 struct e1000_hw *hw = &adapter->hw;
4ae196df 5634 int pf_id = adapter->vfs_allocated_count;
51466239 5635 s32 err;
9d5c8243
AK
5636
5637 igb_irq_disable(adapter);
5638 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5639
5640 if (!test_bit(__IGB_DOWN, &adapter->state))
5641 igb_irq_enable(adapter);
5642
51466239
AD
5643 /* remove vlan from VLVF table array */
5644 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 5645
51466239
AD
5646 /* if vid was not present in VLVF just remove it from table */
5647 if (err)
4ae196df 5648 igb_vfta_set(hw, vid, false);
9d5c8243
AK
5649}
5650
5651static void igb_restore_vlan(struct igb_adapter *adapter)
5652{
5653 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5654
5655 if (adapter->vlgrp) {
5656 u16 vid;
5657 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5658 if (!vlan_group_get_device(adapter->vlgrp, vid))
5659 continue;
5660 igb_vlan_rx_add_vid(adapter->netdev, vid);
5661 }
5662 }
5663}
5664
5665int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5666{
090b1795 5667 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
5668 struct e1000_mac_info *mac = &adapter->hw.mac;
5669
5670 mac->autoneg = 0;
5671
9d5c8243
AK
5672 switch (spddplx) {
5673 case SPEED_10 + DUPLEX_HALF:
5674 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5675 break;
5676 case SPEED_10 + DUPLEX_FULL:
5677 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5678 break;
5679 case SPEED_100 + DUPLEX_HALF:
5680 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5681 break;
5682 case SPEED_100 + DUPLEX_FULL:
5683 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5684 break;
5685 case SPEED_1000 + DUPLEX_FULL:
5686 mac->autoneg = 1;
5687 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5688 break;
5689 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5690 default:
090b1795 5691 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
5692 return -EINVAL;
5693 }
5694 return 0;
5695}
5696
3fe7c4c9 5697static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
5698{
5699 struct net_device *netdev = pci_get_drvdata(pdev);
5700 struct igb_adapter *adapter = netdev_priv(netdev);
5701 struct e1000_hw *hw = &adapter->hw;
2d064c06 5702 u32 ctrl, rctl, status;
9d5c8243
AK
5703 u32 wufc = adapter->wol;
5704#ifdef CONFIG_PM
5705 int retval = 0;
5706#endif
5707
5708 netif_device_detach(netdev);
5709
a88f10ec
AD
5710 if (netif_running(netdev))
5711 igb_close(netdev);
5712
047e0030 5713 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
5714
5715#ifdef CONFIG_PM
5716 retval = pci_save_state(pdev);
5717 if (retval)
5718 return retval;
5719#endif
5720
5721 status = rd32(E1000_STATUS);
5722 if (status & E1000_STATUS_LU)
5723 wufc &= ~E1000_WUFC_LNKC;
5724
5725 if (wufc) {
5726 igb_setup_rctl(adapter);
ff41f8dc 5727 igb_set_rx_mode(netdev);
9d5c8243
AK
5728
5729 /* turn on all-multi mode if wake on multicast is enabled */
5730 if (wufc & E1000_WUFC_MC) {
5731 rctl = rd32(E1000_RCTL);
5732 rctl |= E1000_RCTL_MPE;
5733 wr32(E1000_RCTL, rctl);
5734 }
5735
5736 ctrl = rd32(E1000_CTRL);
5737 /* advertise wake from D3Cold */
5738 #define E1000_CTRL_ADVD3WUC 0x00100000
5739 /* phy power management enable */
5740 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5741 ctrl |= E1000_CTRL_ADVD3WUC;
5742 wr32(E1000_CTRL, ctrl);
5743
9d5c8243 5744 /* Allow time for pending master requests to run */
330a6d6a 5745 igb_disable_pcie_master(hw);
9d5c8243
AK
5746
5747 wr32(E1000_WUC, E1000_WUC_PME_EN);
5748 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5749 } else {
5750 wr32(E1000_WUC, 0);
5751 wr32(E1000_WUFC, 0);
9d5c8243
AK
5752 }
5753
3fe7c4c9
RW
5754 *enable_wake = wufc || adapter->en_mng_pt;
5755 if (!*enable_wake)
2fb02a26 5756 igb_shutdown_serdes_link_82575(hw);
9d5c8243
AK
5757
5758 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5759 * would have already happened in close and is redundant. */
5760 igb_release_hw_control(adapter);
5761
5762 pci_disable_device(pdev);
5763
9d5c8243
AK
5764 return 0;
5765}
5766
5767#ifdef CONFIG_PM
3fe7c4c9
RW
5768static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5769{
5770 int retval;
5771 bool wake;
5772
5773 retval = __igb_shutdown(pdev, &wake);
5774 if (retval)
5775 return retval;
5776
5777 if (wake) {
5778 pci_prepare_to_sleep(pdev);
5779 } else {
5780 pci_wake_from_d3(pdev, false);
5781 pci_set_power_state(pdev, PCI_D3hot);
5782 }
5783
5784 return 0;
5785}
5786
9d5c8243
AK
5787static int igb_resume(struct pci_dev *pdev)
5788{
5789 struct net_device *netdev = pci_get_drvdata(pdev);
5790 struct igb_adapter *adapter = netdev_priv(netdev);
5791 struct e1000_hw *hw = &adapter->hw;
5792 u32 err;
5793
5794 pci_set_power_state(pdev, PCI_D0);
5795 pci_restore_state(pdev);
42bfd33a 5796
aed5dec3 5797 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5798 if (err) {
5799 dev_err(&pdev->dev,
5800 "igb: Cannot enable PCI device from suspend\n");
5801 return err;
5802 }
5803 pci_set_master(pdev);
5804
5805 pci_enable_wake(pdev, PCI_D3hot, 0);
5806 pci_enable_wake(pdev, PCI_D3cold, 0);
5807
047e0030 5808 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
5809 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5810 return -ENOMEM;
9d5c8243
AK
5811 }
5812
5813 /* e1000_power_up_phy(adapter); */
5814
5815 igb_reset(adapter);
a8564f03
AD
5816
5817 /* let the f/w know that the h/w is now under the control of the
5818 * driver. */
5819 igb_get_hw_control(adapter);
5820
9d5c8243
AK
5821 wr32(E1000_WUS, ~0);
5822
a88f10ec
AD
5823 if (netif_running(netdev)) {
5824 err = igb_open(netdev);
5825 if (err)
5826 return err;
5827 }
9d5c8243
AK
5828
5829 netif_device_attach(netdev);
5830
9d5c8243
AK
5831 return 0;
5832}
5833#endif
5834
5835static void igb_shutdown(struct pci_dev *pdev)
5836{
3fe7c4c9
RW
5837 bool wake;
5838
5839 __igb_shutdown(pdev, &wake);
5840
5841 if (system_state == SYSTEM_POWER_OFF) {
5842 pci_wake_from_d3(pdev, wake);
5843 pci_set_power_state(pdev, PCI_D3hot);
5844 }
9d5c8243
AK
5845}
5846
5847#ifdef CONFIG_NET_POLL_CONTROLLER
5848/*
5849 * Polling 'interrupt' - used by things like netconsole to send skbs
5850 * without having to re-enable interrupts. It's not called while
5851 * the interrupt routine is executing.
5852 */
5853static void igb_netpoll(struct net_device *netdev)
5854{
5855 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5856 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5857 int i;
9d5c8243 5858
eebbbdba 5859 if (!adapter->msix_entries) {
047e0030 5860 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 5861 igb_irq_disable(adapter);
047e0030 5862 napi_schedule(&q_vector->napi);
eebbbdba
AD
5863 return;
5864 }
9d5c8243 5865
047e0030
AD
5866 for (i = 0; i < adapter->num_q_vectors; i++) {
5867 struct igb_q_vector *q_vector = adapter->q_vector[i];
5868 wr32(E1000_EIMC, q_vector->eims_value);
5869 napi_schedule(&q_vector->napi);
eebbbdba 5870 }
9d5c8243
AK
5871}
5872#endif /* CONFIG_NET_POLL_CONTROLLER */
5873
5874/**
5875 * igb_io_error_detected - called when PCI error is detected
5876 * @pdev: Pointer to PCI device
5877 * @state: The current pci connection state
5878 *
5879 * This function is called after a PCI bus error affecting
5880 * this device has been detected.
5881 */
5882static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5883 pci_channel_state_t state)
5884{
5885 struct net_device *netdev = pci_get_drvdata(pdev);
5886 struct igb_adapter *adapter = netdev_priv(netdev);
5887
5888 netif_device_detach(netdev);
5889
59ed6eec
AD
5890 if (state == pci_channel_io_perm_failure)
5891 return PCI_ERS_RESULT_DISCONNECT;
5892
9d5c8243
AK
5893 if (netif_running(netdev))
5894 igb_down(adapter);
5895 pci_disable_device(pdev);
5896
5897 /* Request a slot slot reset. */
5898 return PCI_ERS_RESULT_NEED_RESET;
5899}
5900
5901/**
5902 * igb_io_slot_reset - called after the pci bus has been reset.
5903 * @pdev: Pointer to PCI device
5904 *
5905 * Restart the card from scratch, as if from a cold-boot. Implementation
5906 * resembles the first-half of the igb_resume routine.
5907 */
5908static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5909{
5910 struct net_device *netdev = pci_get_drvdata(pdev);
5911 struct igb_adapter *adapter = netdev_priv(netdev);
5912 struct e1000_hw *hw = &adapter->hw;
40a914fa 5913 pci_ers_result_t result;
42bfd33a 5914 int err;
9d5c8243 5915
aed5dec3 5916 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
5917 dev_err(&pdev->dev,
5918 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
5919 result = PCI_ERS_RESULT_DISCONNECT;
5920 } else {
5921 pci_set_master(pdev);
5922 pci_restore_state(pdev);
9d5c8243 5923
40a914fa
AD
5924 pci_enable_wake(pdev, PCI_D3hot, 0);
5925 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 5926
40a914fa
AD
5927 igb_reset(adapter);
5928 wr32(E1000_WUS, ~0);
5929 result = PCI_ERS_RESULT_RECOVERED;
5930 }
9d5c8243 5931
ea943d41
JK
5932 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5933 if (err) {
5934 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5935 "failed 0x%0x\n", err);
5936 /* non-fatal, continue */
5937 }
40a914fa
AD
5938
5939 return result;
9d5c8243
AK
5940}
5941
5942/**
5943 * igb_io_resume - called when traffic can start flowing again.
5944 * @pdev: Pointer to PCI device
5945 *
5946 * This callback is called when the error recovery driver tells us that
5947 * its OK to resume normal operation. Implementation resembles the
5948 * second-half of the igb_resume routine.
5949 */
5950static void igb_io_resume(struct pci_dev *pdev)
5951{
5952 struct net_device *netdev = pci_get_drvdata(pdev);
5953 struct igb_adapter *adapter = netdev_priv(netdev);
5954
9d5c8243
AK
5955 if (netif_running(netdev)) {
5956 if (igb_up(adapter)) {
5957 dev_err(&pdev->dev, "igb_up failed after reset\n");
5958 return;
5959 }
5960 }
5961
5962 netif_device_attach(netdev);
5963
5964 /* let the f/w know that the h/w is now under the control of the
5965 * driver. */
5966 igb_get_hw_control(adapter);
9d5c8243
AK
5967}
5968
26ad9178
AD
5969static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5970 u8 qsel)
5971{
5972 u32 rar_low, rar_high;
5973 struct e1000_hw *hw = &adapter->hw;
5974
5975 /* HW expects these in little endian so we reverse the byte order
5976 * from network order (big endian) to little endian
5977 */
5978 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5979 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5980 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5981
5982 /* Indicate to hardware the Address is Valid. */
5983 rar_high |= E1000_RAH_AV;
5984
5985 if (hw->mac.type == e1000_82575)
5986 rar_high |= E1000_RAH_POOL_1 * qsel;
5987 else
5988 rar_high |= E1000_RAH_POOL_1 << qsel;
5989
5990 wr32(E1000_RAL(index), rar_low);
5991 wrfl();
5992 wr32(E1000_RAH(index), rar_high);
5993 wrfl();
5994}
5995
4ae196df
AD
5996static int igb_set_vf_mac(struct igb_adapter *adapter,
5997 int vf, unsigned char *mac_addr)
5998{
5999 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6000 /* VF MAC addresses start at end of receive addresses and moves
6001 * torwards the first, as a result a collision should not be possible */
6002 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6003
37680117 6004 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6005
26ad9178 6006 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6007
6008 return 0;
6009}
6010
6011static void igb_vmm_control(struct igb_adapter *adapter)
6012{
6013 struct e1000_hw *hw = &adapter->hw;
10d8e907 6014 u32 reg;
4ae196df 6015
d4960307
AD
6016 /* replication is not supported for 82575 */
6017 if (hw->mac.type == e1000_82575)
4ae196df
AD
6018 return;
6019
10d8e907
AD
6020 /* enable replication vlan tag stripping */
6021 reg = rd32(E1000_RPLOLR);
6022 reg |= E1000_RPLOLR_STRVLAN;
6023 wr32(E1000_RPLOLR, reg);
6024
6025 /* notify HW that the MAC is adding vlan tags */
6026 reg = rd32(E1000_DTXCTL);
6027 reg |= E1000_DTXCTL_VLAN_ADDED;
6028 wr32(E1000_DTXCTL, reg);
6029
d4960307
AD
6030 if (adapter->vfs_allocated_count) {
6031 igb_vmdq_set_loopback_pf(hw, true);
6032 igb_vmdq_set_replication_pf(hw, true);
6033 } else {
6034 igb_vmdq_set_loopback_pf(hw, false);
6035 igb_vmdq_set_replication_pf(hw, false);
6036 }
4ae196df
AD
6037}
6038
9d5c8243 6039/* igb_main.c */