]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_main.c
ixgb: fix link down initial state
[net-next-2.6.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
86d5d38f 52#define DRV_VERSION "1.3.16-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
63static struct pci_device_id igb_pci_tbl[] = {
2d064c06 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
2d064c06
AD
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
c8ea5ea9 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72 /* required last entry */
73 {0, }
74};
75
76MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78void igb_reset(struct igb_adapter *);
79static int igb_setup_all_tx_resources(struct igb_adapter *);
80static int igb_setup_all_rx_resources(struct igb_adapter *);
81static void igb_free_all_tx_resources(struct igb_adapter *);
82static void igb_free_all_rx_resources(struct igb_adapter *);
9d5c8243
AK
83void igb_update_stats(struct igb_adapter *);
84static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85static void __devexit igb_remove(struct pci_dev *pdev);
86static int igb_sw_init(struct igb_adapter *);
87static int igb_open(struct net_device *);
88static int igb_close(struct net_device *);
89static void igb_configure_tx(struct igb_adapter *);
90static void igb_configure_rx(struct igb_adapter *);
91static void igb_setup_rctl(struct igb_adapter *);
92static void igb_clean_all_tx_rings(struct igb_adapter *);
93static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
94static void igb_clean_tx_ring(struct igb_ring *);
95static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
96static void igb_set_multi(struct net_device *);
97static void igb_update_phy_info(unsigned long);
98static void igb_watchdog(unsigned long);
99static void igb_watchdog_task(struct work_struct *);
100static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101 struct igb_ring *);
102static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103static struct net_device_stats *igb_get_stats(struct net_device *);
104static int igb_change_mtu(struct net_device *, int);
105static int igb_set_mac(struct net_device *, void *);
106static irqreturn_t igb_intr(int irq, void *);
107static irqreturn_t igb_intr_msi(int irq, void *);
108static irqreturn_t igb_msix_other(int irq, void *);
109static irqreturn_t igb_msix_rx(int irq, void *);
110static irqreturn_t igb_msix_tx(int irq, void *);
421e02f0 111#ifdef CONFIG_IGB_DCA
fe4506b6
JC
112static void igb_update_rx_dca(struct igb_ring *);
113static void igb_update_tx_dca(struct igb_ring *);
114static void igb_setup_dca(struct igb_adapter *);
421e02f0 115#endif /* CONFIG_IGB_DCA */
3b644cf6 116static bool igb_clean_tx_irq(struct igb_ring *);
661086df 117static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
118static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
9d5c8243
AK
120static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121static void igb_tx_timeout(struct net_device *);
122static void igb_reset_task(struct work_struct *);
123static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124static void igb_vlan_rx_add_vid(struct net_device *, u16);
125static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126static void igb_restore_vlan(struct igb_adapter *);
4ae196df
AD
127static void igb_ping_all_vfs(struct igb_adapter *);
128static void igb_msg_task(struct igb_adapter *);
129static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
e1739522
AD
130static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
131static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
4ae196df 132static void igb_vmm_control(struct igb_adapter *);
e1739522 133static inline void igb_set_vmolr(struct e1000_hw *, int);
4ae196df
AD
134static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
135static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
9d5c8243 137
9d5c8243 138#ifdef CONFIG_PM
3fe7c4c9 139static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
140static int igb_resume(struct pci_dev *);
141#endif
142static void igb_shutdown(struct pci_dev *);
421e02f0 143#ifdef CONFIG_IGB_DCA
fe4506b6
JC
144static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
145static struct notifier_block dca_notifier = {
146 .notifier_call = igb_notify_dca,
147 .next = NULL,
148 .priority = 0
149};
150#endif
9d5c8243
AK
151#ifdef CONFIG_NET_POLL_CONTROLLER
152/* for netdump / net console */
153static void igb_netpoll(struct net_device *);
154#endif
37680117 155#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
156static unsigned int max_vfs = 0;
157module_param(max_vfs, uint, 0);
158MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
159 "per physical function");
160#endif /* CONFIG_PCI_IOV */
161
9d5c8243
AK
162static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
163 pci_channel_state_t);
164static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
165static void igb_io_resume(struct pci_dev *);
166
167static struct pci_error_handlers igb_err_handler = {
168 .error_detected = igb_io_error_detected,
169 .slot_reset = igb_io_slot_reset,
170 .resume = igb_io_resume,
171};
172
173
174static struct pci_driver igb_driver = {
175 .name = igb_driver_name,
176 .id_table = igb_pci_tbl,
177 .probe = igb_probe,
178 .remove = __devexit_p(igb_remove),
179#ifdef CONFIG_PM
180 /* Power Managment Hooks */
181 .suspend = igb_suspend,
182 .resume = igb_resume,
183#endif
184 .shutdown = igb_shutdown,
185 .err_handler = &igb_err_handler
186};
187
7dfc16fa
AD
188static int global_quad_port_a; /* global quad port a indication */
189
9d5c8243
AK
190MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
191MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
192MODULE_LICENSE("GPL");
193MODULE_VERSION(DRV_VERSION);
194
38c845c7
PO
195/**
196 * Scale the NIC clock cycle by a large factor so that
197 * relatively small clock corrections can be added or
198 * substracted at each clock tick. The drawbacks of a
199 * large factor are a) that the clock register overflows
200 * more quickly (not such a big deal) and b) that the
201 * increment per tick has to fit into 24 bits.
202 *
203 * Note that
204 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
205 * IGB_TSYNC_SCALE
206 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
207 *
208 * The base scale factor is intentionally a power of two
209 * so that the division in %struct timecounter can be done with
210 * a shift.
211 */
212#define IGB_TSYNC_SHIFT (19)
213#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
214
215/**
216 * The duration of one clock cycle of the NIC.
217 *
218 * @todo This hard-coded value is part of the specification and might change
219 * in future hardware revisions. Add revision check.
220 */
221#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
222
223#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
224# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
225#endif
226
227/**
228 * igb_read_clock - read raw cycle counter (to be used by time counter)
229 */
230static cycle_t igb_read_clock(const struct cyclecounter *tc)
231{
232 struct igb_adapter *adapter =
233 container_of(tc, struct igb_adapter, cycles);
234 struct e1000_hw *hw = &adapter->hw;
235 u64 stamp;
236
237 stamp = rd32(E1000_SYSTIML);
238 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
239
240 return stamp;
241}
242
9d5c8243
AK
243#ifdef DEBUG
244/**
245 * igb_get_hw_dev_name - return device name string
246 * used by hardware layer to print debugging information
247 **/
248char *igb_get_hw_dev_name(struct e1000_hw *hw)
249{
250 struct igb_adapter *adapter = hw->back;
251 return adapter->netdev->name;
252}
38c845c7
PO
253
254/**
255 * igb_get_time_str - format current NIC and system time as string
256 */
257static char *igb_get_time_str(struct igb_adapter *adapter,
258 char buffer[160])
259{
260 cycle_t hw = adapter->cycles.read(&adapter->cycles);
261 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
262 struct timespec sys;
263 struct timespec delta;
264 getnstimeofday(&sys);
265
266 delta = timespec_sub(nic, sys);
267
268 sprintf(buffer,
33af6bcc
PO
269 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
270 hw,
38c845c7
PO
271 (long)nic.tv_sec, nic.tv_nsec,
272 (long)sys.tv_sec, sys.tv_nsec,
273 (long)delta.tv_sec, delta.tv_nsec);
274
275 return buffer;
276}
9d5c8243
AK
277#endif
278
c493ea45
AD
279/**
280 * igb_desc_unused - calculate if we have unused descriptors
281 **/
282static int igb_desc_unused(struct igb_ring *ring)
283{
284 if (ring->next_to_clean > ring->next_to_use)
285 return ring->next_to_clean - ring->next_to_use - 1;
286
287 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
288}
289
9d5c8243
AK
290/**
291 * igb_init_module - Driver Registration Routine
292 *
293 * igb_init_module is the first routine called when the driver is
294 * loaded. All it does is register with the PCI subsystem.
295 **/
296static int __init igb_init_module(void)
297{
298 int ret;
299 printk(KERN_INFO "%s - version %s\n",
300 igb_driver_string, igb_driver_version);
301
302 printk(KERN_INFO "%s\n", igb_copyright);
303
7dfc16fa
AD
304 global_quad_port_a = 0;
305
421e02f0 306#ifdef CONFIG_IGB_DCA
fe4506b6
JC
307 dca_register_notify(&dca_notifier);
308#endif
bbd98fe4
AD
309
310 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
311 return ret;
312}
313
314module_init(igb_init_module);
315
316/**
317 * igb_exit_module - Driver Exit Cleanup Routine
318 *
319 * igb_exit_module is called just before the driver is removed
320 * from memory.
321 **/
322static void __exit igb_exit_module(void)
323{
421e02f0 324#ifdef CONFIG_IGB_DCA
fe4506b6
JC
325 dca_unregister_notify(&dca_notifier);
326#endif
9d5c8243
AK
327 pci_unregister_driver(&igb_driver);
328}
329
330module_exit(igb_exit_module);
331
26bc19ec
AD
332#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
333/**
334 * igb_cache_ring_register - Descriptor ring to register mapping
335 * @adapter: board private structure to initialize
336 *
337 * Once we know the feature-set enabled for the device, we'll cache
338 * the register offset the descriptor ring is assigned to.
339 **/
340static void igb_cache_ring_register(struct igb_adapter *adapter)
341{
342 int i;
1bfaf07b 343 unsigned int rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
344
345 switch (adapter->hw.mac.type) {
346 case e1000_82576:
347 /* The queues are allocated for virtualization such that VF 0
348 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
349 * In order to avoid collision we start at the first free queue
350 * and continue consuming queues in the same sequence
351 */
352 for (i = 0; i < adapter->num_rx_queues; i++)
1bfaf07b
AD
353 adapter->rx_ring[i].reg_idx = rbase_offset +
354 Q_IDX_82576(i);
26bc19ec 355 for (i = 0; i < adapter->num_tx_queues; i++)
1bfaf07b
AD
356 adapter->tx_ring[i].reg_idx = rbase_offset +
357 Q_IDX_82576(i);
26bc19ec
AD
358 break;
359 case e1000_82575:
360 default:
361 for (i = 0; i < adapter->num_rx_queues; i++)
362 adapter->rx_ring[i].reg_idx = i;
363 for (i = 0; i < adapter->num_tx_queues; i++)
364 adapter->tx_ring[i].reg_idx = i;
365 break;
366 }
367}
368
9d5c8243
AK
369/**
370 * igb_alloc_queues - Allocate memory for all rings
371 * @adapter: board private structure to initialize
372 *
373 * We allocate one ring per queue at run-time since we don't know the
374 * number of queues at compile-time.
375 **/
376static int igb_alloc_queues(struct igb_adapter *adapter)
377{
378 int i;
379
380 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
381 sizeof(struct igb_ring), GFP_KERNEL);
382 if (!adapter->tx_ring)
383 return -ENOMEM;
384
385 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
386 sizeof(struct igb_ring), GFP_KERNEL);
387 if (!adapter->rx_ring) {
388 kfree(adapter->tx_ring);
389 return -ENOMEM;
390 }
391
6eb5a7f1
AD
392 adapter->rx_ring->buddy = adapter->tx_ring;
393
661086df
PWJ
394 for (i = 0; i < adapter->num_tx_queues; i++) {
395 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 396 ring->count = adapter->tx_ring_count;
661086df
PWJ
397 ring->adapter = adapter;
398 ring->queue_index = i;
399 }
9d5c8243
AK
400 for (i = 0; i < adapter->num_rx_queues; i++) {
401 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 402 ring->count = adapter->rx_ring_count;
9d5c8243 403 ring->adapter = adapter;
844290e5 404 ring->queue_index = i;
9d5c8243
AK
405 ring->itr_register = E1000_ITR;
406
844290e5 407 /* set a default napi handler for each rx_ring */
661086df 408 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243 409 }
26bc19ec
AD
410
411 igb_cache_ring_register(adapter);
9d5c8243
AK
412 return 0;
413}
414
a88f10ec
AD
415static void igb_free_queues(struct igb_adapter *adapter)
416{
417 int i;
418
419 for (i = 0; i < adapter->num_rx_queues; i++)
420 netif_napi_del(&adapter->rx_ring[i].napi);
421
d1a8c9e1
AD
422 adapter->num_rx_queues = 0;
423 adapter->num_tx_queues = 0;
424
a88f10ec
AD
425 kfree(adapter->tx_ring);
426 kfree(adapter->rx_ring);
427}
428
9d5c8243
AK
429#define IGB_N0_QUEUE -1
430static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
431 int tx_queue, int msix_vector)
432{
433 u32 msixbm = 0;
434 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
435 u32 ivar, index;
436
437 switch (hw->mac.type) {
438 case e1000_82575:
9d5c8243
AK
439 /* The 82575 assigns vectors using a bitmask, which matches the
440 bitmask for the EICR/EIMS/EIMC registers. To assign one
441 or more queues to a vector, we write the appropriate bits
442 into the MSIXBM register for that vector. */
443 if (rx_queue > IGB_N0_QUEUE) {
444 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
445 adapter->rx_ring[rx_queue].eims_value = msixbm;
446 }
447 if (tx_queue > IGB_N0_QUEUE) {
448 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
449 adapter->tx_ring[tx_queue].eims_value =
450 E1000_EICR_TX_QUEUE0 << tx_queue;
451 }
452 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
2d064c06
AD
453 break;
454 case e1000_82576:
26bc19ec 455 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
456 Each queue has a single entry in the table to which we write
457 a vector number along with a "valid" bit. Sadly, the layout
458 of the table is somewhat counterintuitive. */
459 if (rx_queue > IGB_N0_QUEUE) {
1bfaf07b 460 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 461 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 462 if (rx_queue & 0x1) {
2d064c06
AD
463 /* vector goes into third byte of register */
464 ivar = ivar & 0xFF00FFFF;
465 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
26bc19ec
AD
466 } else {
467 /* vector goes into low byte of register */
468 ivar = ivar & 0xFFFFFF00;
469 ivar |= msix_vector | E1000_IVAR_VALID;
2d064c06
AD
470 }
471 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
472 array_wr32(E1000_IVAR0, index, ivar);
473 }
474 if (tx_queue > IGB_N0_QUEUE) {
1bfaf07b 475 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 476 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 477 if (tx_queue & 0x1) {
2d064c06
AD
478 /* vector goes into high byte of register */
479 ivar = ivar & 0x00FFFFFF;
480 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
26bc19ec
AD
481 } else {
482 /* vector goes into second byte of register */
483 ivar = ivar & 0xFFFF00FF;
484 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
2d064c06
AD
485 }
486 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
487 array_wr32(E1000_IVAR0, index, ivar);
488 }
489 break;
490 default:
491 BUG();
492 break;
493 }
9d5c8243
AK
494}
495
496/**
497 * igb_configure_msix - Configure MSI-X hardware
498 *
499 * igb_configure_msix sets up the hardware to properly
500 * generate MSI-X interrupts.
501 **/
502static void igb_configure_msix(struct igb_adapter *adapter)
503{
504 u32 tmp;
505 int i, vector = 0;
506 struct e1000_hw *hw = &adapter->hw;
507
508 adapter->eims_enable_mask = 0;
2d064c06
AD
509 if (hw->mac.type == e1000_82576)
510 /* Turn on MSI-X capability first, or our settings
511 * won't stick. And it will take days to debug. */
512 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
eebbbdba 513 E1000_GPIE_PBA | E1000_GPIE_EIAME |
2d064c06 514 E1000_GPIE_NSICR);
9d5c8243
AK
515
516 for (i = 0; i < adapter->num_tx_queues; i++) {
517 struct igb_ring *tx_ring = &adapter->tx_ring[i];
518 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
519 adapter->eims_enable_mask |= tx_ring->eims_value;
520 if (tx_ring->itr_val)
6eb5a7f1 521 writel(tx_ring->itr_val,
9d5c8243
AK
522 hw->hw_addr + tx_ring->itr_register);
523 else
524 writel(1, hw->hw_addr + tx_ring->itr_register);
525 }
526
527 for (i = 0; i < adapter->num_rx_queues; i++) {
528 struct igb_ring *rx_ring = &adapter->rx_ring[i];
25ac3c24 529 rx_ring->buddy = NULL;
9d5c8243
AK
530 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
531 adapter->eims_enable_mask |= rx_ring->eims_value;
532 if (rx_ring->itr_val)
6eb5a7f1 533 writel(rx_ring->itr_val,
9d5c8243
AK
534 hw->hw_addr + rx_ring->itr_register);
535 else
536 writel(1, hw->hw_addr + rx_ring->itr_register);
537 }
538
539
540 /* set vector for other causes, i.e. link changes */
2d064c06
AD
541 switch (hw->mac.type) {
542 case e1000_82575:
9d5c8243
AK
543 array_wr32(E1000_MSIXBM(0), vector++,
544 E1000_EIMS_OTHER);
545
9d5c8243
AK
546 tmp = rd32(E1000_CTRL_EXT);
547 /* enable MSI-X PBA support*/
548 tmp |= E1000_CTRL_EXT_PBA_CLR;
549
550 /* Auto-Mask interrupts upon ICR read. */
551 tmp |= E1000_CTRL_EXT_EIAME;
552 tmp |= E1000_CTRL_EXT_IRCA;
553
554 wr32(E1000_CTRL_EXT, tmp);
555 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 556 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 557
2d064c06
AD
558 break;
559
560 case e1000_82576:
561 tmp = (vector++ | E1000_IVAR_VALID) << 8;
562 wr32(E1000_IVAR_MISC, tmp);
563
564 adapter->eims_enable_mask = (1 << (vector)) - 1;
565 adapter->eims_other = 1 << (vector - 1);
566 break;
567 default:
568 /* do nothing, since nothing else supports MSI-X */
569 break;
570 } /* switch (hw->mac.type) */
9d5c8243
AK
571 wrfl();
572}
573
574/**
575 * igb_request_msix - Initialize MSI-X interrupts
576 *
577 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
578 * kernel.
579 **/
580static int igb_request_msix(struct igb_adapter *adapter)
581{
582 struct net_device *netdev = adapter->netdev;
583 int i, err = 0, vector = 0;
584
585 vector = 0;
586
587 for (i = 0; i < adapter->num_tx_queues; i++) {
588 struct igb_ring *ring = &(adapter->tx_ring[i]);
cb7b48f6 589 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
9d5c8243
AK
590 err = request_irq(adapter->msix_entries[vector].vector,
591 &igb_msix_tx, 0, ring->name,
592 &(adapter->tx_ring[i]));
593 if (err)
594 goto out;
595 ring->itr_register = E1000_EITR(0) + (vector << 2);
6eb5a7f1 596 ring->itr_val = 976; /* ~4000 ints/sec */
9d5c8243
AK
597 vector++;
598 }
599 for (i = 0; i < adapter->num_rx_queues; i++) {
600 struct igb_ring *ring = &(adapter->rx_ring[i]);
601 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 602 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
9d5c8243
AK
603 else
604 memcpy(ring->name, netdev->name, IFNAMSIZ);
605 err = request_irq(adapter->msix_entries[vector].vector,
606 &igb_msix_rx, 0, ring->name,
607 &(adapter->rx_ring[i]));
608 if (err)
609 goto out;
610 ring->itr_register = E1000_EITR(0) + (vector << 2);
611 ring->itr_val = adapter->itr;
612 vector++;
613 }
614
615 err = request_irq(adapter->msix_entries[vector].vector,
616 &igb_msix_other, 0, netdev->name, netdev);
617 if (err)
618 goto out;
619
9d5c8243
AK
620 igb_configure_msix(adapter);
621 return 0;
622out:
623 return err;
624}
625
626static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
627{
628 if (adapter->msix_entries) {
629 pci_disable_msix(adapter->pdev);
630 kfree(adapter->msix_entries);
631 adapter->msix_entries = NULL;
7dfc16fa 632 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
9d5c8243
AK
633 pci_disable_msi(adapter->pdev);
634 return;
635}
636
637
638/**
639 * igb_set_interrupt_capability - set MSI or MSI-X if supported
640 *
641 * Attempt to configure interrupts using the best available
642 * capabilities of the hardware and kernel.
643 **/
644static void igb_set_interrupt_capability(struct igb_adapter *adapter)
645{
646 int err;
647 int numvecs, i;
648
83b7180d
AD
649 /* Number of supported queues. */
650 /* Having more queues than CPUs doesn't make sense. */
651 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
652 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
653
9d5c8243
AK
654 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
655 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
656 GFP_KERNEL);
657 if (!adapter->msix_entries)
658 goto msi_only;
659
660 for (i = 0; i < numvecs; i++)
661 adapter->msix_entries[i].entry = i;
662
663 err = pci_enable_msix(adapter->pdev,
664 adapter->msix_entries,
665 numvecs);
666 if (err == 0)
34a20e89 667 goto out;
9d5c8243
AK
668
669 igb_reset_interrupt_capability(adapter);
670
671 /* If we can't do MSI-X, try MSI */
672msi_only:
2a3abf6d
AD
673#ifdef CONFIG_PCI_IOV
674 /* disable SR-IOV for non MSI-X configurations */
675 if (adapter->vf_data) {
676 struct e1000_hw *hw = &adapter->hw;
677 /* disable iov and allow time for transactions to clear */
678 pci_disable_sriov(adapter->pdev);
679 msleep(500);
680
681 kfree(adapter->vf_data);
682 adapter->vf_data = NULL;
683 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
684 msleep(100);
685 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
686 }
687#endif
9d5c8243 688 adapter->num_rx_queues = 1;
661086df 689 adapter->num_tx_queues = 1;
9d5c8243 690 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 691 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 692out:
661086df 693 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 694 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
695 return;
696}
697
698/**
699 * igb_request_irq - initialize interrupts
700 *
701 * Attempts to configure interrupts using the best available
702 * capabilities of the hardware and kernel.
703 **/
704static int igb_request_irq(struct igb_adapter *adapter)
705{
706 struct net_device *netdev = adapter->netdev;
707 struct e1000_hw *hw = &adapter->hw;
708 int err = 0;
709
710 if (adapter->msix_entries) {
711 err = igb_request_msix(adapter);
844290e5 712 if (!err)
9d5c8243 713 goto request_done;
9d5c8243
AK
714 /* fall back to MSI */
715 igb_reset_interrupt_capability(adapter);
716 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 717 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
718 igb_free_all_tx_resources(adapter);
719 igb_free_all_rx_resources(adapter);
720 adapter->num_rx_queues = 1;
721 igb_alloc_queues(adapter);
844290e5 722 } else {
2d064c06
AD
723 switch (hw->mac.type) {
724 case e1000_82575:
725 wr32(E1000_MSIXBM(0),
726 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
727 break;
728 case e1000_82576:
729 wr32(E1000_IVAR0, E1000_IVAR_VALID);
730 break;
731 default:
732 break;
733 }
9d5c8243 734 }
844290e5 735
7dfc16fa 736 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
737 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
738 netdev->name, netdev);
739 if (!err)
740 goto request_done;
741 /* fall back to legacy interrupts */
742 igb_reset_interrupt_capability(adapter);
7dfc16fa 743 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
744 }
745
746 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
747 netdev->name, netdev);
748
6cb5e577 749 if (err)
9d5c8243
AK
750 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
751 err);
9d5c8243
AK
752
753request_done:
754 return err;
755}
756
757static void igb_free_irq(struct igb_adapter *adapter)
758{
759 struct net_device *netdev = adapter->netdev;
760
761 if (adapter->msix_entries) {
762 int vector = 0, i;
763
764 for (i = 0; i < adapter->num_tx_queues; i++)
765 free_irq(adapter->msix_entries[vector++].vector,
766 &(adapter->tx_ring[i]));
767 for (i = 0; i < adapter->num_rx_queues; i++)
768 free_irq(adapter->msix_entries[vector++].vector,
769 &(adapter->rx_ring[i]));
770
771 free_irq(adapter->msix_entries[vector++].vector, netdev);
772 return;
773 }
774
775 free_irq(adapter->pdev->irq, netdev);
776}
777
778/**
779 * igb_irq_disable - Mask off interrupt generation on the NIC
780 * @adapter: board private structure
781 **/
782static void igb_irq_disable(struct igb_adapter *adapter)
783{
784 struct e1000_hw *hw = &adapter->hw;
785
786 if (adapter->msix_entries) {
844290e5 787 wr32(E1000_EIAM, 0);
9d5c8243
AK
788 wr32(E1000_EIMC, ~0);
789 wr32(E1000_EIAC, 0);
790 }
844290e5
PW
791
792 wr32(E1000_IAM, 0);
9d5c8243
AK
793 wr32(E1000_IMC, ~0);
794 wrfl();
795 synchronize_irq(adapter->pdev->irq);
796}
797
798/**
799 * igb_irq_enable - Enable default interrupt generation settings
800 * @adapter: board private structure
801 **/
802static void igb_irq_enable(struct igb_adapter *adapter)
803{
804 struct e1000_hw *hw = &adapter->hw;
805
806 if (adapter->msix_entries) {
844290e5
PW
807 wr32(E1000_EIAC, adapter->eims_enable_mask);
808 wr32(E1000_EIAM, adapter->eims_enable_mask);
809 wr32(E1000_EIMS, adapter->eims_enable_mask);
4ae196df
AD
810 if (adapter->vfs_allocated_count)
811 wr32(E1000_MBVFIMR, 0xFF);
812 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
813 E1000_IMS_DOUTSYNC));
844290e5
PW
814 } else {
815 wr32(E1000_IMS, IMS_ENABLE_MASK);
816 wr32(E1000_IAM, IMS_ENABLE_MASK);
817 }
9d5c8243
AK
818}
819
820static void igb_update_mng_vlan(struct igb_adapter *adapter)
821{
822 struct net_device *netdev = adapter->netdev;
823 u16 vid = adapter->hw.mng_cookie.vlan_id;
824 u16 old_vid = adapter->mng_vlan_id;
825 if (adapter->vlgrp) {
826 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
827 if (adapter->hw.mng_cookie.status &
828 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
829 igb_vlan_rx_add_vid(netdev, vid);
830 adapter->mng_vlan_id = vid;
831 } else
832 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
833
834 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
835 (vid != old_vid) &&
836 !vlan_group_get_device(adapter->vlgrp, old_vid))
837 igb_vlan_rx_kill_vid(netdev, old_vid);
838 } else
839 adapter->mng_vlan_id = vid;
840 }
841}
842
843/**
844 * igb_release_hw_control - release control of the h/w to f/w
845 * @adapter: address of board private structure
846 *
847 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
848 * For ASF and Pass Through versions of f/w this means that the
849 * driver is no longer loaded.
850 *
851 **/
852static void igb_release_hw_control(struct igb_adapter *adapter)
853{
854 struct e1000_hw *hw = &adapter->hw;
855 u32 ctrl_ext;
856
857 /* Let firmware take over control of h/w */
858 ctrl_ext = rd32(E1000_CTRL_EXT);
859 wr32(E1000_CTRL_EXT,
860 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
861}
862
863
864/**
865 * igb_get_hw_control - get control of the h/w from f/w
866 * @adapter: address of board private structure
867 *
868 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
869 * For ASF and Pass Through versions of f/w this means that
870 * the driver is loaded.
871 *
872 **/
873static void igb_get_hw_control(struct igb_adapter *adapter)
874{
875 struct e1000_hw *hw = &adapter->hw;
876 u32 ctrl_ext;
877
878 /* Let firmware know the driver has taken over */
879 ctrl_ext = rd32(E1000_CTRL_EXT);
880 wr32(E1000_CTRL_EXT,
881 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
882}
883
9d5c8243
AK
884/**
885 * igb_configure - configure the hardware for RX and TX
886 * @adapter: private board structure
887 **/
888static void igb_configure(struct igb_adapter *adapter)
889{
890 struct net_device *netdev = adapter->netdev;
891 int i;
892
893 igb_get_hw_control(adapter);
894 igb_set_multi(netdev);
895
896 igb_restore_vlan(adapter);
9d5c8243
AK
897
898 igb_configure_tx(adapter);
899 igb_setup_rctl(adapter);
900 igb_configure_rx(adapter);
662d7205
AD
901
902 igb_rx_fifo_flush_82575(&adapter->hw);
903
c493ea45 904 /* call igb_desc_unused which always leaves
9d5c8243
AK
905 * at least 1 descriptor unused to make sure
906 * next_to_use != next_to_clean */
907 for (i = 0; i < adapter->num_rx_queues; i++) {
908 struct igb_ring *ring = &adapter->rx_ring[i];
c493ea45 909 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243
AK
910 }
911
912
913 adapter->tx_queue_len = netdev->tx_queue_len;
914}
915
916
917/**
918 * igb_up - Open the interface and prepare it to handle traffic
919 * @adapter: board private structure
920 **/
921
922int igb_up(struct igb_adapter *adapter)
923{
924 struct e1000_hw *hw = &adapter->hw;
925 int i;
926
927 /* hardware has been reset, we need to reload some things */
928 igb_configure(adapter);
929
930 clear_bit(__IGB_DOWN, &adapter->state);
931
844290e5
PW
932 for (i = 0; i < adapter->num_rx_queues; i++)
933 napi_enable(&adapter->rx_ring[i].napi);
934 if (adapter->msix_entries)
9d5c8243 935 igb_configure_msix(adapter);
9d5c8243 936
4ae196df 937 igb_vmm_control(adapter);
e1739522
AD
938 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
939 igb_set_vmolr(hw, adapter->vfs_allocated_count);
940
9d5c8243
AK
941 /* Clear any pending interrupts. */
942 rd32(E1000_ICR);
943 igb_irq_enable(adapter);
944
945 /* Fire a link change interrupt to start the watchdog. */
946 wr32(E1000_ICS, E1000_ICS_LSC);
947 return 0;
948}
949
950void igb_down(struct igb_adapter *adapter)
951{
952 struct e1000_hw *hw = &adapter->hw;
953 struct net_device *netdev = adapter->netdev;
954 u32 tctl, rctl;
955 int i;
956
957 /* signal that we're down so the interrupt handler does not
958 * reschedule our watchdog timer */
959 set_bit(__IGB_DOWN, &adapter->state);
960
961 /* disable receives in the hardware */
962 rctl = rd32(E1000_RCTL);
963 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
964 /* flush and sleep below */
965
fd2ea0a7 966 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
967
968 /* disable transmits in the hardware */
969 tctl = rd32(E1000_TCTL);
970 tctl &= ~E1000_TCTL_EN;
971 wr32(E1000_TCTL, tctl);
972 /* flush both disables and wait for them to finish */
973 wrfl();
974 msleep(10);
975
844290e5
PW
976 for (i = 0; i < adapter->num_rx_queues; i++)
977 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 978
9d5c8243
AK
979 igb_irq_disable(adapter);
980
981 del_timer_sync(&adapter->watchdog_timer);
982 del_timer_sync(&adapter->phy_info_timer);
983
984 netdev->tx_queue_len = adapter->tx_queue_len;
985 netif_carrier_off(netdev);
04fe6358
AD
986
987 /* record the stats before reset*/
988 igb_update_stats(adapter);
989
9d5c8243
AK
990 adapter->link_speed = 0;
991 adapter->link_duplex = 0;
992
3023682e
JK
993 if (!pci_channel_offline(adapter->pdev))
994 igb_reset(adapter);
9d5c8243
AK
995 igb_clean_all_tx_rings(adapter);
996 igb_clean_all_rx_rings(adapter);
997}
998
999void igb_reinit_locked(struct igb_adapter *adapter)
1000{
1001 WARN_ON(in_interrupt());
1002 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1003 msleep(1);
1004 igb_down(adapter);
1005 igb_up(adapter);
1006 clear_bit(__IGB_RESETTING, &adapter->state);
1007}
1008
1009void igb_reset(struct igb_adapter *adapter)
1010{
1011 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1012 struct e1000_mac_info *mac = &hw->mac;
1013 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1014 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1015 u16 hwm;
1016
1017 /* Repartition Pba for greater than 9k mtu
1018 * To take effect CTRL.RST is required.
1019 */
fa4dfae0
AD
1020 switch (mac->type) {
1021 case e1000_82576:
2d064c06 1022 pba = E1000_PBA_64K;
fa4dfae0
AD
1023 break;
1024 case e1000_82575:
1025 default:
1026 pba = E1000_PBA_34K;
1027 break;
2d064c06 1028 }
9d5c8243 1029
2d064c06
AD
1030 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1031 (mac->type < e1000_82576)) {
9d5c8243
AK
1032 /* adjust PBA for jumbo frames */
1033 wr32(E1000_PBA, pba);
1034
1035 /* To maintain wire speed transmits, the Tx FIFO should be
1036 * large enough to accommodate two full transmit packets,
1037 * rounded up to the next 1KB and expressed in KB. Likewise,
1038 * the Rx FIFO should be large enough to accommodate at least
1039 * one full receive packet and is similarly rounded up and
1040 * expressed in KB. */
1041 pba = rd32(E1000_PBA);
1042 /* upper 16 bits has Tx packet buffer allocation size in KB */
1043 tx_space = pba >> 16;
1044 /* lower 16 bits has Rx packet buffer allocation size in KB */
1045 pba &= 0xffff;
1046 /* the tx fifo also stores 16 bytes of information about the tx
1047 * but don't include ethernet FCS because hardware appends it */
1048 min_tx_space = (adapter->max_frame_size +
85e8d004 1049 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1050 ETH_FCS_LEN) * 2;
1051 min_tx_space = ALIGN(min_tx_space, 1024);
1052 min_tx_space >>= 10;
1053 /* software strips receive CRC, so leave room for it */
1054 min_rx_space = adapter->max_frame_size;
1055 min_rx_space = ALIGN(min_rx_space, 1024);
1056 min_rx_space >>= 10;
1057
1058 /* If current Tx allocation is less than the min Tx FIFO size,
1059 * and the min Tx FIFO size is less than the current Rx FIFO
1060 * allocation, take space away from current Rx allocation */
1061 if (tx_space < min_tx_space &&
1062 ((min_tx_space - tx_space) < pba)) {
1063 pba = pba - (min_tx_space - tx_space);
1064
1065 /* if short on rx space, rx wins and must trump tx
1066 * adjustment */
1067 if (pba < min_rx_space)
1068 pba = min_rx_space;
1069 }
2d064c06 1070 wr32(E1000_PBA, pba);
9d5c8243 1071 }
9d5c8243
AK
1072
1073 /* flow control settings */
1074 /* The high water mark must be low enough to fit one full frame
1075 * (or the size used for early receive) above it in the Rx FIFO.
1076 * Set it to the lower of:
1077 * - 90% of the Rx FIFO size, or
1078 * - the full Rx FIFO size minus one full frame */
1079 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1080 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1081
2d064c06
AD
1082 if (mac->type < e1000_82576) {
1083 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1084 fc->low_water = fc->high_water - 8;
1085 } else {
1086 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1087 fc->low_water = fc->high_water - 16;
1088 }
9d5c8243
AK
1089 fc->pause_time = 0xFFFF;
1090 fc->send_xon = 1;
1091 fc->type = fc->original_type;
1092
4ae196df
AD
1093 /* disable receive for all VFs and wait one second */
1094 if (adapter->vfs_allocated_count) {
1095 int i;
1096 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1097 adapter->vf_data[i].clear_to_send = false;
1098
1099 /* ping all the active vfs to let them know we are going down */
1100 igb_ping_all_vfs(adapter);
1101
1102 /* disable transmits and receives */
1103 wr32(E1000_VFRE, 0);
1104 wr32(E1000_VFTE, 0);
1105 }
1106
9d5c8243
AK
1107 /* Allow time for pending master requests to run */
1108 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1109 wr32(E1000_WUC, 0);
1110
1111 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1112 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1113
1114 igb_update_mng_vlan(adapter);
1115
1116 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1117 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1118
1119 igb_reset_adaptive(&adapter->hw);
f5f4cf08 1120 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
1121}
1122
2e5c6922
SH
1123static const struct net_device_ops igb_netdev_ops = {
1124 .ndo_open = igb_open,
1125 .ndo_stop = igb_close,
00829823 1126 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922
SH
1127 .ndo_get_stats = igb_get_stats,
1128 .ndo_set_multicast_list = igb_set_multi,
1129 .ndo_set_mac_address = igb_set_mac,
1130 .ndo_change_mtu = igb_change_mtu,
1131 .ndo_do_ioctl = igb_ioctl,
1132 .ndo_tx_timeout = igb_tx_timeout,
1133 .ndo_validate_addr = eth_validate_addr,
1134 .ndo_vlan_rx_register = igb_vlan_rx_register,
1135 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1136 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1137#ifdef CONFIG_NET_POLL_CONTROLLER
1138 .ndo_poll_controller = igb_netpoll,
1139#endif
1140};
1141
9d5c8243
AK
1142/**
1143 * igb_probe - Device Initialization Routine
1144 * @pdev: PCI device information struct
1145 * @ent: entry in igb_pci_tbl
1146 *
1147 * Returns 0 on success, negative on failure
1148 *
1149 * igb_probe initializes an adapter identified by a pci_dev structure.
1150 * The OS initialization, configuring of the adapter private structure,
1151 * and a hardware reset occur.
1152 **/
1153static int __devinit igb_probe(struct pci_dev *pdev,
1154 const struct pci_device_id *ent)
1155{
1156 struct net_device *netdev;
1157 struct igb_adapter *adapter;
1158 struct e1000_hw *hw;
1159 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1160 unsigned long mmio_start, mmio_len;
2d6a5e95 1161 int err, pci_using_dac;
682337fe 1162 u16 eeprom_data = 0;
9d5c8243
AK
1163 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1164 u32 part_num;
1165
aed5dec3 1166 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1167 if (err)
1168 return err;
1169
1170 pci_using_dac = 0;
6a35528a 1171 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243 1172 if (!err) {
6a35528a 1173 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243
AK
1174 if (!err)
1175 pci_using_dac = 1;
1176 } else {
284901a9 1177 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243 1178 if (err) {
284901a9 1179 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243
AK
1180 if (err) {
1181 dev_err(&pdev->dev, "No usable DMA "
1182 "configuration, aborting\n");
1183 goto err_dma;
1184 }
1185 }
1186 }
1187
aed5dec3
AD
1188 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1189 IORESOURCE_MEM),
1190 igb_driver_name);
9d5c8243
AK
1191 if (err)
1192 goto err_pci_reg;
1193
ea943d41
JK
1194 err = pci_enable_pcie_error_reporting(pdev);
1195 if (err) {
1196 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1197 "0x%x\n", err);
1198 /* non-fatal, continue */
1199 }
40a914fa 1200
9d5c8243 1201 pci_set_master(pdev);
c682fc23 1202 pci_save_state(pdev);
9d5c8243
AK
1203
1204 err = -ENOMEM;
1bfaf07b
AD
1205 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1206 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1207 if (!netdev)
1208 goto err_alloc_etherdev;
1209
1210 SET_NETDEV_DEV(netdev, &pdev->dev);
1211
1212 pci_set_drvdata(pdev, netdev);
1213 adapter = netdev_priv(netdev);
1214 adapter->netdev = netdev;
1215 adapter->pdev = pdev;
1216 hw = &adapter->hw;
1217 hw->back = adapter;
1218 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1219
1220 mmio_start = pci_resource_start(pdev, 0);
1221 mmio_len = pci_resource_len(pdev, 0);
1222
1223 err = -EIO;
28b0759c
AD
1224 hw->hw_addr = ioremap(mmio_start, mmio_len);
1225 if (!hw->hw_addr)
9d5c8243
AK
1226 goto err_ioremap;
1227
2e5c6922 1228 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1229 igb_set_ethtool_ops(netdev);
9d5c8243 1230 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1231
1232 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1233
1234 netdev->mem_start = mmio_start;
1235 netdev->mem_end = mmio_start + mmio_len;
1236
9d5c8243
AK
1237 /* PCI config space info */
1238 hw->vendor_id = pdev->vendor;
1239 hw->device_id = pdev->device;
1240 hw->revision_id = pdev->revision;
1241 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1242 hw->subsystem_device_id = pdev->subsystem_device;
1243
1244 /* setup the private structure */
1245 hw->back = adapter;
1246 /* Copy the default MAC, PHY and NVM function pointers */
1247 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1248 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1249 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1250 /* Initialize skew-specific constants */
1251 err = ei->get_invariants(hw);
1252 if (err)
450c87c8 1253 goto err_sw_init;
9d5c8243 1254
2a3abf6d
AD
1255#ifdef CONFIG_PCI_IOV
1256 /* since iov functionality isn't critical to base device function we
1257 * can accept failure. If it fails we don't allow iov to be enabled */
1258 if (hw->mac.type == e1000_82576) {
1259 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1260 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1261 int i;
1262 unsigned char mac_addr[ETH_ALEN];
1263
9ca046d5 1264 if (num_vfs) {
2a3abf6d
AD
1265 adapter->vf_data = kcalloc(num_vfs,
1266 sizeof(struct vf_data_storage),
1267 GFP_KERNEL);
9ca046d5
AD
1268 if (!adapter->vf_data) {
1269 dev_err(&pdev->dev,
1270 "Could not allocate VF private data - "
1271 "IOV enable failed\n");
2a3abf6d 1272 } else {
9ca046d5
AD
1273 err = pci_enable_sriov(pdev, num_vfs);
1274 if (!err) {
1275 adapter->vfs_allocated_count = num_vfs;
1276 dev_info(&pdev->dev,
1277 "%d vfs allocated\n",
1278 num_vfs);
1279 for (i = 0;
1280 i < adapter->vfs_allocated_count;
1281 i++) {
1282 random_ether_addr(mac_addr);
1283 igb_set_vf_mac(adapter, i,
1284 mac_addr);
1285 }
1286 } else {
1287 kfree(adapter->vf_data);
1288 adapter->vf_data = NULL;
1289 }
2a3abf6d
AD
1290 }
1291 }
1292 }
1293
1294#endif
450c87c8 1295 /* setup the private structure */
9d5c8243
AK
1296 err = igb_sw_init(adapter);
1297 if (err)
1298 goto err_sw_init;
1299
1300 igb_get_bus_info_pcie(hw);
1301
7dfc16fa
AD
1302 /* set flags */
1303 switch (hw->mac.type) {
7dfc16fa 1304 case e1000_82575:
7dfc16fa
AD
1305 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1306 break;
bbd98fe4 1307 case e1000_82576:
7dfc16fa
AD
1308 default:
1309 break;
1310 }
1311
9d5c8243
AK
1312 hw->phy.autoneg_wait_to_complete = false;
1313 hw->mac.adaptive_ifs = true;
1314
1315 /* Copper options */
1316 if (hw->phy.media_type == e1000_media_type_copper) {
1317 hw->phy.mdix = AUTO_ALL_MODES;
1318 hw->phy.disable_polarity_correction = false;
1319 hw->phy.ms_type = e1000_ms_hw_default;
1320 }
1321
1322 if (igb_check_reset_block(hw))
1323 dev_info(&pdev->dev,
1324 "PHY reset is blocked due to SOL/IDER session.\n");
1325
1326 netdev->features = NETIF_F_SG |
7d8eb29e 1327 NETIF_F_IP_CSUM |
9d5c8243
AK
1328 NETIF_F_HW_VLAN_TX |
1329 NETIF_F_HW_VLAN_RX |
1330 NETIF_F_HW_VLAN_FILTER;
1331
7d8eb29e 1332 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1333 netdev->features |= NETIF_F_TSO;
9d5c8243 1334 netdev->features |= NETIF_F_TSO6;
48f29ffc 1335
5c0999b7 1336 netdev->features |= NETIF_F_GRO;
d3352520 1337
48f29ffc
JK
1338 netdev->vlan_features |= NETIF_F_TSO;
1339 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1340 netdev->vlan_features |= NETIF_F_IP_CSUM;
48f29ffc
JK
1341 netdev->vlan_features |= NETIF_F_SG;
1342
9d5c8243
AK
1343 if (pci_using_dac)
1344 netdev->features |= NETIF_F_HIGHDMA;
1345
9d5c8243
AK
1346 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1347
1348 /* before reading the NVM, reset the controller to put the device in a
1349 * known good starting state */
1350 hw->mac.ops.reset_hw(hw);
1351
1352 /* make sure the NVM is good */
1353 if (igb_validate_nvm_checksum(hw) < 0) {
1354 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1355 err = -EIO;
1356 goto err_eeprom;
1357 }
1358
1359 /* copy the MAC address out of the NVM */
1360 if (hw->mac.ops.read_mac_addr(hw))
1361 dev_err(&pdev->dev, "NVM Read Error\n");
1362
1363 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1364 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1365
1366 if (!is_valid_ether_addr(netdev->perm_addr)) {
1367 dev_err(&pdev->dev, "Invalid MAC Address\n");
1368 err = -EIO;
1369 goto err_eeprom;
1370 }
1371
0e340485
AD
1372 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1373 (unsigned long) adapter);
1374 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1375 (unsigned long) adapter);
9d5c8243
AK
1376
1377 INIT_WORK(&adapter->reset_task, igb_reset_task);
1378 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1379
450c87c8 1380 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1381 adapter->fc_autoneg = true;
1382 hw->mac.autoneg = true;
1383 hw->phy.autoneg_advertised = 0x2f;
1384
1385 hw->fc.original_type = e1000_fc_default;
1386 hw->fc.type = e1000_fc_default;
1387
cbd347ad 1388 adapter->itr_setting = IGB_DEFAULT_ITR;
9d5c8243
AK
1389 adapter->itr = IGB_START_ITR;
1390
1391 igb_validate_mdi_setting(hw);
1392
1393 adapter->rx_csum = 1;
1394
1395 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1396 * enable the ACPI Magic Packet filter
1397 */
1398
a2cf8b6c 1399 if (hw->bus.func == 0)
312c75ae 1400 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
a2cf8b6c
AD
1401 else if (hw->bus.func == 1)
1402 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1403
1404 if (eeprom_data & eeprom_apme_mask)
1405 adapter->eeprom_wol |= E1000_WUFC_MAG;
1406
1407 /* now that we have the eeprom settings, apply the special cases where
1408 * the eeprom may be wrong or the board simply won't support wake on
1409 * lan on a particular port */
1410 switch (pdev->device) {
1411 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1412 adapter->eeprom_wol = 0;
1413 break;
1414 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1415 case E1000_DEV_ID_82576_FIBER:
1416 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1417 /* Wake events only supported on port A for dual fiber
1418 * regardless of eeprom setting */
1419 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1420 adapter->eeprom_wol = 0;
1421 break;
c8ea5ea9
AD
1422 case E1000_DEV_ID_82576_QUAD_COPPER:
1423 /* if quad port adapter, disable WoL on all but port A */
1424 if (global_quad_port_a != 0)
1425 adapter->eeprom_wol = 0;
1426 else
1427 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1428 /* Reset for multiple quad port adapters */
1429 if (++global_quad_port_a == 4)
1430 global_quad_port_a = 0;
1431 break;
9d5c8243
AK
1432 }
1433
1434 /* initialize the wol settings based on the eeprom settings */
1435 adapter->wol = adapter->eeprom_wol;
e1b86d84 1436 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1437
1438 /* reset the hardware with the new settings */
1439 igb_reset(adapter);
1440
1441 /* let the f/w know that the h/w is now under the control of the
1442 * driver. */
1443 igb_get_hw_control(adapter);
1444
1445 /* tell the stack to leave us alone until igb_open() is called */
1446 netif_carrier_off(netdev);
fd2ea0a7 1447 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1448
1449 strcpy(netdev->name, "eth%d");
1450 err = register_netdev(netdev);
1451 if (err)
1452 goto err_register;
1453
421e02f0 1454#ifdef CONFIG_IGB_DCA
bbd98fe4 1455 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1456 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
1457 dev_info(&pdev->dev, "DCA enabled\n");
1458 /* Always use CB2 mode, difference is masked
1459 * in the CB driver. */
cbd347ad 1460 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6
JC
1461 igb_setup_dca(adapter);
1462 }
1463#endif
1464
38c845c7
PO
1465 /*
1466 * Initialize hardware timer: we keep it running just in case
1467 * that some program needs it later on.
1468 */
1469 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1470 adapter->cycles.read = igb_read_clock;
1471 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1472 adapter->cycles.mult = 1;
1473 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1474 wr32(E1000_TIMINCA,
1475 (1<<24) |
1476 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1477#if 0
1478 /*
1479 * Avoid rollover while we initialize by resetting the time counter.
1480 */
1481 wr32(E1000_SYSTIML, 0x00000000);
1482 wr32(E1000_SYSTIMH, 0x00000000);
1483#else
1484 /*
1485 * Set registers so that rollover occurs soon to test this.
1486 */
1487 wr32(E1000_SYSTIML, 0x00000000);
1488 wr32(E1000_SYSTIMH, 0xFF800000);
1489#endif
1490 wrfl();
1491 timecounter_init(&adapter->clock,
1492 &adapter->cycles,
1493 ktime_to_ns(ktime_get_real()));
1494
33af6bcc
PO
1495 /*
1496 * Synchronize our NIC clock against system wall clock. NIC
1497 * time stamp reading requires ~3us per sample, each sample
1498 * was pretty stable even under load => only require 10
1499 * samples for each offset comparison.
1500 */
1501 memset(&adapter->compare, 0, sizeof(adapter->compare));
1502 adapter->compare.source = &adapter->clock;
1503 adapter->compare.target = ktime_get_real;
1504 adapter->compare.num_samples = 10;
1505 timecompare_update(&adapter->compare, 0);
1506
38c845c7
PO
1507#ifdef DEBUG
1508 {
1509 char buffer[160];
1510 printk(KERN_DEBUG
1511 "igb: %s: hw %p initialized timer\n",
1512 igb_get_time_str(adapter, buffer),
1513 &adapter->hw);
1514 }
1515#endif
1516
9d5c8243
AK
1517 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1518 /* print bus type/speed/width info */
7c510e4b 1519 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243
AK
1520 netdev->name,
1521 ((hw->bus.speed == e1000_bus_speed_2500)
1522 ? "2.5Gb/s" : "unknown"),
59c3de89
AD
1523 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1524 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1525 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1526 "unknown"),
7c510e4b 1527 netdev->dev_addr);
9d5c8243
AK
1528
1529 igb_read_part_num(hw, &part_num);
1530 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1531 (part_num >> 8), (part_num & 0xff));
1532
1533 dev_info(&pdev->dev,
1534 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1535 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1536 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1537 adapter->num_rx_queues, adapter->num_tx_queues);
1538
9d5c8243
AK
1539 return 0;
1540
1541err_register:
1542 igb_release_hw_control(adapter);
1543err_eeprom:
1544 if (!igb_check_reset_block(hw))
f5f4cf08 1545 igb_reset_phy(hw);
9d5c8243
AK
1546
1547 if (hw->flash_address)
1548 iounmap(hw->flash_address);
1549
a88f10ec 1550 igb_free_queues(adapter);
9d5c8243 1551err_sw_init:
9d5c8243
AK
1552 iounmap(hw->hw_addr);
1553err_ioremap:
1554 free_netdev(netdev);
1555err_alloc_etherdev:
aed5dec3
AD
1556 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1557 IORESOURCE_MEM));
9d5c8243
AK
1558err_pci_reg:
1559err_dma:
1560 pci_disable_device(pdev);
1561 return err;
1562}
1563
1564/**
1565 * igb_remove - Device Removal Routine
1566 * @pdev: PCI device information struct
1567 *
1568 * igb_remove is called by the PCI subsystem to alert the driver
1569 * that it should release a PCI device. The could be caused by a
1570 * Hot-Plug event, or because the driver is going to be removed from
1571 * memory.
1572 **/
1573static void __devexit igb_remove(struct pci_dev *pdev)
1574{
1575 struct net_device *netdev = pci_get_drvdata(pdev);
1576 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1577 struct e1000_hw *hw = &adapter->hw;
ea943d41 1578 int err;
9d5c8243
AK
1579
1580 /* flush_scheduled work may reschedule our watchdog task, so
1581 * explicitly disable watchdog tasks from being rescheduled */
1582 set_bit(__IGB_DOWN, &adapter->state);
1583 del_timer_sync(&adapter->watchdog_timer);
1584 del_timer_sync(&adapter->phy_info_timer);
1585
1586 flush_scheduled_work();
1587
421e02f0 1588#ifdef CONFIG_IGB_DCA
7dfc16fa 1589 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1590 dev_info(&pdev->dev, "DCA disabled\n");
1591 dca_remove_requester(&pdev->dev);
7dfc16fa 1592 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1593 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1594 }
1595#endif
1596
9d5c8243
AK
1597 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1598 * would have already happened in close and is redundant. */
1599 igb_release_hw_control(adapter);
1600
1601 unregister_netdev(netdev);
1602
f5f4cf08
AD
1603 if (!igb_check_reset_block(&adapter->hw))
1604 igb_reset_phy(&adapter->hw);
9d5c8243 1605
9d5c8243
AK
1606 igb_reset_interrupt_capability(adapter);
1607
a88f10ec 1608 igb_free_queues(adapter);
9d5c8243 1609
37680117
AD
1610#ifdef CONFIG_PCI_IOV
1611 /* reclaim resources allocated to VFs */
1612 if (adapter->vf_data) {
1613 /* disable iov and allow time for transactions to clear */
1614 pci_disable_sriov(pdev);
1615 msleep(500);
1616
1617 kfree(adapter->vf_data);
1618 adapter->vf_data = NULL;
1619 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1620 msleep(100);
1621 dev_info(&pdev->dev, "IOV Disabled\n");
1622 }
1623#endif
28b0759c
AD
1624 iounmap(hw->hw_addr);
1625 if (hw->flash_address)
1626 iounmap(hw->flash_address);
aed5dec3
AD
1627 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1628 IORESOURCE_MEM));
9d5c8243
AK
1629
1630 free_netdev(netdev);
1631
ea943d41
JK
1632 err = pci_disable_pcie_error_reporting(pdev);
1633 if (err)
1634 dev_err(&pdev->dev,
1635 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
40a914fa 1636
9d5c8243
AK
1637 pci_disable_device(pdev);
1638}
1639
1640/**
1641 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1642 * @adapter: board private structure to initialize
1643 *
1644 * igb_sw_init initializes the Adapter private data structure.
1645 * Fields are initialized based on PCI device information and
1646 * OS network device settings (MTU size).
1647 **/
1648static int __devinit igb_sw_init(struct igb_adapter *adapter)
1649{
1650 struct e1000_hw *hw = &adapter->hw;
1651 struct net_device *netdev = adapter->netdev;
1652 struct pci_dev *pdev = adapter->pdev;
1653
1654 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1655
68fd9910
AD
1656 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1657 adapter->rx_ring_count = IGB_DEFAULT_RXD;
9d5c8243
AK
1658 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1659 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1660 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1661 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1662
661086df
PWJ
1663 /* This call may decrease the number of queues depending on
1664 * interrupt mode. */
9d5c8243
AK
1665 igb_set_interrupt_capability(adapter);
1666
1667 if (igb_alloc_queues(adapter)) {
1668 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1669 return -ENOMEM;
1670 }
1671
1672 /* Explicitly disable IRQ since the NIC can be in any state. */
1673 igb_irq_disable(adapter);
1674
1675 set_bit(__IGB_DOWN, &adapter->state);
1676 return 0;
1677}
1678
1679/**
1680 * igb_open - Called when a network interface is made active
1681 * @netdev: network interface device structure
1682 *
1683 * Returns 0 on success, negative value on failure
1684 *
1685 * The open entry point is called when a network interface is made
1686 * active by the system (IFF_UP). At this point all resources needed
1687 * for transmit and receive operations are allocated, the interrupt
1688 * handler is registered with the OS, the watchdog timer is started,
1689 * and the stack is notified that the interface is ready.
1690 **/
1691static int igb_open(struct net_device *netdev)
1692{
1693 struct igb_adapter *adapter = netdev_priv(netdev);
1694 struct e1000_hw *hw = &adapter->hw;
1695 int err;
1696 int i;
1697
1698 /* disallow open during test */
1699 if (test_bit(__IGB_TESTING, &adapter->state))
1700 return -EBUSY;
1701
1702 /* allocate transmit descriptors */
1703 err = igb_setup_all_tx_resources(adapter);
1704 if (err)
1705 goto err_setup_tx;
1706
1707 /* allocate receive descriptors */
1708 err = igb_setup_all_rx_resources(adapter);
1709 if (err)
1710 goto err_setup_rx;
1711
1712 /* e1000_power_up_phy(adapter); */
1713
1714 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1715 if ((adapter->hw.mng_cookie.status &
1716 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1717 igb_update_mng_vlan(adapter);
1718
1719 /* before we allocate an interrupt, we must be ready to handle it.
1720 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1721 * as soon as we call pci_request_irq, so we have to setup our
1722 * clean_rx handler before we do so. */
1723 igb_configure(adapter);
1724
4ae196df 1725 igb_vmm_control(adapter);
e1739522
AD
1726 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1727 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1728
9d5c8243
AK
1729 err = igb_request_irq(adapter);
1730 if (err)
1731 goto err_req_irq;
1732
1733 /* From here on the code is the same as igb_up() */
1734 clear_bit(__IGB_DOWN, &adapter->state);
1735
844290e5
PW
1736 for (i = 0; i < adapter->num_rx_queues; i++)
1737 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1738
1739 /* Clear any pending interrupts. */
1740 rd32(E1000_ICR);
844290e5
PW
1741
1742 igb_irq_enable(adapter);
1743
d55b53ff
JK
1744 netif_tx_start_all_queues(netdev);
1745
9d5c8243
AK
1746 /* Fire a link status change interrupt to start the watchdog. */
1747 wr32(E1000_ICS, E1000_ICS_LSC);
1748
1749 return 0;
1750
1751err_req_irq:
1752 igb_release_hw_control(adapter);
1753 /* e1000_power_down_phy(adapter); */
1754 igb_free_all_rx_resources(adapter);
1755err_setup_rx:
1756 igb_free_all_tx_resources(adapter);
1757err_setup_tx:
1758 igb_reset(adapter);
1759
1760 return err;
1761}
1762
1763/**
1764 * igb_close - Disables a network interface
1765 * @netdev: network interface device structure
1766 *
1767 * Returns 0, this is not allowed to fail
1768 *
1769 * The close entry point is called when an interface is de-activated
1770 * by the OS. The hardware is still under the driver's control, but
1771 * needs to be disabled. A global MAC reset is issued to stop the
1772 * hardware, and all transmit and receive resources are freed.
1773 **/
1774static int igb_close(struct net_device *netdev)
1775{
1776 struct igb_adapter *adapter = netdev_priv(netdev);
1777
1778 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1779 igb_down(adapter);
1780
1781 igb_free_irq(adapter);
1782
1783 igb_free_all_tx_resources(adapter);
1784 igb_free_all_rx_resources(adapter);
1785
1786 /* kill manageability vlan ID if supported, but not if a vlan with
1787 * the same ID is registered on the host OS (let 8021q kill it) */
1788 if ((adapter->hw.mng_cookie.status &
1789 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1790 !(adapter->vlgrp &&
1791 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1792 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1793
1794 return 0;
1795}
1796
1797/**
1798 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1799 * @adapter: board private structure
1800 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1801 *
1802 * Return 0 on success, negative on failure
1803 **/
9d5c8243
AK
1804int igb_setup_tx_resources(struct igb_adapter *adapter,
1805 struct igb_ring *tx_ring)
1806{
1807 struct pci_dev *pdev = adapter->pdev;
1808 int size;
1809
1810 size = sizeof(struct igb_buffer) * tx_ring->count;
1811 tx_ring->buffer_info = vmalloc(size);
1812 if (!tx_ring->buffer_info)
1813 goto err;
1814 memset(tx_ring->buffer_info, 0, size);
1815
1816 /* round up to nearest 4K */
85e8d004 1817 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1818 tx_ring->size = ALIGN(tx_ring->size, 4096);
1819
1820 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1821 &tx_ring->dma);
1822
1823 if (!tx_ring->desc)
1824 goto err;
1825
1826 tx_ring->adapter = adapter;
1827 tx_ring->next_to_use = 0;
1828 tx_ring->next_to_clean = 0;
9d5c8243
AK
1829 return 0;
1830
1831err:
1832 vfree(tx_ring->buffer_info);
1833 dev_err(&adapter->pdev->dev,
1834 "Unable to allocate memory for the transmit descriptor ring\n");
1835 return -ENOMEM;
1836}
1837
1838/**
1839 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1840 * (Descriptors) for all queues
1841 * @adapter: board private structure
1842 *
1843 * Return 0 on success, negative on failure
1844 **/
1845static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1846{
1847 int i, err = 0;
661086df 1848 int r_idx;
9d5c8243
AK
1849
1850 for (i = 0; i < adapter->num_tx_queues; i++) {
1851 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1852 if (err) {
1853 dev_err(&adapter->pdev->dev,
1854 "Allocation for Tx Queue %u failed\n", i);
1855 for (i--; i >= 0; i--)
3b644cf6 1856 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1857 break;
1858 }
1859 }
1860
661086df
PWJ
1861 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1862 r_idx = i % adapter->num_tx_queues;
1863 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 1864 }
9d5c8243
AK
1865 return err;
1866}
1867
1868/**
1869 * igb_configure_tx - Configure transmit Unit after Reset
1870 * @adapter: board private structure
1871 *
1872 * Configure the Tx unit of the MAC after a reset.
1873 **/
1874static void igb_configure_tx(struct igb_adapter *adapter)
1875{
0e014cb1 1876 u64 tdba;
9d5c8243
AK
1877 struct e1000_hw *hw = &adapter->hw;
1878 u32 tctl;
1879 u32 txdctl, txctrl;
26bc19ec 1880 int i, j;
9d5c8243
AK
1881
1882 for (i = 0; i < adapter->num_tx_queues; i++) {
73cd78f1 1883 struct igb_ring *ring = &adapter->tx_ring[i];
26bc19ec
AD
1884 j = ring->reg_idx;
1885 wr32(E1000_TDLEN(j),
85e8d004 1886 ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243 1887 tdba = ring->dma;
26bc19ec 1888 wr32(E1000_TDBAL(j),
73cd78f1 1889 tdba & 0x00000000ffffffffULL);
26bc19ec 1890 wr32(E1000_TDBAH(j), tdba >> 32);
9d5c8243 1891
26bc19ec
AD
1892 ring->head = E1000_TDH(j);
1893 ring->tail = E1000_TDT(j);
9d5c8243
AK
1894 writel(0, hw->hw_addr + ring->tail);
1895 writel(0, hw->hw_addr + ring->head);
26bc19ec 1896 txdctl = rd32(E1000_TXDCTL(j));
9d5c8243 1897 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
26bc19ec 1898 wr32(E1000_TXDCTL(j), txdctl);
9d5c8243
AK
1899
1900 /* Turn off Relaxed Ordering on head write-backs. The
1901 * writebacks MUST be delivered in order or it will
1902 * completely screw up our bookeeping.
1903 */
26bc19ec 1904 txctrl = rd32(E1000_DCA_TXCTRL(j));
9d5c8243 1905 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
26bc19ec 1906 wr32(E1000_DCA_TXCTRL(j), txctrl);
9d5c8243
AK
1907 }
1908
e1739522
AD
1909 /* disable queue 0 to prevent tail bump w/o re-configuration */
1910 if (adapter->vfs_allocated_count)
1911 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
1912
1913 /* Program the Transmit Control Register */
9d5c8243
AK
1914 tctl = rd32(E1000_TCTL);
1915 tctl &= ~E1000_TCTL_CT;
1916 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1917 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1918
1919 igb_config_collision_dist(hw);
1920
1921 /* Setup Transmit Descriptor Settings for eop descriptor */
1922 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1923
1924 /* Enable transmits */
1925 tctl |= E1000_TCTL_EN;
1926
1927 wr32(E1000_TCTL, tctl);
1928}
1929
1930/**
1931 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1932 * @adapter: board private structure
1933 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1934 *
1935 * Returns 0 on success, negative on failure
1936 **/
9d5c8243
AK
1937int igb_setup_rx_resources(struct igb_adapter *adapter,
1938 struct igb_ring *rx_ring)
1939{
1940 struct pci_dev *pdev = adapter->pdev;
1941 int size, desc_len;
1942
1943 size = sizeof(struct igb_buffer) * rx_ring->count;
1944 rx_ring->buffer_info = vmalloc(size);
1945 if (!rx_ring->buffer_info)
1946 goto err;
1947 memset(rx_ring->buffer_info, 0, size);
1948
1949 desc_len = sizeof(union e1000_adv_rx_desc);
1950
1951 /* Round up to nearest 4K */
1952 rx_ring->size = rx_ring->count * desc_len;
1953 rx_ring->size = ALIGN(rx_ring->size, 4096);
1954
1955 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1956 &rx_ring->dma);
1957
1958 if (!rx_ring->desc)
1959 goto err;
1960
1961 rx_ring->next_to_clean = 0;
1962 rx_ring->next_to_use = 0;
9d5c8243
AK
1963
1964 rx_ring->adapter = adapter;
9d5c8243
AK
1965
1966 return 0;
1967
1968err:
1969 vfree(rx_ring->buffer_info);
1970 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1971 "the receive descriptor ring\n");
1972 return -ENOMEM;
1973}
1974
1975/**
1976 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1977 * (Descriptors) for all queues
1978 * @adapter: board private structure
1979 *
1980 * Return 0 on success, negative on failure
1981 **/
1982static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1983{
1984 int i, err = 0;
1985
1986 for (i = 0; i < adapter->num_rx_queues; i++) {
1987 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1988 if (err) {
1989 dev_err(&adapter->pdev->dev,
1990 "Allocation for Rx Queue %u failed\n", i);
1991 for (i--; i >= 0; i--)
3b644cf6 1992 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1993 break;
1994 }
1995 }
1996
1997 return err;
1998}
1999
2000/**
2001 * igb_setup_rctl - configure the receive control registers
2002 * @adapter: Board private structure
2003 **/
2004static void igb_setup_rctl(struct igb_adapter *adapter)
2005{
2006 struct e1000_hw *hw = &adapter->hw;
2007 u32 rctl;
2008 u32 srrctl = 0;
26bc19ec 2009 int i, j;
9d5c8243
AK
2010
2011 rctl = rd32(E1000_RCTL);
2012
2013 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2014 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2015
69d728ba 2016 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2017 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2018
87cb7e8c
AK
2019 /*
2020 * enable stripping of CRC. It's unlikely this will break BMC
2021 * redirection as it did with e1000. Newer features require
2022 * that the HW strips the CRC.
73cd78f1 2023 */
87cb7e8c 2024 rctl |= E1000_RCTL_SECRC;
9d5c8243 2025
9b07f3d3 2026 /*
ec54d7d6 2027 * disable store bad packets and clear size bits.
9b07f3d3 2028 */
ec54d7d6 2029 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2030
ec54d7d6 2031 /* enable LPE when to prevent packets larger than max_frame_size */
9b07f3d3 2032 rctl |= E1000_RCTL_LPE;
b4557be2
AD
2033
2034 /* Setup buffer sizes */
2035 switch (adapter->rx_buffer_len) {
2036 case IGB_RXBUFFER_256:
2037 rctl |= E1000_RCTL_SZ_256;
2038 break;
2039 case IGB_RXBUFFER_512:
2040 rctl |= E1000_RCTL_SZ_512;
2041 break;
2042 default:
2043 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2044 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2045 break;
9d5c8243
AK
2046 }
2047
2048 /* 82575 and greater support packet-split where the protocol
2049 * header is placed in skb->data and the packet data is
2050 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2051 * In the case of a non-split, skb->data is linearly filled,
2052 * followed by the page buffers. Therefore, skb->data is
2053 * sized to hold the largest protocol header.
2054 */
2055 /* allocations using alloc_page take too long for regular MTU
2056 * so only enable packet split for jumbo frames */
ec54d7d6 2057 if (adapter->netdev->mtu > ETH_DATA_LEN) {
9d5c8243 2058 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
bf36c1a0 2059 srrctl |= adapter->rx_ps_hdr_size <<
9d5c8243 2060 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
9d5c8243
AK
2061 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2062 } else {
2063 adapter->rx_ps_hdr_size = 0;
2064 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2065 }
2066
e1739522
AD
2067 /* Attention!!! For SR-IOV PF driver operations you must enable
2068 * queue drop for all VF and PF queues to prevent head of line blocking
2069 * if an un-trusted VF does not provide descriptors to hardware.
2070 */
2071 if (adapter->vfs_allocated_count) {
2072 u32 vmolr;
2073
2074 j = adapter->rx_ring[0].reg_idx;
2075
2076 /* set all queue drop enable bits */
2077 wr32(E1000_QDE, ALL_QUEUES);
2078 srrctl |= E1000_SRRCTL_DROP_EN;
2079
2080 /* disable queue 0 to prevent tail write w/o re-config */
2081 wr32(E1000_RXDCTL(0), 0);
2082
2083 vmolr = rd32(E1000_VMOLR(j));
2084 if (rctl & E1000_RCTL_LPE)
2085 vmolr |= E1000_VMOLR_LPE;
2086 if (adapter->num_rx_queues > 0)
2087 vmolr |= E1000_VMOLR_RSSE;
2088 wr32(E1000_VMOLR(j), vmolr);
2089 }
2090
26bc19ec
AD
2091 for (i = 0; i < adapter->num_rx_queues; i++) {
2092 j = adapter->rx_ring[i].reg_idx;
2093 wr32(E1000_SRRCTL(j), srrctl);
2094 }
9d5c8243
AK
2095
2096 wr32(E1000_RCTL, rctl);
2097}
2098
e1739522
AD
2099/**
2100 * igb_rlpml_set - set maximum receive packet size
2101 * @adapter: board private structure
2102 *
2103 * Configure maximum receivable packet size.
2104 **/
2105static void igb_rlpml_set(struct igb_adapter *adapter)
2106{
2107 u32 max_frame_size = adapter->max_frame_size;
2108 struct e1000_hw *hw = &adapter->hw;
2109 u16 pf_id = adapter->vfs_allocated_count;
2110
2111 if (adapter->vlgrp)
2112 max_frame_size += VLAN_TAG_SIZE;
2113
2114 /* if vfs are enabled we set RLPML to the largest possible request
2115 * size and set the VMOLR RLPML to the size we need */
2116 if (pf_id) {
2117 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2118 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2119 }
2120
2121 wr32(E1000_RLPML, max_frame_size);
2122}
2123
2124/**
2125 * igb_configure_vt_default_pool - Configure VT default pool
2126 * @adapter: board private structure
2127 *
2128 * Configure the default pool
2129 **/
2130static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2131{
2132 struct e1000_hw *hw = &adapter->hw;
2133 u16 pf_id = adapter->vfs_allocated_count;
2134 u32 vtctl;
2135
2136 /* not in sr-iov mode - do nothing */
2137 if (!pf_id)
2138 return;
2139
2140 vtctl = rd32(E1000_VT_CTL);
2141 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2142 E1000_VT_CTL_DISABLE_DEF_POOL);
2143 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2144 wr32(E1000_VT_CTL, vtctl);
2145}
2146
9d5c8243
AK
2147/**
2148 * igb_configure_rx - Configure receive Unit after Reset
2149 * @adapter: board private structure
2150 *
2151 * Configure the Rx unit of the MAC after a reset.
2152 **/
2153static void igb_configure_rx(struct igb_adapter *adapter)
2154{
2155 u64 rdba;
2156 struct e1000_hw *hw = &adapter->hw;
2157 u32 rctl, rxcsum;
2158 u32 rxdctl;
9107584e 2159 int i;
9d5c8243
AK
2160
2161 /* disable receives while setting up the descriptors */
2162 rctl = rd32(E1000_RCTL);
2163 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2164 wrfl();
2165 mdelay(10);
2166
2167 if (adapter->itr_setting > 3)
6eb5a7f1 2168 wr32(E1000_ITR, adapter->itr);
9d5c8243
AK
2169
2170 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2171 * the Base and Length of the Rx Descriptor Ring */
2172 for (i = 0; i < adapter->num_rx_queues; i++) {
73cd78f1 2173 struct igb_ring *ring = &adapter->rx_ring[i];
9107584e 2174 int j = ring->reg_idx;
9d5c8243 2175 rdba = ring->dma;
26bc19ec 2176 wr32(E1000_RDBAL(j),
73cd78f1 2177 rdba & 0x00000000ffffffffULL);
26bc19ec
AD
2178 wr32(E1000_RDBAH(j), rdba >> 32);
2179 wr32(E1000_RDLEN(j),
73cd78f1 2180 ring->count * sizeof(union e1000_adv_rx_desc));
9d5c8243 2181
26bc19ec
AD
2182 ring->head = E1000_RDH(j);
2183 ring->tail = E1000_RDT(j);
9d5c8243
AK
2184 writel(0, hw->hw_addr + ring->tail);
2185 writel(0, hw->hw_addr + ring->head);
2186
26bc19ec 2187 rxdctl = rd32(E1000_RXDCTL(j));
9d5c8243
AK
2188 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2189 rxdctl &= 0xFFF00000;
2190 rxdctl |= IGB_RX_PTHRESH;
2191 rxdctl |= IGB_RX_HTHRESH << 8;
2192 rxdctl |= IGB_RX_WTHRESH << 16;
26bc19ec 2193 wr32(E1000_RXDCTL(j), rxdctl);
9d5c8243
AK
2194 }
2195
2196 if (adapter->num_rx_queues > 1) {
2197 u32 random[10];
2198 u32 mrqc;
2199 u32 j, shift;
2200 union e1000_reta {
2201 u32 dword;
2202 u8 bytes[4];
2203 } reta;
2204
2205 get_random_bytes(&random[0], 40);
2206
2d064c06
AD
2207 if (hw->mac.type >= e1000_82576)
2208 shift = 0;
2209 else
2210 shift = 6;
9d5c8243
AK
2211 for (j = 0; j < (32 * 4); j++) {
2212 reta.bytes[j & 3] =
26bc19ec 2213 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
9d5c8243
AK
2214 if ((j & 3) == 3)
2215 writel(reta.dword,
2216 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2217 }
e1739522
AD
2218 if (adapter->vfs_allocated_count)
2219 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2220 else
2221 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
9d5c8243
AK
2222
2223 /* Fill out hash function seeds */
2224 for (j = 0; j < 10; j++)
2225 array_wr32(E1000_RSSRK(0), j, random[j]);
2226
2227 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2228 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2229 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2230 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2231 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2232 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2233 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2234 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2235
2236
2237 wr32(E1000_MRQC, mrqc);
2238
2239 /* Multiqueue and raw packet checksumming are mutually
2240 * exclusive. Note that this not the same as TCP/IP
2241 * checksumming, which works fine. */
2242 rxcsum = rd32(E1000_RXCSUM);
2243 rxcsum |= E1000_RXCSUM_PCSD;
2244 wr32(E1000_RXCSUM, rxcsum);
2245 } else {
e1739522
AD
2246 /* Enable multi-queue for sr-iov */
2247 if (adapter->vfs_allocated_count)
2248 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
9d5c8243
AK
2249 /* Enable Receive Checksum Offload for TCP and UDP */
2250 rxcsum = rd32(E1000_RXCSUM);
56fbbb4e
AD
2251 if (adapter->rx_csum)
2252 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2253 else
2254 rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2255
9d5c8243
AK
2256 wr32(E1000_RXCSUM, rxcsum);
2257 }
2258
e1739522
AD
2259 /* Set the default pool for the PF's first queue */
2260 igb_configure_vt_default_pool(adapter);
2261
2262 igb_rlpml_set(adapter);
9d5c8243
AK
2263
2264 /* Enable Receives */
2265 wr32(E1000_RCTL, rctl);
2266}
2267
2268/**
2269 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2270 * @tx_ring: Tx descriptor ring for a specific queue
2271 *
2272 * Free all transmit software resources
2273 **/
68fd9910 2274void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2275{
3b644cf6 2276 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 2277
3b644cf6 2278 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2279
2280 vfree(tx_ring->buffer_info);
2281 tx_ring->buffer_info = NULL;
2282
2283 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2284
2285 tx_ring->desc = NULL;
2286}
2287
2288/**
2289 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2290 * @adapter: board private structure
2291 *
2292 * Free all transmit software resources
2293 **/
2294static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2295{
2296 int i;
2297
2298 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2299 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2300}
2301
2302static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2303 struct igb_buffer *buffer_info)
2304{
65689fef 2305 buffer_info->dma = 0;
9d5c8243 2306 if (buffer_info->skb) {
65689fef
AD
2307 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2308 DMA_TO_DEVICE);
9d5c8243
AK
2309 dev_kfree_skb_any(buffer_info->skb);
2310 buffer_info->skb = NULL;
2311 }
2312 buffer_info->time_stamp = 0;
2313 /* buffer_info must be completely set up in the transmit path */
2314}
2315
2316/**
2317 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2318 * @tx_ring: ring to be cleaned
2319 **/
3b644cf6 2320static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 2321{
3b644cf6 2322 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
2323 struct igb_buffer *buffer_info;
2324 unsigned long size;
2325 unsigned int i;
2326
2327 if (!tx_ring->buffer_info)
2328 return;
2329 /* Free all the Tx ring sk_buffs */
2330
2331 for (i = 0; i < tx_ring->count; i++) {
2332 buffer_info = &tx_ring->buffer_info[i];
2333 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2334 }
2335
2336 size = sizeof(struct igb_buffer) * tx_ring->count;
2337 memset(tx_ring->buffer_info, 0, size);
2338
2339 /* Zero out the descriptor ring */
2340
2341 memset(tx_ring->desc, 0, tx_ring->size);
2342
2343 tx_ring->next_to_use = 0;
2344 tx_ring->next_to_clean = 0;
2345
2346 writel(0, adapter->hw.hw_addr + tx_ring->head);
2347 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2348}
2349
2350/**
2351 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2352 * @adapter: board private structure
2353 **/
2354static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2355{
2356 int i;
2357
2358 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2359 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2360}
2361
2362/**
2363 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2364 * @rx_ring: ring to clean the resources from
2365 *
2366 * Free all receive software resources
2367 **/
68fd9910 2368void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2369{
3b644cf6 2370 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 2371
3b644cf6 2372 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2373
2374 vfree(rx_ring->buffer_info);
2375 rx_ring->buffer_info = NULL;
2376
2377 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2378
2379 rx_ring->desc = NULL;
2380}
2381
2382/**
2383 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2384 * @adapter: board private structure
2385 *
2386 * Free all receive software resources
2387 **/
2388static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2389{
2390 int i;
2391
2392 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2393 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2394}
2395
2396/**
2397 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2398 * @rx_ring: ring to free buffers from
2399 **/
3b644cf6 2400static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2401{
3b644cf6 2402 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2403 struct igb_buffer *buffer_info;
2404 struct pci_dev *pdev = adapter->pdev;
2405 unsigned long size;
2406 unsigned int i;
2407
2408 if (!rx_ring->buffer_info)
2409 return;
2410 /* Free all the Rx ring sk_buffs */
2411 for (i = 0; i < rx_ring->count; i++) {
2412 buffer_info = &rx_ring->buffer_info[i];
2413 if (buffer_info->dma) {
2414 if (adapter->rx_ps_hdr_size)
2415 pci_unmap_single(pdev, buffer_info->dma,
2416 adapter->rx_ps_hdr_size,
2417 PCI_DMA_FROMDEVICE);
2418 else
2419 pci_unmap_single(pdev, buffer_info->dma,
2420 adapter->rx_buffer_len,
2421 PCI_DMA_FROMDEVICE);
2422 buffer_info->dma = 0;
2423 }
2424
2425 if (buffer_info->skb) {
2426 dev_kfree_skb(buffer_info->skb);
2427 buffer_info->skb = NULL;
2428 }
2429 if (buffer_info->page) {
bf36c1a0
AD
2430 if (buffer_info->page_dma)
2431 pci_unmap_page(pdev, buffer_info->page_dma,
2432 PAGE_SIZE / 2,
2433 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2434 put_page(buffer_info->page);
2435 buffer_info->page = NULL;
2436 buffer_info->page_dma = 0;
bf36c1a0 2437 buffer_info->page_offset = 0;
9d5c8243
AK
2438 }
2439 }
2440
9d5c8243
AK
2441 size = sizeof(struct igb_buffer) * rx_ring->count;
2442 memset(rx_ring->buffer_info, 0, size);
2443
2444 /* Zero out the descriptor ring */
2445 memset(rx_ring->desc, 0, rx_ring->size);
2446
2447 rx_ring->next_to_clean = 0;
2448 rx_ring->next_to_use = 0;
2449
2450 writel(0, adapter->hw.hw_addr + rx_ring->head);
2451 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2452}
2453
2454/**
2455 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2456 * @adapter: board private structure
2457 **/
2458static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2459{
2460 int i;
2461
2462 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2463 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2464}
2465
2466/**
2467 * igb_set_mac - Change the Ethernet Address of the NIC
2468 * @netdev: network interface device structure
2469 * @p: pointer to an address structure
2470 *
2471 * Returns 0 on success, negative on failure
2472 **/
2473static int igb_set_mac(struct net_device *netdev, void *p)
2474{
2475 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2476 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2477 struct sockaddr *addr = p;
2478
2479 if (!is_valid_ether_addr(addr->sa_data))
2480 return -EADDRNOTAVAIL;
2481
2482 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2483 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2484
28b0759c 2485 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
9d5c8243 2486
e1739522
AD
2487 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2488
9d5c8243
AK
2489 return 0;
2490}
2491
2492/**
2493 * igb_set_multi - Multicast and Promiscuous mode set
2494 * @netdev: network interface device structure
2495 *
2496 * The set_multi entry point is called whenever the multicast address
2497 * list or the network interface flags are updated. This routine is
2498 * responsible for configuring the hardware for proper multicast,
2499 * promiscuous mode, and all-multi behavior.
2500 **/
2501static void igb_set_multi(struct net_device *netdev)
2502{
2503 struct igb_adapter *adapter = netdev_priv(netdev);
2504 struct e1000_hw *hw = &adapter->hw;
2505 struct e1000_mac_info *mac = &hw->mac;
2506 struct dev_mc_list *mc_ptr;
c5cd11e3 2507 u8 *mta_list = NULL;
9d5c8243
AK
2508 u32 rctl;
2509 int i;
2510
2511 /* Check for Promiscuous and All Multicast modes */
2512
2513 rctl = rd32(E1000_RCTL);
2514
746b9f02 2515 if (netdev->flags & IFF_PROMISC) {
9d5c8243 2516 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02
PM
2517 rctl &= ~E1000_RCTL_VFE;
2518 } else {
2519 if (netdev->flags & IFF_ALLMULTI) {
2520 rctl |= E1000_RCTL_MPE;
2521 rctl &= ~E1000_RCTL_UPE;
2522 } else
2523 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
78ed11a5 2524 rctl |= E1000_RCTL_VFE;
746b9f02 2525 }
9d5c8243
AK
2526 wr32(E1000_RCTL, rctl);
2527
c5cd11e3
AD
2528 if (netdev->mc_count) {
2529 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2530 if (!mta_list) {
2531 dev_err(&adapter->pdev->dev,
2532 "failed to allocate multicast filter list\n");
2533 return;
2534 }
9d5c8243
AK
2535 }
2536
9d5c8243
AK
2537 /* The shared function expects a packed array of only addresses. */
2538 mc_ptr = netdev->mc_list;
2539
2540 for (i = 0; i < netdev->mc_count; i++) {
2541 if (!mc_ptr)
2542 break;
2543 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2544 mc_ptr = mc_ptr->next;
2545 }
e1739522
AD
2546 igb_update_mc_addr_list(hw, mta_list, i,
2547 adapter->vfs_allocated_count + 1,
2548 mac->rar_entry_count);
2549
2550 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
4ae196df
AD
2551 igb_restore_vf_multicasts(adapter);
2552
9d5c8243
AK
2553 kfree(mta_list);
2554}
2555
2556/* Need to wait a few seconds after link up to get diagnostic information from
2557 * the phy */
2558static void igb_update_phy_info(unsigned long data)
2559{
2560 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 2561 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
2562}
2563
4d6b725e
AD
2564/**
2565 * igb_has_link - check shared code for link and determine up/down
2566 * @adapter: pointer to driver private info
2567 **/
2568static bool igb_has_link(struct igb_adapter *adapter)
2569{
2570 struct e1000_hw *hw = &adapter->hw;
2571 bool link_active = false;
2572 s32 ret_val = 0;
2573
2574 /* get_link_status is set on LSC (link status) interrupt or
2575 * rx sequence error interrupt. get_link_status will stay
2576 * false until the e1000_check_for_link establishes link
2577 * for copper adapters ONLY
2578 */
2579 switch (hw->phy.media_type) {
2580 case e1000_media_type_copper:
2581 if (hw->mac.get_link_status) {
2582 ret_val = hw->mac.ops.check_for_link(hw);
2583 link_active = !hw->mac.get_link_status;
2584 } else {
2585 link_active = true;
2586 }
2587 break;
2588 case e1000_media_type_fiber:
2589 ret_val = hw->mac.ops.check_for_link(hw);
2590 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2591 break;
2592 case e1000_media_type_internal_serdes:
2593 ret_val = hw->mac.ops.check_for_link(hw);
2594 link_active = hw->mac.serdes_has_link;
2595 break;
2596 default:
2597 case e1000_media_type_unknown:
2598 break;
2599 }
2600
2601 return link_active;
2602}
2603
9d5c8243
AK
2604/**
2605 * igb_watchdog - Timer Call-back
2606 * @data: pointer to adapter cast into an unsigned long
2607 **/
2608static void igb_watchdog(unsigned long data)
2609{
2610 struct igb_adapter *adapter = (struct igb_adapter *)data;
2611 /* Do the rest outside of interrupt context */
2612 schedule_work(&adapter->watchdog_task);
2613}
2614
2615static void igb_watchdog_task(struct work_struct *work)
2616{
2617 struct igb_adapter *adapter = container_of(work,
2618 struct igb_adapter, watchdog_task);
2619 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2620 struct net_device *netdev = adapter->netdev;
2621 struct igb_ring *tx_ring = adapter->tx_ring;
9d5c8243 2622 u32 link;
7a6ea550 2623 u32 eics = 0;
7a6ea550 2624 int i;
9d5c8243 2625
4d6b725e
AD
2626 link = igb_has_link(adapter);
2627 if ((netif_carrier_ok(netdev)) && link)
9d5c8243
AK
2628 goto link_up;
2629
9d5c8243
AK
2630 if (link) {
2631 if (!netif_carrier_ok(netdev)) {
2632 u32 ctrl;
2633 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2634 &adapter->link_speed,
2635 &adapter->link_duplex);
2636
2637 ctrl = rd32(E1000_CTRL);
527d47c1
AD
2638 /* Links status message must follow this format */
2639 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 2640 "Flow Control: %s\n",
527d47c1 2641 netdev->name,
9d5c8243
AK
2642 adapter->link_speed,
2643 adapter->link_duplex == FULL_DUPLEX ?
2644 "Full Duplex" : "Half Duplex",
2645 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2646 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2647 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2648 E1000_CTRL_TFCE) ? "TX" : "None")));
2649
2650 /* tweak tx_queue_len according to speed/duplex and
2651 * adjust the timeout factor */
2652 netdev->tx_queue_len = adapter->tx_queue_len;
2653 adapter->tx_timeout_factor = 1;
2654 switch (adapter->link_speed) {
2655 case SPEED_10:
2656 netdev->tx_queue_len = 10;
2657 adapter->tx_timeout_factor = 14;
2658 break;
2659 case SPEED_100:
2660 netdev->tx_queue_len = 100;
2661 /* maybe add some timeout factor ? */
2662 break;
2663 }
2664
2665 netif_carrier_on(netdev);
fd2ea0a7 2666 netif_tx_wake_all_queues(netdev);
9d5c8243 2667
4ae196df
AD
2668 igb_ping_all_vfs(adapter);
2669
4b1a9877 2670 /* link state has changed, schedule phy info update */
9d5c8243
AK
2671 if (!test_bit(__IGB_DOWN, &adapter->state))
2672 mod_timer(&adapter->phy_info_timer,
2673 round_jiffies(jiffies + 2 * HZ));
2674 }
2675 } else {
2676 if (netif_carrier_ok(netdev)) {
2677 adapter->link_speed = 0;
2678 adapter->link_duplex = 0;
527d47c1
AD
2679 /* Links status message must follow this format */
2680 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2681 netdev->name);
9d5c8243 2682 netif_carrier_off(netdev);
fd2ea0a7 2683 netif_tx_stop_all_queues(netdev);
4b1a9877 2684
4ae196df
AD
2685 igb_ping_all_vfs(adapter);
2686
4b1a9877 2687 /* link state has changed, schedule phy info update */
9d5c8243
AK
2688 if (!test_bit(__IGB_DOWN, &adapter->state))
2689 mod_timer(&adapter->phy_info_timer,
2690 round_jiffies(jiffies + 2 * HZ));
2691 }
2692 }
2693
2694link_up:
2695 igb_update_stats(adapter);
2696
4b1a9877 2697 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
9d5c8243 2698 adapter->tpt_old = adapter->stats.tpt;
4b1a9877 2699 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
9d5c8243
AK
2700 adapter->colc_old = adapter->stats.colc;
2701
2702 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2703 adapter->gorc_old = adapter->stats.gorc;
2704 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2705 adapter->gotc_old = adapter->stats.gotc;
2706
2707 igb_update_adaptive(&adapter->hw);
2708
2709 if (!netif_carrier_ok(netdev)) {
c493ea45 2710 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
9d5c8243
AK
2711 /* We've lost link, so the controller stops DMA,
2712 * but we've got queued Tx work that's never going
2713 * to get done, so reset controller to flush Tx.
2714 * (Do the reset outside of interrupt context). */
2715 adapter->tx_timeout_count++;
2716 schedule_work(&adapter->reset_task);
2717 }
2718 }
2719
2720 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550
AD
2721 if (adapter->msix_entries) {
2722 for (i = 0; i < adapter->num_rx_queues; i++)
2723 eics |= adapter->rx_ring[i].eims_value;
2724 wr32(E1000_EICS, eics);
2725 } else {
2726 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2727 }
9d5c8243
AK
2728
2729 /* Force detection of hung controller every watchdog period */
2730 tx_ring->detect_tx_hung = true;
2731
2732 /* Reset the timer */
2733 if (!test_bit(__IGB_DOWN, &adapter->state))
2734 mod_timer(&adapter->watchdog_timer,
2735 round_jiffies(jiffies + 2 * HZ));
2736}
2737
2738enum latency_range {
2739 lowest_latency = 0,
2740 low_latency = 1,
2741 bulk_latency = 2,
2742 latency_invalid = 255
2743};
2744
2745
6eb5a7f1
AD
2746/**
2747 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2748 *
2749 * Stores a new ITR value based on strictly on packet size. This
2750 * algorithm is less sophisticated than that used in igb_update_itr,
2751 * due to the difficulty of synchronizing statistics across multiple
2752 * receive rings. The divisors and thresholds used by this fuction
2753 * were determined based on theoretical maximum wire speed and testing
2754 * data, in order to minimize response time while increasing bulk
2755 * throughput.
2756 * This functionality is controlled by the InterruptThrottleRate module
2757 * parameter (see igb_param.c)
2758 * NOTE: This function is called only when operating in a multiqueue
2759 * receive environment.
2760 * @rx_ring: pointer to ring
2761 **/
2762static void igb_update_ring_itr(struct igb_ring *rx_ring)
9d5c8243 2763{
6eb5a7f1
AD
2764 int new_val = rx_ring->itr_val;
2765 int avg_wire_size = 0;
2766 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 2767
6eb5a7f1
AD
2768 if (!rx_ring->total_packets)
2769 goto clear_counts; /* no packets, so don't do anything */
9d5c8243 2770
6eb5a7f1
AD
2771 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2772 * ints/sec - ITR timer value of 120 ticks.
2773 */
2774 if (adapter->link_speed != SPEED_1000) {
2775 new_val = 120;
2776 goto set_itr_val;
9d5c8243 2777 }
6eb5a7f1 2778 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
9d5c8243 2779
6eb5a7f1
AD
2780 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2781 avg_wire_size += 24;
2782
2783 /* Don't starve jumbo frames */
2784 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 2785
6eb5a7f1
AD
2786 /* Give a little boost to mid-size frames */
2787 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2788 new_val = avg_wire_size / 3;
2789 else
2790 new_val = avg_wire_size / 2;
9d5c8243 2791
6eb5a7f1 2792set_itr_val:
9d5c8243
AK
2793 if (new_val != rx_ring->itr_val) {
2794 rx_ring->itr_val = new_val;
6eb5a7f1 2795 rx_ring->set_itr = 1;
9d5c8243 2796 }
6eb5a7f1
AD
2797clear_counts:
2798 rx_ring->total_bytes = 0;
2799 rx_ring->total_packets = 0;
9d5c8243
AK
2800}
2801
2802/**
2803 * igb_update_itr - update the dynamic ITR value based on statistics
2804 * Stores a new ITR value based on packets and byte
2805 * counts during the last interrupt. The advantage of per interrupt
2806 * computation is faster updates and more accurate ITR for the current
2807 * traffic pattern. Constants in this function were computed
2808 * based on theoretical maximum wire speed and thresholds were set based
2809 * on testing data as well as attempting to minimize response time
2810 * while increasing bulk throughput.
2811 * this functionality is controlled by the InterruptThrottleRate module
2812 * parameter (see igb_param.c)
2813 * NOTE: These calculations are only valid when operating in a single-
2814 * queue environment.
2815 * @adapter: pointer to adapter
2816 * @itr_setting: current adapter->itr
2817 * @packets: the number of packets during this measurement interval
2818 * @bytes: the number of bytes during this measurement interval
2819 **/
2820static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2821 int packets, int bytes)
2822{
2823 unsigned int retval = itr_setting;
2824
2825 if (packets == 0)
2826 goto update_itr_done;
2827
2828 switch (itr_setting) {
2829 case lowest_latency:
2830 /* handle TSO and jumbo frames */
2831 if (bytes/packets > 8000)
2832 retval = bulk_latency;
2833 else if ((packets < 5) && (bytes > 512))
2834 retval = low_latency;
2835 break;
2836 case low_latency: /* 50 usec aka 20000 ints/s */
2837 if (bytes > 10000) {
2838 /* this if handles the TSO accounting */
2839 if (bytes/packets > 8000) {
2840 retval = bulk_latency;
2841 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2842 retval = bulk_latency;
2843 } else if ((packets > 35)) {
2844 retval = lowest_latency;
2845 }
2846 } else if (bytes/packets > 2000) {
2847 retval = bulk_latency;
2848 } else if (packets <= 2 && bytes < 512) {
2849 retval = lowest_latency;
2850 }
2851 break;
2852 case bulk_latency: /* 250 usec aka 4000 ints/s */
2853 if (bytes > 25000) {
2854 if (packets > 35)
2855 retval = low_latency;
1e5c3d21 2856 } else if (bytes < 1500) {
9d5c8243
AK
2857 retval = low_latency;
2858 }
2859 break;
2860 }
2861
2862update_itr_done:
2863 return retval;
2864}
2865
6eb5a7f1 2866static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243
AK
2867{
2868 u16 current_itr;
2869 u32 new_itr = adapter->itr;
2870
2871 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2872 if (adapter->link_speed != SPEED_1000) {
2873 current_itr = 0;
2874 new_itr = 4000;
2875 goto set_itr_now;
2876 }
2877
2878 adapter->rx_itr = igb_update_itr(adapter,
2879 adapter->rx_itr,
2880 adapter->rx_ring->total_packets,
2881 adapter->rx_ring->total_bytes);
9d5c8243 2882
6eb5a7f1 2883 if (adapter->rx_ring->buddy) {
9d5c8243
AK
2884 adapter->tx_itr = igb_update_itr(adapter,
2885 adapter->tx_itr,
2886 adapter->tx_ring->total_packets,
2887 adapter->tx_ring->total_bytes);
9d5c8243
AK
2888 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2889 } else {
2890 current_itr = adapter->rx_itr;
2891 }
2892
6eb5a7f1 2893 /* conservative mode (itr 3) eliminates the lowest_latency setting */
73cd78f1 2894 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
2895 current_itr = low_latency;
2896
9d5c8243
AK
2897 switch (current_itr) {
2898 /* counts and packets in update_itr are dependent on these numbers */
2899 case lowest_latency:
2900 new_itr = 70000;
2901 break;
2902 case low_latency:
2903 new_itr = 20000; /* aka hwitr = ~200 */
2904 break;
2905 case bulk_latency:
2906 new_itr = 4000;
2907 break;
2908 default:
2909 break;
2910 }
2911
2912set_itr_now:
6eb5a7f1
AD
2913 adapter->rx_ring->total_bytes = 0;
2914 adapter->rx_ring->total_packets = 0;
2915 if (adapter->rx_ring->buddy) {
2916 adapter->rx_ring->buddy->total_bytes = 0;
2917 adapter->rx_ring->buddy->total_packets = 0;
2918 }
2919
9d5c8243
AK
2920 if (new_itr != adapter->itr) {
2921 /* this attempts to bias the interrupt rate towards Bulk
2922 * by adding intermediate steps when interrupt rate is
2923 * increasing */
2924 new_itr = new_itr > adapter->itr ?
2925 min(adapter->itr + (new_itr >> 2), new_itr) :
2926 new_itr;
2927 /* Don't write the value here; it resets the adapter's
2928 * internal timer, and causes us to delay far longer than
2929 * we should between interrupts. Instead, we write the ITR
2930 * value at the beginning of the next interrupt so the timing
2931 * ends up being correct.
2932 */
2933 adapter->itr = new_itr;
6eb5a7f1
AD
2934 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2935 adapter->rx_ring->set_itr = 1;
9d5c8243
AK
2936 }
2937
2938 return;
2939}
2940
2941
2942#define IGB_TX_FLAGS_CSUM 0x00000001
2943#define IGB_TX_FLAGS_VLAN 0x00000002
2944#define IGB_TX_FLAGS_TSO 0x00000004
2945#define IGB_TX_FLAGS_IPV4 0x00000008
33af6bcc 2946#define IGB_TX_FLAGS_TSTAMP 0x00000010
9d5c8243
AK
2947#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2948#define IGB_TX_FLAGS_VLAN_SHIFT 16
2949
2950static inline int igb_tso_adv(struct igb_adapter *adapter,
2951 struct igb_ring *tx_ring,
2952 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2953{
2954 struct e1000_adv_tx_context_desc *context_desc;
2955 unsigned int i;
2956 int err;
2957 struct igb_buffer *buffer_info;
2958 u32 info = 0, tu_cmd = 0;
2959 u32 mss_l4len_idx, l4len;
2960 *hdr_len = 0;
2961
2962 if (skb_header_cloned(skb)) {
2963 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2964 if (err)
2965 return err;
2966 }
2967
2968 l4len = tcp_hdrlen(skb);
2969 *hdr_len += l4len;
2970
2971 if (skb->protocol == htons(ETH_P_IP)) {
2972 struct iphdr *iph = ip_hdr(skb);
2973 iph->tot_len = 0;
2974 iph->check = 0;
2975 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2976 iph->daddr, 0,
2977 IPPROTO_TCP,
2978 0);
2979 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2980 ipv6_hdr(skb)->payload_len = 0;
2981 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2982 &ipv6_hdr(skb)->daddr,
2983 0, IPPROTO_TCP, 0);
2984 }
2985
2986 i = tx_ring->next_to_use;
2987
2988 buffer_info = &tx_ring->buffer_info[i];
2989 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2990 /* VLAN MACLEN IPLEN */
2991 if (tx_flags & IGB_TX_FLAGS_VLAN)
2992 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2993 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2994 *hdr_len += skb_network_offset(skb);
2995 info |= skb_network_header_len(skb);
2996 *hdr_len += skb_network_header_len(skb);
2997 context_desc->vlan_macip_lens = cpu_to_le32(info);
2998
2999 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3000 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3001
3002 if (skb->protocol == htons(ETH_P_IP))
3003 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3004 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3005
3006 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3007
3008 /* MSS L4LEN IDX */
3009 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3010 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3011
73cd78f1 3012 /* For 82575, context index must be unique per ring. */
7dfc16fa
AD
3013 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3014 mss_l4len_idx |= tx_ring->queue_index << 4;
9d5c8243
AK
3015
3016 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3017 context_desc->seqnum_seed = 0;
3018
3019 buffer_info->time_stamp = jiffies;
0e014cb1 3020 buffer_info->next_to_watch = i;
9d5c8243
AK
3021 buffer_info->dma = 0;
3022 i++;
3023 if (i == tx_ring->count)
3024 i = 0;
3025
3026 tx_ring->next_to_use = i;
3027
3028 return true;
3029}
3030
3031static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3032 struct igb_ring *tx_ring,
3033 struct sk_buff *skb, u32 tx_flags)
3034{
3035 struct e1000_adv_tx_context_desc *context_desc;
3036 unsigned int i;
3037 struct igb_buffer *buffer_info;
3038 u32 info = 0, tu_cmd = 0;
3039
3040 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3041 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3042 i = tx_ring->next_to_use;
3043 buffer_info = &tx_ring->buffer_info[i];
3044 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3045
3046 if (tx_flags & IGB_TX_FLAGS_VLAN)
3047 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3048 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3049 if (skb->ip_summed == CHECKSUM_PARTIAL)
3050 info |= skb_network_header_len(skb);
3051
3052 context_desc->vlan_macip_lens = cpu_to_le32(info);
3053
3054 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3055
3056 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3057 __be16 protocol;
3058
3059 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3060 const struct vlan_ethhdr *vhdr =
3061 (const struct vlan_ethhdr*)skb->data;
3062
3063 protocol = vhdr->h_vlan_encapsulated_proto;
3064 } else {
3065 protocol = skb->protocol;
3066 }
3067
3068 switch (protocol) {
09640e63 3069 case cpu_to_be16(ETH_P_IP):
9d5c8243 3070 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3071 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3072 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3073 break;
09640e63 3074 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3075 /* XXX what about other V6 headers?? */
3076 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3077 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3078 break;
3079 default:
3080 if (unlikely(net_ratelimit()))
3081 dev_warn(&adapter->pdev->dev,
3082 "partial checksum but proto=%x!\n",
3083 skb->protocol);
3084 break;
3085 }
9d5c8243
AK
3086 }
3087
3088 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3089 context_desc->seqnum_seed = 0;
7dfc16fa
AD
3090 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3091 context_desc->mss_l4len_idx =
3092 cpu_to_le32(tx_ring->queue_index << 4);
265de409
AD
3093 else
3094 context_desc->mss_l4len_idx = 0;
9d5c8243
AK
3095
3096 buffer_info->time_stamp = jiffies;
0e014cb1 3097 buffer_info->next_to_watch = i;
9d5c8243
AK
3098 buffer_info->dma = 0;
3099
3100 i++;
3101 if (i == tx_ring->count)
3102 i = 0;
3103 tx_ring->next_to_use = i;
3104
3105 return true;
3106 }
9d5c8243
AK
3107 return false;
3108}
3109
3110#define IGB_MAX_TXD_PWR 16
3111#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3112
3113static inline int igb_tx_map_adv(struct igb_adapter *adapter,
0e014cb1
AD
3114 struct igb_ring *tx_ring, struct sk_buff *skb,
3115 unsigned int first)
9d5c8243
AK
3116{
3117 struct igb_buffer *buffer_info;
3118 unsigned int len = skb_headlen(skb);
3119 unsigned int count = 0, i;
3120 unsigned int f;
65689fef 3121 dma_addr_t *map;
9d5c8243
AK
3122
3123 i = tx_ring->next_to_use;
3124
65689fef
AD
3125 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3126 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3127 return 0;
3128 }
3129
3130 map = skb_shinfo(skb)->dma_maps;
3131
9d5c8243
AK
3132 buffer_info = &tx_ring->buffer_info[i];
3133 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3134 buffer_info->length = len;
3135 /* set time_stamp *before* dma to help avoid a possible race */
3136 buffer_info->time_stamp = jiffies;
0e014cb1 3137 buffer_info->next_to_watch = i;
65689fef 3138 buffer_info->dma = map[count];
9d5c8243 3139 count++;
9d5c8243
AK
3140
3141 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3142 struct skb_frag_struct *frag;
3143
65689fef
AD
3144 i++;
3145 if (i == tx_ring->count)
3146 i = 0;
3147
9d5c8243
AK
3148 frag = &skb_shinfo(skb)->frags[f];
3149 len = frag->size;
3150
3151 buffer_info = &tx_ring->buffer_info[i];
3152 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3153 buffer_info->length = len;
3154 buffer_info->time_stamp = jiffies;
0e014cb1 3155 buffer_info->next_to_watch = i;
65689fef 3156 buffer_info->dma = map[count];
9d5c8243 3157 count++;
9d5c8243
AK
3158 }
3159
9d5c8243 3160 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3161 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243
AK
3162
3163 return count;
3164}
3165
3166static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3167 struct igb_ring *tx_ring,
3168 int tx_flags, int count, u32 paylen,
3169 u8 hdr_len)
3170{
3171 union e1000_adv_tx_desc *tx_desc = NULL;
3172 struct igb_buffer *buffer_info;
3173 u32 olinfo_status = 0, cmd_type_len;
3174 unsigned int i;
3175
3176 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3177 E1000_ADVTXD_DCMD_DEXT);
3178
3179 if (tx_flags & IGB_TX_FLAGS_VLAN)
3180 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3181
33af6bcc
PO
3182 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3183 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3184
9d5c8243
AK
3185 if (tx_flags & IGB_TX_FLAGS_TSO) {
3186 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3187
3188 /* insert tcp checksum */
3189 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3190
3191 /* insert ip checksum */
3192 if (tx_flags & IGB_TX_FLAGS_IPV4)
3193 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3194
3195 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3196 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3197 }
3198
7dfc16fa
AD
3199 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3200 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3201 IGB_TX_FLAGS_VLAN)))
661086df 3202 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
3203
3204 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3205
3206 i = tx_ring->next_to_use;
3207 while (count--) {
3208 buffer_info = &tx_ring->buffer_info[i];
3209 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3210 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3211 tx_desc->read.cmd_type_len =
3212 cpu_to_le32(cmd_type_len | buffer_info->length);
3213 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3214 i++;
3215 if (i == tx_ring->count)
3216 i = 0;
3217 }
3218
3219 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3220 /* Force memory writes to complete before letting h/w
3221 * know there are new descriptors to fetch. (Only
3222 * applicable for weak-ordered memory model archs,
3223 * such as IA-64). */
3224 wmb();
3225
3226 tx_ring->next_to_use = i;
3227 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3228 /* we need this if more than one processor can write to our tail
3229 * at a time, it syncronizes IO on IA64/Altix systems */
3230 mmiowb();
3231}
3232
3233static int __igb_maybe_stop_tx(struct net_device *netdev,
3234 struct igb_ring *tx_ring, int size)
3235{
3236 struct igb_adapter *adapter = netdev_priv(netdev);
3237
661086df 3238 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3239
9d5c8243
AK
3240 /* Herbert's original patch had:
3241 * smp_mb__after_netif_stop_queue();
3242 * but since that doesn't exist yet, just open code it. */
3243 smp_mb();
3244
3245 /* We need to check again in a case another CPU has just
3246 * made room available. */
c493ea45 3247 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
3248 return -EBUSY;
3249
3250 /* A reprieve! */
661086df 3251 netif_wake_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
3252 ++adapter->restart_queue;
3253 return 0;
3254}
3255
3256static int igb_maybe_stop_tx(struct net_device *netdev,
3257 struct igb_ring *tx_ring, int size)
3258{
c493ea45 3259 if (igb_desc_unused(tx_ring) >= size)
9d5c8243
AK
3260 return 0;
3261 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3262}
3263
9d5c8243
AK
3264static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3265 struct net_device *netdev,
3266 struct igb_ring *tx_ring)
3267{
3268 struct igb_adapter *adapter = netdev_priv(netdev);
0e014cb1 3269 unsigned int first;
9d5c8243 3270 unsigned int tx_flags = 0;
9d5c8243 3271 u8 hdr_len = 0;
65689fef 3272 int count = 0;
9d5c8243 3273 int tso = 0;
33af6bcc 3274 union skb_shared_tx *shtx;
9d5c8243 3275
9d5c8243
AK
3276 if (test_bit(__IGB_DOWN, &adapter->state)) {
3277 dev_kfree_skb_any(skb);
3278 return NETDEV_TX_OK;
3279 }
3280
3281 if (skb->len <= 0) {
3282 dev_kfree_skb_any(skb);
3283 return NETDEV_TX_OK;
3284 }
3285
9d5c8243
AK
3286 /* need: 1 descriptor per page,
3287 * + 2 desc gap to keep tail from touching head,
3288 * + 1 desc for skb->data,
3289 * + 1 desc for context descriptor,
3290 * otherwise try next time */
3291 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3292 /* this is a hard error */
9d5c8243
AK
3293 return NETDEV_TX_BUSY;
3294 }
33af6bcc
PO
3295
3296 /*
3297 * TODO: check that there currently is no other packet with
3298 * time stamping in the queue
3299 *
3300 * When doing time stamping, keep the connection to the socket
3301 * a while longer: it is still needed by skb_hwtstamp_tx(),
3302 * called either in igb_tx_hwtstamp() or by our caller when
3303 * doing software time stamping.
3304 */
3305 shtx = skb_tx(skb);
3306 if (unlikely(shtx->hardware)) {
3307 shtx->in_progress = 1;
3308 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3309 }
9d5c8243
AK
3310
3311 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3312 tx_flags |= IGB_TX_FLAGS_VLAN;
3313 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3314 }
3315
661086df
PWJ
3316 if (skb->protocol == htons(ETH_P_IP))
3317 tx_flags |= IGB_TX_FLAGS_IPV4;
3318
0e014cb1 3319 first = tx_ring->next_to_use;
9d5c8243
AK
3320 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3321 &hdr_len) : 0;
3322
3323 if (tso < 0) {
3324 dev_kfree_skb_any(skb);
9d5c8243
AK
3325 return NETDEV_TX_OK;
3326 }
3327
3328 if (tso)
3329 tx_flags |= IGB_TX_FLAGS_TSO;
bc1cbd34
AD
3330 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3331 (skb->ip_summed == CHECKSUM_PARTIAL))
3332 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3333
65689fef
AD
3334 /*
3335 * count reflects descriptors mapped, if 0 then mapping error
3336 * has occured and we need to rewind the descriptor queue
3337 */
3338 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3339
3340 if (count) {
3341 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3342 skb->len, hdr_len);
3343 netdev->trans_start = jiffies;
3344 /* Make sure there is space in the ring for the next send. */
3345 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3346 } else {
3347 dev_kfree_skb_any(skb);
3348 tx_ring->buffer_info[first].time_stamp = 0;
3349 tx_ring->next_to_use = first;
3350 }
9d5c8243 3351
9d5c8243
AK
3352 return NETDEV_TX_OK;
3353}
3354
3355static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3356{
3357 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
3358 struct igb_ring *tx_ring;
3359
661086df 3360 int r_idx = 0;
1bfaf07b 3361 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3362 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3363
3364 /* This goes back to the question of how to logically map a tx queue
3365 * to a flow. Right now, performance is impacted slightly negatively
3366 * if using multiple tx queues. If the stack breaks away from a
3367 * single qdisc implementation, we can look at this again. */
3368 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3369}
3370
3371/**
3372 * igb_tx_timeout - Respond to a Tx Hang
3373 * @netdev: network interface device structure
3374 **/
3375static void igb_tx_timeout(struct net_device *netdev)
3376{
3377 struct igb_adapter *adapter = netdev_priv(netdev);
3378 struct e1000_hw *hw = &adapter->hw;
3379
3380 /* Do the reset outside of interrupt context */
3381 adapter->tx_timeout_count++;
3382 schedule_work(&adapter->reset_task);
265de409
AD
3383 wr32(E1000_EICS,
3384 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3385}
3386
3387static void igb_reset_task(struct work_struct *work)
3388{
3389 struct igb_adapter *adapter;
3390 adapter = container_of(work, struct igb_adapter, reset_task);
3391
3392 igb_reinit_locked(adapter);
3393}
3394
3395/**
3396 * igb_get_stats - Get System Network Statistics
3397 * @netdev: network interface device structure
3398 *
3399 * Returns the address of the device statistics structure.
3400 * The statistics are actually updated from the timer callback.
3401 **/
73cd78f1 3402static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243
AK
3403{
3404 struct igb_adapter *adapter = netdev_priv(netdev);
3405
3406 /* only return the current stats */
3407 return &adapter->net_stats;
3408}
3409
3410/**
3411 * igb_change_mtu - Change the Maximum Transfer Unit
3412 * @netdev: network interface device structure
3413 * @new_mtu: new value for maximum frame size
3414 *
3415 * Returns 0 on success, negative on failure
3416 **/
3417static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3418{
3419 struct igb_adapter *adapter = netdev_priv(netdev);
3420 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3421
3422 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3423 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3424 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3425 return -EINVAL;
3426 }
3427
9d5c8243
AK
3428 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3429 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3430 return -EINVAL;
3431 }
3432
3433 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3434 msleep(1);
73cd78f1 3435
9d5c8243
AK
3436 /* igb_down has a dependency on max_frame_size */
3437 adapter->max_frame_size = max_frame;
3438 if (netif_running(netdev))
3439 igb_down(adapter);
3440
3441 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3442 * means we reserve 2 more, this pushes us to allocate from the next
3443 * larger slab size.
3444 * i.e. RXBUFFER_2048 --> size-4096 slab
3445 */
3446
3447 if (max_frame <= IGB_RXBUFFER_256)
3448 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3449 else if (max_frame <= IGB_RXBUFFER_512)
3450 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3451 else if (max_frame <= IGB_RXBUFFER_1024)
3452 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3453 else if (max_frame <= IGB_RXBUFFER_2048)
3454 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3455 else
bf36c1a0
AD
3456#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3457 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3458#else
3459 adapter->rx_buffer_len = PAGE_SIZE / 2;
3460#endif
e1739522
AD
3461
3462 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3463 if (adapter->vfs_allocated_count &&
3464 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3465 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3466
9d5c8243
AK
3467 /* adjust allocation if LPE protects us, and we aren't using SBP */
3468 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3469 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3470 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3471
3472 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3473 netdev->mtu, new_mtu);
3474 netdev->mtu = new_mtu;
3475
3476 if (netif_running(netdev))
3477 igb_up(adapter);
3478 else
3479 igb_reset(adapter);
3480
3481 clear_bit(__IGB_RESETTING, &adapter->state);
3482
3483 return 0;
3484}
3485
3486/**
3487 * igb_update_stats - Update the board statistics counters
3488 * @adapter: board private structure
3489 **/
3490
3491void igb_update_stats(struct igb_adapter *adapter)
3492{
3493 struct e1000_hw *hw = &adapter->hw;
3494 struct pci_dev *pdev = adapter->pdev;
3495 u16 phy_tmp;
3496
3497#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3498
3499 /*
3500 * Prevent stats update while adapter is being reset, or if the pci
3501 * connection is down.
3502 */
3503 if (adapter->link_speed == 0)
3504 return;
3505 if (pci_channel_offline(pdev))
3506 return;
3507
3508 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3509 adapter->stats.gprc += rd32(E1000_GPRC);
3510 adapter->stats.gorc += rd32(E1000_GORCL);
3511 rd32(E1000_GORCH); /* clear GORCL */
3512 adapter->stats.bprc += rd32(E1000_BPRC);
3513 adapter->stats.mprc += rd32(E1000_MPRC);
3514 adapter->stats.roc += rd32(E1000_ROC);
3515
3516 adapter->stats.prc64 += rd32(E1000_PRC64);
3517 adapter->stats.prc127 += rd32(E1000_PRC127);
3518 adapter->stats.prc255 += rd32(E1000_PRC255);
3519 adapter->stats.prc511 += rd32(E1000_PRC511);
3520 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3521 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3522 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3523 adapter->stats.sec += rd32(E1000_SEC);
3524
3525 adapter->stats.mpc += rd32(E1000_MPC);
3526 adapter->stats.scc += rd32(E1000_SCC);
3527 adapter->stats.ecol += rd32(E1000_ECOL);
3528 adapter->stats.mcc += rd32(E1000_MCC);
3529 adapter->stats.latecol += rd32(E1000_LATECOL);
3530 adapter->stats.dc += rd32(E1000_DC);
3531 adapter->stats.rlec += rd32(E1000_RLEC);
3532 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3533 adapter->stats.xontxc += rd32(E1000_XONTXC);
3534 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3535 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3536 adapter->stats.fcruc += rd32(E1000_FCRUC);
3537 adapter->stats.gptc += rd32(E1000_GPTC);
3538 adapter->stats.gotc += rd32(E1000_GOTCL);
3539 rd32(E1000_GOTCH); /* clear GOTCL */
3540 adapter->stats.rnbc += rd32(E1000_RNBC);
3541 adapter->stats.ruc += rd32(E1000_RUC);
3542 adapter->stats.rfc += rd32(E1000_RFC);
3543 adapter->stats.rjc += rd32(E1000_RJC);
3544 adapter->stats.tor += rd32(E1000_TORH);
3545 adapter->stats.tot += rd32(E1000_TOTH);
3546 adapter->stats.tpr += rd32(E1000_TPR);
3547
3548 adapter->stats.ptc64 += rd32(E1000_PTC64);
3549 adapter->stats.ptc127 += rd32(E1000_PTC127);
3550 adapter->stats.ptc255 += rd32(E1000_PTC255);
3551 adapter->stats.ptc511 += rd32(E1000_PTC511);
3552 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3553 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3554
3555 adapter->stats.mptc += rd32(E1000_MPTC);
3556 adapter->stats.bptc += rd32(E1000_BPTC);
3557
3558 /* used for adaptive IFS */
3559
3560 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3561 adapter->stats.tpt += hw->mac.tx_packet_delta;
3562 hw->mac.collision_delta = rd32(E1000_COLC);
3563 adapter->stats.colc += hw->mac.collision_delta;
3564
3565 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3566 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3567 adapter->stats.tncrs += rd32(E1000_TNCRS);
3568 adapter->stats.tsctc += rd32(E1000_TSCTC);
3569 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3570
3571 adapter->stats.iac += rd32(E1000_IAC);
3572 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3573 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3574 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3575 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3576 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3577 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3578 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3579 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3580
3581 /* Fill out the OS statistics structure */
3582 adapter->net_stats.multicast = adapter->stats.mprc;
3583 adapter->net_stats.collisions = adapter->stats.colc;
3584
3585 /* Rx Errors */
3586
3587 /* RLEC on some newer hardware can be incorrect so build
3588 * our own version based on RUC and ROC */
3589 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3590 adapter->stats.crcerrs + adapter->stats.algnerrc +
3591 adapter->stats.ruc + adapter->stats.roc +
3592 adapter->stats.cexterr;
3593 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3594 adapter->stats.roc;
3595 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3596 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3597 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3598
3599 /* Tx Errors */
3600 adapter->net_stats.tx_errors = adapter->stats.ecol +
3601 adapter->stats.latecol;
3602 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3603 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3604 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3605
3606 /* Tx Dropped needs to be maintained elsewhere */
3607
3608 /* Phy Stats */
3609 if (hw->phy.media_type == e1000_media_type_copper) {
3610 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 3611 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
3612 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3613 adapter->phy_stats.idle_errors += phy_tmp;
3614 }
3615 }
3616
3617 /* Management Stats */
3618 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3619 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3620 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3621}
3622
9d5c8243
AK
3623static irqreturn_t igb_msix_other(int irq, void *data)
3624{
3625 struct net_device *netdev = data;
3626 struct igb_adapter *adapter = netdev_priv(netdev);
3627 struct e1000_hw *hw = &adapter->hw;
844290e5 3628 u32 icr = rd32(E1000_ICR);
9d5c8243 3629
844290e5 3630 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083
AD
3631
3632 if(icr & E1000_ICR_DOUTSYNC) {
3633 /* HW is reporting DMA is out of sync */
3634 adapter->stats.doosync++;
3635 }
eebbbdba 3636
4ae196df
AD
3637 /* Check for a mailbox event */
3638 if (icr & E1000_ICR_VMMB)
3639 igb_msg_task(adapter);
3640
3641 if (icr & E1000_ICR_LSC) {
3642 hw->mac.get_link_status = 1;
3643 /* guard against interrupt when we're going down */
3644 if (!test_bit(__IGB_DOWN, &adapter->state))
3645 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3646 }
3647
3648 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
844290e5 3649 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3650
3651 return IRQ_HANDLED;
3652}
3653
3654static irqreturn_t igb_msix_tx(int irq, void *data)
3655{
3656 struct igb_ring *tx_ring = data;
3657 struct igb_adapter *adapter = tx_ring->adapter;
3658 struct e1000_hw *hw = &adapter->hw;
3659
421e02f0 3660#ifdef CONFIG_IGB_DCA
7dfc16fa 3661 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3662 igb_update_tx_dca(tx_ring);
3663#endif
73cd78f1 3664
9d5c8243
AK
3665 tx_ring->total_bytes = 0;
3666 tx_ring->total_packets = 0;
661086df
PWJ
3667
3668 /* auto mask will automatically reenable the interrupt when we write
3669 * EICS */
3b644cf6 3670 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3671 /* Ring was not completely cleaned, so fire another interrupt */
3672 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3673 else
9d5c8243 3674 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3675
9d5c8243
AK
3676 return IRQ_HANDLED;
3677}
3678
6eb5a7f1
AD
3679static void igb_write_itr(struct igb_ring *ring)
3680{
3681 struct e1000_hw *hw = &ring->adapter->hw;
3682 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3683 switch (hw->mac.type) {
3684 case e1000_82576:
73cd78f1 3685 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3686 0x80000000);
3687 break;
3688 default:
73cd78f1 3689 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3690 (ring->itr_val << 16));
3691 break;
3692 }
3693 ring->set_itr = 0;
3694 }
3695}
3696
9d5c8243
AK
3697static irqreturn_t igb_msix_rx(int irq, void *data)
3698{
3699 struct igb_ring *rx_ring = data;
9d5c8243 3700
844290e5
PW
3701 /* Write the ITR value calculated at the end of the
3702 * previous interrupt.
3703 */
9d5c8243 3704
6eb5a7f1 3705 igb_write_itr(rx_ring);
9d5c8243 3706
288379f0
BH
3707 if (napi_schedule_prep(&rx_ring->napi))
3708 __napi_schedule(&rx_ring->napi);
844290e5 3709
421e02f0 3710#ifdef CONFIG_IGB_DCA
8d253320 3711 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3712 igb_update_rx_dca(rx_ring);
3713#endif
3714 return IRQ_HANDLED;
3715}
3716
421e02f0 3717#ifdef CONFIG_IGB_DCA
fe4506b6
JC
3718static void igb_update_rx_dca(struct igb_ring *rx_ring)
3719{
3720 u32 dca_rxctrl;
3721 struct igb_adapter *adapter = rx_ring->adapter;
3722 struct e1000_hw *hw = &adapter->hw;
3723 int cpu = get_cpu();
26bc19ec 3724 int q = rx_ring->reg_idx;
fe4506b6
JC
3725
3726 if (rx_ring->cpu != cpu) {
3727 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
2d064c06
AD
3728 if (hw->mac.type == e1000_82576) {
3729 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
92be7917 3730 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3731 E1000_DCA_RXCTRL_CPUID_SHIFT;
3732 } else {
3733 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 3734 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3735 }
fe4506b6
JC
3736 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3737 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3738 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3739 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3740 rx_ring->cpu = cpu;
3741 }
3742 put_cpu();
3743}
3744
3745static void igb_update_tx_dca(struct igb_ring *tx_ring)
3746{
3747 u32 dca_txctrl;
3748 struct igb_adapter *adapter = tx_ring->adapter;
3749 struct e1000_hw *hw = &adapter->hw;
3750 int cpu = get_cpu();
26bc19ec 3751 int q = tx_ring->reg_idx;
fe4506b6
JC
3752
3753 if (tx_ring->cpu != cpu) {
3754 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
2d064c06
AD
3755 if (hw->mac.type == e1000_82576) {
3756 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
92be7917 3757 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3758 E1000_DCA_TXCTRL_CPUID_SHIFT;
3759 } else {
3760 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
92be7917 3761 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3762 }
fe4506b6
JC
3763 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3764 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3765 tx_ring->cpu = cpu;
3766 }
3767 put_cpu();
3768}
3769
3770static void igb_setup_dca(struct igb_adapter *adapter)
3771{
3772 int i;
3773
7dfc16fa 3774 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
3775 return;
3776
3777 for (i = 0; i < adapter->num_tx_queues; i++) {
3778 adapter->tx_ring[i].cpu = -1;
3779 igb_update_tx_dca(&adapter->tx_ring[i]);
3780 }
3781 for (i = 0; i < adapter->num_rx_queues; i++) {
3782 adapter->rx_ring[i].cpu = -1;
3783 igb_update_rx_dca(&adapter->rx_ring[i]);
3784 }
3785}
3786
3787static int __igb_notify_dca(struct device *dev, void *data)
3788{
3789 struct net_device *netdev = dev_get_drvdata(dev);
3790 struct igb_adapter *adapter = netdev_priv(netdev);
3791 struct e1000_hw *hw = &adapter->hw;
3792 unsigned long event = *(unsigned long *)data;
3793
3794 switch (event) {
3795 case DCA_PROVIDER_ADD:
3796 /* if already enabled, don't do it again */
7dfc16fa 3797 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 3798 break;
fe4506b6
JC
3799 /* Always use CB2 mode, difference is masked
3800 * in the CB driver. */
cbd347ad 3801 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6 3802 if (dca_add_requester(dev) == 0) {
bbd98fe4 3803 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3804 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3805 igb_setup_dca(adapter);
3806 break;
3807 }
3808 /* Fall Through since DCA is disabled. */
3809 case DCA_PROVIDER_REMOVE:
7dfc16fa 3810 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3811 /* without this a class_device is left
3812 * hanging around in the sysfs model */
3813 dca_remove_requester(dev);
3814 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 3815 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 3816 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
3817 }
3818 break;
3819 }
bbd98fe4 3820
fe4506b6 3821 return 0;
9d5c8243
AK
3822}
3823
fe4506b6
JC
3824static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3825 void *p)
3826{
3827 int ret_val;
3828
3829 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3830 __igb_notify_dca);
3831
3832 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3833}
421e02f0 3834#endif /* CONFIG_IGB_DCA */
9d5c8243 3835
4ae196df
AD
3836static void igb_ping_all_vfs(struct igb_adapter *adapter)
3837{
3838 struct e1000_hw *hw = &adapter->hw;
3839 u32 ping;
3840 int i;
3841
3842 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3843 ping = E1000_PF_CONTROL_MSG;
3844 if (adapter->vf_data[i].clear_to_send)
3845 ping |= E1000_VT_MSGTYPE_CTS;
3846 igb_write_mbx(hw, &ping, 1, i);
3847 }
3848}
3849
3850static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3851 u32 *msgbuf, u32 vf)
3852{
3853 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3854 u16 *hash_list = (u16 *)&msgbuf[1];
3855 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3856 int i;
3857
3858 /* only up to 30 hash values supported */
3859 if (n > 30)
3860 n = 30;
3861
3862 /* salt away the number of multi cast addresses assigned
3863 * to this VF for later use to restore when the PF multi cast
3864 * list changes
3865 */
3866 vf_data->num_vf_mc_hashes = n;
3867
3868 /* VFs are limited to using the MTA hash table for their multicast
3869 * addresses */
3870 for (i = 0; i < n; i++)
3871 vf_data->vf_mc_hashes[i] = hash_list[i];;
3872
3873 /* Flush and reset the mta with the new values */
3874 igb_set_multi(adapter->netdev);
3875
3876 return 0;
3877}
3878
3879static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3880{
3881 struct e1000_hw *hw = &adapter->hw;
3882 struct vf_data_storage *vf_data;
3883 int i, j;
3884
3885 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3886 vf_data = &adapter->vf_data[i];
75f4f382 3887 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4ae196df
AD
3888 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3889 }
3890}
3891
3892static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3893{
3894 struct e1000_hw *hw = &adapter->hw;
3895 u32 pool_mask, reg, vid;
3896 int i;
3897
3898 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3899
3900 /* Find the vlan filter for this id */
3901 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3902 reg = rd32(E1000_VLVF(i));
3903
3904 /* remove the vf from the pool */
3905 reg &= ~pool_mask;
3906
3907 /* if pool is empty then remove entry from vfta */
3908 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3909 (reg & E1000_VLVF_VLANID_ENABLE)) {
3910 reg = 0;
3911 vid = reg & E1000_VLVF_VLANID_MASK;
3912 igb_vfta_set(hw, vid, false);
3913 }
3914
3915 wr32(E1000_VLVF(i), reg);
3916 }
3917}
3918
3919static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3920{
3921 struct e1000_hw *hw = &adapter->hw;
3922 u32 reg, i;
3923
3924 /* It is an error to call this function when VFs are not enabled */
3925 if (!adapter->vfs_allocated_count)
3926 return -1;
3927
3928 /* Find the vlan filter for this id */
3929 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3930 reg = rd32(E1000_VLVF(i));
3931 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3932 vid == (reg & E1000_VLVF_VLANID_MASK))
3933 break;
3934 }
3935
3936 if (add) {
3937 if (i == E1000_VLVF_ARRAY_SIZE) {
3938 /* Did not find a matching VLAN ID entry that was
3939 * enabled. Search for a free filter entry, i.e.
3940 * one without the enable bit set
3941 */
3942 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3943 reg = rd32(E1000_VLVF(i));
3944 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3945 break;
3946 }
3947 }
3948 if (i < E1000_VLVF_ARRAY_SIZE) {
3949 /* Found an enabled/available entry */
3950 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3951
3952 /* if !enabled we need to set this up in vfta */
3953 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
cad6d05f
AD
3954 /* add VID to filter table, if bit already set
3955 * PF must have added it outside of table */
3956 if (igb_vfta_set(hw, vid, true))
3957 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3958 adapter->vfs_allocated_count);
4ae196df
AD
3959 reg |= E1000_VLVF_VLANID_ENABLE;
3960 }
cad6d05f
AD
3961 reg &= ~E1000_VLVF_VLANID_MASK;
3962 reg |= vid;
4ae196df
AD
3963
3964 wr32(E1000_VLVF(i), reg);
3965 return 0;
3966 }
3967 } else {
3968 if (i < E1000_VLVF_ARRAY_SIZE) {
3969 /* remove vf from the pool */
3970 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3971 /* if pool is empty then remove entry from vfta */
3972 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3973 reg = 0;
3974 igb_vfta_set(hw, vid, false);
3975 }
3976 wr32(E1000_VLVF(i), reg);
3977 return 0;
3978 }
3979 }
3980 return -1;
3981}
3982
3983static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3984{
3985 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3986 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3987
3988 return igb_vlvf_set(adapter, vid, add, vf);
3989}
3990
3991static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3992{
3993 struct e1000_hw *hw = &adapter->hw;
3994
3995 /* disable mailbox functionality for vf */
3996 adapter->vf_data[vf].clear_to_send = false;
3997
3998 /* reset offloads to defaults */
3999 igb_set_vmolr(hw, vf);
4000
4001 /* reset vlans for device */
4002 igb_clear_vf_vfta(adapter, vf);
4003
4004 /* reset multicast table array for vf */
4005 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4006
4007 /* Flush and reset the mta with the new values */
4008 igb_set_multi(adapter->netdev);
4009}
4010
4011static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4012{
4013 struct e1000_hw *hw = &adapter->hw;
4014 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4015 u32 reg, msgbuf[3];
4016 u8 *addr = (u8 *)(&msgbuf[1]);
4017
4018 /* process all the same items cleared in a function level reset */
4019 igb_vf_reset_event(adapter, vf);
4020
4021 /* set vf mac address */
4022 igb_rar_set(hw, vf_mac, vf + 1);
4023 igb_set_rah_pool(hw, vf, vf + 1);
4024
4025 /* enable transmit and receive for vf */
4026 reg = rd32(E1000_VFTE);
4027 wr32(E1000_VFTE, reg | (1 << vf));
4028 reg = rd32(E1000_VFRE);
4029 wr32(E1000_VFRE, reg | (1 << vf));
4030
4031 /* enable mailbox functionality for vf */
4032 adapter->vf_data[vf].clear_to_send = true;
4033
4034 /* reply to reset with ack and vf mac address */
4035 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4036 memcpy(addr, vf_mac, 6);
4037 igb_write_mbx(hw, msgbuf, 3, vf);
4038}
4039
4040static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4041{
4042 unsigned char *addr = (char *)&msg[1];
4043 int err = -1;
4044
4045 if (is_valid_ether_addr(addr))
4046 err = igb_set_vf_mac(adapter, vf, addr);
4047
4048 return err;
4049
4050}
4051
4052static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4053{
4054 struct e1000_hw *hw = &adapter->hw;
4055 u32 msg = E1000_VT_MSGTYPE_NACK;
4056
4057 /* if device isn't clear to send it shouldn't be reading either */
4058 if (!adapter->vf_data[vf].clear_to_send)
4059 igb_write_mbx(hw, &msg, 1, vf);
4060}
4061
4062
4063static void igb_msg_task(struct igb_adapter *adapter)
4064{
4065 struct e1000_hw *hw = &adapter->hw;
4066 u32 vf;
4067
4068 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4069 /* process any reset requests */
4070 if (!igb_check_for_rst(hw, vf)) {
4071 adapter->vf_data[vf].clear_to_send = false;
4072 igb_vf_reset_event(adapter, vf);
4073 }
4074
4075 /* process any messages pending */
4076 if (!igb_check_for_msg(hw, vf))
4077 igb_rcv_msg_from_vf(adapter, vf);
4078
4079 /* process any acks */
4080 if (!igb_check_for_ack(hw, vf))
4081 igb_rcv_ack_from_vf(adapter, vf);
4082
4083 }
4084}
4085
4086static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4087{
4088 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4089 u32 msgbuf[mbx_size];
4090 struct e1000_hw *hw = &adapter->hw;
4091 s32 retval;
4092
4093 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4094
4095 if (retval)
4096 dev_err(&adapter->pdev->dev,
4097 "Error receiving message from VF\n");
4098
4099 /* this is a message we already processed, do nothing */
4100 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4101 return retval;
4102
4103 /*
4104 * until the vf completes a reset it should not be
4105 * allowed to start any configuration.
4106 */
4107
4108 if (msgbuf[0] == E1000_VF_RESET) {
4109 igb_vf_reset_msg(adapter, vf);
4110
4111 return retval;
4112 }
4113
4114 if (!adapter->vf_data[vf].clear_to_send) {
4115 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4116 igb_write_mbx(hw, msgbuf, 1, vf);
4117 return retval;
4118 }
4119
4120 switch ((msgbuf[0] & 0xFFFF)) {
4121 case E1000_VF_SET_MAC_ADDR:
4122 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4123 break;
4124 case E1000_VF_SET_MULTICAST:
4125 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4126 break;
4127 case E1000_VF_SET_LPE:
4128 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4129 break;
4130 case E1000_VF_SET_VLAN:
4131 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4132 break;
4133 default:
4134 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4135 retval = -1;
4136 break;
4137 }
4138
4139 /* notify the VF of the results of what it sent us */
4140 if (retval)
4141 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4142 else
4143 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4144
4145 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4146
4147 igb_write_mbx(hw, msgbuf, 1, vf);
4148
4149 return retval;
4150}
4151
9d5c8243
AK
4152/**
4153 * igb_intr_msi - Interrupt Handler
4154 * @irq: interrupt number
4155 * @data: pointer to a network interface device structure
4156 **/
4157static irqreturn_t igb_intr_msi(int irq, void *data)
4158{
4159 struct net_device *netdev = data;
4160 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4161 struct e1000_hw *hw = &adapter->hw;
4162 /* read ICR disables interrupts using IAM */
4163 u32 icr = rd32(E1000_ICR);
4164
6eb5a7f1 4165 igb_write_itr(adapter->rx_ring);
9d5c8243 4166
dda0e083
AD
4167 if(icr & E1000_ICR_DOUTSYNC) {
4168 /* HW is reporting DMA is out of sync */
4169 adapter->stats.doosync++;
4170 }
4171
9d5c8243
AK
4172 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4173 hw->mac.get_link_status = 1;
4174 if (!test_bit(__IGB_DOWN, &adapter->state))
4175 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4176 }
4177
288379f0 4178 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4179
4180 return IRQ_HANDLED;
4181}
4182
4183/**
4a3c6433 4184 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4185 * @irq: interrupt number
4186 * @data: pointer to a network interface device structure
4187 **/
4188static irqreturn_t igb_intr(int irq, void *data)
4189{
4190 struct net_device *netdev = data;
4191 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4192 struct e1000_hw *hw = &adapter->hw;
4193 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4194 * need for the IMC write */
4195 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4196 if (!icr)
4197 return IRQ_NONE; /* Not our interrupt */
4198
6eb5a7f1 4199 igb_write_itr(adapter->rx_ring);
9d5c8243
AK
4200
4201 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4202 * not set, then the adapter didn't send an interrupt */
4203 if (!(icr & E1000_ICR_INT_ASSERTED))
4204 return IRQ_NONE;
4205
dda0e083
AD
4206 if(icr & E1000_ICR_DOUTSYNC) {
4207 /* HW is reporting DMA is out of sync */
4208 adapter->stats.doosync++;
4209 }
4210
9d5c8243
AK
4211 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4212 hw->mac.get_link_status = 1;
4213 /* guard against interrupt when we're going down */
4214 if (!test_bit(__IGB_DOWN, &adapter->state))
4215 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4216 }
4217
288379f0 4218 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4219
4220 return IRQ_HANDLED;
4221}
4222
46544258 4223static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
9d5c8243 4224{
661086df 4225 struct igb_adapter *adapter = rx_ring->adapter;
46544258 4226 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4227
46544258
AD
4228 if (adapter->itr_setting & 3) {
4229 if (adapter->num_rx_queues == 1)
6eb5a7f1 4230 igb_set_itr(adapter);
46544258
AD
4231 else
4232 igb_update_ring_itr(rx_ring);
9d5c8243
AK
4233 }
4234
46544258
AD
4235 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4236 if (adapter->msix_entries)
4237 wr32(E1000_EIMS, rx_ring->eims_value);
4238 else
4239 igb_irq_enable(adapter);
4240 }
9d5c8243
AK
4241}
4242
46544258
AD
4243/**
4244 * igb_poll - NAPI Rx polling callback
4245 * @napi: napi polling structure
4246 * @budget: count of how many packets we should handle
4247 **/
4248static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243
AK
4249{
4250 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
9d5c8243
AK
4251 int work_done = 0;
4252
421e02f0 4253#ifdef CONFIG_IGB_DCA
bd38e5d1 4254 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
4255 igb_update_rx_dca(rx_ring);
4256#endif
3b644cf6 4257 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243 4258
46544258
AD
4259 if (rx_ring->buddy) {
4260#ifdef CONFIG_IGB_DCA
bd38e5d1 4261 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
46544258
AD
4262 igb_update_tx_dca(rx_ring->buddy);
4263#endif
4264 if (!igb_clean_tx_irq(rx_ring->buddy))
4265 work_done = budget;
4266 }
4267
9d5c8243 4268 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4269 if (work_done < budget) {
288379f0 4270 napi_complete(napi);
46544258 4271 igb_rx_irq_enable(rx_ring);
9d5c8243
AK
4272 }
4273
46544258 4274 return work_done;
9d5c8243 4275}
6d8126f9 4276
33af6bcc
PO
4277/**
4278 * igb_hwtstamp - utility function which checks for TX time stamp
4279 * @adapter: board private structure
4280 * @skb: packet that was just sent
4281 *
4282 * If we were asked to do hardware stamping and such a time stamp is
4283 * available, then it must have been for this skb here because we only
4284 * allow only one such packet into the queue.
4285 */
4286static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4287{
4288 union skb_shared_tx *shtx = skb_tx(skb);
4289 struct e1000_hw *hw = &adapter->hw;
4290
4291 if (unlikely(shtx->hardware)) {
4292 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4293 if (valid) {
4294 u64 regval = rd32(E1000_TXSTMPL);
4295 u64 ns;
4296 struct skb_shared_hwtstamps shhwtstamps;
4297
4298 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4299 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4300 ns = timecounter_cyc2time(&adapter->clock,
4301 regval);
4302 timecompare_update(&adapter->compare, ns);
4303 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4304 shhwtstamps.syststamp =
4305 timecompare_transform(&adapter->compare, ns);
4306 skb_tstamp_tx(skb, &shhwtstamps);
4307 }
33af6bcc
PO
4308 }
4309}
4310
9d5c8243
AK
4311/**
4312 * igb_clean_tx_irq - Reclaim resources after transmit completes
4313 * @adapter: board private structure
4314 * returns true if ring is completely cleaned
4315 **/
3b644cf6 4316static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 4317{
3b644cf6 4318 struct igb_adapter *adapter = tx_ring->adapter;
3b644cf6 4319 struct net_device *netdev = adapter->netdev;
0e014cb1 4320 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4321 struct igb_buffer *buffer_info;
4322 struct sk_buff *skb;
0e014cb1 4323 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4324 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
4325 unsigned int i, eop, count = 0;
4326 bool cleaned = false;
9d5c8243 4327
9d5c8243 4328 i = tx_ring->next_to_clean;
0e014cb1
AD
4329 eop = tx_ring->buffer_info[i].next_to_watch;
4330 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4331
4332 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4333 (count < tx_ring->count)) {
4334 for (cleaned = false; !cleaned; count++) {
4335 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 4336 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 4337 cleaned = (i == eop);
9d5c8243
AK
4338 skb = buffer_info->skb;
4339
4340 if (skb) {
4341 unsigned int segs, bytecount;
4342 /* gso_segs is currently only valid for tcp */
4343 segs = skb_shinfo(skb)->gso_segs ?: 1;
4344 /* multiply data chunks by size of headers */
4345 bytecount = ((segs - 1) * skb_headlen(skb)) +
4346 skb->len;
4347 total_packets += segs;
4348 total_bytes += bytecount;
33af6bcc
PO
4349
4350 igb_tx_hwtstamp(adapter, skb);
9d5c8243
AK
4351 }
4352
4353 igb_unmap_and_free_tx_resource(adapter, buffer_info);
0e014cb1 4354 tx_desc->wb.status = 0;
9d5c8243
AK
4355
4356 i++;
4357 if (i == tx_ring->count)
4358 i = 0;
9d5c8243 4359 }
0e014cb1
AD
4360 eop = tx_ring->buffer_info[i].next_to_watch;
4361 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4362 }
4363
9d5c8243
AK
4364 tx_ring->next_to_clean = i;
4365
fc7d345d 4366 if (unlikely(count &&
9d5c8243 4367 netif_carrier_ok(netdev) &&
c493ea45 4368 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
4369 /* Make sure that anybody stopping the queue after this
4370 * sees the new next_to_clean.
4371 */
4372 smp_mb();
661086df
PWJ
4373 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4374 !(test_bit(__IGB_DOWN, &adapter->state))) {
4375 netif_wake_subqueue(netdev, tx_ring->queue_index);
4376 ++adapter->restart_queue;
4377 }
9d5c8243
AK
4378 }
4379
4380 if (tx_ring->detect_tx_hung) {
4381 /* Detect a transmit hang in hardware, this serializes the
4382 * check with the clearing of time_stamp and movement of i */
4383 tx_ring->detect_tx_hung = false;
4384 if (tx_ring->buffer_info[i].time_stamp &&
4385 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4386 (adapter->tx_timeout_factor * HZ))
4387 && !(rd32(E1000_STATUS) &
4388 E1000_STATUS_TXOFF)) {
4389
9d5c8243
AK
4390 /* detected Tx unit hang */
4391 dev_err(&adapter->pdev->dev,
4392 "Detected Tx Unit Hang\n"
2d064c06 4393 " Tx Queue <%d>\n"
9d5c8243
AK
4394 " TDH <%x>\n"
4395 " TDT <%x>\n"
4396 " next_to_use <%x>\n"
4397 " next_to_clean <%x>\n"
9d5c8243
AK
4398 "buffer_info[next_to_clean]\n"
4399 " time_stamp <%lx>\n"
0e014cb1 4400 " next_to_watch <%x>\n"
9d5c8243
AK
4401 " jiffies <%lx>\n"
4402 " desc.status <%x>\n",
2d064c06 4403 tx_ring->queue_index,
9d5c8243
AK
4404 readl(adapter->hw.hw_addr + tx_ring->head),
4405 readl(adapter->hw.hw_addr + tx_ring->tail),
4406 tx_ring->next_to_use,
4407 tx_ring->next_to_clean,
9d5c8243 4408 tx_ring->buffer_info[i].time_stamp,
0e014cb1 4409 eop,
9d5c8243 4410 jiffies,
0e014cb1 4411 eop_desc->wb.status);
661086df 4412 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
4413 }
4414 }
4415 tx_ring->total_bytes += total_bytes;
4416 tx_ring->total_packets += total_packets;
e21ed353
AD
4417 tx_ring->tx_stats.bytes += total_bytes;
4418 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
4419 adapter->net_stats.tx_bytes += total_bytes;
4420 adapter->net_stats.tx_packets += total_packets;
0e014cb1 4421 return (count < tx_ring->count);
9d5c8243
AK
4422}
4423
9d5c8243
AK
4424/**
4425 * igb_receive_skb - helper function to handle rx indications
eebbbdba 4426 * @ring: pointer to receive ring receving this packet
9d5c8243 4427 * @status: descriptor status field as written by hardware
73cd78f1 4428 * @rx_desc: receive descriptor containing vlan and type information.
9d5c8243
AK
4429 * @skb: pointer to sk_buff to be indicated to stack
4430 **/
d3352520
AD
4431static void igb_receive_skb(struct igb_ring *ring, u8 status,
4432 union e1000_adv_rx_desc * rx_desc,
4433 struct sk_buff *skb)
4434{
4435 struct igb_adapter * adapter = ring->adapter;
4436 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4437
0c8dfc83 4438 skb_record_rx_queue(skb, ring->queue_index);
5c0999b7 4439 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
d3352520 4440 if (vlan_extracted)
5c0999b7
HX
4441 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4442 le16_to_cpu(rx_desc->wb.upper.vlan),
4443 skb);
d3352520 4444 else
5c0999b7 4445 napi_gro_receive(&ring->napi, skb);
d3352520 4446 } else {
d3352520
AD
4447 if (vlan_extracted)
4448 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4449 le16_to_cpu(rx_desc->wb.upper.vlan));
4450 else
d3352520 4451 netif_receive_skb(skb);
d3352520 4452 }
9d5c8243
AK
4453}
4454
9d5c8243
AK
4455static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4456 u32 status_err, struct sk_buff *skb)
4457{
4458 skb->ip_summed = CHECKSUM_NONE;
4459
4460 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4461 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4462 return;
4463 /* TCP/UDP checksum error bit is set */
4464 if (status_err &
4465 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4466 /* let the stack verify checksum errors */
4467 adapter->hw_csum_err++;
4468 return;
4469 }
4470 /* It must be a TCP or UDP packet with a valid checksum */
4471 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4472 skb->ip_summed = CHECKSUM_UNNECESSARY;
4473
4474 adapter->hw_csum_good++;
4475}
4476
3b644cf6
MW
4477static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4478 int *work_done, int budget)
9d5c8243 4479{
3b644cf6 4480 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 4481 struct net_device *netdev = adapter->netdev;
33af6bcc 4482 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4483 struct pci_dev *pdev = adapter->pdev;
4484 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4485 struct igb_buffer *buffer_info , *next_buffer;
4486 struct sk_buff *skb;
9d5c8243
AK
4487 bool cleaned = false;
4488 int cleaned_count = 0;
4489 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1
AD
4490 unsigned int i;
4491 u32 length, hlen, staterr;
9d5c8243
AK
4492
4493 i = rx_ring->next_to_clean;
69d3ca53 4494 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
4495 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4496 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4497
4498 while (staterr & E1000_RXD_STAT_DD) {
4499 if (*work_done >= budget)
4500 break;
4501 (*work_done)++;
9d5c8243 4502
69d3ca53
AD
4503 skb = buffer_info->skb;
4504 prefetch(skb->data - NET_IP_ALIGN);
4505 buffer_info->skb = NULL;
4506
4507 i++;
4508 if (i == rx_ring->count)
4509 i = 0;
4510 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4511 prefetch(next_rxd);
4512 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
4513
4514 length = le16_to_cpu(rx_desc->wb.upper.length);
4515 cleaned = true;
4516 cleaned_count++;
4517
bf36c1a0
AD
4518 if (!adapter->rx_ps_hdr_size) {
4519 pci_unmap_single(pdev, buffer_info->dma,
4520 adapter->rx_buffer_len +
4521 NET_IP_ALIGN,
4522 PCI_DMA_FROMDEVICE);
4523 skb_put(skb, length);
4524 goto send_up;
9d5c8243
AK
4525 }
4526
69d3ca53
AD
4527 /* HW will not DMA in data larger than the given buffer, even
4528 * if it parses the (NFS, of course) header to be larger. In
4529 * that case, it fills the header buffer and spills the rest
4530 * into the page.
4531 */
4532 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4533 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4534 if (hlen > adapter->rx_ps_hdr_size)
4535 hlen = adapter->rx_ps_hdr_size;
4536
bf36c1a0
AD
4537 if (!skb_shinfo(skb)->nr_frags) {
4538 pci_unmap_single(pdev, buffer_info->dma,
73cd78f1 4539 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
bf36c1a0
AD
4540 PCI_DMA_FROMDEVICE);
4541 skb_put(skb, hlen);
4542 }
4543
4544 if (length) {
9d5c8243 4545 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 4546 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 4547 buffer_info->page_dma = 0;
bf36c1a0
AD
4548
4549 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4550 buffer_info->page,
4551 buffer_info->page_offset,
4552 length);
4553
4554 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4555 (page_count(buffer_info->page) != 1))
4556 buffer_info->page = NULL;
4557 else
4558 get_page(buffer_info->page);
9d5c8243
AK
4559
4560 skb->len += length;
4561 skb->data_len += length;
9d5c8243 4562
bf36c1a0 4563 skb->truesize += length;
9d5c8243 4564 }
9d5c8243 4565
bf36c1a0 4566 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
4567 buffer_info->skb = next_buffer->skb;
4568 buffer_info->dma = next_buffer->dma;
4569 next_buffer->skb = skb;
4570 next_buffer->dma = 0;
bf36c1a0
AD
4571 goto next_desc;
4572 }
69d3ca53 4573send_up:
33af6bcc
PO
4574 /*
4575 * If this bit is set, then the RX registers contain
4576 * the time stamp. No other packet will be time
4577 * stamped until we read these registers, so read the
4578 * registers to make them available again. Because
4579 * only one packet can be time stamped at a time, we
4580 * know that the register values must belong to this
4581 * one here and therefore we don't need to compare
4582 * any of the additional attributes stored for it.
4583 *
4584 * If nothing went wrong, then it should have a
4585 * skb_shared_tx that we can turn into a
4586 * skb_shared_hwtstamps.
4587 *
4588 * TODO: can time stamping be triggered (thus locking
4589 * the registers) without the packet reaching this point
4590 * here? In that case RX time stamping would get stuck.
4591 *
4592 * TODO: in "time stamp all packets" mode this bit is
4593 * not set. Need a global flag for this mode and then
4594 * always read the registers. Cannot be done without
4595 * a race condition.
4596 */
4597 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4598 u64 regval;
4599 u64 ns;
4600 struct skb_shared_hwtstamps *shhwtstamps =
4601 skb_hwtstamps(skb);
4602
4603 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4604 "igb: no RX time stamp available for time stamped packet");
4605 regval = rd32(E1000_RXSTMPL);
4606 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4607 ns = timecounter_cyc2time(&adapter->clock, regval);
4608 timecompare_update(&adapter->compare, ns);
4609 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4610 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4611 shhwtstamps->syststamp =
4612 timecompare_transform(&adapter->compare, ns);
4613 }
4614
9d5c8243
AK
4615 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4616 dev_kfree_skb_irq(skb);
4617 goto next_desc;
4618 }
9d5c8243
AK
4619
4620 total_bytes += skb->len;
4621 total_packets++;
4622
4623 igb_rx_checksum_adv(adapter, staterr, skb);
4624
4625 skb->protocol = eth_type_trans(skb, netdev);
4626
d3352520 4627 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
9d5c8243 4628
9d5c8243
AK
4629next_desc:
4630 rx_desc->wb.upper.status_error = 0;
4631
4632 /* return some buffers to hardware, one at a time is too slow */
4633 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 4634 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4635 cleaned_count = 0;
4636 }
4637
4638 /* use prefetched values */
4639 rx_desc = next_rxd;
4640 buffer_info = next_buffer;
9d5c8243
AK
4641 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4642 }
bf36c1a0 4643
9d5c8243 4644 rx_ring->next_to_clean = i;
c493ea45 4645 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
4646
4647 if (cleaned_count)
3b644cf6 4648 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4649
4650 rx_ring->total_packets += total_packets;
4651 rx_ring->total_bytes += total_bytes;
4652 rx_ring->rx_stats.packets += total_packets;
4653 rx_ring->rx_stats.bytes += total_bytes;
4654 adapter->net_stats.rx_bytes += total_bytes;
4655 adapter->net_stats.rx_packets += total_packets;
4656 return cleaned;
4657}
4658
9d5c8243
AK
4659/**
4660 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4661 * @adapter: address of board private structure
4662 **/
3b644cf6 4663static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
4664 int cleaned_count)
4665{
3b644cf6 4666 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
4667 struct net_device *netdev = adapter->netdev;
4668 struct pci_dev *pdev = adapter->pdev;
4669 union e1000_adv_rx_desc *rx_desc;
4670 struct igb_buffer *buffer_info;
4671 struct sk_buff *skb;
4672 unsigned int i;
db761762 4673 int bufsz;
9d5c8243
AK
4674
4675 i = rx_ring->next_to_use;
4676 buffer_info = &rx_ring->buffer_info[i];
4677
db761762
AD
4678 if (adapter->rx_ps_hdr_size)
4679 bufsz = adapter->rx_ps_hdr_size;
4680 else
4681 bufsz = adapter->rx_buffer_len;
4682 bufsz += NET_IP_ALIGN;
4683
9d5c8243
AK
4684 while (cleaned_count--) {
4685 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4686
bf36c1a0 4687 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
9d5c8243 4688 if (!buffer_info->page) {
bf36c1a0
AD
4689 buffer_info->page = alloc_page(GFP_ATOMIC);
4690 if (!buffer_info->page) {
4691 adapter->alloc_rx_buff_failed++;
4692 goto no_buffers;
4693 }
4694 buffer_info->page_offset = 0;
4695 } else {
4696 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
4697 }
4698 buffer_info->page_dma =
db761762 4699 pci_map_page(pdev, buffer_info->page,
bf36c1a0
AD
4700 buffer_info->page_offset,
4701 PAGE_SIZE / 2,
9d5c8243
AK
4702 PCI_DMA_FROMDEVICE);
4703 }
4704
4705 if (!buffer_info->skb) {
9d5c8243 4706 skb = netdev_alloc_skb(netdev, bufsz);
9d5c8243
AK
4707 if (!skb) {
4708 adapter->alloc_rx_buff_failed++;
4709 goto no_buffers;
4710 }
4711
4712 /* Make buffer alignment 2 beyond a 16 byte boundary
4713 * this will result in a 16 byte aligned IP header after
4714 * the 14 byte MAC header is removed
4715 */
4716 skb_reserve(skb, NET_IP_ALIGN);
4717
4718 buffer_info->skb = skb;
4719 buffer_info->dma = pci_map_single(pdev, skb->data,
4720 bufsz,
4721 PCI_DMA_FROMDEVICE);
9d5c8243
AK
4722 }
4723 /* Refresh the desc even if buffer_addrs didn't change because
4724 * each write-back erases this info. */
4725 if (adapter->rx_ps_hdr_size) {
4726 rx_desc->read.pkt_addr =
4727 cpu_to_le64(buffer_info->page_dma);
4728 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4729 } else {
4730 rx_desc->read.pkt_addr =
4731 cpu_to_le64(buffer_info->dma);
4732 rx_desc->read.hdr_addr = 0;
4733 }
4734
4735 i++;
4736 if (i == rx_ring->count)
4737 i = 0;
4738 buffer_info = &rx_ring->buffer_info[i];
4739 }
4740
4741no_buffers:
4742 if (rx_ring->next_to_use != i) {
4743 rx_ring->next_to_use = i;
4744 if (i == 0)
4745 i = (rx_ring->count - 1);
4746 else
4747 i--;
4748
4749 /* Force memory writes to complete before letting h/w
4750 * know there are new descriptors to fetch. (Only
4751 * applicable for weak-ordered memory model archs,
4752 * such as IA-64). */
4753 wmb();
4754 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4755 }
4756}
4757
4758/**
4759 * igb_mii_ioctl -
4760 * @netdev:
4761 * @ifreq:
4762 * @cmd:
4763 **/
4764static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4765{
4766 struct igb_adapter *adapter = netdev_priv(netdev);
4767 struct mii_ioctl_data *data = if_mii(ifr);
4768
4769 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4770 return -EOPNOTSUPP;
4771
4772 switch (cmd) {
4773 case SIOCGMIIPHY:
4774 data->phy_id = adapter->hw.phy.addr;
4775 break;
4776 case SIOCGMIIREG:
4777 if (!capable(CAP_NET_ADMIN))
4778 return -EPERM;
f5f4cf08
AD
4779 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4780 &data->val_out))
9d5c8243
AK
4781 return -EIO;
4782 break;
4783 case SIOCSMIIREG:
4784 default:
4785 return -EOPNOTSUPP;
4786 }
4787 return 0;
4788}
4789
c6cb090b
PO
4790/**
4791 * igb_hwtstamp_ioctl - control hardware time stamping
4792 * @netdev:
4793 * @ifreq:
4794 * @cmd:
4795 *
33af6bcc
PO
4796 * Outgoing time stamping can be enabled and disabled. Play nice and
4797 * disable it when requested, although it shouldn't case any overhead
4798 * when no packet needs it. At most one packet in the queue may be
4799 * marked for time stamping, otherwise it would be impossible to tell
4800 * for sure to which packet the hardware time stamp belongs.
4801 *
4802 * Incoming time stamping has to be configured via the hardware
4803 * filters. Not all combinations are supported, in particular event
4804 * type has to be specified. Matching the kind of event packet is
4805 * not supported, with the exception of "all V2 events regardless of
4806 * level 2 or 4".
4807 *
c6cb090b
PO
4808 **/
4809static int igb_hwtstamp_ioctl(struct net_device *netdev,
4810 struct ifreq *ifr, int cmd)
4811{
33af6bcc
PO
4812 struct igb_adapter *adapter = netdev_priv(netdev);
4813 struct e1000_hw *hw = &adapter->hw;
c6cb090b 4814 struct hwtstamp_config config;
33af6bcc
PO
4815 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4816 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4817 u32 tsync_rx_ctl_type = 0;
4818 u32 tsync_rx_cfg = 0;
4819 int is_l4 = 0;
4820 int is_l2 = 0;
4821 short port = 319; /* PTP */
4822 u32 regval;
c6cb090b
PO
4823
4824 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4825 return -EFAULT;
4826
4827 /* reserved for future extensions */
4828 if (config.flags)
4829 return -EINVAL;
4830
33af6bcc
PO
4831 switch (config.tx_type) {
4832 case HWTSTAMP_TX_OFF:
4833 tsync_tx_ctl_bit = 0;
4834 break;
4835 case HWTSTAMP_TX_ON:
4836 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4837 break;
4838 default:
4839 return -ERANGE;
4840 }
4841
4842 switch (config.rx_filter) {
4843 case HWTSTAMP_FILTER_NONE:
4844 tsync_rx_ctl_bit = 0;
4845 break;
4846 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4847 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4848 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4849 case HWTSTAMP_FILTER_ALL:
4850 /*
4851 * register TSYNCRXCFG must be set, therefore it is not
4852 * possible to time stamp both Sync and Delay_Req messages
4853 * => fall back to time stamping all packets
4854 */
4855 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4856 config.rx_filter = HWTSTAMP_FILTER_ALL;
4857 break;
4858 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4859 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4860 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4861 is_l4 = 1;
4862 break;
4863 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4864 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4865 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4866 is_l4 = 1;
4867 break;
4868 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4869 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4870 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4871 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4872 is_l2 = 1;
4873 is_l4 = 1;
4874 config.rx_filter = HWTSTAMP_FILTER_SOME;
4875 break;
4876 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4877 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4878 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4879 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4880 is_l2 = 1;
4881 is_l4 = 1;
4882 config.rx_filter = HWTSTAMP_FILTER_SOME;
4883 break;
4884 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4885 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4886 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4887 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4888 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4889 is_l2 = 1;
4890 break;
4891 default:
4892 return -ERANGE;
4893 }
4894
4895 /* enable/disable TX */
4896 regval = rd32(E1000_TSYNCTXCTL);
4897 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4898 wr32(E1000_TSYNCTXCTL, regval);
4899
4900 /* enable/disable RX, define which PTP packets are time stamped */
4901 regval = rd32(E1000_TSYNCRXCTL);
4902 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4903 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4904 wr32(E1000_TSYNCRXCTL, regval);
4905 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4906
4907 /*
4908 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4909 * (Ethertype to filter on)
4910 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4911 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4912 */
4913 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4914
4915 /* L4 Queue Filter[0]: only filter by source and destination port */
4916 wr32(E1000_SPQF0, htons(port));
4917 wr32(E1000_IMIREXT(0), is_l4 ?
4918 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4919 wr32(E1000_IMIR(0), is_l4 ?
4920 (htons(port)
4921 | (0<<16) /* immediate interrupt disabled */
4922 | 0 /* (1<<17) bit cleared: do not bypass
4923 destination port check */)
4924 : 0);
4925 wr32(E1000_FTQF0, is_l4 ?
4926 (0x11 /* UDP */
4927 | (1<<15) /* VF not compared */
4928 | (1<<27) /* Enable Timestamping */
4929 | (7<<28) /* only source port filter enabled,
4930 source/target address and protocol
4931 masked */)
4932 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4933 enabled */));
4934
4935 wrfl();
4936
4937 adapter->hwtstamp_config = config;
4938
4939 /* clear TX/RX time stamp registers, just to be sure */
4940 regval = rd32(E1000_TXSTMPH);
4941 regval = rd32(E1000_RXSTMPH);
c6cb090b 4942
33af6bcc
PO
4943 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4944 -EFAULT : 0;
c6cb090b
PO
4945}
4946
9d5c8243
AK
4947/**
4948 * igb_ioctl -
4949 * @netdev:
4950 * @ifreq:
4951 * @cmd:
4952 **/
4953static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4954{
4955 switch (cmd) {
4956 case SIOCGMIIPHY:
4957 case SIOCGMIIREG:
4958 case SIOCSMIIREG:
4959 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
4960 case SIOCSHWTSTAMP:
4961 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
4962 default:
4963 return -EOPNOTSUPP;
4964 }
4965}
4966
4967static void igb_vlan_rx_register(struct net_device *netdev,
4968 struct vlan_group *grp)
4969{
4970 struct igb_adapter *adapter = netdev_priv(netdev);
4971 struct e1000_hw *hw = &adapter->hw;
4972 u32 ctrl, rctl;
4973
4974 igb_irq_disable(adapter);
4975 adapter->vlgrp = grp;
4976
4977 if (grp) {
4978 /* enable VLAN tag insert/strip */
4979 ctrl = rd32(E1000_CTRL);
4980 ctrl |= E1000_CTRL_VME;
4981 wr32(E1000_CTRL, ctrl);
4982
4983 /* enable VLAN receive filtering */
4984 rctl = rd32(E1000_RCTL);
9d5c8243
AK
4985 rctl &= ~E1000_RCTL_CFIEN;
4986 wr32(E1000_RCTL, rctl);
4987 igb_update_mng_vlan(adapter);
9d5c8243
AK
4988 } else {
4989 /* disable VLAN tag insert/strip */
4990 ctrl = rd32(E1000_CTRL);
4991 ctrl &= ~E1000_CTRL_VME;
4992 wr32(E1000_CTRL, ctrl);
4993
9d5c8243
AK
4994 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4995 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4996 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4997 }
9d5c8243
AK
4998 }
4999
e1739522
AD
5000 igb_rlpml_set(adapter);
5001
9d5c8243
AK
5002 if (!test_bit(__IGB_DOWN, &adapter->state))
5003 igb_irq_enable(adapter);
5004}
5005
5006static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5007{
5008 struct igb_adapter *adapter = netdev_priv(netdev);
5009 struct e1000_hw *hw = &adapter->hw;
4ae196df 5010 int pf_id = adapter->vfs_allocated_count;
9d5c8243 5011
28b0759c 5012 if ((hw->mng_cookie.status &
9d5c8243
AK
5013 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5014 (vid == adapter->mng_vlan_id))
5015 return;
4ae196df
AD
5016
5017 /* add vid to vlvf if sr-iov is enabled,
5018 * if that fails add directly to filter table */
5019 if (igb_vlvf_set(adapter, vid, true, pf_id))
5020 igb_vfta_set(hw, vid, true);
5021
9d5c8243
AK
5022}
5023
5024static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5025{
5026 struct igb_adapter *adapter = netdev_priv(netdev);
5027 struct e1000_hw *hw = &adapter->hw;
4ae196df 5028 int pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
5029
5030 igb_irq_disable(adapter);
5031 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5032
5033 if (!test_bit(__IGB_DOWN, &adapter->state))
5034 igb_irq_enable(adapter);
5035
5036 if ((adapter->hw.mng_cookie.status &
5037 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5038 (vid == adapter->mng_vlan_id)) {
5039 /* release control to f/w */
5040 igb_release_hw_control(adapter);
5041 return;
5042 }
5043
4ae196df
AD
5044 /* remove vid from vlvf if sr-iov is enabled,
5045 * if not in vlvf remove from vfta */
5046 if (igb_vlvf_set(adapter, vid, false, pf_id))
5047 igb_vfta_set(hw, vid, false);
9d5c8243
AK
5048}
5049
5050static void igb_restore_vlan(struct igb_adapter *adapter)
5051{
5052 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5053
5054 if (adapter->vlgrp) {
5055 u16 vid;
5056 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5057 if (!vlan_group_get_device(adapter->vlgrp, vid))
5058 continue;
5059 igb_vlan_rx_add_vid(adapter->netdev, vid);
5060 }
5061 }
5062}
5063
5064int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5065{
5066 struct e1000_mac_info *mac = &adapter->hw.mac;
5067
5068 mac->autoneg = 0;
5069
5070 /* Fiber NICs only allow 1000 gbps Full duplex */
5071 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5072 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5073 dev_err(&adapter->pdev->dev,
5074 "Unsupported Speed/Duplex configuration\n");
5075 return -EINVAL;
5076 }
5077
5078 switch (spddplx) {
5079 case SPEED_10 + DUPLEX_HALF:
5080 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5081 break;
5082 case SPEED_10 + DUPLEX_FULL:
5083 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5084 break;
5085 case SPEED_100 + DUPLEX_HALF:
5086 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5087 break;
5088 case SPEED_100 + DUPLEX_FULL:
5089 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5090 break;
5091 case SPEED_1000 + DUPLEX_FULL:
5092 mac->autoneg = 1;
5093 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5094 break;
5095 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5096 default:
5097 dev_err(&adapter->pdev->dev,
5098 "Unsupported Speed/Duplex configuration\n");
5099 return -EINVAL;
5100 }
5101 return 0;
5102}
5103
3fe7c4c9 5104static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
5105{
5106 struct net_device *netdev = pci_get_drvdata(pdev);
5107 struct igb_adapter *adapter = netdev_priv(netdev);
5108 struct e1000_hw *hw = &adapter->hw;
2d064c06 5109 u32 ctrl, rctl, status;
9d5c8243
AK
5110 u32 wufc = adapter->wol;
5111#ifdef CONFIG_PM
5112 int retval = 0;
5113#endif
5114
5115 netif_device_detach(netdev);
5116
a88f10ec
AD
5117 if (netif_running(netdev))
5118 igb_close(netdev);
5119
5120 igb_reset_interrupt_capability(adapter);
5121
5122 igb_free_queues(adapter);
9d5c8243
AK
5123
5124#ifdef CONFIG_PM
5125 retval = pci_save_state(pdev);
5126 if (retval)
5127 return retval;
5128#endif
5129
5130 status = rd32(E1000_STATUS);
5131 if (status & E1000_STATUS_LU)
5132 wufc &= ~E1000_WUFC_LNKC;
5133
5134 if (wufc) {
5135 igb_setup_rctl(adapter);
5136 igb_set_multi(netdev);
5137
5138 /* turn on all-multi mode if wake on multicast is enabled */
5139 if (wufc & E1000_WUFC_MC) {
5140 rctl = rd32(E1000_RCTL);
5141 rctl |= E1000_RCTL_MPE;
5142 wr32(E1000_RCTL, rctl);
5143 }
5144
5145 ctrl = rd32(E1000_CTRL);
5146 /* advertise wake from D3Cold */
5147 #define E1000_CTRL_ADVD3WUC 0x00100000
5148 /* phy power management enable */
5149 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5150 ctrl |= E1000_CTRL_ADVD3WUC;
5151 wr32(E1000_CTRL, ctrl);
5152
9d5c8243
AK
5153 /* Allow time for pending master requests to run */
5154 igb_disable_pcie_master(&adapter->hw);
5155
5156 wr32(E1000_WUC, E1000_WUC_PME_EN);
5157 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5158 } else {
5159 wr32(E1000_WUC, 0);
5160 wr32(E1000_WUFC, 0);
9d5c8243
AK
5161 }
5162
3fe7c4c9
RW
5163 *enable_wake = wufc || adapter->en_mng_pt;
5164 if (!*enable_wake)
2d064c06 5165 igb_shutdown_fiber_serdes_link_82575(hw);
9d5c8243
AK
5166
5167 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5168 * would have already happened in close and is redundant. */
5169 igb_release_hw_control(adapter);
5170
5171 pci_disable_device(pdev);
5172
9d5c8243
AK
5173 return 0;
5174}
5175
5176#ifdef CONFIG_PM
3fe7c4c9
RW
5177static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5178{
5179 int retval;
5180 bool wake;
5181
5182 retval = __igb_shutdown(pdev, &wake);
5183 if (retval)
5184 return retval;
5185
5186 if (wake) {
5187 pci_prepare_to_sleep(pdev);
5188 } else {
5189 pci_wake_from_d3(pdev, false);
5190 pci_set_power_state(pdev, PCI_D3hot);
5191 }
5192
5193 return 0;
5194}
5195
9d5c8243
AK
5196static int igb_resume(struct pci_dev *pdev)
5197{
5198 struct net_device *netdev = pci_get_drvdata(pdev);
5199 struct igb_adapter *adapter = netdev_priv(netdev);
5200 struct e1000_hw *hw = &adapter->hw;
5201 u32 err;
5202
5203 pci_set_power_state(pdev, PCI_D0);
5204 pci_restore_state(pdev);
42bfd33a 5205
aed5dec3 5206 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5207 if (err) {
5208 dev_err(&pdev->dev,
5209 "igb: Cannot enable PCI device from suspend\n");
5210 return err;
5211 }
5212 pci_set_master(pdev);
5213
5214 pci_enable_wake(pdev, PCI_D3hot, 0);
5215 pci_enable_wake(pdev, PCI_D3cold, 0);
5216
a88f10ec
AD
5217 igb_set_interrupt_capability(adapter);
5218
5219 if (igb_alloc_queues(adapter)) {
5220 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5221 return -ENOMEM;
9d5c8243
AK
5222 }
5223
5224 /* e1000_power_up_phy(adapter); */
5225
5226 igb_reset(adapter);
a8564f03
AD
5227
5228 /* let the f/w know that the h/w is now under the control of the
5229 * driver. */
5230 igb_get_hw_control(adapter);
5231
9d5c8243
AK
5232 wr32(E1000_WUS, ~0);
5233
a88f10ec
AD
5234 if (netif_running(netdev)) {
5235 err = igb_open(netdev);
5236 if (err)
5237 return err;
5238 }
9d5c8243
AK
5239
5240 netif_device_attach(netdev);
5241
9d5c8243
AK
5242 return 0;
5243}
5244#endif
5245
5246static void igb_shutdown(struct pci_dev *pdev)
5247{
3fe7c4c9
RW
5248 bool wake;
5249
5250 __igb_shutdown(pdev, &wake);
5251
5252 if (system_state == SYSTEM_POWER_OFF) {
5253 pci_wake_from_d3(pdev, wake);
5254 pci_set_power_state(pdev, PCI_D3hot);
5255 }
9d5c8243
AK
5256}
5257
5258#ifdef CONFIG_NET_POLL_CONTROLLER
5259/*
5260 * Polling 'interrupt' - used by things like netconsole to send skbs
5261 * without having to re-enable interrupts. It's not called while
5262 * the interrupt routine is executing.
5263 */
5264static void igb_netpoll(struct net_device *netdev)
5265{
5266 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5267 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5268 int i;
9d5c8243 5269
eebbbdba
AD
5270 if (!adapter->msix_entries) {
5271 igb_irq_disable(adapter);
5272 napi_schedule(&adapter->rx_ring[0].napi);
5273 return;
5274 }
9d5c8243 5275
eebbbdba
AD
5276 for (i = 0; i < adapter->num_tx_queues; i++) {
5277 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5278 wr32(E1000_EIMC, tx_ring->eims_value);
5279 igb_clean_tx_irq(tx_ring);
5280 wr32(E1000_EIMS, tx_ring->eims_value);
5281 }
9d5c8243 5282
eebbbdba
AD
5283 for (i = 0; i < adapter->num_rx_queues; i++) {
5284 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5285 wr32(E1000_EIMC, rx_ring->eims_value);
5286 napi_schedule(&rx_ring->napi);
5287 }
9d5c8243
AK
5288}
5289#endif /* CONFIG_NET_POLL_CONTROLLER */
5290
5291/**
5292 * igb_io_error_detected - called when PCI error is detected
5293 * @pdev: Pointer to PCI device
5294 * @state: The current pci connection state
5295 *
5296 * This function is called after a PCI bus error affecting
5297 * this device has been detected.
5298 */
5299static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5300 pci_channel_state_t state)
5301{
5302 struct net_device *netdev = pci_get_drvdata(pdev);
5303 struct igb_adapter *adapter = netdev_priv(netdev);
5304
5305 netif_device_detach(netdev);
5306
5307 if (netif_running(netdev))
5308 igb_down(adapter);
5309 pci_disable_device(pdev);
5310
5311 /* Request a slot slot reset. */
5312 return PCI_ERS_RESULT_NEED_RESET;
5313}
5314
5315/**
5316 * igb_io_slot_reset - called after the pci bus has been reset.
5317 * @pdev: Pointer to PCI device
5318 *
5319 * Restart the card from scratch, as if from a cold-boot. Implementation
5320 * resembles the first-half of the igb_resume routine.
5321 */
5322static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5323{
5324 struct net_device *netdev = pci_get_drvdata(pdev);
5325 struct igb_adapter *adapter = netdev_priv(netdev);
5326 struct e1000_hw *hw = &adapter->hw;
40a914fa 5327 pci_ers_result_t result;
42bfd33a 5328 int err;
9d5c8243 5329
aed5dec3 5330 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
5331 dev_err(&pdev->dev,
5332 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
5333 result = PCI_ERS_RESULT_DISCONNECT;
5334 } else {
5335 pci_set_master(pdev);
5336 pci_restore_state(pdev);
9d5c8243 5337
40a914fa
AD
5338 pci_enable_wake(pdev, PCI_D3hot, 0);
5339 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 5340
40a914fa
AD
5341 igb_reset(adapter);
5342 wr32(E1000_WUS, ~0);
5343 result = PCI_ERS_RESULT_RECOVERED;
5344 }
9d5c8243 5345
ea943d41
JK
5346 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5347 if (err) {
5348 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5349 "failed 0x%0x\n", err);
5350 /* non-fatal, continue */
5351 }
40a914fa
AD
5352
5353 return result;
9d5c8243
AK
5354}
5355
5356/**
5357 * igb_io_resume - called when traffic can start flowing again.
5358 * @pdev: Pointer to PCI device
5359 *
5360 * This callback is called when the error recovery driver tells us that
5361 * its OK to resume normal operation. Implementation resembles the
5362 * second-half of the igb_resume routine.
5363 */
5364static void igb_io_resume(struct pci_dev *pdev)
5365{
5366 struct net_device *netdev = pci_get_drvdata(pdev);
5367 struct igb_adapter *adapter = netdev_priv(netdev);
5368
9d5c8243
AK
5369 if (netif_running(netdev)) {
5370 if (igb_up(adapter)) {
5371 dev_err(&pdev->dev, "igb_up failed after reset\n");
5372 return;
5373 }
5374 }
5375
5376 netif_device_attach(netdev);
5377
5378 /* let the f/w know that the h/w is now under the control of the
5379 * driver. */
5380 igb_get_hw_control(adapter);
9d5c8243
AK
5381}
5382
e1739522
AD
5383static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5384{
5385 u32 reg_data;
5386
5387 reg_data = rd32(E1000_VMOLR(vfn));
5388 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
5389 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
5390 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
5391 E1000_VMOLR_AUPE | /* Accept untagged packets */
5392 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5393 wr32(E1000_VMOLR(vfn), reg_data);
5394}
5395
4ae196df
AD
5396static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5397 int vfn)
e1739522
AD
5398{
5399 struct e1000_hw *hw = &adapter->hw;
5400 u32 vmolr;
5401
5402 vmolr = rd32(E1000_VMOLR(vfn));
5403 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5404 vmolr |= size | E1000_VMOLR_LPE;
5405 wr32(E1000_VMOLR(vfn), vmolr);
4ae196df
AD
5406
5407 return 0;
e1739522
AD
5408}
5409
5410static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5411{
5412 u32 reg_data;
5413
5414 reg_data = rd32(E1000_RAH(entry));
5415 reg_data &= ~E1000_RAH_POOL_MASK;
5416 reg_data |= E1000_RAH_POOL_1 << pool;;
5417 wr32(E1000_RAH(entry), reg_data);
5418}
5419
5420static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5421 int entry_count, u16 total_rar_filters)
5422{
5423 struct e1000_hw *hw = &adapter->hw;
5424 int i = adapter->vfs_allocated_count + 1;
5425
5426 if ((i + entry_count) < total_rar_filters)
5427 total_rar_filters = i + entry_count;
5428
5429 for (; i < total_rar_filters; i++)
5430 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5431}
5432
4ae196df
AD
5433static int igb_set_vf_mac(struct igb_adapter *adapter,
5434 int vf, unsigned char *mac_addr)
5435{
5436 struct e1000_hw *hw = &adapter->hw;
5437 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5438
5439 igb_rar_set(hw, mac_addr, rar_entry);
5440
37680117 5441 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df
AD
5442
5443 igb_set_rah_pool(hw, vf, rar_entry);
5444
5445 return 0;
5446}
5447
5448static void igb_vmm_control(struct igb_adapter *adapter)
5449{
5450 struct e1000_hw *hw = &adapter->hw;
5451 u32 reg_data;
5452
5453 if (!adapter->vfs_allocated_count)
5454 return;
5455
5456 /* VF's need PF reset indication before they
5457 * can send/receive mail */
5458 reg_data = rd32(E1000_CTRL_EXT);
5459 reg_data |= E1000_CTRL_EXT_PFRSTD;
5460 wr32(E1000_CTRL_EXT, reg_data);
5461
5462 igb_vmdq_set_loopback_pf(hw, true);
5463 igb_vmdq_set_replication_pf(hw, true);
5464}
5465
9d5c8243 5466/* igb_main.c */