]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_main.c
bnx2x: Advance a module version
[net-next-2.6.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
55cac248 53#define DRV_VERSION "2.1.0-k2"
9d5c8243
AK
54char igb_driver_name[] = "igb";
55char igb_driver_version[] = DRV_VERSION;
56static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 58static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 59
9d5c8243
AK
60static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62};
63
a3aa1884 64static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
2d064c06 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
85 /* required last entry */
86 {0, }
87};
88
89MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
90
91void igb_reset(struct igb_adapter *);
92static int igb_setup_all_tx_resources(struct igb_adapter *);
93static int igb_setup_all_rx_resources(struct igb_adapter *);
94static void igb_free_all_tx_resources(struct igb_adapter *);
95static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 96static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
97void igb_update_stats(struct igb_adapter *);
98static int igb_probe(struct pci_dev *, const struct pci_device_id *);
99static void __devexit igb_remove(struct pci_dev *pdev);
100static int igb_sw_init(struct igb_adapter *);
101static int igb_open(struct net_device *);
102static int igb_close(struct net_device *);
103static void igb_configure_tx(struct igb_adapter *);
104static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
105static void igb_clean_all_tx_rings(struct igb_adapter *);
106static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
107static void igb_clean_tx_ring(struct igb_ring *);
108static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 109static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
110static void igb_update_phy_info(unsigned long);
111static void igb_watchdog(unsigned long);
112static void igb_watchdog_task(struct work_struct *);
b1a436c3 113static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
114static struct net_device_stats *igb_get_stats(struct net_device *);
115static int igb_change_mtu(struct net_device *, int);
116static int igb_set_mac(struct net_device *, void *);
68d480c4 117static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
118static irqreturn_t igb_intr(int irq, void *);
119static irqreturn_t igb_intr_msi(int irq, void *);
120static irqreturn_t igb_msix_other(int irq, void *);
047e0030 121static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 122#ifdef CONFIG_IGB_DCA
047e0030 123static void igb_update_dca(struct igb_q_vector *);
fe4506b6 124static void igb_setup_dca(struct igb_adapter *);
421e02f0 125#endif /* CONFIG_IGB_DCA */
047e0030 126static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 127static int igb_poll(struct napi_struct *, int);
047e0030 128static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
129static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
130static void igb_tx_timeout(struct net_device *);
131static void igb_reset_task(struct work_struct *);
132static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
133static void igb_vlan_rx_add_vid(struct net_device *, u16);
134static void igb_vlan_rx_kill_vid(struct net_device *, u16);
135static void igb_restore_vlan(struct igb_adapter *);
26ad9178 136static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
137static void igb_ping_all_vfs(struct igb_adapter *);
138static void igb_msg_task(struct igb_adapter *);
4ae196df 139static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 140static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 141static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
142static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
143static int igb_ndo_set_vf_vlan(struct net_device *netdev,
144 int vf, u16 vlan, u8 qos);
145static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
146static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
147 struct ifla_vf_info *ivi);
9d5c8243 148
9d5c8243 149#ifdef CONFIG_PM
3fe7c4c9 150static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
151static int igb_resume(struct pci_dev *);
152#endif
153static void igb_shutdown(struct pci_dev *);
421e02f0 154#ifdef CONFIG_IGB_DCA
fe4506b6
JC
155static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
156static struct notifier_block dca_notifier = {
157 .notifier_call = igb_notify_dca,
158 .next = NULL,
159 .priority = 0
160};
161#endif
9d5c8243
AK
162#ifdef CONFIG_NET_POLL_CONTROLLER
163/* for netdump / net console */
164static void igb_netpoll(struct net_device *);
165#endif
37680117 166#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
167static unsigned int max_vfs = 0;
168module_param(max_vfs, uint, 0);
169MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
170 "per physical function");
171#endif /* CONFIG_PCI_IOV */
172
9d5c8243
AK
173static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
174 pci_channel_state_t);
175static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
176static void igb_io_resume(struct pci_dev *);
177
178static struct pci_error_handlers igb_err_handler = {
179 .error_detected = igb_io_error_detected,
180 .slot_reset = igb_io_slot_reset,
181 .resume = igb_io_resume,
182};
183
184
185static struct pci_driver igb_driver = {
186 .name = igb_driver_name,
187 .id_table = igb_pci_tbl,
188 .probe = igb_probe,
189 .remove = __devexit_p(igb_remove),
190#ifdef CONFIG_PM
191 /* Power Managment Hooks */
192 .suspend = igb_suspend,
193 .resume = igb_resume,
194#endif
195 .shutdown = igb_shutdown,
196 .err_handler = &igb_err_handler
197};
198
199MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
200MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
201MODULE_LICENSE("GPL");
202MODULE_VERSION(DRV_VERSION);
203
c97ec42a
TI
204struct igb_reg_info {
205 u32 ofs;
206 char *name;
207};
208
209static const struct igb_reg_info igb_reg_info_tbl[] = {
210
211 /* General Registers */
212 {E1000_CTRL, "CTRL"},
213 {E1000_STATUS, "STATUS"},
214 {E1000_CTRL_EXT, "CTRL_EXT"},
215
216 /* Interrupt Registers */
217 {E1000_ICR, "ICR"},
218
219 /* RX Registers */
220 {E1000_RCTL, "RCTL"},
221 {E1000_RDLEN(0), "RDLEN"},
222 {E1000_RDH(0), "RDH"},
223 {E1000_RDT(0), "RDT"},
224 {E1000_RXDCTL(0), "RXDCTL"},
225 {E1000_RDBAL(0), "RDBAL"},
226 {E1000_RDBAH(0), "RDBAH"},
227
228 /* TX Registers */
229 {E1000_TCTL, "TCTL"},
230 {E1000_TDBAL(0), "TDBAL"},
231 {E1000_TDBAH(0), "TDBAH"},
232 {E1000_TDLEN(0), "TDLEN"},
233 {E1000_TDH(0), "TDH"},
234 {E1000_TDT(0), "TDT"},
235 {E1000_TXDCTL(0), "TXDCTL"},
236 {E1000_TDFH, "TDFH"},
237 {E1000_TDFT, "TDFT"},
238 {E1000_TDFHS, "TDFHS"},
239 {E1000_TDFPC, "TDFPC"},
240
241 /* List Terminator */
242 {}
243};
244
245/*
246 * igb_regdump - register printout routine
247 */
248static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
249{
250 int n = 0;
251 char rname[16];
252 u32 regs[8];
253
254 switch (reginfo->ofs) {
255 case E1000_RDLEN(0):
256 for (n = 0; n < 4; n++)
257 regs[n] = rd32(E1000_RDLEN(n));
258 break;
259 case E1000_RDH(0):
260 for (n = 0; n < 4; n++)
261 regs[n] = rd32(E1000_RDH(n));
262 break;
263 case E1000_RDT(0):
264 for (n = 0; n < 4; n++)
265 regs[n] = rd32(E1000_RDT(n));
266 break;
267 case E1000_RXDCTL(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RXDCTL(n));
270 break;
271 case E1000_RDBAL(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDBAL(n));
274 break;
275 case E1000_RDBAH(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDBAH(n));
278 break;
279 case E1000_TDBAL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RDBAL(n));
282 break;
283 case E1000_TDBAH(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_TDBAH(n));
286 break;
287 case E1000_TDLEN(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_TDLEN(n));
290 break;
291 case E1000_TDH(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_TDH(n));
294 break;
295 case E1000_TDT(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDT(n));
298 break;
299 case E1000_TXDCTL(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TXDCTL(n));
302 break;
303 default:
304 printk(KERN_INFO "%-15s %08x\n",
305 reginfo->name, rd32(reginfo->ofs));
306 return;
307 }
308
309 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
310 printk(KERN_INFO "%-15s ", rname);
311 for (n = 0; n < 4; n++)
312 printk(KERN_CONT "%08x ", regs[n]);
313 printk(KERN_CONT "\n");
314}
315
316/*
317 * igb_dump - Print registers, tx-rings and rx-rings
318 */
319static void igb_dump(struct igb_adapter *adapter)
320{
321 struct net_device *netdev = adapter->netdev;
322 struct e1000_hw *hw = &adapter->hw;
323 struct igb_reg_info *reginfo;
324 int n = 0;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { u64 a; u64 b; } *u0;
328 struct igb_buffer *buffer_info;
329 struct igb_ring *rx_ring;
330 union e1000_adv_rx_desc *rx_desc;
331 u32 staterr;
332 int i = 0;
333
334 if (!netif_msg_hw(adapter))
335 return;
336
337 /* Print netdevice Info */
338 if (netdev) {
339 dev_info(&adapter->pdev->dev, "Net device Info\n");
340 printk(KERN_INFO "Device Name state "
341 "trans_start last_rx\n");
342 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
343 netdev->name,
344 netdev->state,
345 netdev->trans_start,
346 netdev->last_rx);
347 }
348
349 /* Print Registers */
350 dev_info(&adapter->pdev->dev, "Register Dump\n");
351 printk(KERN_INFO " Register Name Value\n");
352 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
353 reginfo->name; reginfo++) {
354 igb_regdump(hw, reginfo);
355 }
356
357 /* Print TX Ring Summary */
358 if (!netdev || !netif_running(netdev))
359 goto exit;
360
361 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
362 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
363 " leng ntw timestamp\n");
364 for (n = 0; n < adapter->num_tx_queues; n++) {
365 tx_ring = adapter->tx_ring[n];
366 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
367 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
368 n, tx_ring->next_to_use, tx_ring->next_to_clean,
369 (u64)buffer_info->dma,
370 buffer_info->length,
371 buffer_info->next_to_watch,
372 (u64)buffer_info->time_stamp);
373 }
374
375 /* Print TX Rings */
376 if (!netif_msg_tx_done(adapter))
377 goto rx_ring_summary;
378
379 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
380
381 /* Transmit Descriptor Formats
382 *
383 * Advanced Transmit Descriptor
384 * +--------------------------------------------------------------+
385 * 0 | Buffer Address [63:0] |
386 * +--------------------------------------------------------------+
387 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
388 * +--------------------------------------------------------------+
389 * 63 46 45 40 39 38 36 35 32 31 24 15 0
390 */
391
392 for (n = 0; n < adapter->num_tx_queues; n++) {
393 tx_ring = adapter->tx_ring[n];
394 printk(KERN_INFO "------------------------------------\n");
395 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "T [desc] [address 63:0 ] "
398 "[PlPOCIStDDM Ln] [bi->dma ] "
399 "leng ntw timestamp bi->skb\n");
400
401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
402 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
403 buffer_info = &tx_ring->buffer_info[i];
404 u0 = (struct my_u0 *)tx_desc;
405 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
406 " %04X %3X %016llX %p", i,
407 le64_to_cpu(u0->a),
408 le64_to_cpu(u0->b),
409 (u64)buffer_info->dma,
410 buffer_info->length,
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp,
413 buffer_info->skb);
414 if (i == tx_ring->next_to_use &&
415 i == tx_ring->next_to_clean)
416 printk(KERN_CONT " NTC/U\n");
417 else if (i == tx_ring->next_to_use)
418 printk(KERN_CONT " NTU\n");
419 else if (i == tx_ring->next_to_clean)
420 printk(KERN_CONT " NTC\n");
421 else
422 printk(KERN_CONT "\n");
423
424 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
425 print_hex_dump(KERN_INFO, "",
426 DUMP_PREFIX_ADDRESS,
427 16, 1, phys_to_virt(buffer_info->dma),
428 buffer_info->length, true);
429 }
430 }
431
432 /* Print RX Rings Summary */
433rx_ring_summary:
434 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
435 printk(KERN_INFO "Queue [NTU] [NTC]\n");
436 for (n = 0; n < adapter->num_rx_queues; n++) {
437 rx_ring = adapter->rx_ring[n];
438 printk(KERN_INFO " %5d %5X %5X\n", n,
439 rx_ring->next_to_use, rx_ring->next_to_clean);
440 }
441
442 /* Print RX Rings */
443 if (!netif_msg_rx_status(adapter))
444 goto exit;
445
446 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
447
448 /* Advanced Receive Descriptor (Read) Format
449 * 63 1 0
450 * +-----------------------------------------------------+
451 * 0 | Packet Buffer Address [63:1] |A0/NSE|
452 * +----------------------------------------------+------+
453 * 8 | Header Buffer Address [63:1] | DD |
454 * +-----------------------------------------------------+
455 *
456 *
457 * Advanced Receive Descriptor (Write-Back) Format
458 *
459 * 63 48 47 32 31 30 21 20 17 16 4 3 0
460 * +------------------------------------------------------+
461 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
462 * | Checksum Ident | | | | Type | Type |
463 * +------------------------------------------------------+
464 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
465 * +------------------------------------------------------+
466 * 63 48 47 32 31 20 19 0
467 */
468
469 for (n = 0; n < adapter->num_rx_queues; n++) {
470 rx_ring = adapter->rx_ring[n];
471 printk(KERN_INFO "------------------------------------\n");
472 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "R [desc] [ PktBuf A0] "
475 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
476 "<-- Adv Rx Read format\n");
477 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
478 "[vl er S cks ln] ---------------- [bi->skb] "
479 "<-- Adv Rx Write-Back format\n");
480
481 for (i = 0; i < rx_ring->count; i++) {
482 buffer_info = &rx_ring->buffer_info[i];
483 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
484 u0 = (struct my_u0 *)rx_desc;
485 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
486 if (staterr & E1000_RXD_STAT_DD) {
487 /* Descriptor Done */
488 printk(KERN_INFO "RWB[0x%03X] %016llX "
489 "%016llX ---------------- %p", i,
490 le64_to_cpu(u0->a),
491 le64_to_cpu(u0->b),
492 buffer_info->skb);
493 } else {
494 printk(KERN_INFO "R [0x%03X] %016llX "
495 "%016llX %016llX %p", i,
496 le64_to_cpu(u0->a),
497 le64_to_cpu(u0->b),
498 (u64)buffer_info->dma,
499 buffer_info->skb);
500
501 if (netif_msg_pktdata(adapter)) {
502 print_hex_dump(KERN_INFO, "",
503 DUMP_PREFIX_ADDRESS,
504 16, 1,
505 phys_to_virt(buffer_info->dma),
506 rx_ring->rx_buffer_len, true);
507 if (rx_ring->rx_buffer_len
508 < IGB_RXBUFFER_1024)
509 print_hex_dump(KERN_INFO, "",
510 DUMP_PREFIX_ADDRESS,
511 16, 1,
512 phys_to_virt(
513 buffer_info->page_dma +
514 buffer_info->page_offset),
515 PAGE_SIZE/2, true);
516 }
517 }
518
519 if (i == rx_ring->next_to_use)
520 printk(KERN_CONT " NTU\n");
521 else if (i == rx_ring->next_to_clean)
522 printk(KERN_CONT " NTC\n");
523 else
524 printk(KERN_CONT "\n");
525
526 }
527 }
528
529exit:
530 return;
531}
532
533
38c845c7
PO
534/**
535 * igb_read_clock - read raw cycle counter (to be used by time counter)
536 */
537static cycle_t igb_read_clock(const struct cyclecounter *tc)
538{
539 struct igb_adapter *adapter =
540 container_of(tc, struct igb_adapter, cycles);
541 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
542 u64 stamp = 0;
543 int shift = 0;
38c845c7 544
55cac248
AD
545 /*
546 * The timestamp latches on lowest register read. For the 82580
547 * the lowest register is SYSTIMR instead of SYSTIML. However we never
548 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
549 */
550 if (hw->mac.type == e1000_82580) {
551 stamp = rd32(E1000_SYSTIMR) >> 8;
552 shift = IGB_82580_TSYNC_SHIFT;
553 }
554
c5b9bd5e
AD
555 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
556 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
557 return stamp;
558}
559
9d5c8243 560/**
c041076a 561 * igb_get_hw_dev - return device
9d5c8243
AK
562 * used by hardware layer to print debugging information
563 **/
c041076a 564struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
565{
566 struct igb_adapter *adapter = hw->back;
c041076a 567 return adapter->netdev;
9d5c8243 568}
38c845c7 569
9d5c8243
AK
570/**
571 * igb_init_module - Driver Registration Routine
572 *
573 * igb_init_module is the first routine called when the driver is
574 * loaded. All it does is register with the PCI subsystem.
575 **/
576static int __init igb_init_module(void)
577{
578 int ret;
579 printk(KERN_INFO "%s - version %s\n",
580 igb_driver_string, igb_driver_version);
581
582 printk(KERN_INFO "%s\n", igb_copyright);
583
421e02f0 584#ifdef CONFIG_IGB_DCA
fe4506b6
JC
585 dca_register_notify(&dca_notifier);
586#endif
bbd98fe4 587 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
588 return ret;
589}
590
591module_init(igb_init_module);
592
593/**
594 * igb_exit_module - Driver Exit Cleanup Routine
595 *
596 * igb_exit_module is called just before the driver is removed
597 * from memory.
598 **/
599static void __exit igb_exit_module(void)
600{
421e02f0 601#ifdef CONFIG_IGB_DCA
fe4506b6
JC
602 dca_unregister_notify(&dca_notifier);
603#endif
9d5c8243
AK
604 pci_unregister_driver(&igb_driver);
605}
606
607module_exit(igb_exit_module);
608
26bc19ec
AD
609#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
610/**
611 * igb_cache_ring_register - Descriptor ring to register mapping
612 * @adapter: board private structure to initialize
613 *
614 * Once we know the feature-set enabled for the device, we'll cache
615 * the register offset the descriptor ring is assigned to.
616 **/
617static void igb_cache_ring_register(struct igb_adapter *adapter)
618{
ee1b9f06 619 int i = 0, j = 0;
047e0030 620 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
621
622 switch (adapter->hw.mac.type) {
623 case e1000_82576:
624 /* The queues are allocated for virtualization such that VF 0
625 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
626 * In order to avoid collision we start at the first free queue
627 * and continue consuming queues in the same sequence
628 */
ee1b9f06 629 if (adapter->vfs_allocated_count) {
a99955fc 630 for (; i < adapter->rss_queues; i++)
3025a446
AD
631 adapter->rx_ring[i]->reg_idx = rbase_offset +
632 Q_IDX_82576(i);
a99955fc 633 for (; j < adapter->rss_queues; j++)
3025a446
AD
634 adapter->tx_ring[j]->reg_idx = rbase_offset +
635 Q_IDX_82576(j);
ee1b9f06 636 }
26bc19ec 637 case e1000_82575:
55cac248 638 case e1000_82580:
d2ba2ed8 639 case e1000_i350:
26bc19ec 640 default:
ee1b9f06 641 for (; i < adapter->num_rx_queues; i++)
3025a446 642 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 643 for (; j < adapter->num_tx_queues; j++)
3025a446 644 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
645 break;
646 }
647}
648
047e0030
AD
649static void igb_free_queues(struct igb_adapter *adapter)
650{
3025a446 651 int i;
047e0030 652
3025a446
AD
653 for (i = 0; i < adapter->num_tx_queues; i++) {
654 kfree(adapter->tx_ring[i]);
655 adapter->tx_ring[i] = NULL;
656 }
657 for (i = 0; i < adapter->num_rx_queues; i++) {
658 kfree(adapter->rx_ring[i]);
659 adapter->rx_ring[i] = NULL;
660 }
047e0030
AD
661 adapter->num_rx_queues = 0;
662 adapter->num_tx_queues = 0;
663}
664
9d5c8243
AK
665/**
666 * igb_alloc_queues - Allocate memory for all rings
667 * @adapter: board private structure to initialize
668 *
669 * We allocate one ring per queue at run-time since we don't know the
670 * number of queues at compile-time.
671 **/
672static int igb_alloc_queues(struct igb_adapter *adapter)
673{
3025a446 674 struct igb_ring *ring;
9d5c8243
AK
675 int i;
676
661086df 677 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
678 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
679 if (!ring)
680 goto err;
68fd9910 681 ring->count = adapter->tx_ring_count;
661086df 682 ring->queue_index = i;
59d71989 683 ring->dev = &adapter->pdev->dev;
e694e964 684 ring->netdev = adapter->netdev;
85ad76b2
AD
685 /* For 82575, context index must be unique per ring. */
686 if (adapter->hw.mac.type == e1000_82575)
687 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 688 adapter->tx_ring[i] = ring;
661086df 689 }
85ad76b2 690
9d5c8243 691 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
692 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
693 if (!ring)
694 goto err;
68fd9910 695 ring->count = adapter->rx_ring_count;
844290e5 696 ring->queue_index = i;
59d71989 697 ring->dev = &adapter->pdev->dev;
e694e964 698 ring->netdev = adapter->netdev;
4c844851 699 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
700 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
701 /* set flag indicating ring supports SCTP checksum offload */
702 if (adapter->hw.mac.type >= e1000_82576)
703 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 704 adapter->rx_ring[i] = ring;
9d5c8243 705 }
26bc19ec
AD
706
707 igb_cache_ring_register(adapter);
9d5c8243 708
047e0030 709 return 0;
a88f10ec 710
047e0030
AD
711err:
712 igb_free_queues(adapter);
d1a8c9e1 713
047e0030 714 return -ENOMEM;
a88f10ec
AD
715}
716
9d5c8243 717#define IGB_N0_QUEUE -1
047e0030 718static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
719{
720 u32 msixbm = 0;
047e0030 721 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 722 struct e1000_hw *hw = &adapter->hw;
2d064c06 723 u32 ivar, index;
047e0030
AD
724 int rx_queue = IGB_N0_QUEUE;
725 int tx_queue = IGB_N0_QUEUE;
726
727 if (q_vector->rx_ring)
728 rx_queue = q_vector->rx_ring->reg_idx;
729 if (q_vector->tx_ring)
730 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
731
732 switch (hw->mac.type) {
733 case e1000_82575:
9d5c8243
AK
734 /* The 82575 assigns vectors using a bitmask, which matches the
735 bitmask for the EICR/EIMS/EIMC registers. To assign one
736 or more queues to a vector, we write the appropriate bits
737 into the MSIXBM register for that vector. */
047e0030 738 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 739 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 740 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 741 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
742 if (!adapter->msix_entries && msix_vector == 0)
743 msixbm |= E1000_EIMS_OTHER;
9d5c8243 744 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 745 q_vector->eims_value = msixbm;
2d064c06
AD
746 break;
747 case e1000_82576:
26bc19ec 748 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
749 Each queue has a single entry in the table to which we write
750 a vector number along with a "valid" bit. Sadly, the layout
751 of the table is somewhat counterintuitive. */
752 if (rx_queue > IGB_N0_QUEUE) {
047e0030 753 index = (rx_queue & 0x7);
2d064c06 754 ivar = array_rd32(E1000_IVAR0, index);
047e0030 755 if (rx_queue < 8) {
26bc19ec
AD
756 /* vector goes into low byte of register */
757 ivar = ivar & 0xFFFFFF00;
758 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
759 } else {
760 /* vector goes into third byte of register */
761 ivar = ivar & 0xFF00FFFF;
762 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 763 }
2d064c06
AD
764 array_wr32(E1000_IVAR0, index, ivar);
765 }
766 if (tx_queue > IGB_N0_QUEUE) {
047e0030 767 index = (tx_queue & 0x7);
2d064c06 768 ivar = array_rd32(E1000_IVAR0, index);
047e0030 769 if (tx_queue < 8) {
26bc19ec
AD
770 /* vector goes into second byte of register */
771 ivar = ivar & 0xFFFF00FF;
772 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
773 } else {
774 /* vector goes into high byte of register */
775 ivar = ivar & 0x00FFFFFF;
776 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 777 }
2d064c06
AD
778 array_wr32(E1000_IVAR0, index, ivar);
779 }
047e0030 780 q_vector->eims_value = 1 << msix_vector;
2d064c06 781 break;
55cac248 782 case e1000_82580:
d2ba2ed8 783 case e1000_i350:
55cac248
AD
784 /* 82580 uses the same table-based approach as 82576 but has fewer
785 entries as a result we carry over for queues greater than 4. */
786 if (rx_queue > IGB_N0_QUEUE) {
787 index = (rx_queue >> 1);
788 ivar = array_rd32(E1000_IVAR0, index);
789 if (rx_queue & 0x1) {
790 /* vector goes into third byte of register */
791 ivar = ivar & 0xFF00FFFF;
792 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
793 } else {
794 /* vector goes into low byte of register */
795 ivar = ivar & 0xFFFFFF00;
796 ivar |= msix_vector | E1000_IVAR_VALID;
797 }
798 array_wr32(E1000_IVAR0, index, ivar);
799 }
800 if (tx_queue > IGB_N0_QUEUE) {
801 index = (tx_queue >> 1);
802 ivar = array_rd32(E1000_IVAR0, index);
803 if (tx_queue & 0x1) {
804 /* vector goes into high byte of register */
805 ivar = ivar & 0x00FFFFFF;
806 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
807 } else {
808 /* vector goes into second byte of register */
809 ivar = ivar & 0xFFFF00FF;
810 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
811 }
812 array_wr32(E1000_IVAR0, index, ivar);
813 }
814 q_vector->eims_value = 1 << msix_vector;
815 break;
2d064c06
AD
816 default:
817 BUG();
818 break;
819 }
26b39276
AD
820
821 /* add q_vector eims value to global eims_enable_mask */
822 adapter->eims_enable_mask |= q_vector->eims_value;
823
824 /* configure q_vector to set itr on first interrupt */
825 q_vector->set_itr = 1;
9d5c8243
AK
826}
827
828/**
829 * igb_configure_msix - Configure MSI-X hardware
830 *
831 * igb_configure_msix sets up the hardware to properly
832 * generate MSI-X interrupts.
833 **/
834static void igb_configure_msix(struct igb_adapter *adapter)
835{
836 u32 tmp;
837 int i, vector = 0;
838 struct e1000_hw *hw = &adapter->hw;
839
840 adapter->eims_enable_mask = 0;
9d5c8243
AK
841
842 /* set vector for other causes, i.e. link changes */
2d064c06
AD
843 switch (hw->mac.type) {
844 case e1000_82575:
9d5c8243
AK
845 tmp = rd32(E1000_CTRL_EXT);
846 /* enable MSI-X PBA support*/
847 tmp |= E1000_CTRL_EXT_PBA_CLR;
848
849 /* Auto-Mask interrupts upon ICR read. */
850 tmp |= E1000_CTRL_EXT_EIAME;
851 tmp |= E1000_CTRL_EXT_IRCA;
852
853 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
854
855 /* enable msix_other interrupt */
856 array_wr32(E1000_MSIXBM(0), vector++,
857 E1000_EIMS_OTHER);
844290e5 858 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 859
2d064c06
AD
860 break;
861
862 case e1000_82576:
55cac248 863 case e1000_82580:
d2ba2ed8 864 case e1000_i350:
047e0030
AD
865 /* Turn on MSI-X capability first, or our settings
866 * won't stick. And it will take days to debug. */
867 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
868 E1000_GPIE_PBA | E1000_GPIE_EIAME |
869 E1000_GPIE_NSICR);
870
871 /* enable msix_other interrupt */
872 adapter->eims_other = 1 << vector;
2d064c06 873 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 874
047e0030 875 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
876 break;
877 default:
878 /* do nothing, since nothing else supports MSI-X */
879 break;
880 } /* switch (hw->mac.type) */
047e0030
AD
881
882 adapter->eims_enable_mask |= adapter->eims_other;
883
26b39276
AD
884 for (i = 0; i < adapter->num_q_vectors; i++)
885 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 886
9d5c8243
AK
887 wrfl();
888}
889
890/**
891 * igb_request_msix - Initialize MSI-X interrupts
892 *
893 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
894 * kernel.
895 **/
896static int igb_request_msix(struct igb_adapter *adapter)
897{
898 struct net_device *netdev = adapter->netdev;
047e0030 899 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
900 int i, err = 0, vector = 0;
901
047e0030 902 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 903 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
904 if (err)
905 goto out;
906 vector++;
907
908 for (i = 0; i < adapter->num_q_vectors; i++) {
909 struct igb_q_vector *q_vector = adapter->q_vector[i];
910
911 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
912
913 if (q_vector->rx_ring && q_vector->tx_ring)
914 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
915 q_vector->rx_ring->queue_index);
916 else if (q_vector->tx_ring)
917 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
918 q_vector->tx_ring->queue_index);
919 else if (q_vector->rx_ring)
920 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
921 q_vector->rx_ring->queue_index);
9d5c8243 922 else
047e0030
AD
923 sprintf(q_vector->name, "%s-unused", netdev->name);
924
9d5c8243 925 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 926 igb_msix_ring, 0, q_vector->name,
047e0030 927 q_vector);
9d5c8243
AK
928 if (err)
929 goto out;
9d5c8243
AK
930 vector++;
931 }
932
9d5c8243
AK
933 igb_configure_msix(adapter);
934 return 0;
935out:
936 return err;
937}
938
939static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
940{
941 if (adapter->msix_entries) {
942 pci_disable_msix(adapter->pdev);
943 kfree(adapter->msix_entries);
944 adapter->msix_entries = NULL;
047e0030 945 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 946 pci_disable_msi(adapter->pdev);
047e0030 947 }
9d5c8243
AK
948}
949
047e0030
AD
950/**
951 * igb_free_q_vectors - Free memory allocated for interrupt vectors
952 * @adapter: board private structure to initialize
953 *
954 * This function frees the memory allocated to the q_vectors. In addition if
955 * NAPI is enabled it will delete any references to the NAPI struct prior
956 * to freeing the q_vector.
957 **/
958static void igb_free_q_vectors(struct igb_adapter *adapter)
959{
960 int v_idx;
961
962 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
963 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
964 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
965 if (!q_vector)
966 continue;
047e0030
AD
967 netif_napi_del(&q_vector->napi);
968 kfree(q_vector);
969 }
970 adapter->num_q_vectors = 0;
971}
972
973/**
974 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
975 *
976 * This function resets the device so that it has 0 rx queues, tx queues, and
977 * MSI-X interrupts allocated.
978 */
979static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
980{
981 igb_free_queues(adapter);
982 igb_free_q_vectors(adapter);
983 igb_reset_interrupt_capability(adapter);
984}
9d5c8243
AK
985
986/**
987 * igb_set_interrupt_capability - set MSI or MSI-X if supported
988 *
989 * Attempt to configure interrupts using the best available
990 * capabilities of the hardware and kernel.
991 **/
992static void igb_set_interrupt_capability(struct igb_adapter *adapter)
993{
994 int err;
995 int numvecs, i;
996
83b7180d 997 /* Number of supported queues. */
a99955fc
AD
998 adapter->num_rx_queues = adapter->rss_queues;
999 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1000
047e0030
AD
1001 /* start with one vector for every rx queue */
1002 numvecs = adapter->num_rx_queues;
1003
3ad2f3fb 1004 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1005 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1006 numvecs += adapter->num_tx_queues;
047e0030
AD
1007
1008 /* store the number of vectors reserved for queues */
1009 adapter->num_q_vectors = numvecs;
1010
1011 /* add 1 vector for link status interrupts */
1012 numvecs++;
9d5c8243
AK
1013 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1014 GFP_KERNEL);
1015 if (!adapter->msix_entries)
1016 goto msi_only;
1017
1018 for (i = 0; i < numvecs; i++)
1019 adapter->msix_entries[i].entry = i;
1020
1021 err = pci_enable_msix(adapter->pdev,
1022 adapter->msix_entries,
1023 numvecs);
1024 if (err == 0)
34a20e89 1025 goto out;
9d5c8243
AK
1026
1027 igb_reset_interrupt_capability(adapter);
1028
1029 /* If we can't do MSI-X, try MSI */
1030msi_only:
2a3abf6d
AD
1031#ifdef CONFIG_PCI_IOV
1032 /* disable SR-IOV for non MSI-X configurations */
1033 if (adapter->vf_data) {
1034 struct e1000_hw *hw = &adapter->hw;
1035 /* disable iov and allow time for transactions to clear */
1036 pci_disable_sriov(adapter->pdev);
1037 msleep(500);
1038
1039 kfree(adapter->vf_data);
1040 adapter->vf_data = NULL;
1041 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1042 msleep(100);
1043 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1044 }
1045#endif
4fc82adf 1046 adapter->vfs_allocated_count = 0;
a99955fc 1047 adapter->rss_queues = 1;
4fc82adf 1048 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1049 adapter->num_rx_queues = 1;
661086df 1050 adapter->num_tx_queues = 1;
047e0030 1051 adapter->num_q_vectors = 1;
9d5c8243 1052 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1053 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1054out:
661086df 1055 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 1056 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
1057}
1058
047e0030
AD
1059/**
1060 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * We allocate one q_vector per queue interrupt. If allocation fails we
1064 * return -ENOMEM.
1065 **/
1066static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1067{
1068 struct igb_q_vector *q_vector;
1069 struct e1000_hw *hw = &adapter->hw;
1070 int v_idx;
1071
1072 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1073 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1074 if (!q_vector)
1075 goto err_out;
1076 q_vector->adapter = adapter;
047e0030
AD
1077 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1078 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1079 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1080 adapter->q_vector[v_idx] = q_vector;
1081 }
1082 return 0;
1083
1084err_out:
fe0592b4 1085 igb_free_q_vectors(adapter);
047e0030
AD
1086 return -ENOMEM;
1087}
1088
1089static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1090 int ring_idx, int v_idx)
1091{
3025a446 1092 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1093
3025a446 1094 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1095 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1096 q_vector->itr_val = adapter->rx_itr_setting;
1097 if (q_vector->itr_val && q_vector->itr_val <= 3)
1098 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1099}
1100
1101static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1102 int ring_idx, int v_idx)
1103{
3025a446 1104 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1105
3025a446 1106 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1107 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1108 q_vector->itr_val = adapter->tx_itr_setting;
1109 if (q_vector->itr_val && q_vector->itr_val <= 3)
1110 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1111}
1112
1113/**
1114 * igb_map_ring_to_vector - maps allocated queues to vectors
1115 *
1116 * This function maps the recently allocated queues to vectors.
1117 **/
1118static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1119{
1120 int i;
1121 int v_idx = 0;
1122
1123 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1124 (adapter->num_q_vectors < adapter->num_tx_queues))
1125 return -ENOMEM;
1126
1127 if (adapter->num_q_vectors >=
1128 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1129 for (i = 0; i < adapter->num_rx_queues; i++)
1130 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1131 for (i = 0; i < adapter->num_tx_queues; i++)
1132 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1133 } else {
1134 for (i = 0; i < adapter->num_rx_queues; i++) {
1135 if (i < adapter->num_tx_queues)
1136 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1137 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1138 }
1139 for (; i < adapter->num_tx_queues; i++)
1140 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1141 }
1142 return 0;
1143}
1144
1145/**
1146 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1147 *
1148 * This function initializes the interrupts and allocates all of the queues.
1149 **/
1150static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1151{
1152 struct pci_dev *pdev = adapter->pdev;
1153 int err;
1154
1155 igb_set_interrupt_capability(adapter);
1156
1157 err = igb_alloc_q_vectors(adapter);
1158 if (err) {
1159 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1160 goto err_alloc_q_vectors;
1161 }
1162
1163 err = igb_alloc_queues(adapter);
1164 if (err) {
1165 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1166 goto err_alloc_queues;
1167 }
1168
1169 err = igb_map_ring_to_vector(adapter);
1170 if (err) {
1171 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1172 goto err_map_queues;
1173 }
1174
1175
1176 return 0;
1177err_map_queues:
1178 igb_free_queues(adapter);
1179err_alloc_queues:
1180 igb_free_q_vectors(adapter);
1181err_alloc_q_vectors:
1182 igb_reset_interrupt_capability(adapter);
1183 return err;
1184}
1185
9d5c8243
AK
1186/**
1187 * igb_request_irq - initialize interrupts
1188 *
1189 * Attempts to configure interrupts using the best available
1190 * capabilities of the hardware and kernel.
1191 **/
1192static int igb_request_irq(struct igb_adapter *adapter)
1193{
1194 struct net_device *netdev = adapter->netdev;
047e0030 1195 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1196 int err = 0;
1197
1198 if (adapter->msix_entries) {
1199 err = igb_request_msix(adapter);
844290e5 1200 if (!err)
9d5c8243 1201 goto request_done;
9d5c8243 1202 /* fall back to MSI */
047e0030 1203 igb_clear_interrupt_scheme(adapter);
9d5c8243 1204 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1205 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1206 igb_free_all_tx_resources(adapter);
1207 igb_free_all_rx_resources(adapter);
047e0030 1208 adapter->num_tx_queues = 1;
9d5c8243 1209 adapter->num_rx_queues = 1;
047e0030
AD
1210 adapter->num_q_vectors = 1;
1211 err = igb_alloc_q_vectors(adapter);
1212 if (err) {
1213 dev_err(&pdev->dev,
1214 "Unable to allocate memory for vectors\n");
1215 goto request_done;
1216 }
1217 err = igb_alloc_queues(adapter);
1218 if (err) {
1219 dev_err(&pdev->dev,
1220 "Unable to allocate memory for queues\n");
1221 igb_free_q_vectors(adapter);
1222 goto request_done;
1223 }
1224 igb_setup_all_tx_resources(adapter);
1225 igb_setup_all_rx_resources(adapter);
844290e5 1226 } else {
feeb2721 1227 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1228 }
844290e5 1229
7dfc16fa 1230 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1231 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1232 netdev->name, adapter);
9d5c8243
AK
1233 if (!err)
1234 goto request_done;
047e0030 1235
9d5c8243
AK
1236 /* fall back to legacy interrupts */
1237 igb_reset_interrupt_capability(adapter);
7dfc16fa 1238 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1239 }
1240
a0607fd3 1241 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1242 netdev->name, adapter);
9d5c8243 1243
6cb5e577 1244 if (err)
9d5c8243
AK
1245 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1246 err);
9d5c8243
AK
1247
1248request_done:
1249 return err;
1250}
1251
1252static void igb_free_irq(struct igb_adapter *adapter)
1253{
9d5c8243
AK
1254 if (adapter->msix_entries) {
1255 int vector = 0, i;
1256
047e0030 1257 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1258
047e0030
AD
1259 for (i = 0; i < adapter->num_q_vectors; i++) {
1260 struct igb_q_vector *q_vector = adapter->q_vector[i];
1261 free_irq(adapter->msix_entries[vector++].vector,
1262 q_vector);
1263 }
1264 } else {
1265 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1266 }
9d5c8243
AK
1267}
1268
1269/**
1270 * igb_irq_disable - Mask off interrupt generation on the NIC
1271 * @adapter: board private structure
1272 **/
1273static void igb_irq_disable(struct igb_adapter *adapter)
1274{
1275 struct e1000_hw *hw = &adapter->hw;
1276
25568a53
AD
1277 /*
1278 * we need to be careful when disabling interrupts. The VFs are also
1279 * mapped into these registers and so clearing the bits can cause
1280 * issues on the VF drivers so we only need to clear what we set
1281 */
9d5c8243 1282 if (adapter->msix_entries) {
2dfd1212
AD
1283 u32 regval = rd32(E1000_EIAM);
1284 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1285 wr32(E1000_EIMC, adapter->eims_enable_mask);
1286 regval = rd32(E1000_EIAC);
1287 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1288 }
844290e5
PW
1289
1290 wr32(E1000_IAM, 0);
9d5c8243
AK
1291 wr32(E1000_IMC, ~0);
1292 wrfl();
1293 synchronize_irq(adapter->pdev->irq);
1294}
1295
1296/**
1297 * igb_irq_enable - Enable default interrupt generation settings
1298 * @adapter: board private structure
1299 **/
1300static void igb_irq_enable(struct igb_adapter *adapter)
1301{
1302 struct e1000_hw *hw = &adapter->hw;
1303
1304 if (adapter->msix_entries) {
25568a53 1305 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1306 u32 regval = rd32(E1000_EIAC);
1307 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1308 regval = rd32(E1000_EIAM);
1309 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1310 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1311 if (adapter->vfs_allocated_count) {
4ae196df 1312 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1313 ims |= E1000_IMS_VMMB;
1314 }
55cac248
AD
1315 if (adapter->hw.mac.type == e1000_82580)
1316 ims |= E1000_IMS_DRSTA;
1317
25568a53 1318 wr32(E1000_IMS, ims);
844290e5 1319 } else {
55cac248
AD
1320 wr32(E1000_IMS, IMS_ENABLE_MASK |
1321 E1000_IMS_DRSTA);
1322 wr32(E1000_IAM, IMS_ENABLE_MASK |
1323 E1000_IMS_DRSTA);
844290e5 1324 }
9d5c8243
AK
1325}
1326
1327static void igb_update_mng_vlan(struct igb_adapter *adapter)
1328{
51466239 1329 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1330 u16 vid = adapter->hw.mng_cookie.vlan_id;
1331 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1332
1333 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1334 /* add VID to filter table */
1335 igb_vfta_set(hw, vid, true);
1336 adapter->mng_vlan_id = vid;
1337 } else {
1338 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1339 }
1340
1341 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1342 (vid != old_vid) &&
1343 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1344 /* remove VID from filter table */
1345 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1346 }
1347}
1348
1349/**
1350 * igb_release_hw_control - release control of the h/w to f/w
1351 * @adapter: address of board private structure
1352 *
1353 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1354 * For ASF and Pass Through versions of f/w this means that the
1355 * driver is no longer loaded.
1356 *
1357 **/
1358static void igb_release_hw_control(struct igb_adapter *adapter)
1359{
1360 struct e1000_hw *hw = &adapter->hw;
1361 u32 ctrl_ext;
1362
1363 /* Let firmware take over control of h/w */
1364 ctrl_ext = rd32(E1000_CTRL_EXT);
1365 wr32(E1000_CTRL_EXT,
1366 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1367}
1368
9d5c8243
AK
1369/**
1370 * igb_get_hw_control - get control of the h/w from f/w
1371 * @adapter: address of board private structure
1372 *
1373 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1374 * For ASF and Pass Through versions of f/w this means that
1375 * the driver is loaded.
1376 *
1377 **/
1378static void igb_get_hw_control(struct igb_adapter *adapter)
1379{
1380 struct e1000_hw *hw = &adapter->hw;
1381 u32 ctrl_ext;
1382
1383 /* Let firmware know the driver has taken over */
1384 ctrl_ext = rd32(E1000_CTRL_EXT);
1385 wr32(E1000_CTRL_EXT,
1386 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1387}
1388
9d5c8243
AK
1389/**
1390 * igb_configure - configure the hardware for RX and TX
1391 * @adapter: private board structure
1392 **/
1393static void igb_configure(struct igb_adapter *adapter)
1394{
1395 struct net_device *netdev = adapter->netdev;
1396 int i;
1397
1398 igb_get_hw_control(adapter);
ff41f8dc 1399 igb_set_rx_mode(netdev);
9d5c8243
AK
1400
1401 igb_restore_vlan(adapter);
9d5c8243 1402
85b430b4 1403 igb_setup_tctl(adapter);
06cf2666 1404 igb_setup_mrqc(adapter);
9d5c8243 1405 igb_setup_rctl(adapter);
85b430b4
AD
1406
1407 igb_configure_tx(adapter);
9d5c8243 1408 igb_configure_rx(adapter);
662d7205
AD
1409
1410 igb_rx_fifo_flush_82575(&adapter->hw);
1411
c493ea45 1412 /* call igb_desc_unused which always leaves
9d5c8243
AK
1413 * at least 1 descriptor unused to make sure
1414 * next_to_use != next_to_clean */
1415 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1416 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1417 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1418 }
9d5c8243
AK
1419}
1420
88a268c1
NN
1421/**
1422 * igb_power_up_link - Power up the phy/serdes link
1423 * @adapter: address of board private structure
1424 **/
1425void igb_power_up_link(struct igb_adapter *adapter)
1426{
1427 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1428 igb_power_up_phy_copper(&adapter->hw);
1429 else
1430 igb_power_up_serdes_link_82575(&adapter->hw);
1431}
1432
1433/**
1434 * igb_power_down_link - Power down the phy/serdes link
1435 * @adapter: address of board private structure
1436 */
1437static void igb_power_down_link(struct igb_adapter *adapter)
1438{
1439 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1440 igb_power_down_phy_copper_82575(&adapter->hw);
1441 else
1442 igb_shutdown_serdes_link_82575(&adapter->hw);
1443}
9d5c8243
AK
1444
1445/**
1446 * igb_up - Open the interface and prepare it to handle traffic
1447 * @adapter: board private structure
1448 **/
9d5c8243
AK
1449int igb_up(struct igb_adapter *adapter)
1450{
1451 struct e1000_hw *hw = &adapter->hw;
1452 int i;
1453
1454 /* hardware has been reset, we need to reload some things */
1455 igb_configure(adapter);
1456
1457 clear_bit(__IGB_DOWN, &adapter->state);
1458
047e0030
AD
1459 for (i = 0; i < adapter->num_q_vectors; i++) {
1460 struct igb_q_vector *q_vector = adapter->q_vector[i];
1461 napi_enable(&q_vector->napi);
1462 }
844290e5 1463 if (adapter->msix_entries)
9d5c8243 1464 igb_configure_msix(adapter);
feeb2721
AD
1465 else
1466 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1467
1468 /* Clear any pending interrupts. */
1469 rd32(E1000_ICR);
1470 igb_irq_enable(adapter);
1471
d4960307
AD
1472 /* notify VFs that reset has been completed */
1473 if (adapter->vfs_allocated_count) {
1474 u32 reg_data = rd32(E1000_CTRL_EXT);
1475 reg_data |= E1000_CTRL_EXT_PFRSTD;
1476 wr32(E1000_CTRL_EXT, reg_data);
1477 }
1478
4cb9be7a
JB
1479 netif_tx_start_all_queues(adapter->netdev);
1480
25568a53
AD
1481 /* start the watchdog. */
1482 hw->mac.get_link_status = 1;
1483 schedule_work(&adapter->watchdog_task);
1484
9d5c8243
AK
1485 return 0;
1486}
1487
1488void igb_down(struct igb_adapter *adapter)
1489{
9d5c8243 1490 struct net_device *netdev = adapter->netdev;
330a6d6a 1491 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1492 u32 tctl, rctl;
1493 int i;
1494
1495 /* signal that we're down so the interrupt handler does not
1496 * reschedule our watchdog timer */
1497 set_bit(__IGB_DOWN, &adapter->state);
1498
1499 /* disable receives in the hardware */
1500 rctl = rd32(E1000_RCTL);
1501 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1502 /* flush and sleep below */
1503
fd2ea0a7 1504 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1505
1506 /* disable transmits in the hardware */
1507 tctl = rd32(E1000_TCTL);
1508 tctl &= ~E1000_TCTL_EN;
1509 wr32(E1000_TCTL, tctl);
1510 /* flush both disables and wait for them to finish */
1511 wrfl();
1512 msleep(10);
1513
047e0030
AD
1514 for (i = 0; i < adapter->num_q_vectors; i++) {
1515 struct igb_q_vector *q_vector = adapter->q_vector[i];
1516 napi_disable(&q_vector->napi);
1517 }
9d5c8243 1518
9d5c8243
AK
1519 igb_irq_disable(adapter);
1520
1521 del_timer_sync(&adapter->watchdog_timer);
1522 del_timer_sync(&adapter->phy_info_timer);
1523
9d5c8243 1524 netif_carrier_off(netdev);
04fe6358
AD
1525
1526 /* record the stats before reset*/
1527 igb_update_stats(adapter);
1528
9d5c8243
AK
1529 adapter->link_speed = 0;
1530 adapter->link_duplex = 0;
1531
3023682e
JK
1532 if (!pci_channel_offline(adapter->pdev))
1533 igb_reset(adapter);
9d5c8243
AK
1534 igb_clean_all_tx_rings(adapter);
1535 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1536#ifdef CONFIG_IGB_DCA
1537
1538 /* since we reset the hardware DCA settings were cleared */
1539 igb_setup_dca(adapter);
1540#endif
9d5c8243
AK
1541}
1542
1543void igb_reinit_locked(struct igb_adapter *adapter)
1544{
1545 WARN_ON(in_interrupt());
1546 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1547 msleep(1);
1548 igb_down(adapter);
1549 igb_up(adapter);
1550 clear_bit(__IGB_RESETTING, &adapter->state);
1551}
1552
1553void igb_reset(struct igb_adapter *adapter)
1554{
090b1795 1555 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1556 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1557 struct e1000_mac_info *mac = &hw->mac;
1558 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1559 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1560 u16 hwm;
1561
1562 /* Repartition Pba for greater than 9k mtu
1563 * To take effect CTRL.RST is required.
1564 */
fa4dfae0 1565 switch (mac->type) {
d2ba2ed8 1566 case e1000_i350:
55cac248
AD
1567 case e1000_82580:
1568 pba = rd32(E1000_RXPBS);
1569 pba = igb_rxpbs_adjust_82580(pba);
1570 break;
fa4dfae0 1571 case e1000_82576:
d249be54
AD
1572 pba = rd32(E1000_RXPBS);
1573 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1574 break;
1575 case e1000_82575:
1576 default:
1577 pba = E1000_PBA_34K;
1578 break;
2d064c06 1579 }
9d5c8243 1580
2d064c06
AD
1581 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1582 (mac->type < e1000_82576)) {
9d5c8243
AK
1583 /* adjust PBA for jumbo frames */
1584 wr32(E1000_PBA, pba);
1585
1586 /* To maintain wire speed transmits, the Tx FIFO should be
1587 * large enough to accommodate two full transmit packets,
1588 * rounded up to the next 1KB and expressed in KB. Likewise,
1589 * the Rx FIFO should be large enough to accommodate at least
1590 * one full receive packet and is similarly rounded up and
1591 * expressed in KB. */
1592 pba = rd32(E1000_PBA);
1593 /* upper 16 bits has Tx packet buffer allocation size in KB */
1594 tx_space = pba >> 16;
1595 /* lower 16 bits has Rx packet buffer allocation size in KB */
1596 pba &= 0xffff;
1597 /* the tx fifo also stores 16 bytes of information about the tx
1598 * but don't include ethernet FCS because hardware appends it */
1599 min_tx_space = (adapter->max_frame_size +
85e8d004 1600 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1601 ETH_FCS_LEN) * 2;
1602 min_tx_space = ALIGN(min_tx_space, 1024);
1603 min_tx_space >>= 10;
1604 /* software strips receive CRC, so leave room for it */
1605 min_rx_space = adapter->max_frame_size;
1606 min_rx_space = ALIGN(min_rx_space, 1024);
1607 min_rx_space >>= 10;
1608
1609 /* If current Tx allocation is less than the min Tx FIFO size,
1610 * and the min Tx FIFO size is less than the current Rx FIFO
1611 * allocation, take space away from current Rx allocation */
1612 if (tx_space < min_tx_space &&
1613 ((min_tx_space - tx_space) < pba)) {
1614 pba = pba - (min_tx_space - tx_space);
1615
1616 /* if short on rx space, rx wins and must trump tx
1617 * adjustment */
1618 if (pba < min_rx_space)
1619 pba = min_rx_space;
1620 }
2d064c06 1621 wr32(E1000_PBA, pba);
9d5c8243 1622 }
9d5c8243
AK
1623
1624 /* flow control settings */
1625 /* The high water mark must be low enough to fit one full frame
1626 * (or the size used for early receive) above it in the Rx FIFO.
1627 * Set it to the lower of:
1628 * - 90% of the Rx FIFO size, or
1629 * - the full Rx FIFO size minus one full frame */
1630 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1631 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1632
d405ea3e
AD
1633 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1634 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1635 fc->pause_time = 0xFFFF;
1636 fc->send_xon = 1;
0cce119a 1637 fc->current_mode = fc->requested_mode;
9d5c8243 1638
4ae196df
AD
1639 /* disable receive for all VFs and wait one second */
1640 if (adapter->vfs_allocated_count) {
1641 int i;
1642 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1643 adapter->vf_data[i].flags = 0;
4ae196df
AD
1644
1645 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1646 igb_ping_all_vfs(adapter);
4ae196df
AD
1647
1648 /* disable transmits and receives */
1649 wr32(E1000_VFRE, 0);
1650 wr32(E1000_VFTE, 0);
1651 }
1652
9d5c8243 1653 /* Allow time for pending master requests to run */
330a6d6a 1654 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1655 wr32(E1000_WUC, 0);
1656
330a6d6a 1657 if (hw->mac.ops.init_hw(hw))
090b1795 1658 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243 1659
55cac248
AD
1660 if (hw->mac.type == e1000_82580) {
1661 u32 reg = rd32(E1000_PCIEMISC);
1662 wr32(E1000_PCIEMISC,
1663 reg & ~E1000_PCIEMISC_LX_DECISION);
1664 }
88a268c1
NN
1665 if (!netif_running(adapter->netdev))
1666 igb_power_down_link(adapter);
1667
9d5c8243
AK
1668 igb_update_mng_vlan(adapter);
1669
1670 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1671 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1672
330a6d6a 1673 igb_get_phy_info(hw);
9d5c8243
AK
1674}
1675
2e5c6922 1676static const struct net_device_ops igb_netdev_ops = {
559e9c49 1677 .ndo_open = igb_open,
2e5c6922 1678 .ndo_stop = igb_close,
00829823 1679 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1680 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1681 .ndo_set_rx_mode = igb_set_rx_mode,
1682 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1683 .ndo_set_mac_address = igb_set_mac,
1684 .ndo_change_mtu = igb_change_mtu,
1685 .ndo_do_ioctl = igb_ioctl,
1686 .ndo_tx_timeout = igb_tx_timeout,
1687 .ndo_validate_addr = eth_validate_addr,
1688 .ndo_vlan_rx_register = igb_vlan_rx_register,
1689 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1690 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1691 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1692 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1693 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1694 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1695#ifdef CONFIG_NET_POLL_CONTROLLER
1696 .ndo_poll_controller = igb_netpoll,
1697#endif
1698};
1699
9d5c8243
AK
1700/**
1701 * igb_probe - Device Initialization Routine
1702 * @pdev: PCI device information struct
1703 * @ent: entry in igb_pci_tbl
1704 *
1705 * Returns 0 on success, negative on failure
1706 *
1707 * igb_probe initializes an adapter identified by a pci_dev structure.
1708 * The OS initialization, configuring of the adapter private structure,
1709 * and a hardware reset occur.
1710 **/
1711static int __devinit igb_probe(struct pci_dev *pdev,
1712 const struct pci_device_id *ent)
1713{
1714 struct net_device *netdev;
1715 struct igb_adapter *adapter;
1716 struct e1000_hw *hw;
4337e993
AD
1717 u16 eeprom_data = 0;
1718 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1719 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1720 unsigned long mmio_start, mmio_len;
2d6a5e95 1721 int err, pci_using_dac;
9d5c8243
AK
1722 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1723 u32 part_num;
1724
aed5dec3 1725 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1726 if (err)
1727 return err;
1728
1729 pci_using_dac = 0;
59d71989 1730 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1731 if (!err) {
59d71989 1732 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1733 if (!err)
1734 pci_using_dac = 1;
1735 } else {
59d71989 1736 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1737 if (err) {
59d71989 1738 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1739 if (err) {
1740 dev_err(&pdev->dev, "No usable DMA "
1741 "configuration, aborting\n");
1742 goto err_dma;
1743 }
1744 }
1745 }
1746
aed5dec3
AD
1747 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1748 IORESOURCE_MEM),
1749 igb_driver_name);
9d5c8243
AK
1750 if (err)
1751 goto err_pci_reg;
1752
19d5afd4 1753 pci_enable_pcie_error_reporting(pdev);
40a914fa 1754
9d5c8243 1755 pci_set_master(pdev);
c682fc23 1756 pci_save_state(pdev);
9d5c8243
AK
1757
1758 err = -ENOMEM;
1bfaf07b
AD
1759 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1760 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1761 if (!netdev)
1762 goto err_alloc_etherdev;
1763
1764 SET_NETDEV_DEV(netdev, &pdev->dev);
1765
1766 pci_set_drvdata(pdev, netdev);
1767 adapter = netdev_priv(netdev);
1768 adapter->netdev = netdev;
1769 adapter->pdev = pdev;
1770 hw = &adapter->hw;
1771 hw->back = adapter;
1772 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1773
1774 mmio_start = pci_resource_start(pdev, 0);
1775 mmio_len = pci_resource_len(pdev, 0);
1776
1777 err = -EIO;
28b0759c
AD
1778 hw->hw_addr = ioremap(mmio_start, mmio_len);
1779 if (!hw->hw_addr)
9d5c8243
AK
1780 goto err_ioremap;
1781
2e5c6922 1782 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1783 igb_set_ethtool_ops(netdev);
9d5c8243 1784 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1785
1786 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1787
1788 netdev->mem_start = mmio_start;
1789 netdev->mem_end = mmio_start + mmio_len;
1790
9d5c8243
AK
1791 /* PCI config space info */
1792 hw->vendor_id = pdev->vendor;
1793 hw->device_id = pdev->device;
1794 hw->revision_id = pdev->revision;
1795 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1796 hw->subsystem_device_id = pdev->subsystem_device;
1797
9d5c8243
AK
1798 /* Copy the default MAC, PHY and NVM function pointers */
1799 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1800 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1801 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1802 /* Initialize skew-specific constants */
1803 err = ei->get_invariants(hw);
1804 if (err)
450c87c8 1805 goto err_sw_init;
9d5c8243 1806
450c87c8 1807 /* setup the private structure */
9d5c8243
AK
1808 err = igb_sw_init(adapter);
1809 if (err)
1810 goto err_sw_init;
1811
1812 igb_get_bus_info_pcie(hw);
1813
1814 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1815
1816 /* Copper options */
1817 if (hw->phy.media_type == e1000_media_type_copper) {
1818 hw->phy.mdix = AUTO_ALL_MODES;
1819 hw->phy.disable_polarity_correction = false;
1820 hw->phy.ms_type = e1000_ms_hw_default;
1821 }
1822
1823 if (igb_check_reset_block(hw))
1824 dev_info(&pdev->dev,
1825 "PHY reset is blocked due to SOL/IDER session.\n");
1826
1827 netdev->features = NETIF_F_SG |
7d8eb29e 1828 NETIF_F_IP_CSUM |
9d5c8243
AK
1829 NETIF_F_HW_VLAN_TX |
1830 NETIF_F_HW_VLAN_RX |
1831 NETIF_F_HW_VLAN_FILTER;
1832
7d8eb29e 1833 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1834 netdev->features |= NETIF_F_TSO;
9d5c8243 1835 netdev->features |= NETIF_F_TSO6;
5c0999b7 1836 netdev->features |= NETIF_F_GRO;
d3352520 1837
48f29ffc
JK
1838 netdev->vlan_features |= NETIF_F_TSO;
1839 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1840 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1841 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1842 netdev->vlan_features |= NETIF_F_SG;
1843
9d5c8243
AK
1844 if (pci_using_dac)
1845 netdev->features |= NETIF_F_HIGHDMA;
1846
5b043fb0 1847 if (hw->mac.type >= e1000_82576)
b9473560
JB
1848 netdev->features |= NETIF_F_SCTP_CSUM;
1849
330a6d6a 1850 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1851
1852 /* before reading the NVM, reset the controller to put the device in a
1853 * known good starting state */
1854 hw->mac.ops.reset_hw(hw);
1855
1856 /* make sure the NVM is good */
1857 if (igb_validate_nvm_checksum(hw) < 0) {
1858 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1859 err = -EIO;
1860 goto err_eeprom;
1861 }
1862
1863 /* copy the MAC address out of the NVM */
1864 if (hw->mac.ops.read_mac_addr(hw))
1865 dev_err(&pdev->dev, "NVM Read Error\n");
1866
1867 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1868 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1869
1870 if (!is_valid_ether_addr(netdev->perm_addr)) {
1871 dev_err(&pdev->dev, "Invalid MAC Address\n");
1872 err = -EIO;
1873 goto err_eeprom;
1874 }
1875
0e340485
AD
1876 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1877 (unsigned long) adapter);
1878 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1879 (unsigned long) adapter);
9d5c8243
AK
1880
1881 INIT_WORK(&adapter->reset_task, igb_reset_task);
1882 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1883
450c87c8 1884 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1885 adapter->fc_autoneg = true;
1886 hw->mac.autoneg = true;
1887 hw->phy.autoneg_advertised = 0x2f;
1888
0cce119a
AD
1889 hw->fc.requested_mode = e1000_fc_default;
1890 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1891
9d5c8243
AK
1892 igb_validate_mdi_setting(hw);
1893
9d5c8243
AK
1894 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1895 * enable the ACPI Magic Packet filter
1896 */
1897
a2cf8b6c 1898 if (hw->bus.func == 0)
312c75ae 1899 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1900 else if (hw->mac.type == e1000_82580)
1901 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1902 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1903 &eeprom_data);
a2cf8b6c
AD
1904 else if (hw->bus.func == 1)
1905 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1906
1907 if (eeprom_data & eeprom_apme_mask)
1908 adapter->eeprom_wol |= E1000_WUFC_MAG;
1909
1910 /* now that we have the eeprom settings, apply the special cases where
1911 * the eeprom may be wrong or the board simply won't support wake on
1912 * lan on a particular port */
1913 switch (pdev->device) {
1914 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1915 adapter->eeprom_wol = 0;
1916 break;
1917 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1918 case E1000_DEV_ID_82576_FIBER:
1919 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1920 /* Wake events only supported on port A for dual fiber
1921 * regardless of eeprom setting */
1922 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1923 adapter->eeprom_wol = 0;
1924 break;
c8ea5ea9 1925 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 1926 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
1927 /* if quad port adapter, disable WoL on all but port A */
1928 if (global_quad_port_a != 0)
1929 adapter->eeprom_wol = 0;
1930 else
1931 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1932 /* Reset for multiple quad port adapters */
1933 if (++global_quad_port_a == 4)
1934 global_quad_port_a = 0;
1935 break;
9d5c8243
AK
1936 }
1937
1938 /* initialize the wol settings based on the eeprom settings */
1939 adapter->wol = adapter->eeprom_wol;
e1b86d84 1940 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1941
1942 /* reset the hardware with the new settings */
1943 igb_reset(adapter);
1944
1945 /* let the f/w know that the h/w is now under the control of the
1946 * driver. */
1947 igb_get_hw_control(adapter);
1948
9d5c8243
AK
1949 strcpy(netdev->name, "eth%d");
1950 err = register_netdev(netdev);
1951 if (err)
1952 goto err_register;
1953
b168dfc5
JB
1954 /* carrier off reporting is important to ethtool even BEFORE open */
1955 netif_carrier_off(netdev);
1956
421e02f0 1957#ifdef CONFIG_IGB_DCA
bbd98fe4 1958 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1959 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1960 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1961 igb_setup_dca(adapter);
1962 }
fe4506b6 1963
38c845c7 1964#endif
9d5c8243
AK
1965 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1966 /* print bus type/speed/width info */
7c510e4b 1967 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 1968 netdev->name,
559e9c49 1969 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 1970 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 1971 "unknown"),
59c3de89
AD
1972 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1973 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1974 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1975 "unknown"),
7c510e4b 1976 netdev->dev_addr);
9d5c8243
AK
1977
1978 igb_read_part_num(hw, &part_num);
1979 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1980 (part_num >> 8), (part_num & 0xff));
1981
1982 dev_info(&pdev->dev,
1983 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1984 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1985 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1986 adapter->num_rx_queues, adapter->num_tx_queues);
1987
9d5c8243
AK
1988 return 0;
1989
1990err_register:
1991 igb_release_hw_control(adapter);
1992err_eeprom:
1993 if (!igb_check_reset_block(hw))
f5f4cf08 1994 igb_reset_phy(hw);
9d5c8243
AK
1995
1996 if (hw->flash_address)
1997 iounmap(hw->flash_address);
9d5c8243 1998err_sw_init:
047e0030 1999 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2000 iounmap(hw->hw_addr);
2001err_ioremap:
2002 free_netdev(netdev);
2003err_alloc_etherdev:
559e9c49
AD
2004 pci_release_selected_regions(pdev,
2005 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2006err_pci_reg:
2007err_dma:
2008 pci_disable_device(pdev);
2009 return err;
2010}
2011
2012/**
2013 * igb_remove - Device Removal Routine
2014 * @pdev: PCI device information struct
2015 *
2016 * igb_remove is called by the PCI subsystem to alert the driver
2017 * that it should release a PCI device. The could be caused by a
2018 * Hot-Plug event, or because the driver is going to be removed from
2019 * memory.
2020 **/
2021static void __devexit igb_remove(struct pci_dev *pdev)
2022{
2023 struct net_device *netdev = pci_get_drvdata(pdev);
2024 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2025 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2026
2027 /* flush_scheduled work may reschedule our watchdog task, so
2028 * explicitly disable watchdog tasks from being rescheduled */
2029 set_bit(__IGB_DOWN, &adapter->state);
2030 del_timer_sync(&adapter->watchdog_timer);
2031 del_timer_sync(&adapter->phy_info_timer);
2032
2033 flush_scheduled_work();
2034
421e02f0 2035#ifdef CONFIG_IGB_DCA
7dfc16fa 2036 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2037 dev_info(&pdev->dev, "DCA disabled\n");
2038 dca_remove_requester(&pdev->dev);
7dfc16fa 2039 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2040 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2041 }
2042#endif
2043
9d5c8243
AK
2044 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2045 * would have already happened in close and is redundant. */
2046 igb_release_hw_control(adapter);
2047
2048 unregister_netdev(netdev);
2049
047e0030 2050 igb_clear_interrupt_scheme(adapter);
9d5c8243 2051
37680117
AD
2052#ifdef CONFIG_PCI_IOV
2053 /* reclaim resources allocated to VFs */
2054 if (adapter->vf_data) {
2055 /* disable iov and allow time for transactions to clear */
2056 pci_disable_sriov(pdev);
2057 msleep(500);
2058
2059 kfree(adapter->vf_data);
2060 adapter->vf_data = NULL;
2061 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2062 msleep(100);
2063 dev_info(&pdev->dev, "IOV Disabled\n");
2064 }
2065#endif
559e9c49 2066
28b0759c
AD
2067 iounmap(hw->hw_addr);
2068 if (hw->flash_address)
2069 iounmap(hw->flash_address);
559e9c49
AD
2070 pci_release_selected_regions(pdev,
2071 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2072
2073 free_netdev(netdev);
2074
19d5afd4 2075 pci_disable_pcie_error_reporting(pdev);
40a914fa 2076
9d5c8243
AK
2077 pci_disable_device(pdev);
2078}
2079
a6b623e0
AD
2080/**
2081 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2082 * @adapter: board private structure to initialize
2083 *
2084 * This function initializes the vf specific data storage and then attempts to
2085 * allocate the VFs. The reason for ordering it this way is because it is much
2086 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2087 * the memory for the VFs.
2088 **/
2089static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2090{
2091#ifdef CONFIG_PCI_IOV
2092 struct pci_dev *pdev = adapter->pdev;
2093
2094 if (adapter->vfs_allocated_count > 7)
2095 adapter->vfs_allocated_count = 7;
2096
2097 if (adapter->vfs_allocated_count) {
2098 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2099 sizeof(struct vf_data_storage),
2100 GFP_KERNEL);
2101 /* if allocation failed then we do not support SR-IOV */
2102 if (!adapter->vf_data) {
2103 adapter->vfs_allocated_count = 0;
2104 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2105 "Data Storage\n");
2106 }
2107 }
2108
2109 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2110 kfree(adapter->vf_data);
2111 adapter->vf_data = NULL;
2112#endif /* CONFIG_PCI_IOV */
2113 adapter->vfs_allocated_count = 0;
2114#ifdef CONFIG_PCI_IOV
2115 } else {
2116 unsigned char mac_addr[ETH_ALEN];
2117 int i;
2118 dev_info(&pdev->dev, "%d vfs allocated\n",
2119 adapter->vfs_allocated_count);
2120 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2121 random_ether_addr(mac_addr);
2122 igb_set_vf_mac(adapter, i, mac_addr);
2123 }
2124 }
2125#endif /* CONFIG_PCI_IOV */
2126}
2127
115f459a
AD
2128
2129/**
2130 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2131 * @adapter: board private structure to initialize
2132 *
2133 * igb_init_hw_timer initializes the function pointer and values for the hw
2134 * timer found in hardware.
2135 **/
2136static void igb_init_hw_timer(struct igb_adapter *adapter)
2137{
2138 struct e1000_hw *hw = &adapter->hw;
2139
2140 switch (hw->mac.type) {
d2ba2ed8 2141 case e1000_i350:
55cac248
AD
2142 case e1000_82580:
2143 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2144 adapter->cycles.read = igb_read_clock;
2145 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2146 adapter->cycles.mult = 1;
2147 /*
2148 * The 82580 timesync updates the system timer every 8ns by 8ns
2149 * and the value cannot be shifted. Instead we need to shift
2150 * the registers to generate a 64bit timer value. As a result
2151 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2152 * 24 in order to generate a larger value for synchronization.
2153 */
2154 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2155 /* disable system timer temporarily by setting bit 31 */
2156 wr32(E1000_TSAUXC, 0x80000000);
2157 wrfl();
2158
2159 /* Set registers so that rollover occurs soon to test this. */
2160 wr32(E1000_SYSTIMR, 0x00000000);
2161 wr32(E1000_SYSTIML, 0x80000000);
2162 wr32(E1000_SYSTIMH, 0x000000FF);
2163 wrfl();
2164
2165 /* enable system timer by clearing bit 31 */
2166 wr32(E1000_TSAUXC, 0x0);
2167 wrfl();
2168
2169 timecounter_init(&adapter->clock,
2170 &adapter->cycles,
2171 ktime_to_ns(ktime_get_real()));
2172 /*
2173 * Synchronize our NIC clock against system wall clock. NIC
2174 * time stamp reading requires ~3us per sample, each sample
2175 * was pretty stable even under load => only require 10
2176 * samples for each offset comparison.
2177 */
2178 memset(&adapter->compare, 0, sizeof(adapter->compare));
2179 adapter->compare.source = &adapter->clock;
2180 adapter->compare.target = ktime_get_real;
2181 adapter->compare.num_samples = 10;
2182 timecompare_update(&adapter->compare, 0);
2183 break;
115f459a
AD
2184 case e1000_82576:
2185 /*
2186 * Initialize hardware timer: we keep it running just in case
2187 * that some program needs it later on.
2188 */
2189 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2190 adapter->cycles.read = igb_read_clock;
2191 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2192 adapter->cycles.mult = 1;
2193 /**
2194 * Scale the NIC clock cycle by a large factor so that
2195 * relatively small clock corrections can be added or
2196 * substracted at each clock tick. The drawbacks of a large
2197 * factor are a) that the clock register overflows more quickly
2198 * (not such a big deal) and b) that the increment per tick has
2199 * to fit into 24 bits. As a result we need to use a shift of
2200 * 19 so we can fit a value of 16 into the TIMINCA register.
2201 */
2202 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2203 wr32(E1000_TIMINCA,
2204 (1 << E1000_TIMINCA_16NS_SHIFT) |
2205 (16 << IGB_82576_TSYNC_SHIFT));
2206
2207 /* Set registers so that rollover occurs soon to test this. */
2208 wr32(E1000_SYSTIML, 0x00000000);
2209 wr32(E1000_SYSTIMH, 0xFF800000);
2210 wrfl();
2211
2212 timecounter_init(&adapter->clock,
2213 &adapter->cycles,
2214 ktime_to_ns(ktime_get_real()));
2215 /*
2216 * Synchronize our NIC clock against system wall clock. NIC
2217 * time stamp reading requires ~3us per sample, each sample
2218 * was pretty stable even under load => only require 10
2219 * samples for each offset comparison.
2220 */
2221 memset(&adapter->compare, 0, sizeof(adapter->compare));
2222 adapter->compare.source = &adapter->clock;
2223 adapter->compare.target = ktime_get_real;
2224 adapter->compare.num_samples = 10;
2225 timecompare_update(&adapter->compare, 0);
2226 break;
2227 case e1000_82575:
2228 /* 82575 does not support timesync */
2229 default:
2230 break;
2231 }
2232
2233}
2234
9d5c8243
AK
2235/**
2236 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2237 * @adapter: board private structure to initialize
2238 *
2239 * igb_sw_init initializes the Adapter private data structure.
2240 * Fields are initialized based on PCI device information and
2241 * OS network device settings (MTU size).
2242 **/
2243static int __devinit igb_sw_init(struct igb_adapter *adapter)
2244{
2245 struct e1000_hw *hw = &adapter->hw;
2246 struct net_device *netdev = adapter->netdev;
2247 struct pci_dev *pdev = adapter->pdev;
2248
2249 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2250
68fd9910
AD
2251 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2252 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2253 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2254 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2255
9d5c8243
AK
2256 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2257 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2258
a6b623e0
AD
2259#ifdef CONFIG_PCI_IOV
2260 if (hw->mac.type == e1000_82576)
2261 adapter->vfs_allocated_count = max_vfs;
2262
2263#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2264 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2265
2266 /*
2267 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2268 * then we should combine the queues into a queue pair in order to
2269 * conserve interrupts due to limited supply
2270 */
2271 if ((adapter->rss_queues > 4) ||
2272 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2273 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2274
a6b623e0 2275 /* This call may decrease the number of queues */
047e0030 2276 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2277 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2278 return -ENOMEM;
2279 }
2280
115f459a 2281 igb_init_hw_timer(adapter);
a6b623e0
AD
2282 igb_probe_vfs(adapter);
2283
9d5c8243
AK
2284 /* Explicitly disable IRQ since the NIC can be in any state. */
2285 igb_irq_disable(adapter);
2286
2287 set_bit(__IGB_DOWN, &adapter->state);
2288 return 0;
2289}
2290
2291/**
2292 * igb_open - Called when a network interface is made active
2293 * @netdev: network interface device structure
2294 *
2295 * Returns 0 on success, negative value on failure
2296 *
2297 * The open entry point is called when a network interface is made
2298 * active by the system (IFF_UP). At this point all resources needed
2299 * for transmit and receive operations are allocated, the interrupt
2300 * handler is registered with the OS, the watchdog timer is started,
2301 * and the stack is notified that the interface is ready.
2302 **/
2303static int igb_open(struct net_device *netdev)
2304{
2305 struct igb_adapter *adapter = netdev_priv(netdev);
2306 struct e1000_hw *hw = &adapter->hw;
2307 int err;
2308 int i;
2309
2310 /* disallow open during test */
2311 if (test_bit(__IGB_TESTING, &adapter->state))
2312 return -EBUSY;
2313
b168dfc5
JB
2314 netif_carrier_off(netdev);
2315
9d5c8243
AK
2316 /* allocate transmit descriptors */
2317 err = igb_setup_all_tx_resources(adapter);
2318 if (err)
2319 goto err_setup_tx;
2320
2321 /* allocate receive descriptors */
2322 err = igb_setup_all_rx_resources(adapter);
2323 if (err)
2324 goto err_setup_rx;
2325
88a268c1 2326 igb_power_up_link(adapter);
9d5c8243 2327
9d5c8243
AK
2328 /* before we allocate an interrupt, we must be ready to handle it.
2329 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2330 * as soon as we call pci_request_irq, so we have to setup our
2331 * clean_rx handler before we do so. */
2332 igb_configure(adapter);
2333
2334 err = igb_request_irq(adapter);
2335 if (err)
2336 goto err_req_irq;
2337
2338 /* From here on the code is the same as igb_up() */
2339 clear_bit(__IGB_DOWN, &adapter->state);
2340
047e0030
AD
2341 for (i = 0; i < adapter->num_q_vectors; i++) {
2342 struct igb_q_vector *q_vector = adapter->q_vector[i];
2343 napi_enable(&q_vector->napi);
2344 }
9d5c8243
AK
2345
2346 /* Clear any pending interrupts. */
2347 rd32(E1000_ICR);
844290e5
PW
2348
2349 igb_irq_enable(adapter);
2350
d4960307
AD
2351 /* notify VFs that reset has been completed */
2352 if (adapter->vfs_allocated_count) {
2353 u32 reg_data = rd32(E1000_CTRL_EXT);
2354 reg_data |= E1000_CTRL_EXT_PFRSTD;
2355 wr32(E1000_CTRL_EXT, reg_data);
2356 }
2357
d55b53ff
JK
2358 netif_tx_start_all_queues(netdev);
2359
25568a53
AD
2360 /* start the watchdog. */
2361 hw->mac.get_link_status = 1;
2362 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2363
2364 return 0;
2365
2366err_req_irq:
2367 igb_release_hw_control(adapter);
88a268c1 2368 igb_power_down_link(adapter);
9d5c8243
AK
2369 igb_free_all_rx_resources(adapter);
2370err_setup_rx:
2371 igb_free_all_tx_resources(adapter);
2372err_setup_tx:
2373 igb_reset(adapter);
2374
2375 return err;
2376}
2377
2378/**
2379 * igb_close - Disables a network interface
2380 * @netdev: network interface device structure
2381 *
2382 * Returns 0, this is not allowed to fail
2383 *
2384 * The close entry point is called when an interface is de-activated
2385 * by the OS. The hardware is still under the driver's control, but
2386 * needs to be disabled. A global MAC reset is issued to stop the
2387 * hardware, and all transmit and receive resources are freed.
2388 **/
2389static int igb_close(struct net_device *netdev)
2390{
2391 struct igb_adapter *adapter = netdev_priv(netdev);
2392
2393 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2394 igb_down(adapter);
2395
2396 igb_free_irq(adapter);
2397
2398 igb_free_all_tx_resources(adapter);
2399 igb_free_all_rx_resources(adapter);
2400
9d5c8243
AK
2401 return 0;
2402}
2403
2404/**
2405 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2406 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2407 *
2408 * Return 0 on success, negative on failure
2409 **/
80785298 2410int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2411{
59d71989 2412 struct device *dev = tx_ring->dev;
9d5c8243
AK
2413 int size;
2414
2415 size = sizeof(struct igb_buffer) * tx_ring->count;
2416 tx_ring->buffer_info = vmalloc(size);
2417 if (!tx_ring->buffer_info)
2418 goto err;
2419 memset(tx_ring->buffer_info, 0, size);
2420
2421 /* round up to nearest 4K */
85e8d004 2422 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2423 tx_ring->size = ALIGN(tx_ring->size, 4096);
2424
59d71989
AD
2425 tx_ring->desc = dma_alloc_coherent(dev,
2426 tx_ring->size,
2427 &tx_ring->dma,
2428 GFP_KERNEL);
9d5c8243
AK
2429
2430 if (!tx_ring->desc)
2431 goto err;
2432
9d5c8243
AK
2433 tx_ring->next_to_use = 0;
2434 tx_ring->next_to_clean = 0;
9d5c8243
AK
2435 return 0;
2436
2437err:
2438 vfree(tx_ring->buffer_info);
59d71989 2439 dev_err(dev,
9d5c8243
AK
2440 "Unable to allocate memory for the transmit descriptor ring\n");
2441 return -ENOMEM;
2442}
2443
2444/**
2445 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2446 * (Descriptors) for all queues
2447 * @adapter: board private structure
2448 *
2449 * Return 0 on success, negative on failure
2450 **/
2451static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2452{
439705e1 2453 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2454 int i, err = 0;
2455
2456 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2457 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2458 if (err) {
439705e1 2459 dev_err(&pdev->dev,
9d5c8243
AK
2460 "Allocation for Tx Queue %u failed\n", i);
2461 for (i--; i >= 0; i--)
3025a446 2462 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2463 break;
2464 }
2465 }
2466
a99955fc 2467 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2468 int r_idx = i % adapter->num_tx_queues;
3025a446 2469 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2470 }
9d5c8243
AK
2471 return err;
2472}
2473
2474/**
85b430b4
AD
2475 * igb_setup_tctl - configure the transmit control registers
2476 * @adapter: Board private structure
9d5c8243 2477 **/
d7ee5b3a 2478void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2479{
9d5c8243
AK
2480 struct e1000_hw *hw = &adapter->hw;
2481 u32 tctl;
9d5c8243 2482
85b430b4
AD
2483 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2484 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2485
2486 /* Program the Transmit Control Register */
9d5c8243
AK
2487 tctl = rd32(E1000_TCTL);
2488 tctl &= ~E1000_TCTL_CT;
2489 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2490 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2491
2492 igb_config_collision_dist(hw);
2493
9d5c8243
AK
2494 /* Enable transmits */
2495 tctl |= E1000_TCTL_EN;
2496
2497 wr32(E1000_TCTL, tctl);
2498}
2499
85b430b4
AD
2500/**
2501 * igb_configure_tx_ring - Configure transmit ring after Reset
2502 * @adapter: board private structure
2503 * @ring: tx ring to configure
2504 *
2505 * Configure a transmit ring after a reset.
2506 **/
d7ee5b3a
AD
2507void igb_configure_tx_ring(struct igb_adapter *adapter,
2508 struct igb_ring *ring)
85b430b4
AD
2509{
2510 struct e1000_hw *hw = &adapter->hw;
2511 u32 txdctl;
2512 u64 tdba = ring->dma;
2513 int reg_idx = ring->reg_idx;
2514
2515 /* disable the queue */
2516 txdctl = rd32(E1000_TXDCTL(reg_idx));
2517 wr32(E1000_TXDCTL(reg_idx),
2518 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2519 wrfl();
2520 mdelay(10);
2521
2522 wr32(E1000_TDLEN(reg_idx),
2523 ring->count * sizeof(union e1000_adv_tx_desc));
2524 wr32(E1000_TDBAL(reg_idx),
2525 tdba & 0x00000000ffffffffULL);
2526 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2527
fce99e34
AD
2528 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2529 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2530 writel(0, ring->head);
2531 writel(0, ring->tail);
85b430b4
AD
2532
2533 txdctl |= IGB_TX_PTHRESH;
2534 txdctl |= IGB_TX_HTHRESH << 8;
2535 txdctl |= IGB_TX_WTHRESH << 16;
2536
2537 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2538 wr32(E1000_TXDCTL(reg_idx), txdctl);
2539}
2540
2541/**
2542 * igb_configure_tx - Configure transmit Unit after Reset
2543 * @adapter: board private structure
2544 *
2545 * Configure the Tx unit of the MAC after a reset.
2546 **/
2547static void igb_configure_tx(struct igb_adapter *adapter)
2548{
2549 int i;
2550
2551 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2552 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2553}
2554
9d5c8243
AK
2555/**
2556 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2557 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2558 *
2559 * Returns 0 on success, negative on failure
2560 **/
80785298 2561int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2562{
59d71989 2563 struct device *dev = rx_ring->dev;
9d5c8243
AK
2564 int size, desc_len;
2565
2566 size = sizeof(struct igb_buffer) * rx_ring->count;
2567 rx_ring->buffer_info = vmalloc(size);
2568 if (!rx_ring->buffer_info)
2569 goto err;
2570 memset(rx_ring->buffer_info, 0, size);
2571
2572 desc_len = sizeof(union e1000_adv_rx_desc);
2573
2574 /* Round up to nearest 4K */
2575 rx_ring->size = rx_ring->count * desc_len;
2576 rx_ring->size = ALIGN(rx_ring->size, 4096);
2577
59d71989
AD
2578 rx_ring->desc = dma_alloc_coherent(dev,
2579 rx_ring->size,
2580 &rx_ring->dma,
2581 GFP_KERNEL);
9d5c8243
AK
2582
2583 if (!rx_ring->desc)
2584 goto err;
2585
2586 rx_ring->next_to_clean = 0;
2587 rx_ring->next_to_use = 0;
9d5c8243 2588
9d5c8243
AK
2589 return 0;
2590
2591err:
2592 vfree(rx_ring->buffer_info);
439705e1 2593 rx_ring->buffer_info = NULL;
59d71989
AD
2594 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2595 " ring\n");
9d5c8243
AK
2596 return -ENOMEM;
2597}
2598
2599/**
2600 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2601 * (Descriptors) for all queues
2602 * @adapter: board private structure
2603 *
2604 * Return 0 on success, negative on failure
2605 **/
2606static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2607{
439705e1 2608 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2609 int i, err = 0;
2610
2611 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2612 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2613 if (err) {
439705e1 2614 dev_err(&pdev->dev,
9d5c8243
AK
2615 "Allocation for Rx Queue %u failed\n", i);
2616 for (i--; i >= 0; i--)
3025a446 2617 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2618 break;
2619 }
2620 }
2621
2622 return err;
2623}
2624
06cf2666
AD
2625/**
2626 * igb_setup_mrqc - configure the multiple receive queue control registers
2627 * @adapter: Board private structure
2628 **/
2629static void igb_setup_mrqc(struct igb_adapter *adapter)
2630{
2631 struct e1000_hw *hw = &adapter->hw;
2632 u32 mrqc, rxcsum;
2633 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2634 union e1000_reta {
2635 u32 dword;
2636 u8 bytes[4];
2637 } reta;
2638 static const u8 rsshash[40] = {
2639 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2640 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2641 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2642 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2643
2644 /* Fill out hash function seeds */
2645 for (j = 0; j < 10; j++) {
2646 u32 rsskey = rsshash[(j * 4)];
2647 rsskey |= rsshash[(j * 4) + 1] << 8;
2648 rsskey |= rsshash[(j * 4) + 2] << 16;
2649 rsskey |= rsshash[(j * 4) + 3] << 24;
2650 array_wr32(E1000_RSSRK(0), j, rsskey);
2651 }
2652
a99955fc 2653 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2654
2655 if (adapter->vfs_allocated_count) {
2656 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2657 switch (hw->mac.type) {
d2ba2ed8 2658 case e1000_i350:
55cac248
AD
2659 case e1000_82580:
2660 num_rx_queues = 1;
2661 shift = 0;
2662 break;
06cf2666
AD
2663 case e1000_82576:
2664 shift = 3;
2665 num_rx_queues = 2;
2666 break;
2667 case e1000_82575:
2668 shift = 2;
2669 shift2 = 6;
2670 default:
2671 break;
2672 }
2673 } else {
2674 if (hw->mac.type == e1000_82575)
2675 shift = 6;
2676 }
2677
2678 for (j = 0; j < (32 * 4); j++) {
2679 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2680 if (shift2)
2681 reta.bytes[j & 3] |= num_rx_queues << shift2;
2682 if ((j & 3) == 3)
2683 wr32(E1000_RETA(j >> 2), reta.dword);
2684 }
2685
2686 /*
2687 * Disable raw packet checksumming so that RSS hash is placed in
2688 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2689 * offloads as they are enabled by default
2690 */
2691 rxcsum = rd32(E1000_RXCSUM);
2692 rxcsum |= E1000_RXCSUM_PCSD;
2693
2694 if (adapter->hw.mac.type >= e1000_82576)
2695 /* Enable Receive Checksum Offload for SCTP */
2696 rxcsum |= E1000_RXCSUM_CRCOFL;
2697
2698 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2699 wr32(E1000_RXCSUM, rxcsum);
2700
2701 /* If VMDq is enabled then we set the appropriate mode for that, else
2702 * we default to RSS so that an RSS hash is calculated per packet even
2703 * if we are only using one queue */
2704 if (adapter->vfs_allocated_count) {
2705 if (hw->mac.type > e1000_82575) {
2706 /* Set the default pool for the PF's first queue */
2707 u32 vtctl = rd32(E1000_VT_CTL);
2708 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2709 E1000_VT_CTL_DISABLE_DEF_POOL);
2710 vtctl |= adapter->vfs_allocated_count <<
2711 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2712 wr32(E1000_VT_CTL, vtctl);
2713 }
a99955fc 2714 if (adapter->rss_queues > 1)
06cf2666
AD
2715 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2716 else
2717 mrqc = E1000_MRQC_ENABLE_VMDQ;
2718 } else {
2719 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2720 }
2721 igb_vmm_control(adapter);
2722
2723 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2724 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2725 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2726 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2727 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2728 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2729 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2730 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2731
2732 wr32(E1000_MRQC, mrqc);
2733}
2734
9d5c8243
AK
2735/**
2736 * igb_setup_rctl - configure the receive control registers
2737 * @adapter: Board private structure
2738 **/
d7ee5b3a 2739void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2740{
2741 struct e1000_hw *hw = &adapter->hw;
2742 u32 rctl;
9d5c8243
AK
2743
2744 rctl = rd32(E1000_RCTL);
2745
2746 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2747 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2748
69d728ba 2749 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2750 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2751
87cb7e8c
AK
2752 /*
2753 * enable stripping of CRC. It's unlikely this will break BMC
2754 * redirection as it did with e1000. Newer features require
2755 * that the HW strips the CRC.
73cd78f1 2756 */
87cb7e8c 2757 rctl |= E1000_RCTL_SECRC;
9d5c8243 2758
559e9c49 2759 /* disable store bad packets and clear size bits. */
ec54d7d6 2760 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2761
6ec43fe6
AD
2762 /* enable LPE to prevent packets larger than max_frame_size */
2763 rctl |= E1000_RCTL_LPE;
9d5c8243 2764
952f72a8
AD
2765 /* disable queue 0 to prevent tail write w/o re-config */
2766 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2767
e1739522
AD
2768 /* Attention!!! For SR-IOV PF driver operations you must enable
2769 * queue drop for all VF and PF queues to prevent head of line blocking
2770 * if an un-trusted VF does not provide descriptors to hardware.
2771 */
2772 if (adapter->vfs_allocated_count) {
e1739522
AD
2773 /* set all queue drop enable bits */
2774 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2775 }
2776
9d5c8243
AK
2777 wr32(E1000_RCTL, rctl);
2778}
2779
7d5753f0
AD
2780static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2781 int vfn)
2782{
2783 struct e1000_hw *hw = &adapter->hw;
2784 u32 vmolr;
2785
2786 /* if it isn't the PF check to see if VFs are enabled and
2787 * increase the size to support vlan tags */
2788 if (vfn < adapter->vfs_allocated_count &&
2789 adapter->vf_data[vfn].vlans_enabled)
2790 size += VLAN_TAG_SIZE;
2791
2792 vmolr = rd32(E1000_VMOLR(vfn));
2793 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2794 vmolr |= size | E1000_VMOLR_LPE;
2795 wr32(E1000_VMOLR(vfn), vmolr);
2796
2797 return 0;
2798}
2799
e1739522
AD
2800/**
2801 * igb_rlpml_set - set maximum receive packet size
2802 * @adapter: board private structure
2803 *
2804 * Configure maximum receivable packet size.
2805 **/
2806static void igb_rlpml_set(struct igb_adapter *adapter)
2807{
2808 u32 max_frame_size = adapter->max_frame_size;
2809 struct e1000_hw *hw = &adapter->hw;
2810 u16 pf_id = adapter->vfs_allocated_count;
2811
2812 if (adapter->vlgrp)
2813 max_frame_size += VLAN_TAG_SIZE;
2814
2815 /* if vfs are enabled we set RLPML to the largest possible request
2816 * size and set the VMOLR RLPML to the size we need */
2817 if (pf_id) {
2818 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2819 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2820 }
2821
2822 wr32(E1000_RLPML, max_frame_size);
2823}
2824
8151d294
WM
2825static inline void igb_set_vmolr(struct igb_adapter *adapter,
2826 int vfn, bool aupe)
7d5753f0
AD
2827{
2828 struct e1000_hw *hw = &adapter->hw;
2829 u32 vmolr;
2830
2831 /*
2832 * This register exists only on 82576 and newer so if we are older then
2833 * we should exit and do nothing
2834 */
2835 if (hw->mac.type < e1000_82576)
2836 return;
2837
2838 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2839 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2840 if (aupe)
2841 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2842 else
2843 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2844
2845 /* clear all bits that might not be set */
2846 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2847
a99955fc 2848 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2849 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2850 /*
2851 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2852 * multicast packets
2853 */
2854 if (vfn <= adapter->vfs_allocated_count)
2855 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2856
2857 wr32(E1000_VMOLR(vfn), vmolr);
2858}
2859
85b430b4
AD
2860/**
2861 * igb_configure_rx_ring - Configure a receive ring after Reset
2862 * @adapter: board private structure
2863 * @ring: receive ring to be configured
2864 *
2865 * Configure the Rx unit of the MAC after a reset.
2866 **/
d7ee5b3a
AD
2867void igb_configure_rx_ring(struct igb_adapter *adapter,
2868 struct igb_ring *ring)
85b430b4
AD
2869{
2870 struct e1000_hw *hw = &adapter->hw;
2871 u64 rdba = ring->dma;
2872 int reg_idx = ring->reg_idx;
952f72a8 2873 u32 srrctl, rxdctl;
85b430b4
AD
2874
2875 /* disable the queue */
2876 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2877 wr32(E1000_RXDCTL(reg_idx),
2878 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2879
2880 /* Set DMA base address registers */
2881 wr32(E1000_RDBAL(reg_idx),
2882 rdba & 0x00000000ffffffffULL);
2883 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2884 wr32(E1000_RDLEN(reg_idx),
2885 ring->count * sizeof(union e1000_adv_rx_desc));
2886
2887 /* initialize head and tail */
fce99e34
AD
2888 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2889 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2890 writel(0, ring->head);
2891 writel(0, ring->tail);
85b430b4 2892
952f72a8 2893 /* set descriptor configuration */
4c844851
AD
2894 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2895 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2896 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2897#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2898 srrctl |= IGB_RXBUFFER_16384 >>
2899 E1000_SRRCTL_BSIZEPKT_SHIFT;
2900#else
2901 srrctl |= (PAGE_SIZE / 2) >>
2902 E1000_SRRCTL_BSIZEPKT_SHIFT;
2903#endif
2904 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2905 } else {
4c844851 2906 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2907 E1000_SRRCTL_BSIZEPKT_SHIFT;
2908 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2909 }
757b77e2
NN
2910 if (hw->mac.type == e1000_82580)
2911 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
2912 /* Only set Drop Enable if we are supporting multiple queues */
2913 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2914 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
2915
2916 wr32(E1000_SRRCTL(reg_idx), srrctl);
2917
7d5753f0 2918 /* set filtering for VMDQ pools */
8151d294 2919 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 2920
85b430b4
AD
2921 /* enable receive descriptor fetching */
2922 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2923 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2924 rxdctl &= 0xFFF00000;
2925 rxdctl |= IGB_RX_PTHRESH;
2926 rxdctl |= IGB_RX_HTHRESH << 8;
2927 rxdctl |= IGB_RX_WTHRESH << 16;
2928 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2929}
2930
9d5c8243
AK
2931/**
2932 * igb_configure_rx - Configure receive Unit after Reset
2933 * @adapter: board private structure
2934 *
2935 * Configure the Rx unit of the MAC after a reset.
2936 **/
2937static void igb_configure_rx(struct igb_adapter *adapter)
2938{
9107584e 2939 int i;
9d5c8243 2940
68d480c4
AD
2941 /* set UTA to appropriate mode */
2942 igb_set_uta(adapter);
2943
26ad9178
AD
2944 /* set the correct pool for the PF default MAC address in entry 0 */
2945 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2946 adapter->vfs_allocated_count);
2947
06cf2666
AD
2948 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2949 * the Base and Length of the Rx Descriptor Ring */
2950 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 2951 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
2952}
2953
2954/**
2955 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2956 * @tx_ring: Tx descriptor ring for a specific queue
2957 *
2958 * Free all transmit software resources
2959 **/
68fd9910 2960void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2961{
3b644cf6 2962 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2963
2964 vfree(tx_ring->buffer_info);
2965 tx_ring->buffer_info = NULL;
2966
439705e1
AD
2967 /* if not set, then don't free */
2968 if (!tx_ring->desc)
2969 return;
2970
59d71989
AD
2971 dma_free_coherent(tx_ring->dev, tx_ring->size,
2972 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2973
2974 tx_ring->desc = NULL;
2975}
2976
2977/**
2978 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2979 * @adapter: board private structure
2980 *
2981 * Free all transmit software resources
2982 **/
2983static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2984{
2985 int i;
2986
2987 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2988 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2989}
2990
b1a436c3
AD
2991void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2992 struct igb_buffer *buffer_info)
9d5c8243 2993{
6366ad33
AD
2994 if (buffer_info->dma) {
2995 if (buffer_info->mapped_as_page)
59d71989 2996 dma_unmap_page(tx_ring->dev,
6366ad33
AD
2997 buffer_info->dma,
2998 buffer_info->length,
59d71989 2999 DMA_TO_DEVICE);
6366ad33 3000 else
59d71989 3001 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3002 buffer_info->dma,
3003 buffer_info->length,
59d71989 3004 DMA_TO_DEVICE);
6366ad33
AD
3005 buffer_info->dma = 0;
3006 }
9d5c8243
AK
3007 if (buffer_info->skb) {
3008 dev_kfree_skb_any(buffer_info->skb);
3009 buffer_info->skb = NULL;
3010 }
3011 buffer_info->time_stamp = 0;
6366ad33
AD
3012 buffer_info->length = 0;
3013 buffer_info->next_to_watch = 0;
3014 buffer_info->mapped_as_page = false;
9d5c8243
AK
3015}
3016
3017/**
3018 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3019 * @tx_ring: ring to be cleaned
3020 **/
3b644cf6 3021static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3022{
3023 struct igb_buffer *buffer_info;
3024 unsigned long size;
3025 unsigned int i;
3026
3027 if (!tx_ring->buffer_info)
3028 return;
3029 /* Free all the Tx ring sk_buffs */
3030
3031 for (i = 0; i < tx_ring->count; i++) {
3032 buffer_info = &tx_ring->buffer_info[i];
80785298 3033 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3034 }
3035
3036 size = sizeof(struct igb_buffer) * tx_ring->count;
3037 memset(tx_ring->buffer_info, 0, size);
3038
3039 /* Zero out the descriptor ring */
9d5c8243
AK
3040 memset(tx_ring->desc, 0, tx_ring->size);
3041
3042 tx_ring->next_to_use = 0;
3043 tx_ring->next_to_clean = 0;
9d5c8243
AK
3044}
3045
3046/**
3047 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3048 * @adapter: board private structure
3049 **/
3050static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3051{
3052 int i;
3053
3054 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3055 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3056}
3057
3058/**
3059 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3060 * @rx_ring: ring to clean the resources from
3061 *
3062 * Free all receive software resources
3063 **/
68fd9910 3064void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3065{
3b644cf6 3066 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3067
3068 vfree(rx_ring->buffer_info);
3069 rx_ring->buffer_info = NULL;
3070
439705e1
AD
3071 /* if not set, then don't free */
3072 if (!rx_ring->desc)
3073 return;
3074
59d71989
AD
3075 dma_free_coherent(rx_ring->dev, rx_ring->size,
3076 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3077
3078 rx_ring->desc = NULL;
3079}
3080
3081/**
3082 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3083 * @adapter: board private structure
3084 *
3085 * Free all receive software resources
3086 **/
3087static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3088{
3089 int i;
3090
3091 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3092 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3093}
3094
3095/**
3096 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3097 * @rx_ring: ring to free buffers from
3098 **/
3b644cf6 3099static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3100{
3101 struct igb_buffer *buffer_info;
9d5c8243
AK
3102 unsigned long size;
3103 unsigned int i;
3104
3105 if (!rx_ring->buffer_info)
3106 return;
439705e1 3107
9d5c8243
AK
3108 /* Free all the Rx ring sk_buffs */
3109 for (i = 0; i < rx_ring->count; i++) {
3110 buffer_info = &rx_ring->buffer_info[i];
3111 if (buffer_info->dma) {
59d71989 3112 dma_unmap_single(rx_ring->dev,
80785298 3113 buffer_info->dma,
4c844851 3114 rx_ring->rx_buffer_len,
59d71989 3115 DMA_FROM_DEVICE);
9d5c8243
AK
3116 buffer_info->dma = 0;
3117 }
3118
3119 if (buffer_info->skb) {
3120 dev_kfree_skb(buffer_info->skb);
3121 buffer_info->skb = NULL;
3122 }
6ec43fe6 3123 if (buffer_info->page_dma) {
59d71989 3124 dma_unmap_page(rx_ring->dev,
80785298 3125 buffer_info->page_dma,
6ec43fe6 3126 PAGE_SIZE / 2,
59d71989 3127 DMA_FROM_DEVICE);
6ec43fe6
AD
3128 buffer_info->page_dma = 0;
3129 }
9d5c8243 3130 if (buffer_info->page) {
9d5c8243
AK
3131 put_page(buffer_info->page);
3132 buffer_info->page = NULL;
bf36c1a0 3133 buffer_info->page_offset = 0;
9d5c8243
AK
3134 }
3135 }
3136
9d5c8243
AK
3137 size = sizeof(struct igb_buffer) * rx_ring->count;
3138 memset(rx_ring->buffer_info, 0, size);
3139
3140 /* Zero out the descriptor ring */
3141 memset(rx_ring->desc, 0, rx_ring->size);
3142
3143 rx_ring->next_to_clean = 0;
3144 rx_ring->next_to_use = 0;
9d5c8243
AK
3145}
3146
3147/**
3148 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3149 * @adapter: board private structure
3150 **/
3151static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3152{
3153 int i;
3154
3155 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3156 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3157}
3158
3159/**
3160 * igb_set_mac - Change the Ethernet Address of the NIC
3161 * @netdev: network interface device structure
3162 * @p: pointer to an address structure
3163 *
3164 * Returns 0 on success, negative on failure
3165 **/
3166static int igb_set_mac(struct net_device *netdev, void *p)
3167{
3168 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3169 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3170 struct sockaddr *addr = p;
3171
3172 if (!is_valid_ether_addr(addr->sa_data))
3173 return -EADDRNOTAVAIL;
3174
3175 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3176 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3177
26ad9178
AD
3178 /* set the correct pool for the new PF MAC address in entry 0 */
3179 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3180 adapter->vfs_allocated_count);
e1739522 3181
9d5c8243
AK
3182 return 0;
3183}
3184
3185/**
68d480c4 3186 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3187 * @netdev: network interface device structure
3188 *
68d480c4
AD
3189 * Writes multicast address list to the MTA hash table.
3190 * Returns: -ENOMEM on failure
3191 * 0 on no addresses written
3192 * X on writing X addresses to MTA
9d5c8243 3193 **/
68d480c4 3194static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3195{
3196 struct igb_adapter *adapter = netdev_priv(netdev);
3197 struct e1000_hw *hw = &adapter->hw;
22bedad3 3198 struct netdev_hw_addr *ha;
68d480c4 3199 u8 *mta_list;
9d5c8243
AK
3200 int i;
3201
4cd24eaf 3202 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3203 /* nothing to program, so clear mc list */
3204 igb_update_mc_addr_list(hw, NULL, 0);
3205 igb_restore_vf_multicasts(adapter);
3206 return 0;
3207 }
9d5c8243 3208
4cd24eaf 3209 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3210 if (!mta_list)
3211 return -ENOMEM;
ff41f8dc 3212
68d480c4 3213 /* The shared function expects a packed array of only addresses. */
48e2f183 3214 i = 0;
22bedad3
JP
3215 netdev_for_each_mc_addr(ha, netdev)
3216 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3217
68d480c4
AD
3218 igb_update_mc_addr_list(hw, mta_list, i);
3219 kfree(mta_list);
3220
4cd24eaf 3221 return netdev_mc_count(netdev);
68d480c4
AD
3222}
3223
3224/**
3225 * igb_write_uc_addr_list - write unicast addresses to RAR table
3226 * @netdev: network interface device structure
3227 *
3228 * Writes unicast address list to the RAR table.
3229 * Returns: -ENOMEM on failure/insufficient address space
3230 * 0 on no addresses written
3231 * X on writing X addresses to the RAR table
3232 **/
3233static int igb_write_uc_addr_list(struct net_device *netdev)
3234{
3235 struct igb_adapter *adapter = netdev_priv(netdev);
3236 struct e1000_hw *hw = &adapter->hw;
3237 unsigned int vfn = adapter->vfs_allocated_count;
3238 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3239 int count = 0;
3240
3241 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3242 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3243 return -ENOMEM;
9d5c8243 3244
32e7bfc4 3245 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3246 struct netdev_hw_addr *ha;
32e7bfc4
JP
3247
3248 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3249 if (!rar_entries)
3250 break;
26ad9178
AD
3251 igb_rar_set_qsel(adapter, ha->addr,
3252 rar_entries--,
68d480c4
AD
3253 vfn);
3254 count++;
ff41f8dc
AD
3255 }
3256 }
3257 /* write the addresses in reverse order to avoid write combining */
3258 for (; rar_entries > 0 ; rar_entries--) {
3259 wr32(E1000_RAH(rar_entries), 0);
3260 wr32(E1000_RAL(rar_entries), 0);
3261 }
3262 wrfl();
3263
68d480c4
AD
3264 return count;
3265}
3266
3267/**
3268 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3269 * @netdev: network interface device structure
3270 *
3271 * The set_rx_mode entry point is called whenever the unicast or multicast
3272 * address lists or the network interface flags are updated. This routine is
3273 * responsible for configuring the hardware for proper unicast, multicast,
3274 * promiscuous mode, and all-multi behavior.
3275 **/
3276static void igb_set_rx_mode(struct net_device *netdev)
3277{
3278 struct igb_adapter *adapter = netdev_priv(netdev);
3279 struct e1000_hw *hw = &adapter->hw;
3280 unsigned int vfn = adapter->vfs_allocated_count;
3281 u32 rctl, vmolr = 0;
3282 int count;
3283
3284 /* Check for Promiscuous and All Multicast modes */
3285 rctl = rd32(E1000_RCTL);
3286
3287 /* clear the effected bits */
3288 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3289
3290 if (netdev->flags & IFF_PROMISC) {
3291 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3292 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3293 } else {
3294 if (netdev->flags & IFF_ALLMULTI) {
3295 rctl |= E1000_RCTL_MPE;
3296 vmolr |= E1000_VMOLR_MPME;
3297 } else {
3298 /*
3299 * Write addresses to the MTA, if the attempt fails
3300 * then we should just turn on promiscous mode so
3301 * that we can at least receive multicast traffic
3302 */
3303 count = igb_write_mc_addr_list(netdev);
3304 if (count < 0) {
3305 rctl |= E1000_RCTL_MPE;
3306 vmolr |= E1000_VMOLR_MPME;
3307 } else if (count) {
3308 vmolr |= E1000_VMOLR_ROMPE;
3309 }
3310 }
3311 /*
3312 * Write addresses to available RAR registers, if there is not
3313 * sufficient space to store all the addresses then enable
3314 * unicast promiscous mode
3315 */
3316 count = igb_write_uc_addr_list(netdev);
3317 if (count < 0) {
3318 rctl |= E1000_RCTL_UPE;
3319 vmolr |= E1000_VMOLR_ROPE;
3320 }
3321 rctl |= E1000_RCTL_VFE;
28fc06f5 3322 }
68d480c4 3323 wr32(E1000_RCTL, rctl);
28fc06f5 3324
68d480c4
AD
3325 /*
3326 * In order to support SR-IOV and eventually VMDq it is necessary to set
3327 * the VMOLR to enable the appropriate modes. Without this workaround
3328 * we will have issues with VLAN tag stripping not being done for frames
3329 * that are only arriving because we are the default pool
3330 */
3331 if (hw->mac.type < e1000_82576)
28fc06f5 3332 return;
9d5c8243 3333
68d480c4
AD
3334 vmolr |= rd32(E1000_VMOLR(vfn)) &
3335 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3336 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3337 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3338}
3339
3340/* Need to wait a few seconds after link up to get diagnostic information from
3341 * the phy */
3342static void igb_update_phy_info(unsigned long data)
3343{
3344 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3345 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3346}
3347
4d6b725e
AD
3348/**
3349 * igb_has_link - check shared code for link and determine up/down
3350 * @adapter: pointer to driver private info
3351 **/
3145535a 3352bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3353{
3354 struct e1000_hw *hw = &adapter->hw;
3355 bool link_active = false;
3356 s32 ret_val = 0;
3357
3358 /* get_link_status is set on LSC (link status) interrupt or
3359 * rx sequence error interrupt. get_link_status will stay
3360 * false until the e1000_check_for_link establishes link
3361 * for copper adapters ONLY
3362 */
3363 switch (hw->phy.media_type) {
3364 case e1000_media_type_copper:
3365 if (hw->mac.get_link_status) {
3366 ret_val = hw->mac.ops.check_for_link(hw);
3367 link_active = !hw->mac.get_link_status;
3368 } else {
3369 link_active = true;
3370 }
3371 break;
4d6b725e
AD
3372 case e1000_media_type_internal_serdes:
3373 ret_val = hw->mac.ops.check_for_link(hw);
3374 link_active = hw->mac.serdes_has_link;
3375 break;
3376 default:
3377 case e1000_media_type_unknown:
3378 break;
3379 }
3380
3381 return link_active;
3382}
3383
9d5c8243
AK
3384/**
3385 * igb_watchdog - Timer Call-back
3386 * @data: pointer to adapter cast into an unsigned long
3387 **/
3388static void igb_watchdog(unsigned long data)
3389{
3390 struct igb_adapter *adapter = (struct igb_adapter *)data;
3391 /* Do the rest outside of interrupt context */
3392 schedule_work(&adapter->watchdog_task);
3393}
3394
3395static void igb_watchdog_task(struct work_struct *work)
3396{
3397 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3398 struct igb_adapter,
3399 watchdog_task);
9d5c8243 3400 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3401 struct net_device *netdev = adapter->netdev;
9d5c8243 3402 u32 link;
7a6ea550 3403 int i;
9d5c8243 3404
4d6b725e 3405 link = igb_has_link(adapter);
9d5c8243
AK
3406 if (link) {
3407 if (!netif_carrier_ok(netdev)) {
3408 u32 ctrl;
330a6d6a
AD
3409 hw->mac.ops.get_speed_and_duplex(hw,
3410 &adapter->link_speed,
3411 &adapter->link_duplex);
9d5c8243
AK
3412
3413 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3414 /* Links status message must follow this format */
3415 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3416 "Flow Control: %s\n",
559e9c49
AD
3417 netdev->name,
3418 adapter->link_speed,
3419 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3420 "Full Duplex" : "Half Duplex",
559e9c49
AD
3421 ((ctrl & E1000_CTRL_TFCE) &&
3422 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3423 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3424 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3425
d07f3e37 3426 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3427 adapter->tx_timeout_factor = 1;
3428 switch (adapter->link_speed) {
3429 case SPEED_10:
9d5c8243
AK
3430 adapter->tx_timeout_factor = 14;
3431 break;
3432 case SPEED_100:
9d5c8243
AK
3433 /* maybe add some timeout factor ? */
3434 break;
3435 }
3436
3437 netif_carrier_on(netdev);
9d5c8243 3438
4ae196df
AD
3439 igb_ping_all_vfs(adapter);
3440
4b1a9877 3441 /* link state has changed, schedule phy info update */
9d5c8243
AK
3442 if (!test_bit(__IGB_DOWN, &adapter->state))
3443 mod_timer(&adapter->phy_info_timer,
3444 round_jiffies(jiffies + 2 * HZ));
3445 }
3446 } else {
3447 if (netif_carrier_ok(netdev)) {
3448 adapter->link_speed = 0;
3449 adapter->link_duplex = 0;
527d47c1
AD
3450 /* Links status message must follow this format */
3451 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3452 netdev->name);
9d5c8243 3453 netif_carrier_off(netdev);
4b1a9877 3454
4ae196df
AD
3455 igb_ping_all_vfs(adapter);
3456
4b1a9877 3457 /* link state has changed, schedule phy info update */
9d5c8243
AK
3458 if (!test_bit(__IGB_DOWN, &adapter->state))
3459 mod_timer(&adapter->phy_info_timer,
3460 round_jiffies(jiffies + 2 * HZ));
3461 }
3462 }
3463
9d5c8243 3464 igb_update_stats(adapter);
9d5c8243 3465
dbabb065 3466 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3467 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3468 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3469 /* We've lost link, so the controller stops DMA,
3470 * but we've got queued Tx work that's never going
3471 * to get done, so reset controller to flush Tx.
3472 * (Do the reset outside of interrupt context). */
dbabb065
AD
3473 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3474 adapter->tx_timeout_count++;
3475 schedule_work(&adapter->reset_task);
3476 /* return immediately since reset is imminent */
3477 return;
3478 }
9d5c8243 3479 }
9d5c8243 3480
dbabb065
AD
3481 /* Force detection of hung controller every watchdog period */
3482 tx_ring->detect_tx_hung = true;
3483 }
f7ba205e 3484
9d5c8243 3485 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3486 if (adapter->msix_entries) {
047e0030
AD
3487 u32 eics = 0;
3488 for (i = 0; i < adapter->num_q_vectors; i++) {
3489 struct igb_q_vector *q_vector = adapter->q_vector[i];
3490 eics |= q_vector->eims_value;
3491 }
7a6ea550
AD
3492 wr32(E1000_EICS, eics);
3493 } else {
3494 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3495 }
9d5c8243 3496
9d5c8243
AK
3497 /* Reset the timer */
3498 if (!test_bit(__IGB_DOWN, &adapter->state))
3499 mod_timer(&adapter->watchdog_timer,
3500 round_jiffies(jiffies + 2 * HZ));
3501}
3502
3503enum latency_range {
3504 lowest_latency = 0,
3505 low_latency = 1,
3506 bulk_latency = 2,
3507 latency_invalid = 255
3508};
3509
6eb5a7f1
AD
3510/**
3511 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3512 *
3513 * Stores a new ITR value based on strictly on packet size. This
3514 * algorithm is less sophisticated than that used in igb_update_itr,
3515 * due to the difficulty of synchronizing statistics across multiple
3516 * receive rings. The divisors and thresholds used by this fuction
3517 * were determined based on theoretical maximum wire speed and testing
3518 * data, in order to minimize response time while increasing bulk
3519 * throughput.
3520 * This functionality is controlled by the InterruptThrottleRate module
3521 * parameter (see igb_param.c)
3522 * NOTE: This function is called only when operating in a multiqueue
3523 * receive environment.
047e0030 3524 * @q_vector: pointer to q_vector
6eb5a7f1 3525 **/
047e0030 3526static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3527{
047e0030 3528 int new_val = q_vector->itr_val;
6eb5a7f1 3529 int avg_wire_size = 0;
047e0030 3530 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3531
6eb5a7f1
AD
3532 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3533 * ints/sec - ITR timer value of 120 ticks.
3534 */
3535 if (adapter->link_speed != SPEED_1000) {
047e0030 3536 new_val = 976;
6eb5a7f1 3537 goto set_itr_val;
9d5c8243 3538 }
047e0030
AD
3539
3540 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3541 struct igb_ring *ring = q_vector->rx_ring;
3542 avg_wire_size = ring->total_bytes / ring->total_packets;
3543 }
3544
3545 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3546 struct igb_ring *ring = q_vector->tx_ring;
3547 avg_wire_size = max_t(u32, avg_wire_size,
3548 (ring->total_bytes /
3549 ring->total_packets));
3550 }
3551
3552 /* if avg_wire_size isn't set no work was done */
3553 if (!avg_wire_size)
3554 goto clear_counts;
9d5c8243 3555
6eb5a7f1
AD
3556 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3557 avg_wire_size += 24;
3558
3559 /* Don't starve jumbo frames */
3560 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3561
6eb5a7f1
AD
3562 /* Give a little boost to mid-size frames */
3563 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3564 new_val = avg_wire_size / 3;
3565 else
3566 new_val = avg_wire_size / 2;
9d5c8243 3567
abe1c363
NN
3568 /* when in itr mode 3 do not exceed 20K ints/sec */
3569 if (adapter->rx_itr_setting == 3 && new_val < 196)
3570 new_val = 196;
3571
6eb5a7f1 3572set_itr_val:
047e0030
AD
3573 if (new_val != q_vector->itr_val) {
3574 q_vector->itr_val = new_val;
3575 q_vector->set_itr = 1;
9d5c8243 3576 }
6eb5a7f1 3577clear_counts:
047e0030
AD
3578 if (q_vector->rx_ring) {
3579 q_vector->rx_ring->total_bytes = 0;
3580 q_vector->rx_ring->total_packets = 0;
3581 }
3582 if (q_vector->tx_ring) {
3583 q_vector->tx_ring->total_bytes = 0;
3584 q_vector->tx_ring->total_packets = 0;
3585 }
9d5c8243
AK
3586}
3587
3588/**
3589 * igb_update_itr - update the dynamic ITR value based on statistics
3590 * Stores a new ITR value based on packets and byte
3591 * counts during the last interrupt. The advantage of per interrupt
3592 * computation is faster updates and more accurate ITR for the current
3593 * traffic pattern. Constants in this function were computed
3594 * based on theoretical maximum wire speed and thresholds were set based
3595 * on testing data as well as attempting to minimize response time
3596 * while increasing bulk throughput.
3597 * this functionality is controlled by the InterruptThrottleRate module
3598 * parameter (see igb_param.c)
3599 * NOTE: These calculations are only valid when operating in a single-
3600 * queue environment.
3601 * @adapter: pointer to adapter
047e0030 3602 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3603 * @packets: the number of packets during this measurement interval
3604 * @bytes: the number of bytes during this measurement interval
3605 **/
3606static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3607 int packets, int bytes)
3608{
3609 unsigned int retval = itr_setting;
3610
3611 if (packets == 0)
3612 goto update_itr_done;
3613
3614 switch (itr_setting) {
3615 case lowest_latency:
3616 /* handle TSO and jumbo frames */
3617 if (bytes/packets > 8000)
3618 retval = bulk_latency;
3619 else if ((packets < 5) && (bytes > 512))
3620 retval = low_latency;
3621 break;
3622 case low_latency: /* 50 usec aka 20000 ints/s */
3623 if (bytes > 10000) {
3624 /* this if handles the TSO accounting */
3625 if (bytes/packets > 8000) {
3626 retval = bulk_latency;
3627 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3628 retval = bulk_latency;
3629 } else if ((packets > 35)) {
3630 retval = lowest_latency;
3631 }
3632 } else if (bytes/packets > 2000) {
3633 retval = bulk_latency;
3634 } else if (packets <= 2 && bytes < 512) {
3635 retval = lowest_latency;
3636 }
3637 break;
3638 case bulk_latency: /* 250 usec aka 4000 ints/s */
3639 if (bytes > 25000) {
3640 if (packets > 35)
3641 retval = low_latency;
1e5c3d21 3642 } else if (bytes < 1500) {
9d5c8243
AK
3643 retval = low_latency;
3644 }
3645 break;
3646 }
3647
3648update_itr_done:
3649 return retval;
3650}
3651
6eb5a7f1 3652static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3653{
047e0030 3654 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3655 u16 current_itr;
047e0030 3656 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3657
3658 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3659 if (adapter->link_speed != SPEED_1000) {
3660 current_itr = 0;
3661 new_itr = 4000;
3662 goto set_itr_now;
3663 }
3664
3665 adapter->rx_itr = igb_update_itr(adapter,
3666 adapter->rx_itr,
3025a446
AD
3667 q_vector->rx_ring->total_packets,
3668 q_vector->rx_ring->total_bytes);
9d5c8243 3669
047e0030
AD
3670 adapter->tx_itr = igb_update_itr(adapter,
3671 adapter->tx_itr,
3025a446
AD
3672 q_vector->tx_ring->total_packets,
3673 q_vector->tx_ring->total_bytes);
047e0030 3674 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3675
6eb5a7f1 3676 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3677 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3678 current_itr = low_latency;
3679
9d5c8243
AK
3680 switch (current_itr) {
3681 /* counts and packets in update_itr are dependent on these numbers */
3682 case lowest_latency:
78b1f607 3683 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3684 break;
3685 case low_latency:
78b1f607 3686 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3687 break;
3688 case bulk_latency:
78b1f607 3689 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3690 break;
3691 default:
3692 break;
3693 }
3694
3695set_itr_now:
3025a446
AD
3696 q_vector->rx_ring->total_bytes = 0;
3697 q_vector->rx_ring->total_packets = 0;
3698 q_vector->tx_ring->total_bytes = 0;
3699 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3700
047e0030 3701 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3702 /* this attempts to bias the interrupt rate towards Bulk
3703 * by adding intermediate steps when interrupt rate is
3704 * increasing */
047e0030
AD
3705 new_itr = new_itr > q_vector->itr_val ?
3706 max((new_itr * q_vector->itr_val) /
3707 (new_itr + (q_vector->itr_val >> 2)),
3708 new_itr) :
9d5c8243
AK
3709 new_itr;
3710 /* Don't write the value here; it resets the adapter's
3711 * internal timer, and causes us to delay far longer than
3712 * we should between interrupts. Instead, we write the ITR
3713 * value at the beginning of the next interrupt so the timing
3714 * ends up being correct.
3715 */
047e0030
AD
3716 q_vector->itr_val = new_itr;
3717 q_vector->set_itr = 1;
9d5c8243 3718 }
9d5c8243
AK
3719}
3720
9d5c8243
AK
3721#define IGB_TX_FLAGS_CSUM 0x00000001
3722#define IGB_TX_FLAGS_VLAN 0x00000002
3723#define IGB_TX_FLAGS_TSO 0x00000004
3724#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3725#define IGB_TX_FLAGS_TSTAMP 0x00000010
3726#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3727#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3728
85ad76b2 3729static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3730 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3731{
3732 struct e1000_adv_tx_context_desc *context_desc;
3733 unsigned int i;
3734 int err;
3735 struct igb_buffer *buffer_info;
3736 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3737 u32 mss_l4len_idx;
3738 u8 l4len;
9d5c8243
AK
3739
3740 if (skb_header_cloned(skb)) {
3741 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3742 if (err)
3743 return err;
3744 }
3745
3746 l4len = tcp_hdrlen(skb);
3747 *hdr_len += l4len;
3748
3749 if (skb->protocol == htons(ETH_P_IP)) {
3750 struct iphdr *iph = ip_hdr(skb);
3751 iph->tot_len = 0;
3752 iph->check = 0;
3753 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3754 iph->daddr, 0,
3755 IPPROTO_TCP,
3756 0);
8e1e8a47 3757 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3758 ipv6_hdr(skb)->payload_len = 0;
3759 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3760 &ipv6_hdr(skb)->daddr,
3761 0, IPPROTO_TCP, 0);
3762 }
3763
3764 i = tx_ring->next_to_use;
3765
3766 buffer_info = &tx_ring->buffer_info[i];
3767 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3768 /* VLAN MACLEN IPLEN */
3769 if (tx_flags & IGB_TX_FLAGS_VLAN)
3770 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3771 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3772 *hdr_len += skb_network_offset(skb);
3773 info |= skb_network_header_len(skb);
3774 *hdr_len += skb_network_header_len(skb);
3775 context_desc->vlan_macip_lens = cpu_to_le32(info);
3776
3777 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3778 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3779
3780 if (skb->protocol == htons(ETH_P_IP))
3781 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3782 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3783
3784 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3785
3786 /* MSS L4LEN IDX */
3787 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3788 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3789
73cd78f1 3790 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3791 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3792 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3793
3794 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3795 context_desc->seqnum_seed = 0;
3796
3797 buffer_info->time_stamp = jiffies;
0e014cb1 3798 buffer_info->next_to_watch = i;
9d5c8243
AK
3799 buffer_info->dma = 0;
3800 i++;
3801 if (i == tx_ring->count)
3802 i = 0;
3803
3804 tx_ring->next_to_use = i;
3805
3806 return true;
3807}
3808
85ad76b2
AD
3809static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3810 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3811{
3812 struct e1000_adv_tx_context_desc *context_desc;
59d71989 3813 struct device *dev = tx_ring->dev;
9d5c8243
AK
3814 struct igb_buffer *buffer_info;
3815 u32 info = 0, tu_cmd = 0;
80785298 3816 unsigned int i;
9d5c8243
AK
3817
3818 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3819 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3820 i = tx_ring->next_to_use;
3821 buffer_info = &tx_ring->buffer_info[i];
3822 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3823
3824 if (tx_flags & IGB_TX_FLAGS_VLAN)
3825 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3826
9d5c8243
AK
3827 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3828 if (skb->ip_summed == CHECKSUM_PARTIAL)
3829 info |= skb_network_header_len(skb);
3830
3831 context_desc->vlan_macip_lens = cpu_to_le32(info);
3832
3833 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3834
3835 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3836 __be16 protocol;
3837
3838 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3839 const struct vlan_ethhdr *vhdr =
3840 (const struct vlan_ethhdr*)skb->data;
3841
3842 protocol = vhdr->h_vlan_encapsulated_proto;
3843 } else {
3844 protocol = skb->protocol;
3845 }
3846
3847 switch (protocol) {
09640e63 3848 case cpu_to_be16(ETH_P_IP):
9d5c8243 3849 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3850 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3851 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3852 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3853 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3854 break;
09640e63 3855 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3856 /* XXX what about other V6 headers?? */
3857 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3858 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3859 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3860 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3861 break;
3862 default:
3863 if (unlikely(net_ratelimit()))
59d71989 3864 dev_warn(dev,
44b0cda3
MW
3865 "partial checksum but proto=%x!\n",
3866 skb->protocol);
3867 break;
3868 }
9d5c8243
AK
3869 }
3870
3871 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3872 context_desc->seqnum_seed = 0;
85ad76b2 3873 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3874 context_desc->mss_l4len_idx =
85ad76b2 3875 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3876
3877 buffer_info->time_stamp = jiffies;
0e014cb1 3878 buffer_info->next_to_watch = i;
9d5c8243
AK
3879 buffer_info->dma = 0;
3880
3881 i++;
3882 if (i == tx_ring->count)
3883 i = 0;
3884 tx_ring->next_to_use = i;
3885
3886 return true;
3887 }
9d5c8243
AK
3888 return false;
3889}
3890
3891#define IGB_MAX_TXD_PWR 16
3892#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3893
80785298 3894static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3895 unsigned int first)
9d5c8243
AK
3896{
3897 struct igb_buffer *buffer_info;
59d71989 3898 struct device *dev = tx_ring->dev;
2873957d 3899 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
3900 unsigned int count = 0, i;
3901 unsigned int f;
2873957d 3902 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
3903
3904 i = tx_ring->next_to_use;
3905
3906 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
3907 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3908 buffer_info->length = hlen;
9d5c8243
AK
3909 /* set time_stamp *before* dma to help avoid a possible race */
3910 buffer_info->time_stamp = jiffies;
0e014cb1 3911 buffer_info->next_to_watch = i;
2873957d 3912 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
3913 DMA_TO_DEVICE);
3914 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 3915 goto dma_error;
9d5c8243
AK
3916
3917 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
3918 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3919 unsigned int len = frag->size;
9d5c8243 3920
8581145f 3921 count++;
65689fef
AD
3922 i++;
3923 if (i == tx_ring->count)
3924 i = 0;
3925
9d5c8243
AK
3926 buffer_info = &tx_ring->buffer_info[i];
3927 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3928 buffer_info->length = len;
3929 buffer_info->time_stamp = jiffies;
0e014cb1 3930 buffer_info->next_to_watch = i;
6366ad33 3931 buffer_info->mapped_as_page = true;
59d71989 3932 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
3933 frag->page,
3934 frag->page_offset,
3935 len,
59d71989
AD
3936 DMA_TO_DEVICE);
3937 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
3938 goto dma_error;
3939
9d5c8243
AK
3940 }
3941
9d5c8243 3942 tx_ring->buffer_info[i].skb = skb;
2873957d
NN
3943 tx_ring->buffer_info[i].shtx = skb_shinfo(skb)->tx_flags;
3944 /* multiply data chunks by size of headers */
3945 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3946 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 3947 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3948
cdfd01fc 3949 return ++count;
6366ad33
AD
3950
3951dma_error:
59d71989 3952 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
3953
3954 /* clear timestamp and dma mappings for failed buffer_info mapping */
3955 buffer_info->dma = 0;
3956 buffer_info->time_stamp = 0;
3957 buffer_info->length = 0;
3958 buffer_info->next_to_watch = 0;
3959 buffer_info->mapped_as_page = false;
6366ad33
AD
3960
3961 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
3962 while (count--) {
3963 if (i == 0)
3964 i = tx_ring->count;
6366ad33 3965 i--;
6366ad33
AD
3966 buffer_info = &tx_ring->buffer_info[i];
3967 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3968 }
3969
3970 return 0;
9d5c8243
AK
3971}
3972
85ad76b2 3973static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 3974 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
3975 u8 hdr_len)
3976{
cdfd01fc 3977 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
3978 struct igb_buffer *buffer_info;
3979 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 3980 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
3981
3982 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3983 E1000_ADVTXD_DCMD_DEXT);
3984
3985 if (tx_flags & IGB_TX_FLAGS_VLAN)
3986 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3987
33af6bcc
PO
3988 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3989 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3990
9d5c8243
AK
3991 if (tx_flags & IGB_TX_FLAGS_TSO) {
3992 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3993
3994 /* insert tcp checksum */
3995 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3996
3997 /* insert ip checksum */
3998 if (tx_flags & IGB_TX_FLAGS_IPV4)
3999 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4000
4001 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4002 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4003 }
4004
85ad76b2
AD
4005 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4006 (tx_flags & (IGB_TX_FLAGS_CSUM |
4007 IGB_TX_FLAGS_TSO |
7dfc16fa 4008 IGB_TX_FLAGS_VLAN)))
85ad76b2 4009 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4010
4011 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4012
cdfd01fc 4013 do {
9d5c8243
AK
4014 buffer_info = &tx_ring->buffer_info[i];
4015 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4016 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4017 tx_desc->read.cmd_type_len =
4018 cpu_to_le32(cmd_type_len | buffer_info->length);
4019 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4020 count--;
9d5c8243
AK
4021 i++;
4022 if (i == tx_ring->count)
4023 i = 0;
cdfd01fc 4024 } while (count > 0);
9d5c8243 4025
85ad76b2 4026 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4027 /* Force memory writes to complete before letting h/w
4028 * know there are new descriptors to fetch. (Only
4029 * applicable for weak-ordered memory model archs,
4030 * such as IA-64). */
4031 wmb();
4032
4033 tx_ring->next_to_use = i;
fce99e34 4034 writel(i, tx_ring->tail);
9d5c8243
AK
4035 /* we need this if more than one processor can write to our tail
4036 * at a time, it syncronizes IO on IA64/Altix systems */
4037 mmiowb();
4038}
4039
e694e964 4040static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4041{
e694e964
AD
4042 struct net_device *netdev = tx_ring->netdev;
4043
661086df 4044 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4045
9d5c8243
AK
4046 /* Herbert's original patch had:
4047 * smp_mb__after_netif_stop_queue();
4048 * but since that doesn't exist yet, just open code it. */
4049 smp_mb();
4050
4051 /* We need to check again in a case another CPU has just
4052 * made room available. */
c493ea45 4053 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4054 return -EBUSY;
4055
4056 /* A reprieve! */
661086df 4057 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 4058 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
4059 return 0;
4060}
4061
717ba089 4062static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4063{
c493ea45 4064 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4065 return 0;
e694e964 4066 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4067}
4068
b1a436c3
AD
4069netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4070 struct igb_ring *tx_ring)
9d5c8243 4071{
e694e964 4072 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
cdfd01fc 4073 int tso = 0, count;
91d4ee33
NN
4074 u32 tx_flags = 0;
4075 u16 first;
4076 u8 hdr_len = 0;
c5b9bd5e 4077 union skb_shared_tx *shtx = skb_tx(skb);
9d5c8243 4078
9d5c8243
AK
4079 /* need: 1 descriptor per page,
4080 * + 2 desc gap to keep tail from touching head,
4081 * + 1 desc for skb->data,
4082 * + 1 desc for context descriptor,
4083 * otherwise try next time */
e694e964 4084 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4085 /* this is a hard error */
9d5c8243
AK
4086 return NETDEV_TX_BUSY;
4087 }
33af6bcc 4088
33af6bcc
PO
4089 if (unlikely(shtx->hardware)) {
4090 shtx->in_progress = 1;
4091 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4092 }
9d5c8243 4093
cdfd01fc 4094 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
9d5c8243
AK
4095 tx_flags |= IGB_TX_FLAGS_VLAN;
4096 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4097 }
4098
661086df
PWJ
4099 if (skb->protocol == htons(ETH_P_IP))
4100 tx_flags |= IGB_TX_FLAGS_IPV4;
4101
0e014cb1 4102 first = tx_ring->next_to_use;
85ad76b2
AD
4103 if (skb_is_gso(skb)) {
4104 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4105
85ad76b2
AD
4106 if (tso < 0) {
4107 dev_kfree_skb_any(skb);
4108 return NETDEV_TX_OK;
4109 }
9d5c8243
AK
4110 }
4111
4112 if (tso)
4113 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4114 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4115 (skb->ip_summed == CHECKSUM_PARTIAL))
4116 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4117
65689fef 4118 /*
cdfd01fc 4119 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
4120 * has occured and we need to rewind the descriptor queue
4121 */
80785298 4122 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4123 if (!count) {
65689fef
AD
4124 dev_kfree_skb_any(skb);
4125 tx_ring->buffer_info[first].time_stamp = 0;
4126 tx_ring->next_to_use = first;
85ad76b2 4127 return NETDEV_TX_OK;
65689fef 4128 }
9d5c8243 4129
85ad76b2
AD
4130 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4131
4132 /* Make sure there is space in the ring for the next send. */
e694e964 4133 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4134
9d5c8243
AK
4135 return NETDEV_TX_OK;
4136}
4137
3b29a56d
SH
4138static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4139 struct net_device *netdev)
9d5c8243
AK
4140{
4141 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4142 struct igb_ring *tx_ring;
661086df 4143 int r_idx = 0;
b1a436c3
AD
4144
4145 if (test_bit(__IGB_DOWN, &adapter->state)) {
4146 dev_kfree_skb_any(skb);
4147 return NETDEV_TX_OK;
4148 }
4149
4150 if (skb->len <= 0) {
4151 dev_kfree_skb_any(skb);
4152 return NETDEV_TX_OK;
4153 }
4154
1bfaf07b 4155 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4156 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4157
4158 /* This goes back to the question of how to logically map a tx queue
4159 * to a flow. Right now, performance is impacted slightly negatively
4160 * if using multiple tx queues. If the stack breaks away from a
4161 * single qdisc implementation, we can look at this again. */
e694e964 4162 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4163}
4164
4165/**
4166 * igb_tx_timeout - Respond to a Tx Hang
4167 * @netdev: network interface device structure
4168 **/
4169static void igb_tx_timeout(struct net_device *netdev)
4170{
4171 struct igb_adapter *adapter = netdev_priv(netdev);
4172 struct e1000_hw *hw = &adapter->hw;
4173
4174 /* Do the reset outside of interrupt context */
4175 adapter->tx_timeout_count++;
f7ba205e 4176
55cac248
AD
4177 if (hw->mac.type == e1000_82580)
4178 hw->dev_spec._82575.global_device_reset = true;
4179
9d5c8243 4180 schedule_work(&adapter->reset_task);
265de409
AD
4181 wr32(E1000_EICS,
4182 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4183}
4184
4185static void igb_reset_task(struct work_struct *work)
4186{
4187 struct igb_adapter *adapter;
4188 adapter = container_of(work, struct igb_adapter, reset_task);
4189
c97ec42a
TI
4190 igb_dump(adapter);
4191 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4192 igb_reinit_locked(adapter);
4193}
4194
4195/**
4196 * igb_get_stats - Get System Network Statistics
4197 * @netdev: network interface device structure
4198 *
4199 * Returns the address of the device statistics structure.
4200 * The statistics are actually updated from the timer callback.
4201 **/
73cd78f1 4202static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 4203{
9d5c8243 4204 /* only return the current stats */
8d24e933 4205 return &netdev->stats;
9d5c8243
AK
4206}
4207
4208/**
4209 * igb_change_mtu - Change the Maximum Transfer Unit
4210 * @netdev: network interface device structure
4211 * @new_mtu: new value for maximum frame size
4212 *
4213 * Returns 0 on success, negative on failure
4214 **/
4215static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4216{
4217 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4218 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4219 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4220 u32 rx_buffer_len, i;
9d5c8243 4221
c809d227 4222 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4223 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4224 return -EINVAL;
4225 }
4226
9d5c8243 4227 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4228 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4229 return -EINVAL;
4230 }
4231
4232 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4233 msleep(1);
73cd78f1 4234
9d5c8243
AK
4235 /* igb_down has a dependency on max_frame_size */
4236 adapter->max_frame_size = max_frame;
559e9c49 4237
9d5c8243
AK
4238 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4239 * means we reserve 2 more, this pushes us to allocate from the next
4240 * larger slab size.
4241 * i.e. RXBUFFER_2048 --> size-4096 slab
4242 */
4243
757b77e2
NN
4244 if (adapter->hw.mac.type == e1000_82580)
4245 max_frame += IGB_TS_HDR_LEN;
4246
7d95b717 4247 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4248 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4249 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4250 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4251 else
4c844851
AD
4252 rx_buffer_len = IGB_RXBUFFER_128;
4253
757b77e2
NN
4254 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4255 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4256 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4257
4258 if ((adapter->hw.mac.type == e1000_82580) &&
4259 (rx_buffer_len == IGB_RXBUFFER_128))
4260 rx_buffer_len += IGB_RXBUFFER_64;
4261
4c844851
AD
4262 if (netif_running(netdev))
4263 igb_down(adapter);
9d5c8243 4264
090b1795 4265 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4266 netdev->mtu, new_mtu);
4267 netdev->mtu = new_mtu;
4268
4c844851 4269 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4270 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4271
9d5c8243
AK
4272 if (netif_running(netdev))
4273 igb_up(adapter);
4274 else
4275 igb_reset(adapter);
4276
4277 clear_bit(__IGB_RESETTING, &adapter->state);
4278
4279 return 0;
4280}
4281
4282/**
4283 * igb_update_stats - Update the board statistics counters
4284 * @adapter: board private structure
4285 **/
4286
4287void igb_update_stats(struct igb_adapter *adapter)
4288{
128e45eb 4289 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
9d5c8243
AK
4290 struct e1000_hw *hw = &adapter->hw;
4291 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4292 u32 reg, mpc;
9d5c8243 4293 u16 phy_tmp;
3f9c0164
AD
4294 int i;
4295 u64 bytes, packets;
9d5c8243
AK
4296
4297#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4298
4299 /*
4300 * Prevent stats update while adapter is being reset, or if the pci
4301 * connection is down.
4302 */
4303 if (adapter->link_speed == 0)
4304 return;
4305 if (pci_channel_offline(pdev))
4306 return;
4307
3f9c0164
AD
4308 bytes = 0;
4309 packets = 0;
4310 for (i = 0; i < adapter->num_rx_queues; i++) {
4311 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446
AD
4312 struct igb_ring *ring = adapter->rx_ring[i];
4313 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4314 net_stats->rx_fifo_errors += rqdpc_tmp;
3025a446
AD
4315 bytes += ring->rx_stats.bytes;
4316 packets += ring->rx_stats.packets;
3f9c0164
AD
4317 }
4318
128e45eb
AD
4319 net_stats->rx_bytes = bytes;
4320 net_stats->rx_packets = packets;
3f9c0164
AD
4321
4322 bytes = 0;
4323 packets = 0;
4324 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
4325 struct igb_ring *ring = adapter->tx_ring[i];
4326 bytes += ring->tx_stats.bytes;
4327 packets += ring->tx_stats.packets;
3f9c0164 4328 }
128e45eb
AD
4329 net_stats->tx_bytes = bytes;
4330 net_stats->tx_packets = packets;
3f9c0164
AD
4331
4332 /* read stats registers */
9d5c8243
AK
4333 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4334 adapter->stats.gprc += rd32(E1000_GPRC);
4335 adapter->stats.gorc += rd32(E1000_GORCL);
4336 rd32(E1000_GORCH); /* clear GORCL */
4337 adapter->stats.bprc += rd32(E1000_BPRC);
4338 adapter->stats.mprc += rd32(E1000_MPRC);
4339 adapter->stats.roc += rd32(E1000_ROC);
4340
4341 adapter->stats.prc64 += rd32(E1000_PRC64);
4342 adapter->stats.prc127 += rd32(E1000_PRC127);
4343 adapter->stats.prc255 += rd32(E1000_PRC255);
4344 adapter->stats.prc511 += rd32(E1000_PRC511);
4345 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4346 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4347 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4348 adapter->stats.sec += rd32(E1000_SEC);
4349
fa3d9a6d
MW
4350 mpc = rd32(E1000_MPC);
4351 adapter->stats.mpc += mpc;
4352 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4353 adapter->stats.scc += rd32(E1000_SCC);
4354 adapter->stats.ecol += rd32(E1000_ECOL);
4355 adapter->stats.mcc += rd32(E1000_MCC);
4356 adapter->stats.latecol += rd32(E1000_LATECOL);
4357 adapter->stats.dc += rd32(E1000_DC);
4358 adapter->stats.rlec += rd32(E1000_RLEC);
4359 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4360 adapter->stats.xontxc += rd32(E1000_XONTXC);
4361 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4362 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4363 adapter->stats.fcruc += rd32(E1000_FCRUC);
4364 adapter->stats.gptc += rd32(E1000_GPTC);
4365 adapter->stats.gotc += rd32(E1000_GOTCL);
4366 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4367 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4368 adapter->stats.ruc += rd32(E1000_RUC);
4369 adapter->stats.rfc += rd32(E1000_RFC);
4370 adapter->stats.rjc += rd32(E1000_RJC);
4371 adapter->stats.tor += rd32(E1000_TORH);
4372 adapter->stats.tot += rd32(E1000_TOTH);
4373 adapter->stats.tpr += rd32(E1000_TPR);
4374
4375 adapter->stats.ptc64 += rd32(E1000_PTC64);
4376 adapter->stats.ptc127 += rd32(E1000_PTC127);
4377 adapter->stats.ptc255 += rd32(E1000_PTC255);
4378 adapter->stats.ptc511 += rd32(E1000_PTC511);
4379 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4380 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4381
4382 adapter->stats.mptc += rd32(E1000_MPTC);
4383 adapter->stats.bptc += rd32(E1000_BPTC);
4384
2d0b0f69
NN
4385 adapter->stats.tpt += rd32(E1000_TPT);
4386 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4387
4388 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4389 /* read internal phy specific stats */
4390 reg = rd32(E1000_CTRL_EXT);
4391 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4392 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4393 adapter->stats.tncrs += rd32(E1000_TNCRS);
4394 }
4395
9d5c8243
AK
4396 adapter->stats.tsctc += rd32(E1000_TSCTC);
4397 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4398
4399 adapter->stats.iac += rd32(E1000_IAC);
4400 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4401 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4402 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4403 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4404 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4405 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4406 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4407 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4408
4409 /* Fill out the OS statistics structure */
128e45eb
AD
4410 net_stats->multicast = adapter->stats.mprc;
4411 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4412
4413 /* Rx Errors */
4414
4415 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4416 * our own version based on RUC and ROC */
128e45eb 4417 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4418 adapter->stats.crcerrs + adapter->stats.algnerrc +
4419 adapter->stats.ruc + adapter->stats.roc +
4420 adapter->stats.cexterr;
128e45eb
AD
4421 net_stats->rx_length_errors = adapter->stats.ruc +
4422 adapter->stats.roc;
4423 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4424 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4425 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4426
4427 /* Tx Errors */
128e45eb
AD
4428 net_stats->tx_errors = adapter->stats.ecol +
4429 adapter->stats.latecol;
4430 net_stats->tx_aborted_errors = adapter->stats.ecol;
4431 net_stats->tx_window_errors = adapter->stats.latecol;
4432 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4433
4434 /* Tx Dropped needs to be maintained elsewhere */
4435
4436 /* Phy Stats */
4437 if (hw->phy.media_type == e1000_media_type_copper) {
4438 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4439 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4440 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4441 adapter->phy_stats.idle_errors += phy_tmp;
4442 }
4443 }
4444
4445 /* Management Stats */
4446 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4447 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4448 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4449}
4450
9d5c8243
AK
4451static irqreturn_t igb_msix_other(int irq, void *data)
4452{
047e0030 4453 struct igb_adapter *adapter = data;
9d5c8243 4454 struct e1000_hw *hw = &adapter->hw;
844290e5 4455 u32 icr = rd32(E1000_ICR);
844290e5 4456 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4457
7f081d40
AD
4458 if (icr & E1000_ICR_DRSTA)
4459 schedule_work(&adapter->reset_task);
4460
047e0030 4461 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4462 /* HW is reporting DMA is out of sync */
4463 adapter->stats.doosync++;
4464 }
eebbbdba 4465
4ae196df
AD
4466 /* Check for a mailbox event */
4467 if (icr & E1000_ICR_VMMB)
4468 igb_msg_task(adapter);
4469
4470 if (icr & E1000_ICR_LSC) {
4471 hw->mac.get_link_status = 1;
4472 /* guard against interrupt when we're going down */
4473 if (!test_bit(__IGB_DOWN, &adapter->state))
4474 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4475 }
4476
25568a53
AD
4477 if (adapter->vfs_allocated_count)
4478 wr32(E1000_IMS, E1000_IMS_LSC |
4479 E1000_IMS_VMMB |
4480 E1000_IMS_DOUTSYNC);
4481 else
4482 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4483 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4484
4485 return IRQ_HANDLED;
4486}
4487
047e0030 4488static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4489{
26b39276 4490 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4491 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4492
047e0030
AD
4493 if (!q_vector->set_itr)
4494 return;
73cd78f1 4495
047e0030
AD
4496 if (!itr_val)
4497 itr_val = 0x4;
661086df 4498
26b39276
AD
4499 if (adapter->hw.mac.type == e1000_82575)
4500 itr_val |= itr_val << 16;
661086df 4501 else
047e0030 4502 itr_val |= 0x8000000;
661086df 4503
047e0030
AD
4504 writel(itr_val, q_vector->itr_register);
4505 q_vector->set_itr = 0;
6eb5a7f1
AD
4506}
4507
047e0030 4508static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4509{
047e0030 4510 struct igb_q_vector *q_vector = data;
9d5c8243 4511
047e0030
AD
4512 /* Write the ITR value calculated from the previous interrupt. */
4513 igb_write_itr(q_vector);
9d5c8243 4514
047e0030 4515 napi_schedule(&q_vector->napi);
844290e5 4516
047e0030 4517 return IRQ_HANDLED;
fe4506b6
JC
4518}
4519
421e02f0 4520#ifdef CONFIG_IGB_DCA
047e0030 4521static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4522{
047e0030 4523 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4524 struct e1000_hw *hw = &adapter->hw;
4525 int cpu = get_cpu();
fe4506b6 4526
047e0030
AD
4527 if (q_vector->cpu == cpu)
4528 goto out_no_update;
4529
4530 if (q_vector->tx_ring) {
4531 int q = q_vector->tx_ring->reg_idx;
4532 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4533 if (hw->mac.type == e1000_82575) {
4534 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4535 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4536 } else {
047e0030
AD
4537 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4538 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4539 E1000_DCA_TXCTRL_CPUID_SHIFT;
4540 }
4541 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4542 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4543 }
4544 if (q_vector->rx_ring) {
4545 int q = q_vector->rx_ring->reg_idx;
4546 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4547 if (hw->mac.type == e1000_82575) {
2d064c06 4548 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4549 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4550 } else {
4551 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4552 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4553 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4554 }
fe4506b6
JC
4555 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4556 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4557 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4558 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4559 }
047e0030
AD
4560 q_vector->cpu = cpu;
4561out_no_update:
fe4506b6
JC
4562 put_cpu();
4563}
4564
4565static void igb_setup_dca(struct igb_adapter *adapter)
4566{
7e0e99ef 4567 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4568 int i;
4569
7dfc16fa 4570 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4571 return;
4572
7e0e99ef
AD
4573 /* Always use CB2 mode, difference is masked in the CB driver. */
4574 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4575
047e0030 4576 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4577 adapter->q_vector[i]->cpu = -1;
4578 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4579 }
4580}
4581
4582static int __igb_notify_dca(struct device *dev, void *data)
4583{
4584 struct net_device *netdev = dev_get_drvdata(dev);
4585 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4586 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4587 struct e1000_hw *hw = &adapter->hw;
4588 unsigned long event = *(unsigned long *)data;
4589
4590 switch (event) {
4591 case DCA_PROVIDER_ADD:
4592 /* if already enabled, don't do it again */
7dfc16fa 4593 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4594 break;
fe4506b6 4595 if (dca_add_requester(dev) == 0) {
bbd98fe4 4596 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4597 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4598 igb_setup_dca(adapter);
4599 break;
4600 }
4601 /* Fall Through since DCA is disabled. */
4602 case DCA_PROVIDER_REMOVE:
7dfc16fa 4603 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4604 /* without this a class_device is left
047e0030 4605 * hanging around in the sysfs model */
fe4506b6 4606 dca_remove_requester(dev);
090b1795 4607 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4608 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4609 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4610 }
4611 break;
4612 }
bbd98fe4 4613
fe4506b6 4614 return 0;
9d5c8243
AK
4615}
4616
fe4506b6
JC
4617static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4618 void *p)
4619{
4620 int ret_val;
4621
4622 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4623 __igb_notify_dca);
4624
4625 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4626}
421e02f0 4627#endif /* CONFIG_IGB_DCA */
9d5c8243 4628
4ae196df
AD
4629static void igb_ping_all_vfs(struct igb_adapter *adapter)
4630{
4631 struct e1000_hw *hw = &adapter->hw;
4632 u32 ping;
4633 int i;
4634
4635 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4636 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4637 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4638 ping |= E1000_VT_MSGTYPE_CTS;
4639 igb_write_mbx(hw, &ping, 1, i);
4640 }
4641}
4642
7d5753f0
AD
4643static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4644{
4645 struct e1000_hw *hw = &adapter->hw;
4646 u32 vmolr = rd32(E1000_VMOLR(vf));
4647 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4648
4649 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4650 IGB_VF_FLAG_MULTI_PROMISC);
4651 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4652
4653 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4654 vmolr |= E1000_VMOLR_MPME;
4655 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4656 } else {
4657 /*
4658 * if we have hashes and we are clearing a multicast promisc
4659 * flag we need to write the hashes to the MTA as this step
4660 * was previously skipped
4661 */
4662 if (vf_data->num_vf_mc_hashes > 30) {
4663 vmolr |= E1000_VMOLR_MPME;
4664 } else if (vf_data->num_vf_mc_hashes) {
4665 int j;
4666 vmolr |= E1000_VMOLR_ROMPE;
4667 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4668 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4669 }
4670 }
4671
4672 wr32(E1000_VMOLR(vf), vmolr);
4673
4674 /* there are flags left unprocessed, likely not supported */
4675 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4676 return -EINVAL;
4677
4678 return 0;
4679
4680}
4681
4ae196df
AD
4682static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4683 u32 *msgbuf, u32 vf)
4684{
4685 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4686 u16 *hash_list = (u16 *)&msgbuf[1];
4687 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4688 int i;
4689
7d5753f0 4690 /* salt away the number of multicast addresses assigned
4ae196df
AD
4691 * to this VF for later use to restore when the PF multi cast
4692 * list changes
4693 */
4694 vf_data->num_vf_mc_hashes = n;
4695
7d5753f0
AD
4696 /* only up to 30 hash values supported */
4697 if (n > 30)
4698 n = 30;
4699
4700 /* store the hashes for later use */
4ae196df 4701 for (i = 0; i < n; i++)
a419aef8 4702 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4703
4704 /* Flush and reset the mta with the new values */
ff41f8dc 4705 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4706
4707 return 0;
4708}
4709
4710static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4711{
4712 struct e1000_hw *hw = &adapter->hw;
4713 struct vf_data_storage *vf_data;
4714 int i, j;
4715
4716 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4717 u32 vmolr = rd32(E1000_VMOLR(i));
4718 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4719
4ae196df 4720 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4721
4722 if ((vf_data->num_vf_mc_hashes > 30) ||
4723 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4724 vmolr |= E1000_VMOLR_MPME;
4725 } else if (vf_data->num_vf_mc_hashes) {
4726 vmolr |= E1000_VMOLR_ROMPE;
4727 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4728 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4729 }
4730 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4731 }
4732}
4733
4734static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4735{
4736 struct e1000_hw *hw = &adapter->hw;
4737 u32 pool_mask, reg, vid;
4738 int i;
4739
4740 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4741
4742 /* Find the vlan filter for this id */
4743 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4744 reg = rd32(E1000_VLVF(i));
4745
4746 /* remove the vf from the pool */
4747 reg &= ~pool_mask;
4748
4749 /* if pool is empty then remove entry from vfta */
4750 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4751 (reg & E1000_VLVF_VLANID_ENABLE)) {
4752 reg = 0;
4753 vid = reg & E1000_VLVF_VLANID_MASK;
4754 igb_vfta_set(hw, vid, false);
4755 }
4756
4757 wr32(E1000_VLVF(i), reg);
4758 }
ae641bdc
AD
4759
4760 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4761}
4762
4763static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4764{
4765 struct e1000_hw *hw = &adapter->hw;
4766 u32 reg, i;
4767
51466239
AD
4768 /* The vlvf table only exists on 82576 hardware and newer */
4769 if (hw->mac.type < e1000_82576)
4770 return -1;
4771
4772 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4773 if (!adapter->vfs_allocated_count)
4774 return -1;
4775
4776 /* Find the vlan filter for this id */
4777 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4778 reg = rd32(E1000_VLVF(i));
4779 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4780 vid == (reg & E1000_VLVF_VLANID_MASK))
4781 break;
4782 }
4783
4784 if (add) {
4785 if (i == E1000_VLVF_ARRAY_SIZE) {
4786 /* Did not find a matching VLAN ID entry that was
4787 * enabled. Search for a free filter entry, i.e.
4788 * one without the enable bit set
4789 */
4790 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4791 reg = rd32(E1000_VLVF(i));
4792 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4793 break;
4794 }
4795 }
4796 if (i < E1000_VLVF_ARRAY_SIZE) {
4797 /* Found an enabled/available entry */
4798 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4799
4800 /* if !enabled we need to set this up in vfta */
4801 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4802 /* add VID to filter table */
4803 igb_vfta_set(hw, vid, true);
4ae196df
AD
4804 reg |= E1000_VLVF_VLANID_ENABLE;
4805 }
cad6d05f
AD
4806 reg &= ~E1000_VLVF_VLANID_MASK;
4807 reg |= vid;
4ae196df 4808 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4809
4810 /* do not modify RLPML for PF devices */
4811 if (vf >= adapter->vfs_allocated_count)
4812 return 0;
4813
4814 if (!adapter->vf_data[vf].vlans_enabled) {
4815 u32 size;
4816 reg = rd32(E1000_VMOLR(vf));
4817 size = reg & E1000_VMOLR_RLPML_MASK;
4818 size += 4;
4819 reg &= ~E1000_VMOLR_RLPML_MASK;
4820 reg |= size;
4821 wr32(E1000_VMOLR(vf), reg);
4822 }
ae641bdc 4823
51466239 4824 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4825 return 0;
4826 }
4827 } else {
4828 if (i < E1000_VLVF_ARRAY_SIZE) {
4829 /* remove vf from the pool */
4830 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4831 /* if pool is empty then remove entry from vfta */
4832 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4833 reg = 0;
4834 igb_vfta_set(hw, vid, false);
4835 }
4836 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4837
4838 /* do not modify RLPML for PF devices */
4839 if (vf >= adapter->vfs_allocated_count)
4840 return 0;
4841
4842 adapter->vf_data[vf].vlans_enabled--;
4843 if (!adapter->vf_data[vf].vlans_enabled) {
4844 u32 size;
4845 reg = rd32(E1000_VMOLR(vf));
4846 size = reg & E1000_VMOLR_RLPML_MASK;
4847 size -= 4;
4848 reg &= ~E1000_VMOLR_RLPML_MASK;
4849 reg |= size;
4850 wr32(E1000_VMOLR(vf), reg);
4851 }
4ae196df
AD
4852 }
4853 }
8151d294
WM
4854 return 0;
4855}
4856
4857static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4858{
4859 struct e1000_hw *hw = &adapter->hw;
4860
4861 if (vid)
4862 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4863 else
4864 wr32(E1000_VMVIR(vf), 0);
4865}
4866
4867static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4868 int vf, u16 vlan, u8 qos)
4869{
4870 int err = 0;
4871 struct igb_adapter *adapter = netdev_priv(netdev);
4872
4873 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4874 return -EINVAL;
4875 if (vlan || qos) {
4876 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4877 if (err)
4878 goto out;
4879 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4880 igb_set_vmolr(adapter, vf, !vlan);
4881 adapter->vf_data[vf].pf_vlan = vlan;
4882 adapter->vf_data[vf].pf_qos = qos;
4883 dev_info(&adapter->pdev->dev,
4884 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4885 if (test_bit(__IGB_DOWN, &adapter->state)) {
4886 dev_warn(&adapter->pdev->dev,
4887 "The VF VLAN has been set,"
4888 " but the PF device is not up.\n");
4889 dev_warn(&adapter->pdev->dev,
4890 "Bring the PF device up before"
4891 " attempting to use the VF device.\n");
4892 }
4893 } else {
4894 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4895 false, vf);
4896 igb_set_vmvir(adapter, vlan, vf);
4897 igb_set_vmolr(adapter, vf, true);
4898 adapter->vf_data[vf].pf_vlan = 0;
4899 adapter->vf_data[vf].pf_qos = 0;
4900 }
4901out:
4902 return err;
4ae196df
AD
4903}
4904
4905static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4906{
4907 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4908 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4909
4910 return igb_vlvf_set(adapter, vid, add, vf);
4911}
4912
f2ca0dbe 4913static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4914{
8151d294
WM
4915 /* clear flags */
4916 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
f2ca0dbe 4917 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4918
4919 /* reset offloads to defaults */
8151d294 4920 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
4921
4922 /* reset vlans for device */
4923 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
4924 if (adapter->vf_data[vf].pf_vlan)
4925 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4926 adapter->vf_data[vf].pf_vlan,
4927 adapter->vf_data[vf].pf_qos);
4928 else
4929 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
4930
4931 /* reset multicast table array for vf */
4932 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4933
4934 /* Flush and reset the mta with the new values */
ff41f8dc 4935 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4936}
4937
f2ca0dbe
AD
4938static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4939{
4940 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4941
4942 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
4943 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4944 random_ether_addr(vf_mac);
f2ca0dbe
AD
4945
4946 /* process remaining reset events */
4947 igb_vf_reset(adapter, vf);
4948}
4949
4950static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4951{
4952 struct e1000_hw *hw = &adapter->hw;
4953 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4954 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4955 u32 reg, msgbuf[3];
4956 u8 *addr = (u8 *)(&msgbuf[1]);
4957
4958 /* process all the same items cleared in a function level reset */
f2ca0dbe 4959 igb_vf_reset(adapter, vf);
4ae196df
AD
4960
4961 /* set vf mac address */
26ad9178 4962 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4963
4964 /* enable transmit and receive for vf */
4965 reg = rd32(E1000_VFTE);
4966 wr32(E1000_VFTE, reg | (1 << vf));
4967 reg = rd32(E1000_VFRE);
4968 wr32(E1000_VFRE, reg | (1 << vf));
4969
f2ca0dbe 4970 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4971
4972 /* reply to reset with ack and vf mac address */
4973 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4974 memcpy(addr, vf_mac, 6);
4975 igb_write_mbx(hw, msgbuf, 3, vf);
4976}
4977
4978static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4979{
f2ca0dbe
AD
4980 unsigned char *addr = (char *)&msg[1];
4981 int err = -1;
4ae196df 4982
f2ca0dbe
AD
4983 if (is_valid_ether_addr(addr))
4984 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 4985
f2ca0dbe 4986 return err;
4ae196df
AD
4987}
4988
4989static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4990{
4991 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4992 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4993 u32 msg = E1000_VT_MSGTYPE_NACK;
4994
4995 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
4996 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4997 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 4998 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 4999 vf_data->last_nack = jiffies;
4ae196df
AD
5000 }
5001}
5002
f2ca0dbe 5003static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5004{
f2ca0dbe
AD
5005 struct pci_dev *pdev = adapter->pdev;
5006 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5007 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5008 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5009 s32 retval;
5010
f2ca0dbe 5011 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5012
fef45f4c
AD
5013 if (retval) {
5014 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5015 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5016 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5017 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5018 return;
5019 goto out;
5020 }
4ae196df
AD
5021
5022 /* this is a message we already processed, do nothing */
5023 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5024 return;
4ae196df
AD
5025
5026 /*
5027 * until the vf completes a reset it should not be
5028 * allowed to start any configuration.
5029 */
5030
5031 if (msgbuf[0] == E1000_VF_RESET) {
5032 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5033 return;
4ae196df
AD
5034 }
5035
f2ca0dbe 5036 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5037 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5038 return;
5039 retval = -1;
5040 goto out;
4ae196df
AD
5041 }
5042
5043 switch ((msgbuf[0] & 0xFFFF)) {
5044 case E1000_VF_SET_MAC_ADDR:
5045 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5046 break;
7d5753f0
AD
5047 case E1000_VF_SET_PROMISC:
5048 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5049 break;
4ae196df
AD
5050 case E1000_VF_SET_MULTICAST:
5051 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5052 break;
5053 case E1000_VF_SET_LPE:
5054 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5055 break;
5056 case E1000_VF_SET_VLAN:
8151d294
WM
5057 if (adapter->vf_data[vf].pf_vlan)
5058 retval = -1;
5059 else
5060 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5061 break;
5062 default:
090b1795 5063 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5064 retval = -1;
5065 break;
5066 }
5067
fef45f4c
AD
5068 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5069out:
4ae196df
AD
5070 /* notify the VF of the results of what it sent us */
5071 if (retval)
5072 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5073 else
5074 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5075
4ae196df 5076 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5077}
4ae196df 5078
f2ca0dbe
AD
5079static void igb_msg_task(struct igb_adapter *adapter)
5080{
5081 struct e1000_hw *hw = &adapter->hw;
5082 u32 vf;
5083
5084 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5085 /* process any reset requests */
5086 if (!igb_check_for_rst(hw, vf))
5087 igb_vf_reset_event(adapter, vf);
5088
5089 /* process any messages pending */
5090 if (!igb_check_for_msg(hw, vf))
5091 igb_rcv_msg_from_vf(adapter, vf);
5092
5093 /* process any acks */
5094 if (!igb_check_for_ack(hw, vf))
5095 igb_rcv_ack_from_vf(adapter, vf);
5096 }
4ae196df
AD
5097}
5098
68d480c4
AD
5099/**
5100 * igb_set_uta - Set unicast filter table address
5101 * @adapter: board private structure
5102 *
5103 * The unicast table address is a register array of 32-bit registers.
5104 * The table is meant to be used in a way similar to how the MTA is used
5105 * however due to certain limitations in the hardware it is necessary to
5106 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5107 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5108 **/
5109static void igb_set_uta(struct igb_adapter *adapter)
5110{
5111 struct e1000_hw *hw = &adapter->hw;
5112 int i;
5113
5114 /* The UTA table only exists on 82576 hardware and newer */
5115 if (hw->mac.type < e1000_82576)
5116 return;
5117
5118 /* we only need to do this if VMDq is enabled */
5119 if (!adapter->vfs_allocated_count)
5120 return;
5121
5122 for (i = 0; i < hw->mac.uta_reg_count; i++)
5123 array_wr32(E1000_UTA, i, ~0);
5124}
5125
9d5c8243
AK
5126/**
5127 * igb_intr_msi - Interrupt Handler
5128 * @irq: interrupt number
5129 * @data: pointer to a network interface device structure
5130 **/
5131static irqreturn_t igb_intr_msi(int irq, void *data)
5132{
047e0030
AD
5133 struct igb_adapter *adapter = data;
5134 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5135 struct e1000_hw *hw = &adapter->hw;
5136 /* read ICR disables interrupts using IAM */
5137 u32 icr = rd32(E1000_ICR);
5138
047e0030 5139 igb_write_itr(q_vector);
9d5c8243 5140
7f081d40
AD
5141 if (icr & E1000_ICR_DRSTA)
5142 schedule_work(&adapter->reset_task);
5143
047e0030 5144 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5145 /* HW is reporting DMA is out of sync */
5146 adapter->stats.doosync++;
5147 }
5148
9d5c8243
AK
5149 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5150 hw->mac.get_link_status = 1;
5151 if (!test_bit(__IGB_DOWN, &adapter->state))
5152 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5153 }
5154
047e0030 5155 napi_schedule(&q_vector->napi);
9d5c8243
AK
5156
5157 return IRQ_HANDLED;
5158}
5159
5160/**
4a3c6433 5161 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5162 * @irq: interrupt number
5163 * @data: pointer to a network interface device structure
5164 **/
5165static irqreturn_t igb_intr(int irq, void *data)
5166{
047e0030
AD
5167 struct igb_adapter *adapter = data;
5168 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5169 struct e1000_hw *hw = &adapter->hw;
5170 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5171 * need for the IMC write */
5172 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5173 if (!icr)
5174 return IRQ_NONE; /* Not our interrupt */
5175
047e0030 5176 igb_write_itr(q_vector);
9d5c8243
AK
5177
5178 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5179 * not set, then the adapter didn't send an interrupt */
5180 if (!(icr & E1000_ICR_INT_ASSERTED))
5181 return IRQ_NONE;
5182
7f081d40
AD
5183 if (icr & E1000_ICR_DRSTA)
5184 schedule_work(&adapter->reset_task);
5185
047e0030 5186 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5187 /* HW is reporting DMA is out of sync */
5188 adapter->stats.doosync++;
5189 }
5190
9d5c8243
AK
5191 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5192 hw->mac.get_link_status = 1;
5193 /* guard against interrupt when we're going down */
5194 if (!test_bit(__IGB_DOWN, &adapter->state))
5195 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5196 }
5197
047e0030 5198 napi_schedule(&q_vector->napi);
9d5c8243
AK
5199
5200 return IRQ_HANDLED;
5201}
5202
047e0030 5203static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5204{
047e0030 5205 struct igb_adapter *adapter = q_vector->adapter;
46544258 5206 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5207
4fc82adf
AD
5208 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5209 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5210 if (!adapter->msix_entries)
6eb5a7f1 5211 igb_set_itr(adapter);
46544258 5212 else
047e0030 5213 igb_update_ring_itr(q_vector);
9d5c8243
AK
5214 }
5215
46544258
AD
5216 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5217 if (adapter->msix_entries)
047e0030 5218 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5219 else
5220 igb_irq_enable(adapter);
5221 }
9d5c8243
AK
5222}
5223
46544258
AD
5224/**
5225 * igb_poll - NAPI Rx polling callback
5226 * @napi: napi polling structure
5227 * @budget: count of how many packets we should handle
5228 **/
5229static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5230{
047e0030
AD
5231 struct igb_q_vector *q_vector = container_of(napi,
5232 struct igb_q_vector,
5233 napi);
5234 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5235
421e02f0 5236#ifdef CONFIG_IGB_DCA
047e0030
AD
5237 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5238 igb_update_dca(q_vector);
fe4506b6 5239#endif
047e0030
AD
5240 if (q_vector->tx_ring)
5241 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5242
047e0030
AD
5243 if (q_vector->rx_ring)
5244 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5245
5246 if (!tx_clean_complete)
5247 work_done = budget;
46544258 5248
9d5c8243 5249 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5250 if (work_done < budget) {
288379f0 5251 napi_complete(napi);
047e0030 5252 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5253 }
5254
46544258 5255 return work_done;
9d5c8243 5256}
6d8126f9 5257
33af6bcc 5258/**
c5b9bd5e 5259 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5260 * @adapter: board private structure
c5b9bd5e
AD
5261 * @shhwtstamps: timestamp structure to update
5262 * @regval: unsigned 64bit system time value.
5263 *
5264 * We need to convert the system time value stored in the RX/TXSTMP registers
5265 * into a hwtstamp which can be used by the upper level timestamping functions
5266 */
5267static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5268 struct skb_shared_hwtstamps *shhwtstamps,
5269 u64 regval)
5270{
5271 u64 ns;
5272
55cac248
AD
5273 /*
5274 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5275 * 24 to match clock shift we setup earlier.
5276 */
5277 if (adapter->hw.mac.type == e1000_82580)
5278 regval <<= IGB_82580_TSYNC_SHIFT;
5279
c5b9bd5e
AD
5280 ns = timecounter_cyc2time(&adapter->clock, regval);
5281 timecompare_update(&adapter->compare, ns);
5282 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5283 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5284 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5285}
5286
5287/**
5288 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5289 * @q_vector: pointer to q_vector containing needed info
2873957d 5290 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5291 *
5292 * If we were asked to do hardware stamping and such a time stamp is
5293 * available, then it must have been for this skb here because we only
5294 * allow only one such packet into the queue.
5295 */
2873957d 5296static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5297{
c5b9bd5e 5298 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5299 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5300 struct skb_shared_hwtstamps shhwtstamps;
5301 u64 regval;
33af6bcc 5302
c5b9bd5e 5303 /* if skb does not support hw timestamp or TX stamp not valid exit */
2873957d 5304 if (likely(!buffer_info->shtx.hardware) ||
c5b9bd5e
AD
5305 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5306 return;
5307
5308 regval = rd32(E1000_TXSTMPL);
5309 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5310
5311 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5312 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5313}
5314
9d5c8243
AK
5315/**
5316 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5317 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5318 * returns true if ring is completely cleaned
5319 **/
047e0030 5320static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5321{
047e0030
AD
5322 struct igb_adapter *adapter = q_vector->adapter;
5323 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5324 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5325 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5326 struct igb_buffer *buffer_info;
0e014cb1 5327 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5328 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5329 unsigned int i, eop, count = 0;
5330 bool cleaned = false;
9d5c8243 5331
9d5c8243 5332 i = tx_ring->next_to_clean;
0e014cb1
AD
5333 eop = tx_ring->buffer_info[i].next_to_watch;
5334 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5335
5336 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5337 (count < tx_ring->count)) {
5338 for (cleaned = false; !cleaned; count++) {
5339 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5340 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5341 cleaned = (i == eop);
9d5c8243 5342
2873957d
NN
5343 if (buffer_info->skb) {
5344 total_bytes += buffer_info->bytecount;
9d5c8243 5345 /* gso_segs is currently only valid for tcp */
2873957d
NN
5346 total_packets += buffer_info->gso_segs;
5347 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5348 }
5349
80785298 5350 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5351 tx_desc->wb.status = 0;
9d5c8243
AK
5352
5353 i++;
5354 if (i == tx_ring->count)
5355 i = 0;
9d5c8243 5356 }
0e014cb1
AD
5357 eop = tx_ring->buffer_info[i].next_to_watch;
5358 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5359 }
5360
9d5c8243
AK
5361 tx_ring->next_to_clean = i;
5362
fc7d345d 5363 if (unlikely(count &&
9d5c8243 5364 netif_carrier_ok(netdev) &&
c493ea45 5365 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5366 /* Make sure that anybody stopping the queue after this
5367 * sees the new next_to_clean.
5368 */
5369 smp_mb();
661086df
PWJ
5370 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5371 !(test_bit(__IGB_DOWN, &adapter->state))) {
5372 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 5373 tx_ring->tx_stats.restart_queue++;
661086df 5374 }
9d5c8243
AK
5375 }
5376
5377 if (tx_ring->detect_tx_hung) {
5378 /* Detect a transmit hang in hardware, this serializes the
5379 * check with the clearing of time_stamp and movement of i */
5380 tx_ring->detect_tx_hung = false;
5381 if (tx_ring->buffer_info[i].time_stamp &&
5382 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5383 (adapter->tx_timeout_factor * HZ)) &&
5384 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5385
9d5c8243 5386 /* detected Tx unit hang */
59d71989 5387 dev_err(tx_ring->dev,
9d5c8243 5388 "Detected Tx Unit Hang\n"
2d064c06 5389 " Tx Queue <%d>\n"
9d5c8243
AK
5390 " TDH <%x>\n"
5391 " TDT <%x>\n"
5392 " next_to_use <%x>\n"
5393 " next_to_clean <%x>\n"
9d5c8243
AK
5394 "buffer_info[next_to_clean]\n"
5395 " time_stamp <%lx>\n"
0e014cb1 5396 " next_to_watch <%x>\n"
9d5c8243
AK
5397 " jiffies <%lx>\n"
5398 " desc.status <%x>\n",
2d064c06 5399 tx_ring->queue_index,
fce99e34
AD
5400 readl(tx_ring->head),
5401 readl(tx_ring->tail),
9d5c8243
AK
5402 tx_ring->next_to_use,
5403 tx_ring->next_to_clean,
f7ba205e 5404 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5405 eop,
9d5c8243 5406 jiffies,
0e014cb1 5407 eop_desc->wb.status);
661086df 5408 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5409 }
5410 }
5411 tx_ring->total_bytes += total_bytes;
5412 tx_ring->total_packets += total_packets;
e21ed353
AD
5413 tx_ring->tx_stats.bytes += total_bytes;
5414 tx_ring->tx_stats.packets += total_packets;
0e014cb1 5415 return (count < tx_ring->count);
9d5c8243
AK
5416}
5417
9d5c8243
AK
5418/**
5419 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5420 * @q_vector: structure containing interrupt and ring information
5421 * @skb: packet to send up
5422 * @vlan_tag: vlan tag for packet
9d5c8243 5423 **/
047e0030
AD
5424static void igb_receive_skb(struct igb_q_vector *q_vector,
5425 struct sk_buff *skb,
5426 u16 vlan_tag)
5427{
5428 struct igb_adapter *adapter = q_vector->adapter;
5429
31b24b95 5430 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5431 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5432 vlan_tag, skb);
182ff8df 5433 else
047e0030 5434 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5435}
5436
04a5fcaa 5437static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5438 u32 status_err, struct sk_buff *skb)
5439{
5440 skb->ip_summed = CHECKSUM_NONE;
5441
5442 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5443 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5444 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5445 return;
85ad76b2 5446
9d5c8243
AK
5447 /* TCP/UDP checksum error bit is set */
5448 if (status_err &
5449 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5450 /*
5451 * work around errata with sctp packets where the TCPE aka
5452 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5453 * packets, (aka let the stack check the crc32c)
5454 */
85ad76b2
AD
5455 if ((skb->len == 60) &&
5456 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 5457 ring->rx_stats.csum_err++;
85ad76b2 5458
9d5c8243 5459 /* let the stack verify checksum errors */
9d5c8243
AK
5460 return;
5461 }
5462 /* It must be a TCP or UDP packet with a valid checksum */
5463 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5464 skb->ip_summed = CHECKSUM_UNNECESSARY;
5465
59d71989 5466 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5467}
5468
757b77e2 5469static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5470 struct sk_buff *skb)
5471{
5472 struct igb_adapter *adapter = q_vector->adapter;
5473 struct e1000_hw *hw = &adapter->hw;
5474 u64 regval;
5475
5476 /*
5477 * If this bit is set, then the RX registers contain the time stamp. No
5478 * other packet will be time stamped until we read these registers, so
5479 * read the registers to make them available again. Because only one
5480 * packet can be time stamped at a time, we know that the register
5481 * values must belong to this one here and therefore we don't need to
5482 * compare any of the additional attributes stored for it.
5483 *
5484 * If nothing went wrong, then it should have a skb_shared_tx that we
5485 * can turn into a skb_shared_hwtstamps.
5486 */
757b77e2
NN
5487 if (staterr & E1000_RXDADV_STAT_TSIP) {
5488 u32 *stamp = (u32 *)skb->data;
5489 regval = le32_to_cpu(*(stamp + 2));
5490 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5491 skb_pull(skb, IGB_TS_HDR_LEN);
5492 } else {
5493 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5494 return;
c5b9bd5e 5495
757b77e2
NN
5496 regval = rd32(E1000_RXSTMPL);
5497 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5498 }
c5b9bd5e
AD
5499
5500 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5501}
4c844851 5502static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5503 union e1000_adv_rx_desc *rx_desc)
5504{
5505 /* HW will not DMA in data larger than the given buffer, even if it
5506 * parses the (NFS, of course) header to be larger. In that case, it
5507 * fills the header buffer and spills the rest into the page.
5508 */
5509 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5510 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5511 if (hlen > rx_ring->rx_buffer_len)
5512 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5513 return hlen;
5514}
5515
047e0030
AD
5516static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5517 int *work_done, int budget)
9d5c8243 5518{
047e0030 5519 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5520 struct net_device *netdev = rx_ring->netdev;
59d71989 5521 struct device *dev = rx_ring->dev;
9d5c8243
AK
5522 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5523 struct igb_buffer *buffer_info , *next_buffer;
5524 struct sk_buff *skb;
9d5c8243
AK
5525 bool cleaned = false;
5526 int cleaned_count = 0;
d1eff350 5527 int current_node = numa_node_id();
9d5c8243 5528 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5529 unsigned int i;
2d94d8ab
AD
5530 u32 staterr;
5531 u16 length;
047e0030 5532 u16 vlan_tag;
9d5c8243
AK
5533
5534 i = rx_ring->next_to_clean;
69d3ca53 5535 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5536 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5537 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5538
5539 while (staterr & E1000_RXD_STAT_DD) {
5540 if (*work_done >= budget)
5541 break;
5542 (*work_done)++;
9d5c8243 5543
69d3ca53
AD
5544 skb = buffer_info->skb;
5545 prefetch(skb->data - NET_IP_ALIGN);
5546 buffer_info->skb = NULL;
5547
5548 i++;
5549 if (i == rx_ring->count)
5550 i = 0;
42d0781a 5551
69d3ca53
AD
5552 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5553 prefetch(next_rxd);
5554 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5555
5556 length = le16_to_cpu(rx_desc->wb.upper.length);
5557 cleaned = true;
5558 cleaned_count++;
5559
2d94d8ab 5560 if (buffer_info->dma) {
59d71989 5561 dma_unmap_single(dev, buffer_info->dma,
4c844851 5562 rx_ring->rx_buffer_len,
59d71989 5563 DMA_FROM_DEVICE);
91615f76 5564 buffer_info->dma = 0;
4c844851 5565 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5566 skb_put(skb, length);
5567 goto send_up;
5568 }
4c844851 5569 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5570 }
5571
5572 if (length) {
59d71989
AD
5573 dma_unmap_page(dev, buffer_info->page_dma,
5574 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5575 buffer_info->page_dma = 0;
bf36c1a0 5576
aa913403 5577 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5578 buffer_info->page,
5579 buffer_info->page_offset,
5580 length);
5581
d1eff350
AD
5582 if ((page_count(buffer_info->page) != 1) ||
5583 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5584 buffer_info->page = NULL;
5585 else
5586 get_page(buffer_info->page);
9d5c8243
AK
5587
5588 skb->len += length;
5589 skb->data_len += length;
bf36c1a0 5590 skb->truesize += length;
9d5c8243 5591 }
9d5c8243 5592
bf36c1a0 5593 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5594 buffer_info->skb = next_buffer->skb;
5595 buffer_info->dma = next_buffer->dma;
5596 next_buffer->skb = skb;
5597 next_buffer->dma = 0;
bf36c1a0
AD
5598 goto next_desc;
5599 }
69d3ca53 5600send_up:
9d5c8243
AK
5601 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5602 dev_kfree_skb_irq(skb);
5603 goto next_desc;
5604 }
9d5c8243 5605
757b77e2
NN
5606 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5607 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5608 total_bytes += skb->len;
5609 total_packets++;
5610
85ad76b2 5611 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5612
5613 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5614 skb_record_rx_queue(skb, rx_ring->queue_index);
5615
5616 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5617 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5618
047e0030 5619 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5620
9d5c8243
AK
5621next_desc:
5622 rx_desc->wb.upper.status_error = 0;
5623
5624 /* return some buffers to hardware, one at a time is too slow */
5625 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5626 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5627 cleaned_count = 0;
5628 }
5629
5630 /* use prefetched values */
5631 rx_desc = next_rxd;
5632 buffer_info = next_buffer;
9d5c8243
AK
5633 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5634 }
bf36c1a0 5635
9d5c8243 5636 rx_ring->next_to_clean = i;
c493ea45 5637 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5638
5639 if (cleaned_count)
3b644cf6 5640 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5641
5642 rx_ring->total_packets += total_packets;
5643 rx_ring->total_bytes += total_bytes;
5644 rx_ring->rx_stats.packets += total_packets;
5645 rx_ring->rx_stats.bytes += total_bytes;
9d5c8243
AK
5646 return cleaned;
5647}
5648
9d5c8243
AK
5649/**
5650 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5651 * @adapter: address of board private structure
5652 **/
d7ee5b3a 5653void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5654{
e694e964 5655 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5656 union e1000_adv_rx_desc *rx_desc;
5657 struct igb_buffer *buffer_info;
5658 struct sk_buff *skb;
5659 unsigned int i;
db761762 5660 int bufsz;
9d5c8243
AK
5661
5662 i = rx_ring->next_to_use;
5663 buffer_info = &rx_ring->buffer_info[i];
5664
4c844851 5665 bufsz = rx_ring->rx_buffer_len;
db761762 5666
9d5c8243
AK
5667 while (cleaned_count--) {
5668 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5669
6ec43fe6 5670 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5671 if (!buffer_info->page) {
42d0781a 5672 buffer_info->page = netdev_alloc_page(netdev);
bf36c1a0 5673 if (!buffer_info->page) {
04a5fcaa 5674 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5675 goto no_buffers;
5676 }
5677 buffer_info->page_offset = 0;
5678 } else {
5679 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5680 }
5681 buffer_info->page_dma =
59d71989 5682 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5683 buffer_info->page_offset,
5684 PAGE_SIZE / 2,
59d71989
AD
5685 DMA_FROM_DEVICE);
5686 if (dma_mapping_error(rx_ring->dev,
5687 buffer_info->page_dma)) {
42d0781a
AD
5688 buffer_info->page_dma = 0;
5689 rx_ring->rx_stats.alloc_failed++;
5690 goto no_buffers;
5691 }
9d5c8243
AK
5692 }
5693
42d0781a
AD
5694 skb = buffer_info->skb;
5695 if (!skb) {
89d71a66 5696 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5697 if (!skb) {
04a5fcaa 5698 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5699 goto no_buffers;
5700 }
5701
9d5c8243 5702 buffer_info->skb = skb;
42d0781a
AD
5703 }
5704 if (!buffer_info->dma) {
59d71989 5705 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5706 skb->data,
9d5c8243 5707 bufsz,
59d71989
AD
5708 DMA_FROM_DEVICE);
5709 if (dma_mapping_error(rx_ring->dev,
5710 buffer_info->dma)) {
42d0781a
AD
5711 buffer_info->dma = 0;
5712 rx_ring->rx_stats.alloc_failed++;
5713 goto no_buffers;
5714 }
9d5c8243
AK
5715 }
5716 /* Refresh the desc even if buffer_addrs didn't change because
5717 * each write-back erases this info. */
6ec43fe6 5718 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5719 rx_desc->read.pkt_addr =
5720 cpu_to_le64(buffer_info->page_dma);
5721 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5722 } else {
42d0781a 5723 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5724 rx_desc->read.hdr_addr = 0;
5725 }
5726
5727 i++;
5728 if (i == rx_ring->count)
5729 i = 0;
5730 buffer_info = &rx_ring->buffer_info[i];
5731 }
5732
5733no_buffers:
5734 if (rx_ring->next_to_use != i) {
5735 rx_ring->next_to_use = i;
5736 if (i == 0)
5737 i = (rx_ring->count - 1);
5738 else
5739 i--;
5740
5741 /* Force memory writes to complete before letting h/w
5742 * know there are new descriptors to fetch. (Only
5743 * applicable for weak-ordered memory model archs,
5744 * such as IA-64). */
5745 wmb();
fce99e34 5746 writel(i, rx_ring->tail);
9d5c8243
AK
5747 }
5748}
5749
5750/**
5751 * igb_mii_ioctl -
5752 * @netdev:
5753 * @ifreq:
5754 * @cmd:
5755 **/
5756static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5757{
5758 struct igb_adapter *adapter = netdev_priv(netdev);
5759 struct mii_ioctl_data *data = if_mii(ifr);
5760
5761 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5762 return -EOPNOTSUPP;
5763
5764 switch (cmd) {
5765 case SIOCGMIIPHY:
5766 data->phy_id = adapter->hw.phy.addr;
5767 break;
5768 case SIOCGMIIREG:
f5f4cf08
AD
5769 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5770 &data->val_out))
9d5c8243
AK
5771 return -EIO;
5772 break;
5773 case SIOCSMIIREG:
5774 default:
5775 return -EOPNOTSUPP;
5776 }
5777 return 0;
5778}
5779
c6cb090b
PO
5780/**
5781 * igb_hwtstamp_ioctl - control hardware time stamping
5782 * @netdev:
5783 * @ifreq:
5784 * @cmd:
5785 *
33af6bcc
PO
5786 * Outgoing time stamping can be enabled and disabled. Play nice and
5787 * disable it when requested, although it shouldn't case any overhead
5788 * when no packet needs it. At most one packet in the queue may be
5789 * marked for time stamping, otherwise it would be impossible to tell
5790 * for sure to which packet the hardware time stamp belongs.
5791 *
5792 * Incoming time stamping has to be configured via the hardware
5793 * filters. Not all combinations are supported, in particular event
5794 * type has to be specified. Matching the kind of event packet is
5795 * not supported, with the exception of "all V2 events regardless of
5796 * level 2 or 4".
5797 *
c6cb090b
PO
5798 **/
5799static int igb_hwtstamp_ioctl(struct net_device *netdev,
5800 struct ifreq *ifr, int cmd)
5801{
33af6bcc
PO
5802 struct igb_adapter *adapter = netdev_priv(netdev);
5803 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5804 struct hwtstamp_config config;
c5b9bd5e
AD
5805 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5806 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5807 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5808 bool is_l4 = false;
5809 bool is_l2 = false;
33af6bcc 5810 u32 regval;
c6cb090b
PO
5811
5812 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5813 return -EFAULT;
5814
5815 /* reserved for future extensions */
5816 if (config.flags)
5817 return -EINVAL;
5818
33af6bcc
PO
5819 switch (config.tx_type) {
5820 case HWTSTAMP_TX_OFF:
c5b9bd5e 5821 tsync_tx_ctl = 0;
33af6bcc 5822 case HWTSTAMP_TX_ON:
33af6bcc
PO
5823 break;
5824 default:
5825 return -ERANGE;
5826 }
5827
5828 switch (config.rx_filter) {
5829 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5830 tsync_rx_ctl = 0;
33af6bcc
PO
5831 break;
5832 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5833 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5834 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5835 case HWTSTAMP_FILTER_ALL:
5836 /*
5837 * register TSYNCRXCFG must be set, therefore it is not
5838 * possible to time stamp both Sync and Delay_Req messages
5839 * => fall back to time stamping all packets
5840 */
c5b9bd5e 5841 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5842 config.rx_filter = HWTSTAMP_FILTER_ALL;
5843 break;
5844 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5845 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5846 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5847 is_l4 = true;
33af6bcc
PO
5848 break;
5849 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5850 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5851 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5852 is_l4 = true;
33af6bcc
PO
5853 break;
5854 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5855 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5856 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5857 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5858 is_l2 = true;
5859 is_l4 = true;
33af6bcc
PO
5860 config.rx_filter = HWTSTAMP_FILTER_SOME;
5861 break;
5862 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5863 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5864 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5865 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5866 is_l2 = true;
5867 is_l4 = true;
33af6bcc
PO
5868 config.rx_filter = HWTSTAMP_FILTER_SOME;
5869 break;
5870 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5871 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5872 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5873 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5874 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5875 is_l2 = true;
33af6bcc
PO
5876 break;
5877 default:
5878 return -ERANGE;
5879 }
5880
c5b9bd5e
AD
5881 if (hw->mac.type == e1000_82575) {
5882 if (tsync_rx_ctl | tsync_tx_ctl)
5883 return -EINVAL;
5884 return 0;
5885 }
5886
757b77e2
NN
5887 /*
5888 * Per-packet timestamping only works if all packets are
5889 * timestamped, so enable timestamping in all packets as
5890 * long as one rx filter was configured.
5891 */
5892 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5893 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5894 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5895 }
5896
33af6bcc
PO
5897 /* enable/disable TX */
5898 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5899 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5900 regval |= tsync_tx_ctl;
33af6bcc
PO
5901 wr32(E1000_TSYNCTXCTL, regval);
5902
c5b9bd5e 5903 /* enable/disable RX */
33af6bcc 5904 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5905 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5906 regval |= tsync_rx_ctl;
33af6bcc 5907 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5908
c5b9bd5e
AD
5909 /* define which PTP packets are time stamped */
5910 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5911
c5b9bd5e
AD
5912 /* define ethertype filter for timestamped packets */
5913 if (is_l2)
5914 wr32(E1000_ETQF(3),
5915 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5916 E1000_ETQF_1588 | /* enable timestamping */
5917 ETH_P_1588)); /* 1588 eth protocol type */
5918 else
5919 wr32(E1000_ETQF(3), 0);
5920
5921#define PTP_PORT 319
5922 /* L4 Queue Filter[3]: filter by destination port and protocol */
5923 if (is_l4) {
5924 u32 ftqf = (IPPROTO_UDP /* UDP */
5925 | E1000_FTQF_VF_BP /* VF not compared */
5926 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5927 | E1000_FTQF_MASK); /* mask all inputs */
5928 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5929
5930 wr32(E1000_IMIR(3), htons(PTP_PORT));
5931 wr32(E1000_IMIREXT(3),
5932 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5933 if (hw->mac.type == e1000_82576) {
5934 /* enable source port check */
5935 wr32(E1000_SPQF(3), htons(PTP_PORT));
5936 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5937 }
5938 wr32(E1000_FTQF(3), ftqf);
5939 } else {
5940 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5941 }
33af6bcc
PO
5942 wrfl();
5943
5944 adapter->hwtstamp_config = config;
5945
5946 /* clear TX/RX time stamp registers, just to be sure */
5947 regval = rd32(E1000_TXSTMPH);
5948 regval = rd32(E1000_RXSTMPH);
c6cb090b 5949
33af6bcc
PO
5950 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5951 -EFAULT : 0;
c6cb090b
PO
5952}
5953
9d5c8243
AK
5954/**
5955 * igb_ioctl -
5956 * @netdev:
5957 * @ifreq:
5958 * @cmd:
5959 **/
5960static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5961{
5962 switch (cmd) {
5963 case SIOCGMIIPHY:
5964 case SIOCGMIIREG:
5965 case SIOCSMIIREG:
5966 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5967 case SIOCSHWTSTAMP:
5968 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5969 default:
5970 return -EOPNOTSUPP;
5971 }
5972}
5973
009bc06e
AD
5974s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5975{
5976 struct igb_adapter *adapter = hw->back;
5977 u16 cap_offset;
5978
5979 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5980 if (!cap_offset)
5981 return -E1000_ERR_CONFIG;
5982
5983 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5984
5985 return 0;
5986}
5987
5988s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5989{
5990 struct igb_adapter *adapter = hw->back;
5991 u16 cap_offset;
5992
5993 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5994 if (!cap_offset)
5995 return -E1000_ERR_CONFIG;
5996
5997 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5998
5999 return 0;
6000}
6001
9d5c8243
AK
6002static void igb_vlan_rx_register(struct net_device *netdev,
6003 struct vlan_group *grp)
6004{
6005 struct igb_adapter *adapter = netdev_priv(netdev);
6006 struct e1000_hw *hw = &adapter->hw;
6007 u32 ctrl, rctl;
6008
6009 igb_irq_disable(adapter);
6010 adapter->vlgrp = grp;
6011
6012 if (grp) {
6013 /* enable VLAN tag insert/strip */
6014 ctrl = rd32(E1000_CTRL);
6015 ctrl |= E1000_CTRL_VME;
6016 wr32(E1000_CTRL, ctrl);
6017
51466239 6018 /* Disable CFI check */
9d5c8243 6019 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6020 rctl &= ~E1000_RCTL_CFIEN;
6021 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6022 } else {
6023 /* disable VLAN tag insert/strip */
6024 ctrl = rd32(E1000_CTRL);
6025 ctrl &= ~E1000_CTRL_VME;
6026 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6027 }
6028
e1739522
AD
6029 igb_rlpml_set(adapter);
6030
9d5c8243
AK
6031 if (!test_bit(__IGB_DOWN, &adapter->state))
6032 igb_irq_enable(adapter);
6033}
6034
6035static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6036{
6037 struct igb_adapter *adapter = netdev_priv(netdev);
6038 struct e1000_hw *hw = &adapter->hw;
4ae196df 6039 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6040
51466239
AD
6041 /* attempt to add filter to vlvf array */
6042 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6043
51466239
AD
6044 /* add the filter since PF can receive vlans w/o entry in vlvf */
6045 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6046}
6047
6048static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6049{
6050 struct igb_adapter *adapter = netdev_priv(netdev);
6051 struct e1000_hw *hw = &adapter->hw;
4ae196df 6052 int pf_id = adapter->vfs_allocated_count;
51466239 6053 s32 err;
9d5c8243
AK
6054
6055 igb_irq_disable(adapter);
6056 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6057
6058 if (!test_bit(__IGB_DOWN, &adapter->state))
6059 igb_irq_enable(adapter);
6060
51466239
AD
6061 /* remove vlan from VLVF table array */
6062 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6063
51466239
AD
6064 /* if vid was not present in VLVF just remove it from table */
6065 if (err)
4ae196df 6066 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6067}
6068
6069static void igb_restore_vlan(struct igb_adapter *adapter)
6070{
6071 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6072
6073 if (adapter->vlgrp) {
6074 u16 vid;
6075 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
6076 if (!vlan_group_get_device(adapter->vlgrp, vid))
6077 continue;
6078 igb_vlan_rx_add_vid(adapter->netdev, vid);
6079 }
6080 }
6081}
6082
6083int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6084{
090b1795 6085 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6086 struct e1000_mac_info *mac = &adapter->hw.mac;
6087
6088 mac->autoneg = 0;
6089
9d5c8243
AK
6090 switch (spddplx) {
6091 case SPEED_10 + DUPLEX_HALF:
6092 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6093 break;
6094 case SPEED_10 + DUPLEX_FULL:
6095 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6096 break;
6097 case SPEED_100 + DUPLEX_HALF:
6098 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6099 break;
6100 case SPEED_100 + DUPLEX_FULL:
6101 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6102 break;
6103 case SPEED_1000 + DUPLEX_FULL:
6104 mac->autoneg = 1;
6105 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6106 break;
6107 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6108 default:
090b1795 6109 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
6110 return -EINVAL;
6111 }
6112 return 0;
6113}
6114
3fe7c4c9 6115static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6116{
6117 struct net_device *netdev = pci_get_drvdata(pdev);
6118 struct igb_adapter *adapter = netdev_priv(netdev);
6119 struct e1000_hw *hw = &adapter->hw;
2d064c06 6120 u32 ctrl, rctl, status;
9d5c8243
AK
6121 u32 wufc = adapter->wol;
6122#ifdef CONFIG_PM
6123 int retval = 0;
6124#endif
6125
6126 netif_device_detach(netdev);
6127
a88f10ec
AD
6128 if (netif_running(netdev))
6129 igb_close(netdev);
6130
047e0030 6131 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6132
6133#ifdef CONFIG_PM
6134 retval = pci_save_state(pdev);
6135 if (retval)
6136 return retval;
6137#endif
6138
6139 status = rd32(E1000_STATUS);
6140 if (status & E1000_STATUS_LU)
6141 wufc &= ~E1000_WUFC_LNKC;
6142
6143 if (wufc) {
6144 igb_setup_rctl(adapter);
ff41f8dc 6145 igb_set_rx_mode(netdev);
9d5c8243
AK
6146
6147 /* turn on all-multi mode if wake on multicast is enabled */
6148 if (wufc & E1000_WUFC_MC) {
6149 rctl = rd32(E1000_RCTL);
6150 rctl |= E1000_RCTL_MPE;
6151 wr32(E1000_RCTL, rctl);
6152 }
6153
6154 ctrl = rd32(E1000_CTRL);
6155 /* advertise wake from D3Cold */
6156 #define E1000_CTRL_ADVD3WUC 0x00100000
6157 /* phy power management enable */
6158 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6159 ctrl |= E1000_CTRL_ADVD3WUC;
6160 wr32(E1000_CTRL, ctrl);
6161
9d5c8243 6162 /* Allow time for pending master requests to run */
330a6d6a 6163 igb_disable_pcie_master(hw);
9d5c8243
AK
6164
6165 wr32(E1000_WUC, E1000_WUC_PME_EN);
6166 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6167 } else {
6168 wr32(E1000_WUC, 0);
6169 wr32(E1000_WUFC, 0);
9d5c8243
AK
6170 }
6171
3fe7c4c9
RW
6172 *enable_wake = wufc || adapter->en_mng_pt;
6173 if (!*enable_wake)
88a268c1
NN
6174 igb_power_down_link(adapter);
6175 else
6176 igb_power_up_link(adapter);
9d5c8243
AK
6177
6178 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6179 * would have already happened in close and is redundant. */
6180 igb_release_hw_control(adapter);
6181
6182 pci_disable_device(pdev);
6183
9d5c8243
AK
6184 return 0;
6185}
6186
6187#ifdef CONFIG_PM
3fe7c4c9
RW
6188static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6189{
6190 int retval;
6191 bool wake;
6192
6193 retval = __igb_shutdown(pdev, &wake);
6194 if (retval)
6195 return retval;
6196
6197 if (wake) {
6198 pci_prepare_to_sleep(pdev);
6199 } else {
6200 pci_wake_from_d3(pdev, false);
6201 pci_set_power_state(pdev, PCI_D3hot);
6202 }
6203
6204 return 0;
6205}
6206
9d5c8243
AK
6207static int igb_resume(struct pci_dev *pdev)
6208{
6209 struct net_device *netdev = pci_get_drvdata(pdev);
6210 struct igb_adapter *adapter = netdev_priv(netdev);
6211 struct e1000_hw *hw = &adapter->hw;
6212 u32 err;
6213
6214 pci_set_power_state(pdev, PCI_D0);
6215 pci_restore_state(pdev);
b94f2d77 6216 pci_save_state(pdev);
42bfd33a 6217
aed5dec3 6218 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6219 if (err) {
6220 dev_err(&pdev->dev,
6221 "igb: Cannot enable PCI device from suspend\n");
6222 return err;
6223 }
6224 pci_set_master(pdev);
6225
6226 pci_enable_wake(pdev, PCI_D3hot, 0);
6227 pci_enable_wake(pdev, PCI_D3cold, 0);
6228
047e0030 6229 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6230 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6231 return -ENOMEM;
9d5c8243
AK
6232 }
6233
9d5c8243 6234 igb_reset(adapter);
a8564f03
AD
6235
6236 /* let the f/w know that the h/w is now under the control of the
6237 * driver. */
6238 igb_get_hw_control(adapter);
6239
9d5c8243
AK
6240 wr32(E1000_WUS, ~0);
6241
a88f10ec
AD
6242 if (netif_running(netdev)) {
6243 err = igb_open(netdev);
6244 if (err)
6245 return err;
6246 }
9d5c8243
AK
6247
6248 netif_device_attach(netdev);
6249
9d5c8243
AK
6250 return 0;
6251}
6252#endif
6253
6254static void igb_shutdown(struct pci_dev *pdev)
6255{
3fe7c4c9
RW
6256 bool wake;
6257
6258 __igb_shutdown(pdev, &wake);
6259
6260 if (system_state == SYSTEM_POWER_OFF) {
6261 pci_wake_from_d3(pdev, wake);
6262 pci_set_power_state(pdev, PCI_D3hot);
6263 }
9d5c8243
AK
6264}
6265
6266#ifdef CONFIG_NET_POLL_CONTROLLER
6267/*
6268 * Polling 'interrupt' - used by things like netconsole to send skbs
6269 * without having to re-enable interrupts. It's not called while
6270 * the interrupt routine is executing.
6271 */
6272static void igb_netpoll(struct net_device *netdev)
6273{
6274 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6275 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6276 int i;
9d5c8243 6277
eebbbdba 6278 if (!adapter->msix_entries) {
047e0030 6279 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6280 igb_irq_disable(adapter);
047e0030 6281 napi_schedule(&q_vector->napi);
eebbbdba
AD
6282 return;
6283 }
9d5c8243 6284
047e0030
AD
6285 for (i = 0; i < adapter->num_q_vectors; i++) {
6286 struct igb_q_vector *q_vector = adapter->q_vector[i];
6287 wr32(E1000_EIMC, q_vector->eims_value);
6288 napi_schedule(&q_vector->napi);
eebbbdba 6289 }
9d5c8243
AK
6290}
6291#endif /* CONFIG_NET_POLL_CONTROLLER */
6292
6293/**
6294 * igb_io_error_detected - called when PCI error is detected
6295 * @pdev: Pointer to PCI device
6296 * @state: The current pci connection state
6297 *
6298 * This function is called after a PCI bus error affecting
6299 * this device has been detected.
6300 */
6301static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6302 pci_channel_state_t state)
6303{
6304 struct net_device *netdev = pci_get_drvdata(pdev);
6305 struct igb_adapter *adapter = netdev_priv(netdev);
6306
6307 netif_device_detach(netdev);
6308
59ed6eec
AD
6309 if (state == pci_channel_io_perm_failure)
6310 return PCI_ERS_RESULT_DISCONNECT;
6311
9d5c8243
AK
6312 if (netif_running(netdev))
6313 igb_down(adapter);
6314 pci_disable_device(pdev);
6315
6316 /* Request a slot slot reset. */
6317 return PCI_ERS_RESULT_NEED_RESET;
6318}
6319
6320/**
6321 * igb_io_slot_reset - called after the pci bus has been reset.
6322 * @pdev: Pointer to PCI device
6323 *
6324 * Restart the card from scratch, as if from a cold-boot. Implementation
6325 * resembles the first-half of the igb_resume routine.
6326 */
6327static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6328{
6329 struct net_device *netdev = pci_get_drvdata(pdev);
6330 struct igb_adapter *adapter = netdev_priv(netdev);
6331 struct e1000_hw *hw = &adapter->hw;
40a914fa 6332 pci_ers_result_t result;
42bfd33a 6333 int err;
9d5c8243 6334
aed5dec3 6335 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6336 dev_err(&pdev->dev,
6337 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6338 result = PCI_ERS_RESULT_DISCONNECT;
6339 } else {
6340 pci_set_master(pdev);
6341 pci_restore_state(pdev);
b94f2d77 6342 pci_save_state(pdev);
9d5c8243 6343
40a914fa
AD
6344 pci_enable_wake(pdev, PCI_D3hot, 0);
6345 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6346
40a914fa
AD
6347 igb_reset(adapter);
6348 wr32(E1000_WUS, ~0);
6349 result = PCI_ERS_RESULT_RECOVERED;
6350 }
9d5c8243 6351
ea943d41
JK
6352 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6353 if (err) {
6354 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6355 "failed 0x%0x\n", err);
6356 /* non-fatal, continue */
6357 }
40a914fa
AD
6358
6359 return result;
9d5c8243
AK
6360}
6361
6362/**
6363 * igb_io_resume - called when traffic can start flowing again.
6364 * @pdev: Pointer to PCI device
6365 *
6366 * This callback is called when the error recovery driver tells us that
6367 * its OK to resume normal operation. Implementation resembles the
6368 * second-half of the igb_resume routine.
6369 */
6370static void igb_io_resume(struct pci_dev *pdev)
6371{
6372 struct net_device *netdev = pci_get_drvdata(pdev);
6373 struct igb_adapter *adapter = netdev_priv(netdev);
6374
9d5c8243
AK
6375 if (netif_running(netdev)) {
6376 if (igb_up(adapter)) {
6377 dev_err(&pdev->dev, "igb_up failed after reset\n");
6378 return;
6379 }
6380 }
6381
6382 netif_device_attach(netdev);
6383
6384 /* let the f/w know that the h/w is now under the control of the
6385 * driver. */
6386 igb_get_hw_control(adapter);
9d5c8243
AK
6387}
6388
26ad9178
AD
6389static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6390 u8 qsel)
6391{
6392 u32 rar_low, rar_high;
6393 struct e1000_hw *hw = &adapter->hw;
6394
6395 /* HW expects these in little endian so we reverse the byte order
6396 * from network order (big endian) to little endian
6397 */
6398 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6399 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6400 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6401
6402 /* Indicate to hardware the Address is Valid. */
6403 rar_high |= E1000_RAH_AV;
6404
6405 if (hw->mac.type == e1000_82575)
6406 rar_high |= E1000_RAH_POOL_1 * qsel;
6407 else
6408 rar_high |= E1000_RAH_POOL_1 << qsel;
6409
6410 wr32(E1000_RAL(index), rar_low);
6411 wrfl();
6412 wr32(E1000_RAH(index), rar_high);
6413 wrfl();
6414}
6415
4ae196df
AD
6416static int igb_set_vf_mac(struct igb_adapter *adapter,
6417 int vf, unsigned char *mac_addr)
6418{
6419 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6420 /* VF MAC addresses start at end of receive addresses and moves
6421 * torwards the first, as a result a collision should not be possible */
6422 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6423
37680117 6424 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6425
26ad9178 6426 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6427
6428 return 0;
6429}
6430
8151d294
WM
6431static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6432{
6433 struct igb_adapter *adapter = netdev_priv(netdev);
6434 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6435 return -EINVAL;
6436 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6437 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6438 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6439 " change effective.");
6440 if (test_bit(__IGB_DOWN, &adapter->state)) {
6441 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6442 " but the PF device is not up.\n");
6443 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6444 " attempting to use the VF device.\n");
6445 }
6446 return igb_set_vf_mac(adapter, vf, mac);
6447}
6448
6449static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6450{
6451 return -EOPNOTSUPP;
6452}
6453
6454static int igb_ndo_get_vf_config(struct net_device *netdev,
6455 int vf, struct ifla_vf_info *ivi)
6456{
6457 struct igb_adapter *adapter = netdev_priv(netdev);
6458 if (vf >= adapter->vfs_allocated_count)
6459 return -EINVAL;
6460 ivi->vf = vf;
6461 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6462 ivi->tx_rate = 0;
6463 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6464 ivi->qos = adapter->vf_data[vf].pf_qos;
6465 return 0;
6466}
6467
4ae196df
AD
6468static void igb_vmm_control(struct igb_adapter *adapter)
6469{
6470 struct e1000_hw *hw = &adapter->hw;
10d8e907 6471 u32 reg;
4ae196df 6472
52a1dd4d
AD
6473 switch (hw->mac.type) {
6474 case e1000_82575:
6475 default:
6476 /* replication is not supported for 82575 */
4ae196df 6477 return;
52a1dd4d
AD
6478 case e1000_82576:
6479 /* notify HW that the MAC is adding vlan tags */
6480 reg = rd32(E1000_DTXCTL);
6481 reg |= E1000_DTXCTL_VLAN_ADDED;
6482 wr32(E1000_DTXCTL, reg);
6483 case e1000_82580:
6484 /* enable replication vlan tag stripping */
6485 reg = rd32(E1000_RPLOLR);
6486 reg |= E1000_RPLOLR_STRVLAN;
6487 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6488 case e1000_i350:
6489 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6490 break;
6491 }
10d8e907 6492
d4960307
AD
6493 if (adapter->vfs_allocated_count) {
6494 igb_vmdq_set_loopback_pf(hw, true);
6495 igb_vmdq_set_replication_pf(hw, true);
6496 } else {
6497 igb_vmdq_set_loopback_pf(hw, false);
6498 igb_vmdq_set_replication_pf(hw, false);
6499 }
4ae196df
AD
6500}
6501
9d5c8243 6502/* igb_main.c */