]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_ethtool.c
ARM: fix bug of checking on signed return value using unsigned statement in w90p910...
[net-next-2.6.git] / drivers / net / igb / igb_ethtool.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
231835e4
AK
40enum {NETDEV_STATS, IGB_STATS};
41
9d5c8243
AK
42struct igb_stats {
43 char stat_string[ETH_GSTRING_LEN];
231835e4 44 int type;
9d5c8243
AK
45 int sizeof_stat;
46 int stat_offset;
47};
48
231835e4
AK
49#define IGB_STAT(m) IGB_STATS, \
50 FIELD_SIZEOF(struct igb_adapter, m), \
51 offsetof(struct igb_adapter, m)
52#define IGB_NETDEV_STAT(m) NETDEV_STATS, \
53 FIELD_SIZEOF(struct net_device, m), \
54 offsetof(struct net_device, m)
55
9d5c8243
AK
56static const struct igb_stats igb_gstrings_stats[] = {
57 { "rx_packets", IGB_STAT(stats.gprc) },
58 { "tx_packets", IGB_STAT(stats.gptc) },
59 { "rx_bytes", IGB_STAT(stats.gorc) },
60 { "tx_bytes", IGB_STAT(stats.gotc) },
61 { "rx_broadcast", IGB_STAT(stats.bprc) },
62 { "tx_broadcast", IGB_STAT(stats.bptc) },
63 { "rx_multicast", IGB_STAT(stats.mprc) },
64 { "tx_multicast", IGB_STAT(stats.mptc) },
8d24e933
AK
65 { "rx_errors", IGB_NETDEV_STAT(stats.rx_errors) },
66 { "tx_errors", IGB_NETDEV_STAT(stats.tx_errors) },
67 { "tx_dropped", IGB_NETDEV_STAT(stats.tx_dropped) },
9d5c8243
AK
68 { "multicast", IGB_STAT(stats.mprc) },
69 { "collisions", IGB_STAT(stats.colc) },
8d24e933
AK
70 { "rx_length_errors", IGB_NETDEV_STAT(stats.rx_length_errors) },
71 { "rx_over_errors", IGB_NETDEV_STAT(stats.rx_over_errors) },
9d5c8243 72 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
8d24e933 73 { "rx_frame_errors", IGB_NETDEV_STAT(stats.rx_frame_errors) },
9d5c8243 74 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
8d24e933 75 { "rx_queue_drop_packet_count", IGB_NETDEV_STAT(stats.rx_fifo_errors) },
9d5c8243
AK
76 { "rx_missed_errors", IGB_STAT(stats.mpc) },
77 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
78 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
8d24e933
AK
79 { "tx_fifo_errors", IGB_NETDEV_STAT(stats.tx_fifo_errors) },
80 { "tx_heartbeat_errors", IGB_NETDEV_STAT(stats.tx_heartbeat_errors) },
9d5c8243
AK
81 { "tx_window_errors", IGB_STAT(stats.latecol) },
82 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
83 { "tx_deferred_ok", IGB_STAT(stats.dc) },
84 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
85 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
86 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
9d5c8243
AK
87 { "rx_long_length_errors", IGB_STAT(stats.roc) },
88 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
89 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
90 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
91 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
92 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
93 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
94 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
95 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
96 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
dda0e083 97 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
9d5c8243
AK
98 { "tx_smbus", IGB_STAT(stats.mgptc) },
99 { "rx_smbus", IGB_STAT(stats.mgprc) },
100 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
101};
102
103#define IGB_QUEUE_STATS_LEN \
317f66bd 104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
8c0ab70a 105 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
317f66bd 106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
8c0ab70a 107 (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
9d5c8243 108#define IGB_GLOBAL_STATS_LEN \
317f66bd 109 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
9d5c8243
AK
110#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
111static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
112 "Register test (offline)", "Eeprom test (offline)",
113 "Interrupt test (offline)", "Loopback test (offline)",
114 "Link test (on/offline)"
115};
317f66bd 116#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
9d5c8243
AK
117
118static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
119{
120 struct igb_adapter *adapter = netdev_priv(netdev);
121 struct e1000_hw *hw = &adapter->hw;
317f66bd 122 u32 status;
9d5c8243
AK
123
124 if (hw->phy.media_type == e1000_media_type_copper) {
125
126 ecmd->supported = (SUPPORTED_10baseT_Half |
127 SUPPORTED_10baseT_Full |
128 SUPPORTED_100baseT_Half |
129 SUPPORTED_100baseT_Full |
130 SUPPORTED_1000baseT_Full|
131 SUPPORTED_Autoneg |
132 SUPPORTED_TP);
133 ecmd->advertising = ADVERTISED_TP;
134
135 if (hw->mac.autoneg == 1) {
136 ecmd->advertising |= ADVERTISED_Autoneg;
137 /* the e1000 autoneg seems to match ethtool nicely */
138 ecmd->advertising |= hw->phy.autoneg_advertised;
139 }
140
141 ecmd->port = PORT_TP;
142 ecmd->phy_address = hw->phy.addr;
143 } else {
144 ecmd->supported = (SUPPORTED_1000baseT_Full |
145 SUPPORTED_FIBRE |
146 SUPPORTED_Autoneg);
147
148 ecmd->advertising = (ADVERTISED_1000baseT_Full |
149 ADVERTISED_FIBRE |
150 ADVERTISED_Autoneg);
151
152 ecmd->port = PORT_FIBRE;
153 }
154
155 ecmd->transceiver = XCVR_INTERNAL;
156
317f66bd 157 status = rd32(E1000_STATUS);
9d5c8243 158
317f66bd 159 if (status & E1000_STATUS_LU) {
9d5c8243 160
317f66bd
AD
161 if ((status & E1000_STATUS_SPEED_1000) ||
162 hw->phy.media_type != e1000_media_type_copper)
163 ecmd->speed = SPEED_1000;
164 else if (status & E1000_STATUS_SPEED_100)
165 ecmd->speed = SPEED_100;
166 else
167 ecmd->speed = SPEED_10;
9d5c8243 168
317f66bd
AD
169 if ((status & E1000_STATUS_FD) ||
170 hw->phy.media_type != e1000_media_type_copper)
9d5c8243
AK
171 ecmd->duplex = DUPLEX_FULL;
172 else
173 ecmd->duplex = DUPLEX_HALF;
174 } else {
175 ecmd->speed = -1;
176 ecmd->duplex = -1;
177 }
178
dcc3ae9a 179 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
9d5c8243
AK
180 return 0;
181}
182
183static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
184{
185 struct igb_adapter *adapter = netdev_priv(netdev);
186 struct e1000_hw *hw = &adapter->hw;
187
188 /* When SoL/IDER sessions are active, autoneg/speed/duplex
189 * cannot be changed */
190 if (igb_check_reset_block(hw)) {
191 dev_err(&adapter->pdev->dev, "Cannot change link "
192 "characteristics when SoL/IDER is active.\n");
193 return -EINVAL;
194 }
195
196 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
197 msleep(1);
198
199 if (ecmd->autoneg == AUTONEG_ENABLE) {
200 hw->mac.autoneg = 1;
dcc3ae9a
AD
201 hw->phy.autoneg_advertised = ecmd->advertising |
202 ADVERTISED_TP |
203 ADVERTISED_Autoneg;
9d5c8243 204 ecmd->advertising = hw->phy.autoneg_advertised;
0cce119a
AD
205 if (adapter->fc_autoneg)
206 hw->fc.requested_mode = e1000_fc_default;
dcc3ae9a 207 } else {
9d5c8243
AK
208 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
209 clear_bit(__IGB_RESETTING, &adapter->state);
210 return -EINVAL;
211 }
dcc3ae9a 212 }
9d5c8243
AK
213
214 /* reset the link */
9d5c8243
AK
215 if (netif_running(adapter->netdev)) {
216 igb_down(adapter);
217 igb_up(adapter);
218 } else
219 igb_reset(adapter);
220
221 clear_bit(__IGB_RESETTING, &adapter->state);
222 return 0;
223}
224
225static void igb_get_pauseparam(struct net_device *netdev,
226 struct ethtool_pauseparam *pause)
227{
228 struct igb_adapter *adapter = netdev_priv(netdev);
229 struct e1000_hw *hw = &adapter->hw;
230
231 pause->autoneg =
232 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
233
0cce119a 234 if (hw->fc.current_mode == e1000_fc_rx_pause)
9d5c8243 235 pause->rx_pause = 1;
0cce119a 236 else if (hw->fc.current_mode == e1000_fc_tx_pause)
9d5c8243 237 pause->tx_pause = 1;
0cce119a 238 else if (hw->fc.current_mode == e1000_fc_full) {
9d5c8243
AK
239 pause->rx_pause = 1;
240 pause->tx_pause = 1;
241 }
242}
243
244static int igb_set_pauseparam(struct net_device *netdev,
245 struct ethtool_pauseparam *pause)
246{
247 struct igb_adapter *adapter = netdev_priv(netdev);
248 struct e1000_hw *hw = &adapter->hw;
249 int retval = 0;
250
251 adapter->fc_autoneg = pause->autoneg;
252
253 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
254 msleep(1);
255
9d5c8243 256 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
0cce119a 257 hw->fc.requested_mode = e1000_fc_default;
9d5c8243
AK
258 if (netif_running(adapter->netdev)) {
259 igb_down(adapter);
260 igb_up(adapter);
317f66bd 261 } else {
9d5c8243 262 igb_reset(adapter);
317f66bd 263 }
0cce119a
AD
264 } else {
265 if (pause->rx_pause && pause->tx_pause)
266 hw->fc.requested_mode = e1000_fc_full;
267 else if (pause->rx_pause && !pause->tx_pause)
268 hw->fc.requested_mode = e1000_fc_rx_pause;
269 else if (!pause->rx_pause && pause->tx_pause)
270 hw->fc.requested_mode = e1000_fc_tx_pause;
271 else if (!pause->rx_pause && !pause->tx_pause)
272 hw->fc.requested_mode = e1000_fc_none;
273
274 hw->fc.current_mode = hw->fc.requested_mode;
275
dcc3ae9a
AD
276 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
277 igb_force_mac_fc(hw) : igb_setup_link(hw));
0cce119a 278 }
9d5c8243
AK
279
280 clear_bit(__IGB_RESETTING, &adapter->state);
281 return retval;
282}
283
284static u32 igb_get_rx_csum(struct net_device *netdev)
285{
286 struct igb_adapter *adapter = netdev_priv(netdev);
85ad76b2 287 return !!(adapter->rx_ring[0].flags & IGB_RING_FLAG_RX_CSUM);
9d5c8243
AK
288}
289
290static int igb_set_rx_csum(struct net_device *netdev, u32 data)
291{
292 struct igb_adapter *adapter = netdev_priv(netdev);
85ad76b2 293 int i;
7beb0146 294
85ad76b2
AD
295 for (i = 0; i < adapter->num_rx_queues; i++) {
296 if (data)
297 adapter->rx_ring[i].flags |= IGB_RING_FLAG_RX_CSUM;
298 else
299 adapter->rx_ring[i].flags &= ~IGB_RING_FLAG_RX_CSUM;
300 }
9d5c8243
AK
301
302 return 0;
303}
304
305static u32 igb_get_tx_csum(struct net_device *netdev)
306{
7d8eb29e 307 return (netdev->features & NETIF_F_IP_CSUM) != 0;
9d5c8243
AK
308}
309
310static int igb_set_tx_csum(struct net_device *netdev, u32 data)
311{
b9473560
JB
312 struct igb_adapter *adapter = netdev_priv(netdev);
313
314 if (data) {
7d8eb29e 315 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
317f66bd 316 if (adapter->hw.mac.type >= e1000_82576)
b9473560
JB
317 netdev->features |= NETIF_F_SCTP_CSUM;
318 } else {
319 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
320 NETIF_F_SCTP_CSUM);
321 }
9d5c8243
AK
322
323 return 0;
324}
325
326static int igb_set_tso(struct net_device *netdev, u32 data)
327{
328 struct igb_adapter *adapter = netdev_priv(netdev);
329
7d8eb29e 330 if (data) {
9d5c8243 331 netdev->features |= NETIF_F_TSO;
9d5c8243 332 netdev->features |= NETIF_F_TSO6;
7d8eb29e
AD
333 } else {
334 netdev->features &= ~NETIF_F_TSO;
9d5c8243 335 netdev->features &= ~NETIF_F_TSO6;
7d8eb29e 336 }
9d5c8243
AK
337
338 dev_info(&adapter->pdev->dev, "TSO is %s\n",
339 data ? "Enabled" : "Disabled");
340 return 0;
341}
342
343static u32 igb_get_msglevel(struct net_device *netdev)
344{
345 struct igb_adapter *adapter = netdev_priv(netdev);
346 return adapter->msg_enable;
347}
348
349static void igb_set_msglevel(struct net_device *netdev, u32 data)
350{
351 struct igb_adapter *adapter = netdev_priv(netdev);
352 adapter->msg_enable = data;
353}
354
355static int igb_get_regs_len(struct net_device *netdev)
356{
357#define IGB_REGS_LEN 551
358 return IGB_REGS_LEN * sizeof(u32);
359}
360
361static void igb_get_regs(struct net_device *netdev,
362 struct ethtool_regs *regs, void *p)
363{
364 struct igb_adapter *adapter = netdev_priv(netdev);
365 struct e1000_hw *hw = &adapter->hw;
366 u32 *regs_buff = p;
367 u8 i;
368
369 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
370
371 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
372
373 /* General Registers */
374 regs_buff[0] = rd32(E1000_CTRL);
375 regs_buff[1] = rd32(E1000_STATUS);
376 regs_buff[2] = rd32(E1000_CTRL_EXT);
377 regs_buff[3] = rd32(E1000_MDIC);
378 regs_buff[4] = rd32(E1000_SCTL);
379 regs_buff[5] = rd32(E1000_CONNSW);
380 regs_buff[6] = rd32(E1000_VET);
381 regs_buff[7] = rd32(E1000_LEDCTL);
382 regs_buff[8] = rd32(E1000_PBA);
383 regs_buff[9] = rd32(E1000_PBS);
384 regs_buff[10] = rd32(E1000_FRTIMER);
385 regs_buff[11] = rd32(E1000_TCPTIMER);
386
387 /* NVM Register */
388 regs_buff[12] = rd32(E1000_EECD);
389
390 /* Interrupt */
fe59de38
AD
391 /* Reading EICS for EICR because they read the
392 * same but EICS does not clear on read */
393 regs_buff[13] = rd32(E1000_EICS);
9d5c8243
AK
394 regs_buff[14] = rd32(E1000_EICS);
395 regs_buff[15] = rd32(E1000_EIMS);
396 regs_buff[16] = rd32(E1000_EIMC);
397 regs_buff[17] = rd32(E1000_EIAC);
398 regs_buff[18] = rd32(E1000_EIAM);
fe59de38
AD
399 /* Reading ICS for ICR because they read the
400 * same but ICS does not clear on read */
401 regs_buff[19] = rd32(E1000_ICS);
9d5c8243
AK
402 regs_buff[20] = rd32(E1000_ICS);
403 regs_buff[21] = rd32(E1000_IMS);
404 regs_buff[22] = rd32(E1000_IMC);
405 regs_buff[23] = rd32(E1000_IAC);
406 regs_buff[24] = rd32(E1000_IAM);
407 regs_buff[25] = rd32(E1000_IMIRVP);
408
409 /* Flow Control */
410 regs_buff[26] = rd32(E1000_FCAL);
411 regs_buff[27] = rd32(E1000_FCAH);
412 regs_buff[28] = rd32(E1000_FCTTV);
413 regs_buff[29] = rd32(E1000_FCRTL);
414 regs_buff[30] = rd32(E1000_FCRTH);
415 regs_buff[31] = rd32(E1000_FCRTV);
416
417 /* Receive */
418 regs_buff[32] = rd32(E1000_RCTL);
419 regs_buff[33] = rd32(E1000_RXCSUM);
420 regs_buff[34] = rd32(E1000_RLPML);
421 regs_buff[35] = rd32(E1000_RFCTL);
422 regs_buff[36] = rd32(E1000_MRQC);
e1739522 423 regs_buff[37] = rd32(E1000_VT_CTL);
9d5c8243
AK
424
425 /* Transmit */
426 regs_buff[38] = rd32(E1000_TCTL);
427 regs_buff[39] = rd32(E1000_TCTL_EXT);
428 regs_buff[40] = rd32(E1000_TIPG);
429 regs_buff[41] = rd32(E1000_DTXCTL);
430
431 /* Wake Up */
432 regs_buff[42] = rd32(E1000_WUC);
433 regs_buff[43] = rd32(E1000_WUFC);
434 regs_buff[44] = rd32(E1000_WUS);
435 regs_buff[45] = rd32(E1000_IPAV);
436 regs_buff[46] = rd32(E1000_WUPL);
437
438 /* MAC */
439 regs_buff[47] = rd32(E1000_PCS_CFG0);
440 regs_buff[48] = rd32(E1000_PCS_LCTL);
441 regs_buff[49] = rd32(E1000_PCS_LSTAT);
442 regs_buff[50] = rd32(E1000_PCS_ANADV);
443 regs_buff[51] = rd32(E1000_PCS_LPAB);
444 regs_buff[52] = rd32(E1000_PCS_NPTX);
445 regs_buff[53] = rd32(E1000_PCS_LPABNP);
446
447 /* Statistics */
448 regs_buff[54] = adapter->stats.crcerrs;
449 regs_buff[55] = adapter->stats.algnerrc;
450 regs_buff[56] = adapter->stats.symerrs;
451 regs_buff[57] = adapter->stats.rxerrc;
452 regs_buff[58] = adapter->stats.mpc;
453 regs_buff[59] = adapter->stats.scc;
454 regs_buff[60] = adapter->stats.ecol;
455 regs_buff[61] = adapter->stats.mcc;
456 regs_buff[62] = adapter->stats.latecol;
457 regs_buff[63] = adapter->stats.colc;
458 regs_buff[64] = adapter->stats.dc;
459 regs_buff[65] = adapter->stats.tncrs;
460 regs_buff[66] = adapter->stats.sec;
461 regs_buff[67] = adapter->stats.htdpmc;
462 regs_buff[68] = adapter->stats.rlec;
463 regs_buff[69] = adapter->stats.xonrxc;
464 regs_buff[70] = adapter->stats.xontxc;
465 regs_buff[71] = adapter->stats.xoffrxc;
466 regs_buff[72] = adapter->stats.xofftxc;
467 regs_buff[73] = adapter->stats.fcruc;
468 regs_buff[74] = adapter->stats.prc64;
469 regs_buff[75] = adapter->stats.prc127;
470 regs_buff[76] = adapter->stats.prc255;
471 regs_buff[77] = adapter->stats.prc511;
472 regs_buff[78] = adapter->stats.prc1023;
473 regs_buff[79] = adapter->stats.prc1522;
474 regs_buff[80] = adapter->stats.gprc;
475 regs_buff[81] = adapter->stats.bprc;
476 regs_buff[82] = adapter->stats.mprc;
477 regs_buff[83] = adapter->stats.gptc;
478 regs_buff[84] = adapter->stats.gorc;
479 regs_buff[86] = adapter->stats.gotc;
480 regs_buff[88] = adapter->stats.rnbc;
481 regs_buff[89] = adapter->stats.ruc;
482 regs_buff[90] = adapter->stats.rfc;
483 regs_buff[91] = adapter->stats.roc;
484 regs_buff[92] = adapter->stats.rjc;
485 regs_buff[93] = adapter->stats.mgprc;
486 regs_buff[94] = adapter->stats.mgpdc;
487 regs_buff[95] = adapter->stats.mgptc;
488 regs_buff[96] = adapter->stats.tor;
489 regs_buff[98] = adapter->stats.tot;
490 regs_buff[100] = adapter->stats.tpr;
491 regs_buff[101] = adapter->stats.tpt;
492 regs_buff[102] = adapter->stats.ptc64;
493 regs_buff[103] = adapter->stats.ptc127;
494 regs_buff[104] = adapter->stats.ptc255;
495 regs_buff[105] = adapter->stats.ptc511;
496 regs_buff[106] = adapter->stats.ptc1023;
497 regs_buff[107] = adapter->stats.ptc1522;
498 regs_buff[108] = adapter->stats.mptc;
499 regs_buff[109] = adapter->stats.bptc;
500 regs_buff[110] = adapter->stats.tsctc;
501 regs_buff[111] = adapter->stats.iac;
502 regs_buff[112] = adapter->stats.rpthc;
503 regs_buff[113] = adapter->stats.hgptc;
504 regs_buff[114] = adapter->stats.hgorc;
505 regs_buff[116] = adapter->stats.hgotc;
506 regs_buff[118] = adapter->stats.lenerrs;
507 regs_buff[119] = adapter->stats.scvpc;
508 regs_buff[120] = adapter->stats.hrmpc;
509
9d5c8243
AK
510 for (i = 0; i < 4; i++)
511 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
512 for (i = 0; i < 4; i++)
83ab50a5 513 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
9d5c8243
AK
514 for (i = 0; i < 4; i++)
515 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
516 for (i = 0; i < 4; i++)
517 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
518 for (i = 0; i < 4; i++)
519 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
520 for (i = 0; i < 4; i++)
521 regs_buff[141 + i] = rd32(E1000_RDH(i));
522 for (i = 0; i < 4; i++)
523 regs_buff[145 + i] = rd32(E1000_RDT(i));
524 for (i = 0; i < 4; i++)
525 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
526
527 for (i = 0; i < 10; i++)
528 regs_buff[153 + i] = rd32(E1000_EITR(i));
529 for (i = 0; i < 8; i++)
530 regs_buff[163 + i] = rd32(E1000_IMIR(i));
531 for (i = 0; i < 8; i++)
532 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
533 for (i = 0; i < 16; i++)
534 regs_buff[179 + i] = rd32(E1000_RAL(i));
535 for (i = 0; i < 16; i++)
536 regs_buff[195 + i] = rd32(E1000_RAH(i));
537
538 for (i = 0; i < 4; i++)
539 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
540 for (i = 0; i < 4; i++)
541 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
542 for (i = 0; i < 4; i++)
543 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
544 for (i = 0; i < 4; i++)
545 regs_buff[223 + i] = rd32(E1000_TDH(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[227 + i] = rd32(E1000_TDT(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
550 for (i = 0; i < 4; i++)
551 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
552 for (i = 0; i < 4; i++)
553 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
554 for (i = 0; i < 4; i++)
555 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
556
557 for (i = 0; i < 4; i++)
558 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
559 for (i = 0; i < 4; i++)
560 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
561 for (i = 0; i < 32; i++)
562 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
563 for (i = 0; i < 128; i++)
564 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
565 for (i = 0; i < 128; i++)
566 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
567 for (i = 0; i < 4; i++)
568 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
569
570 regs_buff[547] = rd32(E1000_TDFH);
571 regs_buff[548] = rd32(E1000_TDFT);
572 regs_buff[549] = rd32(E1000_TDFHS);
573 regs_buff[550] = rd32(E1000_TDFPC);
574
575}
576
577static int igb_get_eeprom_len(struct net_device *netdev)
578{
579 struct igb_adapter *adapter = netdev_priv(netdev);
580 return adapter->hw.nvm.word_size * 2;
581}
582
583static int igb_get_eeprom(struct net_device *netdev,
584 struct ethtool_eeprom *eeprom, u8 *bytes)
585{
586 struct igb_adapter *adapter = netdev_priv(netdev);
587 struct e1000_hw *hw = &adapter->hw;
588 u16 *eeprom_buff;
589 int first_word, last_word;
590 int ret_val = 0;
591 u16 i;
592
593 if (eeprom->len == 0)
594 return -EINVAL;
595
596 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
597
598 first_word = eeprom->offset >> 1;
599 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
600
601 eeprom_buff = kmalloc(sizeof(u16) *
602 (last_word - first_word + 1), GFP_KERNEL);
603 if (!eeprom_buff)
604 return -ENOMEM;
605
606 if (hw->nvm.type == e1000_nvm_eeprom_spi)
312c75ae 607 ret_val = hw->nvm.ops.read(hw, first_word,
9d5c8243
AK
608 last_word - first_word + 1,
609 eeprom_buff);
610 else {
611 for (i = 0; i < last_word - first_word + 1; i++) {
312c75ae 612 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
9d5c8243
AK
613 &eeprom_buff[i]);
614 if (ret_val)
615 break;
616 }
617 }
618
619 /* Device's eeprom is always little-endian, word addressable */
620 for (i = 0; i < last_word - first_word + 1; i++)
621 le16_to_cpus(&eeprom_buff[i]);
622
623 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
624 eeprom->len);
625 kfree(eeprom_buff);
626
627 return ret_val;
628}
629
630static int igb_set_eeprom(struct net_device *netdev,
631 struct ethtool_eeprom *eeprom, u8 *bytes)
632{
633 struct igb_adapter *adapter = netdev_priv(netdev);
634 struct e1000_hw *hw = &adapter->hw;
635 u16 *eeprom_buff;
636 void *ptr;
637 int max_len, first_word, last_word, ret_val = 0;
638 u16 i;
639
640 if (eeprom->len == 0)
641 return -EOPNOTSUPP;
642
643 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
644 return -EFAULT;
645
646 max_len = hw->nvm.word_size * 2;
647
648 first_word = eeprom->offset >> 1;
649 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
650 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
651 if (!eeprom_buff)
652 return -ENOMEM;
653
654 ptr = (void *)eeprom_buff;
655
656 if (eeprom->offset & 1) {
657 /* need read/modify/write of first changed EEPROM word */
658 /* only the second byte of the word is being modified */
312c75ae 659 ret_val = hw->nvm.ops.read(hw, first_word, 1,
9d5c8243
AK
660 &eeprom_buff[0]);
661 ptr++;
662 }
663 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
664 /* need read/modify/write of last changed EEPROM word */
665 /* only the first byte of the word is being modified */
312c75ae 666 ret_val = hw->nvm.ops.read(hw, last_word, 1,
9d5c8243
AK
667 &eeprom_buff[last_word - first_word]);
668 }
669
670 /* Device's eeprom is always little-endian, word addressable */
671 for (i = 0; i < last_word - first_word + 1; i++)
672 le16_to_cpus(&eeprom_buff[i]);
673
674 memcpy(ptr, bytes, eeprom->len);
675
676 for (i = 0; i < last_word - first_word + 1; i++)
677 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
678
312c75ae 679 ret_val = hw->nvm.ops.write(hw, first_word,
9d5c8243
AK
680 last_word - first_word + 1, eeprom_buff);
681
682 /* Update the checksum over the first part of the EEPROM if needed
683 * and flush shadow RAM for 82573 controllers */
684 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
685 igb_update_nvm_checksum(hw);
686
687 kfree(eeprom_buff);
688 return ret_val;
689}
690
691static void igb_get_drvinfo(struct net_device *netdev,
692 struct ethtool_drvinfo *drvinfo)
693{
694 struct igb_adapter *adapter = netdev_priv(netdev);
695 char firmware_version[32];
696 u16 eeprom_data;
697
698 strncpy(drvinfo->driver, igb_driver_name, 32);
699 strncpy(drvinfo->version, igb_driver_version, 32);
700
701 /* EEPROM image version # is reported as firmware version # for
702 * 82575 controllers */
312c75ae 703 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
9d5c8243
AK
704 sprintf(firmware_version, "%d.%d-%d",
705 (eeprom_data & 0xF000) >> 12,
706 (eeprom_data & 0x0FF0) >> 4,
707 eeprom_data & 0x000F);
708
709 strncpy(drvinfo->fw_version, firmware_version, 32);
710 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
711 drvinfo->n_stats = IGB_STATS_LEN;
712 drvinfo->testinfo_len = IGB_TEST_LEN;
713 drvinfo->regdump_len = igb_get_regs_len(netdev);
714 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
715}
716
717static void igb_get_ringparam(struct net_device *netdev,
718 struct ethtool_ringparam *ring)
719{
720 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
721
722 ring->rx_max_pending = IGB_MAX_RXD;
723 ring->tx_max_pending = IGB_MAX_TXD;
724 ring->rx_mini_max_pending = 0;
725 ring->rx_jumbo_max_pending = 0;
68fd9910
AD
726 ring->rx_pending = adapter->rx_ring_count;
727 ring->tx_pending = adapter->tx_ring_count;
9d5c8243
AK
728 ring->rx_mini_pending = 0;
729 ring->rx_jumbo_pending = 0;
730}
731
732static int igb_set_ringparam(struct net_device *netdev,
733 struct ethtool_ringparam *ring)
734{
735 struct igb_adapter *adapter = netdev_priv(netdev);
68fd9910 736 struct igb_ring *temp_ring;
6d9f4fc4 737 int i, err = 0;
68fd9910 738 u32 new_rx_count, new_tx_count;
9d5c8243
AK
739
740 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
741 return -EINVAL;
742
317f66bd 743 new_rx_count = min(ring->rx_pending, (u32)IGB_MAX_RXD);
d6b9076f 744 new_rx_count = max(new_rx_count, (u32)IGB_MIN_RXD);
9d5c8243
AK
745 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
746
317f66bd 747 new_tx_count = min(ring->tx_pending, (u32)IGB_MAX_TXD);
d6b9076f 748 new_tx_count = max(new_tx_count, (u32)IGB_MIN_TXD);
9d5c8243
AK
749 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
750
68fd9910
AD
751 if ((new_tx_count == adapter->tx_ring_count) &&
752 (new_rx_count == adapter->rx_ring_count)) {
9d5c8243
AK
753 /* nothing to do */
754 return 0;
755 }
756
6d9f4fc4
AD
757 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
758 msleep(1);
759
760 if (!netif_running(adapter->netdev)) {
761 for (i = 0; i < adapter->num_tx_queues; i++)
762 adapter->tx_ring[i].count = new_tx_count;
763 for (i = 0; i < adapter->num_rx_queues; i++)
764 adapter->rx_ring[i].count = new_rx_count;
765 adapter->tx_ring_count = new_tx_count;
766 adapter->rx_ring_count = new_rx_count;
767 goto clear_reset;
768 }
769
68fd9910
AD
770 if (adapter->num_tx_queues > adapter->num_rx_queues)
771 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
772 else
773 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
68fd9910 774
6d9f4fc4
AD
775 if (!temp_ring) {
776 err = -ENOMEM;
777 goto clear_reset;
778 }
9d5c8243 779
6d9f4fc4 780 igb_down(adapter);
9d5c8243
AK
781
782 /*
783 * We can't just free everything and then setup again,
784 * because the ISRs in MSI-X mode get passed pointers
785 * to the tx and rx ring structs.
786 */
68fd9910
AD
787 if (new_tx_count != adapter->tx_ring_count) {
788 memcpy(temp_ring, adapter->tx_ring,
789 adapter->num_tx_queues * sizeof(struct igb_ring));
790
9d5c8243 791 for (i = 0; i < adapter->num_tx_queues; i++) {
68fd9910 792 temp_ring[i].count = new_tx_count;
80785298 793 err = igb_setup_tx_resources(&temp_ring[i]);
9d5c8243 794 if (err) {
68fd9910
AD
795 while (i) {
796 i--;
797 igb_free_tx_resources(&temp_ring[i]);
798 }
9d5c8243
AK
799 goto err_setup;
800 }
9d5c8243 801 }
68fd9910
AD
802
803 for (i = 0; i < adapter->num_tx_queues; i++)
804 igb_free_tx_resources(&adapter->tx_ring[i]);
805
806 memcpy(adapter->tx_ring, temp_ring,
807 adapter->num_tx_queues * sizeof(struct igb_ring));
808
809 adapter->tx_ring_count = new_tx_count;
9d5c8243
AK
810 }
811
812 if (new_rx_count != adapter->rx_ring->count) {
68fd9910
AD
813 memcpy(temp_ring, adapter->rx_ring,
814 adapter->num_rx_queues * sizeof(struct igb_ring));
9d5c8243 815
68fd9910
AD
816 for (i = 0; i < adapter->num_rx_queues; i++) {
817 temp_ring[i].count = new_rx_count;
80785298 818 err = igb_setup_rx_resources(&temp_ring[i]);
9d5c8243 819 if (err) {
68fd9910
AD
820 while (i) {
821 i--;
822 igb_free_rx_resources(&temp_ring[i]);
823 }
9d5c8243
AK
824 goto err_setup;
825 }
826
9d5c8243 827 }
68fd9910
AD
828
829 for (i = 0; i < adapter->num_rx_queues; i++)
830 igb_free_rx_resources(&adapter->rx_ring[i]);
831
832 memcpy(adapter->rx_ring, temp_ring,
833 adapter->num_rx_queues * sizeof(struct igb_ring));
834
835 adapter->rx_ring_count = new_rx_count;
9d5c8243 836 }
9d5c8243 837err_setup:
6d9f4fc4 838 igb_up(adapter);
68fd9910 839 vfree(temp_ring);
6d9f4fc4
AD
840clear_reset:
841 clear_bit(__IGB_RESETTING, &adapter->state);
9d5c8243
AK
842 return err;
843}
844
845/* ethtool register test data */
846struct igb_reg_test {
847 u16 reg;
2d064c06
AD
848 u16 reg_offset;
849 u16 array_len;
850 u16 test_type;
9d5c8243
AK
851 u32 mask;
852 u32 write;
853};
854
855/* In the hardware, registers are laid out either singly, in arrays
856 * spaced 0x100 bytes apart, or in contiguous tables. We assume
857 * most tests take place on arrays or single registers (handled
858 * as a single-element array) and special-case the tables.
859 * Table tests are always pattern tests.
860 *
861 * We also make provision for some required setup steps by specifying
862 * registers to be written without any read-back testing.
863 */
864
865#define PATTERN_TEST 1
866#define SET_READ_TEST 2
867#define WRITE_NO_TEST 3
868#define TABLE32_TEST 4
869#define TABLE64_TEST_LO 5
870#define TABLE64_TEST_HI 6
871
2d064c06
AD
872/* 82576 reg test */
873static struct igb_reg_test reg_test_82576[] = {
874 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
875 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
876 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
877 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
878 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
879 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
880 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
881 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
882 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
883 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
884 /* Enable all RX queues before testing. */
885 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
886 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
2d064c06
AD
887 /* RDH is read-only for 82576, only test RDT. */
888 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2753f4ce 889 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2d064c06 890 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
2753f4ce 891 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
2d064c06
AD
892 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
893 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
894 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
895 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
896 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
897 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
898 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
899 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2d064c06
AD
901 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
902 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
903 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
904 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
905 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
906 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
907 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
908 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
909 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
910 { 0, 0, 0, 0 }
911};
912
913/* 82575 register test */
9d5c8243 914static struct igb_reg_test reg_test_82575[] = {
2d064c06
AD
915 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
916 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
917 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
918 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
919 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
920 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
9d5c8243 922 /* Enable all four RX queues before testing. */
2d064c06 923 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
9d5c8243 924 /* RDH is read-only for 82575, only test RDT. */
2d064c06
AD
925 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
926 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
927 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
928 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
929 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
930 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
931 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
932 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
933 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
934 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
935 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
936 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
937 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
938 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
939 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
940 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
9d5c8243
AK
941 { 0, 0, 0, 0 }
942};
943
944static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
945 int reg, u32 mask, u32 write)
946{
2753f4ce 947 struct e1000_hw *hw = &adapter->hw;
9d5c8243 948 u32 pat, val;
317f66bd 949 static const u32 _test[] =
9d5c8243
AK
950 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
951 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
2753f4ce
AD
952 wr32(reg, (_test[pat] & write));
953 val = rd32(reg);
9d5c8243
AK
954 if (val != (_test[pat] & write & mask)) {
955 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
956 "failed: got 0x%08X expected 0x%08X\n",
957 reg, val, (_test[pat] & write & mask));
958 *data = reg;
959 return 1;
960 }
961 }
317f66bd 962
9d5c8243
AK
963 return 0;
964}
965
966static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
967 int reg, u32 mask, u32 write)
968{
2753f4ce 969 struct e1000_hw *hw = &adapter->hw;
9d5c8243 970 u32 val;
2753f4ce
AD
971 wr32(reg, write & mask);
972 val = rd32(reg);
9d5c8243
AK
973 if ((write & mask) != (val & mask)) {
974 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
975 " got 0x%08X expected 0x%08X\n", reg,
976 (val & mask), (write & mask));
977 *data = reg;
978 return 1;
979 }
317f66bd 980
9d5c8243
AK
981 return 0;
982}
983
984#define REG_PATTERN_TEST(reg, mask, write) \
985 do { \
986 if (reg_pattern_test(adapter, data, reg, mask, write)) \
987 return 1; \
988 } while (0)
989
990#define REG_SET_AND_CHECK(reg, mask, write) \
991 do { \
992 if (reg_set_and_check(adapter, data, reg, mask, write)) \
993 return 1; \
994 } while (0)
995
996static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
997{
998 struct e1000_hw *hw = &adapter->hw;
999 struct igb_reg_test *test;
1000 u32 value, before, after;
1001 u32 i, toggle;
1002
2d064c06
AD
1003 switch (adapter->hw.mac.type) {
1004 case e1000_82576:
1005 test = reg_test_82576;
317f66bd 1006 toggle = 0x7FFFF3FF;
2d064c06
AD
1007 break;
1008 default:
1009 test = reg_test_82575;
317f66bd 1010 toggle = 0x7FFFF3FF;
2d064c06
AD
1011 break;
1012 }
9d5c8243
AK
1013
1014 /* Because the status register is such a special case,
1015 * we handle it separately from the rest of the register
1016 * tests. Some bits are read-only, some toggle, and some
1017 * are writable on newer MACs.
1018 */
1019 before = rd32(E1000_STATUS);
1020 value = (rd32(E1000_STATUS) & toggle);
1021 wr32(E1000_STATUS, toggle);
1022 after = rd32(E1000_STATUS) & toggle;
1023 if (value != after) {
1024 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1025 "got: 0x%08X expected: 0x%08X\n", after, value);
1026 *data = 1;
1027 return 1;
1028 }
1029 /* restore previous status */
1030 wr32(E1000_STATUS, before);
1031
1032 /* Perform the remainder of the register test, looping through
1033 * the test table until we either fail or reach the null entry.
1034 */
1035 while (test->reg) {
1036 for (i = 0; i < test->array_len; i++) {
1037 switch (test->test_type) {
1038 case PATTERN_TEST:
2753f4ce
AD
1039 REG_PATTERN_TEST(test->reg +
1040 (i * test->reg_offset),
9d5c8243
AK
1041 test->mask,
1042 test->write);
1043 break;
1044 case SET_READ_TEST:
2753f4ce
AD
1045 REG_SET_AND_CHECK(test->reg +
1046 (i * test->reg_offset),
9d5c8243
AK
1047 test->mask,
1048 test->write);
1049 break;
1050 case WRITE_NO_TEST:
1051 writel(test->write,
1052 (adapter->hw.hw_addr + test->reg)
2d064c06 1053 + (i * test->reg_offset));
9d5c8243
AK
1054 break;
1055 case TABLE32_TEST:
1056 REG_PATTERN_TEST(test->reg + (i * 4),
1057 test->mask,
1058 test->write);
1059 break;
1060 case TABLE64_TEST_LO:
1061 REG_PATTERN_TEST(test->reg + (i * 8),
1062 test->mask,
1063 test->write);
1064 break;
1065 case TABLE64_TEST_HI:
1066 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1067 test->mask,
1068 test->write);
1069 break;
1070 }
1071 }
1072 test++;
1073 }
1074
1075 *data = 0;
1076 return 0;
1077}
1078
1079static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1080{
1081 u16 temp;
1082 u16 checksum = 0;
1083 u16 i;
1084
1085 *data = 0;
1086 /* Read and add up the contents of the EEPROM */
1087 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
317f66bd 1088 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
9d5c8243
AK
1089 *data = 1;
1090 break;
1091 }
1092 checksum += temp;
1093 }
1094
1095 /* If Checksum is not Correct return error else test passed */
1096 if ((checksum != (u16) NVM_SUM) && !(*data))
1097 *data = 2;
1098
1099 return *data;
1100}
1101
1102static irqreturn_t igb_test_intr(int irq, void *data)
1103{
317f66bd 1104 struct igb_adapter *adapter = (struct igb_adapter *) data;
9d5c8243
AK
1105 struct e1000_hw *hw = &adapter->hw;
1106
1107 adapter->test_icr |= rd32(E1000_ICR);
1108
1109 return IRQ_HANDLED;
1110}
1111
1112static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1113{
1114 struct e1000_hw *hw = &adapter->hw;
1115 struct net_device *netdev = adapter->netdev;
2753f4ce 1116 u32 mask, ics_mask, i = 0, shared_int = true;
9d5c8243
AK
1117 u32 irq = adapter->pdev->irq;
1118
1119 *data = 0;
1120
1121 /* Hook up test interrupt handler just for this test */
4eefa8f0
AD
1122 if (adapter->msix_entries) {
1123 if (request_irq(adapter->msix_entries[0].vector,
1124 &igb_test_intr, 0, netdev->name, adapter)) {
1125 *data = 1;
1126 return -1;
1127 }
4eefa8f0 1128 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 1129 shared_int = false;
4eefa8f0
AD
1130 if (request_irq(irq,
1131 &igb_test_intr, 0, netdev->name, adapter)) {
9d5c8243
AK
1132 *data = 1;
1133 return -1;
1134 }
1135 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
4eefa8f0 1136 netdev->name, adapter)) {
9d5c8243
AK
1137 shared_int = false;
1138 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
4eefa8f0 1139 netdev->name, adapter)) {
9d5c8243
AK
1140 *data = 1;
1141 return -1;
1142 }
1143 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1144 (shared_int ? "shared" : "unshared"));
317f66bd 1145
9d5c8243 1146 /* Disable all the interrupts */
4eefa8f0 1147 wr32(E1000_IMC, ~0);
9d5c8243
AK
1148 msleep(10);
1149
2753f4ce 1150 /* Define all writable bits for ICS */
4eefa8f0 1151 switch (hw->mac.type) {
2753f4ce
AD
1152 case e1000_82575:
1153 ics_mask = 0x37F47EDD;
1154 break;
1155 case e1000_82576:
1156 ics_mask = 0x77D4FBFD;
1157 break;
1158 default:
1159 ics_mask = 0x7FFFFFFF;
1160 break;
1161 }
1162
9d5c8243 1163 /* Test each interrupt */
2753f4ce 1164 for (; i < 31; i++) {
9d5c8243
AK
1165 /* Interrupt to test */
1166 mask = 1 << i;
1167
2753f4ce
AD
1168 if (!(mask & ics_mask))
1169 continue;
1170
9d5c8243
AK
1171 if (!shared_int) {
1172 /* Disable the interrupt to be reported in
1173 * the cause register and then force the same
1174 * interrupt and see if one gets posted. If
1175 * an interrupt was posted to the bus, the
1176 * test failed.
1177 */
1178 adapter->test_icr = 0;
2753f4ce
AD
1179
1180 /* Flush any pending interrupts */
1181 wr32(E1000_ICR, ~0);
1182
1183 wr32(E1000_IMC, mask);
1184 wr32(E1000_ICS, mask);
9d5c8243
AK
1185 msleep(10);
1186
1187 if (adapter->test_icr & mask) {
1188 *data = 3;
1189 break;
1190 }
1191 }
1192
1193 /* Enable the interrupt to be reported in
1194 * the cause register and then force the same
1195 * interrupt and see if one gets posted. If
1196 * an interrupt was not posted to the bus, the
1197 * test failed.
1198 */
1199 adapter->test_icr = 0;
2753f4ce
AD
1200
1201 /* Flush any pending interrupts */
1202 wr32(E1000_ICR, ~0);
1203
9d5c8243
AK
1204 wr32(E1000_IMS, mask);
1205 wr32(E1000_ICS, mask);
1206 msleep(10);
1207
1208 if (!(adapter->test_icr & mask)) {
1209 *data = 4;
1210 break;
1211 }
1212
1213 if (!shared_int) {
1214 /* Disable the other interrupts to be reported in
1215 * the cause register and then force the other
1216 * interrupts and see if any get posted. If
1217 * an interrupt was posted to the bus, the
1218 * test failed.
1219 */
1220 adapter->test_icr = 0;
2753f4ce
AD
1221
1222 /* Flush any pending interrupts */
1223 wr32(E1000_ICR, ~0);
1224
1225 wr32(E1000_IMC, ~mask);
1226 wr32(E1000_ICS, ~mask);
9d5c8243
AK
1227 msleep(10);
1228
2753f4ce 1229 if (adapter->test_icr & mask) {
9d5c8243
AK
1230 *data = 5;
1231 break;
1232 }
1233 }
1234 }
1235
1236 /* Disable all the interrupts */
2753f4ce 1237 wr32(E1000_IMC, ~0);
9d5c8243
AK
1238 msleep(10);
1239
1240 /* Unhook test interrupt handler */
4eefa8f0
AD
1241 if (adapter->msix_entries)
1242 free_irq(adapter->msix_entries[0].vector, adapter);
1243 else
1244 free_irq(irq, adapter);
9d5c8243
AK
1245
1246 return *data;
1247}
1248
1249static void igb_free_desc_rings(struct igb_adapter *adapter)
1250{
d7ee5b3a
AD
1251 igb_free_tx_resources(&adapter->test_tx_ring);
1252 igb_free_rx_resources(&adapter->test_rx_ring);
9d5c8243
AK
1253}
1254
1255static int igb_setup_desc_rings(struct igb_adapter *adapter)
1256{
9d5c8243
AK
1257 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1258 struct igb_ring *rx_ring = &adapter->test_rx_ring;
d7ee5b3a 1259 struct e1000_hw *hw = &adapter->hw;
ad93d17e 1260 int ret_val;
9d5c8243
AK
1261
1262 /* Setup Tx descriptor ring and Tx buffers */
d7ee5b3a
AD
1263 tx_ring->count = IGB_DEFAULT_TXD;
1264 tx_ring->pdev = adapter->pdev;
1265 tx_ring->netdev = adapter->netdev;
1266 tx_ring->reg_idx = adapter->vfs_allocated_count;
9d5c8243 1267
d7ee5b3a 1268 if (igb_setup_tx_resources(tx_ring)) {
9d5c8243
AK
1269 ret_val = 1;
1270 goto err_nomem;
1271 }
1272
d7ee5b3a
AD
1273 igb_setup_tctl(adapter);
1274 igb_configure_tx_ring(adapter, tx_ring);
9d5c8243 1275
9d5c8243 1276 /* Setup Rx descriptor ring and Rx buffers */
d7ee5b3a
AD
1277 rx_ring->count = IGB_DEFAULT_RXD;
1278 rx_ring->pdev = adapter->pdev;
1279 rx_ring->netdev = adapter->netdev;
1280 rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1281 rx_ring->reg_idx = adapter->vfs_allocated_count;
1282
1283 if (igb_setup_rx_resources(rx_ring)) {
1284 ret_val = 3;
9d5c8243
AK
1285 goto err_nomem;
1286 }
9d5c8243 1287
d7ee5b3a
AD
1288 /* set the default queue to queue 0 of PF */
1289 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
9d5c8243 1290
d7ee5b3a
AD
1291 /* enable receive ring */
1292 igb_setup_rctl(adapter);
1293 igb_configure_rx_ring(adapter, rx_ring);
9d5c8243 1294
d7ee5b3a 1295 igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
9d5c8243
AK
1296
1297 return 0;
1298
1299err_nomem:
1300 igb_free_desc_rings(adapter);
1301 return ret_val;
1302}
1303
1304static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1305{
1306 struct e1000_hw *hw = &adapter->hw;
1307
1308 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
f5f4cf08
AD
1309 igb_write_phy_reg(hw, 29, 0x001F);
1310 igb_write_phy_reg(hw, 30, 0x8FFC);
1311 igb_write_phy_reg(hw, 29, 0x001A);
1312 igb_write_phy_reg(hw, 30, 0x8FF0);
9d5c8243
AK
1313}
1314
1315static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1316{
1317 struct e1000_hw *hw = &adapter->hw;
1318 u32 ctrl_reg = 0;
9d5c8243
AK
1319
1320 hw->mac.autoneg = false;
1321
1322 if (hw->phy.type == e1000_phy_m88) {
1323 /* Auto-MDI/MDIX Off */
f5f4cf08 1324 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
9d5c8243 1325 /* reset to update Auto-MDI/MDIX */
f5f4cf08 1326 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
9d5c8243 1327 /* autoneg off */
f5f4cf08 1328 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
9d5c8243
AK
1329 }
1330
1331 ctrl_reg = rd32(E1000_CTRL);
1332
1333 /* force 1000, set loopback */
f5f4cf08 1334 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
9d5c8243
AK
1335
1336 /* Now set up the MAC to the same speed/duplex as the PHY. */
1337 ctrl_reg = rd32(E1000_CTRL);
1338 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1339 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1340 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1341 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
cdfa9f64
AD
1342 E1000_CTRL_FD | /* Force Duplex to FULL */
1343 E1000_CTRL_SLU); /* Set link up enable bit */
9d5c8243 1344
cdfa9f64 1345 if (hw->phy.type == e1000_phy_m88)
9d5c8243 1346 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
9d5c8243
AK
1347
1348 wr32(E1000_CTRL, ctrl_reg);
1349
1350 /* Disable the receiver on the PHY so when a cable is plugged in, the
1351 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1352 */
1353 if (hw->phy.type == e1000_phy_m88)
1354 igb_phy_disable_receiver(adapter);
1355
1356 udelay(500);
1357
1358 return 0;
1359}
1360
1361static int igb_set_phy_loopback(struct igb_adapter *adapter)
1362{
1363 return igb_integrated_phy_loopback(adapter);
1364}
1365
1366static int igb_setup_loopback_test(struct igb_adapter *adapter)
1367{
1368 struct e1000_hw *hw = &adapter->hw;
2d064c06 1369 u32 reg;
9d5c8243 1370
317f66bd
AD
1371 reg = rd32(E1000_CTRL_EXT);
1372
1373 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1374 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
2d064c06
AD
1375 reg = rd32(E1000_RCTL);
1376 reg |= E1000_RCTL_LBM_TCVR;
1377 wr32(E1000_RCTL, reg);
1378
1379 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1380
1381 reg = rd32(E1000_CTRL);
1382 reg &= ~(E1000_CTRL_RFCE |
1383 E1000_CTRL_TFCE |
1384 E1000_CTRL_LRST);
1385 reg |= E1000_CTRL_SLU |
2753f4ce 1386 E1000_CTRL_FD;
2d064c06
AD
1387 wr32(E1000_CTRL, reg);
1388
1389 /* Unset switch control to serdes energy detect */
1390 reg = rd32(E1000_CONNSW);
1391 reg &= ~E1000_CONNSW_ENRGSRC;
1392 wr32(E1000_CONNSW, reg);
1393
1394 /* Set PCS register for forced speed */
1395 reg = rd32(E1000_PCS_LCTL);
1396 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1397 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1398 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1399 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1400 E1000_PCS_LCTL_FSD | /* Force Speed */
1401 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1402 wr32(E1000_PCS_LCTL, reg);
1403
9d5c8243 1404 return 0;
9d5c8243
AK
1405 }
1406
317f66bd 1407 return igb_set_phy_loopback(adapter);
9d5c8243
AK
1408}
1409
1410static void igb_loopback_cleanup(struct igb_adapter *adapter)
1411{
1412 struct e1000_hw *hw = &adapter->hw;
1413 u32 rctl;
1414 u16 phy_reg;
1415
1416 rctl = rd32(E1000_RCTL);
1417 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1418 wr32(E1000_RCTL, rctl);
1419
1420 hw->mac.autoneg = true;
f5f4cf08 1421 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
9d5c8243
AK
1422 if (phy_reg & MII_CR_LOOPBACK) {
1423 phy_reg &= ~MII_CR_LOOPBACK;
f5f4cf08 1424 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
9d5c8243
AK
1425 igb_phy_sw_reset(hw);
1426 }
1427}
1428
1429static void igb_create_lbtest_frame(struct sk_buff *skb,
1430 unsigned int frame_size)
1431{
1432 memset(skb->data, 0xFF, frame_size);
317f66bd
AD
1433 frame_size /= 2;
1434 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1435 memset(&skb->data[frame_size + 10], 0xBE, 1);
1436 memset(&skb->data[frame_size + 12], 0xAF, 1);
9d5c8243
AK
1437}
1438
1439static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1440{
317f66bd
AD
1441 frame_size /= 2;
1442 if (*(skb->data + 3) == 0xFF) {
1443 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1444 (*(skb->data + frame_size + 12) == 0xAF)) {
9d5c8243 1445 return 0;
317f66bd
AD
1446 }
1447 }
9d5c8243
AK
1448 return 13;
1449}
1450
ad93d17e
AD
1451static int igb_clean_test_rings(struct igb_ring *rx_ring,
1452 struct igb_ring *tx_ring,
1453 unsigned int size)
1454{
1455 union e1000_adv_rx_desc *rx_desc;
1456 struct igb_buffer *buffer_info;
1457 int rx_ntc, tx_ntc, count = 0;
1458 u32 staterr;
1459
1460 /* initialize next to clean and descriptor values */
1461 rx_ntc = rx_ring->next_to_clean;
1462 tx_ntc = tx_ring->next_to_clean;
1463 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1464 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1465
1466 while (staterr & E1000_RXD_STAT_DD) {
1467 /* check rx buffer */
1468 buffer_info = &rx_ring->buffer_info[rx_ntc];
1469
1470 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1471 pci_unmap_single(rx_ring->pdev,
1472 buffer_info->dma,
1473 rx_ring->rx_buffer_len,
1474 PCI_DMA_FROMDEVICE);
1475 buffer_info->dma = 0;
1476
1477 /* verify contents of skb */
1478 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1479 count++;
1480
1481 /* unmap buffer on tx side */
1482 buffer_info = &tx_ring->buffer_info[tx_ntc];
1483 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1484
1485 /* increment rx/tx next to clean counters */
1486 rx_ntc++;
1487 if (rx_ntc == rx_ring->count)
1488 rx_ntc = 0;
1489 tx_ntc++;
1490 if (tx_ntc == tx_ring->count)
1491 tx_ntc = 0;
1492
1493 /* fetch next descriptor */
1494 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1495 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1496 }
1497
1498 /* re-map buffers to ring, store next to clean values */
1499 igb_alloc_rx_buffers_adv(rx_ring, count);
1500 rx_ring->next_to_clean = rx_ntc;
1501 tx_ring->next_to_clean = tx_ntc;
1502
1503 return count;
1504}
1505
9d5c8243
AK
1506static int igb_run_loopback_test(struct igb_adapter *adapter)
1507{
9d5c8243
AK
1508 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1509 struct igb_ring *rx_ring = &adapter->test_rx_ring;
ad93d17e
AD
1510 int i, j, lc, good_cnt, ret_val = 0;
1511 unsigned int size = 1024;
1512 netdev_tx_t tx_ret_val;
1513 struct sk_buff *skb;
1514
1515 /* allocate test skb */
1516 skb = alloc_skb(size, GFP_KERNEL);
1517 if (!skb)
1518 return 11;
9d5c8243 1519
ad93d17e
AD
1520 /* place data into test skb */
1521 igb_create_lbtest_frame(skb, size);
1522 skb_put(skb, size);
9d5c8243 1523
317f66bd
AD
1524 /*
1525 * Calculate the loop count based on the largest descriptor ring
9d5c8243
AK
1526 * The idea is to wrap the largest ring a number of times using 64
1527 * send/receive pairs during each loop
1528 */
1529
1530 if (rx_ring->count <= tx_ring->count)
1531 lc = ((tx_ring->count / 64) * 2) + 1;
1532 else
1533 lc = ((rx_ring->count / 64) * 2) + 1;
1534
9d5c8243 1535 for (j = 0; j <= lc; j++) { /* loop count loop */
ad93d17e 1536 /* reset count of good packets */
9d5c8243 1537 good_cnt = 0;
ad93d17e
AD
1538
1539 /* place 64 packets on the transmit queue*/
1540 for (i = 0; i < 64; i++) {
1541 skb_get(skb);
1542 tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1543 if (tx_ret_val == NETDEV_TX_OK)
9d5c8243 1544 good_cnt++;
ad93d17e
AD
1545 }
1546
9d5c8243 1547 if (good_cnt != 64) {
ad93d17e 1548 ret_val = 12;
9d5c8243
AK
1549 break;
1550 }
ad93d17e
AD
1551
1552 /* allow 200 milliseconds for packets to go from tx to rx */
1553 msleep(200);
1554
1555 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1556 if (good_cnt != 64) {
1557 ret_val = 13;
9d5c8243
AK
1558 break;
1559 }
1560 } /* end loop count loop */
ad93d17e
AD
1561
1562 /* free the original skb */
1563 kfree_skb(skb);
1564
9d5c8243
AK
1565 return ret_val;
1566}
1567
1568static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1569{
1570 /* PHY loopback cannot be performed if SoL/IDER
1571 * sessions are active */
1572 if (igb_check_reset_block(&adapter->hw)) {
1573 dev_err(&adapter->pdev->dev,
1574 "Cannot do PHY loopback test "
1575 "when SoL/IDER is active.\n");
1576 *data = 0;
1577 goto out;
1578 }
1579 *data = igb_setup_desc_rings(adapter);
1580 if (*data)
1581 goto out;
1582 *data = igb_setup_loopback_test(adapter);
1583 if (*data)
1584 goto err_loopback;
1585 *data = igb_run_loopback_test(adapter);
1586 igb_loopback_cleanup(adapter);
1587
1588err_loopback:
1589 igb_free_desc_rings(adapter);
1590out:
1591 return *data;
1592}
1593
1594static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1595{
1596 struct e1000_hw *hw = &adapter->hw;
1597 *data = 0;
1598 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1599 int i = 0;
1600 hw->mac.serdes_has_link = false;
1601
1602 /* On some blade server designs, link establishment
1603 * could take as long as 2-3 minutes */
1604 do {
1605 hw->mac.ops.check_for_link(&adapter->hw);
1606 if (hw->mac.serdes_has_link)
1607 return *data;
1608 msleep(20);
1609 } while (i++ < 3750);
1610
1611 *data = 1;
1612 } else {
1613 hw->mac.ops.check_for_link(&adapter->hw);
1614 if (hw->mac.autoneg)
1615 msleep(4000);
1616
317f66bd 1617 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
9d5c8243
AK
1618 *data = 1;
1619 }
1620 return *data;
1621}
1622
1623static void igb_diag_test(struct net_device *netdev,
1624 struct ethtool_test *eth_test, u64 *data)
1625{
1626 struct igb_adapter *adapter = netdev_priv(netdev);
1627 u16 autoneg_advertised;
1628 u8 forced_speed_duplex, autoneg;
1629 bool if_running = netif_running(netdev);
1630
1631 set_bit(__IGB_TESTING, &adapter->state);
1632 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1633 /* Offline tests */
1634
1635 /* save speed, duplex, autoneg settings */
1636 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1637 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1638 autoneg = adapter->hw.mac.autoneg;
1639
1640 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1641
1642 /* Link test performed before hardware reset so autoneg doesn't
1643 * interfere with test result */
1644 if (igb_link_test(adapter, &data[4]))
1645 eth_test->flags |= ETH_TEST_FL_FAILED;
1646
1647 if (if_running)
1648 /* indicate we're in test mode */
1649 dev_close(netdev);
1650 else
1651 igb_reset(adapter);
1652
1653 if (igb_reg_test(adapter, &data[0]))
1654 eth_test->flags |= ETH_TEST_FL_FAILED;
1655
1656 igb_reset(adapter);
1657 if (igb_eeprom_test(adapter, &data[1]))
1658 eth_test->flags |= ETH_TEST_FL_FAILED;
1659
1660 igb_reset(adapter);
1661 if (igb_intr_test(adapter, &data[2]))
1662 eth_test->flags |= ETH_TEST_FL_FAILED;
1663
1664 igb_reset(adapter);
1665 if (igb_loopback_test(adapter, &data[3]))
1666 eth_test->flags |= ETH_TEST_FL_FAILED;
1667
1668 /* restore speed, duplex, autoneg settings */
1669 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1670 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1671 adapter->hw.mac.autoneg = autoneg;
1672
1673 /* force this routine to wait until autoneg complete/timeout */
1674 adapter->hw.phy.autoneg_wait_to_complete = true;
1675 igb_reset(adapter);
1676 adapter->hw.phy.autoneg_wait_to_complete = false;
1677
1678 clear_bit(__IGB_TESTING, &adapter->state);
1679 if (if_running)
1680 dev_open(netdev);
1681 } else {
1682 dev_info(&adapter->pdev->dev, "online testing starting\n");
1683 /* Online tests */
1684 if (igb_link_test(adapter, &data[4]))
1685 eth_test->flags |= ETH_TEST_FL_FAILED;
1686
1687 /* Online tests aren't run; pass by default */
1688 data[0] = 0;
1689 data[1] = 0;
1690 data[2] = 0;
1691 data[3] = 0;
1692
1693 clear_bit(__IGB_TESTING, &adapter->state);
1694 }
1695 msleep_interruptible(4 * 1000);
1696}
1697
1698static int igb_wol_exclusion(struct igb_adapter *adapter,
1699 struct ethtool_wolinfo *wol)
1700{
1701 struct e1000_hw *hw = &adapter->hw;
1702 int retval = 1; /* fail by default */
1703
1704 switch (hw->device_id) {
1705 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1706 /* WoL not supported */
1707 wol->supported = 0;
1708 break;
1709 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1710 case E1000_DEV_ID_82576_FIBER:
1711 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1712 /* Wake events not supported on port B */
1713 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1714 wol->supported = 0;
1715 break;
1716 }
7dfc16fa
AD
1717 /* return success for non excluded adapter ports */
1718 retval = 0;
1719 break;
c8ea5ea9
AD
1720 case E1000_DEV_ID_82576_QUAD_COPPER:
1721 /* quad port adapters only support WoL on port A */
1722 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1723 wol->supported = 0;
1724 break;
1725 }
1726 /* return success for non excluded adapter ports */
1727 retval = 0;
1728 break;
9d5c8243
AK
1729 default:
1730 /* dual port cards only support WoL on port A from now on
1731 * unless it was enabled in the eeprom for port B
1732 * so exclude FUNC_1 ports from having WoL enabled */
1733 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1734 !adapter->eeprom_wol) {
1735 wol->supported = 0;
1736 break;
1737 }
1738
1739 retval = 0;
1740 }
1741
1742 return retval;
1743}
1744
1745static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1746{
1747 struct igb_adapter *adapter = netdev_priv(netdev);
1748
1749 wol->supported = WAKE_UCAST | WAKE_MCAST |
1750 WAKE_BCAST | WAKE_MAGIC;
1751 wol->wolopts = 0;
1752
1753 /* this function will set ->supported = 0 and return 1 if wol is not
1754 * supported by this hardware */
e1b86d84
RW
1755 if (igb_wol_exclusion(adapter, wol) ||
1756 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1757 return;
1758
1759 /* apply any specific unsupported masks here */
1760 switch (adapter->hw.device_id) {
1761 default:
1762 break;
1763 }
1764
1765 if (adapter->wol & E1000_WUFC_EX)
1766 wol->wolopts |= WAKE_UCAST;
1767 if (adapter->wol & E1000_WUFC_MC)
1768 wol->wolopts |= WAKE_MCAST;
1769 if (adapter->wol & E1000_WUFC_BC)
1770 wol->wolopts |= WAKE_BCAST;
1771 if (adapter->wol & E1000_WUFC_MAG)
1772 wol->wolopts |= WAKE_MAGIC;
1773
1774 return;
1775}
1776
1777static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1778{
1779 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
1780
1781 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1782 return -EOPNOTSUPP;
1783
e1b86d84
RW
1784 if (igb_wol_exclusion(adapter, wol) ||
1785 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1786 return wol->wolopts ? -EOPNOTSUPP : 0;
1787
9d5c8243
AK
1788 /* these settings will always override what we currently have */
1789 adapter->wol = 0;
1790
1791 if (wol->wolopts & WAKE_UCAST)
1792 adapter->wol |= E1000_WUFC_EX;
1793 if (wol->wolopts & WAKE_MCAST)
1794 adapter->wol |= E1000_WUFC_MC;
1795 if (wol->wolopts & WAKE_BCAST)
1796 adapter->wol |= E1000_WUFC_BC;
1797 if (wol->wolopts & WAKE_MAGIC)
1798 adapter->wol |= E1000_WUFC_MAG;
e1b86d84
RW
1799 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1800
9d5c8243
AK
1801 return 0;
1802}
1803
9d5c8243
AK
1804/* bit defines for adapter->led_status */
1805#define IGB_LED_ON 0
1806
1807static int igb_phys_id(struct net_device *netdev, u32 data)
1808{
1809 struct igb_adapter *adapter = netdev_priv(netdev);
1810 struct e1000_hw *hw = &adapter->hw;
317f66bd 1811 unsigned long timeout;
9d5c8243 1812
317f66bd
AD
1813 timeout = data * 1000;
1814
1815 /*
1816 * msleep_interruptable only accepts unsigned int so we are limited
1817 * in how long a duration we can wait
1818 */
1819 if (!timeout || timeout > UINT_MAX)
1820 timeout = UINT_MAX;
9d5c8243
AK
1821
1822 igb_blink_led(hw);
317f66bd 1823 msleep_interruptible(timeout);
9d5c8243
AK
1824
1825 igb_led_off(hw);
1826 clear_bit(IGB_LED_ON, &adapter->led_status);
1827 igb_cleanup_led(hw);
1828
1829 return 0;
1830}
1831
1832static int igb_set_coalesce(struct net_device *netdev,
1833 struct ethtool_coalesce *ec)
1834{
1835 struct igb_adapter *adapter = netdev_priv(netdev);
6eb5a7f1 1836 int i;
9d5c8243
AK
1837
1838 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1839 ((ec->rx_coalesce_usecs > 3) &&
1840 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1841 (ec->rx_coalesce_usecs == 2))
1842 return -EINVAL;
1843
4fc82adf
AD
1844 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1845 ((ec->tx_coalesce_usecs > 3) &&
1846 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1847 (ec->tx_coalesce_usecs == 2))
1848 return -EINVAL;
1849
1850 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1851 return -EINVAL;
1852
9d5c8243 1853 /* convert to rate of irq's per second */
4fc82adf
AD
1854 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
1855 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
1856 else
1857 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
1858
1859 /* convert to rate of irq's per second */
1860 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
1861 adapter->tx_itr_setting = adapter->rx_itr_setting;
1862 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
1863 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
1864 else
1865 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
9d5c8243 1866
047e0030
AD
1867 for (i = 0; i < adapter->num_q_vectors; i++) {
1868 struct igb_q_vector *q_vector = adapter->q_vector[i];
4fc82adf
AD
1869 if (q_vector->rx_ring)
1870 q_vector->itr_val = adapter->rx_itr_setting;
1871 else
1872 q_vector->itr_val = adapter->tx_itr_setting;
1873 if (q_vector->itr_val && q_vector->itr_val <= 3)
1874 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1875 q_vector->set_itr = 1;
1876 }
9d5c8243
AK
1877
1878 return 0;
1879}
1880
1881static int igb_get_coalesce(struct net_device *netdev,
1882 struct ethtool_coalesce *ec)
1883{
1884 struct igb_adapter *adapter = netdev_priv(netdev);
1885
4fc82adf
AD
1886 if (adapter->rx_itr_setting <= 3)
1887 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
9d5c8243 1888 else
4fc82adf
AD
1889 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
1890
1891 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
1892 if (adapter->tx_itr_setting <= 3)
1893 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
1894 else
1895 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
1896 }
9d5c8243
AK
1897
1898 return 0;
1899}
1900
9d5c8243
AK
1901static int igb_nway_reset(struct net_device *netdev)
1902{
1903 struct igb_adapter *adapter = netdev_priv(netdev);
1904 if (netif_running(netdev))
1905 igb_reinit_locked(adapter);
1906 return 0;
1907}
1908
1909static int igb_get_sset_count(struct net_device *netdev, int sset)
1910{
1911 switch (sset) {
1912 case ETH_SS_STATS:
1913 return IGB_STATS_LEN;
1914 case ETH_SS_TEST:
1915 return IGB_TEST_LEN;
1916 default:
1917 return -ENOTSUPP;
1918 }
1919}
1920
1921static void igb_get_ethtool_stats(struct net_device *netdev,
1922 struct ethtool_stats *stats, u64 *data)
1923{
1924 struct igb_adapter *adapter = netdev_priv(netdev);
1925 u64 *queue_stat;
8c0ab70a
JDB
1926 int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1927 int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
9d5c8243
AK
1928 int j;
1929 int i;
231835e4 1930 char *p = NULL;
9d5c8243
AK
1931
1932 igb_update_stats(adapter);
317f66bd 1933
9d5c8243 1934 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
231835e4
AK
1935 switch (igb_gstrings_stats[i].type) {
1936 case NETDEV_STATS:
1937 p = (char *) netdev +
1938 igb_gstrings_stats[i].stat_offset;
1939 break;
1940 case IGB_STATS:
1941 p = (char *) adapter +
1942 igb_gstrings_stats[i].stat_offset;
1943 break;
1944 }
1945
9d5c8243
AK
1946 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1947 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1948 }
e21ed353
AD
1949 for (j = 0; j < adapter->num_tx_queues; j++) {
1950 int k;
1951 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
8c0ab70a 1952 for (k = 0; k < stat_count_tx; k++)
e21ed353
AD
1953 data[i + k] = queue_stat[k];
1954 i += k;
1955 }
9d5c8243
AK
1956 for (j = 0; j < adapter->num_rx_queues; j++) {
1957 int k;
1958 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
8c0ab70a 1959 for (k = 0; k < stat_count_rx; k++)
9d5c8243
AK
1960 data[i + k] = queue_stat[k];
1961 i += k;
1962 }
1963}
1964
1965static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1966{
1967 struct igb_adapter *adapter = netdev_priv(netdev);
1968 u8 *p = data;
1969 int i;
1970
1971 switch (stringset) {
1972 case ETH_SS_TEST:
1973 memcpy(data, *igb_gstrings_test,
1974 IGB_TEST_LEN*ETH_GSTRING_LEN);
1975 break;
1976 case ETH_SS_STATS:
1977 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1978 memcpy(p, igb_gstrings_stats[i].stat_string,
1979 ETH_GSTRING_LEN);
1980 p += ETH_GSTRING_LEN;
1981 }
1982 for (i = 0; i < adapter->num_tx_queues; i++) {
1983 sprintf(p, "tx_queue_%u_packets", i);
1984 p += ETH_GSTRING_LEN;
1985 sprintf(p, "tx_queue_%u_bytes", i);
1986 p += ETH_GSTRING_LEN;
04a5fcaa
AD
1987 sprintf(p, "tx_queue_%u_restart", i);
1988 p += ETH_GSTRING_LEN;
9d5c8243
AK
1989 }
1990 for (i = 0; i < adapter->num_rx_queues; i++) {
1991 sprintf(p, "rx_queue_%u_packets", i);
1992 p += ETH_GSTRING_LEN;
1993 sprintf(p, "rx_queue_%u_bytes", i);
1994 p += ETH_GSTRING_LEN;
8c0ab70a
JDB
1995 sprintf(p, "rx_queue_%u_drops", i);
1996 p += ETH_GSTRING_LEN;
04a5fcaa
AD
1997 sprintf(p, "rx_queue_%u_csum_err", i);
1998 p += ETH_GSTRING_LEN;
1999 sprintf(p, "rx_queue_%u_alloc_failed", i);
2000 p += ETH_GSTRING_LEN;
9d5c8243
AK
2001 }
2002/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2003 break;
2004 }
2005}
2006
0fc0b732 2007static const struct ethtool_ops igb_ethtool_ops = {
9d5c8243
AK
2008 .get_settings = igb_get_settings,
2009 .set_settings = igb_set_settings,
2010 .get_drvinfo = igb_get_drvinfo,
2011 .get_regs_len = igb_get_regs_len,
2012 .get_regs = igb_get_regs,
2013 .get_wol = igb_get_wol,
2014 .set_wol = igb_set_wol,
2015 .get_msglevel = igb_get_msglevel,
2016 .set_msglevel = igb_set_msglevel,
2017 .nway_reset = igb_nway_reset,
2018 .get_link = ethtool_op_get_link,
2019 .get_eeprom_len = igb_get_eeprom_len,
2020 .get_eeprom = igb_get_eeprom,
2021 .set_eeprom = igb_set_eeprom,
2022 .get_ringparam = igb_get_ringparam,
2023 .set_ringparam = igb_set_ringparam,
2024 .get_pauseparam = igb_get_pauseparam,
2025 .set_pauseparam = igb_set_pauseparam,
2026 .get_rx_csum = igb_get_rx_csum,
2027 .set_rx_csum = igb_set_rx_csum,
2028 .get_tx_csum = igb_get_tx_csum,
2029 .set_tx_csum = igb_set_tx_csum,
2030 .get_sg = ethtool_op_get_sg,
2031 .set_sg = ethtool_op_set_sg,
2032 .get_tso = ethtool_op_get_tso,
2033 .set_tso = igb_set_tso,
2034 .self_test = igb_diag_test,
2035 .get_strings = igb_get_strings,
2036 .phys_id = igb_phys_id,
2037 .get_sset_count = igb_get_sset_count,
2038 .get_ethtool_stats = igb_get_ethtool_stats,
2039 .get_coalesce = igb_get_coalesce,
2040 .set_coalesce = igb_set_coalesce,
2041};
2042
2043void igb_set_ethtool_ops(struct net_device *netdev)
2044{
2045 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2046}