]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_ethtool.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / drivers / net / igb / igb_ethtool.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
40struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44};
45
030ed68b 46#define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
9d5c8243
AK
47 offsetof(struct igb_adapter, m)
48static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
3ea73afa 67 { "rx_queue_drop_packet_count", IGB_STAT(net_stats.rx_fifo_errors) },
9d5c8243
AK
68 { "rx_missed_errors", IGB_STAT(stats.mpc) },
69 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
70 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
71 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
72 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
73 { "tx_window_errors", IGB_STAT(stats.latecol) },
74 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
75 { "tx_deferred_ok", IGB_STAT(stats.dc) },
76 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
77 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
78 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
79 { "tx_restart_queue", IGB_STAT(restart_queue) },
80 { "rx_long_length_errors", IGB_STAT(stats.roc) },
81 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
82 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
83 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
84 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
85 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
86 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
87 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
88 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
89 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
90 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
91 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
dda0e083 92 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
9d5c8243
AK
93 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", IGB_STAT(stats.mgptc) },
95 { "rx_smbus", IGB_STAT(stats.mgprc) },
96 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
97};
98
99#define IGB_QUEUE_STATS_LEN \
8c0ab70a
JDB
100 (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
101 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
102 ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
103 (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
9d5c8243
AK
104#define IGB_GLOBAL_STATS_LEN \
105 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
106#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
107static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
108 "Register test (offline)", "Eeprom test (offline)",
109 "Interrupt test (offline)", "Loopback test (offline)",
110 "Link test (on/offline)"
111};
112#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
113
114static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
115{
116 struct igb_adapter *adapter = netdev_priv(netdev);
117 struct e1000_hw *hw = &adapter->hw;
118
119 if (hw->phy.media_type == e1000_media_type_copper) {
120
121 ecmd->supported = (SUPPORTED_10baseT_Half |
122 SUPPORTED_10baseT_Full |
123 SUPPORTED_100baseT_Half |
124 SUPPORTED_100baseT_Full |
125 SUPPORTED_1000baseT_Full|
126 SUPPORTED_Autoneg |
127 SUPPORTED_TP);
128 ecmd->advertising = ADVERTISED_TP;
129
130 if (hw->mac.autoneg == 1) {
131 ecmd->advertising |= ADVERTISED_Autoneg;
132 /* the e1000 autoneg seems to match ethtool nicely */
133 ecmd->advertising |= hw->phy.autoneg_advertised;
134 }
135
136 ecmd->port = PORT_TP;
137 ecmd->phy_address = hw->phy.addr;
138 } else {
139 ecmd->supported = (SUPPORTED_1000baseT_Full |
140 SUPPORTED_FIBRE |
141 SUPPORTED_Autoneg);
142
143 ecmd->advertising = (ADVERTISED_1000baseT_Full |
144 ADVERTISED_FIBRE |
145 ADVERTISED_Autoneg);
146
147 ecmd->port = PORT_FIBRE;
148 }
149
150 ecmd->transceiver = XCVR_INTERNAL;
151
152 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
153
154 adapter->hw.mac.ops.get_speed_and_duplex(hw,
155 &adapter->link_speed,
156 &adapter->link_duplex);
157 ecmd->speed = adapter->link_speed;
158
159 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
160 * and HALF_DUPLEX != DUPLEX_HALF */
161
162 if (adapter->link_duplex == FULL_DUPLEX)
163 ecmd->duplex = DUPLEX_FULL;
164 else
165 ecmd->duplex = DUPLEX_HALF;
166 } else {
167 ecmd->speed = -1;
168 ecmd->duplex = -1;
169 }
170
171 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
172 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
173 return 0;
174}
175
176static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
177{
178 struct igb_adapter *adapter = netdev_priv(netdev);
179 struct e1000_hw *hw = &adapter->hw;
180
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex
182 * cannot be changed */
183 if (igb_check_reset_block(hw)) {
184 dev_err(&adapter->pdev->dev, "Cannot change link "
185 "characteristics when SoL/IDER is active.\n");
186 return -EINVAL;
187 }
188
189 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
190 msleep(1);
191
192 if (ecmd->autoneg == AUTONEG_ENABLE) {
193 hw->mac.autoneg = 1;
194 if (hw->phy.media_type == e1000_media_type_fiber)
195 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->phy.autoneg_advertised = ecmd->advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 ecmd->advertising = hw->phy.autoneg_advertised;
203 } else
204 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__IGB_RESETTING, &adapter->state);
206 return -EINVAL;
207 }
208
209 /* reset the link */
210
211 if (netif_running(adapter->netdev)) {
212 igb_down(adapter);
213 igb_up(adapter);
214 } else
215 igb_reset(adapter);
216
217 clear_bit(__IGB_RESETTING, &adapter->state);
218 return 0;
219}
220
221static void igb_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
223{
224 struct igb_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
226
227 pause->autoneg =
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
230 if (hw->fc.type == e1000_fc_rx_pause)
231 pause->rx_pause = 1;
232 else if (hw->fc.type == e1000_fc_tx_pause)
233 pause->tx_pause = 1;
234 else if (hw->fc.type == e1000_fc_full) {
235 pause->rx_pause = 1;
236 pause->tx_pause = 1;
237 }
238}
239
240static int igb_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
242{
243 struct igb_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
245 int retval = 0;
246
247 adapter->fc_autoneg = pause->autoneg;
248
249 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250 msleep(1);
251
252 if (pause->rx_pause && pause->tx_pause)
253 hw->fc.type = e1000_fc_full;
254 else if (pause->rx_pause && !pause->tx_pause)
255 hw->fc.type = e1000_fc_rx_pause;
256 else if (!pause->rx_pause && pause->tx_pause)
257 hw->fc.type = e1000_fc_tx_pause;
258 else if (!pause->rx_pause && !pause->tx_pause)
259 hw->fc.type = e1000_fc_none;
260
261 hw->fc.original_type = hw->fc.type;
262
263 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264 if (netif_running(adapter->netdev)) {
265 igb_down(adapter);
266 igb_up(adapter);
267 } else
268 igb_reset(adapter);
269 } else
270 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
271 igb_setup_link(hw) : igb_force_mac_fc(hw));
272
273 clear_bit(__IGB_RESETTING, &adapter->state);
274 return retval;
275}
276
277static u32 igb_get_rx_csum(struct net_device *netdev)
278{
279 struct igb_adapter *adapter = netdev_priv(netdev);
7beb0146 280 return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
9d5c8243
AK
281}
282
283static int igb_set_rx_csum(struct net_device *netdev, u32 data)
284{
285 struct igb_adapter *adapter = netdev_priv(netdev);
7beb0146
AD
286
287 if (data)
288 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
289 else
290 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
9d5c8243
AK
291
292 return 0;
293}
294
295static u32 igb_get_tx_csum(struct net_device *netdev)
296{
7d8eb29e 297 return (netdev->features & NETIF_F_IP_CSUM) != 0;
9d5c8243
AK
298}
299
300static int igb_set_tx_csum(struct net_device *netdev, u32 data)
301{
b9473560
JB
302 struct igb_adapter *adapter = netdev_priv(netdev);
303
304 if (data) {
7d8eb29e 305 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
b9473560
JB
306 if (adapter->hw.mac.type == e1000_82576)
307 netdev->features |= NETIF_F_SCTP_CSUM;
308 } else {
309 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
310 NETIF_F_SCTP_CSUM);
311 }
9d5c8243
AK
312
313 return 0;
314}
315
316static int igb_set_tso(struct net_device *netdev, u32 data)
317{
318 struct igb_adapter *adapter = netdev_priv(netdev);
319
7d8eb29e 320 if (data) {
9d5c8243 321 netdev->features |= NETIF_F_TSO;
9d5c8243 322 netdev->features |= NETIF_F_TSO6;
7d8eb29e
AD
323 } else {
324 netdev->features &= ~NETIF_F_TSO;
9d5c8243 325 netdev->features &= ~NETIF_F_TSO6;
7d8eb29e 326 }
9d5c8243
AK
327
328 dev_info(&adapter->pdev->dev, "TSO is %s\n",
329 data ? "Enabled" : "Disabled");
330 return 0;
331}
332
333static u32 igb_get_msglevel(struct net_device *netdev)
334{
335 struct igb_adapter *adapter = netdev_priv(netdev);
336 return adapter->msg_enable;
337}
338
339static void igb_set_msglevel(struct net_device *netdev, u32 data)
340{
341 struct igb_adapter *adapter = netdev_priv(netdev);
342 adapter->msg_enable = data;
343}
344
345static int igb_get_regs_len(struct net_device *netdev)
346{
347#define IGB_REGS_LEN 551
348 return IGB_REGS_LEN * sizeof(u32);
349}
350
351static void igb_get_regs(struct net_device *netdev,
352 struct ethtool_regs *regs, void *p)
353{
354 struct igb_adapter *adapter = netdev_priv(netdev);
355 struct e1000_hw *hw = &adapter->hw;
356 u32 *regs_buff = p;
357 u8 i;
358
359 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
360
361 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
362
363 /* General Registers */
364 regs_buff[0] = rd32(E1000_CTRL);
365 regs_buff[1] = rd32(E1000_STATUS);
366 regs_buff[2] = rd32(E1000_CTRL_EXT);
367 regs_buff[3] = rd32(E1000_MDIC);
368 regs_buff[4] = rd32(E1000_SCTL);
369 regs_buff[5] = rd32(E1000_CONNSW);
370 regs_buff[6] = rd32(E1000_VET);
371 regs_buff[7] = rd32(E1000_LEDCTL);
372 regs_buff[8] = rd32(E1000_PBA);
373 regs_buff[9] = rd32(E1000_PBS);
374 regs_buff[10] = rd32(E1000_FRTIMER);
375 regs_buff[11] = rd32(E1000_TCPTIMER);
376
377 /* NVM Register */
378 regs_buff[12] = rd32(E1000_EECD);
379
380 /* Interrupt */
fe59de38
AD
381 /* Reading EICS for EICR because they read the
382 * same but EICS does not clear on read */
383 regs_buff[13] = rd32(E1000_EICS);
9d5c8243
AK
384 regs_buff[14] = rd32(E1000_EICS);
385 regs_buff[15] = rd32(E1000_EIMS);
386 regs_buff[16] = rd32(E1000_EIMC);
387 regs_buff[17] = rd32(E1000_EIAC);
388 regs_buff[18] = rd32(E1000_EIAM);
fe59de38
AD
389 /* Reading ICS for ICR because they read the
390 * same but ICS does not clear on read */
391 regs_buff[19] = rd32(E1000_ICS);
9d5c8243
AK
392 regs_buff[20] = rd32(E1000_ICS);
393 regs_buff[21] = rd32(E1000_IMS);
394 regs_buff[22] = rd32(E1000_IMC);
395 regs_buff[23] = rd32(E1000_IAC);
396 regs_buff[24] = rd32(E1000_IAM);
397 regs_buff[25] = rd32(E1000_IMIRVP);
398
399 /* Flow Control */
400 regs_buff[26] = rd32(E1000_FCAL);
401 regs_buff[27] = rd32(E1000_FCAH);
402 regs_buff[28] = rd32(E1000_FCTTV);
403 regs_buff[29] = rd32(E1000_FCRTL);
404 regs_buff[30] = rd32(E1000_FCRTH);
405 regs_buff[31] = rd32(E1000_FCRTV);
406
407 /* Receive */
408 regs_buff[32] = rd32(E1000_RCTL);
409 regs_buff[33] = rd32(E1000_RXCSUM);
410 regs_buff[34] = rd32(E1000_RLPML);
411 regs_buff[35] = rd32(E1000_RFCTL);
412 regs_buff[36] = rd32(E1000_MRQC);
e1739522 413 regs_buff[37] = rd32(E1000_VT_CTL);
9d5c8243
AK
414
415 /* Transmit */
416 regs_buff[38] = rd32(E1000_TCTL);
417 regs_buff[39] = rd32(E1000_TCTL_EXT);
418 regs_buff[40] = rd32(E1000_TIPG);
419 regs_buff[41] = rd32(E1000_DTXCTL);
420
421 /* Wake Up */
422 regs_buff[42] = rd32(E1000_WUC);
423 regs_buff[43] = rd32(E1000_WUFC);
424 regs_buff[44] = rd32(E1000_WUS);
425 regs_buff[45] = rd32(E1000_IPAV);
426 regs_buff[46] = rd32(E1000_WUPL);
427
428 /* MAC */
429 regs_buff[47] = rd32(E1000_PCS_CFG0);
430 regs_buff[48] = rd32(E1000_PCS_LCTL);
431 regs_buff[49] = rd32(E1000_PCS_LSTAT);
432 regs_buff[50] = rd32(E1000_PCS_ANADV);
433 regs_buff[51] = rd32(E1000_PCS_LPAB);
434 regs_buff[52] = rd32(E1000_PCS_NPTX);
435 regs_buff[53] = rd32(E1000_PCS_LPABNP);
436
437 /* Statistics */
438 regs_buff[54] = adapter->stats.crcerrs;
439 regs_buff[55] = adapter->stats.algnerrc;
440 regs_buff[56] = adapter->stats.symerrs;
441 regs_buff[57] = adapter->stats.rxerrc;
442 regs_buff[58] = adapter->stats.mpc;
443 regs_buff[59] = adapter->stats.scc;
444 regs_buff[60] = adapter->stats.ecol;
445 regs_buff[61] = adapter->stats.mcc;
446 regs_buff[62] = adapter->stats.latecol;
447 regs_buff[63] = adapter->stats.colc;
448 regs_buff[64] = adapter->stats.dc;
449 regs_buff[65] = adapter->stats.tncrs;
450 regs_buff[66] = adapter->stats.sec;
451 regs_buff[67] = adapter->stats.htdpmc;
452 regs_buff[68] = adapter->stats.rlec;
453 regs_buff[69] = adapter->stats.xonrxc;
454 regs_buff[70] = adapter->stats.xontxc;
455 regs_buff[71] = adapter->stats.xoffrxc;
456 regs_buff[72] = adapter->stats.xofftxc;
457 regs_buff[73] = adapter->stats.fcruc;
458 regs_buff[74] = adapter->stats.prc64;
459 regs_buff[75] = adapter->stats.prc127;
460 regs_buff[76] = adapter->stats.prc255;
461 regs_buff[77] = adapter->stats.prc511;
462 regs_buff[78] = adapter->stats.prc1023;
463 regs_buff[79] = adapter->stats.prc1522;
464 regs_buff[80] = adapter->stats.gprc;
465 regs_buff[81] = adapter->stats.bprc;
466 regs_buff[82] = adapter->stats.mprc;
467 regs_buff[83] = adapter->stats.gptc;
468 regs_buff[84] = adapter->stats.gorc;
469 regs_buff[86] = adapter->stats.gotc;
470 regs_buff[88] = adapter->stats.rnbc;
471 regs_buff[89] = adapter->stats.ruc;
472 regs_buff[90] = adapter->stats.rfc;
473 regs_buff[91] = adapter->stats.roc;
474 regs_buff[92] = adapter->stats.rjc;
475 regs_buff[93] = adapter->stats.mgprc;
476 regs_buff[94] = adapter->stats.mgpdc;
477 regs_buff[95] = adapter->stats.mgptc;
478 regs_buff[96] = adapter->stats.tor;
479 regs_buff[98] = adapter->stats.tot;
480 regs_buff[100] = adapter->stats.tpr;
481 regs_buff[101] = adapter->stats.tpt;
482 regs_buff[102] = adapter->stats.ptc64;
483 regs_buff[103] = adapter->stats.ptc127;
484 regs_buff[104] = adapter->stats.ptc255;
485 regs_buff[105] = adapter->stats.ptc511;
486 regs_buff[106] = adapter->stats.ptc1023;
487 regs_buff[107] = adapter->stats.ptc1522;
488 regs_buff[108] = adapter->stats.mptc;
489 regs_buff[109] = adapter->stats.bptc;
490 regs_buff[110] = adapter->stats.tsctc;
491 regs_buff[111] = adapter->stats.iac;
492 regs_buff[112] = adapter->stats.rpthc;
493 regs_buff[113] = adapter->stats.hgptc;
494 regs_buff[114] = adapter->stats.hgorc;
495 regs_buff[116] = adapter->stats.hgotc;
496 regs_buff[118] = adapter->stats.lenerrs;
497 regs_buff[119] = adapter->stats.scvpc;
498 regs_buff[120] = adapter->stats.hrmpc;
499
500 /* These should probably be added to e1000_regs.h instead */
501 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
9d5c8243
AK
502 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
503 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
504 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
505 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
506 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
507 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
508
509 for (i = 0; i < 4; i++)
510 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
513 for (i = 0; i < 4; i++)
514 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
515 for (i = 0; i < 4; i++)
516 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
517 for (i = 0; i < 4; i++)
518 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
519 for (i = 0; i < 4; i++)
520 regs_buff[141 + i] = rd32(E1000_RDH(i));
521 for (i = 0; i < 4; i++)
522 regs_buff[145 + i] = rd32(E1000_RDT(i));
523 for (i = 0; i < 4; i++)
524 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
525
526 for (i = 0; i < 10; i++)
527 regs_buff[153 + i] = rd32(E1000_EITR(i));
528 for (i = 0; i < 8; i++)
529 regs_buff[163 + i] = rd32(E1000_IMIR(i));
530 for (i = 0; i < 8; i++)
531 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
532 for (i = 0; i < 16; i++)
533 regs_buff[179 + i] = rd32(E1000_RAL(i));
534 for (i = 0; i < 16; i++)
535 regs_buff[195 + i] = rd32(E1000_RAH(i));
536
537 for (i = 0; i < 4; i++)
538 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
543 for (i = 0; i < 4; i++)
544 regs_buff[223 + i] = rd32(E1000_TDH(i));
545 for (i = 0; i < 4; i++)
546 regs_buff[227 + i] = rd32(E1000_TDT(i));
547 for (i = 0; i < 4; i++)
548 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
549 for (i = 0; i < 4; i++)
550 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
551 for (i = 0; i < 4; i++)
552 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
555
556 for (i = 0; i < 4; i++)
557 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
558 for (i = 0; i < 4; i++)
559 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
560 for (i = 0; i < 32; i++)
561 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
562 for (i = 0; i < 128; i++)
563 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
564 for (i = 0; i < 128; i++)
565 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
566 for (i = 0; i < 4; i++)
567 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
568
569 regs_buff[547] = rd32(E1000_TDFH);
570 regs_buff[548] = rd32(E1000_TDFT);
571 regs_buff[549] = rd32(E1000_TDFHS);
572 regs_buff[550] = rd32(E1000_TDFPC);
573
574}
575
576static int igb_get_eeprom_len(struct net_device *netdev)
577{
578 struct igb_adapter *adapter = netdev_priv(netdev);
579 return adapter->hw.nvm.word_size * 2;
580}
581
582static int igb_get_eeprom(struct net_device *netdev,
583 struct ethtool_eeprom *eeprom, u8 *bytes)
584{
585 struct igb_adapter *adapter = netdev_priv(netdev);
586 struct e1000_hw *hw = &adapter->hw;
587 u16 *eeprom_buff;
588 int first_word, last_word;
589 int ret_val = 0;
590 u16 i;
591
592 if (eeprom->len == 0)
593 return -EINVAL;
594
595 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
596
597 first_word = eeprom->offset >> 1;
598 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
599
600 eeprom_buff = kmalloc(sizeof(u16) *
601 (last_word - first_word + 1), GFP_KERNEL);
602 if (!eeprom_buff)
603 return -ENOMEM;
604
605 if (hw->nvm.type == e1000_nvm_eeprom_spi)
312c75ae 606 ret_val = hw->nvm.ops.read(hw, first_word,
9d5c8243
AK
607 last_word - first_word + 1,
608 eeprom_buff);
609 else {
610 for (i = 0; i < last_word - first_word + 1; i++) {
312c75ae 611 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
9d5c8243
AK
612 &eeprom_buff[i]);
613 if (ret_val)
614 break;
615 }
616 }
617
618 /* Device's eeprom is always little-endian, word addressable */
619 for (i = 0; i < last_word - first_word + 1; i++)
620 le16_to_cpus(&eeprom_buff[i]);
621
622 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
623 eeprom->len);
624 kfree(eeprom_buff);
625
626 return ret_val;
627}
628
629static int igb_set_eeprom(struct net_device *netdev,
630 struct ethtool_eeprom *eeprom, u8 *bytes)
631{
632 struct igb_adapter *adapter = netdev_priv(netdev);
633 struct e1000_hw *hw = &adapter->hw;
634 u16 *eeprom_buff;
635 void *ptr;
636 int max_len, first_word, last_word, ret_val = 0;
637 u16 i;
638
639 if (eeprom->len == 0)
640 return -EOPNOTSUPP;
641
642 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
643 return -EFAULT;
644
645 max_len = hw->nvm.word_size * 2;
646
647 first_word = eeprom->offset >> 1;
648 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
649 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
650 if (!eeprom_buff)
651 return -ENOMEM;
652
653 ptr = (void *)eeprom_buff;
654
655 if (eeprom->offset & 1) {
656 /* need read/modify/write of first changed EEPROM word */
657 /* only the second byte of the word is being modified */
312c75ae 658 ret_val = hw->nvm.ops.read(hw, first_word, 1,
9d5c8243
AK
659 &eeprom_buff[0]);
660 ptr++;
661 }
662 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
663 /* need read/modify/write of last changed EEPROM word */
664 /* only the first byte of the word is being modified */
312c75ae 665 ret_val = hw->nvm.ops.read(hw, last_word, 1,
9d5c8243
AK
666 &eeprom_buff[last_word - first_word]);
667 }
668
669 /* Device's eeprom is always little-endian, word addressable */
670 for (i = 0; i < last_word - first_word + 1; i++)
671 le16_to_cpus(&eeprom_buff[i]);
672
673 memcpy(ptr, bytes, eeprom->len);
674
675 for (i = 0; i < last_word - first_word + 1; i++)
676 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
677
312c75ae 678 ret_val = hw->nvm.ops.write(hw, first_word,
9d5c8243
AK
679 last_word - first_word + 1, eeprom_buff);
680
681 /* Update the checksum over the first part of the EEPROM if needed
682 * and flush shadow RAM for 82573 controllers */
683 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
684 igb_update_nvm_checksum(hw);
685
686 kfree(eeprom_buff);
687 return ret_val;
688}
689
690static void igb_get_drvinfo(struct net_device *netdev,
691 struct ethtool_drvinfo *drvinfo)
692{
693 struct igb_adapter *adapter = netdev_priv(netdev);
694 char firmware_version[32];
695 u16 eeprom_data;
696
697 strncpy(drvinfo->driver, igb_driver_name, 32);
698 strncpy(drvinfo->version, igb_driver_version, 32);
699
700 /* EEPROM image version # is reported as firmware version # for
701 * 82575 controllers */
312c75ae 702 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
9d5c8243
AK
703 sprintf(firmware_version, "%d.%d-%d",
704 (eeprom_data & 0xF000) >> 12,
705 (eeprom_data & 0x0FF0) >> 4,
706 eeprom_data & 0x000F);
707
708 strncpy(drvinfo->fw_version, firmware_version, 32);
709 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
710 drvinfo->n_stats = IGB_STATS_LEN;
711 drvinfo->testinfo_len = IGB_TEST_LEN;
712 drvinfo->regdump_len = igb_get_regs_len(netdev);
713 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
714}
715
716static void igb_get_ringparam(struct net_device *netdev,
717 struct ethtool_ringparam *ring)
718{
719 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
720
721 ring->rx_max_pending = IGB_MAX_RXD;
722 ring->tx_max_pending = IGB_MAX_TXD;
723 ring->rx_mini_max_pending = 0;
724 ring->rx_jumbo_max_pending = 0;
68fd9910
AD
725 ring->rx_pending = adapter->rx_ring_count;
726 ring->tx_pending = adapter->tx_ring_count;
9d5c8243
AK
727 ring->rx_mini_pending = 0;
728 ring->rx_jumbo_pending = 0;
729}
730
731static int igb_set_ringparam(struct net_device *netdev,
732 struct ethtool_ringparam *ring)
733{
734 struct igb_adapter *adapter = netdev_priv(netdev);
68fd9910 735 struct igb_ring *temp_ring;
9d5c8243 736 int i, err;
68fd9910 737 u32 new_rx_count, new_tx_count;
9d5c8243
AK
738
739 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
740 return -EINVAL;
741
742 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
743 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
744 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
745
746 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
747 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
748 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
749
68fd9910
AD
750 if ((new_tx_count == adapter->tx_ring_count) &&
751 (new_rx_count == adapter->rx_ring_count)) {
9d5c8243
AK
752 /* nothing to do */
753 return 0;
754 }
755
68fd9910
AD
756 if (adapter->num_tx_queues > adapter->num_rx_queues)
757 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
758 else
759 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
760 if (!temp_ring)
761 return -ENOMEM;
762
9d5c8243
AK
763 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
764 msleep(1);
765
766 if (netif_running(adapter->netdev))
767 igb_down(adapter);
768
769 /*
770 * We can't just free everything and then setup again,
771 * because the ISRs in MSI-X mode get passed pointers
772 * to the tx and rx ring structs.
773 */
68fd9910
AD
774 if (new_tx_count != adapter->tx_ring_count) {
775 memcpy(temp_ring, adapter->tx_ring,
776 adapter->num_tx_queues * sizeof(struct igb_ring));
777
9d5c8243 778 for (i = 0; i < adapter->num_tx_queues; i++) {
68fd9910
AD
779 temp_ring[i].count = new_tx_count;
780 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
9d5c8243 781 if (err) {
68fd9910
AD
782 while (i) {
783 i--;
784 igb_free_tx_resources(&temp_ring[i]);
785 }
9d5c8243
AK
786 goto err_setup;
787 }
9d5c8243 788 }
68fd9910
AD
789
790 for (i = 0; i < adapter->num_tx_queues; i++)
791 igb_free_tx_resources(&adapter->tx_ring[i]);
792
793 memcpy(adapter->tx_ring, temp_ring,
794 adapter->num_tx_queues * sizeof(struct igb_ring));
795
796 adapter->tx_ring_count = new_tx_count;
9d5c8243
AK
797 }
798
799 if (new_rx_count != adapter->rx_ring->count) {
68fd9910
AD
800 memcpy(temp_ring, adapter->rx_ring,
801 adapter->num_rx_queues * sizeof(struct igb_ring));
9d5c8243 802
68fd9910
AD
803 for (i = 0; i < adapter->num_rx_queues; i++) {
804 temp_ring[i].count = new_rx_count;
805 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
9d5c8243 806 if (err) {
68fd9910
AD
807 while (i) {
808 i--;
809 igb_free_rx_resources(&temp_ring[i]);
810 }
9d5c8243
AK
811 goto err_setup;
812 }
813
9d5c8243 814 }
68fd9910
AD
815
816 for (i = 0; i < adapter->num_rx_queues; i++)
817 igb_free_rx_resources(&adapter->rx_ring[i]);
818
819 memcpy(adapter->rx_ring, temp_ring,
820 adapter->num_rx_queues * sizeof(struct igb_ring));
821
822 adapter->rx_ring_count = new_rx_count;
9d5c8243
AK
823 }
824
825 err = 0;
826err_setup:
827 if (netif_running(adapter->netdev))
828 igb_up(adapter);
829
830 clear_bit(__IGB_RESETTING, &adapter->state);
68fd9910 831 vfree(temp_ring);
9d5c8243
AK
832 return err;
833}
834
835/* ethtool register test data */
836struct igb_reg_test {
837 u16 reg;
2d064c06
AD
838 u16 reg_offset;
839 u16 array_len;
840 u16 test_type;
9d5c8243
AK
841 u32 mask;
842 u32 write;
843};
844
845/* In the hardware, registers are laid out either singly, in arrays
846 * spaced 0x100 bytes apart, or in contiguous tables. We assume
847 * most tests take place on arrays or single registers (handled
848 * as a single-element array) and special-case the tables.
849 * Table tests are always pattern tests.
850 *
851 * We also make provision for some required setup steps by specifying
852 * registers to be written without any read-back testing.
853 */
854
855#define PATTERN_TEST 1
856#define SET_READ_TEST 2
857#define WRITE_NO_TEST 3
858#define TABLE32_TEST 4
859#define TABLE64_TEST_LO 5
860#define TABLE64_TEST_HI 6
861
2d064c06
AD
862/* 82576 reg test */
863static struct igb_reg_test reg_test_82576[] = {
864 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
866 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
867 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
868 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
869 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
870 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
871 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
872 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
873 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
874 /* Enable all RX queues before testing. */
875 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
876 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
2d064c06
AD
877 /* RDH is read-only for 82576, only test RDT. */
878 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2753f4ce 879 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2d064c06 880 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
2753f4ce 881 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
2d064c06
AD
882 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
883 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
884 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
885 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
886 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
887 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
888 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
889 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2d064c06
AD
891 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
892 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
893 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
894 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
895 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
896 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
897 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
898 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
899 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900 { 0, 0, 0, 0 }
901};
902
903/* 82575 register test */
9d5c8243 904static struct igb_reg_test reg_test_82575[] = {
2d064c06
AD
905 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
906 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
907 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
908 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
910 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
9d5c8243 912 /* Enable all four RX queues before testing. */
2d064c06 913 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
9d5c8243 914 /* RDH is read-only for 82575, only test RDT. */
2d064c06
AD
915 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
916 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
917 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
918 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
919 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
920 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
921 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
922 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
923 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
924 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
925 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
926 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
927 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
928 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
929 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
930 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
9d5c8243
AK
931 { 0, 0, 0, 0 }
932};
933
934static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
935 int reg, u32 mask, u32 write)
936{
2753f4ce 937 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
938 u32 pat, val;
939 u32 _test[] =
940 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
941 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
2753f4ce
AD
942 wr32(reg, (_test[pat] & write));
943 val = rd32(reg);
9d5c8243
AK
944 if (val != (_test[pat] & write & mask)) {
945 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
946 "failed: got 0x%08X expected 0x%08X\n",
947 reg, val, (_test[pat] & write & mask));
948 *data = reg;
949 return 1;
950 }
951 }
952 return 0;
953}
954
955static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
956 int reg, u32 mask, u32 write)
957{
2753f4ce 958 struct e1000_hw *hw = &adapter->hw;
9d5c8243 959 u32 val;
2753f4ce
AD
960 wr32(reg, write & mask);
961 val = rd32(reg);
9d5c8243
AK
962 if ((write & mask) != (val & mask)) {
963 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
964 " got 0x%08X expected 0x%08X\n", reg,
965 (val & mask), (write & mask));
966 *data = reg;
967 return 1;
968 }
969 return 0;
970}
971
972#define REG_PATTERN_TEST(reg, mask, write) \
973 do { \
974 if (reg_pattern_test(adapter, data, reg, mask, write)) \
975 return 1; \
976 } while (0)
977
978#define REG_SET_AND_CHECK(reg, mask, write) \
979 do { \
980 if (reg_set_and_check(adapter, data, reg, mask, write)) \
981 return 1; \
982 } while (0)
983
984static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
985{
986 struct e1000_hw *hw = &adapter->hw;
987 struct igb_reg_test *test;
988 u32 value, before, after;
989 u32 i, toggle;
990
991 toggle = 0x7FFFF3FF;
2d064c06
AD
992
993 switch (adapter->hw.mac.type) {
994 case e1000_82576:
995 test = reg_test_82576;
996 break;
997 default:
998 test = reg_test_82575;
999 break;
1000 }
9d5c8243
AK
1001
1002 /* Because the status register is such a special case,
1003 * we handle it separately from the rest of the register
1004 * tests. Some bits are read-only, some toggle, and some
1005 * are writable on newer MACs.
1006 */
1007 before = rd32(E1000_STATUS);
1008 value = (rd32(E1000_STATUS) & toggle);
1009 wr32(E1000_STATUS, toggle);
1010 after = rd32(E1000_STATUS) & toggle;
1011 if (value != after) {
1012 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1013 "got: 0x%08X expected: 0x%08X\n", after, value);
1014 *data = 1;
1015 return 1;
1016 }
1017 /* restore previous status */
1018 wr32(E1000_STATUS, before);
1019
1020 /* Perform the remainder of the register test, looping through
1021 * the test table until we either fail or reach the null entry.
1022 */
1023 while (test->reg) {
1024 for (i = 0; i < test->array_len; i++) {
1025 switch (test->test_type) {
1026 case PATTERN_TEST:
2753f4ce
AD
1027 REG_PATTERN_TEST(test->reg +
1028 (i * test->reg_offset),
9d5c8243
AK
1029 test->mask,
1030 test->write);
1031 break;
1032 case SET_READ_TEST:
2753f4ce
AD
1033 REG_SET_AND_CHECK(test->reg +
1034 (i * test->reg_offset),
9d5c8243
AK
1035 test->mask,
1036 test->write);
1037 break;
1038 case WRITE_NO_TEST:
1039 writel(test->write,
1040 (adapter->hw.hw_addr + test->reg)
2d064c06 1041 + (i * test->reg_offset));
9d5c8243
AK
1042 break;
1043 case TABLE32_TEST:
1044 REG_PATTERN_TEST(test->reg + (i * 4),
1045 test->mask,
1046 test->write);
1047 break;
1048 case TABLE64_TEST_LO:
1049 REG_PATTERN_TEST(test->reg + (i * 8),
1050 test->mask,
1051 test->write);
1052 break;
1053 case TABLE64_TEST_HI:
1054 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1055 test->mask,
1056 test->write);
1057 break;
1058 }
1059 }
1060 test++;
1061 }
1062
1063 *data = 0;
1064 return 0;
1065}
1066
1067static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1068{
1069 u16 temp;
1070 u16 checksum = 0;
1071 u16 i;
1072
1073 *data = 0;
1074 /* Read and add up the contents of the EEPROM */
1075 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
312c75ae 1076 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
9d5c8243
AK
1077 < 0) {
1078 *data = 1;
1079 break;
1080 }
1081 checksum += temp;
1082 }
1083
1084 /* If Checksum is not Correct return error else test passed */
1085 if ((checksum != (u16) NVM_SUM) && !(*data))
1086 *data = 2;
1087
1088 return *data;
1089}
1090
1091static irqreturn_t igb_test_intr(int irq, void *data)
1092{
1093 struct net_device *netdev = (struct net_device *) data;
1094 struct igb_adapter *adapter = netdev_priv(netdev);
1095 struct e1000_hw *hw = &adapter->hw;
1096
1097 adapter->test_icr |= rd32(E1000_ICR);
1098
1099 return IRQ_HANDLED;
1100}
1101
1102static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1103{
1104 struct e1000_hw *hw = &adapter->hw;
1105 struct net_device *netdev = adapter->netdev;
2753f4ce 1106 u32 mask, ics_mask, i = 0, shared_int = true;
9d5c8243
AK
1107 u32 irq = adapter->pdev->irq;
1108
1109 *data = 0;
1110
1111 /* Hook up test interrupt handler just for this test */
2753f4ce 1112 if (adapter->msix_entries)
9d5c8243
AK
1113 /* NOTE: we don't test MSI-X interrupts here, yet */
1114 return 0;
2753f4ce
AD
1115
1116 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
1117 shared_int = false;
1118 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1119 *data = 1;
1120 return -1;
1121 }
1122 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1123 netdev->name, netdev)) {
1124 shared_int = false;
1125 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1126 netdev->name, netdev)) {
1127 *data = 1;
1128 return -1;
1129 }
1130 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1131 (shared_int ? "shared" : "unshared"));
9d5c8243
AK
1132 /* Disable all the interrupts */
1133 wr32(E1000_IMC, 0xFFFFFFFF);
1134 msleep(10);
1135
2753f4ce
AD
1136 /* Define all writable bits for ICS */
1137 switch(hw->mac.type) {
1138 case e1000_82575:
1139 ics_mask = 0x37F47EDD;
1140 break;
1141 case e1000_82576:
1142 ics_mask = 0x77D4FBFD;
1143 break;
1144 default:
1145 ics_mask = 0x7FFFFFFF;
1146 break;
1147 }
1148
9d5c8243 1149 /* Test each interrupt */
2753f4ce 1150 for (; i < 31; i++) {
9d5c8243
AK
1151 /* Interrupt to test */
1152 mask = 1 << i;
1153
2753f4ce
AD
1154 if (!(mask & ics_mask))
1155 continue;
1156
9d5c8243
AK
1157 if (!shared_int) {
1158 /* Disable the interrupt to be reported in
1159 * the cause register and then force the same
1160 * interrupt and see if one gets posted. If
1161 * an interrupt was posted to the bus, the
1162 * test failed.
1163 */
1164 adapter->test_icr = 0;
2753f4ce
AD
1165
1166 /* Flush any pending interrupts */
1167 wr32(E1000_ICR, ~0);
1168
1169 wr32(E1000_IMC, mask);
1170 wr32(E1000_ICS, mask);
9d5c8243
AK
1171 msleep(10);
1172
1173 if (adapter->test_icr & mask) {
1174 *data = 3;
1175 break;
1176 }
1177 }
1178
1179 /* Enable the interrupt to be reported in
1180 * the cause register and then force the same
1181 * interrupt and see if one gets posted. If
1182 * an interrupt was not posted to the bus, the
1183 * test failed.
1184 */
1185 adapter->test_icr = 0;
2753f4ce
AD
1186
1187 /* Flush any pending interrupts */
1188 wr32(E1000_ICR, ~0);
1189
9d5c8243
AK
1190 wr32(E1000_IMS, mask);
1191 wr32(E1000_ICS, mask);
1192 msleep(10);
1193
1194 if (!(adapter->test_icr & mask)) {
1195 *data = 4;
1196 break;
1197 }
1198
1199 if (!shared_int) {
1200 /* Disable the other interrupts to be reported in
1201 * the cause register and then force the other
1202 * interrupts and see if any get posted. If
1203 * an interrupt was posted to the bus, the
1204 * test failed.
1205 */
1206 adapter->test_icr = 0;
2753f4ce
AD
1207
1208 /* Flush any pending interrupts */
1209 wr32(E1000_ICR, ~0);
1210
1211 wr32(E1000_IMC, ~mask);
1212 wr32(E1000_ICS, ~mask);
9d5c8243
AK
1213 msleep(10);
1214
2753f4ce 1215 if (adapter->test_icr & mask) {
9d5c8243
AK
1216 *data = 5;
1217 break;
1218 }
1219 }
1220 }
1221
1222 /* Disable all the interrupts */
2753f4ce 1223 wr32(E1000_IMC, ~0);
9d5c8243
AK
1224 msleep(10);
1225
1226 /* Unhook test interrupt handler */
1227 free_irq(irq, netdev);
1228
1229 return *data;
1230}
1231
1232static void igb_free_desc_rings(struct igb_adapter *adapter)
1233{
1234 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1235 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1236 struct pci_dev *pdev = adapter->pdev;
1237 int i;
1238
1239 if (tx_ring->desc && tx_ring->buffer_info) {
1240 for (i = 0; i < tx_ring->count; i++) {
1241 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1242 if (buf->dma)
1243 pci_unmap_single(pdev, buf->dma, buf->length,
1244 PCI_DMA_TODEVICE);
1245 if (buf->skb)
1246 dev_kfree_skb(buf->skb);
1247 }
1248 }
1249
1250 if (rx_ring->desc && rx_ring->buffer_info) {
1251 for (i = 0; i < rx_ring->count; i++) {
1252 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1253 if (buf->dma)
1254 pci_unmap_single(pdev, buf->dma,
1255 IGB_RXBUFFER_2048,
1256 PCI_DMA_FROMDEVICE);
1257 if (buf->skb)
1258 dev_kfree_skb(buf->skb);
1259 }
1260 }
1261
1262 if (tx_ring->desc) {
1263 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1264 tx_ring->dma);
1265 tx_ring->desc = NULL;
1266 }
1267 if (rx_ring->desc) {
1268 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1269 rx_ring->dma);
1270 rx_ring->desc = NULL;
1271 }
1272
1273 kfree(tx_ring->buffer_info);
1274 tx_ring->buffer_info = NULL;
1275 kfree(rx_ring->buffer_info);
1276 rx_ring->buffer_info = NULL;
1277
1278 return;
1279}
1280
1281static int igb_setup_desc_rings(struct igb_adapter *adapter)
1282{
1283 struct e1000_hw *hw = &adapter->hw;
1284 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1285 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1286 struct pci_dev *pdev = adapter->pdev;
85e8d004 1287 struct igb_buffer *buffer_info;
9d5c8243
AK
1288 u32 rctl;
1289 int i, ret_val;
1290
1291 /* Setup Tx descriptor ring and Tx buffers */
1292
1293 if (!tx_ring->count)
1294 tx_ring->count = IGB_DEFAULT_TXD;
1295
1296 tx_ring->buffer_info = kcalloc(tx_ring->count,
1297 sizeof(struct igb_buffer),
1298 GFP_KERNEL);
1299 if (!tx_ring->buffer_info) {
1300 ret_val = 1;
1301 goto err_nomem;
1302 }
1303
85e8d004 1304 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1305 tx_ring->size = ALIGN(tx_ring->size, 4096);
1306 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1307 &tx_ring->dma);
1308 if (!tx_ring->desc) {
1309 ret_val = 2;
1310 goto err_nomem;
1311 }
1312 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1313
1314 wr32(E1000_TDBAL(0),
1315 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1316 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1317 wr32(E1000_TDLEN(0),
85e8d004 1318 tx_ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243
AK
1319 wr32(E1000_TDH(0), 0);
1320 wr32(E1000_TDT(0), 0);
1321 wr32(E1000_TCTL,
1322 E1000_TCTL_PSP | E1000_TCTL_EN |
1323 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1324 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1325
1326 for (i = 0; i < tx_ring->count; i++) {
85e8d004 1327 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
1328 struct sk_buff *skb;
1329 unsigned int size = 1024;
1330
85e8d004 1331 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243
AK
1332 skb = alloc_skb(size, GFP_KERNEL);
1333 if (!skb) {
1334 ret_val = 3;
1335 goto err_nomem;
1336 }
1337 skb_put(skb, size);
85e8d004
AD
1338 buffer_info = &tx_ring->buffer_info[i];
1339 buffer_info->skb = skb;
1340 buffer_info->length = skb->len;
1341 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1342 PCI_DMA_TODEVICE);
1343 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1344 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1345 E1000_ADVTXD_PAYLEN_SHIFT;
1346 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1347 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1348 E1000_TXD_CMD_IFCS |
1349 E1000_TXD_CMD_RS |
1350 E1000_ADVTXD_DTYP_DATA |
1351 E1000_ADVTXD_DCMD_DEXT);
9d5c8243
AK
1352 }
1353
1354 /* Setup Rx descriptor ring and Rx buffers */
1355
1356 if (!rx_ring->count)
1357 rx_ring->count = IGB_DEFAULT_RXD;
1358
1359 rx_ring->buffer_info = kcalloc(rx_ring->count,
1360 sizeof(struct igb_buffer),
1361 GFP_KERNEL);
1362 if (!rx_ring->buffer_info) {
1363 ret_val = 4;
1364 goto err_nomem;
1365 }
1366
85e8d004 1367 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
1368 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1369 &rx_ring->dma);
1370 if (!rx_ring->desc) {
1371 ret_val = 5;
1372 goto err_nomem;
1373 }
1374 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1375
1376 rctl = rd32(E1000_RCTL);
1377 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1378 wr32(E1000_RDBAL(0),
1379 ((u64) rx_ring->dma & 0xFFFFFFFF));
1380 wr32(E1000_RDBAH(0),
1381 ((u64) rx_ring->dma >> 32));
1382 wr32(E1000_RDLEN(0), rx_ring->size);
1383 wr32(E1000_RDH(0), 0);
1384 wr32(E1000_RDT(0), 0);
69d728ba 1385 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
cbd347ad 1386 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
9d5c8243
AK
1387 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1388 wr32(E1000_RCTL, rctl);
85e8d004 1389 wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
9d5c8243
AK
1390
1391 for (i = 0; i < rx_ring->count; i++) {
85e8d004 1392 union e1000_adv_rx_desc *rx_desc;
9d5c8243
AK
1393 struct sk_buff *skb;
1394
85e8d004
AD
1395 buffer_info = &rx_ring->buffer_info[i];
1396 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
9d5c8243
AK
1397 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1398 GFP_KERNEL);
1399 if (!skb) {
1400 ret_val = 6;
1401 goto err_nomem;
1402 }
1403 skb_reserve(skb, NET_IP_ALIGN);
85e8d004
AD
1404 buffer_info->skb = skb;
1405 buffer_info->dma = pci_map_single(pdev, skb->data,
1406 IGB_RXBUFFER_2048,
1407 PCI_DMA_FROMDEVICE);
1408 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
1409 memset(skb->data, 0x00, skb->len);
1410 }
1411
1412 return 0;
1413
1414err_nomem:
1415 igb_free_desc_rings(adapter);
1416 return ret_val;
1417}
1418
1419static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1420{
1421 struct e1000_hw *hw = &adapter->hw;
1422
1423 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
f5f4cf08
AD
1424 igb_write_phy_reg(hw, 29, 0x001F);
1425 igb_write_phy_reg(hw, 30, 0x8FFC);
1426 igb_write_phy_reg(hw, 29, 0x001A);
1427 igb_write_phy_reg(hw, 30, 0x8FF0);
9d5c8243
AK
1428}
1429
1430static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1431{
1432 struct e1000_hw *hw = &adapter->hw;
1433 u32 ctrl_reg = 0;
9d5c8243
AK
1434
1435 hw->mac.autoneg = false;
1436
1437 if (hw->phy.type == e1000_phy_m88) {
1438 /* Auto-MDI/MDIX Off */
f5f4cf08 1439 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
9d5c8243 1440 /* reset to update Auto-MDI/MDIX */
f5f4cf08 1441 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
9d5c8243 1442 /* autoneg off */
f5f4cf08 1443 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
9d5c8243
AK
1444 }
1445
1446 ctrl_reg = rd32(E1000_CTRL);
1447
1448 /* force 1000, set loopback */
f5f4cf08 1449 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
9d5c8243
AK
1450
1451 /* Now set up the MAC to the same speed/duplex as the PHY. */
1452 ctrl_reg = rd32(E1000_CTRL);
1453 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1454 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1455 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1456 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
cdfa9f64
AD
1457 E1000_CTRL_FD | /* Force Duplex to FULL */
1458 E1000_CTRL_SLU); /* Set link up enable bit */
9d5c8243 1459
cdfa9f64 1460 if (hw->phy.type == e1000_phy_m88)
9d5c8243 1461 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
9d5c8243
AK
1462
1463 wr32(E1000_CTRL, ctrl_reg);
1464
1465 /* Disable the receiver on the PHY so when a cable is plugged in, the
1466 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1467 */
1468 if (hw->phy.type == e1000_phy_m88)
1469 igb_phy_disable_receiver(adapter);
1470
1471 udelay(500);
1472
1473 return 0;
1474}
1475
1476static int igb_set_phy_loopback(struct igb_adapter *adapter)
1477{
1478 return igb_integrated_phy_loopback(adapter);
1479}
1480
1481static int igb_setup_loopback_test(struct igb_adapter *adapter)
1482{
1483 struct e1000_hw *hw = &adapter->hw;
2d064c06 1484 u32 reg;
9d5c8243
AK
1485
1486 if (hw->phy.media_type == e1000_media_type_fiber ||
1487 hw->phy.media_type == e1000_media_type_internal_serdes) {
2d064c06
AD
1488 reg = rd32(E1000_RCTL);
1489 reg |= E1000_RCTL_LBM_TCVR;
1490 wr32(E1000_RCTL, reg);
1491
1492 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1493
1494 reg = rd32(E1000_CTRL);
1495 reg &= ~(E1000_CTRL_RFCE |
1496 E1000_CTRL_TFCE |
1497 E1000_CTRL_LRST);
1498 reg |= E1000_CTRL_SLU |
2753f4ce 1499 E1000_CTRL_FD;
2d064c06
AD
1500 wr32(E1000_CTRL, reg);
1501
1502 /* Unset switch control to serdes energy detect */
1503 reg = rd32(E1000_CONNSW);
1504 reg &= ~E1000_CONNSW_ENRGSRC;
1505 wr32(E1000_CONNSW, reg);
1506
1507 /* Set PCS register for forced speed */
1508 reg = rd32(E1000_PCS_LCTL);
1509 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1510 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1511 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1512 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1513 E1000_PCS_LCTL_FSD | /* Force Speed */
1514 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1515 wr32(E1000_PCS_LCTL, reg);
1516
9d5c8243
AK
1517 return 0;
1518 } else if (hw->phy.media_type == e1000_media_type_copper) {
1519 return igb_set_phy_loopback(adapter);
1520 }
1521
1522 return 7;
1523}
1524
1525static void igb_loopback_cleanup(struct igb_adapter *adapter)
1526{
1527 struct e1000_hw *hw = &adapter->hw;
1528 u32 rctl;
1529 u16 phy_reg;
1530
1531 rctl = rd32(E1000_RCTL);
1532 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1533 wr32(E1000_RCTL, rctl);
1534
1535 hw->mac.autoneg = true;
f5f4cf08 1536 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
9d5c8243
AK
1537 if (phy_reg & MII_CR_LOOPBACK) {
1538 phy_reg &= ~MII_CR_LOOPBACK;
f5f4cf08 1539 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
9d5c8243
AK
1540 igb_phy_sw_reset(hw);
1541 }
1542}
1543
1544static void igb_create_lbtest_frame(struct sk_buff *skb,
1545 unsigned int frame_size)
1546{
1547 memset(skb->data, 0xFF, frame_size);
1548 frame_size &= ~1;
1549 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1550 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1551 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1552}
1553
1554static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1555{
1556 frame_size &= ~1;
1557 if (*(skb->data + 3) == 0xFF)
1558 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1559 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1560 return 0;
1561 return 13;
1562}
1563
1564static int igb_run_loopback_test(struct igb_adapter *adapter)
1565{
1566 struct e1000_hw *hw = &adapter->hw;
1567 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1568 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1569 struct pci_dev *pdev = adapter->pdev;
1570 int i, j, k, l, lc, good_cnt;
1571 int ret_val = 0;
1572 unsigned long time;
1573
1574 wr32(E1000_RDT(0), rx_ring->count - 1);
1575
1576 /* Calculate the loop count based on the largest descriptor ring
1577 * The idea is to wrap the largest ring a number of times using 64
1578 * send/receive pairs during each loop
1579 */
1580
1581 if (rx_ring->count <= tx_ring->count)
1582 lc = ((tx_ring->count / 64) * 2) + 1;
1583 else
1584 lc = ((rx_ring->count / 64) * 2) + 1;
1585
1586 k = l = 0;
1587 for (j = 0; j <= lc; j++) { /* loop count loop */
1588 for (i = 0; i < 64; i++) { /* send the packets */
1589 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1590 1024);
1591 pci_dma_sync_single_for_device(pdev,
1592 tx_ring->buffer_info[k].dma,
1593 tx_ring->buffer_info[k].length,
1594 PCI_DMA_TODEVICE);
1595 k++;
1596 if (k == tx_ring->count)
1597 k = 0;
1598 }
1599 wr32(E1000_TDT(0), k);
1600 msleep(200);
1601 time = jiffies; /* set the start time for the receive */
1602 good_cnt = 0;
1603 do { /* receive the sent packets */
1604 pci_dma_sync_single_for_cpu(pdev,
1605 rx_ring->buffer_info[l].dma,
1606 IGB_RXBUFFER_2048,
1607 PCI_DMA_FROMDEVICE);
1608
1609 ret_val = igb_check_lbtest_frame(
1610 rx_ring->buffer_info[l].skb, 1024);
1611 if (!ret_val)
1612 good_cnt++;
1613 l++;
1614 if (l == rx_ring->count)
1615 l = 0;
1616 /* time + 20 msecs (200 msecs on 2.4) is more than
1617 * enough time to complete the receives, if it's
1618 * exceeded, break and error off
1619 */
1620 } while (good_cnt < 64 && jiffies < (time + 20));
1621 if (good_cnt != 64) {
1622 ret_val = 13; /* ret_val is the same as mis-compare */
1623 break;
1624 }
1625 if (jiffies >= (time + 20)) {
1626 ret_val = 14; /* error code for time out error */
1627 break;
1628 }
1629 } /* end loop count loop */
1630 return ret_val;
1631}
1632
1633static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1634{
1635 /* PHY loopback cannot be performed if SoL/IDER
1636 * sessions are active */
1637 if (igb_check_reset_block(&adapter->hw)) {
1638 dev_err(&adapter->pdev->dev,
1639 "Cannot do PHY loopback test "
1640 "when SoL/IDER is active.\n");
1641 *data = 0;
1642 goto out;
1643 }
1644 *data = igb_setup_desc_rings(adapter);
1645 if (*data)
1646 goto out;
1647 *data = igb_setup_loopback_test(adapter);
1648 if (*data)
1649 goto err_loopback;
1650 *data = igb_run_loopback_test(adapter);
1651 igb_loopback_cleanup(adapter);
1652
1653err_loopback:
1654 igb_free_desc_rings(adapter);
1655out:
1656 return *data;
1657}
1658
1659static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1660{
1661 struct e1000_hw *hw = &adapter->hw;
1662 *data = 0;
1663 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1664 int i = 0;
1665 hw->mac.serdes_has_link = false;
1666
1667 /* On some blade server designs, link establishment
1668 * could take as long as 2-3 minutes */
1669 do {
1670 hw->mac.ops.check_for_link(&adapter->hw);
1671 if (hw->mac.serdes_has_link)
1672 return *data;
1673 msleep(20);
1674 } while (i++ < 3750);
1675
1676 *data = 1;
1677 } else {
1678 hw->mac.ops.check_for_link(&adapter->hw);
1679 if (hw->mac.autoneg)
1680 msleep(4000);
1681
1682 if (!(rd32(E1000_STATUS) &
1683 E1000_STATUS_LU))
1684 *data = 1;
1685 }
1686 return *data;
1687}
1688
1689static void igb_diag_test(struct net_device *netdev,
1690 struct ethtool_test *eth_test, u64 *data)
1691{
1692 struct igb_adapter *adapter = netdev_priv(netdev);
1693 u16 autoneg_advertised;
1694 u8 forced_speed_duplex, autoneg;
1695 bool if_running = netif_running(netdev);
1696
1697 set_bit(__IGB_TESTING, &adapter->state);
1698 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1699 /* Offline tests */
1700
1701 /* save speed, duplex, autoneg settings */
1702 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1703 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1704 autoneg = adapter->hw.mac.autoneg;
1705
1706 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1707
1708 /* Link test performed before hardware reset so autoneg doesn't
1709 * interfere with test result */
1710 if (igb_link_test(adapter, &data[4]))
1711 eth_test->flags |= ETH_TEST_FL_FAILED;
1712
1713 if (if_running)
1714 /* indicate we're in test mode */
1715 dev_close(netdev);
1716 else
1717 igb_reset(adapter);
1718
1719 if (igb_reg_test(adapter, &data[0]))
1720 eth_test->flags |= ETH_TEST_FL_FAILED;
1721
1722 igb_reset(adapter);
1723 if (igb_eeprom_test(adapter, &data[1]))
1724 eth_test->flags |= ETH_TEST_FL_FAILED;
1725
1726 igb_reset(adapter);
1727 if (igb_intr_test(adapter, &data[2]))
1728 eth_test->flags |= ETH_TEST_FL_FAILED;
1729
1730 igb_reset(adapter);
1731 if (igb_loopback_test(adapter, &data[3]))
1732 eth_test->flags |= ETH_TEST_FL_FAILED;
1733
1734 /* restore speed, duplex, autoneg settings */
1735 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1736 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1737 adapter->hw.mac.autoneg = autoneg;
1738
1739 /* force this routine to wait until autoneg complete/timeout */
1740 adapter->hw.phy.autoneg_wait_to_complete = true;
1741 igb_reset(adapter);
1742 adapter->hw.phy.autoneg_wait_to_complete = false;
1743
1744 clear_bit(__IGB_TESTING, &adapter->state);
1745 if (if_running)
1746 dev_open(netdev);
1747 } else {
1748 dev_info(&adapter->pdev->dev, "online testing starting\n");
1749 /* Online tests */
1750 if (igb_link_test(adapter, &data[4]))
1751 eth_test->flags |= ETH_TEST_FL_FAILED;
1752
1753 /* Online tests aren't run; pass by default */
1754 data[0] = 0;
1755 data[1] = 0;
1756 data[2] = 0;
1757 data[3] = 0;
1758
1759 clear_bit(__IGB_TESTING, &adapter->state);
1760 }
1761 msleep_interruptible(4 * 1000);
1762}
1763
1764static int igb_wol_exclusion(struct igb_adapter *adapter,
1765 struct ethtool_wolinfo *wol)
1766{
1767 struct e1000_hw *hw = &adapter->hw;
1768 int retval = 1; /* fail by default */
1769
1770 switch (hw->device_id) {
1771 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1772 /* WoL not supported */
1773 wol->supported = 0;
1774 break;
1775 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1776 case E1000_DEV_ID_82576_FIBER:
1777 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1778 /* Wake events not supported on port B */
1779 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1780 wol->supported = 0;
1781 break;
1782 }
7dfc16fa
AD
1783 /* return success for non excluded adapter ports */
1784 retval = 0;
1785 break;
c8ea5ea9
AD
1786 case E1000_DEV_ID_82576_QUAD_COPPER:
1787 /* quad port adapters only support WoL on port A */
1788 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1789 wol->supported = 0;
1790 break;
1791 }
1792 /* return success for non excluded adapter ports */
1793 retval = 0;
1794 break;
9d5c8243
AK
1795 default:
1796 /* dual port cards only support WoL on port A from now on
1797 * unless it was enabled in the eeprom for port B
1798 * so exclude FUNC_1 ports from having WoL enabled */
1799 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1800 !adapter->eeprom_wol) {
1801 wol->supported = 0;
1802 break;
1803 }
1804
1805 retval = 0;
1806 }
1807
1808 return retval;
1809}
1810
1811static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1812{
1813 struct igb_adapter *adapter = netdev_priv(netdev);
1814
1815 wol->supported = WAKE_UCAST | WAKE_MCAST |
1816 WAKE_BCAST | WAKE_MAGIC;
1817 wol->wolopts = 0;
1818
1819 /* this function will set ->supported = 0 and return 1 if wol is not
1820 * supported by this hardware */
e1b86d84
RW
1821 if (igb_wol_exclusion(adapter, wol) ||
1822 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1823 return;
1824
1825 /* apply any specific unsupported masks here */
1826 switch (adapter->hw.device_id) {
1827 default:
1828 break;
1829 }
1830
1831 if (adapter->wol & E1000_WUFC_EX)
1832 wol->wolopts |= WAKE_UCAST;
1833 if (adapter->wol & E1000_WUFC_MC)
1834 wol->wolopts |= WAKE_MCAST;
1835 if (adapter->wol & E1000_WUFC_BC)
1836 wol->wolopts |= WAKE_BCAST;
1837 if (adapter->wol & E1000_WUFC_MAG)
1838 wol->wolopts |= WAKE_MAGIC;
1839
1840 return;
1841}
1842
1843static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1844{
1845 struct igb_adapter *adapter = netdev_priv(netdev);
1846 struct e1000_hw *hw = &adapter->hw;
1847
1848 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1849 return -EOPNOTSUPP;
1850
e1b86d84
RW
1851 if (igb_wol_exclusion(adapter, wol) ||
1852 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1853 return wol->wolopts ? -EOPNOTSUPP : 0;
1854
1855 switch (hw->device_id) {
1856 default:
1857 break;
1858 }
1859
1860 /* these settings will always override what we currently have */
1861 adapter->wol = 0;
1862
1863 if (wol->wolopts & WAKE_UCAST)
1864 adapter->wol |= E1000_WUFC_EX;
1865 if (wol->wolopts & WAKE_MCAST)
1866 adapter->wol |= E1000_WUFC_MC;
1867 if (wol->wolopts & WAKE_BCAST)
1868 adapter->wol |= E1000_WUFC_BC;
1869 if (wol->wolopts & WAKE_MAGIC)
1870 adapter->wol |= E1000_WUFC_MAG;
1871
e1b86d84
RW
1872 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1873
9d5c8243
AK
1874 return 0;
1875}
1876
9d5c8243
AK
1877/* bit defines for adapter->led_status */
1878#define IGB_LED_ON 0
1879
1880static int igb_phys_id(struct net_device *netdev, u32 data)
1881{
1882 struct igb_adapter *adapter = netdev_priv(netdev);
1883 struct e1000_hw *hw = &adapter->hw;
1884
1885 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1886 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1887
1888 igb_blink_led(hw);
1889 msleep_interruptible(data * 1000);
1890
1891 igb_led_off(hw);
1892 clear_bit(IGB_LED_ON, &adapter->led_status);
1893 igb_cleanup_led(hw);
1894
1895 return 0;
1896}
1897
1898static int igb_set_coalesce(struct net_device *netdev,
1899 struct ethtool_coalesce *ec)
1900{
1901 struct igb_adapter *adapter = netdev_priv(netdev);
6eb5a7f1
AD
1902 struct e1000_hw *hw = &adapter->hw;
1903 int i;
9d5c8243
AK
1904
1905 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1906 ((ec->rx_coalesce_usecs > 3) &&
1907 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1908 (ec->rx_coalesce_usecs == 2))
1909 return -EINVAL;
1910
1911 /* convert to rate of irq's per second */
6eb5a7f1 1912 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
9d5c8243 1913 adapter->itr_setting = ec->rx_coalesce_usecs;
6eb5a7f1
AD
1914 adapter->itr = IGB_START_ITR;
1915 } else {
1916 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1917 adapter->itr = adapter->itr_setting;
1918 }
9d5c8243 1919
6eb5a7f1
AD
1920 for (i = 0; i < adapter->num_rx_queues; i++)
1921 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
9d5c8243
AK
1922
1923 return 0;
1924}
1925
1926static int igb_get_coalesce(struct net_device *netdev,
1927 struct ethtool_coalesce *ec)
1928{
1929 struct igb_adapter *adapter = netdev_priv(netdev);
1930
1931 if (adapter->itr_setting <= 3)
1932 ec->rx_coalesce_usecs = adapter->itr_setting;
1933 else
6eb5a7f1 1934 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
9d5c8243
AK
1935
1936 return 0;
1937}
1938
1939
1940static int igb_nway_reset(struct net_device *netdev)
1941{
1942 struct igb_adapter *adapter = netdev_priv(netdev);
1943 if (netif_running(netdev))
1944 igb_reinit_locked(adapter);
1945 return 0;
1946}
1947
1948static int igb_get_sset_count(struct net_device *netdev, int sset)
1949{
1950 switch (sset) {
1951 case ETH_SS_STATS:
1952 return IGB_STATS_LEN;
1953 case ETH_SS_TEST:
1954 return IGB_TEST_LEN;
1955 default:
1956 return -ENOTSUPP;
1957 }
1958}
1959
1960static void igb_get_ethtool_stats(struct net_device *netdev,
1961 struct ethtool_stats *stats, u64 *data)
1962{
1963 struct igb_adapter *adapter = netdev_priv(netdev);
1964 u64 *queue_stat;
8c0ab70a
JDB
1965 int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1966 int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
9d5c8243
AK
1967 int j;
1968 int i;
1969
1970 igb_update_stats(adapter);
1971 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1972 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1973 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1974 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1975 }
e21ed353
AD
1976 for (j = 0; j < adapter->num_tx_queues; j++) {
1977 int k;
1978 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
8c0ab70a 1979 for (k = 0; k < stat_count_tx; k++)
e21ed353
AD
1980 data[i + k] = queue_stat[k];
1981 i += k;
1982 }
9d5c8243
AK
1983 for (j = 0; j < adapter->num_rx_queues; j++) {
1984 int k;
1985 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
8c0ab70a 1986 for (k = 0; k < stat_count_rx; k++)
9d5c8243
AK
1987 data[i + k] = queue_stat[k];
1988 i += k;
1989 }
1990}
1991
1992static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1993{
1994 struct igb_adapter *adapter = netdev_priv(netdev);
1995 u8 *p = data;
1996 int i;
1997
1998 switch (stringset) {
1999 case ETH_SS_TEST:
2000 memcpy(data, *igb_gstrings_test,
2001 IGB_TEST_LEN*ETH_GSTRING_LEN);
2002 break;
2003 case ETH_SS_STATS:
2004 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2005 memcpy(p, igb_gstrings_stats[i].stat_string,
2006 ETH_GSTRING_LEN);
2007 p += ETH_GSTRING_LEN;
2008 }
2009 for (i = 0; i < adapter->num_tx_queues; i++) {
2010 sprintf(p, "tx_queue_%u_packets", i);
2011 p += ETH_GSTRING_LEN;
2012 sprintf(p, "tx_queue_%u_bytes", i);
2013 p += ETH_GSTRING_LEN;
2014 }
2015 for (i = 0; i < adapter->num_rx_queues; i++) {
2016 sprintf(p, "rx_queue_%u_packets", i);
2017 p += ETH_GSTRING_LEN;
2018 sprintf(p, "rx_queue_%u_bytes", i);
2019 p += ETH_GSTRING_LEN;
8c0ab70a
JDB
2020 sprintf(p, "rx_queue_%u_drops", i);
2021 p += ETH_GSTRING_LEN;
9d5c8243
AK
2022 }
2023/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2024 break;
2025 }
2026}
2027
2028static struct ethtool_ops igb_ethtool_ops = {
2029 .get_settings = igb_get_settings,
2030 .set_settings = igb_set_settings,
2031 .get_drvinfo = igb_get_drvinfo,
2032 .get_regs_len = igb_get_regs_len,
2033 .get_regs = igb_get_regs,
2034 .get_wol = igb_get_wol,
2035 .set_wol = igb_set_wol,
2036 .get_msglevel = igb_get_msglevel,
2037 .set_msglevel = igb_set_msglevel,
2038 .nway_reset = igb_nway_reset,
2039 .get_link = ethtool_op_get_link,
2040 .get_eeprom_len = igb_get_eeprom_len,
2041 .get_eeprom = igb_get_eeprom,
2042 .set_eeprom = igb_set_eeprom,
2043 .get_ringparam = igb_get_ringparam,
2044 .set_ringparam = igb_set_ringparam,
2045 .get_pauseparam = igb_get_pauseparam,
2046 .set_pauseparam = igb_set_pauseparam,
2047 .get_rx_csum = igb_get_rx_csum,
2048 .set_rx_csum = igb_set_rx_csum,
2049 .get_tx_csum = igb_get_tx_csum,
2050 .set_tx_csum = igb_set_tx_csum,
2051 .get_sg = ethtool_op_get_sg,
2052 .set_sg = ethtool_op_set_sg,
2053 .get_tso = ethtool_op_get_tso,
2054 .set_tso = igb_set_tso,
2055 .self_test = igb_diag_test,
2056 .get_strings = igb_get_strings,
2057 .phys_id = igb_phys_id,
2058 .get_sset_count = igb_get_sset_count,
2059 .get_ethtool_stats = igb_get_ethtool_stats,
2060 .get_coalesce = igb_get_coalesce,
2061 .set_coalesce = igb_set_coalesce,
2062};
2063
2064void igb_set_ethtool_ops(struct net_device *netdev)
2065{
2066 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2067}