]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/igb_ethtool.c
igb: add vfs_allocated_count as placeholder for number of vfs
[net-next-2.6.git] / drivers / net / igb / igb_ethtool.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
40struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44};
45
030ed68b 46#define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
9d5c8243
AK
47 offsetof(struct igb_adapter, m)
48static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
dda0e083 91 { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
9d5c8243
AK
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96};
97
98#define IGB_QUEUE_STATS_LEN \
4cf1653a
WC
99 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
100 ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
9d5c8243
AK
101 (sizeof(struct igb_queue_stats) / sizeof(u64)))
102#define IGB_GLOBAL_STATS_LEN \
103 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
104#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
105static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
106 "Register test (offline)", "Eeprom test (offline)",
107 "Interrupt test (offline)", "Loopback test (offline)",
108 "Link test (on/offline)"
109};
110#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
111
112static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
113{
114 struct igb_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118
119 ecmd->supported = (SUPPORTED_10baseT_Half |
120 SUPPORTED_10baseT_Full |
121 SUPPORTED_100baseT_Half |
122 SUPPORTED_100baseT_Full |
123 SUPPORTED_1000baseT_Full|
124 SUPPORTED_Autoneg |
125 SUPPORTED_TP);
126 ecmd->advertising = ADVERTISED_TP;
127
128 if (hw->mac.autoneg == 1) {
129 ecmd->advertising |= ADVERTISED_Autoneg;
130 /* the e1000 autoneg seems to match ethtool nicely */
131 ecmd->advertising |= hw->phy.autoneg_advertised;
132 }
133
134 ecmd->port = PORT_TP;
135 ecmd->phy_address = hw->phy.addr;
136 } else {
137 ecmd->supported = (SUPPORTED_1000baseT_Full |
138 SUPPORTED_FIBRE |
139 SUPPORTED_Autoneg);
140
141 ecmd->advertising = (ADVERTISED_1000baseT_Full |
142 ADVERTISED_FIBRE |
143 ADVERTISED_Autoneg);
144
145 ecmd->port = PORT_FIBRE;
146 }
147
148 ecmd->transceiver = XCVR_INTERNAL;
149
150 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
151
152 adapter->hw.mac.ops.get_speed_and_duplex(hw,
153 &adapter->link_speed,
154 &adapter->link_duplex);
155 ecmd->speed = adapter->link_speed;
156
157 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
158 * and HALF_DUPLEX != DUPLEX_HALF */
159
160 if (adapter->link_duplex == FULL_DUPLEX)
161 ecmd->duplex = DUPLEX_FULL;
162 else
163 ecmd->duplex = DUPLEX_HALF;
164 } else {
165 ecmd->speed = -1;
166 ecmd->duplex = -1;
167 }
168
169 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171 return 0;
172}
173
174static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
175{
176 struct igb_adapter *adapter = netdev_priv(netdev);
177 struct e1000_hw *hw = &adapter->hw;
178
179 /* When SoL/IDER sessions are active, autoneg/speed/duplex
180 * cannot be changed */
181 if (igb_check_reset_block(hw)) {
182 dev_err(&adapter->pdev->dev, "Cannot change link "
183 "characteristics when SoL/IDER is active.\n");
184 return -EINVAL;
185 }
186
187 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
188 msleep(1);
189
190 if (ecmd->autoneg == AUTONEG_ENABLE) {
191 hw->mac.autoneg = 1;
192 if (hw->phy.media_type == e1000_media_type_fiber)
193 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
194 ADVERTISED_FIBRE |
195 ADVERTISED_Autoneg;
196 else
197 hw->phy.autoneg_advertised = ecmd->advertising |
198 ADVERTISED_TP |
199 ADVERTISED_Autoneg;
200 ecmd->advertising = hw->phy.autoneg_advertised;
201 } else
202 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
203 clear_bit(__IGB_RESETTING, &adapter->state);
204 return -EINVAL;
205 }
206
207 /* reset the link */
208
209 if (netif_running(adapter->netdev)) {
210 igb_down(adapter);
211 igb_up(adapter);
212 } else
213 igb_reset(adapter);
214
215 clear_bit(__IGB_RESETTING, &adapter->state);
216 return 0;
217}
218
219static void igb_get_pauseparam(struct net_device *netdev,
220 struct ethtool_pauseparam *pause)
221{
222 struct igb_adapter *adapter = netdev_priv(netdev);
223 struct e1000_hw *hw = &adapter->hw;
224
225 pause->autoneg =
226 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
227
228 if (hw->fc.type == e1000_fc_rx_pause)
229 pause->rx_pause = 1;
230 else if (hw->fc.type == e1000_fc_tx_pause)
231 pause->tx_pause = 1;
232 else if (hw->fc.type == e1000_fc_full) {
233 pause->rx_pause = 1;
234 pause->tx_pause = 1;
235 }
236}
237
238static int igb_set_pauseparam(struct net_device *netdev,
239 struct ethtool_pauseparam *pause)
240{
241 struct igb_adapter *adapter = netdev_priv(netdev);
242 struct e1000_hw *hw = &adapter->hw;
243 int retval = 0;
244
245 adapter->fc_autoneg = pause->autoneg;
246
247 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
248 msleep(1);
249
250 if (pause->rx_pause && pause->tx_pause)
251 hw->fc.type = e1000_fc_full;
252 else if (pause->rx_pause && !pause->tx_pause)
253 hw->fc.type = e1000_fc_rx_pause;
254 else if (!pause->rx_pause && pause->tx_pause)
255 hw->fc.type = e1000_fc_tx_pause;
256 else if (!pause->rx_pause && !pause->tx_pause)
257 hw->fc.type = e1000_fc_none;
258
259 hw->fc.original_type = hw->fc.type;
260
261 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
262 if (netif_running(adapter->netdev)) {
263 igb_down(adapter);
264 igb_up(adapter);
265 } else
266 igb_reset(adapter);
267 } else
268 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
269 igb_setup_link(hw) : igb_force_mac_fc(hw));
270
271 clear_bit(__IGB_RESETTING, &adapter->state);
272 return retval;
273}
274
275static u32 igb_get_rx_csum(struct net_device *netdev)
276{
277 struct igb_adapter *adapter = netdev_priv(netdev);
278 return adapter->rx_csum;
279}
280
281static int igb_set_rx_csum(struct net_device *netdev, u32 data)
282{
283 struct igb_adapter *adapter = netdev_priv(netdev);
284 adapter->rx_csum = data;
285
286 return 0;
287}
288
289static u32 igb_get_tx_csum(struct net_device *netdev)
290{
7d8eb29e 291 return (netdev->features & NETIF_F_IP_CSUM) != 0;
9d5c8243
AK
292}
293
294static int igb_set_tx_csum(struct net_device *netdev, u32 data)
295{
296 if (data)
7d8eb29e 297 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9d5c8243 298 else
7d8eb29e 299 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9d5c8243
AK
300
301 return 0;
302}
303
304static int igb_set_tso(struct net_device *netdev, u32 data)
305{
306 struct igb_adapter *adapter = netdev_priv(netdev);
307
7d8eb29e 308 if (data) {
9d5c8243 309 netdev->features |= NETIF_F_TSO;
9d5c8243 310 netdev->features |= NETIF_F_TSO6;
7d8eb29e
AD
311 } else {
312 netdev->features &= ~NETIF_F_TSO;
9d5c8243 313 netdev->features &= ~NETIF_F_TSO6;
7d8eb29e 314 }
9d5c8243
AK
315
316 dev_info(&adapter->pdev->dev, "TSO is %s\n",
317 data ? "Enabled" : "Disabled");
318 return 0;
319}
320
321static u32 igb_get_msglevel(struct net_device *netdev)
322{
323 struct igb_adapter *adapter = netdev_priv(netdev);
324 return adapter->msg_enable;
325}
326
327static void igb_set_msglevel(struct net_device *netdev, u32 data)
328{
329 struct igb_adapter *adapter = netdev_priv(netdev);
330 adapter->msg_enable = data;
331}
332
333static int igb_get_regs_len(struct net_device *netdev)
334{
335#define IGB_REGS_LEN 551
336 return IGB_REGS_LEN * sizeof(u32);
337}
338
339static void igb_get_regs(struct net_device *netdev,
340 struct ethtool_regs *regs, void *p)
341{
342 struct igb_adapter *adapter = netdev_priv(netdev);
343 struct e1000_hw *hw = &adapter->hw;
344 u32 *regs_buff = p;
345 u8 i;
346
347 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
348
349 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
350
351 /* General Registers */
352 regs_buff[0] = rd32(E1000_CTRL);
353 regs_buff[1] = rd32(E1000_STATUS);
354 regs_buff[2] = rd32(E1000_CTRL_EXT);
355 regs_buff[3] = rd32(E1000_MDIC);
356 regs_buff[4] = rd32(E1000_SCTL);
357 regs_buff[5] = rd32(E1000_CONNSW);
358 regs_buff[6] = rd32(E1000_VET);
359 regs_buff[7] = rd32(E1000_LEDCTL);
360 regs_buff[8] = rd32(E1000_PBA);
361 regs_buff[9] = rd32(E1000_PBS);
362 regs_buff[10] = rd32(E1000_FRTIMER);
363 regs_buff[11] = rd32(E1000_TCPTIMER);
364
365 /* NVM Register */
366 regs_buff[12] = rd32(E1000_EECD);
367
368 /* Interrupt */
fe59de38
AD
369 /* Reading EICS for EICR because they read the
370 * same but EICS does not clear on read */
371 regs_buff[13] = rd32(E1000_EICS);
9d5c8243
AK
372 regs_buff[14] = rd32(E1000_EICS);
373 regs_buff[15] = rd32(E1000_EIMS);
374 regs_buff[16] = rd32(E1000_EIMC);
375 regs_buff[17] = rd32(E1000_EIAC);
376 regs_buff[18] = rd32(E1000_EIAM);
fe59de38
AD
377 /* Reading ICS for ICR because they read the
378 * same but ICS does not clear on read */
379 regs_buff[19] = rd32(E1000_ICS);
9d5c8243
AK
380 regs_buff[20] = rd32(E1000_ICS);
381 regs_buff[21] = rd32(E1000_IMS);
382 regs_buff[22] = rd32(E1000_IMC);
383 regs_buff[23] = rd32(E1000_IAC);
384 regs_buff[24] = rd32(E1000_IAM);
385 regs_buff[25] = rd32(E1000_IMIRVP);
386
387 /* Flow Control */
388 regs_buff[26] = rd32(E1000_FCAL);
389 regs_buff[27] = rd32(E1000_FCAH);
390 regs_buff[28] = rd32(E1000_FCTTV);
391 regs_buff[29] = rd32(E1000_FCRTL);
392 regs_buff[30] = rd32(E1000_FCRTH);
393 regs_buff[31] = rd32(E1000_FCRTV);
394
395 /* Receive */
396 regs_buff[32] = rd32(E1000_RCTL);
397 regs_buff[33] = rd32(E1000_RXCSUM);
398 regs_buff[34] = rd32(E1000_RLPML);
399 regs_buff[35] = rd32(E1000_RFCTL);
400 regs_buff[36] = rd32(E1000_MRQC);
401 regs_buff[37] = rd32(E1000_VMD_CTL);
402
403 /* Transmit */
404 regs_buff[38] = rd32(E1000_TCTL);
405 regs_buff[39] = rd32(E1000_TCTL_EXT);
406 regs_buff[40] = rd32(E1000_TIPG);
407 regs_buff[41] = rd32(E1000_DTXCTL);
408
409 /* Wake Up */
410 regs_buff[42] = rd32(E1000_WUC);
411 regs_buff[43] = rd32(E1000_WUFC);
412 regs_buff[44] = rd32(E1000_WUS);
413 regs_buff[45] = rd32(E1000_IPAV);
414 regs_buff[46] = rd32(E1000_WUPL);
415
416 /* MAC */
417 regs_buff[47] = rd32(E1000_PCS_CFG0);
418 regs_buff[48] = rd32(E1000_PCS_LCTL);
419 regs_buff[49] = rd32(E1000_PCS_LSTAT);
420 regs_buff[50] = rd32(E1000_PCS_ANADV);
421 regs_buff[51] = rd32(E1000_PCS_LPAB);
422 regs_buff[52] = rd32(E1000_PCS_NPTX);
423 regs_buff[53] = rd32(E1000_PCS_LPABNP);
424
425 /* Statistics */
426 regs_buff[54] = adapter->stats.crcerrs;
427 regs_buff[55] = adapter->stats.algnerrc;
428 regs_buff[56] = adapter->stats.symerrs;
429 regs_buff[57] = adapter->stats.rxerrc;
430 regs_buff[58] = adapter->stats.mpc;
431 regs_buff[59] = adapter->stats.scc;
432 regs_buff[60] = adapter->stats.ecol;
433 regs_buff[61] = adapter->stats.mcc;
434 regs_buff[62] = adapter->stats.latecol;
435 regs_buff[63] = adapter->stats.colc;
436 regs_buff[64] = adapter->stats.dc;
437 regs_buff[65] = adapter->stats.tncrs;
438 regs_buff[66] = adapter->stats.sec;
439 regs_buff[67] = adapter->stats.htdpmc;
440 regs_buff[68] = adapter->stats.rlec;
441 regs_buff[69] = adapter->stats.xonrxc;
442 regs_buff[70] = adapter->stats.xontxc;
443 regs_buff[71] = adapter->stats.xoffrxc;
444 regs_buff[72] = adapter->stats.xofftxc;
445 regs_buff[73] = adapter->stats.fcruc;
446 regs_buff[74] = adapter->stats.prc64;
447 regs_buff[75] = adapter->stats.prc127;
448 regs_buff[76] = adapter->stats.prc255;
449 regs_buff[77] = adapter->stats.prc511;
450 regs_buff[78] = adapter->stats.prc1023;
451 regs_buff[79] = adapter->stats.prc1522;
452 regs_buff[80] = adapter->stats.gprc;
453 regs_buff[81] = adapter->stats.bprc;
454 regs_buff[82] = adapter->stats.mprc;
455 regs_buff[83] = adapter->stats.gptc;
456 regs_buff[84] = adapter->stats.gorc;
457 regs_buff[86] = adapter->stats.gotc;
458 regs_buff[88] = adapter->stats.rnbc;
459 regs_buff[89] = adapter->stats.ruc;
460 regs_buff[90] = adapter->stats.rfc;
461 regs_buff[91] = adapter->stats.roc;
462 regs_buff[92] = adapter->stats.rjc;
463 regs_buff[93] = adapter->stats.mgprc;
464 regs_buff[94] = adapter->stats.mgpdc;
465 regs_buff[95] = adapter->stats.mgptc;
466 regs_buff[96] = adapter->stats.tor;
467 regs_buff[98] = adapter->stats.tot;
468 regs_buff[100] = adapter->stats.tpr;
469 regs_buff[101] = adapter->stats.tpt;
470 regs_buff[102] = adapter->stats.ptc64;
471 regs_buff[103] = adapter->stats.ptc127;
472 regs_buff[104] = adapter->stats.ptc255;
473 regs_buff[105] = adapter->stats.ptc511;
474 regs_buff[106] = adapter->stats.ptc1023;
475 regs_buff[107] = adapter->stats.ptc1522;
476 regs_buff[108] = adapter->stats.mptc;
477 regs_buff[109] = adapter->stats.bptc;
478 regs_buff[110] = adapter->stats.tsctc;
479 regs_buff[111] = adapter->stats.iac;
480 regs_buff[112] = adapter->stats.rpthc;
481 regs_buff[113] = adapter->stats.hgptc;
482 regs_buff[114] = adapter->stats.hgorc;
483 regs_buff[116] = adapter->stats.hgotc;
484 regs_buff[118] = adapter->stats.lenerrs;
485 regs_buff[119] = adapter->stats.scvpc;
486 regs_buff[120] = adapter->stats.hrmpc;
487
488 /* These should probably be added to e1000_regs.h instead */
489 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
9d5c8243
AK
490 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
491 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
492 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
493 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
494 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
495 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
496
497 for (i = 0; i < 4; i++)
498 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
499 for (i = 0; i < 4; i++)
500 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
501 for (i = 0; i < 4; i++)
502 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
503 for (i = 0; i < 4; i++)
504 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
507 for (i = 0; i < 4; i++)
508 regs_buff[141 + i] = rd32(E1000_RDH(i));
509 for (i = 0; i < 4; i++)
510 regs_buff[145 + i] = rd32(E1000_RDT(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
513
514 for (i = 0; i < 10; i++)
515 regs_buff[153 + i] = rd32(E1000_EITR(i));
516 for (i = 0; i < 8; i++)
517 regs_buff[163 + i] = rd32(E1000_IMIR(i));
518 for (i = 0; i < 8; i++)
519 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
520 for (i = 0; i < 16; i++)
521 regs_buff[179 + i] = rd32(E1000_RAL(i));
522 for (i = 0; i < 16; i++)
523 regs_buff[195 + i] = rd32(E1000_RAH(i));
524
525 for (i = 0; i < 4; i++)
526 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
527 for (i = 0; i < 4; i++)
528 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
531 for (i = 0; i < 4; i++)
532 regs_buff[223 + i] = rd32(E1000_TDH(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[227 + i] = rd32(E1000_TDT(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
543
544 for (i = 0; i < 4; i++)
545 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
548 for (i = 0; i < 32; i++)
549 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
550 for (i = 0; i < 128; i++)
551 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
552 for (i = 0; i < 128; i++)
553 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
554 for (i = 0; i < 4; i++)
555 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
556
557 regs_buff[547] = rd32(E1000_TDFH);
558 regs_buff[548] = rd32(E1000_TDFT);
559 regs_buff[549] = rd32(E1000_TDFHS);
560 regs_buff[550] = rd32(E1000_TDFPC);
561
562}
563
564static int igb_get_eeprom_len(struct net_device *netdev)
565{
566 struct igb_adapter *adapter = netdev_priv(netdev);
567 return adapter->hw.nvm.word_size * 2;
568}
569
570static int igb_get_eeprom(struct net_device *netdev,
571 struct ethtool_eeprom *eeprom, u8 *bytes)
572{
573 struct igb_adapter *adapter = netdev_priv(netdev);
574 struct e1000_hw *hw = &adapter->hw;
575 u16 *eeprom_buff;
576 int first_word, last_word;
577 int ret_val = 0;
578 u16 i;
579
580 if (eeprom->len == 0)
581 return -EINVAL;
582
583 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
584
585 first_word = eeprom->offset >> 1;
586 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587
588 eeprom_buff = kmalloc(sizeof(u16) *
589 (last_word - first_word + 1), GFP_KERNEL);
590 if (!eeprom_buff)
591 return -ENOMEM;
592
593 if (hw->nvm.type == e1000_nvm_eeprom_spi)
312c75ae 594 ret_val = hw->nvm.ops.read(hw, first_word,
9d5c8243
AK
595 last_word - first_word + 1,
596 eeprom_buff);
597 else {
598 for (i = 0; i < last_word - first_word + 1; i++) {
312c75ae 599 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
9d5c8243
AK
600 &eeprom_buff[i]);
601 if (ret_val)
602 break;
603 }
604 }
605
606 /* Device's eeprom is always little-endian, word addressable */
607 for (i = 0; i < last_word - first_word + 1; i++)
608 le16_to_cpus(&eeprom_buff[i]);
609
610 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
611 eeprom->len);
612 kfree(eeprom_buff);
613
614 return ret_val;
615}
616
617static int igb_set_eeprom(struct net_device *netdev,
618 struct ethtool_eeprom *eeprom, u8 *bytes)
619{
620 struct igb_adapter *adapter = netdev_priv(netdev);
621 struct e1000_hw *hw = &adapter->hw;
622 u16 *eeprom_buff;
623 void *ptr;
624 int max_len, first_word, last_word, ret_val = 0;
625 u16 i;
626
627 if (eeprom->len == 0)
628 return -EOPNOTSUPP;
629
630 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
631 return -EFAULT;
632
633 max_len = hw->nvm.word_size * 2;
634
635 first_word = eeprom->offset >> 1;
636 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
637 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
638 if (!eeprom_buff)
639 return -ENOMEM;
640
641 ptr = (void *)eeprom_buff;
642
643 if (eeprom->offset & 1) {
644 /* need read/modify/write of first changed EEPROM word */
645 /* only the second byte of the word is being modified */
312c75ae 646 ret_val = hw->nvm.ops.read(hw, first_word, 1,
9d5c8243
AK
647 &eeprom_buff[0]);
648 ptr++;
649 }
650 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
651 /* need read/modify/write of last changed EEPROM word */
652 /* only the first byte of the word is being modified */
312c75ae 653 ret_val = hw->nvm.ops.read(hw, last_word, 1,
9d5c8243
AK
654 &eeprom_buff[last_word - first_word]);
655 }
656
657 /* Device's eeprom is always little-endian, word addressable */
658 for (i = 0; i < last_word - first_word + 1; i++)
659 le16_to_cpus(&eeprom_buff[i]);
660
661 memcpy(ptr, bytes, eeprom->len);
662
663 for (i = 0; i < last_word - first_word + 1; i++)
664 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
665
312c75ae 666 ret_val = hw->nvm.ops.write(hw, first_word,
9d5c8243
AK
667 last_word - first_word + 1, eeprom_buff);
668
669 /* Update the checksum over the first part of the EEPROM if needed
670 * and flush shadow RAM for 82573 controllers */
671 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
672 igb_update_nvm_checksum(hw);
673
674 kfree(eeprom_buff);
675 return ret_val;
676}
677
678static void igb_get_drvinfo(struct net_device *netdev,
679 struct ethtool_drvinfo *drvinfo)
680{
681 struct igb_adapter *adapter = netdev_priv(netdev);
682 char firmware_version[32];
683 u16 eeprom_data;
684
685 strncpy(drvinfo->driver, igb_driver_name, 32);
686 strncpy(drvinfo->version, igb_driver_version, 32);
687
688 /* EEPROM image version # is reported as firmware version # for
689 * 82575 controllers */
312c75ae 690 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
9d5c8243
AK
691 sprintf(firmware_version, "%d.%d-%d",
692 (eeprom_data & 0xF000) >> 12,
693 (eeprom_data & 0x0FF0) >> 4,
694 eeprom_data & 0x000F);
695
696 strncpy(drvinfo->fw_version, firmware_version, 32);
697 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
698 drvinfo->n_stats = IGB_STATS_LEN;
699 drvinfo->testinfo_len = IGB_TEST_LEN;
700 drvinfo->regdump_len = igb_get_regs_len(netdev);
701 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
702}
703
704static void igb_get_ringparam(struct net_device *netdev,
705 struct ethtool_ringparam *ring)
706{
707 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
708
709 ring->rx_max_pending = IGB_MAX_RXD;
710 ring->tx_max_pending = IGB_MAX_TXD;
711 ring->rx_mini_max_pending = 0;
712 ring->rx_jumbo_max_pending = 0;
68fd9910
AD
713 ring->rx_pending = adapter->rx_ring_count;
714 ring->tx_pending = adapter->tx_ring_count;
9d5c8243
AK
715 ring->rx_mini_pending = 0;
716 ring->rx_jumbo_pending = 0;
717}
718
719static int igb_set_ringparam(struct net_device *netdev,
720 struct ethtool_ringparam *ring)
721{
722 struct igb_adapter *adapter = netdev_priv(netdev);
68fd9910 723 struct igb_ring *temp_ring;
9d5c8243 724 int i, err;
68fd9910 725 u32 new_rx_count, new_tx_count;
9d5c8243
AK
726
727 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
728 return -EINVAL;
729
730 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
731 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
732 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
733
734 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
735 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
736 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
737
68fd9910
AD
738 if ((new_tx_count == adapter->tx_ring_count) &&
739 (new_rx_count == adapter->rx_ring_count)) {
9d5c8243
AK
740 /* nothing to do */
741 return 0;
742 }
743
68fd9910
AD
744 if (adapter->num_tx_queues > adapter->num_rx_queues)
745 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
746 else
747 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
748 if (!temp_ring)
749 return -ENOMEM;
750
9d5c8243
AK
751 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
752 msleep(1);
753
754 if (netif_running(adapter->netdev))
755 igb_down(adapter);
756
757 /*
758 * We can't just free everything and then setup again,
759 * because the ISRs in MSI-X mode get passed pointers
760 * to the tx and rx ring structs.
761 */
68fd9910
AD
762 if (new_tx_count != adapter->tx_ring_count) {
763 memcpy(temp_ring, adapter->tx_ring,
764 adapter->num_tx_queues * sizeof(struct igb_ring));
765
9d5c8243 766 for (i = 0; i < adapter->num_tx_queues; i++) {
68fd9910
AD
767 temp_ring[i].count = new_tx_count;
768 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
9d5c8243 769 if (err) {
68fd9910
AD
770 while (i) {
771 i--;
772 igb_free_tx_resources(&temp_ring[i]);
773 }
9d5c8243
AK
774 goto err_setup;
775 }
9d5c8243 776 }
68fd9910
AD
777
778 for (i = 0; i < adapter->num_tx_queues; i++)
779 igb_free_tx_resources(&adapter->tx_ring[i]);
780
781 memcpy(adapter->tx_ring, temp_ring,
782 adapter->num_tx_queues * sizeof(struct igb_ring));
783
784 adapter->tx_ring_count = new_tx_count;
9d5c8243
AK
785 }
786
787 if (new_rx_count != adapter->rx_ring->count) {
68fd9910
AD
788 memcpy(temp_ring, adapter->rx_ring,
789 adapter->num_rx_queues * sizeof(struct igb_ring));
9d5c8243 790
68fd9910
AD
791 for (i = 0; i < adapter->num_rx_queues; i++) {
792 temp_ring[i].count = new_rx_count;
793 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
9d5c8243 794 if (err) {
68fd9910
AD
795 while (i) {
796 i--;
797 igb_free_rx_resources(&temp_ring[i]);
798 }
9d5c8243
AK
799 goto err_setup;
800 }
801
9d5c8243 802 }
68fd9910
AD
803
804 for (i = 0; i < adapter->num_rx_queues; i++)
805 igb_free_rx_resources(&adapter->rx_ring[i]);
806
807 memcpy(adapter->rx_ring, temp_ring,
808 adapter->num_rx_queues * sizeof(struct igb_ring));
809
810 adapter->rx_ring_count = new_rx_count;
9d5c8243
AK
811 }
812
813 err = 0;
814err_setup:
815 if (netif_running(adapter->netdev))
816 igb_up(adapter);
817
818 clear_bit(__IGB_RESETTING, &adapter->state);
68fd9910 819 vfree(temp_ring);
9d5c8243
AK
820 return err;
821}
822
823/* ethtool register test data */
824struct igb_reg_test {
825 u16 reg;
2d064c06
AD
826 u16 reg_offset;
827 u16 array_len;
828 u16 test_type;
9d5c8243
AK
829 u32 mask;
830 u32 write;
831};
832
833/* In the hardware, registers are laid out either singly, in arrays
834 * spaced 0x100 bytes apart, or in contiguous tables. We assume
835 * most tests take place on arrays or single registers (handled
836 * as a single-element array) and special-case the tables.
837 * Table tests are always pattern tests.
838 *
839 * We also make provision for some required setup steps by specifying
840 * registers to be written without any read-back testing.
841 */
842
843#define PATTERN_TEST 1
844#define SET_READ_TEST 2
845#define WRITE_NO_TEST 3
846#define TABLE32_TEST 4
847#define TABLE64_TEST_LO 5
848#define TABLE64_TEST_HI 6
849
2d064c06
AD
850/* 82576 reg test */
851static struct igb_reg_test reg_test_82576[] = {
852 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
853 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
854 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
855 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
856 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
857 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
858 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
859 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
860 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
862 /* Enable all RX queues before testing. */
863 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
864 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
2d064c06
AD
865 /* RDH is read-only for 82576, only test RDT. */
866 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2753f4ce 867 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
2d064c06 868 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
2753f4ce 869 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
2d064c06
AD
870 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
871 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
872 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
873 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
874 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
875 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2753f4ce
AD
876 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
877 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
878 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
2d064c06
AD
879 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
880 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
881 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
882 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
883 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
884 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
885 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
886 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
887 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
888 { 0, 0, 0, 0 }
889};
890
891/* 82575 register test */
9d5c8243 892static struct igb_reg_test reg_test_82575[] = {
2d064c06
AD
893 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
894 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
895 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
896 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
897 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
898 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
899 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
9d5c8243 900 /* Enable all four RX queues before testing. */
2d064c06 901 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
9d5c8243 902 /* RDH is read-only for 82575, only test RDT. */
2d064c06
AD
903 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
904 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
905 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
906 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
907 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
908 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
909 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
910 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
911 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
912 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
913 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
914 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
915 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
916 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
917 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
918 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
9d5c8243
AK
919 { 0, 0, 0, 0 }
920};
921
922static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
923 int reg, u32 mask, u32 write)
924{
2753f4ce 925 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
926 u32 pat, val;
927 u32 _test[] =
928 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
929 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
2753f4ce
AD
930 wr32(reg, (_test[pat] & write));
931 val = rd32(reg);
9d5c8243
AK
932 if (val != (_test[pat] & write & mask)) {
933 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
934 "failed: got 0x%08X expected 0x%08X\n",
935 reg, val, (_test[pat] & write & mask));
936 *data = reg;
937 return 1;
938 }
939 }
940 return 0;
941}
942
943static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
944 int reg, u32 mask, u32 write)
945{
2753f4ce 946 struct e1000_hw *hw = &adapter->hw;
9d5c8243 947 u32 val;
2753f4ce
AD
948 wr32(reg, write & mask);
949 val = rd32(reg);
9d5c8243
AK
950 if ((write & mask) != (val & mask)) {
951 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
952 " got 0x%08X expected 0x%08X\n", reg,
953 (val & mask), (write & mask));
954 *data = reg;
955 return 1;
956 }
957 return 0;
958}
959
960#define REG_PATTERN_TEST(reg, mask, write) \
961 do { \
962 if (reg_pattern_test(adapter, data, reg, mask, write)) \
963 return 1; \
964 } while (0)
965
966#define REG_SET_AND_CHECK(reg, mask, write) \
967 do { \
968 if (reg_set_and_check(adapter, data, reg, mask, write)) \
969 return 1; \
970 } while (0)
971
972static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
973{
974 struct e1000_hw *hw = &adapter->hw;
975 struct igb_reg_test *test;
976 u32 value, before, after;
977 u32 i, toggle;
978
979 toggle = 0x7FFFF3FF;
2d064c06
AD
980
981 switch (adapter->hw.mac.type) {
982 case e1000_82576:
983 test = reg_test_82576;
984 break;
985 default:
986 test = reg_test_82575;
987 break;
988 }
9d5c8243
AK
989
990 /* Because the status register is such a special case,
991 * we handle it separately from the rest of the register
992 * tests. Some bits are read-only, some toggle, and some
993 * are writable on newer MACs.
994 */
995 before = rd32(E1000_STATUS);
996 value = (rd32(E1000_STATUS) & toggle);
997 wr32(E1000_STATUS, toggle);
998 after = rd32(E1000_STATUS) & toggle;
999 if (value != after) {
1000 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1001 "got: 0x%08X expected: 0x%08X\n", after, value);
1002 *data = 1;
1003 return 1;
1004 }
1005 /* restore previous status */
1006 wr32(E1000_STATUS, before);
1007
1008 /* Perform the remainder of the register test, looping through
1009 * the test table until we either fail or reach the null entry.
1010 */
1011 while (test->reg) {
1012 for (i = 0; i < test->array_len; i++) {
1013 switch (test->test_type) {
1014 case PATTERN_TEST:
2753f4ce
AD
1015 REG_PATTERN_TEST(test->reg +
1016 (i * test->reg_offset),
9d5c8243
AK
1017 test->mask,
1018 test->write);
1019 break;
1020 case SET_READ_TEST:
2753f4ce
AD
1021 REG_SET_AND_CHECK(test->reg +
1022 (i * test->reg_offset),
9d5c8243
AK
1023 test->mask,
1024 test->write);
1025 break;
1026 case WRITE_NO_TEST:
1027 writel(test->write,
1028 (adapter->hw.hw_addr + test->reg)
2d064c06 1029 + (i * test->reg_offset));
9d5c8243
AK
1030 break;
1031 case TABLE32_TEST:
1032 REG_PATTERN_TEST(test->reg + (i * 4),
1033 test->mask,
1034 test->write);
1035 break;
1036 case TABLE64_TEST_LO:
1037 REG_PATTERN_TEST(test->reg + (i * 8),
1038 test->mask,
1039 test->write);
1040 break;
1041 case TABLE64_TEST_HI:
1042 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1043 test->mask,
1044 test->write);
1045 break;
1046 }
1047 }
1048 test++;
1049 }
1050
1051 *data = 0;
1052 return 0;
1053}
1054
1055static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1056{
1057 u16 temp;
1058 u16 checksum = 0;
1059 u16 i;
1060
1061 *data = 0;
1062 /* Read and add up the contents of the EEPROM */
1063 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
312c75ae 1064 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
9d5c8243
AK
1065 < 0) {
1066 *data = 1;
1067 break;
1068 }
1069 checksum += temp;
1070 }
1071
1072 /* If Checksum is not Correct return error else test passed */
1073 if ((checksum != (u16) NVM_SUM) && !(*data))
1074 *data = 2;
1075
1076 return *data;
1077}
1078
1079static irqreturn_t igb_test_intr(int irq, void *data)
1080{
1081 struct net_device *netdev = (struct net_device *) data;
1082 struct igb_adapter *adapter = netdev_priv(netdev);
1083 struct e1000_hw *hw = &adapter->hw;
1084
1085 adapter->test_icr |= rd32(E1000_ICR);
1086
1087 return IRQ_HANDLED;
1088}
1089
1090static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1091{
1092 struct e1000_hw *hw = &adapter->hw;
1093 struct net_device *netdev = adapter->netdev;
2753f4ce 1094 u32 mask, ics_mask, i = 0, shared_int = true;
9d5c8243
AK
1095 u32 irq = adapter->pdev->irq;
1096
1097 *data = 0;
1098
1099 /* Hook up test interrupt handler just for this test */
2753f4ce 1100 if (adapter->msix_entries)
9d5c8243
AK
1101 /* NOTE: we don't test MSI-X interrupts here, yet */
1102 return 0;
2753f4ce
AD
1103
1104 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
1105 shared_int = false;
1106 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1107 *data = 1;
1108 return -1;
1109 }
1110 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1111 netdev->name, netdev)) {
1112 shared_int = false;
1113 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1114 netdev->name, netdev)) {
1115 *data = 1;
1116 return -1;
1117 }
1118 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1119 (shared_int ? "shared" : "unshared"));
9d5c8243
AK
1120 /* Disable all the interrupts */
1121 wr32(E1000_IMC, 0xFFFFFFFF);
1122 msleep(10);
1123
2753f4ce
AD
1124 /* Define all writable bits for ICS */
1125 switch(hw->mac.type) {
1126 case e1000_82575:
1127 ics_mask = 0x37F47EDD;
1128 break;
1129 case e1000_82576:
1130 ics_mask = 0x77D4FBFD;
1131 break;
1132 default:
1133 ics_mask = 0x7FFFFFFF;
1134 break;
1135 }
1136
9d5c8243 1137 /* Test each interrupt */
2753f4ce 1138 for (; i < 31; i++) {
9d5c8243
AK
1139 /* Interrupt to test */
1140 mask = 1 << i;
1141
2753f4ce
AD
1142 if (!(mask & ics_mask))
1143 continue;
1144
9d5c8243
AK
1145 if (!shared_int) {
1146 /* Disable the interrupt to be reported in
1147 * the cause register and then force the same
1148 * interrupt and see if one gets posted. If
1149 * an interrupt was posted to the bus, the
1150 * test failed.
1151 */
1152 adapter->test_icr = 0;
2753f4ce
AD
1153
1154 /* Flush any pending interrupts */
1155 wr32(E1000_ICR, ~0);
1156
1157 wr32(E1000_IMC, mask);
1158 wr32(E1000_ICS, mask);
9d5c8243
AK
1159 msleep(10);
1160
1161 if (adapter->test_icr & mask) {
1162 *data = 3;
1163 break;
1164 }
1165 }
1166
1167 /* Enable the interrupt to be reported in
1168 * the cause register and then force the same
1169 * interrupt and see if one gets posted. If
1170 * an interrupt was not posted to the bus, the
1171 * test failed.
1172 */
1173 adapter->test_icr = 0;
2753f4ce
AD
1174
1175 /* Flush any pending interrupts */
1176 wr32(E1000_ICR, ~0);
1177
9d5c8243
AK
1178 wr32(E1000_IMS, mask);
1179 wr32(E1000_ICS, mask);
1180 msleep(10);
1181
1182 if (!(adapter->test_icr & mask)) {
1183 *data = 4;
1184 break;
1185 }
1186
1187 if (!shared_int) {
1188 /* Disable the other interrupts to be reported in
1189 * the cause register and then force the other
1190 * interrupts and see if any get posted. If
1191 * an interrupt was posted to the bus, the
1192 * test failed.
1193 */
1194 adapter->test_icr = 0;
2753f4ce
AD
1195
1196 /* Flush any pending interrupts */
1197 wr32(E1000_ICR, ~0);
1198
1199 wr32(E1000_IMC, ~mask);
1200 wr32(E1000_ICS, ~mask);
9d5c8243
AK
1201 msleep(10);
1202
2753f4ce 1203 if (adapter->test_icr & mask) {
9d5c8243
AK
1204 *data = 5;
1205 break;
1206 }
1207 }
1208 }
1209
1210 /* Disable all the interrupts */
2753f4ce 1211 wr32(E1000_IMC, ~0);
9d5c8243
AK
1212 msleep(10);
1213
1214 /* Unhook test interrupt handler */
1215 free_irq(irq, netdev);
1216
1217 return *data;
1218}
1219
1220static void igb_free_desc_rings(struct igb_adapter *adapter)
1221{
1222 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1223 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1224 struct pci_dev *pdev = adapter->pdev;
1225 int i;
1226
1227 if (tx_ring->desc && tx_ring->buffer_info) {
1228 for (i = 0; i < tx_ring->count; i++) {
1229 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1230 if (buf->dma)
1231 pci_unmap_single(pdev, buf->dma, buf->length,
1232 PCI_DMA_TODEVICE);
1233 if (buf->skb)
1234 dev_kfree_skb(buf->skb);
1235 }
1236 }
1237
1238 if (rx_ring->desc && rx_ring->buffer_info) {
1239 for (i = 0; i < rx_ring->count; i++) {
1240 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1241 if (buf->dma)
1242 pci_unmap_single(pdev, buf->dma,
1243 IGB_RXBUFFER_2048,
1244 PCI_DMA_FROMDEVICE);
1245 if (buf->skb)
1246 dev_kfree_skb(buf->skb);
1247 }
1248 }
1249
1250 if (tx_ring->desc) {
1251 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1252 tx_ring->dma);
1253 tx_ring->desc = NULL;
1254 }
1255 if (rx_ring->desc) {
1256 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1257 rx_ring->dma);
1258 rx_ring->desc = NULL;
1259 }
1260
1261 kfree(tx_ring->buffer_info);
1262 tx_ring->buffer_info = NULL;
1263 kfree(rx_ring->buffer_info);
1264 rx_ring->buffer_info = NULL;
1265
1266 return;
1267}
1268
1269static int igb_setup_desc_rings(struct igb_adapter *adapter)
1270{
1271 struct e1000_hw *hw = &adapter->hw;
1272 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1273 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1274 struct pci_dev *pdev = adapter->pdev;
85e8d004 1275 struct igb_buffer *buffer_info;
9d5c8243
AK
1276 u32 rctl;
1277 int i, ret_val;
1278
1279 /* Setup Tx descriptor ring and Tx buffers */
1280
1281 if (!tx_ring->count)
1282 tx_ring->count = IGB_DEFAULT_TXD;
1283
1284 tx_ring->buffer_info = kcalloc(tx_ring->count,
1285 sizeof(struct igb_buffer),
1286 GFP_KERNEL);
1287 if (!tx_ring->buffer_info) {
1288 ret_val = 1;
1289 goto err_nomem;
1290 }
1291
85e8d004 1292 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1293 tx_ring->size = ALIGN(tx_ring->size, 4096);
1294 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1295 &tx_ring->dma);
1296 if (!tx_ring->desc) {
1297 ret_val = 2;
1298 goto err_nomem;
1299 }
1300 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1301
1302 wr32(E1000_TDBAL(0),
1303 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1304 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1305 wr32(E1000_TDLEN(0),
85e8d004 1306 tx_ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243
AK
1307 wr32(E1000_TDH(0), 0);
1308 wr32(E1000_TDT(0), 0);
1309 wr32(E1000_TCTL,
1310 E1000_TCTL_PSP | E1000_TCTL_EN |
1311 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1312 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1313
1314 for (i = 0; i < tx_ring->count; i++) {
85e8d004 1315 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
1316 struct sk_buff *skb;
1317 unsigned int size = 1024;
1318
85e8d004 1319 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243
AK
1320 skb = alloc_skb(size, GFP_KERNEL);
1321 if (!skb) {
1322 ret_val = 3;
1323 goto err_nomem;
1324 }
1325 skb_put(skb, size);
85e8d004
AD
1326 buffer_info = &tx_ring->buffer_info[i];
1327 buffer_info->skb = skb;
1328 buffer_info->length = skb->len;
1329 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1330 PCI_DMA_TODEVICE);
1331 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1332 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1333 E1000_ADVTXD_PAYLEN_SHIFT;
1334 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1335 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1336 E1000_TXD_CMD_IFCS |
1337 E1000_TXD_CMD_RS |
1338 E1000_ADVTXD_DTYP_DATA |
1339 E1000_ADVTXD_DCMD_DEXT);
9d5c8243
AK
1340 }
1341
1342 /* Setup Rx descriptor ring and Rx buffers */
1343
1344 if (!rx_ring->count)
1345 rx_ring->count = IGB_DEFAULT_RXD;
1346
1347 rx_ring->buffer_info = kcalloc(rx_ring->count,
1348 sizeof(struct igb_buffer),
1349 GFP_KERNEL);
1350 if (!rx_ring->buffer_info) {
1351 ret_val = 4;
1352 goto err_nomem;
1353 }
1354
85e8d004 1355 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
1356 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1357 &rx_ring->dma);
1358 if (!rx_ring->desc) {
1359 ret_val = 5;
1360 goto err_nomem;
1361 }
1362 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1363
1364 rctl = rd32(E1000_RCTL);
1365 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1366 wr32(E1000_RDBAL(0),
1367 ((u64) rx_ring->dma & 0xFFFFFFFF));
1368 wr32(E1000_RDBAH(0),
1369 ((u64) rx_ring->dma >> 32));
1370 wr32(E1000_RDLEN(0), rx_ring->size);
1371 wr32(E1000_RDH(0), 0);
1372 wr32(E1000_RDT(0), 0);
69d728ba 1373 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
cbd347ad 1374 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
9d5c8243
AK
1375 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1376 wr32(E1000_RCTL, rctl);
85e8d004 1377 wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
9d5c8243
AK
1378
1379 for (i = 0; i < rx_ring->count; i++) {
85e8d004 1380 union e1000_adv_rx_desc *rx_desc;
9d5c8243
AK
1381 struct sk_buff *skb;
1382
85e8d004
AD
1383 buffer_info = &rx_ring->buffer_info[i];
1384 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
9d5c8243
AK
1385 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1386 GFP_KERNEL);
1387 if (!skb) {
1388 ret_val = 6;
1389 goto err_nomem;
1390 }
1391 skb_reserve(skb, NET_IP_ALIGN);
85e8d004
AD
1392 buffer_info->skb = skb;
1393 buffer_info->dma = pci_map_single(pdev, skb->data,
1394 IGB_RXBUFFER_2048,
1395 PCI_DMA_FROMDEVICE);
1396 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
1397 memset(skb->data, 0x00, skb->len);
1398 }
1399
1400 return 0;
1401
1402err_nomem:
1403 igb_free_desc_rings(adapter);
1404 return ret_val;
1405}
1406
1407static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1408{
1409 struct e1000_hw *hw = &adapter->hw;
1410
1411 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
f5f4cf08
AD
1412 igb_write_phy_reg(hw, 29, 0x001F);
1413 igb_write_phy_reg(hw, 30, 0x8FFC);
1414 igb_write_phy_reg(hw, 29, 0x001A);
1415 igb_write_phy_reg(hw, 30, 0x8FF0);
9d5c8243
AK
1416}
1417
1418static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1419{
1420 struct e1000_hw *hw = &adapter->hw;
1421 u32 ctrl_reg = 0;
1422 u32 stat_reg = 0;
1423
1424 hw->mac.autoneg = false;
1425
1426 if (hw->phy.type == e1000_phy_m88) {
1427 /* Auto-MDI/MDIX Off */
f5f4cf08 1428 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
9d5c8243 1429 /* reset to update Auto-MDI/MDIX */
f5f4cf08 1430 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
9d5c8243 1431 /* autoneg off */
f5f4cf08 1432 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
9d5c8243
AK
1433 }
1434
1435 ctrl_reg = rd32(E1000_CTRL);
1436
1437 /* force 1000, set loopback */
f5f4cf08 1438 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
9d5c8243
AK
1439
1440 /* Now set up the MAC to the same speed/duplex as the PHY. */
1441 ctrl_reg = rd32(E1000_CTRL);
1442 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1443 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1444 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1445 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1446 E1000_CTRL_FD); /* Force Duplex to FULL */
1447
1448 if (hw->phy.media_type == e1000_media_type_copper &&
1449 hw->phy.type == e1000_phy_m88)
1450 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1451 else {
1452 /* Set the ILOS bit on the fiber Nic if half duplex link is
1453 * detected. */
1454 stat_reg = rd32(E1000_STATUS);
1455 if ((stat_reg & E1000_STATUS_FD) == 0)
1456 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1457 }
1458
1459 wr32(E1000_CTRL, ctrl_reg);
1460
1461 /* Disable the receiver on the PHY so when a cable is plugged in, the
1462 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1463 */
1464 if (hw->phy.type == e1000_phy_m88)
1465 igb_phy_disable_receiver(adapter);
1466
1467 udelay(500);
1468
1469 return 0;
1470}
1471
1472static int igb_set_phy_loopback(struct igb_adapter *adapter)
1473{
1474 return igb_integrated_phy_loopback(adapter);
1475}
1476
1477static int igb_setup_loopback_test(struct igb_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
2d064c06 1480 u32 reg;
9d5c8243
AK
1481
1482 if (hw->phy.media_type == e1000_media_type_fiber ||
1483 hw->phy.media_type == e1000_media_type_internal_serdes) {
2d064c06
AD
1484 reg = rd32(E1000_RCTL);
1485 reg |= E1000_RCTL_LBM_TCVR;
1486 wr32(E1000_RCTL, reg);
1487
1488 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1489
1490 reg = rd32(E1000_CTRL);
1491 reg &= ~(E1000_CTRL_RFCE |
1492 E1000_CTRL_TFCE |
1493 E1000_CTRL_LRST);
1494 reg |= E1000_CTRL_SLU |
2753f4ce 1495 E1000_CTRL_FD;
2d064c06
AD
1496 wr32(E1000_CTRL, reg);
1497
1498 /* Unset switch control to serdes energy detect */
1499 reg = rd32(E1000_CONNSW);
1500 reg &= ~E1000_CONNSW_ENRGSRC;
1501 wr32(E1000_CONNSW, reg);
1502
1503 /* Set PCS register for forced speed */
1504 reg = rd32(E1000_PCS_LCTL);
1505 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1506 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1507 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1508 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1509 E1000_PCS_LCTL_FSD | /* Force Speed */
1510 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1511 wr32(E1000_PCS_LCTL, reg);
1512
9d5c8243
AK
1513 return 0;
1514 } else if (hw->phy.media_type == e1000_media_type_copper) {
1515 return igb_set_phy_loopback(adapter);
1516 }
1517
1518 return 7;
1519}
1520
1521static void igb_loopback_cleanup(struct igb_adapter *adapter)
1522{
1523 struct e1000_hw *hw = &adapter->hw;
1524 u32 rctl;
1525 u16 phy_reg;
1526
1527 rctl = rd32(E1000_RCTL);
1528 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1529 wr32(E1000_RCTL, rctl);
1530
1531 hw->mac.autoneg = true;
f5f4cf08 1532 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
9d5c8243
AK
1533 if (phy_reg & MII_CR_LOOPBACK) {
1534 phy_reg &= ~MII_CR_LOOPBACK;
f5f4cf08 1535 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
9d5c8243
AK
1536 igb_phy_sw_reset(hw);
1537 }
1538}
1539
1540static void igb_create_lbtest_frame(struct sk_buff *skb,
1541 unsigned int frame_size)
1542{
1543 memset(skb->data, 0xFF, frame_size);
1544 frame_size &= ~1;
1545 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1546 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1547 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1548}
1549
1550static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1551{
1552 frame_size &= ~1;
1553 if (*(skb->data + 3) == 0xFF)
1554 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1555 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1556 return 0;
1557 return 13;
1558}
1559
1560static int igb_run_loopback_test(struct igb_adapter *adapter)
1561{
1562 struct e1000_hw *hw = &adapter->hw;
1563 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1564 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1565 struct pci_dev *pdev = adapter->pdev;
1566 int i, j, k, l, lc, good_cnt;
1567 int ret_val = 0;
1568 unsigned long time;
1569
1570 wr32(E1000_RDT(0), rx_ring->count - 1);
1571
1572 /* Calculate the loop count based on the largest descriptor ring
1573 * The idea is to wrap the largest ring a number of times using 64
1574 * send/receive pairs during each loop
1575 */
1576
1577 if (rx_ring->count <= tx_ring->count)
1578 lc = ((tx_ring->count / 64) * 2) + 1;
1579 else
1580 lc = ((rx_ring->count / 64) * 2) + 1;
1581
1582 k = l = 0;
1583 for (j = 0; j <= lc; j++) { /* loop count loop */
1584 for (i = 0; i < 64; i++) { /* send the packets */
1585 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1586 1024);
1587 pci_dma_sync_single_for_device(pdev,
1588 tx_ring->buffer_info[k].dma,
1589 tx_ring->buffer_info[k].length,
1590 PCI_DMA_TODEVICE);
1591 k++;
1592 if (k == tx_ring->count)
1593 k = 0;
1594 }
1595 wr32(E1000_TDT(0), k);
1596 msleep(200);
1597 time = jiffies; /* set the start time for the receive */
1598 good_cnt = 0;
1599 do { /* receive the sent packets */
1600 pci_dma_sync_single_for_cpu(pdev,
1601 rx_ring->buffer_info[l].dma,
1602 IGB_RXBUFFER_2048,
1603 PCI_DMA_FROMDEVICE);
1604
1605 ret_val = igb_check_lbtest_frame(
1606 rx_ring->buffer_info[l].skb, 1024);
1607 if (!ret_val)
1608 good_cnt++;
1609 l++;
1610 if (l == rx_ring->count)
1611 l = 0;
1612 /* time + 20 msecs (200 msecs on 2.4) is more than
1613 * enough time to complete the receives, if it's
1614 * exceeded, break and error off
1615 */
1616 } while (good_cnt < 64 && jiffies < (time + 20));
1617 if (good_cnt != 64) {
1618 ret_val = 13; /* ret_val is the same as mis-compare */
1619 break;
1620 }
1621 if (jiffies >= (time + 20)) {
1622 ret_val = 14; /* error code for time out error */
1623 break;
1624 }
1625 } /* end loop count loop */
1626 return ret_val;
1627}
1628
1629static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1630{
1631 /* PHY loopback cannot be performed if SoL/IDER
1632 * sessions are active */
1633 if (igb_check_reset_block(&adapter->hw)) {
1634 dev_err(&adapter->pdev->dev,
1635 "Cannot do PHY loopback test "
1636 "when SoL/IDER is active.\n");
1637 *data = 0;
1638 goto out;
1639 }
1640 *data = igb_setup_desc_rings(adapter);
1641 if (*data)
1642 goto out;
1643 *data = igb_setup_loopback_test(adapter);
1644 if (*data)
1645 goto err_loopback;
1646 *data = igb_run_loopback_test(adapter);
1647 igb_loopback_cleanup(adapter);
1648
1649err_loopback:
1650 igb_free_desc_rings(adapter);
1651out:
1652 return *data;
1653}
1654
1655static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1656{
1657 struct e1000_hw *hw = &adapter->hw;
1658 *data = 0;
1659 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1660 int i = 0;
1661 hw->mac.serdes_has_link = false;
1662
1663 /* On some blade server designs, link establishment
1664 * could take as long as 2-3 minutes */
1665 do {
1666 hw->mac.ops.check_for_link(&adapter->hw);
1667 if (hw->mac.serdes_has_link)
1668 return *data;
1669 msleep(20);
1670 } while (i++ < 3750);
1671
1672 *data = 1;
1673 } else {
1674 hw->mac.ops.check_for_link(&adapter->hw);
1675 if (hw->mac.autoneg)
1676 msleep(4000);
1677
1678 if (!(rd32(E1000_STATUS) &
1679 E1000_STATUS_LU))
1680 *data = 1;
1681 }
1682 return *data;
1683}
1684
1685static void igb_diag_test(struct net_device *netdev,
1686 struct ethtool_test *eth_test, u64 *data)
1687{
1688 struct igb_adapter *adapter = netdev_priv(netdev);
1689 u16 autoneg_advertised;
1690 u8 forced_speed_duplex, autoneg;
1691 bool if_running = netif_running(netdev);
1692
1693 set_bit(__IGB_TESTING, &adapter->state);
1694 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1695 /* Offline tests */
1696
1697 /* save speed, duplex, autoneg settings */
1698 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1699 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1700 autoneg = adapter->hw.mac.autoneg;
1701
1702 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1703
1704 /* Link test performed before hardware reset so autoneg doesn't
1705 * interfere with test result */
1706 if (igb_link_test(adapter, &data[4]))
1707 eth_test->flags |= ETH_TEST_FL_FAILED;
1708
1709 if (if_running)
1710 /* indicate we're in test mode */
1711 dev_close(netdev);
1712 else
1713 igb_reset(adapter);
1714
1715 if (igb_reg_test(adapter, &data[0]))
1716 eth_test->flags |= ETH_TEST_FL_FAILED;
1717
1718 igb_reset(adapter);
1719 if (igb_eeprom_test(adapter, &data[1]))
1720 eth_test->flags |= ETH_TEST_FL_FAILED;
1721
1722 igb_reset(adapter);
1723 if (igb_intr_test(adapter, &data[2]))
1724 eth_test->flags |= ETH_TEST_FL_FAILED;
1725
1726 igb_reset(adapter);
1727 if (igb_loopback_test(adapter, &data[3]))
1728 eth_test->flags |= ETH_TEST_FL_FAILED;
1729
1730 /* restore speed, duplex, autoneg settings */
1731 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1732 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1733 adapter->hw.mac.autoneg = autoneg;
1734
1735 /* force this routine to wait until autoneg complete/timeout */
1736 adapter->hw.phy.autoneg_wait_to_complete = true;
1737 igb_reset(adapter);
1738 adapter->hw.phy.autoneg_wait_to_complete = false;
1739
1740 clear_bit(__IGB_TESTING, &adapter->state);
1741 if (if_running)
1742 dev_open(netdev);
1743 } else {
1744 dev_info(&adapter->pdev->dev, "online testing starting\n");
1745 /* Online tests */
1746 if (igb_link_test(adapter, &data[4]))
1747 eth_test->flags |= ETH_TEST_FL_FAILED;
1748
1749 /* Online tests aren't run; pass by default */
1750 data[0] = 0;
1751 data[1] = 0;
1752 data[2] = 0;
1753 data[3] = 0;
1754
1755 clear_bit(__IGB_TESTING, &adapter->state);
1756 }
1757 msleep_interruptible(4 * 1000);
1758}
1759
1760static int igb_wol_exclusion(struct igb_adapter *adapter,
1761 struct ethtool_wolinfo *wol)
1762{
1763 struct e1000_hw *hw = &adapter->hw;
1764 int retval = 1; /* fail by default */
1765
1766 switch (hw->device_id) {
1767 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1768 /* WoL not supported */
1769 wol->supported = 0;
1770 break;
1771 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1772 case E1000_DEV_ID_82576_FIBER:
1773 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1774 /* Wake events not supported on port B */
1775 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1776 wol->supported = 0;
1777 break;
1778 }
7dfc16fa
AD
1779 /* return success for non excluded adapter ports */
1780 retval = 0;
1781 break;
9d5c8243
AK
1782 default:
1783 /* dual port cards only support WoL on port A from now on
1784 * unless it was enabled in the eeprom for port B
1785 * so exclude FUNC_1 ports from having WoL enabled */
1786 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1787 !adapter->eeprom_wol) {
1788 wol->supported = 0;
1789 break;
1790 }
1791
1792 retval = 0;
1793 }
1794
1795 return retval;
1796}
1797
1798static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1799{
1800 struct igb_adapter *adapter = netdev_priv(netdev);
1801
1802 wol->supported = WAKE_UCAST | WAKE_MCAST |
1803 WAKE_BCAST | WAKE_MAGIC;
1804 wol->wolopts = 0;
1805
1806 /* this function will set ->supported = 0 and return 1 if wol is not
1807 * supported by this hardware */
e1b86d84
RW
1808 if (igb_wol_exclusion(adapter, wol) ||
1809 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1810 return;
1811
1812 /* apply any specific unsupported masks here */
1813 switch (adapter->hw.device_id) {
1814 default:
1815 break;
1816 }
1817
1818 if (adapter->wol & E1000_WUFC_EX)
1819 wol->wolopts |= WAKE_UCAST;
1820 if (adapter->wol & E1000_WUFC_MC)
1821 wol->wolopts |= WAKE_MCAST;
1822 if (adapter->wol & E1000_WUFC_BC)
1823 wol->wolopts |= WAKE_BCAST;
1824 if (adapter->wol & E1000_WUFC_MAG)
1825 wol->wolopts |= WAKE_MAGIC;
1826
1827 return;
1828}
1829
1830static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1831{
1832 struct igb_adapter *adapter = netdev_priv(netdev);
1833 struct e1000_hw *hw = &adapter->hw;
1834
1835 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1836 return -EOPNOTSUPP;
1837
e1b86d84
RW
1838 if (igb_wol_exclusion(adapter, wol) ||
1839 !device_can_wakeup(&adapter->pdev->dev))
9d5c8243
AK
1840 return wol->wolopts ? -EOPNOTSUPP : 0;
1841
1842 switch (hw->device_id) {
1843 default:
1844 break;
1845 }
1846
1847 /* these settings will always override what we currently have */
1848 adapter->wol = 0;
1849
1850 if (wol->wolopts & WAKE_UCAST)
1851 adapter->wol |= E1000_WUFC_EX;
1852 if (wol->wolopts & WAKE_MCAST)
1853 adapter->wol |= E1000_WUFC_MC;
1854 if (wol->wolopts & WAKE_BCAST)
1855 adapter->wol |= E1000_WUFC_BC;
1856 if (wol->wolopts & WAKE_MAGIC)
1857 adapter->wol |= E1000_WUFC_MAG;
1858
e1b86d84
RW
1859 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1860
9d5c8243
AK
1861 return 0;
1862}
1863
9d5c8243
AK
1864/* bit defines for adapter->led_status */
1865#define IGB_LED_ON 0
1866
1867static int igb_phys_id(struct net_device *netdev, u32 data)
1868{
1869 struct igb_adapter *adapter = netdev_priv(netdev);
1870 struct e1000_hw *hw = &adapter->hw;
1871
1872 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1873 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1874
1875 igb_blink_led(hw);
1876 msleep_interruptible(data * 1000);
1877
1878 igb_led_off(hw);
1879 clear_bit(IGB_LED_ON, &adapter->led_status);
1880 igb_cleanup_led(hw);
1881
1882 return 0;
1883}
1884
1885static int igb_set_coalesce(struct net_device *netdev,
1886 struct ethtool_coalesce *ec)
1887{
1888 struct igb_adapter *adapter = netdev_priv(netdev);
6eb5a7f1
AD
1889 struct e1000_hw *hw = &adapter->hw;
1890 int i;
9d5c8243
AK
1891
1892 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1893 ((ec->rx_coalesce_usecs > 3) &&
1894 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1895 (ec->rx_coalesce_usecs == 2))
1896 return -EINVAL;
1897
1898 /* convert to rate of irq's per second */
6eb5a7f1 1899 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
9d5c8243 1900 adapter->itr_setting = ec->rx_coalesce_usecs;
6eb5a7f1
AD
1901 adapter->itr = IGB_START_ITR;
1902 } else {
1903 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1904 adapter->itr = adapter->itr_setting;
1905 }
9d5c8243 1906
6eb5a7f1
AD
1907 for (i = 0; i < adapter->num_rx_queues; i++)
1908 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
9d5c8243
AK
1909
1910 return 0;
1911}
1912
1913static int igb_get_coalesce(struct net_device *netdev,
1914 struct ethtool_coalesce *ec)
1915{
1916 struct igb_adapter *adapter = netdev_priv(netdev);
1917
1918 if (adapter->itr_setting <= 3)
1919 ec->rx_coalesce_usecs = adapter->itr_setting;
1920 else
6eb5a7f1 1921 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
9d5c8243
AK
1922
1923 return 0;
1924}
1925
1926
1927static int igb_nway_reset(struct net_device *netdev)
1928{
1929 struct igb_adapter *adapter = netdev_priv(netdev);
1930 if (netif_running(netdev))
1931 igb_reinit_locked(adapter);
1932 return 0;
1933}
1934
1935static int igb_get_sset_count(struct net_device *netdev, int sset)
1936{
1937 switch (sset) {
1938 case ETH_SS_STATS:
1939 return IGB_STATS_LEN;
1940 case ETH_SS_TEST:
1941 return IGB_TEST_LEN;
1942 default:
1943 return -ENOTSUPP;
1944 }
1945}
1946
1947static void igb_get_ethtool_stats(struct net_device *netdev,
1948 struct ethtool_stats *stats, u64 *data)
1949{
1950 struct igb_adapter *adapter = netdev_priv(netdev);
1951 u64 *queue_stat;
1952 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1953 int j;
1954 int i;
1955
1956 igb_update_stats(adapter);
1957 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1958 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1959 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1960 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1961 }
e21ed353
AD
1962 for (j = 0; j < adapter->num_tx_queues; j++) {
1963 int k;
1964 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1965 for (k = 0; k < stat_count; k++)
1966 data[i + k] = queue_stat[k];
1967 i += k;
1968 }
9d5c8243
AK
1969 for (j = 0; j < adapter->num_rx_queues; j++) {
1970 int k;
1971 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1972 for (k = 0; k < stat_count; k++)
1973 data[i + k] = queue_stat[k];
1974 i += k;
1975 }
1976}
1977
1978static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1979{
1980 struct igb_adapter *adapter = netdev_priv(netdev);
1981 u8 *p = data;
1982 int i;
1983
1984 switch (stringset) {
1985 case ETH_SS_TEST:
1986 memcpy(data, *igb_gstrings_test,
1987 IGB_TEST_LEN*ETH_GSTRING_LEN);
1988 break;
1989 case ETH_SS_STATS:
1990 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1991 memcpy(p, igb_gstrings_stats[i].stat_string,
1992 ETH_GSTRING_LEN);
1993 p += ETH_GSTRING_LEN;
1994 }
1995 for (i = 0; i < adapter->num_tx_queues; i++) {
1996 sprintf(p, "tx_queue_%u_packets", i);
1997 p += ETH_GSTRING_LEN;
1998 sprintf(p, "tx_queue_%u_bytes", i);
1999 p += ETH_GSTRING_LEN;
2000 }
2001 for (i = 0; i < adapter->num_rx_queues; i++) {
2002 sprintf(p, "rx_queue_%u_packets", i);
2003 p += ETH_GSTRING_LEN;
2004 sprintf(p, "rx_queue_%u_bytes", i);
2005 p += ETH_GSTRING_LEN;
2006 }
2007/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2008 break;
2009 }
2010}
2011
2012static struct ethtool_ops igb_ethtool_ops = {
2013 .get_settings = igb_get_settings,
2014 .set_settings = igb_set_settings,
2015 .get_drvinfo = igb_get_drvinfo,
2016 .get_regs_len = igb_get_regs_len,
2017 .get_regs = igb_get_regs,
2018 .get_wol = igb_get_wol,
2019 .set_wol = igb_set_wol,
2020 .get_msglevel = igb_get_msglevel,
2021 .set_msglevel = igb_set_msglevel,
2022 .nway_reset = igb_nway_reset,
2023 .get_link = ethtool_op_get_link,
2024 .get_eeprom_len = igb_get_eeprom_len,
2025 .get_eeprom = igb_get_eeprom,
2026 .set_eeprom = igb_set_eeprom,
2027 .get_ringparam = igb_get_ringparam,
2028 .set_ringparam = igb_set_ringparam,
2029 .get_pauseparam = igb_get_pauseparam,
2030 .set_pauseparam = igb_set_pauseparam,
2031 .get_rx_csum = igb_get_rx_csum,
2032 .set_rx_csum = igb_set_rx_csum,
2033 .get_tx_csum = igb_get_tx_csum,
2034 .set_tx_csum = igb_set_tx_csum,
2035 .get_sg = ethtool_op_get_sg,
2036 .set_sg = ethtool_op_set_sg,
2037 .get_tso = ethtool_op_get_tso,
2038 .set_tso = igb_set_tso,
2039 .self_test = igb_diag_test,
2040 .get_strings = igb_get_strings,
2041 .phys_id = igb_phys_id,
2042 .get_sset_count = igb_get_sset_count,
2043 .get_ethtool_stats = igb_get_ethtool_stats,
2044 .get_coalesce = igb_get_coalesce,
2045 .set_coalesce = igb_set_coalesce,
2046};
2047
2048void igb_set_ethtool_ops(struct net_device *netdev)
2049{
2050 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2051}