]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/igb/e1000_82575.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / drivers / net / igb / e1000_82575.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#include <linux/types.h>
2d064c06 33#include <linux/if_ether.h>
9d5c8243
AK
34
35#include "e1000_mac.h"
36#include "e1000_82575.h"
37
38static s32 igb_get_invariants_82575(struct e1000_hw *);
39static s32 igb_acquire_phy_82575(struct e1000_hw *);
40static void igb_release_phy_82575(struct e1000_hw *);
41static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42static void igb_release_nvm_82575(struct e1000_hw *);
43static s32 igb_check_for_link_82575(struct e1000_hw *);
44static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45static s32 igb_init_hw_82575(struct e1000_hw *);
46static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
bb2ac47b
AD
48static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
9d5c8243 50static s32 igb_reset_hw_82575(struct e1000_hw *);
bb2ac47b 51static s32 igb_reset_hw_82580(struct e1000_hw *);
9d5c8243
AK
52static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53static s32 igb_setup_copper_link_82575(struct e1000_hw *);
2fb02a26 54static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
9d5c8243
AK
55static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
9d5c8243
AK
58static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 u16 *);
60static s32 igb_get_phy_id_82575(struct e1000_hw *);
61static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62static bool igb_sgmii_active_82575(struct e1000_hw *);
63static s32 igb_reset_init_script_82575(struct e1000_hw *);
64static s32 igb_read_mac_addr_82575(struct e1000_hw *);
009bc06e 65static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
99870a73 66static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
9d5c8243 67
bb2ac47b
AD
68static const u16 e1000_82580_rxpbs_table[] =
69 { 36, 72, 144, 1, 2, 4, 8, 16,
70 35, 70, 140 };
71#define E1000_82580_RXPBS_TABLE_SIZE \
72 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
73
4085f746
NN
74/**
75 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
76 * @hw: pointer to the HW structure
77 *
78 * Called to determine if the I2C pins are being used for I2C or as an
79 * external MDIO interface since the two options are mutually exclusive.
80 **/
81static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
82{
83 u32 reg = 0;
84 bool ext_mdio = false;
85
86 switch (hw->mac.type) {
87 case e1000_82575:
88 case e1000_82576:
89 reg = rd32(E1000_MDIC);
90 ext_mdio = !!(reg & E1000_MDIC_DEST);
91 break;
92 case e1000_82580:
93 case e1000_i350:
94 reg = rd32(E1000_MDICNFG);
95 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
96 break;
97 default:
98 break;
99 }
100 return ext_mdio;
101}
102
9d5c8243
AK
103static s32 igb_get_invariants_82575(struct e1000_hw *hw)
104{
105 struct e1000_phy_info *phy = &hw->phy;
106 struct e1000_nvm_info *nvm = &hw->nvm;
107 struct e1000_mac_info *mac = &hw->mac;
c1889bfe 108 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
9d5c8243
AK
109 u32 eecd;
110 s32 ret_val;
111 u16 size;
112 u32 ctrl_ext = 0;
113
114 switch (hw->device_id) {
115 case E1000_DEV_ID_82575EB_COPPER:
116 case E1000_DEV_ID_82575EB_FIBER_SERDES:
117 case E1000_DEV_ID_82575GB_QUAD_COPPER:
118 mac->type = e1000_82575;
119 break;
2d064c06 120 case E1000_DEV_ID_82576:
9eb2341d 121 case E1000_DEV_ID_82576_NS:
747d49ba 122 case E1000_DEV_ID_82576_NS_SERDES:
2d064c06
AD
123 case E1000_DEV_ID_82576_FIBER:
124 case E1000_DEV_ID_82576_SERDES:
c8ea5ea9 125 case E1000_DEV_ID_82576_QUAD_COPPER:
b894fa26 126 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
4703bf73 127 case E1000_DEV_ID_82576_SERDES_QUAD:
2d064c06
AD
128 mac->type = e1000_82576;
129 break;
bb2ac47b
AD
130 case E1000_DEV_ID_82580_COPPER:
131 case E1000_DEV_ID_82580_FIBER:
132 case E1000_DEV_ID_82580_SERDES:
133 case E1000_DEV_ID_82580_SGMII:
134 case E1000_DEV_ID_82580_COPPER_DUAL:
308fb39a
JG
135 case E1000_DEV_ID_DH89XXCC_SGMII:
136 case E1000_DEV_ID_DH89XXCC_SERDES:
bb2ac47b
AD
137 mac->type = e1000_82580;
138 break;
d2ba2ed8
AD
139 case E1000_DEV_ID_I350_COPPER:
140 case E1000_DEV_ID_I350_FIBER:
141 case E1000_DEV_ID_I350_SERDES:
142 case E1000_DEV_ID_I350_SGMII:
143 mac->type = e1000_i350;
144 break;
9d5c8243
AK
145 default:
146 return -E1000_ERR_MAC_INIT;
147 break;
148 }
149
9d5c8243
AK
150 /* Set media type */
151 /*
152 * The 82575 uses bits 22:23 for link mode. The mode can be changed
153 * based on the EEPROM. We cannot rely upon device ID. There
154 * is no distinguishable difference between fiber and internal
155 * SerDes mode on the 82575. There can be an external PHY attached
156 * on the SGMII interface. For this, we'll set sgmii_active to true.
157 */
158 phy->media_type = e1000_media_type_copper;
159 dev_spec->sgmii_active = false;
160
161 ctrl_ext = rd32(E1000_CTRL_EXT);
2fb02a26
AD
162 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
163 case E1000_CTRL_EXT_LINK_MODE_SGMII:
9d5c8243 164 dev_spec->sgmii_active = true;
2fb02a26 165 break;
bb2ac47b 166 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
2fb02a26
AD
167 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
168 hw->phy.media_type = e1000_media_type_internal_serdes;
2fb02a26
AD
169 break;
170 default:
2fb02a26 171 break;
9d5c8243 172 }
2fb02a26 173
9d5c8243
AK
174 /* Set mta register count */
175 mac->mta_reg_count = 128;
176 /* Set rar entry count */
177 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
2d064c06
AD
178 if (mac->type == e1000_82576)
179 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
bb2ac47b
AD
180 if (mac->type == e1000_82580)
181 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
d2ba2ed8
AD
182 if (mac->type == e1000_i350)
183 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
bb2ac47b 184 /* reset */
d2ba2ed8 185 if (mac->type >= e1000_82580)
bb2ac47b
AD
186 mac->ops.reset_hw = igb_reset_hw_82580;
187 else
188 mac->ops.reset_hw = igb_reset_hw_82575;
9d5c8243
AK
189 /* Set if part includes ASF firmware */
190 mac->asf_firmware_present = true;
191 /* Set if manageability features are enabled. */
192 mac->arc_subsystem_valid =
193 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
194 ? true : false;
195
196 /* physical interface link setup */
197 mac->ops.setup_physical_interface =
198 (hw->phy.media_type == e1000_media_type_copper)
199 ? igb_setup_copper_link_82575
2fb02a26 200 : igb_setup_serdes_link_82575;
9d5c8243
AK
201
202 /* NVM initialization */
203 eecd = rd32(E1000_EECD);
204
205 nvm->opcode_bits = 8;
206 nvm->delay_usec = 1;
207 switch (nvm->override) {
208 case e1000_nvm_override_spi_large:
209 nvm->page_size = 32;
210 nvm->address_bits = 16;
211 break;
212 case e1000_nvm_override_spi_small:
213 nvm->page_size = 8;
214 nvm->address_bits = 8;
215 break;
216 default:
217 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
218 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
219 break;
220 }
221
222 nvm->type = e1000_nvm_eeprom_spi;
223
224 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
225 E1000_EECD_SIZE_EX_SHIFT);
226
227 /*
228 * Added to a constant, "size" becomes the left-shift value
229 * for setting word_size.
230 */
231 size += NVM_WORD_SIZE_BASE_SHIFT;
5c3cad75
JK
232
233 /* EEPROM access above 16k is unsupported */
234 if (size > 14)
235 size = 14;
9d5c8243
AK
236 nvm->word_size = 1 << size;
237
a0c98605
AD
238 /* if 82576 then initialize mailbox parameters */
239 if (mac->type == e1000_82576)
240 igb_init_mbx_params_pf(hw);
241
9d5c8243
AK
242 /* setup PHY parameters */
243 if (phy->media_type != e1000_media_type_copper) {
244 phy->type = e1000_phy_none;
245 return 0;
246 }
247
248 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
249 phy->reset_delay_us = 100;
250
99870a73
AD
251 ctrl_ext = rd32(E1000_CTRL_EXT);
252
9d5c8243 253 /* PHY function pointers */
99870a73 254 if (igb_sgmii_active_82575(hw)) {
4085f746 255 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
99870a73
AD
256 ctrl_ext |= E1000_CTRL_I2C_ENA;
257 } else {
4085f746 258 phy->ops.reset = igb_phy_hw_reset;
99870a73
AD
259 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
260 }
261
262 wr32(E1000_CTRL_EXT, ctrl_ext);
263 igb_reset_mdicnfg_82580(hw);
4085f746
NN
264
265 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
266 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
267 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
d2ba2ed8 268 } else if (hw->mac.type >= e1000_82580) {
4085f746
NN
269 phy->ops.read_reg = igb_read_phy_reg_82580;
270 phy->ops.write_reg = igb_write_phy_reg_82580;
9d5c8243 271 } else {
4085f746
NN
272 phy->ops.read_reg = igb_read_phy_reg_igp;
273 phy->ops.write_reg = igb_write_phy_reg_igp;
9d5c8243
AK
274 }
275
19e588e7
AD
276 /* set lan id */
277 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
278 E1000_STATUS_FUNC_SHIFT;
279
9d5c8243
AK
280 /* Set phy->phy_addr and phy->id. */
281 ret_val = igb_get_phy_id_82575(hw);
282 if (ret_val)
283 return ret_val;
284
285 /* Verify phy id and set remaining function pointers */
286 switch (phy->id) {
308fb39a
JG
287 case I347AT4_E_PHY_ID:
288 case M88E1112_E_PHY_ID:
9d5c8243
AK
289 case M88E1111_I_PHY_ID:
290 phy->type = e1000_phy_m88;
291 phy->ops.get_phy_info = igb_get_phy_info_m88;
308fb39a
JG
292
293 if (phy->id == I347AT4_E_PHY_ID ||
294 phy->id == M88E1112_E_PHY_ID)
295 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
296 else
297 phy->ops.get_cable_length = igb_get_cable_length_m88;
298
9d5c8243
AK
299 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
300 break;
301 case IGP03E1000_E_PHY_ID:
302 phy->type = e1000_phy_igp_3;
303 phy->ops.get_phy_info = igb_get_phy_info_igp;
304 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
305 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
306 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
307 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
308 break;
bb2ac47b 309 case I82580_I_PHY_ID:
d2ba2ed8 310 case I350_I_PHY_ID:
bb2ac47b
AD
311 phy->type = e1000_phy_82580;
312 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
313 phy->ops.get_cable_length = igb_get_cable_length_82580;
314 phy->ops.get_phy_info = igb_get_phy_info_82580;
315 break;
9d5c8243
AK
316 default:
317 return -E1000_ERR_PHY;
318 }
319
320 return 0;
321}
322
323/**
733596be 324 * igb_acquire_phy_82575 - Acquire rights to access PHY
9d5c8243
AK
325 * @hw: pointer to the HW structure
326 *
327 * Acquire access rights to the correct PHY. This is a
328 * function pointer entry point called by the api module.
329 **/
330static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
331{
008c3422 332 u16 mask = E1000_SWFW_PHY0_SM;
9d5c8243 333
008c3422
AD
334 if (hw->bus.func == E1000_FUNC_1)
335 mask = E1000_SWFW_PHY1_SM;
ede3ef0d
NN
336 else if (hw->bus.func == E1000_FUNC_2)
337 mask = E1000_SWFW_PHY2_SM;
338 else if (hw->bus.func == E1000_FUNC_3)
339 mask = E1000_SWFW_PHY3_SM;
9d5c8243
AK
340
341 return igb_acquire_swfw_sync_82575(hw, mask);
342}
343
344/**
733596be 345 * igb_release_phy_82575 - Release rights to access PHY
9d5c8243
AK
346 * @hw: pointer to the HW structure
347 *
348 * A wrapper to release access rights to the correct PHY. This is a
349 * function pointer entry point called by the api module.
350 **/
351static void igb_release_phy_82575(struct e1000_hw *hw)
352{
008c3422
AD
353 u16 mask = E1000_SWFW_PHY0_SM;
354
355 if (hw->bus.func == E1000_FUNC_1)
356 mask = E1000_SWFW_PHY1_SM;
ede3ef0d
NN
357 else if (hw->bus.func == E1000_FUNC_2)
358 mask = E1000_SWFW_PHY2_SM;
359 else if (hw->bus.func == E1000_FUNC_3)
360 mask = E1000_SWFW_PHY3_SM;
9d5c8243 361
9d5c8243
AK
362 igb_release_swfw_sync_82575(hw, mask);
363}
364
365/**
733596be 366 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
9d5c8243
AK
367 * @hw: pointer to the HW structure
368 * @offset: register offset to be read
369 * @data: pointer to the read data
370 *
371 * Reads the PHY register at offset using the serial gigabit media independent
372 * interface and stores the retrieved information in data.
373 **/
374static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
375 u16 *data)
376{
bf6f7a92 377 s32 ret_val = -E1000_ERR_PARAM;
9d5c8243
AK
378
379 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 380 hw_dbg("PHY Address %u is out of range\n", offset);
bf6f7a92 381 goto out;
9d5c8243
AK
382 }
383
bf6f7a92
AD
384 ret_val = hw->phy.ops.acquire(hw);
385 if (ret_val)
386 goto out;
9d5c8243 387
bf6f7a92 388 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
9d5c8243 389
bf6f7a92
AD
390 hw->phy.ops.release(hw);
391
392out:
393 return ret_val;
9d5c8243
AK
394}
395
396/**
733596be 397 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
9d5c8243
AK
398 * @hw: pointer to the HW structure
399 * @offset: register offset to write to
400 * @data: data to write at register offset
401 *
402 * Writes the data to PHY register at the offset using the serial gigabit
403 * media independent interface.
404 **/
405static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
406 u16 data)
407{
bf6f7a92
AD
408 s32 ret_val = -E1000_ERR_PARAM;
409
9d5c8243
AK
410
411 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 412 hw_dbg("PHY Address %d is out of range\n", offset);
bf6f7a92 413 goto out;
9d5c8243
AK
414 }
415
bf6f7a92
AD
416 ret_val = hw->phy.ops.acquire(hw);
417 if (ret_val)
418 goto out;
9d5c8243 419
bf6f7a92 420 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
9d5c8243 421
bf6f7a92
AD
422 hw->phy.ops.release(hw);
423
424out:
425 return ret_val;
9d5c8243
AK
426}
427
428/**
733596be 429 * igb_get_phy_id_82575 - Retrieve PHY addr and id
9d5c8243
AK
430 * @hw: pointer to the HW structure
431 *
652fff32 432 * Retrieves the PHY address and ID for both PHY's which do and do not use
9d5c8243
AK
433 * sgmi interface.
434 **/
435static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
436{
437 struct e1000_phy_info *phy = &hw->phy;
438 s32 ret_val = 0;
439 u16 phy_id;
2fb02a26 440 u32 ctrl_ext;
4085f746 441 u32 mdic;
9d5c8243
AK
442
443 /*
444 * For SGMII PHYs, we try the list of possible addresses until
445 * we find one that works. For non-SGMII PHYs
446 * (e.g. integrated copper PHYs), an address of 1 should
447 * work. The result of this function should mean phy->phy_addr
448 * and phy->id are set correctly.
449 */
450 if (!(igb_sgmii_active_82575(hw))) {
451 phy->addr = 1;
452 ret_val = igb_get_phy_id(hw);
453 goto out;
454 }
455
4085f746
NN
456 if (igb_sgmii_uses_mdio_82575(hw)) {
457 switch (hw->mac.type) {
458 case e1000_82575:
459 case e1000_82576:
460 mdic = rd32(E1000_MDIC);
461 mdic &= E1000_MDIC_PHY_MASK;
462 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
463 break;
464 case e1000_82580:
465 case e1000_i350:
466 mdic = rd32(E1000_MDICNFG);
467 mdic &= E1000_MDICNFG_PHY_MASK;
468 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
469 break;
470 default:
471 ret_val = -E1000_ERR_PHY;
472 goto out;
473 break;
474 }
475 ret_val = igb_get_phy_id(hw);
476 goto out;
477 }
478
2fb02a26
AD
479 /* Power on sgmii phy if it is disabled */
480 ctrl_ext = rd32(E1000_CTRL_EXT);
481 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
482 wrfl();
483 msleep(300);
484
9d5c8243
AK
485 /*
486 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
487 * Therefore, we need to test 1-7
488 */
489 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
490 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
491 if (ret_val == 0) {
652fff32
AK
492 hw_dbg("Vendor ID 0x%08X read at address %u\n",
493 phy_id, phy->addr);
9d5c8243
AK
494 /*
495 * At the time of this writing, The M88 part is
496 * the only supported SGMII PHY product.
497 */
498 if (phy_id == M88_VENDOR)
499 break;
500 } else {
652fff32 501 hw_dbg("PHY address %u was unreadable\n", phy->addr);
9d5c8243
AK
502 }
503 }
504
505 /* A valid PHY type couldn't be found. */
506 if (phy->addr == 8) {
507 phy->addr = 0;
508 ret_val = -E1000_ERR_PHY;
509 goto out;
2fb02a26
AD
510 } else {
511 ret_val = igb_get_phy_id(hw);
9d5c8243
AK
512 }
513
2fb02a26
AD
514 /* restore previous sfp cage power state */
515 wr32(E1000_CTRL_EXT, ctrl_ext);
9d5c8243
AK
516
517out:
518 return ret_val;
519}
520
521/**
733596be 522 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
9d5c8243
AK
523 * @hw: pointer to the HW structure
524 *
525 * Resets the PHY using the serial gigabit media independent interface.
526 **/
527static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
528{
529 s32 ret_val;
530
531 /*
532 * This isn't a true "hard" reset, but is the only reset
533 * available to us at this time.
534 */
535
652fff32 536 hw_dbg("Soft resetting SGMII attached PHY...\n");
9d5c8243
AK
537
538 /*
539 * SFP documentation requires the following to configure the SPF module
540 * to work on SGMII. No further documentation is given.
541 */
a8d2a0c2 542 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
9d5c8243
AK
543 if (ret_val)
544 goto out;
545
546 ret_val = igb_phy_sw_reset(hw);
547
548out:
549 return ret_val;
550}
551
552/**
733596be 553 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
9d5c8243
AK
554 * @hw: pointer to the HW structure
555 * @active: true to enable LPLU, false to disable
556 *
557 * Sets the LPLU D0 state according to the active flag. When
558 * activating LPLU this function also disables smart speed
559 * and vice versa. LPLU will not be activated unless the
560 * device autonegotiation advertisement meets standards of
561 * either 10 or 10/100 or 10/100/1000 at all duplexes.
562 * This is a function pointer entry point only called by
563 * PHY setup routines.
564 **/
565static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
566{
567 struct e1000_phy_info *phy = &hw->phy;
568 s32 ret_val;
569 u16 data;
570
a8d2a0c2 571 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
9d5c8243
AK
572 if (ret_val)
573 goto out;
574
575 if (active) {
576 data |= IGP02E1000_PM_D0_LPLU;
a8d2a0c2 577 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 578 data);
9d5c8243
AK
579 if (ret_val)
580 goto out;
581
582 /* When LPLU is enabled, we should disable SmartSpeed */
a8d2a0c2 583 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 584 &data);
9d5c8243 585 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 586 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 587 data);
9d5c8243
AK
588 if (ret_val)
589 goto out;
590 } else {
591 data &= ~IGP02E1000_PM_D0_LPLU;
a8d2a0c2 592 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 593 data);
9d5c8243
AK
594 /*
595 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
596 * during Dx states where the power conservation is most
597 * important. During driver activity we should enable
598 * SmartSpeed, so performance is maintained.
599 */
600 if (phy->smart_speed == e1000_smart_speed_on) {
a8d2a0c2 601 ret_val = phy->ops.read_reg(hw,
652fff32 602 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
603 if (ret_val)
604 goto out;
605
606 data |= IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 607 ret_val = phy->ops.write_reg(hw,
652fff32 608 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
609 if (ret_val)
610 goto out;
611 } else if (phy->smart_speed == e1000_smart_speed_off) {
a8d2a0c2 612 ret_val = phy->ops.read_reg(hw,
652fff32 613 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
614 if (ret_val)
615 goto out;
616
617 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 618 ret_val = phy->ops.write_reg(hw,
652fff32 619 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
620 if (ret_val)
621 goto out;
622 }
623 }
624
625out:
626 return ret_val;
627}
628
629/**
733596be 630 * igb_acquire_nvm_82575 - Request for access to EEPROM
9d5c8243
AK
631 * @hw: pointer to the HW structure
632 *
652fff32 633 * Acquire the necessary semaphores for exclusive access to the EEPROM.
9d5c8243
AK
634 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
635 * Return successful if access grant bit set, else clear the request for
636 * EEPROM access and return -E1000_ERR_NVM (-1).
637 **/
638static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
639{
640 s32 ret_val;
641
642 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
643 if (ret_val)
644 goto out;
645
646 ret_val = igb_acquire_nvm(hw);
647
648 if (ret_val)
649 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
650
651out:
652 return ret_val;
653}
654
655/**
733596be 656 * igb_release_nvm_82575 - Release exclusive access to EEPROM
9d5c8243
AK
657 * @hw: pointer to the HW structure
658 *
659 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
660 * then release the semaphores acquired.
661 **/
662static void igb_release_nvm_82575(struct e1000_hw *hw)
663{
664 igb_release_nvm(hw);
665 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
666}
667
668/**
733596be 669 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
9d5c8243
AK
670 * @hw: pointer to the HW structure
671 * @mask: specifies which semaphore to acquire
672 *
673 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
674 * will also specify which port we're acquiring the lock for.
675 **/
676static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
677{
678 u32 swfw_sync;
679 u32 swmask = mask;
680 u32 fwmask = mask << 16;
681 s32 ret_val = 0;
682 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
683
684 while (i < timeout) {
685 if (igb_get_hw_semaphore(hw)) {
686 ret_val = -E1000_ERR_SWFW_SYNC;
687 goto out;
688 }
689
690 swfw_sync = rd32(E1000_SW_FW_SYNC);
691 if (!(swfw_sync & (fwmask | swmask)))
692 break;
693
694 /*
695 * Firmware currently using resource (fwmask)
696 * or other software thread using resource (swmask)
697 */
698 igb_put_hw_semaphore(hw);
699 mdelay(5);
700 i++;
701 }
702
703 if (i == timeout) {
652fff32 704 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
9d5c8243
AK
705 ret_val = -E1000_ERR_SWFW_SYNC;
706 goto out;
707 }
708
709 swfw_sync |= swmask;
710 wr32(E1000_SW_FW_SYNC, swfw_sync);
711
712 igb_put_hw_semaphore(hw);
713
714out:
715 return ret_val;
716}
717
718/**
733596be 719 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
9d5c8243
AK
720 * @hw: pointer to the HW structure
721 * @mask: specifies which semaphore to acquire
722 *
723 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
724 * will also specify which port we're releasing the lock for.
725 **/
726static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
727{
728 u32 swfw_sync;
729
730 while (igb_get_hw_semaphore(hw) != 0);
731 /* Empty */
732
733 swfw_sync = rd32(E1000_SW_FW_SYNC);
734 swfw_sync &= ~mask;
735 wr32(E1000_SW_FW_SYNC, swfw_sync);
736
737 igb_put_hw_semaphore(hw);
738}
739
740/**
733596be 741 * igb_get_cfg_done_82575 - Read config done bit
9d5c8243
AK
742 * @hw: pointer to the HW structure
743 *
744 * Read the management control register for the config done bit for
745 * completion status. NOTE: silicon which is EEPROM-less will fail trying
746 * to read the config done bit, so an error is *ONLY* logged and returns
747 * 0. If we were to return with error, EEPROM-less silicon
748 * would not be able to be reset or change link.
749 **/
750static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
751{
752 s32 timeout = PHY_CFG_TIMEOUT;
753 s32 ret_val = 0;
754 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
755
756 if (hw->bus.func == 1)
757 mask = E1000_NVM_CFG_DONE_PORT_1;
bb2ac47b
AD
758 else if (hw->bus.func == E1000_FUNC_2)
759 mask = E1000_NVM_CFG_DONE_PORT_2;
760 else if (hw->bus.func == E1000_FUNC_3)
761 mask = E1000_NVM_CFG_DONE_PORT_3;
9d5c8243
AK
762
763 while (timeout) {
764 if (rd32(E1000_EEMNGCTL) & mask)
765 break;
766 msleep(1);
767 timeout--;
768 }
769 if (!timeout)
652fff32 770 hw_dbg("MNG configuration cycle has not completed.\n");
9d5c8243
AK
771
772 /* If EEPROM is not marked present, init the PHY manually */
773 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
774 (hw->phy.type == e1000_phy_igp_3))
775 igb_phy_init_script_igp3(hw);
776
777 return ret_val;
778}
779
780/**
733596be 781 * igb_check_for_link_82575 - Check for link
9d5c8243
AK
782 * @hw: pointer to the HW structure
783 *
784 * If sgmii is enabled, then use the pcs register to determine link, otherwise
785 * use the generic interface for determining link.
786 **/
787static s32 igb_check_for_link_82575(struct e1000_hw *hw)
788{
789 s32 ret_val;
790 u16 speed, duplex;
791
70d92f86 792 if (hw->phy.media_type != e1000_media_type_copper) {
9d5c8243 793 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
2d064c06 794 &duplex);
5d0932a5
AD
795 /*
796 * Use this flag to determine if link needs to be checked or
797 * not. If we have link clear the flag so that we do not
798 * continue to check for link.
799 */
800 hw->mac.get_link_status = !hw->mac.serdes_has_link;
801 } else {
9d5c8243 802 ret_val = igb_check_for_copper_link(hw);
5d0932a5 803 }
9d5c8243
AK
804
805 return ret_val;
806}
70d92f86 807
88a268c1
NN
808/**
809 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
810 * @hw: pointer to the HW structure
811 **/
812void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
813{
814 u32 reg;
815
816
817 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
818 !igb_sgmii_active_82575(hw))
819 return;
820
821 /* Enable PCS to turn on link */
822 reg = rd32(E1000_PCS_CFG0);
823 reg |= E1000_PCS_CFG_PCS_EN;
824 wr32(E1000_PCS_CFG0, reg);
825
826 /* Power up the laser */
827 reg = rd32(E1000_CTRL_EXT);
828 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
829 wr32(E1000_CTRL_EXT, reg);
830
831 /* flush the write to verify completion */
832 wrfl();
833 msleep(1);
834}
835
9d5c8243 836/**
733596be 837 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
9d5c8243
AK
838 * @hw: pointer to the HW structure
839 * @speed: stores the current speed
840 * @duplex: stores the current duplex
841 *
652fff32 842 * Using the physical coding sub-layer (PCS), retrieve the current speed and
9d5c8243
AK
843 * duplex, then store the values in the pointers provided.
844 **/
845static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
846 u16 *duplex)
847{
848 struct e1000_mac_info *mac = &hw->mac;
849 u32 pcs;
850
851 /* Set up defaults for the return values of this function */
852 mac->serdes_has_link = false;
853 *speed = 0;
854 *duplex = 0;
855
856 /*
857 * Read the PCS Status register for link state. For non-copper mode,
858 * the status register is not accurate. The PCS status register is
859 * used instead.
860 */
861 pcs = rd32(E1000_PCS_LSTAT);
862
863 /*
864 * The link up bit determines when link is up on autoneg. The sync ok
865 * gets set once both sides sync up and agree upon link. Stable link
866 * can be determined by checking for both link up and link sync ok
867 */
868 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
869 mac->serdes_has_link = true;
870
871 /* Detect and store PCS speed */
872 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
873 *speed = SPEED_1000;
874 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
875 *speed = SPEED_100;
876 } else {
877 *speed = SPEED_10;
878 }
879
880 /* Detect and store PCS duplex */
881 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
882 *duplex = FULL_DUPLEX;
883 } else {
884 *duplex = HALF_DUPLEX;
885 }
886 }
887
888 return 0;
889}
890
2d064c06 891/**
2fb02a26 892 * igb_shutdown_serdes_link_82575 - Remove link during power down
9d5c8243 893 * @hw: pointer to the HW structure
9d5c8243 894 *
2d064c06
AD
895 * In the case of fiber serdes, shut down optics and PCS on driver unload
896 * when management pass thru is not enabled.
9d5c8243 897 **/
2fb02a26 898void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 899{
2d064c06
AD
900 u32 reg;
901
53c992fa 902 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
2fb02a26 903 igb_sgmii_active_82575(hw))
2d064c06
AD
904 return;
905
53c992fa 906 if (!igb_enable_mng_pass_thru(hw)) {
2d064c06
AD
907 /* Disable PCS to turn off link */
908 reg = rd32(E1000_PCS_CFG0);
909 reg &= ~E1000_PCS_CFG_PCS_EN;
910 wr32(E1000_PCS_CFG0, reg);
911
912 /* shutdown the laser */
913 reg = rd32(E1000_CTRL_EXT);
2fb02a26 914 reg |= E1000_CTRL_EXT_SDP3_DATA;
2d064c06
AD
915 wr32(E1000_CTRL_EXT, reg);
916
917 /* flush the write to verify completion */
918 wrfl();
919 msleep(1);
920 }
9d5c8243
AK
921}
922
923/**
733596be 924 * igb_reset_hw_82575 - Reset hardware
9d5c8243
AK
925 * @hw: pointer to the HW structure
926 *
927 * This resets the hardware into a known state. This is a
928 * function pointer entry point called by the api module.
929 **/
930static s32 igb_reset_hw_82575(struct e1000_hw *hw)
931{
932 u32 ctrl, icr;
933 s32 ret_val;
934
935 /*
936 * Prevent the PCI-E bus from sticking if there is no TLP connection
937 * on the last TLP read/write transaction when MAC is reset.
938 */
939 ret_val = igb_disable_pcie_master(hw);
940 if (ret_val)
652fff32 941 hw_dbg("PCI-E Master disable polling has failed.\n");
9d5c8243 942
009bc06e
AD
943 /* set the completion timeout for interface */
944 ret_val = igb_set_pcie_completion_timeout(hw);
945 if (ret_val) {
946 hw_dbg("PCI-E Set completion timeout has failed.\n");
947 }
948
652fff32 949 hw_dbg("Masking off all interrupts\n");
9d5c8243
AK
950 wr32(E1000_IMC, 0xffffffff);
951
952 wr32(E1000_RCTL, 0);
953 wr32(E1000_TCTL, E1000_TCTL_PSP);
954 wrfl();
955
956 msleep(10);
957
958 ctrl = rd32(E1000_CTRL);
959
652fff32 960 hw_dbg("Issuing a global reset to MAC\n");
9d5c8243
AK
961 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
962
963 ret_val = igb_get_auto_rd_done(hw);
964 if (ret_val) {
965 /*
966 * When auto config read does not complete, do not
967 * return with an error. This can happen in situations
968 * where there is no eeprom and prevents getting link.
969 */
652fff32 970 hw_dbg("Auto Read Done did not complete\n");
9d5c8243
AK
971 }
972
973 /* If EEPROM is not present, run manual init scripts */
974 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
975 igb_reset_init_script_82575(hw);
976
977 /* Clear any pending interrupt events. */
978 wr32(E1000_IMC, 0xffffffff);
979 icr = rd32(E1000_ICR);
980
5ac16659
AD
981 /* Install any alternate MAC address into RAR0 */
982 ret_val = igb_check_alt_mac_addr(hw);
9d5c8243
AK
983
984 return ret_val;
985}
986
987/**
733596be 988 * igb_init_hw_82575 - Initialize hardware
9d5c8243
AK
989 * @hw: pointer to the HW structure
990 *
991 * This inits the hardware readying it for operation.
992 **/
993static s32 igb_init_hw_82575(struct e1000_hw *hw)
994{
995 struct e1000_mac_info *mac = &hw->mac;
996 s32 ret_val;
997 u16 i, rar_count = mac->rar_entry_count;
998
999 /* Initialize identification LED */
1000 ret_val = igb_id_led_init(hw);
1001 if (ret_val) {
652fff32 1002 hw_dbg("Error initializing identification LED\n");
9d5c8243
AK
1003 /* This is not fatal and we should not stop init due to this */
1004 }
1005
1006 /* Disabling VLAN filtering */
652fff32 1007 hw_dbg("Initializing the IEEE VLAN\n");
9d5c8243
AK
1008 igb_clear_vfta(hw);
1009
1010 /* Setup the receive address */
5ac16659
AD
1011 igb_init_rx_addrs(hw, rar_count);
1012
9d5c8243 1013 /* Zero out the Multicast HASH table */
652fff32 1014 hw_dbg("Zeroing the MTA\n");
9d5c8243
AK
1015 for (i = 0; i < mac->mta_reg_count; i++)
1016 array_wr32(E1000_MTA, i, 0);
1017
68d480c4
AD
1018 /* Zero out the Unicast HASH table */
1019 hw_dbg("Zeroing the UTA\n");
1020 for (i = 0; i < mac->uta_reg_count; i++)
1021 array_wr32(E1000_UTA, i, 0);
1022
9d5c8243
AK
1023 /* Setup link and flow control */
1024 ret_val = igb_setup_link(hw);
1025
1026 /*
1027 * Clear all of the statistics registers (clear on read). It is
1028 * important that we do this after we have tried to establish link
1029 * because the symbol error count will increment wildly if there
1030 * is no link.
1031 */
1032 igb_clear_hw_cntrs_82575(hw);
1033
1034 return ret_val;
1035}
1036
1037/**
733596be 1038 * igb_setup_copper_link_82575 - Configure copper link settings
9d5c8243
AK
1039 * @hw: pointer to the HW structure
1040 *
1041 * Configures the link for auto-neg or forced speed and duplex. Then we check
1042 * for link, once link is established calls to configure collision distance
1043 * and flow control are called.
1044 **/
1045static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1046{
12645a19 1047 u32 ctrl;
9d5c8243 1048 s32 ret_val;
9d5c8243
AK
1049
1050 ctrl = rd32(E1000_CTRL);
1051 ctrl |= E1000_CTRL_SLU;
1052 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1053 wr32(E1000_CTRL, ctrl);
1054
2fb02a26
AD
1055 ret_val = igb_setup_serdes_link_82575(hw);
1056 if (ret_val)
1057 goto out;
1058
1059 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
bb2ac47b
AD
1060 /* allow time for SFP cage time to power up phy */
1061 msleep(300);
1062
2fb02a26
AD
1063 ret_val = hw->phy.ops.reset(hw);
1064 if (ret_val) {
1065 hw_dbg("Error resetting the PHY.\n");
1066 goto out;
1067 }
1068 }
9d5c8243
AK
1069 switch (hw->phy.type) {
1070 case e1000_phy_m88:
308fb39a
JG
1071 if (hw->phy.id == I347AT4_E_PHY_ID ||
1072 hw->phy.id == M88E1112_E_PHY_ID)
1073 ret_val = igb_copper_link_setup_m88_gen2(hw);
1074 else
1075 ret_val = igb_copper_link_setup_m88(hw);
9d5c8243
AK
1076 break;
1077 case e1000_phy_igp_3:
1078 ret_val = igb_copper_link_setup_igp(hw);
9d5c8243 1079 break;
bb2ac47b
AD
1080 case e1000_phy_82580:
1081 ret_val = igb_copper_link_setup_82580(hw);
1082 break;
9d5c8243
AK
1083 default:
1084 ret_val = -E1000_ERR_PHY;
1085 break;
1086 }
1087
1088 if (ret_val)
1089 goto out;
1090
81fadd81 1091 ret_val = igb_setup_copper_link(hw);
9d5c8243
AK
1092out:
1093 return ret_val;
1094}
1095
1096/**
70d92f86 1097 * igb_setup_serdes_link_82575 - Setup link for serdes
9d5c8243
AK
1098 * @hw: pointer to the HW structure
1099 *
70d92f86
AD
1100 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1101 * used on copper connections where the serialized gigabit media independent
1102 * interface (sgmii), or serdes fiber is being used. Configures the link
1103 * for auto-negotiation or forces speed/duplex.
9d5c8243 1104 **/
2fb02a26 1105static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 1106{
bb2ac47b
AD
1107 u32 ctrl_ext, ctrl_reg, reg;
1108 bool pcs_autoneg;
2fb02a26
AD
1109
1110 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1111 !igb_sgmii_active_82575(hw))
1112 return 0;
9d5c8243
AK
1113
1114 /*
1115 * On the 82575, SerDes loopback mode persists until it is
1116 * explicitly turned off or a power cycle is performed. A read to
1117 * the register does not indicate its status. Therefore, we ensure
1118 * loopback mode is disabled during initialization.
1119 */
1120 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1121
2fb02a26 1122 /* power on the sfp cage if present */
bb2ac47b
AD
1123 ctrl_ext = rd32(E1000_CTRL_EXT);
1124 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1125 wr32(E1000_CTRL_EXT, ctrl_ext);
2fb02a26
AD
1126
1127 ctrl_reg = rd32(E1000_CTRL);
1128 ctrl_reg |= E1000_CTRL_SLU;
1129
1130 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1131 /* set both sw defined pins */
1132 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1133
1134 /* Set switch control to serdes energy detect */
1135 reg = rd32(E1000_CONNSW);
1136 reg |= E1000_CONNSW_ENRGSRC;
1137 wr32(E1000_CONNSW, reg);
1138 }
1139
1140 reg = rd32(E1000_PCS_LCTL);
1141
bb2ac47b
AD
1142 /* default pcs_autoneg to the same setting as mac autoneg */
1143 pcs_autoneg = hw->mac.autoneg;
2fb02a26 1144
bb2ac47b
AD
1145 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1146 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1147 /* sgmii mode lets the phy handle forcing speed/duplex */
1148 pcs_autoneg = true;
1149 /* autoneg time out should be disabled for SGMII mode */
2fb02a26 1150 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
bb2ac47b
AD
1151 break;
1152 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1153 /* disable PCS autoneg and support parallel detect only */
1154 pcs_autoneg = false;
1155 default:
1156 /*
1157 * non-SGMII modes only supports a speed of 1000/Full for the
1158 * link so it is best to just force the MAC and let the pcs
1159 * link either autoneg or be forced to 1000/Full
1160 */
2fb02a26
AD
1161 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1162 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
bb2ac47b
AD
1163
1164 /* set speed of 1000/Full if speed/duplex is forced */
1165 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1166 break;
921aa749
AD
1167 }
1168
2fb02a26 1169 wr32(E1000_CTRL, ctrl_reg);
9d5c8243
AK
1170
1171 /*
1172 * New SerDes mode allows for forcing speed or autonegotiating speed
1173 * at 1gb. Autoneg should be default set by most drivers. This is the
1174 * mode that will be compatible with older link partners and switches.
1175 * However, both are supported by the hardware and some drivers/tools.
1176 */
9d5c8243
AK
1177 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1178 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1179
2fb02a26
AD
1180 /*
1181 * We force flow control to prevent the CTRL register values from being
1182 * overwritten by the autonegotiated flow control values
1183 */
1184 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1185
bb2ac47b 1186 if (pcs_autoneg) {
9d5c8243 1187 /* Set PCS register for autoneg */
bb2ac47b 1188 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
70d92f86 1189 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
bb2ac47b 1190 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1191 } else {
bb2ac47b 1192 /* Set PCS register for forced link */
d68caec6 1193 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
bb2ac47b
AD
1194
1195 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1196 }
726c09e7 1197
9d5c8243
AK
1198 wr32(E1000_PCS_LCTL, reg);
1199
2fb02a26
AD
1200 if (!igb_sgmii_active_82575(hw))
1201 igb_force_mac_fc(hw);
9d5c8243 1202
2fb02a26 1203 return 0;
9d5c8243
AK
1204}
1205
1206/**
733596be 1207 * igb_sgmii_active_82575 - Return sgmii state
9d5c8243
AK
1208 * @hw: pointer to the HW structure
1209 *
1210 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1211 * which can be enabled for use in the embedded applications. Simply
1212 * return the current state of the sgmii interface.
1213 **/
1214static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1215{
c1889bfe 1216 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
c1889bfe 1217 return dev_spec->sgmii_active;
9d5c8243
AK
1218}
1219
1220/**
733596be 1221 * igb_reset_init_script_82575 - Inits HW defaults after reset
9d5c8243
AK
1222 * @hw: pointer to the HW structure
1223 *
1224 * Inits recommended HW defaults after a reset when there is no EEPROM
1225 * detected. This is only for the 82575.
1226 **/
1227static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1228{
1229 if (hw->mac.type == e1000_82575) {
652fff32 1230 hw_dbg("Running reset init script for 82575\n");
9d5c8243
AK
1231 /* SerDes configuration via SERDESCTRL */
1232 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1233 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1234 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1235 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1236
1237 /* CCM configuration via CCMCTL register */
1238 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1239 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1240
1241 /* PCIe lanes configuration */
1242 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1243 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1244 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1245 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1246
1247 /* PCIe PLL Configuration */
1248 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1249 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1250 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1251 }
1252
1253 return 0;
1254}
1255
1256/**
733596be 1257 * igb_read_mac_addr_82575 - Read device MAC address
9d5c8243
AK
1258 * @hw: pointer to the HW structure
1259 **/
1260static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1261{
1262 s32 ret_val = 0;
1263
22896639
AD
1264 /*
1265 * If there's an alternate MAC address place it in RAR0
1266 * so that it will override the Si installed default perm
1267 * address.
1268 */
1269 ret_val = igb_check_alt_mac_addr(hw);
1270 if (ret_val)
1271 goto out;
1272
1273 ret_val = igb_read_mac_addr(hw);
9d5c8243 1274
22896639 1275out:
9d5c8243
AK
1276 return ret_val;
1277}
1278
88a268c1
NN
1279/**
1280 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1281 * @hw: pointer to the HW structure
1282 *
1283 * In the case of a PHY power down to save power, or to turn off link during a
1284 * driver unload, or wake on lan is not enabled, remove the link.
1285 **/
1286void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1287{
1288 /* If the management interface is not enabled, then power down */
1289 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1290 igb_power_down_phy_copper(hw);
88a268c1
NN
1291}
1292
9d5c8243 1293/**
733596be 1294 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
9d5c8243
AK
1295 * @hw: pointer to the HW structure
1296 *
1297 * Clears the hardware counters by reading the counter registers.
1298 **/
1299static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1300{
9d5c8243
AK
1301 igb_clear_hw_cntrs_base(hw);
1302
cc9073bb
AD
1303 rd32(E1000_PRC64);
1304 rd32(E1000_PRC127);
1305 rd32(E1000_PRC255);
1306 rd32(E1000_PRC511);
1307 rd32(E1000_PRC1023);
1308 rd32(E1000_PRC1522);
1309 rd32(E1000_PTC64);
1310 rd32(E1000_PTC127);
1311 rd32(E1000_PTC255);
1312 rd32(E1000_PTC511);
1313 rd32(E1000_PTC1023);
1314 rd32(E1000_PTC1522);
1315
1316 rd32(E1000_ALGNERRC);
1317 rd32(E1000_RXERRC);
1318 rd32(E1000_TNCRS);
1319 rd32(E1000_CEXTERR);
1320 rd32(E1000_TSCTC);
1321 rd32(E1000_TSCTFC);
1322
1323 rd32(E1000_MGTPRC);
1324 rd32(E1000_MGTPDC);
1325 rd32(E1000_MGTPTC);
1326
1327 rd32(E1000_IAC);
1328 rd32(E1000_ICRXOC);
1329
1330 rd32(E1000_ICRXPTC);
1331 rd32(E1000_ICRXATC);
1332 rd32(E1000_ICTXPTC);
1333 rd32(E1000_ICTXATC);
1334 rd32(E1000_ICTXQEC);
1335 rd32(E1000_ICTXQMTC);
1336 rd32(E1000_ICRXDMTC);
1337
1338 rd32(E1000_CBTMPC);
1339 rd32(E1000_HTDPMC);
1340 rd32(E1000_CBRMPC);
1341 rd32(E1000_RPTHC);
1342 rd32(E1000_HGPTC);
1343 rd32(E1000_HTCBDPC);
1344 rd32(E1000_HGORCL);
1345 rd32(E1000_HGORCH);
1346 rd32(E1000_HGOTCL);
1347 rd32(E1000_HGOTCH);
1348 rd32(E1000_LENERRS);
9d5c8243
AK
1349
1350 /* This register should not be read in copper configurations */
2fb02a26
AD
1351 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1352 igb_sgmii_active_82575(hw))
cc9073bb 1353 rd32(E1000_SCVPC);
9d5c8243
AK
1354}
1355
662d7205
AD
1356/**
1357 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1358 * @hw: pointer to the HW structure
1359 *
1360 * After rx enable if managability is enabled then there is likely some
1361 * bad data at the start of the fifo and possibly in the DMA fifo. This
1362 * function clears the fifos and flushes any packets that came in as rx was
1363 * being enabled.
1364 **/
1365void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1366{
1367 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1368 int i, ms_wait;
1369
1370 if (hw->mac.type != e1000_82575 ||
1371 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1372 return;
1373
1374 /* Disable all RX queues */
1375 for (i = 0; i < 4; i++) {
1376 rxdctl[i] = rd32(E1000_RXDCTL(i));
1377 wr32(E1000_RXDCTL(i),
1378 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1379 }
1380 /* Poll all queues to verify they have shut down */
1381 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1382 msleep(1);
1383 rx_enabled = 0;
1384 for (i = 0; i < 4; i++)
1385 rx_enabled |= rd32(E1000_RXDCTL(i));
1386 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1387 break;
1388 }
1389
1390 if (ms_wait == 10)
1391 hw_dbg("Queue disable timed out after 10ms\n");
1392
1393 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1394 * incoming packets are rejected. Set enable and wait 2ms so that
1395 * any packet that was coming in as RCTL.EN was set is flushed
1396 */
1397 rfctl = rd32(E1000_RFCTL);
1398 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1399
1400 rlpml = rd32(E1000_RLPML);
1401 wr32(E1000_RLPML, 0);
1402
1403 rctl = rd32(E1000_RCTL);
1404 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1405 temp_rctl |= E1000_RCTL_LPE;
1406
1407 wr32(E1000_RCTL, temp_rctl);
1408 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1409 wrfl();
1410 msleep(2);
1411
1412 /* Enable RX queues that were previously enabled and restore our
1413 * previous state
1414 */
1415 for (i = 0; i < 4; i++)
1416 wr32(E1000_RXDCTL(i), rxdctl[i]);
1417 wr32(E1000_RCTL, rctl);
1418 wrfl();
1419
1420 wr32(E1000_RLPML, rlpml);
1421 wr32(E1000_RFCTL, rfctl);
1422
1423 /* Flush receive errors generated by workaround */
1424 rd32(E1000_ROC);
1425 rd32(E1000_RNBC);
1426 rd32(E1000_MPC);
1427}
1428
009bc06e
AD
1429/**
1430 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1431 * @hw: pointer to the HW structure
1432 *
1433 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1434 * however the hardware default for these parts is 500us to 1ms which is less
1435 * than the 10ms recommended by the pci-e spec. To address this we need to
1436 * increase the value to either 10ms to 200ms for capability version 1 config,
1437 * or 16ms to 55ms for version 2.
1438 **/
1439static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1440{
1441 u32 gcr = rd32(E1000_GCR);
1442 s32 ret_val = 0;
1443 u16 pcie_devctl2;
1444
1445 /* only take action if timeout value is defaulted to 0 */
1446 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1447 goto out;
1448
1449 /*
1450 * if capababilities version is type 1 we can write the
1451 * timeout of 10ms to 200ms through the GCR register
1452 */
1453 if (!(gcr & E1000_GCR_CAP_VER2)) {
1454 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1455 goto out;
1456 }
1457
1458 /*
1459 * for version 2 capabilities we need to write the config space
1460 * directly in order to set the completion timeout value for
1461 * 16ms to 55ms
1462 */
1463 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1464 &pcie_devctl2);
1465 if (ret_val)
1466 goto out;
1467
1468 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1469
1470 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1471 &pcie_devctl2);
1472out:
1473 /* disable completion timeout resend */
1474 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1475
1476 wr32(E1000_GCR, gcr);
1477 return ret_val;
1478}
1479
4ae196df
AD
1480/**
1481 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1482 * @hw: pointer to the hardware struct
1483 * @enable: state to enter, either enabled or disabled
1484 *
1485 * enables/disables L2 switch loopback functionality.
1486 **/
1487void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1488{
1489 u32 dtxswc = rd32(E1000_DTXSWC);
1490
1491 if (enable)
1492 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1493 else
1494 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1495
1496 wr32(E1000_DTXSWC, dtxswc);
1497}
1498
1499/**
1500 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1501 * @hw: pointer to the hardware struct
1502 * @enable: state to enter, either enabled or disabled
1503 *
1504 * enables/disables replication of packets across multiple pools.
1505 **/
1506void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1507{
1508 u32 vt_ctl = rd32(E1000_VT_CTL);
1509
1510 if (enable)
1511 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1512 else
1513 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1514
1515 wr32(E1000_VT_CTL, vt_ctl);
1516}
1517
bb2ac47b
AD
1518/**
1519 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1520 * @hw: pointer to the HW structure
1521 * @offset: register offset to be read
1522 * @data: pointer to the read data
1523 *
1524 * Reads the MDI control register in the PHY at offset and stores the
1525 * information read to data.
1526 **/
1527static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1528{
bb2ac47b
AD
1529 s32 ret_val;
1530
1531
1532 ret_val = hw->phy.ops.acquire(hw);
1533 if (ret_val)
1534 goto out;
1535
bb2ac47b
AD
1536 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1537
1538 hw->phy.ops.release(hw);
1539
1540out:
1541 return ret_val;
1542}
1543
1544/**
1545 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1546 * @hw: pointer to the HW structure
1547 * @offset: register offset to write to
1548 * @data: data to write to register at offset
1549 *
1550 * Writes data to MDI control register in the PHY at offset.
1551 **/
1552static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1553{
bb2ac47b
AD
1554 s32 ret_val;
1555
1556
1557 ret_val = hw->phy.ops.acquire(hw);
1558 if (ret_val)
1559 goto out;
1560
bb2ac47b
AD
1561 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1562
1563 hw->phy.ops.release(hw);
1564
1565out:
1566 return ret_val;
1567}
1568
08451e25
NN
1569/**
1570 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1571 * @hw: pointer to the HW structure
1572 *
1573 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1574 * the values found in the EEPROM. This addresses an issue in which these
1575 * bits are not restored from EEPROM after reset.
1576 **/
1577static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1578{
1579 s32 ret_val = 0;
1580 u32 mdicnfg;
1581 u16 nvm_data;
1582
1583 if (hw->mac.type != e1000_82580)
1584 goto out;
1585 if (!igb_sgmii_active_82575(hw))
1586 goto out;
1587
1588 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1589 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1590 &nvm_data);
1591 if (ret_val) {
1592 hw_dbg("NVM Read Error\n");
1593 goto out;
1594 }
1595
1596 mdicnfg = rd32(E1000_MDICNFG);
1597 if (nvm_data & NVM_WORD24_EXT_MDIO)
1598 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1599 if (nvm_data & NVM_WORD24_COM_MDIO)
1600 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1601 wr32(E1000_MDICNFG, mdicnfg);
1602out:
1603 return ret_val;
1604}
1605
bb2ac47b
AD
1606/**
1607 * igb_reset_hw_82580 - Reset hardware
1608 * @hw: pointer to the HW structure
1609 *
1610 * This resets function or entire device (all ports, etc.)
1611 * to a known state.
1612 **/
1613static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1614{
1615 s32 ret_val = 0;
1616 /* BH SW mailbox bit in SW_FW_SYNC */
1617 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1618 u32 ctrl, icr;
1619 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1620
1621
1622 hw->dev_spec._82575.global_device_reset = false;
1623
1624 /* Get current control state. */
1625 ctrl = rd32(E1000_CTRL);
1626
1627 /*
1628 * Prevent the PCI-E bus from sticking if there is no TLP connection
1629 * on the last TLP read/write transaction when MAC is reset.
1630 */
1631 ret_val = igb_disable_pcie_master(hw);
1632 if (ret_val)
1633 hw_dbg("PCI-E Master disable polling has failed.\n");
1634
1635 hw_dbg("Masking off all interrupts\n");
1636 wr32(E1000_IMC, 0xffffffff);
1637 wr32(E1000_RCTL, 0);
1638 wr32(E1000_TCTL, E1000_TCTL_PSP);
1639 wrfl();
1640
1641 msleep(10);
1642
1643 /* Determine whether or not a global dev reset is requested */
1644 if (global_device_reset &&
1645 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1646 global_device_reset = false;
1647
1648 if (global_device_reset &&
1649 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1650 ctrl |= E1000_CTRL_DEV_RST;
1651 else
1652 ctrl |= E1000_CTRL_RST;
1653
1654 wr32(E1000_CTRL, ctrl);
1655
1656 /* Add delay to insure DEV_RST has time to complete */
1657 if (global_device_reset)
1658 msleep(5);
1659
1660 ret_val = igb_get_auto_rd_done(hw);
1661 if (ret_val) {
1662 /*
1663 * When auto config read does not complete, do not
1664 * return with an error. This can happen in situations
1665 * where there is no eeprom and prevents getting link.
1666 */
1667 hw_dbg("Auto Read Done did not complete\n");
1668 }
1669
1670 /* If EEPROM is not present, run manual init scripts */
1671 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1672 igb_reset_init_script_82575(hw);
1673
1674 /* clear global device reset status bit */
1675 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1676
1677 /* Clear any pending interrupt events. */
1678 wr32(E1000_IMC, 0xffffffff);
1679 icr = rd32(E1000_ICR);
1680
08451e25
NN
1681 ret_val = igb_reset_mdicnfg_82580(hw);
1682 if (ret_val)
1683 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1684
bb2ac47b
AD
1685 /* Install any alternate MAC address into RAR0 */
1686 ret_val = igb_check_alt_mac_addr(hw);
1687
1688 /* Release semaphore */
1689 if (global_device_reset)
1690 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1691
1692 return ret_val;
1693}
1694
1695/**
1696 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1697 * @data: data received by reading RXPBS register
1698 *
1699 * The 82580 uses a table based approach for packet buffer allocation sizes.
1700 * This function converts the retrieved value into the correct table value
1701 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1702 * 0x0 36 72 144 1 2 4 8 16
1703 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1704 */
1705u16 igb_rxpbs_adjust_82580(u32 data)
1706{
1707 u16 ret_val = 0;
1708
1709 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1710 ret_val = e1000_82580_rxpbs_table[data];
1711
1712 return ret_val;
1713}
1714
9d5c8243 1715static struct e1000_mac_operations e1000_mac_ops_82575 = {
9d5c8243
AK
1716 .init_hw = igb_init_hw_82575,
1717 .check_for_link = igb_check_for_link_82575,
2d064c06 1718 .rar_set = igb_rar_set,
9d5c8243
AK
1719 .read_mac_addr = igb_read_mac_addr_82575,
1720 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1721};
1722
1723static struct e1000_phy_operations e1000_phy_ops_82575 = {
a8d2a0c2 1724 .acquire = igb_acquire_phy_82575,
9d5c8243 1725 .get_cfg_done = igb_get_cfg_done_82575,
a8d2a0c2 1726 .release = igb_release_phy_82575,
9d5c8243
AK
1727};
1728
1729static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
312c75ae
AD
1730 .acquire = igb_acquire_nvm_82575,
1731 .read = igb_read_nvm_eerd,
1732 .release = igb_release_nvm_82575,
1733 .write = igb_write_nvm_spi,
9d5c8243
AK
1734};
1735
1736const struct e1000_info e1000_82575_info = {
1737 .get_invariants = igb_get_invariants_82575,
1738 .mac_ops = &e1000_mac_ops_82575,
1739 .phy_ops = &e1000_phy_ops_82575,
1740 .nvm_ops = &e1000_nvm_ops_82575,
1741};
1742