]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/fec.c
net: trans_start cleanups
[net-next-2.6.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
1da177e4
LT
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/string.h>
25#include <linux/ptrace.h>
26#include <linux/errno.h>
27#include <linux/ioport.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/spinlock.h>
37#include <linux/workqueue.h>
38#include <linux/bitops.h>
6f501b17
SH
39#include <linux/io.h>
40#include <linux/irq.h>
196719ec 41#include <linux/clk.h>
ead73183 42#include <linux/platform_device.h>
e6b043d5 43#include <linux/phy.h>
1da177e4 44
080853af 45#include <asm/cacheflush.h>
196719ec
SH
46
47#ifndef CONFIG_ARCH_MXC
1da177e4
LT
48#include <asm/coldfire.h>
49#include <asm/mcfsim.h>
196719ec 50#endif
6f501b17 51
1da177e4 52#include "fec.h"
1da177e4 53
196719ec
SH
54#ifdef CONFIG_ARCH_MXC
55#include <mach/hardware.h>
56#define FEC_ALIGNMENT 0xf
57#else
58#define FEC_ALIGNMENT 0x3
59#endif
60
ead73183
SH
61/*
62 * Define the fixed address of the FEC hardware.
63 */
87f4abb4 64#if defined(CONFIG_M5272)
1da177e4
LT
65
66static unsigned char fec_mac_default[] = {
67 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
68};
69
70/*
71 * Some hardware gets it MAC address out of local flash memory.
72 * if this is non-zero then assume it is the address to get MAC from.
73 */
74#if defined(CONFIG_NETtel)
75#define FEC_FLASHMAC 0xf0006006
76#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
77#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
78#elif defined(CONFIG_CANCam)
79#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
80#elif defined (CONFIG_M5272C3)
81#define FEC_FLASHMAC (0xffe04000 + 4)
82#elif defined(CONFIG_MOD5272)
83#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
84#else
85#define FEC_FLASHMAC 0
86#endif
43be6366 87#endif /* CONFIG_M5272 */
ead73183 88
1da177e4
LT
89/* The number of Tx and Rx buffers. These are allocated from the page
90 * pool. The code may assume these are power of two, so it it best
91 * to keep them that size.
92 * We don't need to allocate pages for the transmitter. We just use
93 * the skbuffer directly.
94 */
95#define FEC_ENET_RX_PAGES 8
96#define FEC_ENET_RX_FRSIZE 2048
97#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
98#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
99#define FEC_ENET_TX_FRSIZE 2048
100#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
101#define TX_RING_SIZE 16 /* Must be power of two */
102#define TX_RING_MOD_MASK 15 /* for this to work */
103
562d2f8c 104#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 105#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
106#endif
107
22f6b860 108/* Interrupt events/masks. */
1da177e4
LT
109#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
110#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
111#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
112#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
113#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
114#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
115#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
116#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
117#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
118#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
119
120/* The FEC stores dest/src/type, data, and checksum for receive packets.
121 */
122#define PKT_MAXBUF_SIZE 1518
123#define PKT_MINBUF_SIZE 64
124#define PKT_MAXBLR_SIZE 1520
125
126
127/*
6b265293 128 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
129 * size bits. Other FEC hardware does not, so we need to take that into
130 * account when setting it.
131 */
562d2f8c 132#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
196719ec 133 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
1da177e4
LT
134#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
135#else
136#define OPT_FRAME_SIZE 0
137#endif
138
139/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
140 * tx_bd_base always point to the base of the buffer descriptors. The
141 * cur_rx and cur_tx point to the currently available buffer.
142 * The dirty_tx tracks the current buffer that is being sent by the
143 * controller. The cur_tx and dirty_tx are equal under both completely
144 * empty and completely full conditions. The empty/ready indicator in
145 * the buffer descriptor determines the actual condition.
146 */
147struct fec_enet_private {
148 /* Hardware registers of the FEC device */
f44d6305 149 void __iomem *hwp;
1da177e4 150
cb84d6e7
GU
151 struct net_device *netdev;
152
ead73183
SH
153 struct clk *clk;
154
1da177e4
LT
155 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
156 unsigned char *tx_bounce[TX_RING_SIZE];
157 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 158 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
159 ushort skb_cur;
160 ushort skb_dirty;
161
22f6b860 162 /* CPM dual port RAM relative addresses */
4661e75b 163 dma_addr_t bd_dma;
22f6b860 164 /* Address of Rx and Tx buffers */
2e28532f
SH
165 struct bufdesc *rx_bd_base;
166 struct bufdesc *tx_bd_base;
167 /* The next free ring entry */
168 struct bufdesc *cur_rx, *cur_tx;
22f6b860 169 /* The ring entries to be free()ed */
2e28532f
SH
170 struct bufdesc *dirty_tx;
171
1da177e4 172 uint tx_full;
3b2b74ca
SS
173 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
174 spinlock_t hw_lock;
1da177e4 175
e6b043d5 176 struct platform_device *pdev;
1da177e4 177
e6b043d5 178 int opened;
1da177e4 179
e6b043d5
BW
180 /* Phylib and MDIO interface */
181 struct mii_bus *mii_bus;
182 struct phy_device *phy_dev;
183 int mii_timeout;
184 uint phy_speed;
1da177e4 185 int index;
1da177e4 186 int link;
1da177e4 187 int full_duplex;
1da177e4
LT
188};
189
7d12e780 190static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
191static void fec_enet_tx(struct net_device *dev);
192static void fec_enet_rx(struct net_device *dev);
193static int fec_enet_close(struct net_device *dev);
1da177e4
LT
194static void fec_restart(struct net_device *dev, int duplex);
195static void fec_stop(struct net_device *dev);
1da177e4 196
e6b043d5
BW
197/* FEC MII MMFR bits definition */
198#define FEC_MMFR_ST (1 << 30)
199#define FEC_MMFR_OP_READ (2 << 28)
200#define FEC_MMFR_OP_WRITE (1 << 28)
201#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
202#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
203#define FEC_MMFR_TA (2 << 16)
204#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 205
e6b043d5 206#define FEC_MII_TIMEOUT 10000
1da177e4 207
22f6b860
SH
208/* Transmitter timeout */
209#define TX_TIMEOUT (2 * HZ)
1da177e4 210
1da177e4
LT
211static int
212fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
213{
f44d6305 214 struct fec_enet_private *fep = netdev_priv(dev);
2e28532f 215 struct bufdesc *bdp;
9555b31e 216 void *bufaddr;
0e702ab3 217 unsigned short status;
3b2b74ca 218 unsigned long flags;
1da177e4 219
1da177e4
LT
220 if (!fep->link) {
221 /* Link is down or autonegotiation is in progress. */
5b548140 222 return NETDEV_TX_BUSY;
1da177e4
LT
223 }
224
3b2b74ca 225 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
226 /* Fill in a Tx ring entry */
227 bdp = fep->cur_tx;
228
0e702ab3 229 status = bdp->cbd_sc;
22f6b860 230
0e702ab3 231 if (status & BD_ENET_TX_READY) {
1da177e4
LT
232 /* Ooops. All transmit buffers are full. Bail out.
233 * This should not happen, since dev->tbusy should be set.
234 */
235 printk("%s: tx queue full!.\n", dev->name);
3b2b74ca 236 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 237 return NETDEV_TX_BUSY;
1da177e4 238 }
1da177e4 239
22f6b860 240 /* Clear all of the status flags */
0e702ab3 241 status &= ~BD_ENET_TX_STATS;
1da177e4 242
22f6b860 243 /* Set buffer length and buffer pointer */
9555b31e 244 bufaddr = skb->data;
1da177e4
LT
245 bdp->cbd_datlen = skb->len;
246
247 /*
22f6b860
SH
248 * On some FEC implementations data must be aligned on
249 * 4-byte boundaries. Use bounce buffers to copy data
250 * and get it aligned. Ugh.
1da177e4 251 */
9555b31e 252 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
253 unsigned int index;
254 index = bdp - fep->tx_bd_base;
6989f512 255 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
9555b31e 256 bufaddr = fep->tx_bounce[index];
1da177e4
LT
257 }
258
22f6b860 259 /* Save skb pointer */
1da177e4
LT
260 fep->tx_skbuff[fep->skb_cur] = skb;
261
09f75cd7 262 dev->stats.tx_bytes += skb->len;
1da177e4 263 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 264
1da177e4
LT
265 /* Push the data cache so the CPM does not get stale memory
266 * data.
267 */
9555b31e 268 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
f0b3fbea 269 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 270
0e702ab3
GU
271 /* Send it on its way. Tell FEC it's ready, interrupt when done,
272 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 273 */
0e702ab3 274 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 275 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 276 bdp->cbd_sc = status;
1da177e4 277
1da177e4 278 /* Trigger transmission start */
f44d6305 279 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 280
22f6b860
SH
281 /* If this was the last BD in the ring, start at the beginning again. */
282 if (status & BD_ENET_TX_WRAP)
1da177e4 283 bdp = fep->tx_bd_base;
22f6b860 284 else
1da177e4 285 bdp++;
1da177e4
LT
286
287 if (bdp == fep->dirty_tx) {
288 fep->tx_full = 1;
289 netif_stop_queue(dev);
290 }
291
2e28532f 292 fep->cur_tx = bdp;
1da177e4 293
3b2b74ca 294 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 295
6ed10654 296 return NETDEV_TX_OK;
1da177e4
LT
297}
298
299static void
300fec_timeout(struct net_device *dev)
301{
302 struct fec_enet_private *fep = netdev_priv(dev);
303
09f75cd7 304 dev->stats.tx_errors++;
1da177e4 305
7dd6a2aa 306 fec_restart(dev, fep->full_duplex);
1da177e4
LT
307 netif_wake_queue(dev);
308}
309
1da177e4 310static irqreturn_t
7d12e780 311fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
312{
313 struct net_device *dev = dev_id;
f44d6305 314 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 315 uint int_events;
3b2b74ca 316 irqreturn_t ret = IRQ_NONE;
1da177e4 317
3b2b74ca 318 do {
f44d6305
SH
319 int_events = readl(fep->hwp + FEC_IEVENT);
320 writel(int_events, fep->hwp + FEC_IEVENT);
1da177e4 321
1da177e4 322 if (int_events & FEC_ENET_RXF) {
3b2b74ca 323 ret = IRQ_HANDLED;
1da177e4
LT
324 fec_enet_rx(dev);
325 }
326
327 /* Transmit OK, or non-fatal error. Update the buffer
f44d6305
SH
328 * descriptors. FEC handles all errors, we just discover
329 * them as part of the transmit process.
330 */
1da177e4 331 if (int_events & FEC_ENET_TXF) {
3b2b74ca 332 ret = IRQ_HANDLED;
1da177e4
LT
333 fec_enet_tx(dev);
334 }
3b2b74ca
SS
335 } while (int_events);
336
337 return ret;
1da177e4
LT
338}
339
340
341static void
342fec_enet_tx(struct net_device *dev)
343{
344 struct fec_enet_private *fep;
2e28532f 345 struct bufdesc *bdp;
0e702ab3 346 unsigned short status;
1da177e4
LT
347 struct sk_buff *skb;
348
349 fep = netdev_priv(dev);
81538e74 350 spin_lock(&fep->hw_lock);
1da177e4
LT
351 bdp = fep->dirty_tx;
352
0e702ab3 353 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
354 if (bdp == fep->cur_tx && fep->tx_full == 0)
355 break;
356
357 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
358 bdp->cbd_bufaddr = 0;
1da177e4
LT
359
360 skb = fep->tx_skbuff[fep->skb_dirty];
361 /* Check for errors. */
0e702ab3 362 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
363 BD_ENET_TX_RL | BD_ENET_TX_UN |
364 BD_ENET_TX_CSL)) {
09f75cd7 365 dev->stats.tx_errors++;
0e702ab3 366 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 367 dev->stats.tx_heartbeat_errors++;
0e702ab3 368 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 369 dev->stats.tx_window_errors++;
0e702ab3 370 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 371 dev->stats.tx_aborted_errors++;
0e702ab3 372 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 373 dev->stats.tx_fifo_errors++;
0e702ab3 374 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 375 dev->stats.tx_carrier_errors++;
1da177e4 376 } else {
09f75cd7 377 dev->stats.tx_packets++;
1da177e4
LT
378 }
379
0e702ab3 380 if (status & BD_ENET_TX_READY)
1da177e4 381 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 382
1da177e4
LT
383 /* Deferred means some collisions occurred during transmit,
384 * but we eventually sent the packet OK.
385 */
0e702ab3 386 if (status & BD_ENET_TX_DEF)
09f75cd7 387 dev->stats.collisions++;
6aa20a22 388
22f6b860 389 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
390 dev_kfree_skb_any(skb);
391 fep->tx_skbuff[fep->skb_dirty] = NULL;
392 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 393
22f6b860 394 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 395 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
396 bdp = fep->tx_bd_base;
397 else
398 bdp++;
6aa20a22 399
22f6b860 400 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
401 */
402 if (fep->tx_full) {
403 fep->tx_full = 0;
404 if (netif_queue_stopped(dev))
405 netif_wake_queue(dev);
406 }
407 }
2e28532f 408 fep->dirty_tx = bdp;
81538e74 409 spin_unlock(&fep->hw_lock);
1da177e4
LT
410}
411
412
413/* During a receive, the cur_rx points to the current incoming buffer.
414 * When we update through the ring, if the next incoming buffer has
415 * not been given to the system, we just set the empty indicator,
416 * effectively tossing the packet.
417 */
418static void
419fec_enet_rx(struct net_device *dev)
420{
f44d6305 421 struct fec_enet_private *fep = netdev_priv(dev);
2e28532f 422 struct bufdesc *bdp;
0e702ab3 423 unsigned short status;
1da177e4
LT
424 struct sk_buff *skb;
425 ushort pkt_len;
426 __u8 *data;
6aa20a22 427
0e702ab3
GU
428#ifdef CONFIG_M532x
429 flush_cache_all();
6aa20a22 430#endif
1da177e4 431
81538e74 432 spin_lock(&fep->hw_lock);
3b2b74ca 433
1da177e4
LT
434 /* First, grab all of the stats for the incoming packet.
435 * These get messed up if we get called due to a busy condition.
436 */
437 bdp = fep->cur_rx;
438
22f6b860 439 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 440
22f6b860
SH
441 /* Since we have allocated space to hold a complete frame,
442 * the last indicator should be set.
443 */
444 if ((status & BD_ENET_RX_LAST) == 0)
445 printk("FEC ENET: rcv is not +last\n");
1da177e4 446
22f6b860
SH
447 if (!fep->opened)
448 goto rx_processing_done;
1da177e4 449
22f6b860
SH
450 /* Check for errors. */
451 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 452 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
22f6b860
SH
453 dev->stats.rx_errors++;
454 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
455 /* Frame too long or too short. */
456 dev->stats.rx_length_errors++;
457 }
458 if (status & BD_ENET_RX_NO) /* Frame alignment */
459 dev->stats.rx_frame_errors++;
460 if (status & BD_ENET_RX_CR) /* CRC Error */
461 dev->stats.rx_crc_errors++;
462 if (status & BD_ENET_RX_OV) /* FIFO overrun */
463 dev->stats.rx_fifo_errors++;
1da177e4 464 }
1da177e4 465
22f6b860
SH
466 /* Report late collisions as a frame error.
467 * On this error, the BD is closed, but we don't know what we
468 * have in the buffer. So, just drop this frame on the floor.
469 */
470 if (status & BD_ENET_RX_CL) {
471 dev->stats.rx_errors++;
472 dev->stats.rx_frame_errors++;
473 goto rx_processing_done;
474 }
1da177e4 475
22f6b860
SH
476 /* Process the incoming frame. */
477 dev->stats.rx_packets++;
478 pkt_len = bdp->cbd_datlen;
479 dev->stats.rx_bytes += pkt_len;
480 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 481
f0b3fbea
SH
482 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
483 DMA_FROM_DEVICE);
ccdc4f19 484
22f6b860
SH
485 /* This does 16 byte alignment, exactly what we need.
486 * The packet length includes FCS, but we don't want to
487 * include that when passing upstream as it messes up
488 * bridging applications.
489 */
8549889c 490 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 491
8549889c 492 if (unlikely(!skb)) {
22f6b860
SH
493 printk("%s: Memory squeeze, dropping packet.\n",
494 dev->name);
495 dev->stats.rx_dropped++;
496 } else {
8549889c 497 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
498 skb_put(skb, pkt_len - 4); /* Make room */
499 skb_copy_to_linear_data(skb, data, pkt_len - 4);
500 skb->protocol = eth_type_trans(skb, dev);
501 netif_rx(skb);
502 }
f0b3fbea
SH
503
504 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
505 DMA_FROM_DEVICE);
22f6b860
SH
506rx_processing_done:
507 /* Clear the status flags for this buffer */
508 status &= ~BD_ENET_RX_STATS;
1da177e4 509
22f6b860
SH
510 /* Mark the buffer empty */
511 status |= BD_ENET_RX_EMPTY;
512 bdp->cbd_sc = status;
6aa20a22 513
22f6b860
SH
514 /* Update BD pointer to next entry */
515 if (status & BD_ENET_RX_WRAP)
516 bdp = fep->rx_bd_base;
517 else
518 bdp++;
519 /* Doing this here will keep the FEC running while we process
520 * incoming frames. On a heavily loaded network, we should be
521 * able to keep up at the expense of system resources.
522 */
523 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
524 }
2e28532f 525 fep->cur_rx = bdp;
1da177e4 526
81538e74 527 spin_unlock(&fep->hw_lock);
1da177e4
LT
528}
529
e6b043d5
BW
530/* ------------------------------------------------------------------------- */
531#ifdef CONFIG_M5272
532static void __inline__ fec_get_mac(struct net_device *dev)
1da177e4 533{
e6b043d5
BW
534 struct fec_enet_private *fep = netdev_priv(dev);
535 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 536
e6b043d5
BW
537 if (FEC_FLASHMAC) {
538 /*
539 * Get MAC address from FLASH.
540 * If it is all 1's or 0's, use the default.
541 */
542 iap = (unsigned char *)FEC_FLASHMAC;
543 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
544 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
545 iap = fec_mac_default;
546 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
547 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
548 iap = fec_mac_default;
f909b1ef 549 } else {
e6b043d5
BW
550 *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
551 *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
552 iap = &tmpaddr[0];
1da177e4
LT
553 }
554
e6b043d5 555 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4 556
e6b043d5
BW
557 /* Adjust MAC if using default MAC address */
558 if (iap == fec_mac_default)
559 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4 560}
e6b043d5 561#endif
1da177e4 562
e6b043d5 563/* ------------------------------------------------------------------------- */
1da177e4 564
e6b043d5
BW
565/*
566 * Phy section
567 */
568static void fec_enet_adjust_link(struct net_device *dev)
1da177e4
LT
569{
570 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5
BW
571 struct phy_device *phy_dev = fep->phy_dev;
572 unsigned long flags;
1da177e4 573
e6b043d5 574 int status_change = 0;
1da177e4 575
e6b043d5 576 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 577
e6b043d5
BW
578 /* Prevent a state halted on mii error */
579 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
580 phy_dev->state = PHY_RESUMING;
581 goto spin_unlock;
582 }
1da177e4 583
e6b043d5
BW
584 /* Duplex link change */
585 if (phy_dev->link) {
586 if (fep->full_duplex != phy_dev->duplex) {
587 fec_restart(dev, phy_dev->duplex);
588 status_change = 1;
589 }
590 }
1da177e4 591
e6b043d5
BW
592 /* Link on or off change */
593 if (phy_dev->link != fep->link) {
594 fep->link = phy_dev->link;
595 if (phy_dev->link)
596 fec_restart(dev, phy_dev->duplex);
1da177e4 597 else
e6b043d5
BW
598 fec_stop(dev);
599 status_change = 1;
1da177e4 600 }
6aa20a22 601
e6b043d5
BW
602spin_unlock:
603 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 604
e6b043d5
BW
605 if (status_change)
606 phy_print_status(phy_dev);
607}
1da177e4 608
6aa20a22 609/*
e6b043d5 610 * NOTE: a MII transaction is during around 25 us, so polling it...
1da177e4 611 */
e6b043d5 612static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 613{
e6b043d5
BW
614 struct fec_enet_private *fep = bus->priv;
615 int timeout = FEC_MII_TIMEOUT;
1da177e4 616
e6b043d5 617 fep->mii_timeout = 0;
1da177e4 618
e6b043d5
BW
619 /* clear MII end of transfer bit*/
620 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
621
622 /* start a read op */
623 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
624 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
625 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
626
627 /* wait for end of transfer */
628 while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
629 cpu_relax();
630 if (timeout-- < 0) {
631 fep->mii_timeout = 1;
632 printk(KERN_ERR "FEC: MDIO read timeout\n");
633 return -ETIMEDOUT;
634 }
1da177e4 635 }
1da177e4 636
e6b043d5
BW
637 /* return value */
638 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 639}
6aa20a22 640
e6b043d5
BW
641static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
642 u16 value)
1da177e4 643{
e6b043d5
BW
644 struct fec_enet_private *fep = bus->priv;
645 int timeout = FEC_MII_TIMEOUT;
1da177e4 646
e6b043d5 647 fep->mii_timeout = 0;
7dd6a2aa 648
e6b043d5
BW
649 /* clear MII end of transfer bit*/
650 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1da177e4 651
e6b043d5
BW
652 /* start a read op */
653 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
654 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
655 FEC_MMFR_TA | FEC_MMFR_DATA(value),
656 fep->hwp + FEC_MII_DATA);
657
658 /* wait for end of transfer */
659 while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
660 cpu_relax();
661 if (timeout-- < 0) {
662 fep->mii_timeout = 1;
663 printk(KERN_ERR "FEC: MDIO write timeout\n");
664 return -ETIMEDOUT;
665 }
666 }
1da177e4 667
e6b043d5
BW
668 return 0;
669}
1da177e4 670
e6b043d5 671static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 672{
e6b043d5 673 return 0;
1da177e4
LT
674}
675
e6b043d5 676static int fec_enet_mii_probe(struct net_device *dev)
562d2f8c 677{
4cf1653a 678 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5
BW
679 struct phy_device *phy_dev = NULL;
680 int phy_addr;
562d2f8c 681
e6b043d5
BW
682 /* find the first phy */
683 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
684 if (fep->mii_bus->phy_map[phy_addr]) {
685 phy_dev = fep->mii_bus->phy_map[phy_addr];
686 break;
687 }
688 }
562d2f8c 689
e6b043d5
BW
690 if (!phy_dev) {
691 printk(KERN_ERR "%s: no PHY found\n", dev->name);
692 return -ENODEV;
693 }
1da177e4 694
e6b043d5
BW
695 /* attach the mac to the phy */
696 phy_dev = phy_connect(dev, dev_name(&phy_dev->dev),
697 &fec_enet_adjust_link, 0,
698 PHY_INTERFACE_MODE_MII);
699 if (IS_ERR(phy_dev)) {
700 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
701 return PTR_ERR(phy_dev);
702 }
1da177e4 703
e6b043d5
BW
704 /* mask with MAC supported features */
705 phy_dev->supported &= PHY_BASIC_FEATURES;
706 phy_dev->advertising = phy_dev->supported;
1da177e4 707
e6b043d5
BW
708 fep->phy_dev = phy_dev;
709 fep->link = 0;
710 fep->full_duplex = 0;
1da177e4 711
e6b043d5 712 return 0;
1da177e4
LT
713}
714
e6b043d5 715static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 716{
e6b043d5 717 struct net_device *dev = platform_get_drvdata(pdev);
562d2f8c 718 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 719 int err = -ENXIO, i;
6b265293 720
e6b043d5 721 fep->mii_timeout = 0;
1da177e4 722
e6b043d5
BW
723 /*
724 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
725 */
726 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
727 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 728
e6b043d5
BW
729 fep->mii_bus = mdiobus_alloc();
730 if (fep->mii_bus == NULL) {
731 err = -ENOMEM;
732 goto err_out;
1da177e4
LT
733 }
734
e6b043d5
BW
735 fep->mii_bus->name = "fec_enet_mii_bus";
736 fep->mii_bus->read = fec_enet_mdio_read;
737 fep->mii_bus->write = fec_enet_mdio_write;
738 fep->mii_bus->reset = fec_enet_mdio_reset;
739 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
740 fep->mii_bus->priv = fep;
741 fep->mii_bus->parent = &pdev->dev;
742
743 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
744 if (!fep->mii_bus->irq) {
745 err = -ENOMEM;
746 goto err_out_free_mdiobus;
1da177e4
LT
747 }
748
e6b043d5
BW
749 for (i = 0; i < PHY_MAX_ADDR; i++)
750 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 751
e6b043d5 752 platform_set_drvdata(dev, fep->mii_bus);
1da177e4 753
e6b043d5
BW
754 if (mdiobus_register(fep->mii_bus))
755 goto err_out_free_mdio_irq;
1da177e4 756
e6b043d5
BW
757 if (fec_enet_mii_probe(dev) != 0)
758 goto err_out_unregister_bus;
6aa20a22 759
e6b043d5 760 return 0;
1da177e4 761
e6b043d5
BW
762err_out_unregister_bus:
763 mdiobus_unregister(fep->mii_bus);
764err_out_free_mdio_irq:
765 kfree(fep->mii_bus->irq);
766err_out_free_mdiobus:
767 mdiobus_free(fep->mii_bus);
768err_out:
769 return err;
1da177e4
LT
770}
771
e6b043d5 772static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 773{
e6b043d5
BW
774 if (fep->phy_dev)
775 phy_disconnect(fep->phy_dev);
776 mdiobus_unregister(fep->mii_bus);
777 kfree(fep->mii_bus->irq);
778 mdiobus_free(fep->mii_bus);
1da177e4
LT
779}
780
e6b043d5
BW
781static int fec_enet_get_settings(struct net_device *dev,
782 struct ethtool_cmd *cmd)
1da177e4
LT
783{
784 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 785 struct phy_device *phydev = fep->phy_dev;
1da177e4 786
e6b043d5
BW
787 if (!phydev)
788 return -ENODEV;
1da177e4 789
e6b043d5 790 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
791}
792
e6b043d5
BW
793static int fec_enet_set_settings(struct net_device *dev,
794 struct ethtool_cmd *cmd)
1da177e4
LT
795{
796 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 797 struct phy_device *phydev = fep->phy_dev;
1da177e4 798
e6b043d5
BW
799 if (!phydev)
800 return -ENODEV;
1da177e4 801
e6b043d5 802 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
803}
804
e6b043d5
BW
805static void fec_enet_get_drvinfo(struct net_device *dev,
806 struct ethtool_drvinfo *info)
1da177e4 807{
e6b043d5 808 struct fec_enet_private *fep = netdev_priv(dev);
6aa20a22 809
e6b043d5
BW
810 strcpy(info->driver, fep->pdev->dev.driver->name);
811 strcpy(info->version, "Revision: 1.0");
812 strcpy(info->bus_info, dev_name(&dev->dev));
1da177e4
LT
813}
814
e6b043d5
BW
815static struct ethtool_ops fec_enet_ethtool_ops = {
816 .get_settings = fec_enet_get_settings,
817 .set_settings = fec_enet_set_settings,
818 .get_drvinfo = fec_enet_get_drvinfo,
819 .get_link = ethtool_op_get_link,
820};
1da177e4 821
e6b043d5 822static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4 823{
1da177e4 824 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 825 struct phy_device *phydev = fep->phy_dev;
1da177e4 826
e6b043d5
BW
827 if (!netif_running(dev))
828 return -EINVAL;
1da177e4 829
e6b043d5
BW
830 if (!phydev)
831 return -ENODEV;
832
833 return phy_mii_ioctl(phydev, if_mii(rq), cmd);
1da177e4
LT
834}
835
f0b3fbea
SH
836static void fec_enet_free_buffers(struct net_device *dev)
837{
838 struct fec_enet_private *fep = netdev_priv(dev);
839 int i;
840 struct sk_buff *skb;
841 struct bufdesc *bdp;
842
843 bdp = fep->rx_bd_base;
844 for (i = 0; i < RX_RING_SIZE; i++) {
845 skb = fep->rx_skbuff[i];
846
847 if (bdp->cbd_bufaddr)
848 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
849 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
850 if (skb)
851 dev_kfree_skb(skb);
852 bdp++;
853 }
854
855 bdp = fep->tx_bd_base;
856 for (i = 0; i < TX_RING_SIZE; i++)
857 kfree(fep->tx_bounce[i]);
858}
859
860static int fec_enet_alloc_buffers(struct net_device *dev)
861{
862 struct fec_enet_private *fep = netdev_priv(dev);
863 int i;
864 struct sk_buff *skb;
865 struct bufdesc *bdp;
866
867 bdp = fep->rx_bd_base;
868 for (i = 0; i < RX_RING_SIZE; i++) {
869 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
870 if (!skb) {
871 fec_enet_free_buffers(dev);
872 return -ENOMEM;
873 }
874 fep->rx_skbuff[i] = skb;
875
876 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
877 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
878 bdp->cbd_sc = BD_ENET_RX_EMPTY;
879 bdp++;
880 }
881
882 /* Set the last buffer to wrap. */
883 bdp--;
884 bdp->cbd_sc |= BD_SC_WRAP;
885
886 bdp = fep->tx_bd_base;
887 for (i = 0; i < TX_RING_SIZE; i++) {
888 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
889
890 bdp->cbd_sc = 0;
891 bdp->cbd_bufaddr = 0;
892 bdp++;
893 }
894
895 /* Set the last buffer to wrap. */
896 bdp--;
897 bdp->cbd_sc |= BD_SC_WRAP;
898
899 return 0;
900}
901
1da177e4
LT
902static int
903fec_enet_open(struct net_device *dev)
904{
905 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 906 int ret;
1da177e4
LT
907
908 /* I should reset the ring buffers here, but I don't yet know
909 * a simple way to do that.
910 */
1da177e4 911
f0b3fbea
SH
912 ret = fec_enet_alloc_buffers(dev);
913 if (ret)
914 return ret;
915
e6b043d5
BW
916 /* schedule a link state check */
917 phy_start(fep->phy_dev);
1da177e4
LT
918 netif_start_queue(dev);
919 fep->opened = 1;
22f6b860 920 return 0;
1da177e4
LT
921}
922
923static int
924fec_enet_close(struct net_device *dev)
925{
926 struct fec_enet_private *fep = netdev_priv(dev);
927
22f6b860 928 /* Don't know what to do yet. */
1da177e4 929 fep->opened = 0;
e6b043d5 930 phy_stop(fep->phy_dev);
1da177e4
LT
931 netif_stop_queue(dev);
932 fec_stop(dev);
933
f0b3fbea
SH
934 fec_enet_free_buffers(dev);
935
1da177e4
LT
936 return 0;
937}
938
1da177e4
LT
939/* Set or clear the multicast filter for this adaptor.
940 * Skeleton taken from sunlance driver.
941 * The CPM Ethernet implementation allows Multicast as well as individual
942 * MAC address filtering. Some of the drivers check to make sure it is
943 * a group multicast address, and discard those that are not. I guess I
944 * will do the same for now, but just remove the test if you want
945 * individual filtering as well (do the upper net layers want or support
946 * this kind of feature?).
947 */
948
949#define HASH_BITS 6 /* #bits in hash */
950#define CRC32_POLY 0xEDB88320
951
952static void set_multicast_list(struct net_device *dev)
953{
f44d6305 954 struct fec_enet_private *fep = netdev_priv(dev);
22bedad3 955 struct netdev_hw_addr *ha;
48e2f183 956 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
957 unsigned char hash;
958
22f6b860 959 if (dev->flags & IFF_PROMISC) {
f44d6305
SH
960 tmp = readl(fep->hwp + FEC_R_CNTRL);
961 tmp |= 0x8;
962 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
963 return;
964 }
1da177e4 965
4e831836
SH
966 tmp = readl(fep->hwp + FEC_R_CNTRL);
967 tmp &= ~0x8;
968 writel(tmp, fep->hwp + FEC_R_CNTRL);
969
970 if (dev->flags & IFF_ALLMULTI) {
971 /* Catch all multicast addresses, so set the
972 * filter to all 1's
973 */
974 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
975 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
976
977 return;
978 }
979
980 /* Clear filter and add the addresses in hash register
981 */
982 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
983 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
984
22bedad3 985 netdev_for_each_mc_addr(ha, dev) {
4e831836 986 /* Only support group multicast for now */
22bedad3 987 if (!(ha->addr[0] & 1))
4e831836
SH
988 continue;
989
990 /* calculate crc32 value of mac address */
991 crc = 0xffffffff;
992
22bedad3
JP
993 for (i = 0; i < dev->addr_len; i++) {
994 data = ha->addr[i];
4e831836
SH
995 for (bit = 0; bit < 8; bit++, data >>= 1) {
996 crc = (crc >> 1) ^
997 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
998 }
999 }
4e831836
SH
1000
1001 /* only upper 6 bits (HASH_BITS) are used
1002 * which point to specific bit in he hash registers
1003 */
1004 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1005
1006 if (hash > 31) {
1007 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1008 tmp |= 1 << (hash - 32);
1009 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1010 } else {
1011 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1012 tmp |= 1 << hash;
1013 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1014 }
1da177e4
LT
1015 }
1016}
1017
22f6b860 1018/* Set a MAC change in hardware. */
009fda83
SH
1019static int
1020fec_set_mac_address(struct net_device *dev, void *p)
1da177e4 1021{
f44d6305 1022 struct fec_enet_private *fep = netdev_priv(dev);
009fda83
SH
1023 struct sockaddr *addr = p;
1024
1025 if (!is_valid_ether_addr(addr->sa_data))
1026 return -EADDRNOTAVAIL;
1027
1028 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1da177e4 1029
f44d6305
SH
1030 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1031 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1032 fep->hwp + FEC_ADDR_LOW);
1033 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1034 fep + FEC_ADDR_HIGH);
009fda83 1035 return 0;
1da177e4
LT
1036}
1037
009fda83
SH
1038static const struct net_device_ops fec_netdev_ops = {
1039 .ndo_open = fec_enet_open,
1040 .ndo_stop = fec_enet_close,
1041 .ndo_start_xmit = fec_enet_start_xmit,
1042 .ndo_set_multicast_list = set_multicast_list,
635ecaa7 1043 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1044 .ndo_validate_addr = eth_validate_addr,
1045 .ndo_tx_timeout = fec_timeout,
1046 .ndo_set_mac_address = fec_set_mac_address,
e6b043d5 1047 .ndo_do_ioctl = fec_enet_ioctl,
009fda83
SH
1048};
1049
1da177e4
LT
1050 /*
1051 * XXX: We need to clean up on failure exits here.
ead73183
SH
1052 *
1053 * index is only used in legacy code
1da177e4 1054 */
78abcb13 1055static int fec_enet_init(struct net_device *dev, int index)
1da177e4
LT
1056{
1057 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 1058 struct bufdesc *cbd_base;
633e7533 1059 struct bufdesc *bdp;
f0b3fbea 1060 int i;
1da177e4 1061
8d4dd5cf
SH
1062 /* Allocate memory for buffer descriptors. */
1063 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1064 GFP_KERNEL);
1065 if (!cbd_base) {
562d2f8c
GU
1066 printk("FEC: allocate descriptor memory failed?\n");
1067 return -ENOMEM;
1068 }
1069
3b2b74ca 1070 spin_lock_init(&fep->hw_lock);
3b2b74ca 1071
1da177e4 1072 fep->index = index;
f44d6305 1073 fep->hwp = (void __iomem *)dev->base_addr;
cb84d6e7 1074 fep->netdev = dev;
1da177e4 1075
ead73183 1076 /* Set the Ethernet address */
43be6366 1077#ifdef CONFIG_M5272
1da177e4 1078 fec_get_mac(dev);
ead73183
SH
1079#else
1080 {
1081 unsigned long l;
f44d6305 1082 l = readl(fep->hwp + FEC_ADDR_LOW);
ead73183
SH
1083 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1084 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1085 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1086 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
f44d6305 1087 l = readl(fep->hwp + FEC_ADDR_HIGH);
ead73183
SH
1088 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1089 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1090 }
1091#endif
1da177e4 1092
8d4dd5cf 1093 /* Set receive and transmit descriptor base. */
1da177e4
LT
1094 fep->rx_bd_base = cbd_base;
1095 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1096
22f6b860 1097 /* The FEC Ethernet specific entries in the device structure */
1da177e4 1098 dev->watchdog_timeo = TX_TIMEOUT;
009fda83 1099 dev->netdev_ops = &fec_netdev_ops;
e6b043d5 1100 dev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1101
1102 /* Initialize the receive buffer descriptors. */
1103 bdp = fep->rx_bd_base;
1104 for (i = 0; i < RX_RING_SIZE; i++) {
1105
1106 /* Initialize the BD for every fragment in the page. */
1107 bdp->cbd_sc = 0;
1108 bdp++;
1109 }
1110
1111 /* Set the last buffer to wrap */
1112 bdp--;
1113 bdp->cbd_sc |= BD_SC_WRAP;
1114
1115 /* ...and the same for transmit */
1116 bdp = fep->tx_bd_base;
1117 for (i = 0; i < TX_RING_SIZE; i++) {
1118
1119 /* Initialize the BD for every fragment in the page. */
1120 bdp->cbd_sc = 0;
1121 bdp->cbd_bufaddr = 0;
1122 bdp++;
1123 }
1124
1125 /* Set the last buffer to wrap */
1126 bdp--;
1127 bdp->cbd_sc |= BD_SC_WRAP;
1128
ead73183 1129 fec_restart(dev, 0);
1da177e4 1130
1da177e4
LT
1131 return 0;
1132}
1133
1134/* This function is called to start or restart the FEC during a link
1135 * change. This only happens when switching between half and full
1136 * duplex.
1137 */
1138static void
1139fec_restart(struct net_device *dev, int duplex)
1140{
f44d6305 1141 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4
LT
1142 int i;
1143
f44d6305
SH
1144 /* Whack a reset. We should wait for this. */
1145 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4
LT
1146 udelay(10);
1147
f44d6305
SH
1148 /* Clear any outstanding interrupt. */
1149 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 1150
f44d6305
SH
1151 /* Reset all multicast. */
1152 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1153 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
4f1ceb4b
SH
1154#ifndef CONFIG_M5272
1155 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1156 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1157#endif
1da177e4 1158
f44d6305
SH
1159 /* Set maximum receive buffer size. */
1160 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 1161
f44d6305
SH
1162 /* Set receive and transmit descriptor base. */
1163 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
2e28532f 1164 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
f44d6305 1165 fep->hwp + FEC_X_DES_START);
1da177e4
LT
1166
1167 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1168 fep->cur_rx = fep->rx_bd_base;
1169
f44d6305 1170 /* Reset SKB transmit buffers. */
1da177e4 1171 fep->skb_cur = fep->skb_dirty = 0;
22f6b860
SH
1172 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1173 if (fep->tx_skbuff[i]) {
1da177e4
LT
1174 dev_kfree_skb_any(fep->tx_skbuff[i]);
1175 fep->tx_skbuff[i] = NULL;
1176 }
1177 }
1178
22f6b860 1179 /* Enable MII mode */
1da177e4 1180 if (duplex) {
f44d6305
SH
1181 /* MII enable / FD enable */
1182 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1183 writel(0x04, fep->hwp + FEC_X_CNTRL);
f909b1ef 1184 } else {
f44d6305
SH
1185 /* MII enable / No Rcv on Xmit */
1186 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1187 writel(0x0, fep->hwp + FEC_X_CNTRL);
1da177e4
LT
1188 }
1189 fep->full_duplex = duplex;
1190
22f6b860 1191 /* Set MII speed */
f44d6305 1192 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 1193
22f6b860 1194 /* And last, enable the transmit and receive processing */
f44d6305
SH
1195 writel(2, fep->hwp + FEC_ECNTRL);
1196 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
6b265293 1197
22f6b860 1198 /* Enable interrupts we wish to service */
e6b043d5 1199 writel(FEC_ENET_TXF | FEC_ENET_RXF, fep->hwp + FEC_IMASK);
1da177e4
LT
1200}
1201
1202static void
1203fec_stop(struct net_device *dev)
1204{
f44d6305 1205 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 1206
22f6b860 1207 /* We cannot expect a graceful transmit stop without link !!! */
f44d6305
SH
1208 if (fep->link) {
1209 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
677177c5 1210 udelay(10);
f44d6305 1211 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
677177c5 1212 printk("fec_stop : Graceful transmit stop did not complete !\n");
f44d6305 1213 }
1da177e4 1214
f44d6305
SH
1215 /* Whack a reset. We should wait for this. */
1216 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4
LT
1217 udelay(10);
1218
f44d6305
SH
1219 /* Clear outstanding MII command interrupts. */
1220 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1da177e4 1221
f44d6305 1222 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4
LT
1223}
1224
ead73183
SH
1225static int __devinit
1226fec_probe(struct platform_device *pdev)
1227{
1228 struct fec_enet_private *fep;
1229 struct net_device *ndev;
1230 int i, irq, ret = 0;
1231 struct resource *r;
1232
1233 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1234 if (!r)
1235 return -ENXIO;
1236
1237 r = request_mem_region(r->start, resource_size(r), pdev->name);
1238 if (!r)
1239 return -EBUSY;
1240
1241 /* Init network device */
1242 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1243 if (!ndev)
1244 return -ENOMEM;
1245
1246 SET_NETDEV_DEV(ndev, &pdev->dev);
1247
1248 /* setup board info structure */
1249 fep = netdev_priv(ndev);
1250 memset(fep, 0, sizeof(*fep));
1251
1252 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
e6b043d5 1253 fep->pdev = pdev;
ead73183
SH
1254
1255 if (!ndev->base_addr) {
1256 ret = -ENOMEM;
1257 goto failed_ioremap;
1258 }
1259
1260 platform_set_drvdata(pdev, ndev);
1261
1262 /* This device has up to three irqs on some platforms */
1263 for (i = 0; i < 3; i++) {
1264 irq = platform_get_irq(pdev, i);
1265 if (i && irq < 0)
1266 break;
1267 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1268 if (ret) {
1269 while (i >= 0) {
1270 irq = platform_get_irq(pdev, i);
1271 free_irq(irq, ndev);
1272 i--;
1273 }
1274 goto failed_irq;
1275 }
1276 }
1277
1278 fep->clk = clk_get(&pdev->dev, "fec_clk");
1279 if (IS_ERR(fep->clk)) {
1280 ret = PTR_ERR(fep->clk);
1281 goto failed_clk;
1282 }
1283 clk_enable(fep->clk);
1284
1285 ret = fec_enet_init(ndev, 0);
1286 if (ret)
1287 goto failed_init;
1288
e6b043d5
BW
1289 ret = fec_enet_mii_init(pdev);
1290 if (ret)
1291 goto failed_mii_init;
1292
ead73183
SH
1293 ret = register_netdev(ndev);
1294 if (ret)
1295 goto failed_register;
1296
e6b043d5
BW
1297 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
1298 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
1299 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1300 fep->phy_dev->irq);
1301
ead73183
SH
1302 return 0;
1303
1304failed_register:
e6b043d5
BW
1305 fec_enet_mii_remove(fep);
1306failed_mii_init:
ead73183
SH
1307failed_init:
1308 clk_disable(fep->clk);
1309 clk_put(fep->clk);
1310failed_clk:
1311 for (i = 0; i < 3; i++) {
1312 irq = platform_get_irq(pdev, i);
1313 if (irq > 0)
1314 free_irq(irq, ndev);
1315 }
1316failed_irq:
1317 iounmap((void __iomem *)ndev->base_addr);
1318failed_ioremap:
1319 free_netdev(ndev);
1320
1321 return ret;
1322}
1323
1324static int __devexit
1325fec_drv_remove(struct platform_device *pdev)
1326{
1327 struct net_device *ndev = platform_get_drvdata(pdev);
1328 struct fec_enet_private *fep = netdev_priv(ndev);
1329
1330 platform_set_drvdata(pdev, NULL);
1331
1332 fec_stop(ndev);
e6b043d5 1333 fec_enet_mii_remove(fep);
ead73183
SH
1334 clk_disable(fep->clk);
1335 clk_put(fep->clk);
1336 iounmap((void __iomem *)ndev->base_addr);
1337 unregister_netdev(ndev);
1338 free_netdev(ndev);
1339 return 0;
1340}
1341
1342static int
1343fec_suspend(struct platform_device *dev, pm_message_t state)
1344{
1345 struct net_device *ndev = platform_get_drvdata(dev);
1346 struct fec_enet_private *fep;
1347
1348 if (ndev) {
1349 fep = netdev_priv(ndev);
1350 if (netif_running(ndev)) {
1351 netif_device_detach(ndev);
1352 fec_stop(ndev);
1353 }
1354 }
1355 return 0;
1356}
1357
1358static int
1359fec_resume(struct platform_device *dev)
1360{
1361 struct net_device *ndev = platform_get_drvdata(dev);
1362
1363 if (ndev) {
1364 if (netif_running(ndev)) {
1365 fec_enet_init(ndev, 0);
1366 netif_device_attach(ndev);
1367 }
1368 }
1369 return 0;
1370}
1371
1372static struct platform_driver fec_driver = {
1373 .driver = {
1374 .name = "fec",
1375 .owner = THIS_MODULE,
1376 },
1377 .probe = fec_probe,
1378 .remove = __devexit_p(fec_drv_remove),
1379 .suspend = fec_suspend,
1380 .resume = fec_resume,
1381};
1382
1383static int __init
1384fec_enet_module_init(void)
1385{
1386 printk(KERN_INFO "FEC Ethernet Driver\n");
1387
1388 return platform_driver_register(&fec_driver);
1389}
1390
1391static void __exit
1392fec_enet_cleanup(void)
1393{
1394 platform_driver_unregister(&fec_driver);
1395}
1396
1397module_exit(fec_enet_cleanup);
1da177e4
LT
1398module_init(fec_enet_module_init);
1399
1400MODULE_LICENSE("GPL");