]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/eepro.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[net-next-2.6.git] / drivers / net / eepro.c
CommitLineData
1da177e4
LT
1/* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
2/*
3 Written 1994, 1995,1996 by Bao C. Ha.
4
5 Copyright (C) 1994, 1995,1996 by Bao C. Ha.
6
7 This software may be used and distributed
8 according to the terms of the GNU General Public License,
9 incorporated herein by reference.
10
11 The author may be reached at bao.ha@srs.gov
12 or 418 Hastings Place, Martinez, GA 30907.
13
14 Things remaining to do:
15 Better record keeping of errors.
16 Eliminate transmit interrupt to reduce overhead.
17 Implement "concurrent processing". I won't be doing it!
18
19 Bugs:
20
21 If you have a problem of not detecting the 82595 during a
22 reboot (warm reset), disable the FLASH memory should fix it.
23 This is a compatibility hardware problem.
24
25 Versions:
26 0.13b basic ethtool support (aris, 09/13/2004)
27 0.13a in memory shortage, drop packets also in board
28 (Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
29 0.13 irq sharing, rewrote probe function, fixed a nasty bug in
30 hardware_send_packet and a major cleanup (aris, 11/08/2001)
31 0.12d fixing a problem with single card detected as eight eth devices
32 fixing a problem with sudden drop in card performance
33 (chris (asdn@go2.pl), 10/29/2001)
34 0.12c fixing some problems with old cards (aris, 01/08/2001)
35 0.12b misc fixes (aris, 06/26/2000)
36 0.12a port of version 0.12a of 2.2.x kernels to 2.3.x
37 (aris (aris@conectiva.com.br), 05/19/2000)
38 0.11e some tweaks about multiple cards support (PdP, jul/aug 1999)
39 0.11d added __initdata, __init stuff; call spin_lock_init
40 in eepro_probe1. Replaced "eepro" by dev->name. Augmented
41 the code protected by spin_lock in interrupt routine
42 (PdP, 12/12/1998)
43 0.11c minor cleanup (PdP, RMC, 09/12/1998)
44 0.11b Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
45 under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
46 avoid console flooding. Added locking at critical parts. Now
47 the dawn thing is SMP safe.
48 0.11a Attempt to get 2.1.xx support up (RMC)
49 0.11 Brian Candler added support for multiple cards. Tested as
50 a module, no idea if it works when compiled into kernel.
51
52 0.10e Rick Bressler notified me that ifconfig up;ifconfig down fails
53 because the irq is lost somewhere. Fixed that by moving
54 request_irq and free_irq to eepro_open and eepro_close respectively.
55 0.10d Ugh! Now Wakeup works. Was seriously broken in my first attempt.
56 I'll need to find a way to specify an ioport other than
57 the default one in the PnP case. PnP definitively sucks.
58 And, yes, this is not the only reason.
59 0.10c PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
60 to use.
61 0.10b Should work now with (some) Pro/10+. At least for
62 me (and my two cards) it does. _No_ guarantee for
63 function with non-Pro/10+ cards! (don't have any)
64 (RMC, 9/11/96)
65
66 0.10 Added support for the Etherexpress Pro/10+. The
67 IRQ map was changed significantly from the old
68 pro/10. The new interrupt map was provided by
69 Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
70 (BCH, 9/3/96)
71
72 0.09 Fixed a race condition in the transmit algorithm,
73 which causes crashes under heavy load with fast
74 pentium computers. The performance should also
75 improve a bit. The size of RX buffer, and hence
76 TX buffer, can also be changed via lilo or insmod.
77 (BCH, 7/31/96)
78
79 0.08 Implement 32-bit I/O for the 82595TX and 82595FX
80 based lan cards. Disable full-duplex mode if TPE
81 is not used. (BCH, 4/8/96)
82
83 0.07a Fix a stat report which counts every packet as a
84 heart-beat failure. (BCH, 6/3/95)
85
86 0.07 Modified to support all other 82595-based lan cards.
87 The IRQ vector of the EtherExpress Pro will be set
88 according to the value saved in the EEPROM. For other
89 cards, I will do autoirq_request() to grab the next
90 available interrupt vector. (BCH, 3/17/95)
91
92 0.06a,b Interim released. Minor changes in the comments and
93 print out format. (BCH, 3/9/95 and 3/14/95)
94
95 0.06 First stable release that I am comfortable with. (BCH,
96 3/2/95)
97
98 0.05 Complete testing of multicast. (BCH, 2/23/95)
99
100 0.04 Adding multicast support. (BCH, 2/14/95)
101
102 0.03 First widely alpha release for public testing.
103 (BCH, 2/14/95)
104
105*/
106
107static const char version[] =
108 "eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
109
110#include <linux/module.h>
111
112/*
113 Sources:
114
115 This driver wouldn't have been written without the availability
116 of the Crynwr's Lan595 driver source code. It helps me to
117 familiarize with the 82595 chipset while waiting for the Intel
118 documentation. I also learned how to detect the 82595 using
119 the packet driver's technique.
120
121 This driver is written by cutting and pasting the skeleton.c driver
122 provided by Donald Becker. I also borrowed the EEPROM routine from
123 Donald Becker's 82586 driver.
124
125 Datasheet for the Intel 82595 (including the TX and FX version). It
126 provides just enough info that the casual reader might think that it
127 documents the i82595.
128
129 The User Manual for the 82595. It provides a lot of the missing
130 information.
131
132*/
133
134#include <linux/kernel.h>
135#include <linux/types.h>
136#include <linux/fcntl.h>
137#include <linux/interrupt.h>
138#include <linux/ioport.h>
139#include <linux/in.h>
140#include <linux/slab.h>
141#include <linux/string.h>
142#include <linux/errno.h>
143#include <linux/netdevice.h>
144#include <linux/etherdevice.h>
145#include <linux/skbuff.h>
146#include <linux/spinlock.h>
147#include <linux/init.h>
148#include <linux/delay.h>
149#include <linux/bitops.h>
150#include <linux/ethtool.h>
151
152#include <asm/system.h>
153#include <asm/io.h>
154#include <asm/dma.h>
155
156#define DRV_NAME "eepro"
d5b20697 157#define DRV_VERSION "0.13c"
1da177e4
LT
158
159#define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
160/* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
161#define SLOW_DOWN inb(0x80)
162/* udelay(2) */
163#define compat_init_data __initdata
164enum iftype { AUI=0, BNC=1, TPE=2 };
165
166/* First, a few definitions that the brave might change. */
167/* A zero-terminated list of I/O addresses to be probed. */
168static unsigned int eepro_portlist[] compat_init_data =
169 { 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
170/* note: 0x300 is default, the 595FX supports ALL IO Ports
171 from 0x000 to 0x3F0, some of which are reserved in PCs */
172
173/* To try the (not-really PnP Wakeup: */
174/*
175#define PnPWakeup
176*/
177
178/* use 0 for production, 1 for verification, >2 for debug */
179#ifndef NET_DEBUG
180#define NET_DEBUG 0
181#endif
182static unsigned int net_debug = NET_DEBUG;
183
184/* The number of low I/O ports used by the ethercard. */
185#define EEPRO_IO_EXTENT 16
186
187/* Different 82595 chips */
188#define LAN595 0
189#define LAN595TX 1
190#define LAN595FX 2
191#define LAN595FX_10ISA 3
192
193/* Information that need to be kept for each board. */
194struct eepro_local {
195 struct net_device_stats stats;
196 unsigned rx_start;
197 unsigned tx_start; /* start of the transmit chain */
198 int tx_last; /* pointer to last packet in the transmit chain */
199 unsigned tx_end; /* end of the transmit chain (plus 1) */
200 int eepro; /* 1 for the EtherExpress Pro/10,
201 2 for the EtherExpress Pro/10+,
202 3 for the EtherExpress 10 (blue cards),
203 0 for other 82595-based lan cards. */
204 int version; /* a flag to indicate if this is a TX or FX
205 version of the 82595 chip. */
206 int stepping;
207
208 spinlock_t lock; /* Serializing lock */
209
210 unsigned rcv_ram; /* pre-calculated space for rx */
211 unsigned xmt_ram; /* pre-calculated space for tx */
212 unsigned char xmt_bar;
213 unsigned char xmt_lower_limit_reg;
214 unsigned char xmt_upper_limit_reg;
215 short xmt_lower_limit;
216 short xmt_upper_limit;
217 short rcv_lower_limit;
218 short rcv_upper_limit;
219 unsigned char eeprom_reg;
220 unsigned short word[8];
221};
222
223/* The station (ethernet) address prefix, used for IDing the board. */
224#define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
225#define SA_ADDR1 0xaa
226#define SA_ADDR2 0x00
227
228#define GetBit(x,y) ((x & (1<<y))>>y)
229
230/* EEPROM Word 0: */
231#define ee_PnP 0 /* Plug 'n Play enable bit */
232#define ee_Word1 1 /* Word 1? */
233#define ee_BusWidth 2 /* 8/16 bit */
234#define ee_FlashAddr 3 /* Flash Address */
235#define ee_FlashMask 0x7 /* Mask */
236#define ee_AutoIO 6 /* */
237#define ee_reserved0 7 /* =0! */
238#define ee_Flash 8 /* Flash there? */
239#define ee_AutoNeg 9 /* Auto Negotiation enabled? */
240#define ee_IO0 10 /* IO Address LSB */
241#define ee_IO0Mask 0x /*...*/
242#define ee_IO1 15 /* IO MSB */
243
244/* EEPROM Word 1: */
245#define ee_IntSel 0 /* Interrupt */
246#define ee_IntMask 0x7
247#define ee_LI 3 /* Link Integrity 0= enabled */
248#define ee_PC 4 /* Polarity Correction 0= enabled */
249#define ee_TPE_AUI 5 /* PortSelection 1=TPE */
250#define ee_Jabber 6 /* Jabber prevention 0= enabled */
251#define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
252#define ee_SMOUT 8 /* SMout Pin Control 0= Input */
253#define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
254#define ee_reserved1 10 /* .. 12 =0! */
255#define ee_AltReady 13 /* Alternate Ready, 0=normal */
256#define ee_reserved2 14 /* =0! */
257#define ee_Duplex 15
258
259/* Word2,3,4: */
260#define ee_IA5 0 /*bit start for individual Addr Byte 5 */
261#define ee_IA4 8 /*bit start for individual Addr Byte 5 */
262#define ee_IA3 0 /*bit start for individual Addr Byte 5 */
263#define ee_IA2 8 /*bit start for individual Addr Byte 5 */
264#define ee_IA1 0 /*bit start for individual Addr Byte 5 */
265#define ee_IA0 8 /*bit start for individual Addr Byte 5 */
266
267/* Word 5: */
268#define ee_BNC_TPE 0 /* 0=TPE */
269#define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
270#define ee_BootTypeMask 0x3
271#define ee_NumConn 3 /* Number of Connections 0= One or Two */
272#define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
273#define ee_PortTPE 5
274#define ee_PortBNC 6
275#define ee_PortAUI 7
276#define ee_PowerMgt 10 /* 0= disabled */
277#define ee_CP 13 /* Concurrent Processing */
278#define ee_CPMask 0x7
279
280/* Word 6: */
281#define ee_Stepping 0 /* Stepping info */
282#define ee_StepMask 0x0F
283#define ee_BoardID 4 /* Manucaturer Board ID, reserved */
284#define ee_BoardMask 0x0FFF
285
286/* Word 7: */
287#define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
288#define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
289
290/*..*/
291#define ee_SIZE 0x40 /* total EEprom Size */
292#define ee_Checksum 0xBABA /* initial and final value for adding checksum */
293
294
295/* Card identification via EEprom: */
296#define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
297#define ee_addr_id 0x11 /* Word offset for Card ID */
298#define ee_addr_SN 0x12 /* Serial Number */
299#define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
300
301
302#define ee_vendor_intel0 0x25 /* Vendor ID Intel */
303#define ee_vendor_intel1 0xD4
304#define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
305#define ee_id_eepro10p1 0x31
306
307#define TX_TIMEOUT 40
308
309/* Index to functions, as function prototypes. */
310
311static int eepro_probe1(struct net_device *dev, int autoprobe);
312static int eepro_open(struct net_device *dev);
313static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev);
7d12e780 314static irqreturn_t eepro_interrupt(int irq, void *dev_id);
1da177e4
LT
315static void eepro_rx(struct net_device *dev);
316static void eepro_transmit_interrupt(struct net_device *dev);
317static int eepro_close(struct net_device *dev);
318static struct net_device_stats *eepro_get_stats(struct net_device *dev);
319static void set_multicast_list(struct net_device *dev);
320static void eepro_tx_timeout (struct net_device *dev);
321
322static int read_eeprom(int ioaddr, int location, struct net_device *dev);
323static int hardware_send_packet(struct net_device *dev, void *buf, short length);
324static int eepro_grab_irq(struct net_device *dev);
325
326/*
327 Details of the i82595.
328
329You will need either the datasheet or the user manual to understand what
330is going on here. The 82595 is very different from the 82586, 82593.
331
332The receive algorithm in eepro_rx() is just an implementation of the
333RCV ring structure that the Intel 82595 imposes at the hardware level.
334The receive buffer is set at 24K, and the transmit buffer is 8K. I
335am assuming that the total buffer memory is 32K, which is true for the
336Intel EtherExpress Pro/10. If it is less than that on a generic card,
337the driver will be broken.
338
339The transmit algorithm in the hardware_send_packet() is similar to the
340one in the eepro_rx(). The transmit buffer is a ring linked list.
341I just queue the next available packet to the end of the list. In my
342system, the 82595 is so fast that the list seems to always contain a
343single packet. In other systems with faster computers and more congested
344network traffics, the ring linked list should improve performance by
345allowing up to 8K worth of packets to be queued.
346
347The sizes of the receive and transmit buffers can now be changed via lilo
348or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
349where rx-buffer is in KB unit. Modules uses the parameter mem which is
350also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
351The receive buffer has to be more than 3K or less than 29K. Otherwise,
352it is reset to the default of 24K, and, hence, 8K for the trasnmit
353buffer (transmit-buffer = 32K - receive-buffer).
354
355*/
356#define RAM_SIZE 0x8000
357
358#define RCV_HEADER 8
359#define RCV_DEFAULT_RAM 0x6000
360
361#define XMT_HEADER 8
362#define XMT_DEFAULT_RAM (RAM_SIZE - RCV_DEFAULT_RAM)
363
364#define XMT_START_PRO RCV_DEFAULT_RAM
365#define XMT_START_10 0x0000
366#define RCV_START_PRO 0x0000
367#define RCV_START_10 XMT_DEFAULT_RAM
368
369#define RCV_DONE 0x0008
370#define RX_OK 0x2000
371#define RX_ERROR 0x0d81
372
373#define TX_DONE_BIT 0x0080
374#define TX_OK 0x2000
375#define CHAIN_BIT 0x8000
376#define XMT_STATUS 0x02
377#define XMT_CHAIN 0x04
378#define XMT_COUNT 0x06
379
380#define BANK0_SELECT 0x00
381#define BANK1_SELECT 0x40
382#define BANK2_SELECT 0x80
383
384/* Bank 0 registers */
385#define COMMAND_REG 0x00 /* Register 0 */
386#define MC_SETUP 0x03
387#define XMT_CMD 0x04
388#define DIAGNOSE_CMD 0x07
389#define RCV_ENABLE_CMD 0x08
390#define RCV_DISABLE_CMD 0x0a
391#define STOP_RCV_CMD 0x0b
392#define RESET_CMD 0x0e
393#define POWER_DOWN_CMD 0x18
394#define RESUME_XMT_CMD 0x1c
395#define SEL_RESET_CMD 0x1e
396#define STATUS_REG 0x01 /* Register 1 */
397#define RX_INT 0x02
398#define TX_INT 0x04
399#define EXEC_STATUS 0x30
400#define ID_REG 0x02 /* Register 2 */
401#define R_ROBIN_BITS 0xc0 /* round robin counter */
402#define ID_REG_MASK 0x2c
403#define ID_REG_SIG 0x24
404#define AUTO_ENABLE 0x10
405#define INT_MASK_REG 0x03 /* Register 3 */
406#define RX_STOP_MASK 0x01
407#define RX_MASK 0x02
408#define TX_MASK 0x04
409#define EXEC_MASK 0x08
410#define ALL_MASK 0x0f
411#define IO_32_BIT 0x10
412#define RCV_BAR 0x04 /* The following are word (16-bit) registers */
413#define RCV_STOP 0x06
414
415#define XMT_BAR_PRO 0x0a
416#define XMT_BAR_10 0x0b
417
418#define HOST_ADDRESS_REG 0x0c
419#define IO_PORT 0x0e
420#define IO_PORT_32_BIT 0x0c
421
422/* Bank 1 registers */
423#define REG1 0x01
424#define WORD_WIDTH 0x02
425#define INT_ENABLE 0x80
426#define INT_NO_REG 0x02
427#define RCV_LOWER_LIMIT_REG 0x08
428#define RCV_UPPER_LIMIT_REG 0x09
429
430#define XMT_LOWER_LIMIT_REG_PRO 0x0a
431#define XMT_UPPER_LIMIT_REG_PRO 0x0b
432#define XMT_LOWER_LIMIT_REG_10 0x0b
433#define XMT_UPPER_LIMIT_REG_10 0x0a
434
435/* Bank 2 registers */
436#define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
437#define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
438#define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
439#define REG2 0x02
440#define PRMSC_Mode 0x01
441#define Multi_IA 0x20
442#define REG3 0x03
443#define TPE_BIT 0x04
444#define BNC_BIT 0x20
445#define REG13 0x0d
446#define FDX 0x00
447#define A_N_ENABLE 0x02
448
449#define I_ADD_REG0 0x04
450#define I_ADD_REG1 0x05
451#define I_ADD_REG2 0x06
452#define I_ADD_REG3 0x07
453#define I_ADD_REG4 0x08
454#define I_ADD_REG5 0x09
455
456#define EEPROM_REG_PRO 0x0a
457#define EEPROM_REG_10 0x0b
458
459#define EESK 0x01
460#define EECS 0x02
461#define EEDI 0x04
462#define EEDO 0x08
463
464/* do a full reset */
465#define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
466
467/* do a nice reset */
468#define eepro_sel_reset(ioaddr) { \
469 outb(SEL_RESET_CMD, ioaddr); \
470 SLOW_DOWN; \
471 SLOW_DOWN; \
472 }
473
474/* disable all interrupts */
475#define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
476
477/* clear all interrupts */
478#define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
479
480/* enable tx/rx */
481#define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
482 ioaddr + INT_MASK_REG)
483
484/* enable exec event interrupt */
485#define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
486
487/* enable rx */
488#define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
489
490/* disable rx */
491#define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
492
493/* switch bank */
494#define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
495#define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
496#define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
497
498/* enable interrupt line */
499#define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
500 ioaddr + REG1)
501
502/* disable interrupt line */
503#define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
504 ioaddr + REG1);
505
506/* set diagnose flag */
507#define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
508
509/* ack for rx int */
510#define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
511
512/* ack for tx int */
513#define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
514
515/* a complete sel reset */
516#define eepro_complete_selreset(ioaddr) { \
517 lp->stats.tx_errors++;\
518 eepro_sel_reset(ioaddr);\
519 lp->tx_end = \
520 lp->xmt_lower_limit;\
521 lp->tx_start = lp->tx_end;\
522 lp->tx_last = 0;\
523 dev->trans_start = jiffies;\
524 netif_wake_queue(dev);\
525 eepro_en_rx(ioaddr);\
526 }
527
528/* Check for a network adaptor of this type, and return '0' if one exists.
529 If dev->base_addr == 0, probe all likely locations.
530 If dev->base_addr == 1, always return failure.
531 If dev->base_addr == 2, allocate space for the device and return success
532 (detachable devices only).
533 */
534static int __init do_eepro_probe(struct net_device *dev)
535{
536 int i;
537 int base_addr = dev->base_addr;
538 int irq = dev->irq;
539
540 SET_MODULE_OWNER(dev);
541
542#ifdef PnPWakeup
543 /* XXXX for multiple cards should this only be run once? */
544
545 /* Wakeup: */
546 #define WakeupPort 0x279
547 #define WakeupSeq {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
548 0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
549 0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
550 0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
551
552 {
553 unsigned short int WS[32]=WakeupSeq;
554
d61780c0 555 if (request_region(WakeupPort, 2, "eepro wakeup")) {
1da177e4
LT
556 if (net_debug>5)
557 printk(KERN_DEBUG "Waking UP\n");
558
559 outb_p(0,WakeupPort);
560 outb_p(0,WakeupPort);
561 for (i=0; i<32; i++) {
562 outb_p(WS[i],WakeupPort);
563 if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
564 }
d61780c0
JG
565
566 release_region(WakeupPort, 2);
567 } else
568 printk(KERN_WARNING "PnP wakeup region busy!\n");
1da177e4
LT
569 }
570#endif
571
572 if (base_addr > 0x1ff) /* Check a single specified location. */
573 return eepro_probe1(dev, 0);
574
575 else if (base_addr != 0) /* Don't probe at all. */
576 return -ENXIO;
577
578 for (i = 0; eepro_portlist[i]; i++) {
579 dev->base_addr = eepro_portlist[i];
580 dev->irq = irq;
581 if (eepro_probe1(dev, 1) == 0)
582 return 0;
583 }
584
585 return -ENODEV;
586}
587
588#ifndef MODULE
589struct net_device * __init eepro_probe(int unit)
590{
591 struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
592 int err;
593
594 if (!dev)
595 return ERR_PTR(-ENODEV);
596
597 SET_MODULE_OWNER(dev);
598
599 sprintf(dev->name, "eth%d", unit);
600 netdev_boot_setup_check(dev);
601
602 err = do_eepro_probe(dev);
603 if (err)
604 goto out;
1da177e4 605 return dev;
1da177e4
LT
606out:
607 free_netdev(dev);
608 return ERR_PTR(err);
609}
610#endif
611
612static void __init printEEPROMInfo(struct net_device *dev)
613{
614 struct eepro_local *lp = (struct eepro_local *)dev->priv;
615 int ioaddr = dev->base_addr;
616 unsigned short Word;
617 int i,j;
618
619 j = ee_Checksum;
620 for (i = 0; i < 8; i++)
621 j += lp->word[i];
622 for ( ; i < ee_SIZE; i++)
623 j += read_eeprom(ioaddr, i, dev);
624
625 printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
626
627 Word = lp->word[0];
628 printk(KERN_DEBUG "Word0:\n");
629 printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
630 printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
631 printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
632 printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
633
634 if (net_debug>4) {
635 Word = lp->word[1];
636 printk(KERN_DEBUG "Word1:\n");
637 printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
638 printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
639 printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
640 printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
641 printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
642 printk(KERN_DEBUG " AutoPort: %d\n", GetBit(!Word,ee_Jabber));
643 printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
644 }
645
646 Word = lp->word[5];
647 printk(KERN_DEBUG "Word5:\n");
648 printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
649 printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
650 printk(KERN_DEBUG " Has ");
651 if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
652 if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
653 if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
654 printk(KERN_DEBUG "port(s) \n");
655
656 Word = lp->word[6];
657 printk(KERN_DEBUG "Word6:\n");
658 printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
659 printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
660
661 Word = lp->word[7];
662 printk(KERN_DEBUG "Word7:\n");
663 printk(KERN_DEBUG " INT to IRQ:\n");
664
665 for (i=0, j=0; i<15; i++)
666 if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
667
668 printk(KERN_DEBUG "\n");
669}
670
671/* function to recalculate the limits of buffer based on rcv_ram */
672static void eepro_recalc (struct net_device *dev)
673{
674 struct eepro_local * lp;
675
676 lp = netdev_priv(dev);
677 lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
678
679 if (lp->eepro == LAN595FX_10ISA) {
680 lp->xmt_lower_limit = XMT_START_10;
681 lp->xmt_upper_limit = (lp->xmt_ram - 2);
682 lp->rcv_lower_limit = lp->xmt_ram;
683 lp->rcv_upper_limit = (RAM_SIZE - 2);
684 }
685 else {
686 lp->rcv_lower_limit = RCV_START_PRO;
687 lp->rcv_upper_limit = (lp->rcv_ram - 2);
688 lp->xmt_lower_limit = lp->rcv_ram;
689 lp->xmt_upper_limit = (RAM_SIZE - 2);
690 }
691}
692
693/* prints boot-time info */
694static void __init eepro_print_info (struct net_device *dev)
695{
696 struct eepro_local * lp = netdev_priv(dev);
697 int i;
698 const char * ifmap[] = {"AUI", "10Base2", "10BaseT"};
699
700 i = inb(dev->base_addr + ID_REG);
701 printk(KERN_DEBUG " id: %#x ",i);
702 printk(" io: %#x ", (unsigned)dev->base_addr);
703
704 switch (lp->eepro) {
705 case LAN595FX_10ISA:
706 printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
707 dev->name, (unsigned)dev->base_addr);
708 break;
709 case LAN595FX:
d61780c0 710 printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
1da177e4
LT
711 dev->name, (unsigned)dev->base_addr);
712 break;
713 case LAN595TX:
714 printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
715 dev->name, (unsigned)dev->base_addr);
716 break;
717 case LAN595:
d61780c0 718 printk("%s: Intel 82595-based lan card at %#x,",
1da177e4
LT
719 dev->name, (unsigned)dev->base_addr);
720 }
721
722 for (i=0; i < 6; i++)
723 printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]);
724
725 if (net_debug > 3)
726 printk(KERN_DEBUG ", %dK RCV buffer",
727 (int)(lp->rcv_ram)/1024);
728
729 if (dev->irq > 2)
730 printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
d61780c0 731 else
1da177e4
LT
732 printk(", %s.\n", ifmap[dev->if_port]);
733
734 if (net_debug > 3) {
735 i = lp->word[5];
736 if (i & 0x2000) /* bit 13 of EEPROM word 5 */
737 printk(KERN_DEBUG "%s: Concurrent Processing is "
738 "enabled but not used!\n", dev->name);
739 }
740
741 /* Check the station address for the manufacturer's code */
742 if (net_debug>3)
743 printEEPROMInfo(dev);
744}
745
7282d491 746static const struct ethtool_ops eepro_ethtool_ops;
1da177e4
LT
747
748/* This is the real probe routine. Linux has a history of friendly device
749 probes on the ISA bus. A good device probe avoids doing writes, and
750 verifies that the correct device exists and functions. */
751
752static int __init eepro_probe1(struct net_device *dev, int autoprobe)
753{
754 unsigned short station_addr[3], id, counter;
755 int i;
756 struct eepro_local *lp;
757 int ioaddr = dev->base_addr;
b1fc5505 758 int err;
1da177e4
LT
759
760 /* Grab the region so we can find another board if autoIRQ fails. */
d61780c0 761 if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
1da177e4
LT
762 if (!autoprobe)
763 printk(KERN_WARNING "EEPRO: io-port 0x%04x in use \n",
764 ioaddr);
765 return -EBUSY;
766 }
767
768 /* Now, we are going to check for the signature of the
769 ID_REG (register 2 of bank 0) */
770
771 id = inb(ioaddr + ID_REG);
772
773 if ((id & ID_REG_MASK) != ID_REG_SIG)
774 goto exit;
775
776 /* We seem to have the 82595 signature, let's
777 play with its counter (last 2 bits of
778 register 2 of bank 0) to be sure. */
779
780 counter = id & R_ROBIN_BITS;
781
782 if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
783 goto exit;
784
785 lp = netdev_priv(dev);
786 memset(lp, 0, sizeof(struct eepro_local));
787 lp->xmt_bar = XMT_BAR_PRO;
788 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
789 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
790 lp->eeprom_reg = EEPROM_REG_PRO;
791 spin_lock_init(&lp->lock);
792
793 /* Now, get the ethernet hardware address from
794 the EEPROM */
795 station_addr[0] = read_eeprom(ioaddr, 2, dev);
796
797 /* FIXME - find another way to know that we've found
798 * an Etherexpress 10
799 */
800 if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
801 lp->eepro = LAN595FX_10ISA;
802 lp->eeprom_reg = EEPROM_REG_10;
803 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
804 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
805 lp->xmt_bar = XMT_BAR_10;
806 station_addr[0] = read_eeprom(ioaddr, 2, dev);
807 }
808
809 /* get all words at once. will be used here and for ethtool */
810 for (i = 0; i < 8; i++) {
811 lp->word[i] = read_eeprom(ioaddr, i, dev);
812 }
813 station_addr[1] = lp->word[3];
814 station_addr[2] = lp->word[4];
815
816 if (!lp->eepro) {
817 if (lp->word[7] == ee_FX_INT2IRQ)
818 lp->eepro = 2;
819 else if (station_addr[2] == SA_ADDR1)
820 lp->eepro = 1;
821 }
822
823 /* Fill in the 'dev' fields. */
824 for (i=0; i < 6; i++)
825 dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
826
827 /* RX buffer must be more than 3K and less than 29K */
828 if (dev->mem_end < 3072 || dev->mem_end > 29696)
829 lp->rcv_ram = RCV_DEFAULT_RAM;
830
831 /* calculate {xmt,rcv}_{lower,upper}_limit */
832 eepro_recalc(dev);
833
834 if (GetBit(lp->word[5], ee_BNC_TPE))
835 dev->if_port = BNC;
836 else
837 dev->if_port = TPE;
838
839 if (dev->irq < 2 && lp->eepro != 0) {
840 /* Mask off INT number */
841 int count = lp->word[1] & 7;
842 unsigned irqMask = lp->word[7];
d61780c0 843
1da177e4
LT
844 while (count--)
845 irqMask &= irqMask - 1;
d61780c0 846
1da177e4 847 count = ffs(irqMask);
d61780c0 848
1da177e4
LT
849 if (count)
850 dev->irq = count - 1;
d61780c0 851
1da177e4
LT
852 if (dev->irq < 2) {
853 printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
854 goto exit;
855 } else if (dev->irq == 2) {
856 dev->irq = 9;
857 }
858 }
d61780c0 859
1da177e4
LT
860 dev->open = eepro_open;
861 dev->stop = eepro_close;
862 dev->hard_start_xmit = eepro_send_packet;
863 dev->get_stats = eepro_get_stats;
864 dev->set_multicast_list = &set_multicast_list;
865 dev->tx_timeout = eepro_tx_timeout;
866 dev->watchdog_timeo = TX_TIMEOUT;
867 dev->ethtool_ops = &eepro_ethtool_ops;
d61780c0 868
1da177e4
LT
869 /* print boot time info */
870 eepro_print_info(dev);
871
872 /* reset 82595 */
873 eepro_reset(ioaddr);
b1fc5505
HX
874
875 err = register_netdev(dev);
876 if (err)
877 goto err;
1da177e4
LT
878 return 0;
879exit:
b1fc5505
HX
880 err = -ENODEV;
881err:
1da177e4 882 release_region(dev->base_addr, EEPRO_IO_EXTENT);
b1fc5505 883 return err;
1da177e4
LT
884}
885
886/* Open/initialize the board. This is called (in the current kernel)
887 sometime after booting when the 'ifconfig' program is run.
888
889 This routine should set everything up anew at each open, even
890 registers that "should" only need to be set once at boot, so that
891 there is non-reboot way to recover if something goes wrong.
892 */
893
894static char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
895static char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
896static int eepro_grab_irq(struct net_device *dev)
897{
898 int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
899 int *irqp = irqlist, temp_reg, ioaddr = dev->base_addr;
900
901 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
902
903 /* Enable the interrupt line. */
904 eepro_en_intline(ioaddr);
905
906 /* be CAREFUL, BANK 0 now */
907 eepro_sw2bank0(ioaddr);
908
909 /* clear all interrupts */
910 eepro_clear_int(ioaddr);
911
912 /* Let EXEC event to interrupt */
913 eepro_en_intexec(ioaddr);
914
915 do {
916 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
917
918 temp_reg = inb(ioaddr + INT_NO_REG);
919 outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
920
921 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
922
1fb9df5d 923 if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
1da177e4
LT
924 unsigned long irq_mask;
925 /* Twinkle the interrupt, and check if it's seen */
926 irq_mask = probe_irq_on();
927
928 eepro_diag(ioaddr); /* RESET the 82595 */
929 mdelay(20);
930
931 if (*irqp == probe_irq_off(irq_mask)) /* It's a good IRQ line */
932 break;
933
934 /* clear all interrupts */
935 eepro_clear_int(ioaddr);
936 }
937 } while (*++irqp);
938
939 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
940
941 /* Disable the physical interrupt line. */
942 eepro_dis_intline(ioaddr);
943
944 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
945
946 /* Mask all the interrupts. */
947 eepro_dis_int(ioaddr);
948
949 /* clear all interrupts */
950 eepro_clear_int(ioaddr);
951
952 return dev->irq;
953}
954
955static int eepro_open(struct net_device *dev)
956{
957 unsigned short temp_reg, old8, old9;
958 int irqMask;
959 int i, ioaddr = dev->base_addr;
960 struct eepro_local *lp = netdev_priv(dev);
961
962 if (net_debug > 3)
963 printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
964
965 irqMask = lp->word[7];
966
967 if (lp->eepro == LAN595FX_10ISA) {
968 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
969 }
970 else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
971 {
972 lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
973 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
974 }
975
976 else if ((dev->dev_addr[0] == SA_ADDR0 &&
977 dev->dev_addr[1] == SA_ADDR1 &&
978 dev->dev_addr[2] == SA_ADDR2))
979 {
980 lp->eepro = 1;
981 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
982 } /* Yes, an Intel EtherExpress Pro/10 */
983
984 else lp->eepro = 0; /* No, it is a generic 82585 lan card */
985
986 /* Get the interrupt vector for the 82595 */
987 if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
988 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
989 return -EAGAIN;
990 }
991
992 if (request_irq(dev->irq , &eepro_interrupt, 0, dev->name, dev)) {
993 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
994 return -EAGAIN;
995 }
996
997#ifdef irq2dev_map
998 if (((irq2dev_map[dev->irq] != 0)
999 || (irq2dev_map[dev->irq] = dev) == 0) &&
1000 (irq2dev_map[dev->irq]!=dev)) {
1001 /* printk("%s: IRQ map wrong\n", dev->name); */
1002 free_irq(dev->irq, dev);
1003 return -EAGAIN;
1004 }
1005#endif
1006
1007 /* Initialize the 82595. */
1008
1009 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1010 temp_reg = inb(ioaddr + lp->eeprom_reg);
1011
1012 lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */
1013
1014 if (net_debug > 3)
1015 printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
1016
1017 if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
1018 outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
1019 for (i=0; i < 6; i++)
1020 outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
1021
1022 temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */
1023 outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
1024 | RCV_Discard_BadFrame, ioaddr + REG1);
1025
1026 temp_reg = inb(ioaddr + REG2); /* Match broadcast */
1027 outb(temp_reg | 0x14, ioaddr + REG2);
1028
1029 temp_reg = inb(ioaddr + REG3);
1030 outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
1031
1032 /* Set the receiving mode */
1033 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
1034
1035 /* Set the interrupt vector */
1036 temp_reg = inb(ioaddr + INT_NO_REG);
1037 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1038 outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
1039 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1040
1041
1042 temp_reg = inb(ioaddr + INT_NO_REG);
1043 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1044 outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
1045 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1046
1047 if (net_debug > 3)
1048 printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
1049
1050
1051 /* Initialize the RCV and XMT upper and lower limits */
d61780c0
JG
1052 outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
1053 outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
1da177e4
LT
1054 outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
1055 outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
1056
1057 /* Enable the interrupt line. */
1058 eepro_en_intline(ioaddr);
1059
1060 /* Switch back to Bank 0 */
1061 eepro_sw2bank0(ioaddr);
1062
1063 /* Let RX and TX events to interrupt */
1064 eepro_en_int(ioaddr);
1065
1066 /* clear all interrupts */
1067 eepro_clear_int(ioaddr);
1068
1069 /* Initialize RCV */
d61780c0 1070 outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
1da177e4 1071 lp->rx_start = lp->rcv_lower_limit;
d61780c0 1072 outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
1da177e4
LT
1073
1074 /* Initialize XMT */
d61780c0 1075 outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
1da177e4
LT
1076 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1077 lp->tx_last = 0;
1078
1079 /* Check for the i82595TX and i82595FX */
1080 old8 = inb(ioaddr + 8);
1081 outb(~old8, ioaddr + 8);
1082
1083 if ((temp_reg = inb(ioaddr + 8)) == old8) {
1084 if (net_debug > 3)
1085 printk(KERN_DEBUG "i82595 detected!\n");
1086 lp->version = LAN595;
1087 }
1088 else {
1089 lp->version = LAN595TX;
1090 outb(old8, ioaddr + 8);
1091 old9 = inb(ioaddr + 9);
1092
1093 if (irqMask==ee_FX_INT2IRQ) {
1094 if (net_debug > 3) {
1095 printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
1096 printk(KERN_DEBUG "i82595FX detected!\n");
1097 }
1098 lp->version = LAN595FX;
1099 outb(old9, ioaddr + 9);
1100 if (dev->if_port != TPE) { /* Hopefully, this will fix the
1101 problem of using Pentiums and
1102 pro/10 w/ BNC. */
1103 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1104 temp_reg = inb(ioaddr + REG13);
1105 /* disable the full duplex mode since it is not
1106 applicable with the 10Base2 cable. */
1107 outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
1108 eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
1109 }
1110 }
1111 else if (net_debug > 3) {
1112 printk(KERN_DEBUG "temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff));
1113 printk(KERN_DEBUG "i82595TX detected!\n");
1114 }
1115 }
1116
1117 eepro_sel_reset(ioaddr);
1118
1119 netif_start_queue(dev);
1120
1121 if (net_debug > 3)
1122 printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
1123
1124 /* enabling rx */
1125 eepro_en_rx(ioaddr);
1126
1127 return 0;
1128}
1129
1130static void eepro_tx_timeout (struct net_device *dev)
1131{
1132 struct eepro_local *lp = netdev_priv(dev);
1133 int ioaddr = dev->base_addr;
1134
1135 /* if (net_debug > 1) */
1136 printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
1137 "network cable problem");
1138 /* This is not a duplicate. One message for the console,
1139 one for the the log file */
1140 printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
1141 "network cable problem");
1142 eepro_complete_selreset(ioaddr);
1143}
1144
1145
1146static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev)
1147{
1148 struct eepro_local *lp = netdev_priv(dev);
1149 unsigned long flags;
1150 int ioaddr = dev->base_addr;
1151 short length = skb->len;
1152
1153 if (net_debug > 5)
1154 printk(KERN_DEBUG "%s: entering eepro_send_packet routine.\n", dev->name);
1155
1156 if (length < ETH_ZLEN) {
5b057c6b 1157 if (skb_padto(skb, ETH_ZLEN))
1da177e4
LT
1158 return 0;
1159 length = ETH_ZLEN;
1160 }
1161 netif_stop_queue (dev);
1162
1163 eepro_dis_int(ioaddr);
1164 spin_lock_irqsave(&lp->lock, flags);
1165
1166 {
1167 unsigned char *buf = skb->data;
1168
1169 if (hardware_send_packet(dev, buf, length))
1170 /* we won't wake queue here because we're out of space */
1171 lp->stats.tx_dropped++;
1172 else {
1173 lp->stats.tx_bytes+=skb->len;
1174 dev->trans_start = jiffies;
1175 netif_wake_queue(dev);
1176 }
1177
1178 }
1179
1180 dev_kfree_skb (skb);
1181
1182 /* You might need to clean up and record Tx statistics here. */
1183 /* lp->stats.tx_aborted_errors++; */
1184
1185 if (net_debug > 5)
1186 printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
1187
1188 eepro_en_int(ioaddr);
1189 spin_unlock_irqrestore(&lp->lock, flags);
1190
1191 return 0;
1192}
1193
1194
1195/* The typical workload of the driver:
1196 Handle the network interface interrupts. */
1197
1198static irqreturn_t
7d12e780 1199eepro_interrupt(int irq, void *dev_id)
1da177e4
LT
1200{
1201 struct net_device *dev = (struct net_device *)dev_id;
1202 /* (struct net_device *)(irq2dev_map[irq]);*/
1203 struct eepro_local *lp;
1204 int ioaddr, status, boguscount = 20;
1205 int handled = 0;
1206
1207 if (dev == NULL) {
1208 printk (KERN_ERR "eepro_interrupt(): irq %d for unknown device.\\n", irq);
1209 return IRQ_NONE;
1210 }
1211
1212 lp = netdev_priv(dev);
1213
1214 spin_lock(&lp->lock);
1215
1216 if (net_debug > 5)
1217 printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
1218
1219 ioaddr = dev->base_addr;
1220
1221 while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
1222 {
1223 handled = 1;
1224 if (status & RX_INT) {
1225 if (net_debug > 4)
1226 printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
1227
1228 eepro_dis_int(ioaddr);
1229
1230 /* Get the received packets */
1231 eepro_ack_rx(ioaddr);
1232 eepro_rx(dev);
1233
1234 eepro_en_int(ioaddr);
1235 }
1236 if (status & TX_INT) {
1237 if (net_debug > 4)
1238 printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
1239
1240
1241 eepro_dis_int(ioaddr);
1242
1243 /* Process the status of transmitted packets */
1244 eepro_ack_tx(ioaddr);
1245 eepro_transmit_interrupt(dev);
1246
1247 eepro_en_int(ioaddr);
1248 }
1249 }
1250
1251 if (net_debug > 5)
1252 printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
1253
1254 spin_unlock(&lp->lock);
1255 return IRQ_RETVAL(handled);
1256}
1257
1258static int eepro_close(struct net_device *dev)
1259{
1260 struct eepro_local *lp = netdev_priv(dev);
1261 int ioaddr = dev->base_addr;
1262 short temp_reg;
1263
1264 netif_stop_queue(dev);
1265
1266 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
1267
1268 /* Disable the physical interrupt line. */
1269 temp_reg = inb(ioaddr + REG1);
1270 outb(temp_reg & 0x7f, ioaddr + REG1);
1271
1272 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
1273
1274 /* Flush the Tx and disable Rx. */
1275 outb(STOP_RCV_CMD, ioaddr);
1276 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1277 lp->tx_last = 0;
1278
1279 /* Mask all the interrupts. */
1280 eepro_dis_int(ioaddr);
1281
1282 /* clear all interrupts */
1283 eepro_clear_int(ioaddr);
1284
1285 /* Reset the 82595 */
1286 eepro_reset(ioaddr);
1287
1288 /* release the interrupt */
1289 free_irq(dev->irq, dev);
1290
1291#ifdef irq2dev_map
1292 irq2dev_map[dev->irq] = 0;
1293#endif
1294
1295 /* Update the statistics here. What statistics? */
1296
1297 return 0;
1298}
1299
1300/* Get the current statistics. This may be called with the card open or
1301 closed. */
1302static struct net_device_stats *
1303eepro_get_stats(struct net_device *dev)
1304{
1305 struct eepro_local *lp = netdev_priv(dev);
1306
1307 return &lp->stats;
1308}
1309
1310/* Set or clear the multicast filter for this adaptor.
1311 */
1312static void
1313set_multicast_list(struct net_device *dev)
1314{
1315 struct eepro_local *lp = netdev_priv(dev);
1316 short ioaddr = dev->base_addr;
1317 unsigned short mode;
1318 struct dev_mc_list *dmi=dev->mc_list;
1319
1320 if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || dev->mc_count > 63)
1321 {
1322 /*
1323 * We must make the kernel realise we had to move
1324 * into promisc mode or we start all out war on
1325 * the cable. If it was a promisc request the
1326 * flag is already set. If not we assert it.
1327 */
1328 dev->flags|=IFF_PROMISC;
1329
1330 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1331 mode = inb(ioaddr + REG2);
1332 outb(mode | PRMSC_Mode, ioaddr + REG2);
1333 mode = inb(ioaddr + REG3);
1334 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1335 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1da177e4
LT
1336 }
1337
1338 else if (dev->mc_count==0 )
1339 {
1340 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1341 mode = inb(ioaddr + REG2);
1342 outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
1343 mode = inb(ioaddr + REG3);
1344 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1345 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1346 }
1347
1348 else
1349 {
1350 unsigned short status, *eaddrs;
1351 int i, boguscount = 0;
1352
1353 /* Disable RX and TX interrupts. Necessary to avoid
1354 corruption of the HOST_ADDRESS_REG by interrupt
1355 service routines. */
1356 eepro_dis_int(ioaddr);
1357
1358 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1359 mode = inb(ioaddr + REG2);
1360 outb(mode | Multi_IA, ioaddr + REG2);
1361 mode = inb(ioaddr + REG3);
1362 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1363 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1364 outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
1365 outw(MC_SETUP, ioaddr + IO_PORT);
1366 outw(0, ioaddr + IO_PORT);
1367 outw(0, ioaddr + IO_PORT);
1368 outw(6*(dev->mc_count + 1), ioaddr + IO_PORT);
1369
1370 for (i = 0; i < dev->mc_count; i++)
1371 {
1372 eaddrs=(unsigned short *)dmi->dmi_addr;
1373 dmi=dmi->next;
1374 outw(*eaddrs++, ioaddr + IO_PORT);
1375 outw(*eaddrs++, ioaddr + IO_PORT);
1376 outw(*eaddrs++, ioaddr + IO_PORT);
1377 }
1378
1379 eaddrs = (unsigned short *) dev->dev_addr;
1380 outw(eaddrs[0], ioaddr + IO_PORT);
1381 outw(eaddrs[1], ioaddr + IO_PORT);
1382 outw(eaddrs[2], ioaddr + IO_PORT);
1383 outw(lp->tx_end, ioaddr + lp->xmt_bar);
1384 outb(MC_SETUP, ioaddr);
1385
1386 /* Update the transmit queue */
1387 i = lp->tx_end + XMT_HEADER + 6*(dev->mc_count + 1);
1388
1389 if (lp->tx_start != lp->tx_end)
1390 {
1391 /* update the next address and the chain bit in the
1392 last packet */
1393 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1394 outw(i, ioaddr + IO_PORT);
1395 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1396 status = inw(ioaddr + IO_PORT);
1397 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1398 lp->tx_end = i ;
1399 }
1400 else {
1401 lp->tx_start = lp->tx_end = i ;
1402 }
1403
1404 /* Acknowledge that the MC setup is done */
1405 do { /* We should be doing this in the eepro_interrupt()! */
1406 SLOW_DOWN;
1407 SLOW_DOWN;
1408 if (inb(ioaddr + STATUS_REG) & 0x08)
1409 {
1410 i = inb(ioaddr);
1411 outb(0x08, ioaddr + STATUS_REG);
1412
1413 if (i & 0x20) { /* command ABORTed */
d61780c0 1414 printk(KERN_NOTICE "%s: multicast setup failed.\n",
1da177e4
LT
1415 dev->name);
1416 break;
1417 } else if ((i & 0x0f) == 0x03) { /* MC-Done */
1418 printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
1419 dev->name, dev->mc_count,
1420 dev->mc_count > 1 ? "es":"");
1421 break;
1422 }
1423 }
1424 } while (++boguscount < 100);
1425
1426 /* Re-enable RX and TX interrupts */
1427 eepro_en_int(ioaddr);
1428 }
1429 if (lp->eepro == LAN595FX_10ISA) {
1430 eepro_complete_selreset(ioaddr);
1431 }
1432 else
1433 eepro_en_rx(ioaddr);
1434}
1435
1436/* The horrible routine to read a word from the serial EEPROM. */
1437/* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
1438
1439/* The delay between EEPROM clock transitions. */
1440#define eeprom_delay() { udelay(40); }
1441#define EE_READ_CMD (6 << 6)
1442
1443int
1444read_eeprom(int ioaddr, int location, struct net_device *dev)
1445{
1446 int i;
1447 unsigned short retval = 0;
1448 struct eepro_local *lp = netdev_priv(dev);
1449 short ee_addr = ioaddr + lp->eeprom_reg;
1450 int read_cmd = location | EE_READ_CMD;
1451 short ctrl_val = EECS ;
1452
1453 /* XXXX - black magic */
1454 eepro_sw2bank1(ioaddr);
1455 outb(0x00, ioaddr + STATUS_REG);
1456 /* XXXX - black magic */
1457
1458 eepro_sw2bank2(ioaddr);
1459 outb(ctrl_val, ee_addr);
1460
1461 /* Shift the read command bits out. */
1462 for (i = 8; i >= 0; i--) {
1463 short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
1464 : ctrl_val;
1465 outb(outval, ee_addr);
1466 outb(outval | EESK, ee_addr); /* EEPROM clock tick. */
1467 eeprom_delay();
1468 outb(outval, ee_addr); /* Finish EEPROM a clock tick. */
1469 eeprom_delay();
1470 }
1471 outb(ctrl_val, ee_addr);
1472
1473 for (i = 16; i > 0; i--) {
1474 outb(ctrl_val | EESK, ee_addr); eeprom_delay();
1475 retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
1476 outb(ctrl_val, ee_addr); eeprom_delay();
1477 }
1478
1479 /* Terminate the EEPROM access. */
1480 ctrl_val &= ~EECS;
1481 outb(ctrl_val | EESK, ee_addr);
1482 eeprom_delay();
1483 outb(ctrl_val, ee_addr);
1484 eeprom_delay();
1485 eepro_sw2bank0(ioaddr);
1486 return retval;
1487}
1488
1489static int
1490hardware_send_packet(struct net_device *dev, void *buf, short length)
1491{
1492 struct eepro_local *lp = netdev_priv(dev);
1493 short ioaddr = dev->base_addr;
1494 unsigned status, tx_available, last, end;
1495
1496 if (net_debug > 5)
1497 printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
1498
1499 /* determine how much of the transmit buffer space is available */
1500 if (lp->tx_end > lp->tx_start)
1501 tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
1502 else if (lp->tx_end < lp->tx_start)
1503 tx_available = lp->tx_start - lp->tx_end;
1504 else tx_available = lp->xmt_ram;
1505
1506 if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
1507 /* No space available ??? */
1508 return 1;
1509 }
1510
1511 last = lp->tx_end;
1512 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1513
1514 if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
d61780c0 1515 if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
1da177e4
LT
1516 /* Arrrr!!!, must keep the xmt header together,
1517 several days were lost to chase this one down. */
1518 last = lp->xmt_lower_limit;
1519 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1520 }
1521 else end = lp->xmt_lower_limit + (end -
1522 lp->xmt_upper_limit + 2);
1523 }
1524
1525 outw(last, ioaddr + HOST_ADDRESS_REG);
1526 outw(XMT_CMD, ioaddr + IO_PORT);
1527 outw(0, ioaddr + IO_PORT);
1528 outw(end, ioaddr + IO_PORT);
1529 outw(length, ioaddr + IO_PORT);
1530
1531 if (lp->version == LAN595)
1532 outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
1533 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1534 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1535 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1536 outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
1537 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1538 }
1539
1540 /* A dummy read to flush the DRAM write pipeline */
1541 status = inw(ioaddr + IO_PORT);
1542
1543 if (lp->tx_start == lp->tx_end) {
1544 outw(last, ioaddr + lp->xmt_bar);
1545 outb(XMT_CMD, ioaddr);
1546 lp->tx_start = last; /* I don't like to change tx_start here */
1547 }
1548 else {
1549 /* update the next address and the chain bit in the
1550 last packet */
1551
1552 if (lp->tx_end != last) {
1553 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1554 outw(last, ioaddr + IO_PORT);
1555 }
1556
1557 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1558 status = inw(ioaddr + IO_PORT);
1559 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1560
1561 /* Continue the transmit command */
1562 outb(RESUME_XMT_CMD, ioaddr);
1563 }
1564
1565 lp->tx_last = last;
1566 lp->tx_end = end;
1567
1568 if (net_debug > 5)
1569 printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
1570
1571 return 0;
1572}
1573
1574static void
1575eepro_rx(struct net_device *dev)
1576{
1577 struct eepro_local *lp = netdev_priv(dev);
1578 short ioaddr = dev->base_addr;
1579 short boguscount = 20;
1580 short rcv_car = lp->rx_start;
1581 unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
1582
1583 if (net_debug > 5)
1584 printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
1585
1586 /* Set the read pointer to the start of the RCV */
1587 outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
1588
1589 rcv_event = inw(ioaddr + IO_PORT);
1590
1591 while (rcv_event == RCV_DONE) {
1592
1593 rcv_status = inw(ioaddr + IO_PORT);
1594 rcv_next_frame = inw(ioaddr + IO_PORT);
1595 rcv_size = inw(ioaddr + IO_PORT);
1596
1597 if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
1598
1599 /* Malloc up new buffer. */
1600 struct sk_buff *skb;
1601
1602 lp->stats.rx_bytes+=rcv_size;
1603 rcv_size &= 0x3fff;
1604 skb = dev_alloc_skb(rcv_size+5);
1605 if (skb == NULL) {
1606 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1607 lp->stats.rx_dropped++;
1608 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1609 lp->rx_start = rcv_next_frame;
1610 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1611
1612 break;
1613 }
1614 skb->dev = dev;
1615 skb_reserve(skb,2);
1616
1617 if (lp->version == LAN595)
1618 insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
1619 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1620 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1621 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1622 insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
1623 (rcv_size + 3) >> 2);
1624 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1625 }
1626
1627 skb->protocol = eth_type_trans(skb,dev);
1628 netif_rx(skb);
1629 dev->last_rx = jiffies;
1630 lp->stats.rx_packets++;
1631 }
1632
1633 else { /* Not sure will ever reach here,
1634 I set the 595 to discard bad received frames */
1635 lp->stats.rx_errors++;
1636
1637 if (rcv_status & 0x0100)
1638 lp->stats.rx_over_errors++;
1639
1640 else if (rcv_status & 0x0400)
1641 lp->stats.rx_frame_errors++;
1642
1643 else if (rcv_status & 0x0800)
1644 lp->stats.rx_crc_errors++;
1645
d61780c0 1646 printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
1da177e4
LT
1647 dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
1648 }
1649
1650 if (rcv_status & 0x1000)
1651 lp->stats.rx_length_errors++;
1652
1653 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1654 lp->rx_start = rcv_next_frame;
1655
1656 if (--boguscount == 0)
1657 break;
1658
1659 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1660 rcv_event = inw(ioaddr + IO_PORT);
1661
1662 }
1663 if (rcv_car == 0)
1664 rcv_car = lp->rcv_upper_limit | 0xff;
1665
1666 outw(rcv_car - 1, ioaddr + RCV_STOP);
1667
1668 if (net_debug > 5)
1669 printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
1670}
1671
1672static void
1673eepro_transmit_interrupt(struct net_device *dev)
1674{
1675 struct eepro_local *lp = netdev_priv(dev);
1676 short ioaddr = dev->base_addr;
d61780c0 1677 short boguscount = 25;
1da177e4
LT
1678 short xmt_status;
1679
d61780c0 1680 while ((lp->tx_start != lp->tx_end) && boguscount--) {
1da177e4
LT
1681
1682 outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
1683 xmt_status = inw(ioaddr+IO_PORT);
1684
1685 if (!(xmt_status & TX_DONE_BIT))
1686 break;
1687
1688 xmt_status = inw(ioaddr+IO_PORT);
1689 lp->tx_start = inw(ioaddr+IO_PORT);
1690
1691 netif_wake_queue (dev);
1692
1693 if (xmt_status & TX_OK)
1694 lp->stats.tx_packets++;
1695 else {
1696 lp->stats.tx_errors++;
1697 if (xmt_status & 0x0400) {
1698 lp->stats.tx_carrier_errors++;
1699 printk(KERN_DEBUG "%s: carrier error\n",
1700 dev->name);
1701 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1702 dev->name, xmt_status);
1703 }
1704 else {
1705 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1706 dev->name, xmt_status);
1707 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1708 dev->name, xmt_status);
1709 }
1710 }
1711 if (xmt_status & 0x000f) {
1712 lp->stats.collisions += (xmt_status & 0x000f);
1713 }
1714
1715 if ((xmt_status & 0x0040) == 0x0) {
1716 lp->stats.tx_heartbeat_errors++;
1717 }
1718 }
1719}
1720
1721static int eepro_ethtool_get_settings(struct net_device *dev,
1722 struct ethtool_cmd *cmd)
1723{
1724 struct eepro_local *lp = (struct eepro_local *)dev->priv;
1725
d61780c0 1726 cmd->supported = SUPPORTED_10baseT_Half |
1da177e4
LT
1727 SUPPORTED_10baseT_Full |
1728 SUPPORTED_Autoneg;
1729 cmd->advertising = ADVERTISED_10baseT_Half |
1730 ADVERTISED_10baseT_Full |
1731 ADVERTISED_Autoneg;
1732
1733 if (GetBit(lp->word[5], ee_PortTPE)) {
1734 cmd->supported |= SUPPORTED_TP;
1735 cmd->advertising |= ADVERTISED_TP;
1736 }
1737 if (GetBit(lp->word[5], ee_PortBNC)) {
1738 cmd->supported |= SUPPORTED_BNC;
1739 cmd->advertising |= ADVERTISED_BNC;
1740 }
1741 if (GetBit(lp->word[5], ee_PortAUI)) {
1742 cmd->supported |= SUPPORTED_AUI;
1743 cmd->advertising |= ADVERTISED_AUI;
1744 }
1745
1746 cmd->speed = SPEED_10;
1747
1748 if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
1749 cmd->duplex = DUPLEX_FULL;
1750 }
1751 else {
1752 cmd->duplex = DUPLEX_HALF;
1753 }
1754
1755 cmd->port = dev->if_port;
1756 cmd->phy_address = dev->base_addr;
1757 cmd->transceiver = XCVR_INTERNAL;
1758
1759 if (lp->word[0] & ee_AutoNeg) {
1760 cmd->autoneg = 1;
1761 }
1762
1763 return 0;
1764}
1765
1766static void eepro_ethtool_get_drvinfo(struct net_device *dev,
1767 struct ethtool_drvinfo *drvinfo)
1768{
1769 strcpy(drvinfo->driver, DRV_NAME);
1770 strcpy(drvinfo->version, DRV_VERSION);
1771 sprintf(drvinfo->bus_info, "ISA 0x%lx", dev->base_addr);
1772}
1773
7282d491 1774static const struct ethtool_ops eepro_ethtool_ops = {
1da177e4
LT
1775 .get_settings = eepro_ethtool_get_settings,
1776 .get_drvinfo = eepro_ethtool_get_drvinfo,
1777};
1778
1779#ifdef MODULE
1780
1781#define MAX_EEPRO 8
1782static struct net_device *dev_eepro[MAX_EEPRO];
1783
1784static int io[MAX_EEPRO] = {
1785 [0 ... MAX_EEPRO-1] = -1
1786};
1787static int irq[MAX_EEPRO];
1788static int mem[MAX_EEPRO] = { /* Size of the rx buffer in KB */
1789 [0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
1790};
1791static int autodetect;
1792
1793static int n_eepro;
1794/* For linux 2.1.xx */
1795
1796MODULE_AUTHOR("Pascal Dupuis and others");
1797MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
1798MODULE_LICENSE("GPL");
1799
a1bfcd97
FM
1800module_param_array(io, int, NULL, 0);
1801module_param_array(irq, int, NULL, 0);
1802module_param_array(mem, int, NULL, 0);
1da177e4
LT
1803module_param(autodetect, int, 0);
1804MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base addres(es)");
1805MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
1806MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
1807MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
1808
02a3245f 1809int __init init_module(void)
1da177e4
LT
1810{
1811 struct net_device *dev;
1812 int i;
1813 if (io[0] == -1 && autodetect == 0) {
1814 printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
1815 printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
1816 return -ENODEV;
1817 }
1818 else if (autodetect) {
1819 /* if autodetect is set then we must force detection */
1820 for (i = 0; i < MAX_EEPRO; i++) {
1821 io[i] = 0;
1822 }
1823
1824 printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
1825 }
1826
1827 for (i = 0; io[i] != -1 && i < MAX_EEPRO; i++) {
1828 dev = alloc_etherdev(sizeof(struct eepro_local));
1829 if (!dev)
1830 break;
1831
1832 dev->mem_end = mem[i];
1833 dev->base_addr = io[i];
1834 dev->irq = irq[i];
1835
1836 if (do_eepro_probe(dev) == 0) {
b1fc5505
HX
1837 dev_eepro[n_eepro++] = dev;
1838 continue;
1da177e4
LT
1839 }
1840 free_netdev(dev);
1841 break;
1842 }
1843
1844 if (n_eepro)
1845 printk(KERN_INFO "%s", version);
1846
1847 return n_eepro ? 0 : -ENODEV;
1848}
1849
1850void
1851cleanup_module(void)
1852{
1853 int i;
1854
1855 for (i=0; i<n_eepro; i++) {
1856 struct net_device *dev = dev_eepro[i];
1857 unregister_netdev(dev);
1858 release_region(dev->base_addr, EEPRO_IO_EXTENT);
1859 free_netdev(dev);
1860 }
1861}
1862#endif /* MODULE */