]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/lib.c
e1000e: Simple optimizations in e1000_xmit_frame
[net-next-2.6.git] / drivers / net / e1000e / lib.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/netdevice.h>
30#include <linux/ethtool.h>
31#include <linux/delay.h>
32#include <linux/pci.h>
33
34#include "e1000.h"
35
36enum e1000_mng_mode {
37 e1000_mng_mode_none = 0,
38 e1000_mng_mode_asf,
39 e1000_mng_mode_pt,
40 e1000_mng_mode_ipmi,
41 e1000_mng_mode_host_if_only
42};
43
44#define E1000_FACTPS_MNGCG 0x20000000
45
46#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management
47 * Technology signature */
48
49/**
50 * e1000e_get_bus_info_pcie - Get PCIe bus information
51 * @hw: pointer to the HW structure
52 *
53 * Determines and stores the system bus information for a particular
54 * network interface. The following bus information is determined and stored:
55 * bus speed, bus width, type (PCIe), and PCIe function.
56 **/
57s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
58{
59 struct e1000_bus_info *bus = &hw->bus;
60 struct e1000_adapter *adapter = hw->adapter;
61 u32 status;
62 u16 pcie_link_status, pci_header_type, cap_offset;
63
64 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
65 if (!cap_offset) {
66 bus->width = e1000_bus_width_unknown;
67 } else {
68 pci_read_config_word(adapter->pdev,
69 cap_offset + PCIE_LINK_STATUS,
70 &pcie_link_status);
71 bus->width = (enum e1000_bus_width)((pcie_link_status &
72 PCIE_LINK_WIDTH_MASK) >>
73 PCIE_LINK_WIDTH_SHIFT);
74 }
75
76 pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
77 &pci_header_type);
78 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
79 status = er32(STATUS);
80 bus->func = (status & E1000_STATUS_FUNC_MASK)
81 >> E1000_STATUS_FUNC_SHIFT;
82 } else {
83 bus->func = 0;
84 }
85
86 return 0;
87}
88
89/**
90 * e1000e_write_vfta - Write value to VLAN filter table
91 * @hw: pointer to the HW structure
92 * @offset: register offset in VLAN filter table
93 * @value: register value written to VLAN filter table
94 *
95 * Writes value at the given offset in the register array which stores
96 * the VLAN filter table.
97 **/
98void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
99{
100 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
101 e1e_flush();
102}
103
104/**
105 * e1000e_init_rx_addrs - Initialize receive address's
106 * @hw: pointer to the HW structure
107 * @rar_count: receive address registers
108 *
109 * Setups the receive address registers by setting the base receive address
110 * register to the devices MAC address and clearing all the other receive
111 * address registers to 0.
112 **/
113void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
114{
115 u32 i;
116
117 /* Setup the receive address */
118 hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
119
120 e1000e_rar_set(hw, hw->mac.addr, 0);
121
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
124 for (i = 1; i < rar_count; i++) {
125 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
126 e1e_flush();
127 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
128 e1e_flush();
129 }
130}
131
132/**
133 * e1000e_rar_set - Set receive address register
134 * @hw: pointer to the HW structure
135 * @addr: pointer to the receive address
136 * @index: receive address array register
137 *
138 * Sets the receive address array register at index to the address passed
139 * in by addr.
140 **/
141void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
142{
143 u32 rar_low, rar_high;
144
145 /* HW expects these in little endian so we reverse the byte order
146 * from network order (big endian) to little endian
147 */
148 rar_low = ((u32) addr[0] |
149 ((u32) addr[1] << 8) |
150 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
151
152 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
153
154 rar_high |= E1000_RAH_AV;
155
156 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
157 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
158}
159
160/**
161 * e1000_mta_set - Set multicast filter table address
162 * @hw: pointer to the HW structure
163 * @hash_value: determines the MTA register and bit to set
164 *
165 * The multicast table address is a register array of 32-bit registers.
166 * The hash_value is used to determine what register the bit is in, the
167 * current value is read, the new bit is OR'd in and the new value is
168 * written back into the register.
169 **/
170static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
171{
172 u32 hash_bit, hash_reg, mta;
173
174 /* The MTA is a register array of 32-bit registers. It is
175 * treated like an array of (32*mta_reg_count) bits. We want to
176 * set bit BitArray[hash_value]. So we figure out what register
177 * the bit is in, read it, OR in the new bit, then write
178 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
179 * mask to bits 31:5 of the hash value which gives us the
180 * register we're modifying. The hash bit within that register
181 * is determined by the lower 5 bits of the hash value.
182 */
183 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
184 hash_bit = hash_value & 0x1F;
185
186 mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
187
188 mta |= (1 << hash_bit);
189
190 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
191 e1e_flush();
192}
193
194/**
195 * e1000_hash_mc_addr - Generate a multicast hash value
196 * @hw: pointer to the HW structure
197 * @mc_addr: pointer to a multicast address
198 *
199 * Generates a multicast address hash value which is used to determine
200 * the multicast filter table array address and new table value. See
201 * e1000_mta_set_generic()
202 **/
203static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
204{
205 u32 hash_value, hash_mask;
206 u8 bit_shift = 0;
207
208 /* Register count multiplied by bits per register */
209 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
210
211 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
212 * where 0xFF would still fall within the hash mask. */
213 while (hash_mask >> bit_shift != 0xFF)
214 bit_shift++;
215
216 /* The portion of the address that is used for the hash table
217 * is determined by the mc_filter_type setting.
218 * The algorithm is such that there is a total of 8 bits of shifting.
219 * The bit_shift for a mc_filter_type of 0 represents the number of
220 * left-shifts where the MSB of mc_addr[5] would still fall within
221 * the hash_mask. Case 0 does this exactly. Since there are a total
222 * of 8 bits of shifting, then mc_addr[4] will shift right the
223 * remaining number of bits. Thus 8 - bit_shift. The rest of the
224 * cases are a variation of this algorithm...essentially raising the
225 * number of bits to shift mc_addr[5] left, while still keeping the
226 * 8-bit shifting total.
227 */
228 /* For example, given the following Destination MAC Address and an
229 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
230 * we can see that the bit_shift for case 0 is 4. These are the hash
231 * values resulting from each mc_filter_type...
232 * [0] [1] [2] [3] [4] [5]
233 * 01 AA 00 12 34 56
234 * LSB MSB
235 *
236 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
237 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
238 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
239 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
240 */
241 switch (hw->mac.mc_filter_type) {
242 default:
243 case 0:
244 break;
245 case 1:
246 bit_shift += 1;
247 break;
248 case 2:
249 bit_shift += 2;
250 break;
251 case 3:
252 bit_shift += 4;
253 break;
254 }
255
256 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
257 (((u16) mc_addr[5]) << bit_shift)));
258
259 return hash_value;
260}
261
262/**
263 * e1000e_mc_addr_list_update_generic - Update Multicast addresses
264 * @hw: pointer to the HW structure
265 * @mc_addr_list: array of multicast addresses to program
266 * @mc_addr_count: number of multicast addresses to program
267 * @rar_used_count: the first RAR register free to program
268 * @rar_count: total number of supported Receive Address Registers
269 *
270 * Updates the Receive Address Registers and Multicast Table Array.
271 * The caller must have a packed mc_addr_list of multicast addresses.
272 * The parameter rar_count will usually be hw->mac.rar_entry_count
273 * unless there are workarounds that change this.
274 **/
275void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
276 u8 *mc_addr_list, u32 mc_addr_count,
277 u32 rar_used_count, u32 rar_count)
278{
279 u32 hash_value;
280 u32 i;
281
282 /* Load the first set of multicast addresses into the exact
283 * filters (RAR). If there are not enough to fill the RAR
284 * array, clear the filters.
285 */
286 for (i = rar_used_count; i < rar_count; i++) {
287 if (mc_addr_count) {
288 e1000e_rar_set(hw, mc_addr_list, i);
289 mc_addr_count--;
290 mc_addr_list += ETH_ALEN;
291 } else {
292 E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
293 e1e_flush();
294 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
295 e1e_flush();
296 }
297 }
298
299 /* Clear the old settings from the MTA */
300 hw_dbg(hw, "Clearing MTA\n");
301 for (i = 0; i < hw->mac.mta_reg_count; i++) {
302 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
303 e1e_flush();
304 }
305
306 /* Load any remaining multicast addresses into the hash table. */
307 for (; mc_addr_count > 0; mc_addr_count--) {
308 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
309 hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
310 e1000_mta_set(hw, hash_value);
311 mc_addr_list += ETH_ALEN;
312 }
313}
314
315/**
316 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
317 * @hw: pointer to the HW structure
318 *
319 * Clears the base hardware counters by reading the counter registers.
320 **/
321void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
322{
323 u32 temp;
324
325 temp = er32(CRCERRS);
326 temp = er32(SYMERRS);
327 temp = er32(MPC);
328 temp = er32(SCC);
329 temp = er32(ECOL);
330 temp = er32(MCC);
331 temp = er32(LATECOL);
332 temp = er32(COLC);
333 temp = er32(DC);
334 temp = er32(SEC);
335 temp = er32(RLEC);
336 temp = er32(XONRXC);
337 temp = er32(XONTXC);
338 temp = er32(XOFFRXC);
339 temp = er32(XOFFTXC);
340 temp = er32(FCRUC);
341 temp = er32(GPRC);
342 temp = er32(BPRC);
343 temp = er32(MPRC);
344 temp = er32(GPTC);
345 temp = er32(GORCL);
346 temp = er32(GORCH);
347 temp = er32(GOTCL);
348 temp = er32(GOTCH);
349 temp = er32(RNBC);
350 temp = er32(RUC);
351 temp = er32(RFC);
352 temp = er32(ROC);
353 temp = er32(RJC);
354 temp = er32(TORL);
355 temp = er32(TORH);
356 temp = er32(TOTL);
357 temp = er32(TOTH);
358 temp = er32(TPR);
359 temp = er32(TPT);
360 temp = er32(MPTC);
361 temp = er32(BPTC);
362}
363
364/**
365 * e1000e_check_for_copper_link - Check for link (Copper)
366 * @hw: pointer to the HW structure
367 *
368 * Checks to see of the link status of the hardware has changed. If a
369 * change in link status has been detected, then we read the PHY registers
370 * to get the current speed/duplex if link exists.
371 **/
372s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
373{
374 struct e1000_mac_info *mac = &hw->mac;
375 s32 ret_val;
376 bool link;
377
378 /* We only want to go out to the PHY registers to see if Auto-Neg
379 * has completed and/or if our link status has changed. The
380 * get_link_status flag is set upon receiving a Link Status
381 * Change or Rx Sequence Error interrupt.
382 */
383 if (!mac->get_link_status)
384 return 0;
385
386 /* First we want to see if the MII Status Register reports
387 * link. If so, then we want to get the current speed/duplex
388 * of the PHY.
389 */
390 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
391 if (ret_val)
392 return ret_val;
393
394 if (!link)
395 return ret_val; /* No link detected */
396
397 mac->get_link_status = 0;
398
399 /* Check if there was DownShift, must be checked
400 * immediately after link-up */
401 e1000e_check_downshift(hw);
402
403 /* If we are forcing speed/duplex, then we simply return since
404 * we have already determined whether we have link or not.
405 */
406 if (!mac->autoneg) {
407 ret_val = -E1000_ERR_CONFIG;
408 return ret_val;
409 }
410
411 /* Auto-Neg is enabled. Auto Speed Detection takes care
412 * of MAC speed/duplex configuration. So we only need to
413 * configure Collision Distance in the MAC.
414 */
415 e1000e_config_collision_dist(hw);
416
417 /* Configure Flow Control now that Auto-Neg has completed.
418 * First, we need to restore the desired flow control
419 * settings because we may have had to re-autoneg with a
420 * different link partner.
421 */
422 ret_val = e1000e_config_fc_after_link_up(hw);
423 if (ret_val) {
424 hw_dbg(hw, "Error configuring flow control\n");
425 }
426
427 return ret_val;
428}
429
430/**
431 * e1000e_check_for_fiber_link - Check for link (Fiber)
432 * @hw: pointer to the HW structure
433 *
434 * Checks for link up on the hardware. If link is not up and we have
435 * a signal, then we need to force link up.
436 **/
437s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
438{
439 struct e1000_mac_info *mac = &hw->mac;
440 u32 rxcw;
441 u32 ctrl;
442 u32 status;
443 s32 ret_val;
444
445 ctrl = er32(CTRL);
446 status = er32(STATUS);
447 rxcw = er32(RXCW);
448
449 /* If we don't have link (auto-negotiation failed or link partner
450 * cannot auto-negotiate), the cable is plugged in (we have signal),
451 * and our link partner is not trying to auto-negotiate with us (we
452 * are receiving idles or data), we need to force link up. We also
453 * need to give auto-negotiation time to complete, in case the cable
454 * was just plugged in. The autoneg_failed flag does this.
455 */
456 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
457 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
458 (!(rxcw & E1000_RXCW_C))) {
459 if (mac->autoneg_failed == 0) {
460 mac->autoneg_failed = 1;
461 return 0;
462 }
463 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
464
465 /* Disable auto-negotiation in the TXCW register */
466 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
467
468 /* Force link-up and also force full-duplex. */
469 ctrl = er32(CTRL);
470 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
471 ew32(CTRL, ctrl);
472
473 /* Configure Flow Control after forcing link up. */
474 ret_val = e1000e_config_fc_after_link_up(hw);
475 if (ret_val) {
476 hw_dbg(hw, "Error configuring flow control\n");
477 return ret_val;
478 }
479 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
480 /* If we are forcing link and we are receiving /C/ ordered
481 * sets, re-enable auto-negotiation in the TXCW register
482 * and disable forced link in the Device Control register
483 * in an attempt to auto-negotiate with our link partner.
484 */
485 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
486 ew32(TXCW, mac->txcw);
487 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
488
489 mac->serdes_has_link = 1;
490 }
491
492 return 0;
493}
494
495/**
496 * e1000e_check_for_serdes_link - Check for link (Serdes)
497 * @hw: pointer to the HW structure
498 *
499 * Checks for link up on the hardware. If link is not up and we have
500 * a signal, then we need to force link up.
501 **/
502s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
503{
504 struct e1000_mac_info *mac = &hw->mac;
505 u32 rxcw;
506 u32 ctrl;
507 u32 status;
508 s32 ret_val;
509
510 ctrl = er32(CTRL);
511 status = er32(STATUS);
512 rxcw = er32(RXCW);
513
514 /* If we don't have link (auto-negotiation failed or link partner
515 * cannot auto-negotiate), and our link partner is not trying to
516 * auto-negotiate with us (we are receiving idles or data),
517 * we need to force link up. We also need to give auto-negotiation
518 * time to complete.
519 */
520 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
521 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
522 if (mac->autoneg_failed == 0) {
523 mac->autoneg_failed = 1;
524 return 0;
525 }
526 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
527
528 /* Disable auto-negotiation in the TXCW register */
529 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
530
531 /* Force link-up and also force full-duplex. */
532 ctrl = er32(CTRL);
533 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
534 ew32(CTRL, ctrl);
535
536 /* Configure Flow Control after forcing link up. */
537 ret_val = e1000e_config_fc_after_link_up(hw);
538 if (ret_val) {
539 hw_dbg(hw, "Error configuring flow control\n");
540 return ret_val;
541 }
542 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
543 /* If we are forcing link and we are receiving /C/ ordered
544 * sets, re-enable auto-negotiation in the TXCW register
545 * and disable forced link in the Device Control register
546 * in an attempt to auto-negotiate with our link partner.
547 */
548 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
549 ew32(TXCW, mac->txcw);
550 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
551
552 mac->serdes_has_link = 1;
553 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
554 /* If we force link for non-auto-negotiation switch, check
555 * link status based on MAC synchronization for internal
556 * serdes media type.
557 */
558 /* SYNCH bit and IV bit are sticky. */
559 udelay(10);
560 if (E1000_RXCW_SYNCH & er32(RXCW)) {
561 if (!(rxcw & E1000_RXCW_IV)) {
562 mac->serdes_has_link = 1;
563 hw_dbg(hw, "SERDES: Link is up.\n");
564 }
565 } else {
566 mac->serdes_has_link = 0;
567 hw_dbg(hw, "SERDES: Link is down.\n");
568 }
569 }
570
571 if (E1000_TXCW_ANE & er32(TXCW)) {
572 status = er32(STATUS);
573 mac->serdes_has_link = (status & E1000_STATUS_LU);
574 }
575
576 return 0;
577}
578
579/**
580 * e1000_set_default_fc_generic - Set flow control default values
581 * @hw: pointer to the HW structure
582 *
583 * Read the EEPROM for the default values for flow control and store the
584 * values.
585 **/
586static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
587{
588 struct e1000_mac_info *mac = &hw->mac;
589 s32 ret_val;
590 u16 nvm_data;
591
592 if (mac->fc != e1000_fc_default)
593 return 0;
594
595 /* Read and store word 0x0F of the EEPROM. This word contains bits
596 * that determine the hardware's default PAUSE (flow control) mode,
597 * a bit that determines whether the HW defaults to enabling or
598 * disabling auto-negotiation, and the direction of the
599 * SW defined pins. If there is no SW over-ride of the flow
600 * control setting, then the variable hw->fc will
601 * be initialized based on a value in the EEPROM.
602 */
603 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
604
605 if (ret_val) {
606 hw_dbg(hw, "NVM Read Error\n");
607 return ret_val;
608 }
609
610 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
611 mac->fc = e1000_fc_none;
612 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
613 NVM_WORD0F_ASM_DIR)
614 mac->fc = e1000_fc_tx_pause;
615 else
616 mac->fc = e1000_fc_full;
617
618 return 0;
619}
620
621/**
622 * e1000e_setup_link - Setup flow control and link settings
623 * @hw: pointer to the HW structure
624 *
625 * Determines which flow control settings to use, then configures flow
626 * control. Calls the appropriate media-specific link configuration
627 * function. Assuming the adapter has a valid link partner, a valid link
628 * should be established. Assumes the hardware has previously been reset
629 * and the transmitter and receiver are not enabled.
630 **/
631s32 e1000e_setup_link(struct e1000_hw *hw)
632{
633 struct e1000_mac_info *mac = &hw->mac;
634 s32 ret_val;
635
636 /* In the case of the phy reset being blocked, we already have a link.
637 * We do not need to set it up again.
638 */
639 if (e1000_check_reset_block(hw))
640 return 0;
641
642 ret_val = e1000_set_default_fc_generic(hw);
643 if (ret_val)
644 return ret_val;
645
646 /* We want to save off the original Flow Control configuration just
647 * in case we get disconnected and then reconnected into a different
648 * hub or switch with different Flow Control capabilities.
649 */
650 mac->original_fc = mac->fc;
651
652 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
653
654 /* Call the necessary media_type subroutine to configure the link. */
655 ret_val = mac->ops.setup_physical_interface(hw);
656 if (ret_val)
657 return ret_val;
658
659 /* Initialize the flow control address, type, and PAUSE timer
660 * registers to their default values. This is done even if flow
661 * control is disabled, because it does not hurt anything to
662 * initialize these registers.
663 */
664 hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
665 ew32(FCT, FLOW_CONTROL_TYPE);
666 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
667 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
668
669 ew32(FCTTV, mac->fc_pause_time);
670
671 return e1000e_set_fc_watermarks(hw);
672}
673
674/**
675 * e1000_commit_fc_settings_generic - Configure flow control
676 * @hw: pointer to the HW structure
677 *
678 * Write the flow control settings to the Transmit Config Word Register (TXCW)
679 * base on the flow control settings in e1000_mac_info.
680 **/
681static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
682{
683 struct e1000_mac_info *mac = &hw->mac;
684 u32 txcw;
685
686 /* Check for a software override of the flow control settings, and
687 * setup the device accordingly. If auto-negotiation is enabled, then
688 * software will have to set the "PAUSE" bits to the correct value in
689 * the Transmit Config Word Register (TXCW) and re-start auto-
690 * negotiation. However, if auto-negotiation is disabled, then
691 * software will have to manually configure the two flow control enable
692 * bits in the CTRL register.
693 *
694 * The possible values of the "fc" parameter are:
695 * 0: Flow control is completely disabled
696 * 1: Rx flow control is enabled (we can receive pause frames,
697 * but not send pause frames).
698 * 2: Tx flow control is enabled (we can send pause frames but we
699 * do not support receiving pause frames).
700 * 3: Both Rx and TX flow control (symmetric) are enabled.
701 */
702 switch (mac->fc) {
703 case e1000_fc_none:
704 /* Flow control completely disabled by a software over-ride. */
705 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
706 break;
707 case e1000_fc_rx_pause:
708 /* RX Flow control is enabled and TX Flow control is disabled
709 * by a software over-ride. Since there really isn't a way to
710 * advertise that we are capable of RX Pause ONLY, we will
711 * advertise that we support both symmetric and asymmetric RX
712 * PAUSE. Later, we will disable the adapter's ability to send
713 * PAUSE frames.
714 */
715 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
716 break;
717 case e1000_fc_tx_pause:
718 /* TX Flow control is enabled, and RX Flow control is disabled,
719 * by a software over-ride.
720 */
721 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
722 break;
723 case e1000_fc_full:
724 /* Flow control (both RX and TX) is enabled by a software
725 * over-ride.
726 */
727 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
728 break;
729 default:
730 hw_dbg(hw, "Flow control param set incorrectly\n");
731 return -E1000_ERR_CONFIG;
732 break;
733 }
734
735 ew32(TXCW, txcw);
736 mac->txcw = txcw;
737
738 return 0;
739}
740
741/**
742 * e1000_poll_fiber_serdes_link_generic - Poll for link up
743 * @hw: pointer to the HW structure
744 *
745 * Polls for link up by reading the status register, if link fails to come
746 * up with auto-negotiation, then the link is forced if a signal is detected.
747 **/
748static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
749{
750 struct e1000_mac_info *mac = &hw->mac;
751 u32 i, status;
752 s32 ret_val;
753
754 /* If we have a signal (the cable is plugged in, or assumed true for
755 * serdes media) then poll for a "Link-Up" indication in the Device
756 * Status Register. Time-out if a link isn't seen in 500 milliseconds
757 * seconds (Auto-negotiation should complete in less than 500
758 * milliseconds even if the other end is doing it in SW).
759 */
760 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
761 msleep(10);
762 status = er32(STATUS);
763 if (status & E1000_STATUS_LU)
764 break;
765 }
766 if (i == FIBER_LINK_UP_LIMIT) {
767 hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
768 mac->autoneg_failed = 1;
769 /* AutoNeg failed to achieve a link, so we'll call
770 * mac->check_for_link. This routine will force the
771 * link up if we detect a signal. This will allow us to
772 * communicate with non-autonegotiating link partners.
773 */
774 ret_val = mac->ops.check_for_link(hw);
775 if (ret_val) {
776 hw_dbg(hw, "Error while checking for link\n");
777 return ret_val;
778 }
779 mac->autoneg_failed = 0;
780 } else {
781 mac->autoneg_failed = 0;
782 hw_dbg(hw, "Valid Link Found\n");
783 }
784
785 return 0;
786}
787
788/**
789 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
790 * @hw: pointer to the HW structure
791 *
792 * Configures collision distance and flow control for fiber and serdes
793 * links. Upon successful setup, poll for link.
794 **/
795s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
796{
797 u32 ctrl;
798 s32 ret_val;
799
800 ctrl = er32(CTRL);
801
802 /* Take the link out of reset */
803 ctrl &= ~E1000_CTRL_LRST;
804
805 e1000e_config_collision_dist(hw);
806
807 ret_val = e1000_commit_fc_settings_generic(hw);
808 if (ret_val)
809 return ret_val;
810
811 /* Since auto-negotiation is enabled, take the link out of reset (the
812 * link will be in reset, because we previously reset the chip). This
813 * will restart auto-negotiation. If auto-negotiation is successful
814 * then the link-up status bit will be set and the flow control enable
815 * bits (RFCE and TFCE) will be set according to their negotiated value.
816 */
817 hw_dbg(hw, "Auto-negotiation enabled\n");
818
819 ew32(CTRL, ctrl);
820 e1e_flush();
821 msleep(1);
822
823 /* For these adapters, the SW defineable pin 1 is set when the optics
824 * detect a signal. If we have a signal, then poll for a "Link-Up"
825 * indication.
826 */
827 if (hw->media_type == e1000_media_type_internal_serdes ||
828 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
829 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
830 } else {
831 hw_dbg(hw, "No signal detected\n");
832 }
833
834 return 0;
835}
836
837/**
838 * e1000e_config_collision_dist - Configure collision distance
839 * @hw: pointer to the HW structure
840 *
841 * Configures the collision distance to the default value and is used
842 * during link setup. Currently no func pointer exists and all
843 * implementations are handled in the generic version of this function.
844 **/
845void e1000e_config_collision_dist(struct e1000_hw *hw)
846{
847 u32 tctl;
848
849 tctl = er32(TCTL);
850
851 tctl &= ~E1000_TCTL_COLD;
852 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
853
854 ew32(TCTL, tctl);
855 e1e_flush();
856}
857
858/**
859 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
860 * @hw: pointer to the HW structure
861 *
862 * Sets the flow control high/low threshold (watermark) registers. If
863 * flow control XON frame transmission is enabled, then set XON frame
864 * tansmission as well.
865 **/
866s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
867{
868 struct e1000_mac_info *mac = &hw->mac;
869 u32 fcrtl = 0, fcrth = 0;
870
871 /* Set the flow control receive threshold registers. Normally,
872 * these registers will be set to a default threshold that may be
873 * adjusted later by the driver's runtime code. However, if the
874 * ability to transmit pause frames is not enabled, then these
875 * registers will be set to 0.
876 */
877 if (mac->fc & e1000_fc_tx_pause) {
878 /* We need to set up the Receive Threshold high and low water
879 * marks as well as (optionally) enabling the transmission of
880 * XON frames.
881 */
882 fcrtl = mac->fc_low_water;
883 fcrtl |= E1000_FCRTL_XONE;
884 fcrth = mac->fc_high_water;
885 }
886 ew32(FCRTL, fcrtl);
887 ew32(FCRTH, fcrth);
888
889 return 0;
890}
891
892/**
893 * e1000e_force_mac_fc - Force the MAC's flow control settings
894 * @hw: pointer to the HW structure
895 *
896 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
897 * device control register to reflect the adapter settings. TFCE and RFCE
898 * need to be explicitly set by software when a copper PHY is used because
899 * autonegotiation is managed by the PHY rather than the MAC. Software must
900 * also configure these bits when link is forced on a fiber connection.
901 **/
902s32 e1000e_force_mac_fc(struct e1000_hw *hw)
903{
904 struct e1000_mac_info *mac = &hw->mac;
905 u32 ctrl;
906
907 ctrl = er32(CTRL);
908
909 /* Because we didn't get link via the internal auto-negotiation
910 * mechanism (we either forced link or we got link via PHY
911 * auto-neg), we have to manually enable/disable transmit an
912 * receive flow control.
913 *
914 * The "Case" statement below enables/disable flow control
915 * according to the "mac->fc" parameter.
916 *
917 * The possible values of the "fc" parameter are:
918 * 0: Flow control is completely disabled
919 * 1: Rx flow control is enabled (we can receive pause
920 * frames but not send pause frames).
921 * 2: Tx flow control is enabled (we can send pause frames
922 * frames but we do not receive pause frames).
923 * 3: Both Rx and TX flow control (symmetric) is enabled.
924 * other: No other values should be possible at this point.
925 */
926 hw_dbg(hw, "mac->fc = %u\n", mac->fc);
927
928 switch (mac->fc) {
929 case e1000_fc_none:
930 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
931 break;
932 case e1000_fc_rx_pause:
933 ctrl &= (~E1000_CTRL_TFCE);
934 ctrl |= E1000_CTRL_RFCE;
935 break;
936 case e1000_fc_tx_pause:
937 ctrl &= (~E1000_CTRL_RFCE);
938 ctrl |= E1000_CTRL_TFCE;
939 break;
940 case e1000_fc_full:
941 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
942 break;
943 default:
944 hw_dbg(hw, "Flow control param set incorrectly\n");
945 return -E1000_ERR_CONFIG;
946 }
947
948 ew32(CTRL, ctrl);
949
950 return 0;
951}
952
953/**
954 * e1000e_config_fc_after_link_up - Configures flow control after link
955 * @hw: pointer to the HW structure
956 *
957 * Checks the status of auto-negotiation after link up to ensure that the
958 * speed and duplex were not forced. If the link needed to be forced, then
959 * flow control needs to be forced also. If auto-negotiation is enabled
960 * and did not fail, then we configure flow control based on our link
961 * partner.
962 **/
963s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
964{
965 struct e1000_mac_info *mac = &hw->mac;
966 s32 ret_val = 0;
967 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
968 u16 speed, duplex;
969
970 /* Check for the case where we have fiber media and auto-neg failed
971 * so we had to force link. In this case, we need to force the
972 * configuration of the MAC to match the "fc" parameter.
973 */
974 if (mac->autoneg_failed) {
975 if (hw->media_type == e1000_media_type_fiber ||
976 hw->media_type == e1000_media_type_internal_serdes)
977 ret_val = e1000e_force_mac_fc(hw);
978 } else {
979 if (hw->media_type == e1000_media_type_copper)
980 ret_val = e1000e_force_mac_fc(hw);
981 }
982
983 if (ret_val) {
984 hw_dbg(hw, "Error forcing flow control settings\n");
985 return ret_val;
986 }
987
988 /* Check for the case where we have copper media and auto-neg is
989 * enabled. In this case, we need to check and see if Auto-Neg
990 * has completed, and if so, how the PHY and link partner has
991 * flow control configured.
992 */
993 if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
994 /* Read the MII Status Register and check to see if AutoNeg
995 * has completed. We read this twice because this reg has
996 * some "sticky" (latched) bits.
997 */
998 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
999 if (ret_val)
1000 return ret_val;
1001 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1002 if (ret_val)
1003 return ret_val;
1004
1005 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1006 hw_dbg(hw, "Copper PHY and Auto Neg "
1007 "has not completed.\n");
1008 return ret_val;
1009 }
1010
1011 /* The AutoNeg process has completed, so we now need to
1012 * read both the Auto Negotiation Advertisement
1013 * Register (Address 4) and the Auto_Negotiation Base
1014 * Page Ability Register (Address 5) to determine how
1015 * flow control was negotiated.
1016 */
1017 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1018 if (ret_val)
1019 return ret_val;
1020 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1021 if (ret_val)
1022 return ret_val;
1023
1024 /* Two bits in the Auto Negotiation Advertisement Register
1025 * (Address 4) and two bits in the Auto Negotiation Base
1026 * Page Ability Register (Address 5) determine flow control
1027 * for both the PHY and the link partner. The following
1028 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1029 * 1999, describes these PAUSE resolution bits and how flow
1030 * control is determined based upon these settings.
1031 * NOTE: DC = Don't Care
1032 *
1033 * LOCAL DEVICE | LINK PARTNER
1034 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1035 *-------|---------|-------|---------|--------------------
1036 * 0 | 0 | DC | DC | e1000_fc_none
1037 * 0 | 1 | 0 | DC | e1000_fc_none
1038 * 0 | 1 | 1 | 0 | e1000_fc_none
1039 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1040 * 1 | 0 | 0 | DC | e1000_fc_none
1041 * 1 | DC | 1 | DC | e1000_fc_full
1042 * 1 | 1 | 0 | 0 | e1000_fc_none
1043 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1044 *
1045 */
1046 /* Are both PAUSE bits set to 1? If so, this implies
1047 * Symmetric Flow Control is enabled at both ends. The
1048 * ASM_DIR bits are irrelevant per the spec.
1049 *
1050 * For Symmetric Flow Control:
1051 *
1052 * LOCAL DEVICE | LINK PARTNER
1053 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1054 *-------|---------|-------|---------|--------------------
1055 * 1 | DC | 1 | DC | E1000_fc_full
1056 *
1057 */
1058 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1059 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1060 /* Now we need to check if the user selected RX ONLY
1061 * of pause frames. In this case, we had to advertise
1062 * FULL flow control because we could not advertise RX
1063 * ONLY. Hence, we must now check to see if we need to
1064 * turn OFF the TRANSMISSION of PAUSE frames.
1065 */
1066 if (mac->original_fc == e1000_fc_full) {
1067 mac->fc = e1000_fc_full;
1068 hw_dbg(hw, "Flow Control = FULL.\r\n");
1069 } else {
1070 mac->fc = e1000_fc_rx_pause;
1071 hw_dbg(hw, "Flow Control = "
1072 "RX PAUSE frames only.\r\n");
1073 }
1074 }
1075 /* For receiving PAUSE frames ONLY.
1076 *
1077 * LOCAL DEVICE | LINK PARTNER
1078 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1079 *-------|---------|-------|---------|--------------------
1080 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1081 *
1082 */
1083 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1084 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1085 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1086 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1087 mac->fc = e1000_fc_tx_pause;
1088 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
1089 }
1090 /* For transmitting PAUSE frames ONLY.
1091 *
1092 * LOCAL DEVICE | LINK PARTNER
1093 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1094 *-------|---------|-------|---------|--------------------
1095 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1096 *
1097 */
1098 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1099 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1100 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1101 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1102 mac->fc = e1000_fc_rx_pause;
1103 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
1104 }
1105 /* Per the IEEE spec, at this point flow control should be
1106 * disabled. However, we want to consider that we could
1107 * be connected to a legacy switch that doesn't advertise
1108 * desired flow control, but can be forced on the link
1109 * partner. So if we advertised no flow control, that is
1110 * what we will resolve to. If we advertised some kind of
1111 * receive capability (Rx Pause Only or Full Flow Control)
1112 * and the link partner advertised none, we will configure
1113 * ourselves to enable Rx Flow Control only. We can do
1114 * this safely for two reasons: If the link partner really
1115 * didn't want flow control enabled, and we enable Rx, no
1116 * harm done since we won't be receiving any PAUSE frames
1117 * anyway. If the intent on the link partner was to have
1118 * flow control enabled, then by us enabling RX only, we
1119 * can at least receive pause frames and process them.
1120 * This is a good idea because in most cases, since we are
1121 * predominantly a server NIC, more times than not we will
1122 * be asked to delay transmission of packets than asking
1123 * our link partner to pause transmission of frames.
1124 */
1125 else if ((mac->original_fc == e1000_fc_none) ||
1126 (mac->original_fc == e1000_fc_tx_pause)) {
1127 mac->fc = e1000_fc_none;
1128 hw_dbg(hw, "Flow Control = NONE.\r\n");
1129 } else {
1130 mac->fc = e1000_fc_rx_pause;
1131 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
1132 }
1133
1134 /* Now we need to do one last check... If we auto-
1135 * negotiated to HALF DUPLEX, flow control should not be
1136 * enabled per IEEE 802.3 spec.
1137 */
1138 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1139 if (ret_val) {
1140 hw_dbg(hw, "Error getting link speed and duplex\n");
1141 return ret_val;
1142 }
1143
1144 if (duplex == HALF_DUPLEX)
1145 mac->fc = e1000_fc_none;
1146
1147 /* Now we call a subroutine to actually force the MAC
1148 * controller to use the correct flow control settings.
1149 */
1150 ret_val = e1000e_force_mac_fc(hw);
1151 if (ret_val) {
1152 hw_dbg(hw, "Error forcing flow control settings\n");
1153 return ret_val;
1154 }
1155 }
1156
1157 return 0;
1158}
1159
1160/**
1161 * e1000e_get_speed_and_duplex_copper - Retreive current speed/duplex
1162 * @hw: pointer to the HW structure
1163 * @speed: stores the current speed
1164 * @duplex: stores the current duplex
1165 *
1166 * Read the status register for the current speed/duplex and store the current
1167 * speed and duplex for copper connections.
1168 **/
1169s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1170{
1171 u32 status;
1172
1173 status = er32(STATUS);
1174 if (status & E1000_STATUS_SPEED_1000) {
1175 *speed = SPEED_1000;
1176 hw_dbg(hw, "1000 Mbs, ");
1177 } else if (status & E1000_STATUS_SPEED_100) {
1178 *speed = SPEED_100;
1179 hw_dbg(hw, "100 Mbs, ");
1180 } else {
1181 *speed = SPEED_10;
1182 hw_dbg(hw, "10 Mbs, ");
1183 }
1184
1185 if (status & E1000_STATUS_FD) {
1186 *duplex = FULL_DUPLEX;
1187 hw_dbg(hw, "Full Duplex\n");
1188 } else {
1189 *duplex = HALF_DUPLEX;
1190 hw_dbg(hw, "Half Duplex\n");
1191 }
1192
1193 return 0;
1194}
1195
1196/**
1197 * e1000e_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex
1198 * @hw: pointer to the HW structure
1199 * @speed: stores the current speed
1200 * @duplex: stores the current duplex
1201 *
1202 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1203 * for fiber/serdes links.
1204 **/
1205s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1206{
1207 *speed = SPEED_1000;
1208 *duplex = FULL_DUPLEX;
1209
1210 return 0;
1211}
1212
1213/**
1214 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1215 * @hw: pointer to the HW structure
1216 *
1217 * Acquire the HW semaphore to access the PHY or NVM
1218 **/
1219s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1220{
1221 u32 swsm;
1222 s32 timeout = hw->nvm.word_size + 1;
1223 s32 i = 0;
1224
1225 /* Get the SW semaphore */
1226 while (i < timeout) {
1227 swsm = er32(SWSM);
1228 if (!(swsm & E1000_SWSM_SMBI))
1229 break;
1230
1231 udelay(50);
1232 i++;
1233 }
1234
1235 if (i == timeout) {
1236 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
1237 return -E1000_ERR_NVM;
1238 }
1239
1240 /* Get the FW semaphore. */
1241 for (i = 0; i < timeout; i++) {
1242 swsm = er32(SWSM);
1243 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1244
1245 /* Semaphore acquired if bit latched */
1246 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1247 break;
1248
1249 udelay(50);
1250 }
1251
1252 if (i == timeout) {
1253 /* Release semaphores */
1254 e1000e_put_hw_semaphore(hw);
1255 hw_dbg(hw, "Driver can't access the NVM\n");
1256 return -E1000_ERR_NVM;
1257 }
1258
1259 return 0;
1260}
1261
1262/**
1263 * e1000e_put_hw_semaphore - Release hardware semaphore
1264 * @hw: pointer to the HW structure
1265 *
1266 * Release hardware semaphore used to access the PHY or NVM
1267 **/
1268void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1269{
1270 u32 swsm;
1271
1272 swsm = er32(SWSM);
1273 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1274 ew32(SWSM, swsm);
1275}
1276
1277/**
1278 * e1000e_get_auto_rd_done - Check for auto read completion
1279 * @hw: pointer to the HW structure
1280 *
1281 * Check EEPROM for Auto Read done bit.
1282 **/
1283s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1284{
1285 s32 i = 0;
1286
1287 while (i < AUTO_READ_DONE_TIMEOUT) {
1288 if (er32(EECD) & E1000_EECD_AUTO_RD)
1289 break;
1290 msleep(1);
1291 i++;
1292 }
1293
1294 if (i == AUTO_READ_DONE_TIMEOUT) {
1295 hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
1296 return -E1000_ERR_RESET;
1297 }
1298
1299 return 0;
1300}
1301
1302/**
1303 * e1000e_valid_led_default - Verify a valid default LED config
1304 * @hw: pointer to the HW structure
1305 * @data: pointer to the NVM (EEPROM)
1306 *
1307 * Read the EEPROM for the current default LED configuration. If the
1308 * LED configuration is not valid, set to a valid LED configuration.
1309 **/
1310s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1311{
1312 s32 ret_val;
1313
1314 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1315 if (ret_val) {
1316 hw_dbg(hw, "NVM Read Error\n");
1317 return ret_val;
1318 }
1319
1320 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1321 *data = ID_LED_DEFAULT;
1322
1323 return 0;
1324}
1325
1326/**
1327 * e1000e_id_led_init -
1328 * @hw: pointer to the HW structure
1329 *
1330 **/
1331s32 e1000e_id_led_init(struct e1000_hw *hw)
1332{
1333 struct e1000_mac_info *mac = &hw->mac;
1334 s32 ret_val;
1335 const u32 ledctl_mask = 0x000000FF;
1336 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1337 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1338 u16 data, i, temp;
1339 const u16 led_mask = 0x0F;
1340
1341 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1342 if (ret_val)
1343 return ret_val;
1344
1345 mac->ledctl_default = er32(LEDCTL);
1346 mac->ledctl_mode1 = mac->ledctl_default;
1347 mac->ledctl_mode2 = mac->ledctl_default;
1348
1349 for (i = 0; i < 4; i++) {
1350 temp = (data >> (i << 2)) & led_mask;
1351 switch (temp) {
1352 case ID_LED_ON1_DEF2:
1353 case ID_LED_ON1_ON2:
1354 case ID_LED_ON1_OFF2:
1355 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1356 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1357 break;
1358 case ID_LED_OFF1_DEF2:
1359 case ID_LED_OFF1_ON2:
1360 case ID_LED_OFF1_OFF2:
1361 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1362 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1363 break;
1364 default:
1365 /* Do nothing */
1366 break;
1367 }
1368 switch (temp) {
1369 case ID_LED_DEF1_ON2:
1370 case ID_LED_ON1_ON2:
1371 case ID_LED_OFF1_ON2:
1372 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1373 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1374 break;
1375 case ID_LED_DEF1_OFF2:
1376 case ID_LED_ON1_OFF2:
1377 case ID_LED_OFF1_OFF2:
1378 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1379 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1380 break;
1381 default:
1382 /* Do nothing */
1383 break;
1384 }
1385 }
1386
1387 return 0;
1388}
1389
1390/**
1391 * e1000e_cleanup_led_generic - Set LED config to default operation
1392 * @hw: pointer to the HW structure
1393 *
1394 * Remove the current LED configuration and set the LED configuration
1395 * to the default value, saved from the EEPROM.
1396 **/
1397s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1398{
1399 ew32(LEDCTL, hw->mac.ledctl_default);
1400 return 0;
1401}
1402
1403/**
1404 * e1000e_blink_led - Blink LED
1405 * @hw: pointer to the HW structure
1406 *
1407 * Blink the led's which are set to be on.
1408 **/
1409s32 e1000e_blink_led(struct e1000_hw *hw)
1410{
1411 u32 ledctl_blink = 0;
1412 u32 i;
1413
1414 if (hw->media_type == e1000_media_type_fiber) {
1415 /* always blink LED0 for PCI-E fiber */
1416 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1417 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1418 } else {
1419 /* set the blink bit for each LED that's "on" (0x0E)
1420 * in ledctl_mode2 */
1421 ledctl_blink = hw->mac.ledctl_mode2;
1422 for (i = 0; i < 4; i++)
1423 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1424 E1000_LEDCTL_MODE_LED_ON)
1425 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1426 (i * 8));
1427 }
1428
1429 ew32(LEDCTL, ledctl_blink);
1430
1431 return 0;
1432}
1433
1434/**
1435 * e1000e_led_on_generic - Turn LED on
1436 * @hw: pointer to the HW structure
1437 *
1438 * Turn LED on.
1439 **/
1440s32 e1000e_led_on_generic(struct e1000_hw *hw)
1441{
1442 u32 ctrl;
1443
1444 switch (hw->media_type) {
1445 case e1000_media_type_fiber:
1446 ctrl = er32(CTRL);
1447 ctrl &= ~E1000_CTRL_SWDPIN0;
1448 ctrl |= E1000_CTRL_SWDPIO0;
1449 ew32(CTRL, ctrl);
1450 break;
1451 case e1000_media_type_copper:
1452 ew32(LEDCTL, hw->mac.ledctl_mode2);
1453 break;
1454 default:
1455 break;
1456 }
1457
1458 return 0;
1459}
1460
1461/**
1462 * e1000e_led_off_generic - Turn LED off
1463 * @hw: pointer to the HW structure
1464 *
1465 * Turn LED off.
1466 **/
1467s32 e1000e_led_off_generic(struct e1000_hw *hw)
1468{
1469 u32 ctrl;
1470
1471 switch (hw->media_type) {
1472 case e1000_media_type_fiber:
1473 ctrl = er32(CTRL);
1474 ctrl |= E1000_CTRL_SWDPIN0;
1475 ctrl |= E1000_CTRL_SWDPIO0;
1476 ew32(CTRL, ctrl);
1477 break;
1478 case e1000_media_type_copper:
1479 ew32(LEDCTL, hw->mac.ledctl_mode1);
1480 break;
1481 default:
1482 break;
1483 }
1484
1485 return 0;
1486}
1487
1488/**
1489 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1490 * @hw: pointer to the HW structure
1491 * @no_snoop: bitmap of snoop events
1492 *
1493 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1494 **/
1495void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1496{
1497 u32 gcr;
1498
1499 if (no_snoop) {
1500 gcr = er32(GCR);
1501 gcr &= ~(PCIE_NO_SNOOP_ALL);
1502 gcr |= no_snoop;
1503 ew32(GCR, gcr);
1504 }
1505}
1506
1507/**
1508 * e1000e_disable_pcie_master - Disables PCI-express master access
1509 * @hw: pointer to the HW structure
1510 *
1511 * Returns 0 if successful, else returns -10
1512 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1513 * the master requests to be disabled.
1514 *
1515 * Disables PCI-Express master access and verifies there are no pending
1516 * requests.
1517 **/
1518s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1519{
1520 u32 ctrl;
1521 s32 timeout = MASTER_DISABLE_TIMEOUT;
1522
1523 ctrl = er32(CTRL);
1524 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1525 ew32(CTRL, ctrl);
1526
1527 while (timeout) {
1528 if (!(er32(STATUS) &
1529 E1000_STATUS_GIO_MASTER_ENABLE))
1530 break;
1531 udelay(100);
1532 timeout--;
1533 }
1534
1535 if (!timeout) {
1536 hw_dbg(hw, "Master requests are pending.\n");
1537 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1538 }
1539
1540 return 0;
1541}
1542
1543/**
1544 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1545 * @hw: pointer to the HW structure
1546 *
1547 * Reset the Adaptive Interframe Spacing throttle to default values.
1548 **/
1549void e1000e_reset_adaptive(struct e1000_hw *hw)
1550{
1551 struct e1000_mac_info *mac = &hw->mac;
1552
1553 mac->current_ifs_val = 0;
1554 mac->ifs_min_val = IFS_MIN;
1555 mac->ifs_max_val = IFS_MAX;
1556 mac->ifs_step_size = IFS_STEP;
1557 mac->ifs_ratio = IFS_RATIO;
1558
1559 mac->in_ifs_mode = 0;
1560 ew32(AIT, 0);
1561}
1562
1563/**
1564 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1565 * @hw: pointer to the HW structure
1566 *
1567 * Update the Adaptive Interframe Spacing Throttle value based on the
1568 * time between transmitted packets and time between collisions.
1569 **/
1570void e1000e_update_adaptive(struct e1000_hw *hw)
1571{
1572 struct e1000_mac_info *mac = &hw->mac;
1573
1574 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1575 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1576 mac->in_ifs_mode = 1;
1577 if (mac->current_ifs_val < mac->ifs_max_val) {
1578 if (!mac->current_ifs_val)
1579 mac->current_ifs_val = mac->ifs_min_val;
1580 else
1581 mac->current_ifs_val +=
1582 mac->ifs_step_size;
1583 ew32(AIT,
1584 mac->current_ifs_val);
1585 }
1586 }
1587 } else {
1588 if (mac->in_ifs_mode &&
1589 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1590 mac->current_ifs_val = 0;
1591 mac->in_ifs_mode = 0;
1592 ew32(AIT, 0);
1593 }
1594 }
1595}
1596
1597/**
1598 * e1000_raise_eec_clk - Raise EEPROM clock
1599 * @hw: pointer to the HW structure
1600 * @eecd: pointer to the EEPROM
1601 *
1602 * Enable/Raise the EEPROM clock bit.
1603 **/
1604static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1605{
1606 *eecd = *eecd | E1000_EECD_SK;
1607 ew32(EECD, *eecd);
1608 e1e_flush();
1609 udelay(hw->nvm.delay_usec);
1610}
1611
1612/**
1613 * e1000_lower_eec_clk - Lower EEPROM clock
1614 * @hw: pointer to the HW structure
1615 * @eecd: pointer to the EEPROM
1616 *
1617 * Clear/Lower the EEPROM clock bit.
1618 **/
1619static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1620{
1621 *eecd = *eecd & ~E1000_EECD_SK;
1622 ew32(EECD, *eecd);
1623 e1e_flush();
1624 udelay(hw->nvm.delay_usec);
1625}
1626
1627/**
1628 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1629 * @hw: pointer to the HW structure
1630 * @data: data to send to the EEPROM
1631 * @count: number of bits to shift out
1632 *
1633 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1634 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1635 * In order to do this, "data" must be broken down into bits.
1636 **/
1637static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1638{
1639 struct e1000_nvm_info *nvm = &hw->nvm;
1640 u32 eecd = er32(EECD);
1641 u32 mask;
1642
1643 mask = 0x01 << (count - 1);
1644 if (nvm->type == e1000_nvm_eeprom_spi)
1645 eecd |= E1000_EECD_DO;
1646
1647 do {
1648 eecd &= ~E1000_EECD_DI;
1649
1650 if (data & mask)
1651 eecd |= E1000_EECD_DI;
1652
1653 ew32(EECD, eecd);
1654 e1e_flush();
1655
1656 udelay(nvm->delay_usec);
1657
1658 e1000_raise_eec_clk(hw, &eecd);
1659 e1000_lower_eec_clk(hw, &eecd);
1660
1661 mask >>= 1;
1662 } while (mask);
1663
1664 eecd &= ~E1000_EECD_DI;
1665 ew32(EECD, eecd);
1666}
1667
1668/**
1669 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1670 * @hw: pointer to the HW structure
1671 * @count: number of bits to shift in
1672 *
1673 * In order to read a register from the EEPROM, we need to shift 'count' bits
1674 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1675 * the EEPROM (setting the SK bit), and then reading the value of the data out
1676 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1677 * always be clear.
1678 **/
1679static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1680{
1681 u32 eecd;
1682 u32 i;
1683 u16 data;
1684
1685 eecd = er32(EECD);
1686
1687 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1688 data = 0;
1689
1690 for (i = 0; i < count; i++) {
1691 data <<= 1;
1692 e1000_raise_eec_clk(hw, &eecd);
1693
1694 eecd = er32(EECD);
1695
1696 eecd &= ~E1000_EECD_DI;
1697 if (eecd & E1000_EECD_DO)
1698 data |= 1;
1699
1700 e1000_lower_eec_clk(hw, &eecd);
1701 }
1702
1703 return data;
1704}
1705
1706/**
1707 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1708 * @hw: pointer to the HW structure
1709 * @ee_reg: EEPROM flag for polling
1710 *
1711 * Polls the EEPROM status bit for either read or write completion based
1712 * upon the value of 'ee_reg'.
1713 **/
1714s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1715{
1716 u32 attempts = 100000;
1717 u32 i, reg = 0;
1718
1719 for (i = 0; i < attempts; i++) {
1720 if (ee_reg == E1000_NVM_POLL_READ)
1721 reg = er32(EERD);
1722 else
1723 reg = er32(EEWR);
1724
1725 if (reg & E1000_NVM_RW_REG_DONE)
1726 return 0;
1727
1728 udelay(5);
1729 }
1730
1731 return -E1000_ERR_NVM;
1732}
1733
1734/**
1735 * e1000e_acquire_nvm - Generic request for access to EEPROM
1736 * @hw: pointer to the HW structure
1737 *
1738 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1739 * Return successful if access grant bit set, else clear the request for
1740 * EEPROM access and return -E1000_ERR_NVM (-1).
1741 **/
1742s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1743{
1744 u32 eecd = er32(EECD);
1745 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1746
1747 ew32(EECD, eecd | E1000_EECD_REQ);
1748 eecd = er32(EECD);
1749
1750 while (timeout) {
1751 if (eecd & E1000_EECD_GNT)
1752 break;
1753 udelay(5);
1754 eecd = er32(EECD);
1755 timeout--;
1756 }
1757
1758 if (!timeout) {
1759 eecd &= ~E1000_EECD_REQ;
1760 ew32(EECD, eecd);
1761 hw_dbg(hw, "Could not acquire NVM grant\n");
1762 return -E1000_ERR_NVM;
1763 }
1764
1765 return 0;
1766}
1767
1768/**
1769 * e1000_standby_nvm - Return EEPROM to standby state
1770 * @hw: pointer to the HW structure
1771 *
1772 * Return the EEPROM to a standby state.
1773 **/
1774static void e1000_standby_nvm(struct e1000_hw *hw)
1775{
1776 struct e1000_nvm_info *nvm = &hw->nvm;
1777 u32 eecd = er32(EECD);
1778
1779 if (nvm->type == e1000_nvm_eeprom_spi) {
1780 /* Toggle CS to flush commands */
1781 eecd |= E1000_EECD_CS;
1782 ew32(EECD, eecd);
1783 e1e_flush();
1784 udelay(nvm->delay_usec);
1785 eecd &= ~E1000_EECD_CS;
1786 ew32(EECD, eecd);
1787 e1e_flush();
1788 udelay(nvm->delay_usec);
1789 }
1790}
1791
1792/**
1793 * e1000_stop_nvm - Terminate EEPROM command
1794 * @hw: pointer to the HW structure
1795 *
1796 * Terminates the current command by inverting the EEPROM's chip select pin.
1797 **/
1798static void e1000_stop_nvm(struct e1000_hw *hw)
1799{
1800 u32 eecd;
1801
1802 eecd = er32(EECD);
1803 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1804 /* Pull CS high */
1805 eecd |= E1000_EECD_CS;
1806 e1000_lower_eec_clk(hw, &eecd);
1807 }
1808}
1809
1810/**
1811 * e1000e_release_nvm - Release exclusive access to EEPROM
1812 * @hw: pointer to the HW structure
1813 *
1814 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1815 **/
1816void e1000e_release_nvm(struct e1000_hw *hw)
1817{
1818 u32 eecd;
1819
1820 e1000_stop_nvm(hw);
1821
1822 eecd = er32(EECD);
1823 eecd &= ~E1000_EECD_REQ;
1824 ew32(EECD, eecd);
1825}
1826
1827/**
1828 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1829 * @hw: pointer to the HW structure
1830 *
1831 * Setups the EEPROM for reading and writing.
1832 **/
1833static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1834{
1835 struct e1000_nvm_info *nvm = &hw->nvm;
1836 u32 eecd = er32(EECD);
1837 u16 timeout = 0;
1838 u8 spi_stat_reg;
1839
1840 if (nvm->type == e1000_nvm_eeprom_spi) {
1841 /* Clear SK and CS */
1842 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1843 ew32(EECD, eecd);
1844 udelay(1);
1845 timeout = NVM_MAX_RETRY_SPI;
1846
1847 /* Read "Status Register" repeatedly until the LSB is cleared.
1848 * The EEPROM will signal that the command has been completed
1849 * by clearing bit 0 of the internal status register. If it's
1850 * not cleared within 'timeout', then error out. */
1851 while (timeout) {
1852 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
1853 hw->nvm.opcode_bits);
1854 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
1855 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
1856 break;
1857
1858 udelay(5);
1859 e1000_standby_nvm(hw);
1860 timeout--;
1861 }
1862
1863 if (!timeout) {
1864 hw_dbg(hw, "SPI NVM Status error\n");
1865 return -E1000_ERR_NVM;
1866 }
1867 }
1868
1869 return 0;
1870}
1871
1872/**
1873 * e1000e_read_nvm_spi - Read EEPROM's using SPI
1874 * @hw: pointer to the HW structure
1875 * @offset: offset of word in the EEPROM to read
1876 * @words: number of words to read
1877 * @data: word read from the EEPROM
1878 *
1879 * Reads a 16 bit word from the EEPROM.
1880 **/
1881s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1882{
1883 struct e1000_nvm_info *nvm = &hw->nvm;
1884 u32 i = 0;
1885 s32 ret_val;
1886 u16 word_in;
1887 u8 read_opcode = NVM_READ_OPCODE_SPI;
1888
1889 /* A check for invalid values: offset too large, too many words,
1890 * and not enough words. */
1891 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1892 (words == 0)) {
1893 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1894 return -E1000_ERR_NVM;
1895 }
1896
1897 ret_val = nvm->ops.acquire_nvm(hw);
1898 if (ret_val)
1899 return ret_val;
1900
1901 ret_val = e1000_ready_nvm_eeprom(hw);
1902 if (ret_val) {
1903 nvm->ops.release_nvm(hw);
1904 return ret_val;
1905 }
1906
1907 e1000_standby_nvm(hw);
1908
1909 if ((nvm->address_bits == 8) && (offset >= 128))
1910 read_opcode |= NVM_A8_OPCODE_SPI;
1911
1912 /* Send the READ command (opcode + addr) */
1913 e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
1914 e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
1915
1916 /* Read the data. SPI NVMs increment the address with each byte
1917 * read and will roll over if reading beyond the end. This allows
1918 * us to read the whole NVM from any offset */
1919 for (i = 0; i < words; i++) {
1920 word_in = e1000_shift_in_eec_bits(hw, 16);
1921 data[i] = (word_in >> 8) | (word_in << 8);
1922 }
1923
1924 nvm->ops.release_nvm(hw);
1925 return 0;
1926}
1927
1928/**
1929 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
1930 * @hw: pointer to the HW structure
1931 * @offset: offset of word in the EEPROM to read
1932 * @words: number of words to read
1933 * @data: word read from the EEPROM
1934 *
1935 * Reads a 16 bit word from the EEPROM using the EERD register.
1936 **/
1937s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1938{
1939 struct e1000_nvm_info *nvm = &hw->nvm;
1940 u32 i, eerd = 0;
1941 s32 ret_val = 0;
1942
1943 /* A check for invalid values: offset too large, too many words,
1944 * and not enough words. */
1945 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1946 (words == 0)) {
1947 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1948 return -E1000_ERR_NVM;
1949 }
1950
1951 for (i = 0; i < words; i++) {
1952 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
1953 E1000_NVM_RW_REG_START;
1954
1955 ew32(EERD, eerd);
1956 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
1957 if (ret_val)
1958 break;
1959
1960 data[i] = (er32(EERD) >>
1961 E1000_NVM_RW_REG_DATA);
1962 }
1963
1964 return ret_val;
1965}
1966
1967/**
1968 * e1000e_write_nvm_spi - Write to EEPROM using SPI
1969 * @hw: pointer to the HW structure
1970 * @offset: offset within the EEPROM to be written to
1971 * @words: number of words to write
1972 * @data: 16 bit word(s) to be written to the EEPROM
1973 *
1974 * Writes data to EEPROM at offset using SPI interface.
1975 *
1976 * If e1000e_update_nvm_checksum is not called after this function , the
1977 * EEPROM will most likley contain an invalid checksum.
1978 **/
1979s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1980{
1981 struct e1000_nvm_info *nvm = &hw->nvm;
1982 s32 ret_val;
1983 u16 widx = 0;
1984
1985 /* A check for invalid values: offset too large, too many words,
1986 * and not enough words. */
1987 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1988 (words == 0)) {
1989 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1990 return -E1000_ERR_NVM;
1991 }
1992
1993 ret_val = nvm->ops.acquire_nvm(hw);
1994 if (ret_val)
1995 return ret_val;
1996
1997 msleep(10);
1998
1999 while (widx < words) {
2000 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
2001
2002 ret_val = e1000_ready_nvm_eeprom(hw);
2003 if (ret_val) {
2004 nvm->ops.release_nvm(hw);
2005 return ret_val;
2006 }
2007
2008 e1000_standby_nvm(hw);
2009
2010 /* Send the WRITE ENABLE command (8 bit opcode) */
2011 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
2012 nvm->opcode_bits);
2013
2014 e1000_standby_nvm(hw);
2015
2016 /* Some SPI eeproms use the 8th address bit embedded in the
2017 * opcode */
2018 if ((nvm->address_bits == 8) && (offset >= 128))
2019 write_opcode |= NVM_A8_OPCODE_SPI;
2020
2021 /* Send the Write command (8-bit opcode + addr) */
2022 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
2023 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
2024 nvm->address_bits);
2025
2026 /* Loop to allow for up to whole page write of eeprom */
2027 while (widx < words) {
2028 u16 word_out = data[widx];
2029 word_out = (word_out >> 8) | (word_out << 8);
2030 e1000_shift_out_eec_bits(hw, word_out, 16);
2031 widx++;
2032
2033 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2034 e1000_standby_nvm(hw);
2035 break;
2036 }
2037 }
2038 }
2039
2040 msleep(10);
2041 return 0;
2042}
2043
2044/**
2045 * e1000e_read_mac_addr - Read device MAC address
2046 * @hw: pointer to the HW structure
2047 *
2048 * Reads the device MAC address from the EEPROM and stores the value.
2049 * Since devices with two ports use the same EEPROM, we increment the
2050 * last bit in the MAC address for the second port.
2051 **/
2052s32 e1000e_read_mac_addr(struct e1000_hw *hw)
2053{
2054 s32 ret_val;
2055 u16 offset, nvm_data, i;
2056
2057 for (i = 0; i < ETH_ALEN; i += 2) {
2058 offset = i >> 1;
2059 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
2060 if (ret_val) {
2061 hw_dbg(hw, "NVM Read Error\n");
2062 return ret_val;
2063 }
2064 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
2065 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
2066 }
2067
2068 /* Flip last bit of mac address if we're on second port */
2069 if (hw->bus.func == E1000_FUNC_1)
2070 hw->mac.perm_addr[5] ^= 1;
2071
2072 for (i = 0; i < ETH_ALEN; i++)
2073 hw->mac.addr[i] = hw->mac.perm_addr[i];
2074
2075 return 0;
2076}
2077
2078/**
2079 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2080 * @hw: pointer to the HW structure
2081 *
2082 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2083 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2084 **/
2085s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2086{
2087 s32 ret_val;
2088 u16 checksum = 0;
2089 u16 i, nvm_data;
2090
2091 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2092 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2093 if (ret_val) {
2094 hw_dbg(hw, "NVM Read Error\n");
2095 return ret_val;
2096 }
2097 checksum += nvm_data;
2098 }
2099
2100 if (checksum != (u16) NVM_SUM) {
2101 hw_dbg(hw, "NVM Checksum Invalid\n");
2102 return -E1000_ERR_NVM;
2103 }
2104
2105 return 0;
2106}
2107
2108/**
2109 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2110 * @hw: pointer to the HW structure
2111 *
2112 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2113 * up to the checksum. Then calculates the EEPROM checksum and writes the
2114 * value to the EEPROM.
2115 **/
2116s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2117{
2118 s32 ret_val;
2119 u16 checksum = 0;
2120 u16 i, nvm_data;
2121
2122 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2123 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2124 if (ret_val) {
2125 hw_dbg(hw, "NVM Read Error while updating checksum.\n");
2126 return ret_val;
2127 }
2128 checksum += nvm_data;
2129 }
2130 checksum = (u16) NVM_SUM - checksum;
2131 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2132 if (ret_val)
2133 hw_dbg(hw, "NVM Write Error while updating checksum.\n");
2134
2135 return ret_val;
2136}
2137
2138/**
2139 * e1000e_reload_nvm - Reloads EEPROM
2140 * @hw: pointer to the HW structure
2141 *
2142 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2143 * extended control register.
2144 **/
2145void e1000e_reload_nvm(struct e1000_hw *hw)
2146{
2147 u32 ctrl_ext;
2148
2149 udelay(10);
2150 ctrl_ext = er32(CTRL_EXT);
2151 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2152 ew32(CTRL_EXT, ctrl_ext);
2153 e1e_flush();
2154}
2155
2156/**
2157 * e1000_calculate_checksum - Calculate checksum for buffer
2158 * @buffer: pointer to EEPROM
2159 * @length: size of EEPROM to calculate a checksum for
2160 *
2161 * Calculates the checksum for some buffer on a specified length. The
2162 * checksum calculated is returned.
2163 **/
2164static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2165{
2166 u32 i;
2167 u8 sum = 0;
2168
2169 if (!buffer)
2170 return 0;
2171
2172 for (i = 0; i < length; i++)
2173 sum += buffer[i];
2174
2175 return (u8) (0 - sum);
2176}
2177
2178/**
2179 * e1000_mng_enable_host_if - Checks host interface is enabled
2180 * @hw: pointer to the HW structure
2181 *
2182 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2183 *
2184 * This function checks whether the HOST IF is enabled for command operaton
2185 * and also checks whether the previous command is completed. It busy waits
2186 * in case of previous command is not completed.
2187 **/
2188static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2189{
2190 u32 hicr;
2191 u8 i;
2192
2193 /* Check that the host interface is enabled. */
2194 hicr = er32(HICR);
2195 if ((hicr & E1000_HICR_EN) == 0) {
2196 hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
2197 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2198 }
2199 /* check the previous command is completed */
2200 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2201 hicr = er32(HICR);
2202 if (!(hicr & E1000_HICR_C))
2203 break;
2204 mdelay(1);
2205 }
2206
2207 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
2208 hw_dbg(hw, "Previous command timeout failed .\n");
2209 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2210 }
2211
2212 return 0;
2213}
2214
2215/**
2216 * e1000e_check_mng_mode - check managament mode
2217 * @hw: pointer to the HW structure
2218 *
2219 * Reads the firmware semaphore register and returns true (>0) if
2220 * manageability is enabled, else false (0).
2221 **/
2222bool e1000e_check_mng_mode(struct e1000_hw *hw)
2223{
2224 u32 fwsm = er32(FWSM);
2225
2226 return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab;
2227}
2228
2229/**
2230 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX
2231 * @hw: pointer to the HW structure
2232 *
2233 * Enables packet filtering on transmit packets if manageability is enabled
2234 * and host interface is enabled.
2235 **/
2236bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2237{
2238 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2239 u32 *buffer = (u32 *)&hw->mng_cookie;
2240 u32 offset;
2241 s32 ret_val, hdr_csum, csum;
2242 u8 i, len;
2243
2244 /* No manageability, no filtering */
2245 if (!e1000e_check_mng_mode(hw)) {
2246 hw->mac.tx_pkt_filtering = 0;
2247 return 0;
2248 }
2249
2250 /* If we can't read from the host interface for whatever
2251 * reason, disable filtering.
2252 */
2253 ret_val = e1000_mng_enable_host_if(hw);
2254 if (ret_val != 0) {
2255 hw->mac.tx_pkt_filtering = 0;
2256 return ret_val;
2257 }
2258
2259 /* Read in the header. Length and offset are in dwords. */
2260 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2261 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2262 for (i = 0; i < len; i++)
2263 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2264 hdr_csum = hdr->checksum;
2265 hdr->checksum = 0;
2266 csum = e1000_calculate_checksum((u8 *)hdr,
2267 E1000_MNG_DHCP_COOKIE_LENGTH);
2268 /* If either the checksums or signature don't match, then
2269 * the cookie area isn't considered valid, in which case we
2270 * take the safe route of assuming Tx filtering is enabled.
2271 */
2272 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
2273 hw->mac.tx_pkt_filtering = 1;
2274 return 1;
2275 }
2276
2277 /* Cookie area is valid, make the final check for filtering. */
2278 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
2279 hw->mac.tx_pkt_filtering = 0;
2280 return 0;
2281 }
2282
2283 hw->mac.tx_pkt_filtering = 1;
2284 return 1;
2285}
2286
2287/**
2288 * e1000_mng_write_cmd_header - Writes manageability command header
2289 * @hw: pointer to the HW structure
2290 * @hdr: pointer to the host interface command header
2291 *
2292 * Writes the command header after does the checksum calculation.
2293 **/
2294static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2295 struct e1000_host_mng_command_header *hdr)
2296{
2297 u16 i, length = sizeof(struct e1000_host_mng_command_header);
2298
2299 /* Write the whole command header structure with new checksum. */
2300
2301 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2302
2303 length >>= 2;
2304 /* Write the relevant command block into the ram area. */
2305 for (i = 0; i < length; i++) {
2306 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2307 *((u32 *) hdr + i));
2308 e1e_flush();
2309 }
2310
2311 return 0;
2312}
2313
2314/**
2315 * e1000_mng_host_if_write - Writes to the manageability host interface
2316 * @hw: pointer to the HW structure
2317 * @buffer: pointer to the host interface buffer
2318 * @length: size of the buffer
2319 * @offset: location in the buffer to write to
2320 * @sum: sum of the data (not checksum)
2321 *
2322 * This function writes the buffer content at the offset given on the host if.
2323 * It also does alignment considerations to do the writes in most efficient
2324 * way. Also fills up the sum of the buffer in *buffer parameter.
2325 **/
2326static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2327 u16 length, u16 offset, u8 *sum)
2328{
2329 u8 *tmp;
2330 u8 *bufptr = buffer;
2331 u32 data = 0;
2332 u16 remaining, i, j, prev_bytes;
2333
2334 /* sum = only sum of the data and it is not checksum */
2335
2336 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2337 return -E1000_ERR_PARAM;
2338
2339 tmp = (u8 *)&data;
2340 prev_bytes = offset & 0x3;
2341 offset >>= 2;
2342
2343 if (prev_bytes) {
2344 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2345 for (j = prev_bytes; j < sizeof(u32); j++) {
2346 *(tmp + j) = *bufptr++;
2347 *sum += *(tmp + j);
2348 }
2349 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2350 length -= j - prev_bytes;
2351 offset++;
2352 }
2353
2354 remaining = length & 0x3;
2355 length -= remaining;
2356
2357 /* Calculate length in DWORDs */
2358 length >>= 2;
2359
2360 /* The device driver writes the relevant command block into the
2361 * ram area. */
2362 for (i = 0; i < length; i++) {
2363 for (j = 0; j < sizeof(u32); j++) {
2364 *(tmp + j) = *bufptr++;
2365 *sum += *(tmp + j);
2366 }
2367
2368 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2369 }
2370 if (remaining) {
2371 for (j = 0; j < sizeof(u32); j++) {
2372 if (j < remaining)
2373 *(tmp + j) = *bufptr++;
2374 else
2375 *(tmp + j) = 0;
2376
2377 *sum += *(tmp + j);
2378 }
2379 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2380 }
2381
2382 return 0;
2383}
2384
2385/**
2386 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2387 * @hw: pointer to the HW structure
2388 * @buffer: pointer to the host interface
2389 * @length: size of the buffer
2390 *
2391 * Writes the DHCP information to the host interface.
2392 **/
2393s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2394{
2395 struct e1000_host_mng_command_header hdr;
2396 s32 ret_val;
2397 u32 hicr;
2398
2399 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2400 hdr.command_length = length;
2401 hdr.reserved1 = 0;
2402 hdr.reserved2 = 0;
2403 hdr.checksum = 0;
2404
2405 /* Enable the host interface */
2406 ret_val = e1000_mng_enable_host_if(hw);
2407 if (ret_val)
2408 return ret_val;
2409
2410 /* Populate the host interface with the contents of "buffer". */
2411 ret_val = e1000_mng_host_if_write(hw, buffer, length,
2412 sizeof(hdr), &(hdr.checksum));
2413 if (ret_val)
2414 return ret_val;
2415
2416 /* Write the manageability command header */
2417 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2418 if (ret_val)
2419 return ret_val;
2420
2421 /* Tell the ARC a new command is pending. */
2422 hicr = er32(HICR);
2423 ew32(HICR, hicr | E1000_HICR_C);
2424
2425 return 0;
2426}
2427
2428/**
2429 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2430 * @hw: pointer to the HW structure
2431 *
2432 * Verifies the hardware needs to allow ARPs to be processed by the host.
2433 **/
2434bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2435{
2436 u32 manc;
2437 u32 fwsm, factps;
2438 bool ret_val = 0;
2439
2440 manc = er32(MANC);
2441
2442 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
2443 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
2444 return ret_val;
2445
2446 if (hw->mac.arc_subsystem_valid) {
2447 fwsm = er32(FWSM);
2448 factps = er32(FACTPS);
2449
2450 if (!(factps & E1000_FACTPS_MNGCG) &&
2451 ((fwsm & E1000_FWSM_MODE_MASK) ==
2452 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
2453 ret_val = 1;
2454 return ret_val;
2455 }
2456 } else {
2457 if ((manc & E1000_MANC_SMBUS_EN) &&
2458 !(manc & E1000_MANC_ASF_EN)) {
2459 ret_val = 1;
2460 return ret_val;
2461 }
2462 }
2463
2464 return ret_val;
2465}
2466
2467s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num)
2468{
2469 s32 ret_val;
2470 u16 nvm_data;
2471
2472 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2473 if (ret_val) {
2474 hw_dbg(hw, "NVM Read Error\n");
2475 return ret_val;
2476 }
2477 *part_num = (u32)(nvm_data << 16);
2478
2479 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
2480 if (ret_val) {
2481 hw_dbg(hw, "NVM Read Error\n");
2482 return ret_val;
2483 }
2484 *part_num |= nvm_data;
2485
2486 return 0;
2487}