]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/82571.c
e1000e: Disable L1 ASPM power savings for 82573 mobile variants
[net-next-2.6.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82572EI Gigabit Ethernet Controller (Copper)
33 * 82572EI Gigabit Ethernet Controller (Fiber)
34 * 82572EI Gigabit Ethernet Controller
35 * 82573V Gigabit Ethernet Controller (Copper)
36 * 82573E Gigabit Ethernet Controller (Copper)
37 * 82573L Gigabit Ethernet Controller
38 */
39
40#include <linux/netdevice.h>
41#include <linux/delay.h>
42#include <linux/pci.h>
43
44#include "e1000.h"
45
46#define ID_LED_RESERVED_F746 0xF746
47#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
48 (ID_LED_OFF1_ON2 << 8) | \
49 (ID_LED_DEF1_DEF2 << 4) | \
50 (ID_LED_DEF1_DEF2))
51
52#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
53
54static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
55static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
56static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
57static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
58 u16 words, u16 *data);
59static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
60static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
61static s32 e1000_setup_link_82571(struct e1000_hw *hw);
62static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
63
64/**
65 * e1000_init_phy_params_82571 - Init PHY func ptrs.
66 * @hw: pointer to the HW structure
67 *
68 * This is a function pointer entry point called by the api module.
69 **/
70static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71{
72 struct e1000_phy_info *phy = &hw->phy;
73 s32 ret_val;
74
75 if (hw->media_type != e1000_media_type_copper) {
76 phy->type = e1000_phy_none;
77 return 0;
78 }
79
80 phy->addr = 1;
81 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82 phy->reset_delay_us = 100;
83
84 switch (hw->mac.type) {
85 case e1000_82571:
86 case e1000_82572:
87 phy->type = e1000_phy_igp_2;
88 break;
89 case e1000_82573:
90 phy->type = e1000_phy_m88;
91 break;
92 default:
93 return -E1000_ERR_PHY;
94 break;
95 }
96
97 /* This can only be done after all function pointers are setup. */
98 ret_val = e1000_get_phy_id_82571(hw);
99
100 /* Verify phy id */
101 switch (hw->mac.type) {
102 case e1000_82571:
103 case e1000_82572:
104 if (phy->id != IGP01E1000_I_PHY_ID)
105 return -E1000_ERR_PHY;
106 break;
107 case e1000_82573:
108 if (phy->id != M88E1111_I_PHY_ID)
109 return -E1000_ERR_PHY;
110 break;
111 default:
112 return -E1000_ERR_PHY;
113 break;
114 }
115
116 return 0;
117}
118
119/**
120 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
121 * @hw: pointer to the HW structure
122 *
123 * This is a function pointer entry point called by the api module.
124 **/
125static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
126{
127 struct e1000_nvm_info *nvm = &hw->nvm;
128 u32 eecd = er32(EECD);
129 u16 size;
130
131 nvm->opcode_bits = 8;
132 nvm->delay_usec = 1;
133 switch (nvm->override) {
134 case e1000_nvm_override_spi_large:
135 nvm->page_size = 32;
136 nvm->address_bits = 16;
137 break;
138 case e1000_nvm_override_spi_small:
139 nvm->page_size = 8;
140 nvm->address_bits = 8;
141 break;
142 default:
143 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
144 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
145 break;
146 }
147
148 switch (hw->mac.type) {
149 case e1000_82573:
150 if (((eecd >> 15) & 0x3) == 0x3) {
151 nvm->type = e1000_nvm_flash_hw;
152 nvm->word_size = 2048;
153 /* Autonomous Flash update bit must be cleared due
154 * to Flash update issue.
155 */
156 eecd &= ~E1000_EECD_AUPDEN;
157 ew32(EECD, eecd);
158 break;
159 }
160 /* Fall Through */
161 default:
162 nvm->type = e1000_nvm_eeprom_spi;
163 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
164 E1000_EECD_SIZE_EX_SHIFT);
165 /* Added to a constant, "size" becomes the left-shift value
166 * for setting word_size.
167 */
168 size += NVM_WORD_SIZE_BASE_SHIFT;
169 nvm->word_size = 1 << size;
170 break;
171 }
172
173 return 0;
174}
175
176/**
177 * e1000_init_mac_params_82571 - Init MAC func ptrs.
178 * @hw: pointer to the HW structure
179 *
180 * This is a function pointer entry point called by the api module.
181 **/
182static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
183{
184 struct e1000_hw *hw = &adapter->hw;
185 struct e1000_mac_info *mac = &hw->mac;
186 struct e1000_mac_operations *func = &mac->ops;
187
188 /* Set media type */
189 switch (adapter->pdev->device) {
190 case E1000_DEV_ID_82571EB_FIBER:
191 case E1000_DEV_ID_82572EI_FIBER:
192 case E1000_DEV_ID_82571EB_QUAD_FIBER:
193 hw->media_type = e1000_media_type_fiber;
194 break;
195 case E1000_DEV_ID_82571EB_SERDES:
196 case E1000_DEV_ID_82572EI_SERDES:
197 hw->media_type = e1000_media_type_internal_serdes;
198 break;
199 default:
200 hw->media_type = e1000_media_type_copper;
201 break;
202 }
203
204 /* Set mta register count */
205 mac->mta_reg_count = 128;
206 /* Set rar entry count */
207 mac->rar_entry_count = E1000_RAR_ENTRIES;
208 /* Set if manageability features are enabled. */
209 mac->arc_subsystem_valid =
210 (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
211
212 /* check for link */
213 switch (hw->media_type) {
214 case e1000_media_type_copper:
215 func->setup_physical_interface = e1000_setup_copper_link_82571;
216 func->check_for_link = e1000e_check_for_copper_link;
217 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
218 break;
219 case e1000_media_type_fiber:
220 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
221 func->check_for_link = e1000e_check_for_fiber_link;
222 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
223 break;
224 case e1000_media_type_internal_serdes:
225 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
226 func->check_for_link = e1000e_check_for_serdes_link;
227 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
228 break;
229 default:
230 return -E1000_ERR_CONFIG;
231 break;
232 }
233
234 return 0;
235}
236
237static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
238{
239 struct e1000_hw *hw = &adapter->hw;
240 static int global_quad_port_a; /* global port a indication */
241 struct pci_dev *pdev = adapter->pdev;
242 u16 eeprom_data = 0;
243 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
244 s32 rc;
245
246 rc = e1000_init_mac_params_82571(adapter);
247 if (rc)
248 return rc;
249
250 rc = e1000_init_nvm_params_82571(hw);
251 if (rc)
252 return rc;
253
254 rc = e1000_init_phy_params_82571(hw);
255 if (rc)
256 return rc;
257
258 /* tag quad port adapters first, it's used below */
259 switch (pdev->device) {
260 case E1000_DEV_ID_82571EB_QUAD_COPPER:
261 case E1000_DEV_ID_82571EB_QUAD_FIBER:
262 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
263 adapter->flags |= FLAG_IS_QUAD_PORT;
264 /* mark the first port */
265 if (global_quad_port_a == 0)
266 adapter->flags |= FLAG_IS_QUAD_PORT_A;
267 /* Reset for multiple quad port adapters */
268 global_quad_port_a++;
269 if (global_quad_port_a == 4)
270 global_quad_port_a = 0;
271 break;
272 default:
273 break;
274 }
275
276 switch (adapter->hw.mac.type) {
277 case e1000_82571:
278 /* these dual ports don't have WoL on port B at all */
279 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
280 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
281 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
282 (is_port_b))
283 adapter->flags &= ~FLAG_HAS_WOL;
284 /* quad ports only support WoL on port A */
285 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 286 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa
AK
287 adapter->flags &= ~FLAG_HAS_WOL;
288 break;
289
290 case e1000_82573:
291 if (pdev->device == E1000_DEV_ID_82573L) {
292 e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
293 &eeprom_data);
294 if (eeprom_data & NVM_WORD1A_ASPM_MASK)
295 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
296 }
297 break;
298 default:
299 break;
300 }
301
302 return 0;
303}
304
305/**
306 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
307 * @hw: pointer to the HW structure
308 *
309 * Reads the PHY registers and stores the PHY ID and possibly the PHY
310 * revision in the hardware structure.
311 **/
312static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
313{
314 struct e1000_phy_info *phy = &hw->phy;
315
316 switch (hw->mac.type) {
317 case e1000_82571:
318 case e1000_82572:
319 /* The 82571 firmware may still be configuring the PHY.
320 * In this case, we cannot access the PHY until the
321 * configuration is done. So we explicitly set the
322 * PHY ID. */
323 phy->id = IGP01E1000_I_PHY_ID;
324 break;
325 case e1000_82573:
326 return e1000e_get_phy_id(hw);
327 break;
328 default:
329 return -E1000_ERR_PHY;
330 break;
331 }
332
333 return 0;
334}
335
336/**
337 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
338 * @hw: pointer to the HW structure
339 *
340 * Acquire the HW semaphore to access the PHY or NVM
341 **/
342static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
343{
344 u32 swsm;
345 s32 timeout = hw->nvm.word_size + 1;
346 s32 i = 0;
347
348 /* Get the FW semaphore. */
349 for (i = 0; i < timeout; i++) {
350 swsm = er32(SWSM);
351 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
352
353 /* Semaphore acquired if bit latched */
354 if (er32(SWSM) & E1000_SWSM_SWESMBI)
355 break;
356
357 udelay(50);
358 }
359
360 if (i == timeout) {
361 /* Release semaphores */
362 e1000e_put_hw_semaphore(hw);
363 hw_dbg(hw, "Driver can't access the NVM\n");
364 return -E1000_ERR_NVM;
365 }
366
367 return 0;
368}
369
370/**
371 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
372 * @hw: pointer to the HW structure
373 *
374 * Release hardware semaphore used to access the PHY or NVM
375 **/
376static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
377{
378 u32 swsm;
379
380 swsm = er32(SWSM);
381
382 swsm &= ~E1000_SWSM_SWESMBI;
383
384 ew32(SWSM, swsm);
385}
386
387/**
388 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
389 * @hw: pointer to the HW structure
390 *
391 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
392 * Then for non-82573 hardware, set the EEPROM access request bit and wait
393 * for EEPROM access grant bit. If the access grant bit is not set, release
394 * hardware semaphore.
395 **/
396static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
397{
398 s32 ret_val;
399
400 ret_val = e1000_get_hw_semaphore_82571(hw);
401 if (ret_val)
402 return ret_val;
403
404 if (hw->mac.type != e1000_82573)
405 ret_val = e1000e_acquire_nvm(hw);
406
407 if (ret_val)
408 e1000_put_hw_semaphore_82571(hw);
409
410 return ret_val;
411}
412
413/**
414 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
415 * @hw: pointer to the HW structure
416 *
417 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
418 **/
419static void e1000_release_nvm_82571(struct e1000_hw *hw)
420{
421 e1000e_release_nvm(hw);
422 e1000_put_hw_semaphore_82571(hw);
423}
424
425/**
426 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
427 * @hw: pointer to the HW structure
428 * @offset: offset within the EEPROM to be written to
429 * @words: number of words to write
430 * @data: 16 bit word(s) to be written to the EEPROM
431 *
432 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
433 *
434 * If e1000e_update_nvm_checksum is not called after this function, the
435 * EEPROM will most likley contain an invalid checksum.
436 **/
437static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
438 u16 *data)
439{
440 s32 ret_val;
441
442 switch (hw->mac.type) {
443 case e1000_82573:
444 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
445 break;
446 case e1000_82571:
447 case e1000_82572:
448 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
449 break;
450 default:
451 ret_val = -E1000_ERR_NVM;
452 break;
453 }
454
455 return ret_val;
456}
457
458/**
459 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
460 * @hw: pointer to the HW structure
461 *
462 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
463 * up to the checksum. Then calculates the EEPROM checksum and writes the
464 * value to the EEPROM.
465 **/
466static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
467{
468 u32 eecd;
469 s32 ret_val;
470 u16 i;
471
472 ret_val = e1000e_update_nvm_checksum_generic(hw);
473 if (ret_val)
474 return ret_val;
475
476 /* If our nvm is an EEPROM, then we're done
477 * otherwise, commit the checksum to the flash NVM. */
478 if (hw->nvm.type != e1000_nvm_flash_hw)
479 return ret_val;
480
481 /* Check for pending operations. */
482 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
483 msleep(1);
484 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
485 break;
486 }
487
488 if (i == E1000_FLASH_UPDATES)
489 return -E1000_ERR_NVM;
490
491 /* Reset the firmware if using STM opcode. */
492 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
493 /* The enabling of and the actual reset must be done
494 * in two write cycles.
495 */
496 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
497 e1e_flush();
498 ew32(HICR, E1000_HICR_FW_RESET);
499 }
500
501 /* Commit the write to flash */
502 eecd = er32(EECD) | E1000_EECD_FLUPD;
503 ew32(EECD, eecd);
504
505 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
506 msleep(1);
507 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
508 break;
509 }
510
511 if (i == E1000_FLASH_UPDATES)
512 return -E1000_ERR_NVM;
513
514 return 0;
515}
516
517/**
518 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
519 * @hw: pointer to the HW structure
520 *
521 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
522 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
523 **/
524static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
525{
526 if (hw->nvm.type == e1000_nvm_flash_hw)
527 e1000_fix_nvm_checksum_82571(hw);
528
529 return e1000e_validate_nvm_checksum_generic(hw);
530}
531
532/**
533 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
534 * @hw: pointer to the HW structure
535 * @offset: offset within the EEPROM to be written to
536 * @words: number of words to write
537 * @data: 16 bit word(s) to be written to the EEPROM
538 *
539 * After checking for invalid values, poll the EEPROM to ensure the previous
540 * command has completed before trying to write the next word. After write
541 * poll for completion.
542 *
543 * If e1000e_update_nvm_checksum is not called after this function, the
544 * EEPROM will most likley contain an invalid checksum.
545 **/
546static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
547 u16 words, u16 *data)
548{
549 struct e1000_nvm_info *nvm = &hw->nvm;
550 u32 i;
551 u32 eewr = 0;
552 s32 ret_val = 0;
553
554 /* A check for invalid values: offset too large, too many words,
555 * and not enough words. */
556 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
557 (words == 0)) {
558 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
559 return -E1000_ERR_NVM;
560 }
561
562 for (i = 0; i < words; i++) {
563 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
564 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
565 E1000_NVM_RW_REG_START;
566
567 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
568 if (ret_val)
569 break;
570
571 ew32(EEWR, eewr);
572
573 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
574 if (ret_val)
575 break;
576 }
577
578 return ret_val;
579}
580
581/**
582 * e1000_get_cfg_done_82571 - Poll for configuration done
583 * @hw: pointer to the HW structure
584 *
585 * Reads the management control register for the config done bit to be set.
586 **/
587static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
588{
589 s32 timeout = PHY_CFG_TIMEOUT;
590
591 while (timeout) {
592 if (er32(EEMNGCTL) &
593 E1000_NVM_CFG_DONE_PORT_0)
594 break;
595 msleep(1);
596 timeout--;
597 }
598 if (!timeout) {
599 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
600 return -E1000_ERR_RESET;
601 }
602
603 return 0;
604}
605
606/**
607 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
608 * @hw: pointer to the HW structure
609 * @active: TRUE to enable LPLU, FALSE to disable
610 *
611 * Sets the LPLU D0 state according to the active flag. When activating LPLU
612 * this function also disables smart speed and vice versa. LPLU will not be
613 * activated unless the device autonegotiation advertisement meets standards
614 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
615 * pointer entry point only called by PHY setup routines.
616 **/
617static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
618{
619 struct e1000_phy_info *phy = &hw->phy;
620 s32 ret_val;
621 u16 data;
622
623 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
624 if (ret_val)
625 return ret_val;
626
627 if (active) {
628 data |= IGP02E1000_PM_D0_LPLU;
629 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
630 if (ret_val)
631 return ret_val;
632
633 /* When LPLU is enabled, we should disable SmartSpeed */
634 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
635 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
636 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
637 if (ret_val)
638 return ret_val;
639 } else {
640 data &= ~IGP02E1000_PM_D0_LPLU;
641 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
642 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
643 * during Dx states where the power conservation is most
644 * important. During driver activity we should enable
645 * SmartSpeed, so performance is maintained. */
646 if (phy->smart_speed == e1000_smart_speed_on) {
647 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
648 &data);
649 if (ret_val)
650 return ret_val;
651
652 data |= IGP01E1000_PSCFR_SMART_SPEED;
653 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
654 data);
655 if (ret_val)
656 return ret_val;
657 } else if (phy->smart_speed == e1000_smart_speed_off) {
658 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
659 &data);
660 if (ret_val)
661 return ret_val;
662
663 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
664 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
665 data);
666 if (ret_val)
667 return ret_val;
668 }
669 }
670
671 return 0;
672}
673
674/**
675 * e1000_reset_hw_82571 - Reset hardware
676 * @hw: pointer to the HW structure
677 *
678 * This resets the hardware into a known state. This is a
679 * function pointer entry point called by the api module.
680 **/
681static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
682{
683 u32 ctrl;
684 u32 extcnf_ctrl;
685 u32 ctrl_ext;
686 u32 icr;
687 s32 ret_val;
688 u16 i = 0;
689
690 /* Prevent the PCI-E bus from sticking if there is no TLP connection
691 * on the last TLP read/write transaction when MAC is reset.
692 */
693 ret_val = e1000e_disable_pcie_master(hw);
694 if (ret_val)
695 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
696
697 hw_dbg(hw, "Masking off all interrupts\n");
698 ew32(IMC, 0xffffffff);
699
700 ew32(RCTL, 0);
701 ew32(TCTL, E1000_TCTL_PSP);
702 e1e_flush();
703
704 msleep(10);
705
706 /* Must acquire the MDIO ownership before MAC reset.
707 * Ownership defaults to firmware after a reset. */
708 if (hw->mac.type == e1000_82573) {
709 extcnf_ctrl = er32(EXTCNF_CTRL);
710 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
711
712 do {
713 ew32(EXTCNF_CTRL, extcnf_ctrl);
714 extcnf_ctrl = er32(EXTCNF_CTRL);
715
716 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
717 break;
718
719 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
720
721 msleep(2);
722 i++;
723 } while (i < MDIO_OWNERSHIP_TIMEOUT);
724 }
725
726 ctrl = er32(CTRL);
727
728 hw_dbg(hw, "Issuing a global reset to MAC\n");
729 ew32(CTRL, ctrl | E1000_CTRL_RST);
730
731 if (hw->nvm.type == e1000_nvm_flash_hw) {
732 udelay(10);
733 ctrl_ext = er32(CTRL_EXT);
734 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
735 ew32(CTRL_EXT, ctrl_ext);
736 e1e_flush();
737 }
738
739 ret_val = e1000e_get_auto_rd_done(hw);
740 if (ret_val)
741 /* We don't want to continue accessing MAC registers. */
742 return ret_val;
743
744 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
745 * Need to wait for Phy configuration completion before accessing
746 * NVM and Phy.
747 */
748 if (hw->mac.type == e1000_82573)
749 msleep(25);
750
751 /* Clear any pending interrupt events. */
752 ew32(IMC, 0xffffffff);
753 icr = er32(ICR);
754
93ca1610
BH
755 if (hw->mac.type == e1000_82571 &&
756 hw->dev_spec.e82571.alt_mac_addr_is_present)
757 e1000e_set_laa_state_82571(hw, true);
758
bc7f75fa
AK
759 return 0;
760}
761
762/**
763 * e1000_init_hw_82571 - Initialize hardware
764 * @hw: pointer to the HW structure
765 *
766 * This inits the hardware readying it for operation.
767 **/
768static s32 e1000_init_hw_82571(struct e1000_hw *hw)
769{
770 struct e1000_mac_info *mac = &hw->mac;
771 u32 reg_data;
772 s32 ret_val;
773 u16 i;
774 u16 rar_count = mac->rar_entry_count;
775
776 e1000_initialize_hw_bits_82571(hw);
777
778 /* Initialize identification LED */
779 ret_val = e1000e_id_led_init(hw);
780 if (ret_val) {
781 hw_dbg(hw, "Error initializing identification LED\n");
782 return ret_val;
783 }
784
785 /* Disabling VLAN filtering */
786 hw_dbg(hw, "Initializing the IEEE VLAN\n");
787 e1000e_clear_vfta(hw);
788
789 /* Setup the receive address. */
790 /* If, however, a locally administered address was assigned to the
791 * 82571, we must reserve a RAR for it to work around an issue where
792 * resetting one port will reload the MAC on the other port.
793 */
794 if (e1000e_get_laa_state_82571(hw))
795 rar_count--;
796 e1000e_init_rx_addrs(hw, rar_count);
797
798 /* Zero out the Multicast HASH table */
799 hw_dbg(hw, "Zeroing the MTA\n");
800 for (i = 0; i < mac->mta_reg_count; i++)
801 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
802
803 /* Setup link and flow control */
804 ret_val = e1000_setup_link_82571(hw);
805
806 /* Set the transmit descriptor write-back policy */
807 reg_data = er32(TXDCTL);
808 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
809 E1000_TXDCTL_FULL_TX_DESC_WB |
810 E1000_TXDCTL_COUNT_DESC;
811 ew32(TXDCTL, reg_data);
812
813 /* ...for both queues. */
814 if (mac->type != e1000_82573) {
815 reg_data = er32(TXDCTL1);
816 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
817 E1000_TXDCTL_FULL_TX_DESC_WB |
818 E1000_TXDCTL_COUNT_DESC;
819 ew32(TXDCTL1, reg_data);
820 } else {
821 e1000e_enable_tx_pkt_filtering(hw);
822 reg_data = er32(GCR);
823 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
824 ew32(GCR, reg_data);
825 }
826
827 /* Clear all of the statistics registers (clear on read). It is
828 * important that we do this after we have tried to establish link
829 * because the symbol error count will increment wildly if there
830 * is no link.
831 */
832 e1000_clear_hw_cntrs_82571(hw);
833
834 return ret_val;
835}
836
837/**
838 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
839 * @hw: pointer to the HW structure
840 *
841 * Initializes required hardware-dependent bits needed for normal operation.
842 **/
843static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
844{
845 u32 reg;
846
847 /* Transmit Descriptor Control 0 */
848 reg = er32(TXDCTL);
849 reg |= (1 << 22);
850 ew32(TXDCTL, reg);
851
852 /* Transmit Descriptor Control 1 */
853 reg = er32(TXDCTL1);
854 reg |= (1 << 22);
855 ew32(TXDCTL1, reg);
856
857 /* Transmit Arbitration Control 0 */
858 reg = er32(TARC0);
859 reg &= ~(0xF << 27); /* 30:27 */
860 switch (hw->mac.type) {
861 case e1000_82571:
862 case e1000_82572:
863 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
864 break;
865 default:
866 break;
867 }
868 ew32(TARC0, reg);
869
870 /* Transmit Arbitration Control 1 */
871 reg = er32(TARC1);
872 switch (hw->mac.type) {
873 case e1000_82571:
874 case e1000_82572:
875 reg &= ~((1 << 29) | (1 << 30));
876 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
877 if (er32(TCTL) & E1000_TCTL_MULR)
878 reg &= ~(1 << 28);
879 else
880 reg |= (1 << 28);
881 ew32(TARC1, reg);
882 break;
883 default:
884 break;
885 }
886
887 /* Device Control */
888 if (hw->mac.type == e1000_82573) {
889 reg = er32(CTRL);
890 reg &= ~(1 << 29);
891 ew32(CTRL, reg);
892 }
893
894 /* Extended Device Control */
895 if (hw->mac.type == e1000_82573) {
896 reg = er32(CTRL_EXT);
897 reg &= ~(1 << 23);
898 reg |= (1 << 22);
899 ew32(CTRL_EXT, reg);
900 }
901}
902
903/**
904 * e1000e_clear_vfta - Clear VLAN filter table
905 * @hw: pointer to the HW structure
906 *
907 * Clears the register array which contains the VLAN filter table by
908 * setting all the values to 0.
909 **/
910void e1000e_clear_vfta(struct e1000_hw *hw)
911{
912 u32 offset;
913 u32 vfta_value = 0;
914 u32 vfta_offset = 0;
915 u32 vfta_bit_in_reg = 0;
916
917 if (hw->mac.type == e1000_82573) {
918 if (hw->mng_cookie.vlan_id != 0) {
919 /* The VFTA is a 4096b bit-field, each identifying
920 * a single VLAN ID. The following operations
921 * determine which 32b entry (i.e. offset) into the
922 * array we want to set the VLAN ID (i.e. bit) of
923 * the manageability unit.
924 */
925 vfta_offset = (hw->mng_cookie.vlan_id >>
926 E1000_VFTA_ENTRY_SHIFT) &
927 E1000_VFTA_ENTRY_MASK;
928 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
929 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
930 }
931 }
932 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
933 /* If the offset we want to clear is the same offset of the
934 * manageability VLAN ID, then clear all bits except that of
935 * the manageability unit.
936 */
937 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
938 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
939 e1e_flush();
940 }
941}
942
943/**
944 * e1000_mc_addr_list_update_82571 - Update Multicast addresses
945 * @hw: pointer to the HW structure
946 * @mc_addr_list: array of multicast addresses to program
947 * @mc_addr_count: number of multicast addresses to program
948 * @rar_used_count: the first RAR register free to program
949 * @rar_count: total number of supported Receive Address Registers
950 *
951 * Updates the Receive Address Registers and Multicast Table Array.
952 * The caller must have a packed mc_addr_list of multicast addresses.
953 * The parameter rar_count will usually be hw->mac.rar_entry_count
954 * unless there are workarounds that change this.
955 **/
956static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
957 u8 *mc_addr_list,
958 u32 mc_addr_count,
959 u32 rar_used_count,
960 u32 rar_count)
961{
962 if (e1000e_get_laa_state_82571(hw))
963 rar_count--;
964
965 e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
966 rar_used_count, rar_count);
967}
968
969/**
970 * e1000_setup_link_82571 - Setup flow control and link settings
971 * @hw: pointer to the HW structure
972 *
973 * Determines which flow control settings to use, then configures flow
974 * control. Calls the appropriate media-specific link configuration
975 * function. Assuming the adapter has a valid link partner, a valid link
976 * should be established. Assumes the hardware has previously been reset
977 * and the transmitter and receiver are not enabled.
978 **/
979static s32 e1000_setup_link_82571(struct e1000_hw *hw)
980{
981 /* 82573 does not have a word in the NVM to determine
982 * the default flow control setting, so we explicitly
983 * set it to full.
984 */
985 if (hw->mac.type == e1000_82573)
986 hw->mac.fc = e1000_fc_full;
987
988 return e1000e_setup_link(hw);
989}
990
991/**
992 * e1000_setup_copper_link_82571 - Configure copper link settings
993 * @hw: pointer to the HW structure
994 *
995 * Configures the link for auto-neg or forced speed and duplex. Then we check
996 * for link, once link is established calls to configure collision distance
997 * and flow control are called.
998 **/
999static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1000{
1001 u32 ctrl;
1002 u32 led_ctrl;
1003 s32 ret_val;
1004
1005 ctrl = er32(CTRL);
1006 ctrl |= E1000_CTRL_SLU;
1007 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1008 ew32(CTRL, ctrl);
1009
1010 switch (hw->phy.type) {
1011 case e1000_phy_m88:
1012 ret_val = e1000e_copper_link_setup_m88(hw);
1013 break;
1014 case e1000_phy_igp_2:
1015 ret_val = e1000e_copper_link_setup_igp(hw);
1016 /* Setup activity LED */
1017 led_ctrl = er32(LEDCTL);
1018 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1019 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1020 ew32(LEDCTL, led_ctrl);
1021 break;
1022 default:
1023 return -E1000_ERR_PHY;
1024 break;
1025 }
1026
1027 if (ret_val)
1028 return ret_val;
1029
1030 ret_val = e1000e_setup_copper_link(hw);
1031
1032 return ret_val;
1033}
1034
1035/**
1036 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1037 * @hw: pointer to the HW structure
1038 *
1039 * Configures collision distance and flow control for fiber and serdes links.
1040 * Upon successful setup, poll for link.
1041 **/
1042static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1043{
1044 switch (hw->mac.type) {
1045 case e1000_82571:
1046 case e1000_82572:
1047 /* If SerDes loopback mode is entered, there is no form
1048 * of reset to take the adapter out of that mode. So we
1049 * have to explicitly take the adapter out of loopback
1050 * mode. This prevents drivers from twidling their thumbs
1051 * if another tool failed to take it out of loopback mode.
1052 */
1053 ew32(SCTL,
1054 E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1055 break;
1056 default:
1057 break;
1058 }
1059
1060 return e1000e_setup_fiber_serdes_link(hw);
1061}
1062
1063/**
1064 * e1000_valid_led_default_82571 - Verify a valid default LED config
1065 * @hw: pointer to the HW structure
1066 * @data: pointer to the NVM (EEPROM)
1067 *
1068 * Read the EEPROM for the current default LED configuration. If the
1069 * LED configuration is not valid, set to a valid LED configuration.
1070 **/
1071static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1072{
1073 s32 ret_val;
1074
1075 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1076 if (ret_val) {
1077 hw_dbg(hw, "NVM Read Error\n");
1078 return ret_val;
1079 }
1080
1081 if (hw->mac.type == e1000_82573 &&
1082 *data == ID_LED_RESERVED_F746)
1083 *data = ID_LED_DEFAULT_82573;
1084 else if (*data == ID_LED_RESERVED_0000 ||
1085 *data == ID_LED_RESERVED_FFFF)
1086 *data = ID_LED_DEFAULT;
1087
1088 return 0;
1089}
1090
1091/**
1092 * e1000e_get_laa_state_82571 - Get locally administered address state
1093 * @hw: pointer to the HW structure
1094 *
1095 * Retrieve and return the current locally administed address state.
1096 **/
1097bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1098{
1099 if (hw->mac.type != e1000_82571)
1100 return 0;
1101
1102 return hw->dev_spec.e82571.laa_is_present;
1103}
1104
1105/**
1106 * e1000e_set_laa_state_82571 - Set locally administered address state
1107 * @hw: pointer to the HW structure
1108 * @state: enable/disable locally administered address
1109 *
1110 * Enable/Disable the current locally administed address state.
1111 **/
1112void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1113{
1114 if (hw->mac.type != e1000_82571)
1115 return;
1116
1117 hw->dev_spec.e82571.laa_is_present = state;
1118
1119 /* If workaround is activated... */
1120 if (state)
1121 /* Hold a copy of the LAA in RAR[14] This is done so that
1122 * between the time RAR[0] gets clobbered and the time it
1123 * gets fixed, the actual LAA is in one of the RARs and no
1124 * incoming packets directed to this port are dropped.
1125 * Eventually the LAA will be in RAR[0] and RAR[14].
1126 */
1127 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1128}
1129
1130/**
1131 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1132 * @hw: pointer to the HW structure
1133 *
1134 * Verifies that the EEPROM has completed the update. After updating the
1135 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1136 * the checksum fix is not implemented, we need to set the bit and update
1137 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1138 * we need to return bad checksum.
1139 **/
1140static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1141{
1142 struct e1000_nvm_info *nvm = &hw->nvm;
1143 s32 ret_val;
1144 u16 data;
1145
1146 if (nvm->type != e1000_nvm_flash_hw)
1147 return 0;
1148
1149 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1150 * 10h-12h. Checksum may need to be fixed.
1151 */
1152 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1153 if (ret_val)
1154 return ret_val;
1155
1156 if (!(data & 0x10)) {
1157 /* Read 0x23 and check bit 15. This bit is a 1
1158 * when the checksum has already been fixed. If
1159 * the checksum is still wrong and this bit is a
1160 * 1, we need to return bad checksum. Otherwise,
1161 * we need to set this bit to a 1 and update the
1162 * checksum.
1163 */
1164 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1165 if (ret_val)
1166 return ret_val;
1167
1168 if (!(data & 0x8000)) {
1169 data |= 0x8000;
1170 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1171 if (ret_val)
1172 return ret_val;
1173 ret_val = e1000e_update_nvm_checksum(hw);
1174 }
1175 }
1176
1177 return 0;
1178}
1179
1180/**
1181 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1182 * @hw: pointer to the HW structure
1183 *
1184 * Clears the hardware counters by reading the counter registers.
1185 **/
1186static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1187{
1188 u32 temp;
1189
1190 e1000e_clear_hw_cntrs_base(hw);
1191
1192 temp = er32(PRC64);
1193 temp = er32(PRC127);
1194 temp = er32(PRC255);
1195 temp = er32(PRC511);
1196 temp = er32(PRC1023);
1197 temp = er32(PRC1522);
1198 temp = er32(PTC64);
1199 temp = er32(PTC127);
1200 temp = er32(PTC255);
1201 temp = er32(PTC511);
1202 temp = er32(PTC1023);
1203 temp = er32(PTC1522);
1204
1205 temp = er32(ALGNERRC);
1206 temp = er32(RXERRC);
1207 temp = er32(TNCRS);
1208 temp = er32(CEXTERR);
1209 temp = er32(TSCTC);
1210 temp = er32(TSCTFC);
1211
1212 temp = er32(MGTPRC);
1213 temp = er32(MGTPDC);
1214 temp = er32(MGTPTC);
1215
1216 temp = er32(IAC);
1217 temp = er32(ICRXOC);
1218
1219 temp = er32(ICRXPTC);
1220 temp = er32(ICRXATC);
1221 temp = er32(ICTXPTC);
1222 temp = er32(ICTXATC);
1223 temp = er32(ICTXQEC);
1224 temp = er32(ICTXQMTC);
1225 temp = er32(ICRXDMTC);
1226}
1227
1228static struct e1000_mac_operations e82571_mac_ops = {
1229 .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1230 /* .check_for_link: media type dependent */
1231 .cleanup_led = e1000e_cleanup_led_generic,
1232 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1233 .get_bus_info = e1000e_get_bus_info_pcie,
1234 /* .get_link_up_info: media type dependent */
1235 .led_on = e1000e_led_on_generic,
1236 .led_off = e1000e_led_off_generic,
1237 .mc_addr_list_update = e1000_mc_addr_list_update_82571,
1238 .reset_hw = e1000_reset_hw_82571,
1239 .init_hw = e1000_init_hw_82571,
1240 .setup_link = e1000_setup_link_82571,
1241 /* .setup_physical_interface: media type dependent */
1242};
1243
1244static struct e1000_phy_operations e82_phy_ops_igp = {
1245 .acquire_phy = e1000_get_hw_semaphore_82571,
1246 .check_reset_block = e1000e_check_reset_block_generic,
1247 .commit_phy = NULL,
1248 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1249 .get_cfg_done = e1000_get_cfg_done_82571,
1250 .get_cable_length = e1000e_get_cable_length_igp_2,
1251 .get_phy_info = e1000e_get_phy_info_igp,
1252 .read_phy_reg = e1000e_read_phy_reg_igp,
1253 .release_phy = e1000_put_hw_semaphore_82571,
1254 .reset_phy = e1000e_phy_hw_reset_generic,
1255 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1256 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1257 .write_phy_reg = e1000e_write_phy_reg_igp,
1258};
1259
1260static struct e1000_phy_operations e82_phy_ops_m88 = {
1261 .acquire_phy = e1000_get_hw_semaphore_82571,
1262 .check_reset_block = e1000e_check_reset_block_generic,
1263 .commit_phy = e1000e_phy_sw_reset,
1264 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1265 .get_cfg_done = e1000e_get_cfg_done,
1266 .get_cable_length = e1000e_get_cable_length_m88,
1267 .get_phy_info = e1000e_get_phy_info_m88,
1268 .read_phy_reg = e1000e_read_phy_reg_m88,
1269 .release_phy = e1000_put_hw_semaphore_82571,
1270 .reset_phy = e1000e_phy_hw_reset_generic,
1271 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1272 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1273 .write_phy_reg = e1000e_write_phy_reg_m88,
1274};
1275
1276static struct e1000_nvm_operations e82571_nvm_ops = {
1277 .acquire_nvm = e1000_acquire_nvm_82571,
1278 .read_nvm = e1000e_read_nvm_spi,
1279 .release_nvm = e1000_release_nvm_82571,
1280 .update_nvm = e1000_update_nvm_checksum_82571,
1281 .valid_led_default = e1000_valid_led_default_82571,
1282 .validate_nvm = e1000_validate_nvm_checksum_82571,
1283 .write_nvm = e1000_write_nvm_82571,
1284};
1285
1286static struct e1000_nvm_operations e82573_nvm_ops = {
1287 .acquire_nvm = e1000_acquire_nvm_82571,
1288 .read_nvm = e1000e_read_nvm_eerd,
1289 .release_nvm = e1000_release_nvm_82571,
1290 .update_nvm = e1000_update_nvm_checksum_82571,
1291 .valid_led_default = e1000_valid_led_default_82571,
1292 .validate_nvm = e1000_validate_nvm_checksum_82571,
1293 .write_nvm = e1000_write_nvm_82571,
1294};
1295
1296struct e1000_info e1000_82571_info = {
1297 .mac = e1000_82571,
1298 .flags = FLAG_HAS_HW_VLAN_FILTER
1299 | FLAG_HAS_JUMBO_FRAMES
1300 | FLAG_HAS_STATS_PTC_PRC
1301 | FLAG_HAS_WOL
1302 | FLAG_APME_IN_CTRL3
1303 | FLAG_RX_CSUM_ENABLED
1304 | FLAG_HAS_CTRLEXT_ON_LOAD
1305 | FLAG_HAS_STATS_ICR_ICT
1306 | FLAG_HAS_SMART_POWER_DOWN
1307 | FLAG_RESET_OVERWRITES_LAA /* errata */
1308 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1309 | FLAG_APME_CHECK_PORT_B,
1310 .pba = 38,
1311 .get_invariants = e1000_get_invariants_82571,
1312 .mac_ops = &e82571_mac_ops,
1313 .phy_ops = &e82_phy_ops_igp,
1314 .nvm_ops = &e82571_nvm_ops,
1315};
1316
1317struct e1000_info e1000_82572_info = {
1318 .mac = e1000_82572,
1319 .flags = FLAG_HAS_HW_VLAN_FILTER
1320 | FLAG_HAS_JUMBO_FRAMES
1321 | FLAG_HAS_STATS_PTC_PRC
1322 | FLAG_HAS_WOL
1323 | FLAG_APME_IN_CTRL3
1324 | FLAG_RX_CSUM_ENABLED
1325 | FLAG_HAS_CTRLEXT_ON_LOAD
1326 | FLAG_HAS_STATS_ICR_ICT
1327 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1328 .pba = 38,
1329 .get_invariants = e1000_get_invariants_82571,
1330 .mac_ops = &e82571_mac_ops,
1331 .phy_ops = &e82_phy_ops_igp,
1332 .nvm_ops = &e82571_nvm_ops,
1333};
1334
1335struct e1000_info e1000_82573_info = {
1336 .mac = e1000_82573,
1337 .flags = FLAG_HAS_HW_VLAN_FILTER
1338 | FLAG_HAS_JUMBO_FRAMES
1339 | FLAG_HAS_STATS_PTC_PRC
1340 | FLAG_HAS_WOL
1341 | FLAG_APME_IN_CTRL3
1342 | FLAG_RX_CSUM_ENABLED
1343 | FLAG_HAS_STATS_ICR_ICT
1344 | FLAG_HAS_SMART_POWER_DOWN
1345 | FLAG_HAS_AMT
bc7f75fa
AK
1346 | FLAG_HAS_ERT
1347 | FLAG_HAS_SWSM_ON_LOAD,
1348 .pba = 20,
1349 .get_invariants = e1000_get_invariants_82571,
1350 .mac_ops = &e82571_mac_ops,
1351 .phy_ops = &e82_phy_ops_m88,
1352 .nvm_ops = &e82573_nvm_ops,
1353};
1354