]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/cxgb4vf/cxgb4vf_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
CommitLineData
be839e39
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
283 for (qs = 0, msi = MSIX_NIQFLINT;
284 qs < pi->nqsets;
285 qs++, msi++) {
286 snprintf(adapter->msix_info[msi].desc, namelen,
287 "%s-%d", dev->name, qs);
288 adapter->msix_info[msi].desc[namelen] = 0;
289 }
290 }
291}
292
293/*
294 * Request all of our MSI-X resources.
295 */
296static int request_msix_queue_irqs(struct adapter *adapter)
297{
298 struct sge *s = &adapter->sge;
299 int rxq, msi, err;
300
301 /*
302 * Firmware events.
303 */
304 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
305 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
306 if (err)
307 return err;
308
309 /*
310 * Ethernet queues.
311 */
312 msi = MSIX_NIQFLINT;
313 for_each_ethrxq(s, rxq) {
314 err = request_irq(adapter->msix_info[msi].vec,
315 t4vf_sge_intr_msix, 0,
316 adapter->msix_info[msi].desc,
317 &s->ethrxq[rxq].rspq);
318 if (err)
319 goto err_free_irqs;
320 msi++;
321 }
322 return 0;
323
324err_free_irqs:
325 while (--rxq >= 0)
326 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
327 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
328 return err;
329}
330
331/*
332 * Free our MSI-X resources.
333 */
334static void free_msix_queue_irqs(struct adapter *adapter)
335{
336 struct sge *s = &adapter->sge;
337 int rxq, msi;
338
339 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
340 msi = MSIX_NIQFLINT;
341 for_each_ethrxq(s, rxq)
342 free_irq(adapter->msix_info[msi++].vec,
343 &s->ethrxq[rxq].rspq);
344}
345
346/*
347 * Turn on NAPI and start up interrupts on a response queue.
348 */
349static void qenable(struct sge_rspq *rspq)
350{
351 napi_enable(&rspq->napi);
352
353 /*
354 * 0-increment the Going To Sleep register to start the timer and
355 * enable interrupts.
356 */
357 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
358 CIDXINC(0) |
359 SEINTARM(rspq->intr_params) |
360 INGRESSQID(rspq->cntxt_id));
361}
362
363/*
364 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
365 */
366static void enable_rx(struct adapter *adapter)
367{
368 int rxq;
369 struct sge *s = &adapter->sge;
370
371 for_each_ethrxq(s, rxq)
372 qenable(&s->ethrxq[rxq].rspq);
373 qenable(&s->fw_evtq);
374
375 /*
376 * The interrupt queue doesn't use NAPI so we do the 0-increment of
377 * its Going To Sleep register here to get it started.
378 */
379 if (adapter->flags & USING_MSI)
380 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
381 CIDXINC(0) |
382 SEINTARM(s->intrq.intr_params) |
383 INGRESSQID(s->intrq.cntxt_id));
384
385}
386
387/*
388 * Wait until all NAPI handlers are descheduled.
389 */
390static void quiesce_rx(struct adapter *adapter)
391{
392 struct sge *s = &adapter->sge;
393 int rxq;
394
395 for_each_ethrxq(s, rxq)
396 napi_disable(&s->ethrxq[rxq].rspq.napi);
397 napi_disable(&s->fw_evtq.napi);
398}
399
400/*
401 * Response queue handler for the firmware event queue.
402 */
403static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
404 const struct pkt_gl *gl)
405{
406 /*
407 * Extract response opcode and get pointer to CPL message body.
408 */
409 struct adapter *adapter = rspq->adapter;
410 u8 opcode = ((const struct rss_header *)rsp)->opcode;
411 void *cpl = (void *)(rsp + 1);
412
413 switch (opcode) {
414 case CPL_FW6_MSG: {
415 /*
416 * We've received an asynchronous message from the firmware.
417 */
418 const struct cpl_fw6_msg *fw_msg = cpl;
419 if (fw_msg->type == FW6_TYPE_CMD_RPL)
420 t4vf_handle_fw_rpl(adapter, fw_msg->data);
421 break;
422 }
423
424 case CPL_SGE_EGR_UPDATE: {
425 /*
7f9dd2fa
CL
426 * We've received an Egress Queue Status Update message. We
427 * get these, if the SGE is configured to send these when the
428 * firmware passes certain points in processing our TX
429 * Ethernet Queue or if we make an explicit request for one.
430 * We use these updates to determine when we may need to
431 * restart a TX Ethernet Queue which was stopped for lack of
432 * free TX Queue Descriptors ...
be839e39
CL
433 */
434 const struct cpl_sge_egr_update *p = (void *)cpl;
435 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
436 struct sge *s = &adapter->sge;
437 struct sge_txq *tq;
438 struct sge_eth_txq *txq;
439 unsigned int eq_idx;
be839e39
CL
440
441 /*
442 * Perform sanity checking on the Queue ID to make sure it
443 * really refers to one of our TX Ethernet Egress Queues which
444 * is active and matches the queue's ID. None of these error
445 * conditions should ever happen so we may want to either make
446 * them fatal and/or conditionalized under DEBUG.
447 */
448 eq_idx = EQ_IDX(s, qid);
449 if (unlikely(eq_idx >= MAX_EGRQ)) {
450 dev_err(adapter->pdev_dev,
451 "Egress Update QID %d out of range\n", qid);
452 break;
453 }
454 tq = s->egr_map[eq_idx];
455 if (unlikely(tq == NULL)) {
456 dev_err(adapter->pdev_dev,
457 "Egress Update QID %d TXQ=NULL\n", qid);
458 break;
459 }
460 txq = container_of(tq, struct sge_eth_txq, q);
461 if (unlikely(tq->abs_id != qid)) {
462 dev_err(adapter->pdev_dev,
463 "Egress Update QID %d refers to TXQ %d\n",
464 qid, tq->abs_id);
465 break;
466 }
467
be839e39
CL
468 /*
469 * Restart a stopped TX Queue which has less than half of its
470 * TX ring in use ...
471 */
472 txq->q.restarts++;
473 netif_tx_wake_queue(txq->txq);
474 break;
475 }
476
477 default:
478 dev_err(adapter->pdev_dev,
479 "unexpected CPL %#x on FW event queue\n", opcode);
480 }
481
482 return 0;
483}
484
485/*
486 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
487 * to use and initializes them. We support multiple "Queue Sets" per port if
488 * we have MSI-X, otherwise just one queue set per port.
489 */
490static int setup_sge_queues(struct adapter *adapter)
491{
492 struct sge *s = &adapter->sge;
493 int err, pidx, msix;
494
495 /*
496 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
497 * state.
498 */
499 bitmap_zero(s->starving_fl, MAX_EGRQ);
500
501 /*
502 * If we're using MSI interrupt mode we need to set up a "forwarded
503 * interrupt" queue which we'll set up with our MSI vector. The rest
504 * of the ingress queues will be set up to forward their interrupts to
505 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
506 * the intrq's queue ID as the interrupt forwarding queue for the
507 * subsequent calls ...
508 */
509 if (adapter->flags & USING_MSI) {
510 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
511 adapter->port[0], 0, NULL, NULL);
512 if (err)
513 goto err_free_queues;
514 }
515
516 /*
517 * Allocate our ingress queue for asynchronous firmware messages.
518 */
519 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
520 MSIX_FW, NULL, fwevtq_handler);
521 if (err)
522 goto err_free_queues;
523
524 /*
525 * Allocate each "port"'s initial Queue Sets. These can be changed
526 * later on ... up to the point where any interface on the adapter is
527 * brought up at which point lots of things get nailed down
528 * permanently ...
529 */
530 msix = MSIX_NIQFLINT;
531 for_each_port(adapter, pidx) {
532 struct net_device *dev = adapter->port[pidx];
533 struct port_info *pi = netdev_priv(dev);
534 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
535 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
536 int qs;
537
c8639a82 538 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
539 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
540 dev, msix++,
541 &rxq->fl, t4vf_ethrx_handler);
542 if (err)
543 goto err_free_queues;
544
545 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
546 netdev_get_tx_queue(dev, qs),
547 s->fw_evtq.cntxt_id);
548 if (err)
549 goto err_free_queues;
550
551 rxq->rspq.idx = qs;
552 memset(&rxq->stats, 0, sizeof(rxq->stats));
553 }
554 }
555
556 /*
557 * Create the reverse mappings for the queues.
558 */
559 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
560 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
561 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
562 for_each_port(adapter, pidx) {
563 struct net_device *dev = adapter->port[pidx];
564 struct port_info *pi = netdev_priv(dev);
565 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
566 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
be839e39
CL
567 int qs;
568
c8639a82 569 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
be839e39
CL
570 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
571 EQ_MAP(s, txq->q.abs_id) = &txq->q;
572
573 /*
574 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
575 * for Free Lists but since all of the Egress Queues
576 * (including Free Lists) have Relative Queue IDs
577 * which are computed as Absolute - Base Queue ID, we
578 * can synthesize the Absolute Queue IDs for the Free
579 * Lists. This is useful for debugging purposes when
580 * we want to dump Queue Contexts via the PF Driver.
581 */
582 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
583 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
584 }
585 }
586 return 0;
587
588err_free_queues:
589 t4vf_free_sge_resources(adapter);
590 return err;
591}
592
593/*
594 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
595 * queues. We configure the RSS CPU lookup table to distribute to the number
596 * of HW receive queues, and the response queue lookup table to narrow that
597 * down to the response queues actually configured for each "port" (Virtual
598 * Interface). We always configure the RSS mapping for all ports since the
599 * mapping table has plenty of entries.
600 */
601static int setup_rss(struct adapter *adapter)
602{
603 int pidx;
604
605 for_each_port(adapter, pidx) {
606 struct port_info *pi = adap2pinfo(adapter, pidx);
607 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
608 u16 rss[MAX_PORT_QSETS];
609 int qs, err;
610
611 for (qs = 0; qs < pi->nqsets; qs++)
612 rss[qs] = rxq[qs].rspq.abs_id;
613
614 err = t4vf_config_rss_range(adapter, pi->viid,
615 0, pi->rss_size, rss, pi->nqsets);
616 if (err)
617 return err;
618
619 /*
620 * Perform Global RSS Mode-specific initialization.
621 */
622 switch (adapter->params.rss.mode) {
623 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
624 /*
625 * If Tunnel All Lookup isn't specified in the global
626 * RSS Configuration, then we need to specify a
627 * default Ingress Queue for any ingress packets which
628 * aren't hashed. We'll use our first ingress queue
629 * ...
630 */
631 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
632 union rss_vi_config config;
633 err = t4vf_read_rss_vi_config(adapter,
634 pi->viid,
635 &config);
636 if (err)
637 return err;
638 config.basicvirtual.defaultq =
639 rxq[0].rspq.abs_id;
640 err = t4vf_write_rss_vi_config(adapter,
641 pi->viid,
642 &config);
643 if (err)
644 return err;
645 }
646 break;
647 }
648 }
649
650 return 0;
651}
652
653/*
654 * Bring the adapter up. Called whenever we go from no "ports" open to having
655 * one open. This function performs the actions necessary to make an adapter
656 * operational, such as completing the initialization of HW modules, and
657 * enabling interrupts. Must be called with the rtnl lock held. (Note that
658 * this is called "cxgb_up" in the PF Driver.)
659 */
660static int adapter_up(struct adapter *adapter)
661{
662 int err;
663
664 /*
665 * If this is the first time we've been called, perform basic
666 * adapter setup. Once we've done this, many of our adapter
667 * parameters can no longer be changed ...
668 */
669 if ((adapter->flags & FULL_INIT_DONE) == 0) {
670 err = setup_sge_queues(adapter);
671 if (err)
672 return err;
673 err = setup_rss(adapter);
674 if (err) {
675 t4vf_free_sge_resources(adapter);
676 return err;
677 }
678
679 if (adapter->flags & USING_MSIX)
680 name_msix_vecs(adapter);
681 adapter->flags |= FULL_INIT_DONE;
682 }
683
684 /*
685 * Acquire our interrupt resources. We only support MSI-X and MSI.
686 */
687 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
688 if (adapter->flags & USING_MSIX)
689 err = request_msix_queue_irqs(adapter);
690 else
691 err = request_irq(adapter->pdev->irq,
692 t4vf_intr_handler(adapter), 0,
693 adapter->name, adapter);
694 if (err) {
695 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
696 err);
697 return err;
698 }
699
700 /*
701 * Enable NAPI ingress processing and return success.
702 */
703 enable_rx(adapter);
704 t4vf_sge_start(adapter);
705 return 0;
706}
707
708/*
709 * Bring the adapter down. Called whenever the last "port" (Virtual
710 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
711 * Driver.)
712 */
713static void adapter_down(struct adapter *adapter)
714{
715 /*
716 * Free interrupt resources.
717 */
718 if (adapter->flags & USING_MSIX)
719 free_msix_queue_irqs(adapter);
720 else
721 free_irq(adapter->pdev->irq, adapter);
722
723 /*
724 * Wait for NAPI handlers to finish.
725 */
726 quiesce_rx(adapter);
727}
728
729/*
730 * Start up a net device.
731 */
732static int cxgb4vf_open(struct net_device *dev)
733{
734 int err;
735 struct port_info *pi = netdev_priv(dev);
736 struct adapter *adapter = pi->adapter;
737
738 /*
739 * If this is the first interface that we're opening on the "adapter",
740 * bring the "adapter" up now.
741 */
742 if (adapter->open_device_map == 0) {
743 err = adapter_up(adapter);
744 if (err)
745 return err;
746 }
747
748 /*
749 * Note that this interface is up and start everything up ...
750 */
003ab674
BH
751 netif_set_real_num_tx_queues(dev, pi->nqsets);
752 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
753 if (err)
754 return err;
be839e39 755 set_bit(pi->port_id, &adapter->open_device_map);
e7a3795f
CL
756 err = link_start(dev);
757 if (err)
758 return err;
be839e39
CL
759 netif_tx_start_all_queues(dev);
760 return 0;
761}
762
763/*
764 * Shut down a net device. This routine is called "cxgb_close" in the PF
765 * Driver ...
766 */
767static int cxgb4vf_stop(struct net_device *dev)
768{
769 int ret;
770 struct port_info *pi = netdev_priv(dev);
771 struct adapter *adapter = pi->adapter;
772
773 netif_tx_stop_all_queues(dev);
774 netif_carrier_off(dev);
775 ret = t4vf_enable_vi(adapter, pi->viid, false, false);
776 pi->link_cfg.link_ok = 0;
777
778 clear_bit(pi->port_id, &adapter->open_device_map);
779 if (adapter->open_device_map == 0)
780 adapter_down(adapter);
781 return 0;
782}
783
784/*
785 * Translate our basic statistics into the standard "ifconfig" statistics.
786 */
787static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
788{
789 struct t4vf_port_stats stats;
790 struct port_info *pi = netdev2pinfo(dev);
791 struct adapter *adapter = pi->adapter;
792 struct net_device_stats *ns = &dev->stats;
793 int err;
794
795 spin_lock(&adapter->stats_lock);
796 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
797 spin_unlock(&adapter->stats_lock);
798
799 memset(ns, 0, sizeof(*ns));
800 if (err)
801 return ns;
802
803 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
804 stats.tx_ucast_bytes + stats.tx_offload_bytes);
805 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
806 stats.tx_ucast_frames + stats.tx_offload_frames);
807 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
808 stats.rx_ucast_bytes);
809 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
810 stats.rx_ucast_frames);
811 ns->multicast = stats.rx_mcast_frames;
812 ns->tx_errors = stats.tx_drop_frames;
813 ns->rx_errors = stats.rx_err_frames;
814
815 return ns;
816}
817
818/*
819 * Collect up to maxaddrs worth of a netdevice's unicast addresses into an
820 * array of addrss pointers and return the number collected.
821 */
822static inline int collect_netdev_uc_list_addrs(const struct net_device *dev,
823 const u8 **addr,
824 unsigned int maxaddrs)
825{
826 unsigned int naddr = 0;
827 const struct netdev_hw_addr *ha;
828
829 for_each_dev_addr(dev, ha) {
830 addr[naddr++] = ha->addr;
831 if (naddr >= maxaddrs)
832 break;
833 }
834 return naddr;
835}
836
837/*
838 * Collect up to maxaddrs worth of a netdevice's multicast addresses into an
839 * array of addrss pointers and return the number collected.
840 */
841static inline int collect_netdev_mc_list_addrs(const struct net_device *dev,
842 const u8 **addr,
843 unsigned int maxaddrs)
844{
845 unsigned int naddr = 0;
846 const struct netdev_hw_addr *ha;
847
848 netdev_for_each_mc_addr(ha, dev) {
849 addr[naddr++] = ha->addr;
850 if (naddr >= maxaddrs)
851 break;
852 }
853 return naddr;
854}
855
856/*
857 * Configure the exact and hash address filters to handle a port's multicast
858 * and secondary unicast MAC addresses.
859 */
860static int set_addr_filters(const struct net_device *dev, bool sleep)
861{
862 u64 mhash = 0;
863 u64 uhash = 0;
864 bool free = true;
865 u16 filt_idx[7];
866 const u8 *addr[7];
867 int ret, naddr = 0;
868 const struct port_info *pi = netdev_priv(dev);
869
870 /* first do the secondary unicast addresses */
871 naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr));
872 if (naddr > 0) {
873 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
874 naddr, addr, filt_idx, &uhash, sleep);
875 if (ret < 0)
876 return ret;
877
878 free = false;
879 }
880
881 /* next set up the multicast addresses */
882 naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr));
883 if (naddr > 0) {
884 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
885 naddr, addr, filt_idx, &mhash, sleep);
886 if (ret < 0)
887 return ret;
888 }
889
890 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
891 uhash | mhash, sleep);
892}
893
894/*
895 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
896 * If @mtu is -1 it is left unchanged.
897 */
898static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
899{
900 int ret;
901 struct port_info *pi = netdev_priv(dev);
902
903 ret = set_addr_filters(dev, sleep_ok);
904 if (ret == 0)
905 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
906 (dev->flags & IFF_PROMISC) != 0,
907 (dev->flags & IFF_ALLMULTI) != 0,
908 1, -1, sleep_ok);
909 return ret;
910}
911
912/*
913 * Set the current receive modes on the device.
914 */
915static void cxgb4vf_set_rxmode(struct net_device *dev)
916{
917 /* unfortunately we can't return errors to the stack */
918 set_rxmode(dev, -1, false);
919}
920
921/*
922 * Find the entry in the interrupt holdoff timer value array which comes
923 * closest to the specified interrupt holdoff value.
924 */
925static int closest_timer(const struct sge *s, int us)
926{
927 int i, timer_idx = 0, min_delta = INT_MAX;
928
929 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
930 int delta = us - s->timer_val[i];
931 if (delta < 0)
932 delta = -delta;
933 if (delta < min_delta) {
934 min_delta = delta;
935 timer_idx = i;
936 }
937 }
938 return timer_idx;
939}
940
941static int closest_thres(const struct sge *s, int thres)
942{
943 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
944
945 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
946 delta = thres - s->counter_val[i];
947 if (delta < 0)
948 delta = -delta;
949 if (delta < min_delta) {
950 min_delta = delta;
951 pktcnt_idx = i;
952 }
953 }
954 return pktcnt_idx;
955}
956
957/*
958 * Return a queue's interrupt hold-off time in us. 0 means no timer.
959 */
960static unsigned int qtimer_val(const struct adapter *adapter,
961 const struct sge_rspq *rspq)
962{
963 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
964
965 return timer_idx < SGE_NTIMERS
966 ? adapter->sge.timer_val[timer_idx]
967 : 0;
968}
969
970/**
971 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
972 * @adapter: the adapter
973 * @rspq: the RX response queue
974 * @us: the hold-off time in us, or 0 to disable timer
975 * @cnt: the hold-off packet count, or 0 to disable counter
976 *
977 * Sets an RX response queue's interrupt hold-off time and packet count.
978 * At least one of the two needs to be enabled for the queue to generate
979 * interrupts.
980 */
981static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
982 unsigned int us, unsigned int cnt)
983{
984 unsigned int timer_idx;
985
986 /*
987 * If both the interrupt holdoff timer and count are specified as
988 * zero, default to a holdoff count of 1 ...
989 */
990 if ((us | cnt) == 0)
991 cnt = 1;
992
993 /*
994 * If an interrupt holdoff count has been specified, then find the
995 * closest configured holdoff count and use that. If the response
996 * queue has already been created, then update its queue context
997 * parameters ...
998 */
999 if (cnt) {
1000 int err;
1001 u32 v, pktcnt_idx;
1002
1003 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1004 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1005 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1006 FW_PARAMS_PARAM_X(
1007 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1008 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1009 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1010 if (err)
1011 return err;
1012 }
1013 rspq->pktcnt_idx = pktcnt_idx;
1014 }
1015
1016 /*
1017 * Compute the closest holdoff timer index from the supplied holdoff
1018 * timer value.
1019 */
1020 timer_idx = (us == 0
1021 ? SGE_TIMER_RSTRT_CNTR
1022 : closest_timer(&adapter->sge, us));
1023
1024 /*
1025 * Update the response queue's interrupt coalescing parameters and
1026 * return success.
1027 */
1028 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1029 (cnt > 0 ? QINTR_CNT_EN : 0));
1030 return 0;
1031}
1032
1033/*
1034 * Return a version number to identify the type of adapter. The scheme is:
1035 * - bits 0..9: chip version
1036 * - bits 10..15: chip revision
1037 */
1038static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1039{
1040 /*
1041 * Chip version 4, revision 0x3f (cxgb4vf).
1042 */
1043 return 4 | (0x3f << 10);
1044}
1045
1046/*
1047 * Execute the specified ioctl command.
1048 */
1049static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1050{
1051 int ret = 0;
1052
1053 switch (cmd) {
1054 /*
1055 * The VF Driver doesn't have access to any of the other
1056 * common Ethernet device ioctl()'s (like reading/writing
1057 * PHY registers, etc.
1058 */
1059
1060 default:
1061 ret = -EOPNOTSUPP;
1062 break;
1063 }
1064 return ret;
1065}
1066
1067/*
1068 * Change the device's MTU.
1069 */
1070static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1071{
1072 int ret;
1073 struct port_info *pi = netdev_priv(dev);
1074
1075 /* accommodate SACK */
1076 if (new_mtu < 81)
1077 return -EINVAL;
1078
1079 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1080 -1, -1, -1, -1, true);
1081 if (!ret)
1082 dev->mtu = new_mtu;
1083 return ret;
1084}
1085
1086/*
1087 * Change the devices MAC address.
1088 */
1089static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1090{
1091 int ret;
1092 struct sockaddr *addr = _addr;
1093 struct port_info *pi = netdev_priv(dev);
1094
1095 if (!is_valid_ether_addr(addr->sa_data))
1096 return -EINVAL;
1097
1098 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1099 addr->sa_data, true);
1100 if (ret < 0)
1101 return ret;
1102
1103 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1104 pi->xact_addr_filt = ret;
1105 return 0;
1106}
1107
be839e39
CL
1108#ifdef CONFIG_NET_POLL_CONTROLLER
1109/*
1110 * Poll all of our receive queues. This is called outside of normal interrupt
1111 * context.
1112 */
1113static void cxgb4vf_poll_controller(struct net_device *dev)
1114{
1115 struct port_info *pi = netdev_priv(dev);
1116 struct adapter *adapter = pi->adapter;
1117
1118 if (adapter->flags & USING_MSIX) {
1119 struct sge_eth_rxq *rxq;
1120 int nqsets;
1121
1122 rxq = &adapter->sge.ethrxq[pi->first_qset];
1123 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1124 t4vf_sge_intr_msix(0, &rxq->rspq);
1125 rxq++;
1126 }
1127 } else
1128 t4vf_intr_handler(adapter)(0, adapter);
1129}
1130#endif
1131
1132/*
1133 * Ethtool operations.
1134 * ===================
1135 *
1136 * Note that we don't support any ethtool operations which change the physical
1137 * state of the port to which we're linked.
1138 */
1139
1140/*
1141 * Return current port link settings.
1142 */
1143static int cxgb4vf_get_settings(struct net_device *dev,
1144 struct ethtool_cmd *cmd)
1145{
1146 const struct port_info *pi = netdev_priv(dev);
1147
1148 cmd->supported = pi->link_cfg.supported;
1149 cmd->advertising = pi->link_cfg.advertising;
1150 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1151 cmd->duplex = DUPLEX_FULL;
1152
1153 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1154 cmd->phy_address = pi->port_id;
1155 cmd->transceiver = XCVR_EXTERNAL;
1156 cmd->autoneg = pi->link_cfg.autoneg;
1157 cmd->maxtxpkt = 0;
1158 cmd->maxrxpkt = 0;
1159 return 0;
1160}
1161
1162/*
1163 * Return our driver information.
1164 */
1165static void cxgb4vf_get_drvinfo(struct net_device *dev,
1166 struct ethtool_drvinfo *drvinfo)
1167{
1168 struct adapter *adapter = netdev2adap(dev);
1169
1170 strcpy(drvinfo->driver, KBUILD_MODNAME);
1171 strcpy(drvinfo->version, DRV_VERSION);
1172 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1173 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1174 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1175 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1176 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1177 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1178 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1179 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1180 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1181 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1182 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1183}
1184
1185/*
1186 * Return current adapter message level.
1187 */
1188static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1189{
1190 return netdev2adap(dev)->msg_enable;
1191}
1192
1193/*
1194 * Set current adapter message level.
1195 */
1196static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1197{
1198 netdev2adap(dev)->msg_enable = msglevel;
1199}
1200
1201/*
1202 * Return the device's current Queue Set ring size parameters along with the
1203 * allowed maximum values. Since ethtool doesn't understand the concept of
1204 * multi-queue devices, we just return the current values associated with the
1205 * first Queue Set.
1206 */
1207static void cxgb4vf_get_ringparam(struct net_device *dev,
1208 struct ethtool_ringparam *rp)
1209{
1210 const struct port_info *pi = netdev_priv(dev);
1211 const struct sge *s = &pi->adapter->sge;
1212
1213 rp->rx_max_pending = MAX_RX_BUFFERS;
1214 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1215 rp->rx_jumbo_max_pending = 0;
1216 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1217
1218 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1219 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1220 rp->rx_jumbo_pending = 0;
1221 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1222}
1223
1224/*
1225 * Set the Queue Set ring size parameters for the device. Again, since
1226 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1227 * apply these new values across all of the Queue Sets associated with the
1228 * device -- after vetting them of course!
1229 */
1230static int cxgb4vf_set_ringparam(struct net_device *dev,
1231 struct ethtool_ringparam *rp)
1232{
1233 const struct port_info *pi = netdev_priv(dev);
1234 struct adapter *adapter = pi->adapter;
1235 struct sge *s = &adapter->sge;
1236 int qs;
1237
1238 if (rp->rx_pending > MAX_RX_BUFFERS ||
1239 rp->rx_jumbo_pending ||
1240 rp->tx_pending > MAX_TXQ_ENTRIES ||
1241 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1242 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1243 rp->rx_pending < MIN_FL_ENTRIES ||
1244 rp->tx_pending < MIN_TXQ_ENTRIES)
1245 return -EINVAL;
1246
1247 if (adapter->flags & FULL_INIT_DONE)
1248 return -EBUSY;
1249
1250 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1251 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1252 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1253 s->ethtxq[qs].q.size = rp->tx_pending;
1254 }
1255 return 0;
1256}
1257
1258/*
1259 * Return the interrupt holdoff timer and count for the first Queue Set on the
1260 * device. Our extension ioctl() (the cxgbtool interface) allows the
1261 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1262 */
1263static int cxgb4vf_get_coalesce(struct net_device *dev,
1264 struct ethtool_coalesce *coalesce)
1265{
1266 const struct port_info *pi = netdev_priv(dev);
1267 const struct adapter *adapter = pi->adapter;
1268 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1269
1270 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1271 coalesce->rx_max_coalesced_frames =
1272 ((rspq->intr_params & QINTR_CNT_EN)
1273 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1274 : 0);
1275 return 0;
1276}
1277
1278/*
1279 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1280 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1281 * the interrupt holdoff timer on any of the device's Queue Sets.
1282 */
1283static int cxgb4vf_set_coalesce(struct net_device *dev,
1284 struct ethtool_coalesce *coalesce)
1285{
1286 const struct port_info *pi = netdev_priv(dev);
1287 struct adapter *adapter = pi->adapter;
1288
1289 return set_rxq_intr_params(adapter,
1290 &adapter->sge.ethrxq[pi->first_qset].rspq,
1291 coalesce->rx_coalesce_usecs,
1292 coalesce->rx_max_coalesced_frames);
1293}
1294
1295/*
1296 * Report current port link pause parameter settings.
1297 */
1298static void cxgb4vf_get_pauseparam(struct net_device *dev,
1299 struct ethtool_pauseparam *pauseparam)
1300{
1301 struct port_info *pi = netdev_priv(dev);
1302
1303 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1304 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1305 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1306}
1307
1308/*
1309 * Return whether RX Checksum Offloading is currently enabled for the device.
1310 */
1311static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1312{
1313 struct port_info *pi = netdev_priv(dev);
1314
1315 return (pi->rx_offload & RX_CSO) != 0;
1316}
1317
1318/*
1319 * Turn RX Checksum Offloading on or off for the device.
1320 */
1321static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1322{
1323 struct port_info *pi = netdev_priv(dev);
1324
1325 if (csum)
1326 pi->rx_offload |= RX_CSO;
1327 else
1328 pi->rx_offload &= ~RX_CSO;
1329 return 0;
1330}
1331
1332/*
1333 * Identify the port by blinking the port's LED.
1334 */
1335static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1336{
1337 struct port_info *pi = netdev_priv(dev);
1338
1339 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1340}
1341
1342/*
1343 * Port stats maintained per queue of the port.
1344 */
1345struct queue_port_stats {
1346 u64 tso;
1347 u64 tx_csum;
1348 u64 rx_csum;
1349 u64 vlan_ex;
1350 u64 vlan_ins;
1351};
1352
1353/*
1354 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1355 * these need to match the order of statistics returned by
1356 * t4vf_get_port_stats().
1357 */
1358static const char stats_strings[][ETH_GSTRING_LEN] = {
1359 /*
1360 * These must match the layout of the t4vf_port_stats structure.
1361 */
1362 "TxBroadcastBytes ",
1363 "TxBroadcastFrames ",
1364 "TxMulticastBytes ",
1365 "TxMulticastFrames ",
1366 "TxUnicastBytes ",
1367 "TxUnicastFrames ",
1368 "TxDroppedFrames ",
1369 "TxOffloadBytes ",
1370 "TxOffloadFrames ",
1371 "RxBroadcastBytes ",
1372 "RxBroadcastFrames ",
1373 "RxMulticastBytes ",
1374 "RxMulticastFrames ",
1375 "RxUnicastBytes ",
1376 "RxUnicastFrames ",
1377 "RxErrorFrames ",
1378
1379 /*
1380 * These are accumulated per-queue statistics and must match the
1381 * order of the fields in the queue_port_stats structure.
1382 */
1383 "TSO ",
1384 "TxCsumOffload ",
1385 "RxCsumGood ",
1386 "VLANextractions ",
1387 "VLANinsertions ",
1388};
1389
1390/*
1391 * Return the number of statistics in the specified statistics set.
1392 */
1393static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1394{
1395 switch (sset) {
1396 case ETH_SS_STATS:
1397 return ARRAY_SIZE(stats_strings);
1398 default:
1399 return -EOPNOTSUPP;
1400 }
1401 /*NOTREACHED*/
1402}
1403
1404/*
1405 * Return the strings for the specified statistics set.
1406 */
1407static void cxgb4vf_get_strings(struct net_device *dev,
1408 u32 sset,
1409 u8 *data)
1410{
1411 switch (sset) {
1412 case ETH_SS_STATS:
1413 memcpy(data, stats_strings, sizeof(stats_strings));
1414 break;
1415 }
1416}
1417
1418/*
1419 * Small utility routine to accumulate queue statistics across the queues of
1420 * a "port".
1421 */
1422static void collect_sge_port_stats(const struct adapter *adapter,
1423 const struct port_info *pi,
1424 struct queue_port_stats *stats)
1425{
1426 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1427 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1428 int qs;
1429
1430 memset(stats, 0, sizeof(*stats));
1431 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1432 stats->tso += txq->tso;
1433 stats->tx_csum += txq->tx_cso;
1434 stats->rx_csum += rxq->stats.rx_cso;
1435 stats->vlan_ex += rxq->stats.vlan_ex;
1436 stats->vlan_ins += txq->vlan_ins;
1437 }
1438}
1439
1440/*
1441 * Return the ETH_SS_STATS statistics set.
1442 */
1443static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1444 struct ethtool_stats *stats,
1445 u64 *data)
1446{
1447 struct port_info *pi = netdev2pinfo(dev);
1448 struct adapter *adapter = pi->adapter;
1449 int err = t4vf_get_port_stats(adapter, pi->pidx,
1450 (struct t4vf_port_stats *)data);
1451 if (err)
1452 memset(data, 0, sizeof(struct t4vf_port_stats));
1453
1454 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1455 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1456}
1457
1458/*
1459 * Return the size of our register map.
1460 */
1461static int cxgb4vf_get_regs_len(struct net_device *dev)
1462{
1463 return T4VF_REGMAP_SIZE;
1464}
1465
1466/*
1467 * Dump a block of registers, start to end inclusive, into a buffer.
1468 */
1469static void reg_block_dump(struct adapter *adapter, void *regbuf,
1470 unsigned int start, unsigned int end)
1471{
1472 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1473
1474 for ( ; start <= end; start += sizeof(u32)) {
1475 /*
1476 * Avoid reading the Mailbox Control register since that
1477 * can trigger a Mailbox Ownership Arbitration cycle and
1478 * interfere with communication with the firmware.
1479 */
1480 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1481 *bp++ = 0xffff;
1482 else
1483 *bp++ = t4_read_reg(adapter, start);
1484 }
1485}
1486
1487/*
1488 * Copy our entire register map into the provided buffer.
1489 */
1490static void cxgb4vf_get_regs(struct net_device *dev,
1491 struct ethtool_regs *regs,
1492 void *regbuf)
1493{
1494 struct adapter *adapter = netdev2adap(dev);
1495
1496 regs->version = mk_adap_vers(adapter);
1497
1498 /*
1499 * Fill in register buffer with our register map.
1500 */
1501 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1502
1503 reg_block_dump(adapter, regbuf,
1504 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1505 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1506 reg_block_dump(adapter, regbuf,
1507 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1508 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1509 reg_block_dump(adapter, regbuf,
1510 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1511 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1512 reg_block_dump(adapter, regbuf,
1513 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1514 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1515
1516 reg_block_dump(adapter, regbuf,
1517 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1518 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1519}
1520
1521/*
1522 * Report current Wake On LAN settings.
1523 */
1524static void cxgb4vf_get_wol(struct net_device *dev,
1525 struct ethtool_wolinfo *wol)
1526{
1527 wol->supported = 0;
1528 wol->wolopts = 0;
1529 memset(&wol->sopass, 0, sizeof(wol->sopass));
1530}
1531
1532/*
1533 * Set TCP Segmentation Offloading feature capabilities.
1534 */
1535static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1536{
1537 if (tso)
1538 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1539 else
1540 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1541 return 0;
1542}
1543
1544static struct ethtool_ops cxgb4vf_ethtool_ops = {
1545 .get_settings = cxgb4vf_get_settings,
1546 .get_drvinfo = cxgb4vf_get_drvinfo,
1547 .get_msglevel = cxgb4vf_get_msglevel,
1548 .set_msglevel = cxgb4vf_set_msglevel,
1549 .get_ringparam = cxgb4vf_get_ringparam,
1550 .set_ringparam = cxgb4vf_set_ringparam,
1551 .get_coalesce = cxgb4vf_get_coalesce,
1552 .set_coalesce = cxgb4vf_set_coalesce,
1553 .get_pauseparam = cxgb4vf_get_pauseparam,
1554 .get_rx_csum = cxgb4vf_get_rx_csum,
1555 .set_rx_csum = cxgb4vf_set_rx_csum,
1556 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1557 .set_sg = ethtool_op_set_sg,
1558 .get_link = ethtool_op_get_link,
1559 .get_strings = cxgb4vf_get_strings,
1560 .phys_id = cxgb4vf_phys_id,
1561 .get_sset_count = cxgb4vf_get_sset_count,
1562 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1563 .get_regs_len = cxgb4vf_get_regs_len,
1564 .get_regs = cxgb4vf_get_regs,
1565 .get_wol = cxgb4vf_get_wol,
1566 .set_tso = cxgb4vf_set_tso,
1567};
1568
1569/*
1570 * /sys/kernel/debug/cxgb4vf support code and data.
1571 * ================================================
1572 */
1573
1574/*
1575 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1576 */
1577#define QPL 4
1578
1579static int sge_qinfo_show(struct seq_file *seq, void *v)
1580{
1581 struct adapter *adapter = seq->private;
1582 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1583 int qs, r = (uintptr_t)v - 1;
1584
1585 if (r)
1586 seq_putc(seq, '\n');
1587
1588 #define S3(fmt_spec, s, v) \
1589 do {\
1590 seq_printf(seq, "%-12s", s); \
1591 for (qs = 0; qs < n; ++qs) \
1592 seq_printf(seq, " %16" fmt_spec, v); \
1593 seq_putc(seq, '\n'); \
1594 } while (0)
1595 #define S(s, v) S3("s", s, v)
1596 #define T(s, v) S3("u", s, txq[qs].v)
1597 #define R(s, v) S3("u", s, rxq[qs].v)
1598
1599 if (r < eth_entries) {
1600 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1601 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1602 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1603
1604 S("QType:", "Ethernet");
1605 S("Interface:",
1606 (rxq[qs].rspq.netdev
1607 ? rxq[qs].rspq.netdev->name
1608 : "N/A"));
1609 S3("d", "Port:",
1610 (rxq[qs].rspq.netdev
1611 ? ((struct port_info *)
1612 netdev_priv(rxq[qs].rspq.netdev))->port_id
1613 : -1));
1614 T("TxQ ID:", q.abs_id);
1615 T("TxQ size:", q.size);
1616 T("TxQ inuse:", q.in_use);
1617 T("TxQ PIdx:", q.pidx);
1618 T("TxQ CIdx:", q.cidx);
1619 R("RspQ ID:", rspq.abs_id);
1620 R("RspQ size:", rspq.size);
1621 R("RspQE size:", rspq.iqe_len);
1622 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1623 S3("u", "Intr pktcnt:",
1624 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1625 R("RspQ CIdx:", rspq.cidx);
1626 R("RspQ Gen:", rspq.gen);
1627 R("FL ID:", fl.abs_id);
1628 R("FL size:", fl.size - MIN_FL_RESID);
1629 R("FL avail:", fl.avail);
1630 R("FL PIdx:", fl.pidx);
1631 R("FL CIdx:", fl.cidx);
1632 return 0;
1633 }
1634
1635 r -= eth_entries;
1636 if (r == 0) {
1637 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1638
1639 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1640 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1641 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1642 qtimer_val(adapter, evtq));
1643 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1644 adapter->sge.counter_val[evtq->pktcnt_idx]);
1645 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1646 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1647 } else if (r == 1) {
1648 const struct sge_rspq *intrq = &adapter->sge.intrq;
1649
1650 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1651 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1652 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1653 qtimer_val(adapter, intrq));
1654 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1655 adapter->sge.counter_val[intrq->pktcnt_idx]);
1656 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1657 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1658 }
1659
1660 #undef R
1661 #undef T
1662 #undef S
1663 #undef S3
1664
1665 return 0;
1666}
1667
1668/*
1669 * Return the number of "entries" in our "file". We group the multi-Queue
1670 * sections with QPL Queue Sets per "entry". The sections of the output are:
1671 *
1672 * Ethernet RX/TX Queue Sets
1673 * Firmware Event Queue
1674 * Forwarded Interrupt Queue (if in MSI mode)
1675 */
1676static int sge_queue_entries(const struct adapter *adapter)
1677{
1678 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1679 ((adapter->flags & USING_MSI) != 0);
1680}
1681
1682static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1683{
1684 int entries = sge_queue_entries(seq->private);
1685
1686 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1687}
1688
1689static void sge_queue_stop(struct seq_file *seq, void *v)
1690{
1691}
1692
1693static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1694{
1695 int entries = sge_queue_entries(seq->private);
1696
1697 ++*pos;
1698 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1699}
1700
1701static const struct seq_operations sge_qinfo_seq_ops = {
1702 .start = sge_queue_start,
1703 .next = sge_queue_next,
1704 .stop = sge_queue_stop,
1705 .show = sge_qinfo_show
1706};
1707
1708static int sge_qinfo_open(struct inode *inode, struct file *file)
1709{
1710 int res = seq_open(file, &sge_qinfo_seq_ops);
1711
1712 if (!res) {
1713 struct seq_file *seq = file->private_data;
1714 seq->private = inode->i_private;
1715 }
1716 return res;
1717}
1718
1719static const struct file_operations sge_qinfo_debugfs_fops = {
1720 .owner = THIS_MODULE,
1721 .open = sge_qinfo_open,
1722 .read = seq_read,
1723 .llseek = seq_lseek,
1724 .release = seq_release,
1725};
1726
1727/*
1728 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1729 */
1730#define QPL 4
1731
1732static int sge_qstats_show(struct seq_file *seq, void *v)
1733{
1734 struct adapter *adapter = seq->private;
1735 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1736 int qs, r = (uintptr_t)v - 1;
1737
1738 if (r)
1739 seq_putc(seq, '\n');
1740
1741 #define S3(fmt, s, v) \
1742 do { \
1743 seq_printf(seq, "%-16s", s); \
1744 for (qs = 0; qs < n; ++qs) \
1745 seq_printf(seq, " %8" fmt, v); \
1746 seq_putc(seq, '\n'); \
1747 } while (0)
1748 #define S(s, v) S3("s", s, v)
1749
1750 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1751 #define T(s, v) T3("lu", s, v)
1752
1753 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1754 #define R(s, v) R3("lu", s, v)
1755
1756 if (r < eth_entries) {
1757 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1758 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1759 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1760
1761 S("QType:", "Ethernet");
1762 S("Interface:",
1763 (rxq[qs].rspq.netdev
1764 ? rxq[qs].rspq.netdev->name
1765 : "N/A"));
68dc9d36 1766 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
be839e39
CL
1767 R("RxPackets:", stats.pkts);
1768 R("RxCSO:", stats.rx_cso);
1769 R("VLANxtract:", stats.vlan_ex);
1770 R("LROmerged:", stats.lro_merged);
1771 R("LROpackets:", stats.lro_pkts);
1772 R("RxDrops:", stats.rx_drops);
1773 T("TSO:", tso);
1774 T("TxCSO:", tx_cso);
1775 T("VLANins:", vlan_ins);
1776 T("TxQFull:", q.stops);
1777 T("TxQRestarts:", q.restarts);
1778 T("TxMapErr:", mapping_err);
1779 R("FLAllocErr:", fl.alloc_failed);
1780 R("FLLrgAlcErr:", fl.large_alloc_failed);
1781 R("FLStarving:", fl.starving);
1782 return 0;
1783 }
1784
1785 r -= eth_entries;
1786 if (r == 0) {
1787 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1788
1789 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
68dc9d36
CL
1790 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1791 evtq->unhandled_irqs);
be839e39
CL
1792 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1793 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1794 } else if (r == 1) {
1795 const struct sge_rspq *intrq = &adapter->sge.intrq;
1796
1797 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
68dc9d36
CL
1798 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1799 intrq->unhandled_irqs);
be839e39
CL
1800 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1801 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1802 }
1803
1804 #undef R
1805 #undef T
1806 #undef S
1807 #undef R3
1808 #undef T3
1809 #undef S3
1810
1811 return 0;
1812}
1813
1814/*
1815 * Return the number of "entries" in our "file". We group the multi-Queue
1816 * sections with QPL Queue Sets per "entry". The sections of the output are:
1817 *
1818 * Ethernet RX/TX Queue Sets
1819 * Firmware Event Queue
1820 * Forwarded Interrupt Queue (if in MSI mode)
1821 */
1822static int sge_qstats_entries(const struct adapter *adapter)
1823{
1824 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1825 ((adapter->flags & USING_MSI) != 0);
1826}
1827
1828static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1829{
1830 int entries = sge_qstats_entries(seq->private);
1831
1832 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1833}
1834
1835static void sge_qstats_stop(struct seq_file *seq, void *v)
1836{
1837}
1838
1839static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1840{
1841 int entries = sge_qstats_entries(seq->private);
1842
1843 (*pos)++;
1844 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1845}
1846
1847static const struct seq_operations sge_qstats_seq_ops = {
1848 .start = sge_qstats_start,
1849 .next = sge_qstats_next,
1850 .stop = sge_qstats_stop,
1851 .show = sge_qstats_show
1852};
1853
1854static int sge_qstats_open(struct inode *inode, struct file *file)
1855{
1856 int res = seq_open(file, &sge_qstats_seq_ops);
1857
1858 if (res == 0) {
1859 struct seq_file *seq = file->private_data;
1860 seq->private = inode->i_private;
1861 }
1862 return res;
1863}
1864
1865static const struct file_operations sge_qstats_proc_fops = {
1866 .owner = THIS_MODULE,
1867 .open = sge_qstats_open,
1868 .read = seq_read,
1869 .llseek = seq_lseek,
1870 .release = seq_release,
1871};
1872
1873/*
1874 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1875 */
1876static int resources_show(struct seq_file *seq, void *v)
1877{
1878 struct adapter *adapter = seq->private;
1879 struct vf_resources *vfres = &adapter->params.vfres;
1880
1881 #define S(desc, fmt, var) \
1882 seq_printf(seq, "%-60s " fmt "\n", \
1883 desc " (" #var "):", vfres->var)
1884
1885 S("Virtual Interfaces", "%d", nvi);
1886 S("Egress Queues", "%d", neq);
1887 S("Ethernet Control", "%d", nethctrl);
1888 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1889 S("Ingress Queues", "%d", niq);
1890 S("Traffic Class", "%d", tc);
1891 S("Port Access Rights Mask", "%#x", pmask);
1892 S("MAC Address Filters", "%d", nexactf);
1893 S("Firmware Command Read Capabilities", "%#x", r_caps);
1894 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1895
1896 #undef S
1897
1898 return 0;
1899}
1900
1901static int resources_open(struct inode *inode, struct file *file)
1902{
1903 return single_open(file, resources_show, inode->i_private);
1904}
1905
1906static const struct file_operations resources_proc_fops = {
1907 .owner = THIS_MODULE,
1908 .open = resources_open,
1909 .read = seq_read,
1910 .llseek = seq_lseek,
1911 .release = single_release,
1912};
1913
1914/*
1915 * Show Virtual Interfaces.
1916 */
1917static int interfaces_show(struct seq_file *seq, void *v)
1918{
1919 if (v == SEQ_START_TOKEN) {
1920 seq_puts(seq, "Interface Port VIID\n");
1921 } else {
1922 struct adapter *adapter = seq->private;
1923 int pidx = (uintptr_t)v - 2;
1924 struct net_device *dev = adapter->port[pidx];
1925 struct port_info *pi = netdev_priv(dev);
1926
1927 seq_printf(seq, "%9s %4d %#5x\n",
1928 dev->name, pi->port_id, pi->viid);
1929 }
1930 return 0;
1931}
1932
1933static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1934{
1935 return pos <= adapter->params.nports
1936 ? (void *)(uintptr_t)(pos + 1)
1937 : NULL;
1938}
1939
1940static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1941{
1942 return *pos
1943 ? interfaces_get_idx(seq->private, *pos)
1944 : SEQ_START_TOKEN;
1945}
1946
1947static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1948{
1949 (*pos)++;
1950 return interfaces_get_idx(seq->private, *pos);
1951}
1952
1953static void interfaces_stop(struct seq_file *seq, void *v)
1954{
1955}
1956
1957static const struct seq_operations interfaces_seq_ops = {
1958 .start = interfaces_start,
1959 .next = interfaces_next,
1960 .stop = interfaces_stop,
1961 .show = interfaces_show
1962};
1963
1964static int interfaces_open(struct inode *inode, struct file *file)
1965{
1966 int res = seq_open(file, &interfaces_seq_ops);
1967
1968 if (res == 0) {
1969 struct seq_file *seq = file->private_data;
1970 seq->private = inode->i_private;
1971 }
1972 return res;
1973}
1974
1975static const struct file_operations interfaces_proc_fops = {
1976 .owner = THIS_MODULE,
1977 .open = interfaces_open,
1978 .read = seq_read,
1979 .llseek = seq_lseek,
1980 .release = seq_release,
1981};
1982
1983/*
1984 * /sys/kernel/debugfs/cxgb4vf/ files list.
1985 */
1986struct cxgb4vf_debugfs_entry {
1987 const char *name; /* name of debugfs node */
1988 mode_t mode; /* file system mode */
1989 const struct file_operations *fops;
1990};
1991
1992static struct cxgb4vf_debugfs_entry debugfs_files[] = {
1993 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
1994 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
1995 { "resources", S_IRUGO, &resources_proc_fops },
1996 { "interfaces", S_IRUGO, &interfaces_proc_fops },
1997};
1998
1999/*
2000 * Module and device initialization and cleanup code.
2001 * ==================================================
2002 */
2003
2004/*
2005 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2006 * directory (debugfs_root) has already been set up.
2007 */
2008static int __devinit setup_debugfs(struct adapter *adapter)
2009{
2010 int i;
2011
2012 BUG_ON(adapter->debugfs_root == NULL);
2013
2014 /*
2015 * Debugfs support is best effort.
2016 */
2017 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2018 (void)debugfs_create_file(debugfs_files[i].name,
2019 debugfs_files[i].mode,
2020 adapter->debugfs_root,
2021 (void *)adapter,
2022 debugfs_files[i].fops);
2023
2024 return 0;
2025}
2026
2027/*
2028 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2029 * it to our caller to tear down the directory (debugfs_root).
2030 */
2031static void __devexit cleanup_debugfs(struct adapter *adapter)
2032{
2033 BUG_ON(adapter->debugfs_root == NULL);
2034
2035 /*
2036 * Unlike our sister routine cleanup_proc(), we don't need to remove
2037 * individual entries because a call will be made to
2038 * debugfs_remove_recursive(). We just need to clean up any ancillary
2039 * persistent state.
2040 */
2041 /* nothing to do */
2042}
2043
2044/*
2045 * Perform early "adapter" initialization. This is where we discover what
2046 * adapter parameters we're going to be using and initialize basic adapter
2047 * hardware support.
2048 */
2049static int adap_init0(struct adapter *adapter)
2050{
2051 struct vf_resources *vfres = &adapter->params.vfres;
2052 struct sge_params *sge_params = &adapter->params.sge;
2053 struct sge *s = &adapter->sge;
2054 unsigned int ethqsets;
2055 int err;
2056
2057 /*
2058 * Wait for the device to become ready before proceeding ...
2059 */
2060 err = t4vf_wait_dev_ready(adapter);
2061 if (err) {
2062 dev_err(adapter->pdev_dev, "device didn't become ready:"
2063 " err=%d\n", err);
2064 return err;
2065 }
2066
e68e6133
CL
2067 /*
2068 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2069 * 2.6.31 and later we can't call pci_reset_function() in order to
2070 * issue an FLR because of a self- deadlock on the device semaphore.
2071 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2072 * cases where they're needed -- for instance, some versions of KVM
2073 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2074 * use the firmware based reset in order to reset any per function
2075 * state.
2076 */
2077 err = t4vf_fw_reset(adapter);
2078 if (err < 0) {
2079 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2080 return err;
2081 }
2082
be839e39
CL
2083 /*
2084 * Grab basic operational parameters. These will predominantly have
2085 * been set up by the Physical Function Driver or will be hard coded
2086 * into the adapter. We just have to live with them ... Note that
2087 * we _must_ get our VPD parameters before our SGE parameters because
2088 * we need to know the adapter's core clock from the VPD in order to
2089 * properly decode the SGE Timer Values.
2090 */
2091 err = t4vf_get_dev_params(adapter);
2092 if (err) {
2093 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2094 " device parameters: err=%d\n", err);
2095 return err;
2096 }
2097 err = t4vf_get_vpd_params(adapter);
2098 if (err) {
2099 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2100 " VPD parameters: err=%d\n", err);
2101 return err;
2102 }
2103 err = t4vf_get_sge_params(adapter);
2104 if (err) {
2105 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2106 " SGE parameters: err=%d\n", err);
2107 return err;
2108 }
2109 err = t4vf_get_rss_glb_config(adapter);
2110 if (err) {
2111 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2112 " RSS parameters: err=%d\n", err);
2113 return err;
2114 }
2115 if (adapter->params.rss.mode !=
2116 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2117 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2118 " mode %d\n", adapter->params.rss.mode);
2119 return -EINVAL;
2120 }
2121 err = t4vf_sge_init(adapter);
2122 if (err) {
2123 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2124 " err=%d\n", err);
2125 return err;
2126 }
2127
2128 /*
2129 * Retrieve our RX interrupt holdoff timer values and counter
2130 * threshold values from the SGE parameters.
2131 */
2132 s->timer_val[0] = core_ticks_to_us(adapter,
2133 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2134 s->timer_val[1] = core_ticks_to_us(adapter,
2135 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2136 s->timer_val[2] = core_ticks_to_us(adapter,
2137 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2138 s->timer_val[3] = core_ticks_to_us(adapter,
2139 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2140 s->timer_val[4] = core_ticks_to_us(adapter,
2141 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2142 s->timer_val[5] = core_ticks_to_us(adapter,
2143 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2144
2145 s->counter_val[0] =
2146 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2147 s->counter_val[1] =
2148 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2149 s->counter_val[2] =
2150 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2151 s->counter_val[3] =
2152 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2153
2154 /*
2155 * Grab our Virtual Interface resource allocation, extract the
2156 * features that we're interested in and do a bit of sanity testing on
2157 * what we discover.
2158 */
2159 err = t4vf_get_vfres(adapter);
2160 if (err) {
2161 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2162 " resources: err=%d\n", err);
2163 return err;
2164 }
2165
2166 /*
2167 * The number of "ports" which we support is equal to the number of
2168 * Virtual Interfaces with which we've been provisioned.
2169 */
2170 adapter->params.nports = vfres->nvi;
2171 if (adapter->params.nports > MAX_NPORTS) {
2172 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2173 " virtual interfaces\n", MAX_NPORTS,
2174 adapter->params.nports);
2175 adapter->params.nports = MAX_NPORTS;
2176 }
2177
2178 /*
2179 * We need to reserve a number of the ingress queues with Free List
2180 * and Interrupt capabilities for special interrupt purposes (like
2181 * asynchronous firmware messages, or forwarded interrupts if we're
2182 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2183 * matched up one-for-one with Ethernet/Control egress queues in order
2184 * to form "Queue Sets" which will be aportioned between the "ports".
2185 * For each Queue Set, we'll need the ability to allocate two Egress
2186 * Contexts -- one for the Ingress Queue Free List and one for the TX
2187 * Ethernet Queue.
2188 */
2189 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2190 if (vfres->nethctrl != ethqsets) {
2191 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2192 " ingress/egress queues (%d/%d); using minimum for"
2193 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2194 ethqsets = min(vfres->nethctrl, ethqsets);
2195 }
2196 if (vfres->neq < ethqsets*2) {
2197 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2198 " to support Queue Sets (%d); reducing allowed Queue"
2199 " Sets\n", vfres->neq, ethqsets);
2200 ethqsets = vfres->neq/2;
2201 }
2202 if (ethqsets > MAX_ETH_QSETS) {
2203 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2204 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2205 ethqsets = MAX_ETH_QSETS;
2206 }
2207 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2208 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2209 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2210 }
2211 adapter->sge.max_ethqsets = ethqsets;
2212
2213 /*
2214 * Check for various parameter sanity issues. Most checks simply
2215 * result in us using fewer resources than our provissioning but we
2216 * do need at least one "port" with which to work ...
2217 */
2218 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2219 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2220 " virtual interfaces (too few Queue Sets)\n",
2221 adapter->sge.max_ethqsets, adapter->params.nports);
2222 adapter->params.nports = adapter->sge.max_ethqsets;
2223 }
2224 if (adapter->params.nports == 0) {
2225 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2226 "usable!\n");
2227 return -EINVAL;
2228 }
2229 return 0;
2230}
2231
2232static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2233 u8 pkt_cnt_idx, unsigned int size,
2234 unsigned int iqe_size)
2235{
2236 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2237 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2238 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2239 ? pkt_cnt_idx
2240 : 0);
2241 rspq->iqe_len = iqe_size;
2242 rspq->size = size;
2243}
2244
2245/*
2246 * Perform default configuration of DMA queues depending on the number and
2247 * type of ports we found and the number of available CPUs. Most settings can
2248 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2249 * being brought up for the first time.
2250 */
2251static void __devinit cfg_queues(struct adapter *adapter)
2252{
2253 struct sge *s = &adapter->sge;
2254 int q10g, n10g, qidx, pidx, qs;
2255
2256 /*
2257 * We should not be called till we know how many Queue Sets we can
2258 * support. In particular, this means that we need to know what kind
2259 * of interrupts we'll be using ...
2260 */
2261 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2262
2263 /*
2264 * Count the number of 10GbE Virtual Interfaces that we have.
2265 */
2266 n10g = 0;
2267 for_each_port(adapter, pidx)
2268 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2269
2270 /*
2271 * We default to 1 queue per non-10G port and up to # of cores queues
2272 * per 10G port.
2273 */
2274 if (n10g == 0)
2275 q10g = 0;
2276 else {
2277 int n1g = (adapter->params.nports - n10g);
2278 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2279 if (q10g > num_online_cpus())
2280 q10g = num_online_cpus();
2281 }
2282
2283 /*
2284 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2285 * The layout will be established in setup_sge_queues() when the
2286 * adapter is brough up for the first time.
2287 */
2288 qidx = 0;
2289 for_each_port(adapter, pidx) {
2290 struct port_info *pi = adap2pinfo(adapter, pidx);
2291
2292 pi->first_qset = qidx;
2293 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2294 qidx += pi->nqsets;
2295 }
2296 s->ethqsets = qidx;
2297
2298 /*
2299 * Set up default Queue Set parameters ... Start off with the
2300 * shortest interrupt holdoff timer.
2301 */
2302 for (qs = 0; qs < s->max_ethqsets; qs++) {
2303 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2304 struct sge_eth_txq *txq = &s->ethtxq[qs];
2305
2306 init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES);
2307 rxq->fl.size = 72;
2308 txq->q.size = 1024;
2309 }
2310
2311 /*
2312 * The firmware event queue is used for link state changes and
2313 * notifications of TX DMA completions.
2314 */
2315 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512,
2316 L1_CACHE_BYTES);
2317
2318 /*
2319 * The forwarded interrupt queue is used when we're in MSI interrupt
2320 * mode. In this mode all interrupts associated with RX queues will
2321 * be forwarded to a single queue which we'll associate with our MSI
2322 * interrupt vector. The messages dropped in the forwarded interrupt
2323 * queue will indicate which ingress queue needs servicing ... This
2324 * queue needs to be large enough to accommodate all of the ingress
2325 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2326 * from equalling the CIDX if every ingress queue has an outstanding
2327 * interrupt). The queue doesn't need to be any larger because no
2328 * ingress queue will ever have more than one outstanding interrupt at
2329 * any time ...
2330 */
2331 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2332 L1_CACHE_BYTES);
2333}
2334
2335/*
2336 * Reduce the number of Ethernet queues across all ports to at most n.
2337 * n provides at least one queue per port.
2338 */
2339static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2340{
2341 int i;
2342 struct port_info *pi;
2343
2344 /*
2345 * While we have too many active Ether Queue Sets, interate across the
2346 * "ports" and reduce their individual Queue Set allocations.
2347 */
2348 BUG_ON(n < adapter->params.nports);
2349 while (n < adapter->sge.ethqsets)
2350 for_each_port(adapter, i) {
2351 pi = adap2pinfo(adapter, i);
2352 if (pi->nqsets > 1) {
2353 pi->nqsets--;
2354 adapter->sge.ethqsets--;
2355 if (adapter->sge.ethqsets <= n)
2356 break;
2357 }
2358 }
2359
2360 /*
2361 * Reassign the starting Queue Sets for each of the "ports" ...
2362 */
2363 n = 0;
2364 for_each_port(adapter, i) {
2365 pi = adap2pinfo(adapter, i);
2366 pi->first_qset = n;
2367 n += pi->nqsets;
2368 }
2369}
2370
2371/*
2372 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2373 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2374 * need. Minimally we need one for every Virtual Interface plus those needed
2375 * for our "extras". Note that this process may lower the maximum number of
2376 * allowed Queue Sets ...
2377 */
2378static int __devinit enable_msix(struct adapter *adapter)
2379{
2380 int i, err, want, need;
2381 struct msix_entry entries[MSIX_ENTRIES];
2382 struct sge *s = &adapter->sge;
2383
2384 for (i = 0; i < MSIX_ENTRIES; ++i)
2385 entries[i].entry = i;
2386
2387 /*
2388 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2389 * plus those needed for our "extras" (for example, the firmware
2390 * message queue). We _need_ at least one "Queue Set" per Virtual
2391 * Interface plus those needed for our "extras". So now we get to see
2392 * if the song is right ...
2393 */
2394 want = s->max_ethqsets + MSIX_EXTRAS;
2395 need = adapter->params.nports + MSIX_EXTRAS;
2396 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2397 want = err;
2398
2399 if (err == 0) {
2400 int nqsets = want - MSIX_EXTRAS;
2401 if (nqsets < s->max_ethqsets) {
2402 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2403 " for %d Queue Sets\n", nqsets);
2404 s->max_ethqsets = nqsets;
2405 if (nqsets < s->ethqsets)
2406 reduce_ethqs(adapter, nqsets);
2407 }
2408 for (i = 0; i < want; ++i)
2409 adapter->msix_info[i].vec = entries[i].vector;
2410 } else if (err > 0) {
2411 pci_disable_msix(adapter->pdev);
2412 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2413 " not using MSI-X\n", err);
2414 }
2415 return err;
2416}
2417
2418#ifdef HAVE_NET_DEVICE_OPS
2419static const struct net_device_ops cxgb4vf_netdev_ops = {
2420 .ndo_open = cxgb4vf_open,
2421 .ndo_stop = cxgb4vf_stop,
2422 .ndo_start_xmit = t4vf_eth_xmit,
2423 .ndo_get_stats = cxgb4vf_get_stats,
2424 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2425 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
be839e39
CL
2426 .ndo_validate_addr = eth_validate_addr,
2427 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2428 .ndo_change_mtu = cxgb4vf_change_mtu,
2429 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2430#ifdef CONFIG_NET_POLL_CONTROLLER
2431 .ndo_poll_controller = cxgb4vf_poll_controller,
2432#endif
2433};
2434#endif
2435
2436/*
2437 * "Probe" a device: initialize a device and construct all kernel and driver
2438 * state needed to manage the device. This routine is called "init_one" in
2439 * the PF Driver ...
2440 */
2441static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2442 const struct pci_device_id *ent)
2443{
2444 static int version_printed;
2445
2446 int pci_using_dac;
2447 int err, pidx;
2448 unsigned int pmask;
2449 struct adapter *adapter;
2450 struct port_info *pi;
2451 struct net_device *netdev;
2452
2453 /*
2454 * Vet our module parameters.
2455 */
2456 if (msi != MSI_MSIX && msi != MSI_MSI) {
2457 dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d"
2458 " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX,
2459 MSI_MSI);
2460 err = -EINVAL;
2461 goto err_out;
2462 }
2463
2464 /*
2465 * Print our driver banner the first time we're called to initialize a
2466 * device.
2467 */
2468 if (version_printed == 0) {
2469 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2470 version_printed = 1;
2471 }
2472
7a0c2029 2473
be839e39 2474 /*
7a0c2029 2475 * Initialize generic PCI device state.
be839e39 2476 */
7a0c2029 2477 err = pci_enable_device(pdev);
be839e39 2478 if (err) {
7a0c2029 2479 dev_err(&pdev->dev, "cannot enable PCI device\n");
be839e39
CL
2480 return err;
2481 }
2482
2483 /*
7a0c2029
KV
2484 * Reserve PCI resources for the device. If we can't get them some
2485 * other driver may have already claimed the device ...
be839e39 2486 */
7a0c2029 2487 err = pci_request_regions(pdev, KBUILD_MODNAME);
be839e39 2488 if (err) {
7a0c2029
KV
2489 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2490 goto err_disable_device;
be839e39
CL
2491 }
2492
2493 /*
2494 * Set up our DMA mask: try for 64-bit address masking first and
2495 * fall back to 32-bit if we can't get 64 bits ...
2496 */
2497 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2498 if (err == 0) {
2499 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2500 if (err) {
2501 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2502 " coherent allocations\n");
7a0c2029 2503 goto err_release_regions;
be839e39
CL
2504 }
2505 pci_using_dac = 1;
2506 } else {
2507 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2508 if (err != 0) {
2509 dev_err(&pdev->dev, "no usable DMA configuration\n");
7a0c2029 2510 goto err_release_regions;
be839e39
CL
2511 }
2512 pci_using_dac = 0;
2513 }
2514
2515 /*
2516 * Enable bus mastering for the device ...
2517 */
2518 pci_set_master(pdev);
2519
2520 /*
2521 * Allocate our adapter data structure and attach it to the device.
2522 */
2523 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2524 if (!adapter) {
2525 err = -ENOMEM;
7a0c2029 2526 goto err_release_regions;
be839e39
CL
2527 }
2528 pci_set_drvdata(pdev, adapter);
2529 adapter->pdev = pdev;
2530 adapter->pdev_dev = &pdev->dev;
2531
2532 /*
2533 * Initialize SMP data synchronization resources.
2534 */
2535 spin_lock_init(&adapter->stats_lock);
2536
2537 /*
2538 * Map our I/O registers in BAR0.
2539 */
2540 adapter->regs = pci_ioremap_bar(pdev, 0);
2541 if (!adapter->regs) {
2542 dev_err(&pdev->dev, "cannot map device registers\n");
2543 err = -ENOMEM;
2544 goto err_free_adapter;
2545 }
2546
2547 /*
2548 * Initialize adapter level features.
2549 */
2550 adapter->name = pci_name(pdev);
2551 adapter->msg_enable = dflt_msg_enable;
2552 err = adap_init0(adapter);
2553 if (err)
2554 goto err_unmap_bar;
2555
2556 /*
2557 * Allocate our "adapter ports" and stitch everything together.
2558 */
2559 pmask = adapter->params.vfres.pmask;
2560 for_each_port(adapter, pidx) {
2561 int port_id, viid;
2562
2563 /*
2564 * We simplistically allocate our virtual interfaces
2565 * sequentially across the port numbers to which we have
2566 * access rights. This should be configurable in some manner
2567 * ...
2568 */
2569 if (pmask == 0)
2570 break;
2571 port_id = ffs(pmask) - 1;
2572 pmask &= ~(1 << port_id);
2573 viid = t4vf_alloc_vi(adapter, port_id);
2574 if (viid < 0) {
2575 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2576 " err=%d\n", port_id, viid);
2577 err = viid;
2578 goto err_free_dev;
2579 }
2580
2581 /*
2582 * Allocate our network device and stitch things together.
2583 */
2584 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2585 MAX_PORT_QSETS);
2586 if (netdev == NULL) {
2587 dev_err(&pdev->dev, "cannot allocate netdev for"
2588 " port %d\n", port_id);
2589 t4vf_free_vi(adapter, viid);
2590 err = -ENOMEM;
2591 goto err_free_dev;
2592 }
2593 adapter->port[pidx] = netdev;
2594 SET_NETDEV_DEV(netdev, &pdev->dev);
2595 pi = netdev_priv(netdev);
2596 pi->adapter = adapter;
2597 pi->pidx = pidx;
2598 pi->port_id = port_id;
2599 pi->viid = viid;
2600
2601 /*
2602 * Initialize the starting state of our "port" and register
2603 * it.
2604 */
2605 pi->xact_addr_filt = -1;
2606 pi->rx_offload = RX_CSO;
2607 netif_carrier_off(netdev);
be839e39
CL
2608 netdev->irq = pdev->irq;
2609
2610 netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 |
2611 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2612 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2613 NETIF_F_GRO);
2614 if (pci_using_dac)
2615 netdev->features |= NETIF_F_HIGHDMA;
2616 netdev->vlan_features =
2617 (netdev->features &
2618 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2619
2620#ifdef HAVE_NET_DEVICE_OPS
2621 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2622#else
2623 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2624 netdev->open = cxgb4vf_open;
2625 netdev->stop = cxgb4vf_stop;
2626 netdev->hard_start_xmit = t4vf_eth_xmit;
2627 netdev->get_stats = cxgb4vf_get_stats;
2628 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2629 netdev->do_ioctl = cxgb4vf_do_ioctl;
2630 netdev->change_mtu = cxgb4vf_change_mtu;
2631 netdev->set_mac_address = cxgb4vf_set_mac_addr;
be839e39
CL
2632#ifdef CONFIG_NET_POLL_CONTROLLER
2633 netdev->poll_controller = cxgb4vf_poll_controller;
2634#endif
2635#endif
2636 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2637
2638 /*
2639 * Initialize the hardware/software state for the port.
2640 */
2641 err = t4vf_port_init(adapter, pidx);
2642 if (err) {
2643 dev_err(&pdev->dev, "cannot initialize port %d\n",
2644 pidx);
2645 goto err_free_dev;
2646 }
2647 }
2648
2649 /*
2650 * The "card" is now ready to go. If any errors occur during device
2651 * registration we do not fail the whole "card" but rather proceed
2652 * only with the ports we manage to register successfully. However we
2653 * must register at least one net device.
2654 */
2655 for_each_port(adapter, pidx) {
2656 netdev = adapter->port[pidx];
2657 if (netdev == NULL)
2658 continue;
2659
2660 err = register_netdev(netdev);
2661 if (err) {
2662 dev_warn(&pdev->dev, "cannot register net device %s,"
2663 " skipping\n", netdev->name);
2664 continue;
2665 }
2666
2667 set_bit(pidx, &adapter->registered_device_map);
2668 }
2669 if (adapter->registered_device_map == 0) {
2670 dev_err(&pdev->dev, "could not register any net devices\n");
2671 goto err_free_dev;
2672 }
2673
2674 /*
2675 * Set up our debugfs entries.
2676 */
2677 if (cxgb4vf_debugfs_root) {
2678 adapter->debugfs_root =
2679 debugfs_create_dir(pci_name(pdev),
2680 cxgb4vf_debugfs_root);
2681 if (adapter->debugfs_root == NULL)
2682 dev_warn(&pdev->dev, "could not create debugfs"
2683 " directory");
2684 else
2685 setup_debugfs(adapter);
2686 }
2687
2688 /*
2689 * See what interrupts we'll be using. If we've been configured to
2690 * use MSI-X interrupts, try to enable them but fall back to using
2691 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2692 * get MSI interrupts we bail with the error.
2693 */
2694 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2695 adapter->flags |= USING_MSIX;
2696 else {
2697 err = pci_enable_msi(pdev);
2698 if (err) {
2699 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2700 " err=%d\n",
2701 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2702 goto err_free_debugfs;
2703 }
2704 adapter->flags |= USING_MSI;
2705 }
2706
2707 /*
2708 * Now that we know how many "ports" we have and what their types are,
2709 * and how many Queue Sets we can support, we can configure our queue
2710 * resources.
2711 */
2712 cfg_queues(adapter);
2713
2714 /*
2715 * Print a short notice on the existance and configuration of the new
2716 * VF network device ...
2717 */
2718 for_each_port(adapter, pidx) {
2719 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2720 adapter->port[pidx]->name,
2721 (adapter->flags & USING_MSIX) ? "MSI-X" :
2722 (adapter->flags & USING_MSI) ? "MSI" : "");
2723 }
2724
2725 /*
2726 * Return success!
2727 */
2728 return 0;
2729
2730 /*
2731 * Error recovery and exit code. Unwind state that's been created
2732 * so far and return the error.
2733 */
2734
2735err_free_debugfs:
2736 if (adapter->debugfs_root) {
2737 cleanup_debugfs(adapter);
2738 debugfs_remove_recursive(adapter->debugfs_root);
2739 }
2740
2741err_free_dev:
2742 for_each_port(adapter, pidx) {
2743 netdev = adapter->port[pidx];
2744 if (netdev == NULL)
2745 continue;
2746 pi = netdev_priv(netdev);
2747 t4vf_free_vi(adapter, pi->viid);
2748 if (test_bit(pidx, &adapter->registered_device_map))
2749 unregister_netdev(netdev);
2750 free_netdev(netdev);
2751 }
2752
2753err_unmap_bar:
2754 iounmap(adapter->regs);
2755
2756err_free_adapter:
2757 kfree(adapter);
2758 pci_set_drvdata(pdev, NULL);
2759
be839e39
CL
2760err_release_regions:
2761 pci_release_regions(pdev);
2762 pci_set_drvdata(pdev, NULL);
7a0c2029
KV
2763 pci_clear_master(pdev);
2764
2765err_disable_device:
2766 pci_disable_device(pdev);
be839e39
CL
2767
2768err_out:
2769 return err;
2770}
2771
2772/*
2773 * "Remove" a device: tear down all kernel and driver state created in the
2774 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2775 * that this is called "remove_one" in the PF Driver.)
2776 */
2777static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2778{
2779 struct adapter *adapter = pci_get_drvdata(pdev);
2780
2781 /*
2782 * Tear down driver state associated with device.
2783 */
2784 if (adapter) {
2785 int pidx;
2786
2787 /*
2788 * Stop all of our activity. Unregister network port,
2789 * disable interrupts, etc.
2790 */
2791 for_each_port(adapter, pidx)
2792 if (test_bit(pidx, &adapter->registered_device_map))
2793 unregister_netdev(adapter->port[pidx]);
2794 t4vf_sge_stop(adapter);
2795 if (adapter->flags & USING_MSIX) {
2796 pci_disable_msix(adapter->pdev);
2797 adapter->flags &= ~USING_MSIX;
2798 } else if (adapter->flags & USING_MSI) {
2799 pci_disable_msi(adapter->pdev);
2800 adapter->flags &= ~USING_MSI;
2801 }
2802
2803 /*
2804 * Tear down our debugfs entries.
2805 */
2806 if (adapter->debugfs_root) {
2807 cleanup_debugfs(adapter);
2808 debugfs_remove_recursive(adapter->debugfs_root);
2809 }
2810
2811 /*
2812 * Free all of the various resources which we've acquired ...
2813 */
2814 t4vf_free_sge_resources(adapter);
2815 for_each_port(adapter, pidx) {
2816 struct net_device *netdev = adapter->port[pidx];
2817 struct port_info *pi;
2818
2819 if (netdev == NULL)
2820 continue;
2821
2822 pi = netdev_priv(netdev);
2823 t4vf_free_vi(adapter, pi->viid);
2824 free_netdev(netdev);
2825 }
2826 iounmap(adapter->regs);
2827 kfree(adapter);
2828 pci_set_drvdata(pdev, NULL);
2829 }
2830
2831 /*
2832 * Disable the device and release its PCI resources.
2833 */
2834 pci_disable_device(pdev);
2835 pci_clear_master(pdev);
2836 pci_release_regions(pdev);
2837}
2838
2839/*
2840 * PCI Device registration data structures.
2841 */
2842#define CH_DEVICE(devid, idx) \
2843 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2844
2845static struct pci_device_id cxgb4vf_pci_tbl[] = {
2846 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2847 CH_DEVICE(0x4800, 0), /* T440-dbg */
2848 CH_DEVICE(0x4801, 0), /* T420-cr */
2849 CH_DEVICE(0x4802, 0), /* T422-cr */
8b6edf87
CL
2850 CH_DEVICE(0x4803, 0), /* T440-cr */
2851 CH_DEVICE(0x4804, 0), /* T420-bch */
2852 CH_DEVICE(0x4805, 0), /* T440-bch */
2853 CH_DEVICE(0x4806, 0), /* T460-ch */
2854 CH_DEVICE(0x4807, 0), /* T420-so */
2855 CH_DEVICE(0x4808, 0), /* T420-cx */
2856 CH_DEVICE(0x4809, 0), /* T420-bt */
2857 CH_DEVICE(0x480a, 0), /* T404-bt */
be839e39
CL
2858 { 0, }
2859};
2860
2861MODULE_DESCRIPTION(DRV_DESC);
2862MODULE_AUTHOR("Chelsio Communications");
2863MODULE_LICENSE("Dual BSD/GPL");
2864MODULE_VERSION(DRV_VERSION);
2865MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2866
2867static struct pci_driver cxgb4vf_driver = {
2868 .name = KBUILD_MODNAME,
2869 .id_table = cxgb4vf_pci_tbl,
2870 .probe = cxgb4vf_pci_probe,
2871 .remove = __devexit_p(cxgb4vf_pci_remove),
2872};
2873
2874/*
2875 * Initialize global driver state.
2876 */
2877static int __init cxgb4vf_module_init(void)
2878{
2879 int ret;
2880
2881 /* Debugfs support is optional, just warn if this fails */
2882 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2883 if (!cxgb4vf_debugfs_root)
2884 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2885 " debugfs entry, continuing\n");
2886
2887 ret = pci_register_driver(&cxgb4vf_driver);
2888 if (ret < 0)
2889 debugfs_remove(cxgb4vf_debugfs_root);
2890 return ret;
2891}
2892
2893/*
2894 * Tear down global driver state.
2895 */
2896static void __exit cxgb4vf_module_exit(void)
2897{
2898 pci_unregister_driver(&cxgb4vf_driver);
2899 debugfs_remove(cxgb4vf_debugfs_root);
2900}
2901
2902module_init(cxgb4vf_module_init);
2903module_exit(cxgb4vf_module_exit);