]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/cxgb3/l2t.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / drivers / net / cxgb3 / l2t.c
CommitLineData
4d22de3e 1/*
a02d44a0 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
4d22de3e
DLR
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/if.h>
35#include <linux/if_vlan.h>
36#include <linux/jhash.h>
5a0e3ad6 37#include <linux/slab.h>
4d22de3e
DLR
38#include <net/neighbour.h>
39#include "common.h"
40#include "t3cdev.h"
41#include "cxgb3_defs.h"
42#include "l2t.h"
43#include "t3_cpl.h"
44#include "firmware_exports.h"
45
46#define VLAN_NONE 0xfff
47
48/*
49 * Module locking notes: There is a RW lock protecting the L2 table as a
50 * whole plus a spinlock per L2T entry. Entry lookups and allocations happen
51 * under the protection of the table lock, individual entry changes happen
52 * while holding that entry's spinlock. The table lock nests outside the
53 * entry locks. Allocations of new entries take the table lock as writers so
54 * no other lookups can happen while allocating new entries. Entry updates
55 * take the table lock as readers so multiple entries can be updated in
56 * parallel. An L2T entry can be dropped by decrementing its reference count
57 * and therefore can happen in parallel with entry allocation but no entry
58 * can change state or increment its ref count during allocation as both of
59 * these perform lookups.
60 */
61
62static inline unsigned int vlan_prio(const struct l2t_entry *e)
63{
64 return e->vlan >> 13;
65}
66
67static inline unsigned int arp_hash(u32 key, int ifindex,
68 const struct l2t_data *d)
69{
70 return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
71}
72
73static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
74{
75 neigh_hold(n);
76 if (e->neigh)
77 neigh_release(e->neigh);
78 e->neigh = n;
79}
80
81/*
82 * Set up an L2T entry and send any packets waiting in the arp queue. The
83 * supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the
84 * entry locked.
85 */
86static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
87 struct l2t_entry *e)
88{
89 struct cpl_l2t_write_req *req;
147e70e6 90 struct sk_buff *tmp;
4d22de3e
DLR
91
92 if (!skb) {
93 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
94 if (!skb)
95 return -ENOMEM;
96 }
97
98 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
99 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
100 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
101 req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
102 V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
103 V_L2T_W_PRIO(vlan_prio(e)));
104 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
105 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
106 skb->priority = CPL_PRIORITY_CONTROL;
107 cxgb3_ofld_send(dev, skb);
147e70e6
DM
108
109 skb_queue_walk_safe(&e->arpq, skb, tmp) {
110 __skb_unlink(skb, &e->arpq);
4d22de3e
DLR
111 cxgb3_ofld_send(dev, skb);
112 }
4d22de3e
DLR
113 e->state = L2T_STATE_VALID;
114
115 return 0;
116}
117
118/*
119 * Add a packet to the an L2T entry's queue of packets awaiting resolution.
120 * Must be called with the entry's lock held.
121 */
122static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
123{
147e70e6 124 __skb_queue_tail(&e->arpq, skb);
4d22de3e
DLR
125}
126
127int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
128 struct l2t_entry *e)
129{
130again:
131 switch (e->state) {
132 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
133 neigh_event_send(e->neigh, NULL);
134 spin_lock_bh(&e->lock);
135 if (e->state == L2T_STATE_STALE)
136 e->state = L2T_STATE_VALID;
137 spin_unlock_bh(&e->lock);
138 case L2T_STATE_VALID: /* fast-path, send the packet on */
139 return cxgb3_ofld_send(dev, skb);
140 case L2T_STATE_RESOLVING:
141 spin_lock_bh(&e->lock);
142 if (e->state != L2T_STATE_RESOLVING) {
143 /* ARP already completed */
144 spin_unlock_bh(&e->lock);
145 goto again;
146 }
147 arpq_enqueue(e, skb);
148 spin_unlock_bh(&e->lock);
149
150 /*
151 * Only the first packet added to the arpq should kick off
152 * resolution. However, because the alloc_skb below can fail,
153 * we allow each packet added to the arpq to retry resolution
154 * as a way of recovering from transient memory exhaustion.
155 * A better way would be to use a work request to retry L2T
156 * entries when there's no memory.
157 */
158 if (!neigh_event_send(e->neigh, NULL)) {
159 skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
160 GFP_ATOMIC);
161 if (!skb)
162 break;
163
164 spin_lock_bh(&e->lock);
147e70e6 165 if (!skb_queue_empty(&e->arpq))
4d22de3e
DLR
166 setup_l2e_send_pending(dev, skb, e);
167 else /* we lost the race */
168 __kfree_skb(skb);
169 spin_unlock_bh(&e->lock);
170 }
171 }
172 return 0;
173}
174
175EXPORT_SYMBOL(t3_l2t_send_slow);
176
177void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
178{
179again:
180 switch (e->state) {
181 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
182 neigh_event_send(e->neigh, NULL);
183 spin_lock_bh(&e->lock);
184 if (e->state == L2T_STATE_STALE) {
185 e->state = L2T_STATE_VALID;
186 }
187 spin_unlock_bh(&e->lock);
188 return;
189 case L2T_STATE_VALID: /* fast-path, send the packet on */
190 return;
191 case L2T_STATE_RESOLVING:
192 spin_lock_bh(&e->lock);
193 if (e->state != L2T_STATE_RESOLVING) {
194 /* ARP already completed */
195 spin_unlock_bh(&e->lock);
196 goto again;
197 }
198 spin_unlock_bh(&e->lock);
199
200 /*
201 * Only the first packet added to the arpq should kick off
202 * resolution. However, because the alloc_skb below can fail,
203 * we allow each packet added to the arpq to retry resolution
204 * as a way of recovering from transient memory exhaustion.
205 * A better way would be to use a work request to retry L2T
206 * entries when there's no memory.
207 */
208 neigh_event_send(e->neigh, NULL);
209 }
210 return;
211}
212
213EXPORT_SYMBOL(t3_l2t_send_event);
214
215/*
216 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
217 */
218static struct l2t_entry *alloc_l2e(struct l2t_data *d)
219{
220 struct l2t_entry *end, *e, **p;
221
222 if (!atomic_read(&d->nfree))
223 return NULL;
224
225 /* there's definitely a free entry */
226 for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
227 if (atomic_read(&e->refcnt) == 0)
228 goto found;
229
230 for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
231found:
232 d->rover = e + 1;
233 atomic_dec(&d->nfree);
234
235 /*
236 * The entry we found may be an inactive entry that is
237 * presently in the hash table. We need to remove it.
238 */
239 if (e->state != L2T_STATE_UNUSED) {
240 int hash = arp_hash(e->addr, e->ifindex, d);
241
242 for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
243 if (*p == e) {
244 *p = e->next;
245 break;
246 }
247 e->state = L2T_STATE_UNUSED;
248 }
249 return e;
250}
251
252/*
253 * Called when an L2T entry has no more users. The entry is left in the hash
254 * table since it is likely to be reused but we also bump nfree to indicate
255 * that the entry can be reallocated for a different neighbor. We also drop
256 * the existing neighbor reference in case the neighbor is going away and is
257 * waiting on our reference.
258 *
259 * Because entries can be reallocated to other neighbors once their ref count
260 * drops to 0 we need to take the entry's lock to avoid races with a new
261 * incarnation.
262 */
263void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
264{
265 spin_lock_bh(&e->lock);
266 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
267 if (e->neigh) {
268 neigh_release(e->neigh);
269 e->neigh = NULL;
270 }
271 }
272 spin_unlock_bh(&e->lock);
273 atomic_inc(&d->nfree);
274}
275
276EXPORT_SYMBOL(t3_l2e_free);
277
278/*
279 * Update an L2T entry that was previously used for the same next hop as neigh.
280 * Must be called with softirqs disabled.
281 */
282static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
283{
284 unsigned int nud_state;
285
286 spin_lock(&e->lock); /* avoid race with t3_l2t_free */
287
288 if (neigh != e->neigh)
289 neigh_replace(e, neigh);
290 nud_state = neigh->nud_state;
291 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
292 !(nud_state & NUD_VALID))
293 e->state = L2T_STATE_RESOLVING;
294 else if (nud_state & NUD_CONNECTED)
295 e->state = L2T_STATE_VALID;
296 else
297 e->state = L2T_STATE_STALE;
298 spin_unlock(&e->lock);
299}
300
301struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh,
302 struct net_device *dev)
303{
304 struct l2t_entry *e;
305 struct l2t_data *d = L2DATA(cdev);
306 u32 addr = *(u32 *) neigh->primary_key;
307 int ifidx = neigh->dev->ifindex;
308 int hash = arp_hash(addr, ifidx, d);
309 struct port_info *p = netdev_priv(dev);
310 int smt_idx = p->port_id;
311
312 write_lock_bh(&d->lock);
313 for (e = d->l2tab[hash].first; e; e = e->next)
314 if (e->addr == addr && e->ifindex == ifidx &&
315 e->smt_idx == smt_idx) {
316 l2t_hold(d, e);
317 if (atomic_read(&e->refcnt) == 1)
318 reuse_entry(e, neigh);
319 goto done;
320 }
321
322 /* Need to allocate a new entry */
323 e = alloc_l2e(d);
324 if (e) {
325 spin_lock(&e->lock); /* avoid race with t3_l2t_free */
326 e->next = d->l2tab[hash].first;
327 d->l2tab[hash].first = e;
328 e->state = L2T_STATE_RESOLVING;
329 e->addr = addr;
330 e->ifindex = ifidx;
331 e->smt_idx = smt_idx;
332 atomic_set(&e->refcnt, 1);
333 neigh_replace(e, neigh);
334 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
22d1ba74 335 e->vlan = vlan_dev_vlan_id(neigh->dev);
4d22de3e
DLR
336 else
337 e->vlan = VLAN_NONE;
338 spin_unlock(&e->lock);
339 }
340done:
341 write_unlock_bh(&d->lock);
342 return e;
343}
344
345EXPORT_SYMBOL(t3_l2t_get);
346
347/*
348 * Called when address resolution fails for an L2T entry to handle packets
349 * on the arpq head. If a packet specifies a failure handler it is invoked,
350 * otherwise the packets is sent to the offload device.
351 *
352 * XXX: maybe we should abandon the latter behavior and just require a failure
353 * handler.
354 */
147e70e6 355static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq)
4d22de3e 356{
147e70e6
DM
357 struct sk_buff *skb, *tmp;
358
359 skb_queue_walk_safe(arpq, skb, tmp) {
4d22de3e
DLR
360 struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
361
147e70e6 362 __skb_unlink(skb, arpq);
4d22de3e
DLR
363 if (cb->arp_failure_handler)
364 cb->arp_failure_handler(dev, skb);
365 else
366 cxgb3_ofld_send(dev, skb);
367 }
368}
369
370/*
371 * Called when the host's ARP layer makes a change to some entry that is
372 * loaded into the HW L2 table.
373 */
374void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
375{
147e70e6 376 struct sk_buff_head arpq;
4d22de3e 377 struct l2t_entry *e;
4d22de3e
DLR
378 struct l2t_data *d = L2DATA(dev);
379 u32 addr = *(u32 *) neigh->primary_key;
380 int ifidx = neigh->dev->ifindex;
381 int hash = arp_hash(addr, ifidx, d);
382
383 read_lock_bh(&d->lock);
384 for (e = d->l2tab[hash].first; e; e = e->next)
385 if (e->addr == addr && e->ifindex == ifidx) {
386 spin_lock(&e->lock);
387 goto found;
388 }
389 read_unlock_bh(&d->lock);
390 return;
391
392found:
147e70e6
DM
393 __skb_queue_head_init(&arpq);
394
4d22de3e
DLR
395 read_unlock(&d->lock);
396 if (atomic_read(&e->refcnt)) {
397 if (neigh != e->neigh)
398 neigh_replace(e, neigh);
399
400 if (e->state == L2T_STATE_RESOLVING) {
401 if (neigh->nud_state & NUD_FAILED) {
147e70e6 402 skb_queue_splice_init(&e->arpq, &arpq);
4eb61e02 403 } else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE))
4d22de3e
DLR
404 setup_l2e_send_pending(dev, NULL, e);
405 } else {
8082c37c 406 e->state = neigh->nud_state & NUD_CONNECTED ?
4d22de3e
DLR
407 L2T_STATE_VALID : L2T_STATE_STALE;
408 if (memcmp(e->dmac, neigh->ha, 6))
409 setup_l2e_send_pending(dev, NULL, e);
410 }
411 }
412 spin_unlock_bh(&e->lock);
413
147e70e6
DM
414 if (!skb_queue_empty(&arpq))
415 handle_failed_resolution(dev, &arpq);
4d22de3e
DLR
416}
417
418struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
419{
420 struct l2t_data *d;
421 int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry);
422
423 d = cxgb_alloc_mem(size);
424 if (!d)
425 return NULL;
426
427 d->nentries = l2t_capacity;
428 d->rover = &d->l2tab[1]; /* entry 0 is not used */
429 atomic_set(&d->nfree, l2t_capacity - 1);
430 rwlock_init(&d->lock);
431
432 for (i = 0; i < l2t_capacity; ++i) {
433 d->l2tab[i].idx = i;
434 d->l2tab[i].state = L2T_STATE_UNUSED;
6d329af9 435 __skb_queue_head_init(&d->l2tab[i].arpq);
4d22de3e
DLR
436 spin_lock_init(&d->l2tab[i].lock);
437 atomic_set(&d->l2tab[i].refcnt, 0);
438 }
439 return d;
440}
441
442void t3_free_l2t(struct l2t_data *d)
443{
444 cxgb_free_mem(d);
445}
446