]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/chelsio/sge.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[net-next-2.6.git] / drivers / net / chelsio / sge.c
CommitLineData
8199d3a7
CL
1/*****************************************************************************
2 * *
3 * File: sge.c *
559fb51b
SB
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
8199d3a7
CL
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40#include "common.h"
41
8199d3a7
CL
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/pci.h>
45#include <linux/netdevice.h>
46#include <linux/etherdevice.h>
47#include <linux/if_vlan.h>
48#include <linux/skbuff.h>
49#include <linux/init.h>
50#include <linux/mm.h>
51#include <linux/ip.h>
52#include <linux/in.h>
53#include <linux/if_arp.h>
54
55#include "cpl5_cmd.h"
56#include "sge.h"
57#include "regs.h"
58#include "espi.h"
59
559fb51b
SB
60
61#ifdef NETIF_F_TSO
8199d3a7 62#include <linux/tcp.h>
559fb51b 63#endif
8199d3a7
CL
64
65#define SGE_CMDQ_N 2
66#define SGE_FREELQ_N 2
559fb51b 67#define SGE_CMDQ0_E_N 1024
8199d3a7
CL
68#define SGE_CMDQ1_E_N 128
69#define SGE_FREEL_SIZE 4096
70#define SGE_JUMBO_FREEL_SIZE 512
71#define SGE_FREEL_REFILL_THRESH 16
72#define SGE_RESPQ_E_N 1024
559fb51b
SB
73#define SGE_INTRTIMER_NRES 1000
74#define SGE_RX_COPY_THRES 256
8199d3a7
CL
75#define SGE_RX_SM_BUF_SIZE 1536
76
559fb51b
SB
77# define SGE_RX_DROP_THRES 2
78
79#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80
81/*
82 * Period of the TX buffer reclaim timer. This timer does not need to run
83 * frequently as TX buffers are usually reclaimed by new TX packets.
84 */
85#define TX_RECLAIM_PERIOD (HZ / 4)
8199d3a7 86
8199d3a7 87#ifndef NET_IP_ALIGN
559fb51b 88# define NET_IP_ALIGN 2
8199d3a7
CL
89#endif
90
559fb51b
SB
91#define M_CMD_LEN 0x7fffffff
92#define V_CMD_LEN(v) (v)
93#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
94#define V_CMD_GEN1(v) ((v) << 31)
95#define V_CMD_GEN2(v) (v)
96#define F_CMD_DATAVALID (1 << 1)
97#define F_CMD_SOP (1 << 2)
98#define V_CMD_EOP(v) ((v) << 3)
99
8199d3a7 100/*
559fb51b 101 * Command queue, receive buffer list, and response queue descriptors.
8199d3a7
CL
102 */
103#if defined(__BIG_ENDIAN_BITFIELD)
104struct cmdQ_e {
559fb51b
SB
105 u32 addr_lo;
106 u32 len_gen;
107 u32 flags;
108 u32 addr_hi;
8199d3a7
CL
109};
110
111struct freelQ_e {
559fb51b
SB
112 u32 addr_lo;
113 u32 len_gen;
114 u32 gen2;
115 u32 addr_hi;
8199d3a7
CL
116};
117
118struct respQ_e {
119 u32 Qsleeping : 4;
120 u32 Cmdq1CreditReturn : 5;
121 u32 Cmdq1DmaComplete : 5;
122 u32 Cmdq0CreditReturn : 5;
123 u32 Cmdq0DmaComplete : 5;
124 u32 FreelistQid : 2;
125 u32 CreditValid : 1;
126 u32 DataValid : 1;
127 u32 Offload : 1;
128 u32 Eop : 1;
129 u32 Sop : 1;
130 u32 GenerationBit : 1;
131 u32 BufferLength;
132};
8199d3a7
CL
133#elif defined(__LITTLE_ENDIAN_BITFIELD)
134struct cmdQ_e {
559fb51b
SB
135 u32 len_gen;
136 u32 addr_lo;
137 u32 addr_hi;
138 u32 flags;
8199d3a7
CL
139};
140
141struct freelQ_e {
559fb51b
SB
142 u32 len_gen;
143 u32 addr_lo;
144 u32 addr_hi;
145 u32 gen2;
8199d3a7
CL
146};
147
148struct respQ_e {
149 u32 BufferLength;
150 u32 GenerationBit : 1;
151 u32 Sop : 1;
152 u32 Eop : 1;
153 u32 Offload : 1;
154 u32 DataValid : 1;
155 u32 CreditValid : 1;
156 u32 FreelistQid : 2;
157 u32 Cmdq0DmaComplete : 5;
158 u32 Cmdq0CreditReturn : 5;
159 u32 Cmdq1DmaComplete : 5;
160 u32 Cmdq1CreditReturn : 5;
161 u32 Qsleeping : 4;
162} ;
163#endif
164
165/*
166 * SW Context Command and Freelist Queue Descriptors
167 */
168struct cmdQ_ce {
169 struct sk_buff *skb;
170 DECLARE_PCI_UNMAP_ADDR(dma_addr);
171 DECLARE_PCI_UNMAP_LEN(dma_len);
8199d3a7
CL
172};
173
174struct freelQ_ce {
175 struct sk_buff *skb;
176 DECLARE_PCI_UNMAP_ADDR(dma_addr);
177 DECLARE_PCI_UNMAP_LEN(dma_len);
178};
179
180/*
559fb51b 181 * SW command, freelist and response rings
8199d3a7
CL
182 */
183struct cmdQ {
559fb51b
SB
184 unsigned long status; /* HW DMA fetch status */
185 unsigned int in_use; /* # of in-use command descriptors */
186 unsigned int size; /* # of descriptors */
187 unsigned int processed; /* total # of descs HW has processed */
188 unsigned int cleaned; /* total # of descs SW has reclaimed */
189 unsigned int stop_thres; /* SW TX queue suspend threshold */
190 u16 pidx; /* producer index (SW) */
191 u16 cidx; /* consumer index (HW) */
192 u8 genbit; /* current generation (=valid) bit */
193 u8 sop; /* is next entry start of packet? */
194 struct cmdQ_e *entries; /* HW command descriptor Q */
195 struct cmdQ_ce *centries; /* SW command context descriptor Q */
196 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
197 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
8199d3a7
CL
198};
199
200struct freelQ {
559fb51b
SB
201 unsigned int credits; /* # of available RX buffers */
202 unsigned int size; /* free list capacity */
203 u16 pidx; /* producer index (SW) */
204 u16 cidx; /* consumer index (HW) */
8199d3a7
CL
205 u16 rx_buffer_size; /* Buffer size on this free list */
206 u16 dma_offset; /* DMA offset to align IP headers */
559fb51b
SB
207 u16 recycleq_idx; /* skb recycle q to use */
208 u8 genbit; /* current generation (=valid) bit */
209 struct freelQ_e *entries; /* HW freelist descriptor Q */
210 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
211 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
8199d3a7
CL
212};
213
214struct respQ {
559fb51b
SB
215 unsigned int credits; /* credits to be returned to SGE */
216 unsigned int size; /* # of response Q descriptors */
217 u16 cidx; /* consumer index (SW) */
218 u8 genbit; /* current generation(=valid) bit */
8199d3a7 219 struct respQ_e *entries; /* HW response descriptor Q */
559fb51b
SB
220 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
221};
222
223/* Bit flags for cmdQ.status */
224enum {
225 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
226 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
8199d3a7
CL
227};
228
229/*
230 * Main SGE data structure
231 *
232 * Interrupts are handled by a single CPU and it is likely that on a MP system
233 * the application is migrated to another CPU. In that scenario, we try to
234 * seperate the RX(in irq context) and TX state in order to decrease memory
235 * contention.
236 */
237struct sge {
238 struct adapter *adapter; /* adapter backpointer */
559fb51b
SB
239 struct net_device *netdev; /* netdevice backpointer */
240 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
241 struct respQ respQ; /* response Q */
242 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
8199d3a7
CL
243 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
244 unsigned int jumbo_fl; /* jumbo freelist Q index */
559fb51b
SB
245 unsigned int intrtimer_nres; /* no-resource interrupt timer */
246 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
247 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
248 struct timer_list espibug_timer;
249 unsigned int espibug_timeout;
250 struct sk_buff *espibug_skb;
251 u32 sge_control; /* shadow value of sge control reg */
252 struct sge_intr_counts stats;
253 struct sge_port_stats port_stats[MAX_NPORTS];
254 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
8199d3a7
CL
255};
256
8199d3a7
CL
257/*
258 * PIO to indicate that memory mapped Q contains valid descriptor(s).
259 */
559fb51b 260static inline void doorbell_pio(struct adapter *adapter, u32 val)
8199d3a7
CL
261{
262 wmb();
559fb51b 263 writel(val, adapter->regs + A_SG_DOORBELL);
8199d3a7
CL
264}
265
266/*
267 * Frees all RX buffers on the freelist Q. The caller must make sure that
268 * the SGE is turned off before calling this function.
269 */
559fb51b 270static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
8199d3a7 271{
559fb51b 272 unsigned int cidx = q->cidx;
8199d3a7 273
559fb51b
SB
274 while (q->credits--) {
275 struct freelQ_ce *ce = &q->centries[cidx];
8199d3a7
CL
276
277 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
278 pci_unmap_len(ce, dma_len),
279 PCI_DMA_FROMDEVICE);
280 dev_kfree_skb(ce->skb);
281 ce->skb = NULL;
559fb51b 282 if (++cidx == q->size)
8199d3a7
CL
283 cidx = 0;
284 }
285}
286
287/*
288 * Free RX free list and response queue resources.
289 */
290static void free_rx_resources(struct sge *sge)
291{
292 struct pci_dev *pdev = sge->adapter->pdev;
293 unsigned int size, i;
294
295 if (sge->respQ.entries) {
559fb51b 296 size = sizeof(struct respQ_e) * sge->respQ.size;
8199d3a7
CL
297 pci_free_consistent(pdev, size, sge->respQ.entries,
298 sge->respQ.dma_addr);
299 }
300
301 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b 302 struct freelQ *q = &sge->freelQ[i];
8199d3a7 303
559fb51b
SB
304 if (q->centries) {
305 free_freelQ_buffers(pdev, q);
306 kfree(q->centries);
8199d3a7 307 }
559fb51b
SB
308 if (q->entries) {
309 size = sizeof(struct freelQ_e) * q->size;
310 pci_free_consistent(pdev, size, q->entries,
311 q->dma_addr);
8199d3a7
CL
312 }
313 }
314}
315
316/*
317 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
559fb51b 318 * response queue.
8199d3a7
CL
319 */
320static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
321{
322 struct pci_dev *pdev = sge->adapter->pdev;
323 unsigned int size, i;
324
325 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b
SB
326 struct freelQ *q = &sge->freelQ[i];
327
328 q->genbit = 1;
329 q->size = p->freelQ_size[i];
330 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
331 size = sizeof(struct freelQ_e) * q->size;
332 q->entries = (struct freelQ_e *)
333 pci_alloc_consistent(pdev, size, &q->dma_addr);
334 if (!q->entries)
8199d3a7 335 goto err_no_mem;
559fb51b
SB
336 memset(q->entries, 0, size);
337 size = sizeof(struct freelQ_ce) * q->size;
338 q->centries = kmalloc(size, GFP_KERNEL);
339 if (!q->centries)
8199d3a7 340 goto err_no_mem;
559fb51b 341 memset(q->centries, 0, size);
8199d3a7
CL
342 }
343
344 /*
345 * Calculate the buffer sizes for the two free lists. FL0 accommodates
346 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
347 * including all the sk_buff overhead.
348 *
349 * Note: For T2 FL0 and FL1 are reversed.
350 */
351 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
352 sizeof(struct cpl_rx_data) +
353 sge->freelQ[!sge->jumbo_fl].dma_offset;
354 sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) -
355 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
356
559fb51b
SB
357 /*
358 * Setup which skb recycle Q should be used when recycling buffers from
359 * each free list.
360 */
361 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
362 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
363
8199d3a7 364 sge->respQ.genbit = 1;
559fb51b
SB
365 sge->respQ.size = SGE_RESPQ_E_N;
366 sge->respQ.credits = 0;
367 size = sizeof(struct respQ_e) * sge->respQ.size;
8199d3a7
CL
368 sge->respQ.entries = (struct respQ_e *)
369 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
370 if (!sge->respQ.entries)
371 goto err_no_mem;
372 memset(sge->respQ.entries, 0, size);
373 return 0;
374
375err_no_mem:
376 free_rx_resources(sge);
377 return -ENOMEM;
378}
379
380/*
559fb51b 381 * Reclaims n TX descriptors and frees the buffers associated with them.
8199d3a7 382 */
559fb51b 383static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
8199d3a7 384{
559fb51b 385 struct cmdQ_ce *ce;
8199d3a7 386 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b 387 unsigned int cidx = q->cidx;
8199d3a7 388
559fb51b
SB
389 q->in_use -= n;
390 ce = &q->centries[cidx];
391 while (n--) {
392 if (q->sop)
8199d3a7 393 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
559fb51b 394 pci_unmap_len(ce, dma_len),
8199d3a7
CL
395 PCI_DMA_TODEVICE);
396 else
397 pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
559fb51b 398 pci_unmap_len(ce, dma_len),
8199d3a7 399 PCI_DMA_TODEVICE);
559fb51b
SB
400 q->sop = 0;
401 if (ce->skb) {
402 dev_kfree_skb(ce->skb);
403 q->sop = 1;
404 }
8199d3a7 405 ce++;
559fb51b 406 if (++cidx == q->size) {
8199d3a7 407 cidx = 0;
559fb51b 408 ce = q->centries;
8199d3a7
CL
409 }
410 }
559fb51b 411 q->cidx = cidx;
8199d3a7
CL
412}
413
414/*
415 * Free TX resources.
416 *
417 * Assumes that SGE is stopped and all interrupts are disabled.
418 */
419static void free_tx_resources(struct sge *sge)
420{
421 struct pci_dev *pdev = sge->adapter->pdev;
422 unsigned int size, i;
423
424 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b 425 struct cmdQ *q = &sge->cmdQ[i];
8199d3a7 426
559fb51b
SB
427 if (q->centries) {
428 if (q->in_use)
429 free_cmdQ_buffers(sge, q, q->in_use);
430 kfree(q->centries);
8199d3a7 431 }
559fb51b
SB
432 if (q->entries) {
433 size = sizeof(struct cmdQ_e) * q->size;
434 pci_free_consistent(pdev, size, q->entries,
435 q->dma_addr);
8199d3a7
CL
436 }
437 }
438}
439
440/*
441 * Allocates basic TX resources, consisting of memory mapped command Qs.
442 */
443static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
444{
445 struct pci_dev *pdev = sge->adapter->pdev;
446 unsigned int size, i;
447
448 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b
SB
449 struct cmdQ *q = &sge->cmdQ[i];
450
451 q->genbit = 1;
452 q->sop = 1;
453 q->size = p->cmdQ_size[i];
454 q->in_use = 0;
455 q->status = 0;
456 q->processed = q->cleaned = 0;
457 q->stop_thres = 0;
458 spin_lock_init(&q->lock);
459 size = sizeof(struct cmdQ_e) * q->size;
460 q->entries = (struct cmdQ_e *)
461 pci_alloc_consistent(pdev, size, &q->dma_addr);
462 if (!q->entries)
8199d3a7 463 goto err_no_mem;
559fb51b
SB
464 memset(q->entries, 0, size);
465 size = sizeof(struct cmdQ_ce) * q->size;
466 q->centries = kmalloc(size, GFP_KERNEL);
467 if (!q->centries)
8199d3a7 468 goto err_no_mem;
559fb51b 469 memset(q->centries, 0, size);
8199d3a7
CL
470 }
471
559fb51b
SB
472 /*
473 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
474 * only. For queue 0 set the stop threshold so we can handle one more
475 * packet from each port, plus reserve an additional 24 entries for
476 * Ethernet packets only. Queue 1 never suspends nor do we reserve
477 * space for Ethernet packets.
478 */
479 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
480 (MAX_SKB_FRAGS + 1);
8199d3a7
CL
481 return 0;
482
483err_no_mem:
484 free_tx_resources(sge);
485 return -ENOMEM;
486}
487
488static inline void setup_ring_params(struct adapter *adapter, u64 addr,
489 u32 size, int base_reg_lo,
490 int base_reg_hi, int size_reg)
491{
559fb51b
SB
492 writel((u32)addr, adapter->regs + base_reg_lo);
493 writel(addr >> 32, adapter->regs + base_reg_hi);
494 writel(size, adapter->regs + size_reg);
8199d3a7
CL
495}
496
497/*
498 * Enable/disable VLAN acceleration.
499 */
500void t1_set_vlan_accel(struct adapter *adapter, int on_off)
501{
502 struct sge *sge = adapter->sge;
503
504 sge->sge_control &= ~F_VLAN_XTRACT;
505 if (on_off)
506 sge->sge_control |= F_VLAN_XTRACT;
507 if (adapter->open_device_map) {
559fb51b
SB
508 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
509 readl(adapter->regs + A_SG_CONTROL); /* flush */
8199d3a7
CL
510 }
511}
512
8199d3a7
CL
513/*
514 * Programs the various SGE registers. However, the engine is not yet enabled,
515 * but sge->sge_control is setup and ready to go.
516 */
517static void configure_sge(struct sge *sge, struct sge_params *p)
518{
519 struct adapter *ap = sge->adapter;
559fb51b
SB
520
521 writel(0, ap->regs + A_SG_CONTROL);
522 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
8199d3a7 523 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
559fb51b 524 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
8199d3a7
CL
525 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
526 setup_ring_params(ap, sge->freelQ[0].dma_addr,
559fb51b 527 sge->freelQ[0].size, A_SG_FL0BASELWR,
8199d3a7
CL
528 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
529 setup_ring_params(ap, sge->freelQ[1].dma_addr,
559fb51b 530 sge->freelQ[1].size, A_SG_FL1BASELWR,
8199d3a7
CL
531 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
532
533 /* The threshold comparison uses <. */
559fb51b 534 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
8199d3a7 535
559fb51b
SB
536 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
537 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
538 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
8199d3a7
CL
539
540 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
541 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
542 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
559fb51b 543 F_DISABLE_FL0_GTS | F_DISABLE_FL1_GTS |
8199d3a7
CL
544 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
545
546#if defined(__BIG_ENDIAN_BITFIELD)
547 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
548#endif
549
559fb51b
SB
550 /* Initialize no-resource timer */
551 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
552
553 t1_sge_set_coalesce_params(sge, p);
8199d3a7
CL
554}
555
556/*
557 * Return the payload capacity of the jumbo free-list buffers.
558 */
559static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
560{
561 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
559fb51b
SB
562 sge->freelQ[sge->jumbo_fl].dma_offset -
563 sizeof(struct cpl_rx_data);
8199d3a7
CL
564}
565
566/*
567 * Frees all SGE related resources and the sge structure itself
568 */
569void t1_sge_destroy(struct sge *sge)
570{
559fb51b
SB
571 if (sge->espibug_skb)
572 kfree_skb(sge->espibug_skb);
573
8199d3a7
CL
574 free_tx_resources(sge);
575 free_rx_resources(sge);
576 kfree(sge);
577}
578
579/*
580 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
581 * context Q) until the Q is full or alloc_skb fails.
582 *
583 * It is possible that the generation bits already match, indicating that the
584 * buffer is already valid and nothing needs to be done. This happens when we
585 * copied a received buffer into a new sk_buff during the interrupt processing.
586 *
587 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
588 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
589 * aligned.
590 */
559fb51b 591static void refill_free_list(struct sge *sge, struct freelQ *q)
8199d3a7
CL
592{
593 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b
SB
594 struct freelQ_ce *ce = &q->centries[q->pidx];
595 struct freelQ_e *e = &q->entries[q->pidx];
596 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
8199d3a7
CL
597
598
559fb51b
SB
599 while (q->credits < q->size) {
600 struct sk_buff *skb;
601 dma_addr_t mapping;
8199d3a7 602
559fb51b
SB
603 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
604 if (!skb)
605 break;
606
607 skb_reserve(skb, q->dma_offset);
608 mapping = pci_map_single(pdev, skb->data, dma_len,
609 PCI_DMA_FROMDEVICE);
610 ce->skb = skb;
611 pci_unmap_addr_set(ce, dma_addr, mapping);
612 pci_unmap_len_set(ce, dma_len, dma_len);
613 e->addr_lo = (u32)mapping;
614 e->addr_hi = (u64)mapping >> 32;
615 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
616 wmb();
617 e->gen2 = V_CMD_GEN2(q->genbit);
8199d3a7
CL
618
619 e++;
620 ce++;
559fb51b
SB
621 if (++q->pidx == q->size) {
622 q->pidx = 0;
623 q->genbit ^= 1;
624 ce = q->centries;
625 e = q->entries;
8199d3a7 626 }
559fb51b 627 q->credits++;
8199d3a7
CL
628 }
629
630}
631
632/*
559fb51b
SB
633 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
634 * of both rings, we go into 'few interrupt mode' in order to give the system
635 * time to free up resources.
8199d3a7
CL
636 */
637static void freelQs_empty(struct sge *sge)
638{
559fb51b
SB
639 struct adapter *adapter = sge->adapter;
640 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
641 u32 irqholdoff_reg;
642
643 refill_free_list(sge, &sge->freelQ[0]);
644 refill_free_list(sge, &sge->freelQ[1]);
645
559fb51b
SB
646 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
647 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
8199d3a7 648 irq_reg |= F_FL_EXHAUSTED;
559fb51b 649 irqholdoff_reg = sge->fixed_intrtimer;
8199d3a7
CL
650 } else {
651 /* Clear the F_FL_EXHAUSTED interrupts for now */
652 irq_reg &= ~F_FL_EXHAUSTED;
653 irqholdoff_reg = sge->intrtimer_nres;
654 }
559fb51b
SB
655 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
656 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
657
658 /* We reenable the Qs to force a freelist GTS interrupt later */
559fb51b 659 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
8199d3a7
CL
660}
661
662#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
663#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
664#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
665 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
666
667/*
668 * Disable SGE Interrupts
669 */
670void t1_sge_intr_disable(struct sge *sge)
671{
559fb51b 672 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7 673
559fb51b
SB
674 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
675 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
676}
677
678/*
679 * Enable SGE interrupts.
680 */
681void t1_sge_intr_enable(struct sge *sge)
682{
683 u32 en = SGE_INT_ENABLE;
559fb51b 684 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
685
686 if (sge->adapter->flags & TSO_CAPABLE)
687 en &= ~F_PACKET_TOO_BIG;
559fb51b
SB
688 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
689 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
690}
691
692/*
693 * Clear SGE interrupts.
694 */
695void t1_sge_intr_clear(struct sge *sge)
696{
559fb51b
SB
697 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
698 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
699}
700
701/*
702 * SGE 'Error' interrupt handler
703 */
704int t1_sge_intr_error_handler(struct sge *sge)
705{
706 struct adapter *adapter = sge->adapter;
559fb51b 707 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
708
709 if (adapter->flags & TSO_CAPABLE)
710 cause &= ~F_PACKET_TOO_BIG;
711 if (cause & F_RESPQ_EXHAUSTED)
559fb51b 712 sge->stats.respQ_empty++;
8199d3a7 713 if (cause & F_RESPQ_OVERFLOW) {
559fb51b 714 sge->stats.respQ_overflow++;
8199d3a7
CL
715 CH_ALERT("%s: SGE response queue overflow\n",
716 adapter->name);
717 }
718 if (cause & F_FL_EXHAUSTED) {
559fb51b 719 sge->stats.freelistQ_empty++;
8199d3a7
CL
720 freelQs_empty(sge);
721 }
722 if (cause & F_PACKET_TOO_BIG) {
559fb51b 723 sge->stats.pkt_too_big++;
8199d3a7
CL
724 CH_ALERT("%s: SGE max packet size exceeded\n",
725 adapter->name);
726 }
727 if (cause & F_PACKET_MISMATCH) {
559fb51b 728 sge->stats.pkt_mismatch++;
8199d3a7
CL
729 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
730 }
731 if (cause & SGE_INT_FATAL)
732 t1_fatal_err(adapter);
733
559fb51b 734 writel(cause, adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
735 return 0;
736}
737
559fb51b
SB
738const struct sge_intr_counts *t1_sge_get_intr_counts(struct sge *sge)
739{
740 return &sge->stats;
741}
742
743const struct sge_port_stats *t1_sge_get_port_stats(struct sge *sge, int port)
744{
745 return &sge->port_stats[port];
746}
747
748/**
749 * recycle_fl_buf - recycle a free list buffer
750 * @fl: the free list
751 * @idx: index of buffer to recycle
8199d3a7 752 *
559fb51b
SB
753 * Recycles the specified buffer on the given free list by adding it at
754 * the next available slot on the list.
8199d3a7 755 */
559fb51b 756static void recycle_fl_buf(struct freelQ *fl, int idx)
8199d3a7 757{
559fb51b
SB
758 struct freelQ_e *from = &fl->entries[idx];
759 struct freelQ_e *to = &fl->entries[fl->pidx];
8199d3a7 760
559fb51b
SB
761 fl->centries[fl->pidx] = fl->centries[idx];
762 to->addr_lo = from->addr_lo;
763 to->addr_hi = from->addr_hi;
764 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
765 wmb();
766 to->gen2 = V_CMD_GEN2(fl->genbit);
767 fl->credits++;
8199d3a7 768
559fb51b
SB
769 if (++fl->pidx == fl->size) {
770 fl->pidx = 0;
771 fl->genbit ^= 1;
8199d3a7 772 }
559fb51b 773}
8199d3a7 774
559fb51b
SB
775/**
776 * get_packet - return the next ingress packet buffer
777 * @pdev: the PCI device that received the packet
778 * @fl: the SGE free list holding the packet
779 * @len: the actual packet length, excluding any SGE padding
780 * @dma_pad: padding at beginning of buffer left by SGE DMA
781 * @skb_pad: padding to be used if the packet is copied
782 * @copy_thres: length threshold under which a packet should be copied
783 * @drop_thres: # of remaining buffers before we start dropping packets
784 *
785 * Get the next packet from a free list and complete setup of the
786 * sk_buff. If the packet is small we make a copy and recycle the
787 * original buffer, otherwise we use the original buffer itself. If a
788 * positive drop threshold is supplied packets are dropped and their
789 * buffers recycled if (a) the number of remaining buffers is under the
790 * threshold and the packet is too big to copy, or (b) the packet should
791 * be copied but there is no memory for the copy.
792 */
793static inline struct sk_buff *get_packet(struct pci_dev *pdev,
794 struct freelQ *fl, unsigned int len,
795 int dma_pad, int skb_pad,
796 unsigned int copy_thres,
797 unsigned int drop_thres)
798{
799 struct sk_buff *skb;
800 struct freelQ_ce *ce = &fl->centries[fl->cidx];
801
802 if (len < copy_thres) {
803 skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
804 if (likely(skb != NULL)) {
805 skb_reserve(skb, skb_pad);
806 skb_put(skb, len);
807 pci_dma_sync_single_for_cpu(pdev,
808 pci_unmap_addr(ce, dma_addr),
809 pci_unmap_len(ce, dma_len),
810 PCI_DMA_FROMDEVICE);
811 memcpy(skb->data, ce->skb->data + dma_pad, len);
812 pci_dma_sync_single_for_device(pdev,
813 pci_unmap_addr(ce, dma_addr),
814 pci_unmap_len(ce, dma_len),
815 PCI_DMA_FROMDEVICE);
816 } else if (!drop_thres)
817 goto use_orig_buf;
8199d3a7 818
559fb51b
SB
819 recycle_fl_buf(fl, fl->cidx);
820 return skb;
8199d3a7
CL
821 }
822
559fb51b
SB
823 if (fl->credits < drop_thres) {
824 recycle_fl_buf(fl, fl->cidx);
825 return NULL;
826 }
8199d3a7 827
559fb51b
SB
828use_orig_buf:
829 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
830 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
831 skb = ce->skb;
832 skb_reserve(skb, dma_pad);
833 skb_put(skb, len);
834 return skb;
835}
8199d3a7 836
559fb51b
SB
837/**
838 * unexpected_offload - handle an unexpected offload packet
839 * @adapter: the adapter
840 * @fl: the free list that received the packet
841 *
842 * Called when we receive an unexpected offload packet (e.g., the TOE
843 * function is disabled or the card is a NIC). Prints a message and
844 * recycles the buffer.
845 */
846static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
847{
848 struct freelQ_ce *ce = &fl->centries[fl->cidx];
849 struct sk_buff *skb = ce->skb;
850
851 pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
852 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
853 CH_ERR("%s: unexpected offload packet, cmd %u\n",
854 adapter->name, *skb->data);
855 recycle_fl_buf(fl, fl->cidx);
8199d3a7
CL
856}
857
858/*
559fb51b
SB
859 * Write the command descriptors to transmit the given skb starting at
860 * descriptor pidx with the given generation.
8199d3a7 861 */
559fb51b
SB
862static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
863 unsigned int pidx, unsigned int gen,
864 struct cmdQ *q)
8199d3a7 865{
559fb51b
SB
866 dma_addr_t mapping;
867 struct cmdQ_e *e, *e1;
868 struct cmdQ_ce *ce;
869 unsigned int i, flags, nfrags = skb_shinfo(skb)->nr_frags;
870
871 mapping = pci_map_single(adapter->pdev, skb->data,
872 skb->len - skb->data_len, PCI_DMA_TODEVICE);
873 ce = &q->centries[pidx];
874 ce->skb = NULL;
875 pci_unmap_addr_set(ce, dma_addr, mapping);
876 pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
8199d3a7 877
559fb51b
SB
878 flags = F_CMD_DATAVALID | F_CMD_SOP | V_CMD_EOP(nfrags == 0) |
879 V_CMD_GEN2(gen);
880 e = &q->entries[pidx];
881 e->addr_lo = (u32)mapping;
882 e->addr_hi = (u64)mapping >> 32;
883 e->len_gen = V_CMD_LEN(skb->len - skb->data_len) | V_CMD_GEN1(gen);
884 for (e1 = e, i = 0; nfrags--; i++) {
885 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
8199d3a7 886
559fb51b
SB
887 ce++;
888 e1++;
889 if (++pidx == q->size) {
890 pidx = 0;
891 gen ^= 1;
892 ce = q->centries;
893 e1 = q->entries;
8199d3a7 894 }
8199d3a7 895
559fb51b
SB
896 mapping = pci_map_page(adapter->pdev, frag->page,
897 frag->page_offset, frag->size,
898 PCI_DMA_TODEVICE);
899 ce->skb = NULL;
900 pci_unmap_addr_set(ce, dma_addr, mapping);
901 pci_unmap_len_set(ce, dma_len, frag->size);
902
903 e1->addr_lo = (u32)mapping;
904 e1->addr_hi = (u64)mapping >> 32;
905 e1->len_gen = V_CMD_LEN(frag->size) | V_CMD_GEN1(gen);
906 e1->flags = F_CMD_DATAVALID | V_CMD_EOP(nfrags == 0) |
907 V_CMD_GEN2(gen);
8199d3a7
CL
908 }
909
559fb51b
SB
910 ce->skb = skb;
911 wmb();
912 e->flags = flags;
913}
8199d3a7 914
559fb51b
SB
915/*
916 * Clean up completed Tx buffers.
917 */
918static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
919{
920 unsigned int reclaim = q->processed - q->cleaned;
8199d3a7 921
559fb51b
SB
922 if (reclaim) {
923 free_cmdQ_buffers(sge, q, reclaim);
924 q->cleaned += reclaim;
8199d3a7 925 }
559fb51b 926}
8199d3a7 927
559fb51b
SB
928#ifndef SET_ETHTOOL_OPS
929# define __netif_rx_complete(dev) netif_rx_complete(dev)
930#endif
8199d3a7 931
559fb51b
SB
932/*
933 * We cannot use the standard netif_rx_schedule_prep() because we have multiple
934 * ports plus the TOE all multiplexing onto a single response queue, therefore
935 * accepting new responses cannot depend on the state of any particular port.
936 * So define our own equivalent that omits the netif_running() test.
937 */
938static inline int napi_schedule_prep(struct net_device *dev)
939{
940 return !test_and_set_bit(__LINK_STATE_RX_SCHED, &dev->state);
8199d3a7
CL
941}
942
943
559fb51b
SB
944/**
945 * sge_rx - process an ingress ethernet packet
946 * @sge: the sge structure
947 * @fl: the free list that contains the packet buffer
948 * @len: the packet length
8199d3a7 949 *
559fb51b 950 * Process an ingress ethernet pakcet and deliver it to the stack.
8199d3a7 951 */
559fb51b 952static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
8199d3a7 953{
559fb51b
SB
954 struct sk_buff *skb;
955 struct cpl_rx_pkt *p;
956 struct adapter *adapter = sge->adapter;
8199d3a7 957
559fb51b
SB
958 sge->stats.ethernet_pkts++;
959 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
960 sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
961 SGE_RX_DROP_THRES);
962 if (!skb) {
963 sge->port_stats[0].rx_drops++; /* charge only port 0 for now */
964 return 0;
8199d3a7 965 }
559fb51b
SB
966
967 p = (struct cpl_rx_pkt *)skb->data;
968 skb_pull(skb, sizeof(*p));
969 skb->dev = adapter->port[p->iff].dev;
970 skb->dev->last_rx = jiffies;
971 skb->protocol = eth_type_trans(skb, skb->dev);
972 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
973 skb->protocol == htons(ETH_P_IP) &&
974 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
975 sge->port_stats[p->iff].rx_cso_good++;
976 skb->ip_summed = CHECKSUM_UNNECESSARY;
977 } else
978 skb->ip_summed = CHECKSUM_NONE;
979
980 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
981 sge->port_stats[p->iff].vlan_xtract++;
982 if (adapter->params.sge.polling)
983 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
984 ntohs(p->vlan));
985 else
986 vlan_hwaccel_rx(skb, adapter->vlan_grp,
987 ntohs(p->vlan));
988 } else if (adapter->params.sge.polling)
989 netif_receive_skb(skb);
990 else
991 netif_rx(skb);
992 return 0;
8199d3a7
CL
993}
994
995/*
559fb51b 996 * Returns true if a command queue has enough available descriptors that
8199d3a7
CL
997 * we can resume Tx operation after temporarily disabling its packet queue.
998 */
559fb51b 999static inline int enough_free_Tx_descs(const struct cmdQ *q)
8199d3a7 1000{
559fb51b
SB
1001 unsigned int r = q->processed - q->cleaned;
1002
1003 return q->in_use - r < (q->size >> 1);
8199d3a7
CL
1004}
1005
1006/*
559fb51b
SB
1007 * Called when sufficient space has become available in the SGE command queues
1008 * after the Tx packet schedulers have been suspended to restart the Tx path.
8199d3a7 1009 */
559fb51b 1010static void restart_tx_queues(struct sge *sge)
8199d3a7 1011{
559fb51b 1012 struct adapter *adap = sge->adapter;
8199d3a7 1013
559fb51b
SB
1014 if (enough_free_Tx_descs(&sge->cmdQ[0])) {
1015 int i;
1016
1017 for_each_port(adap, i) {
1018 struct net_device *nd = adap->port[i].dev;
1019
1020 if (test_and_clear_bit(nd->if_port,
1021 &sge->stopped_tx_queues) &&
1022 netif_running(nd)) {
232a347a 1023 sge->stats.cmdQ_restarted[2]++;
559fb51b
SB
1024 netif_wake_queue(nd);
1025 }
1026 }
1027 }
1028}
1029
1030/*
1031 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1032 * information.
1033 */
1034static unsigned int update_tx_info(struct adapter *adapter,
1035 unsigned int flags,
1036 unsigned int pr0)
1037{
1038 struct sge *sge = adapter->sge;
1039 struct cmdQ *cmdq = &sge->cmdQ[0];
8199d3a7 1040
559fb51b 1041 cmdq->processed += pr0;
8199d3a7 1042
559fb51b
SB
1043 if (flags & F_CMDQ0_ENABLE) {
1044 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1045
1046 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1047 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1048 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1049 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1050 }
1051 flags &= ~F_CMDQ0_ENABLE;
1052 }
1053
1054 if (unlikely(sge->stopped_tx_queues != 0))
1055 restart_tx_queues(sge);
8199d3a7 1056
559fb51b
SB
1057 return flags;
1058}
8199d3a7 1059
559fb51b
SB
1060/*
1061 * Process SGE responses, up to the supplied budget. Returns the number of
1062 * responses processed. A negative budget is effectively unlimited.
1063 */
1064static int process_responses(struct adapter *adapter, int budget)
1065{
1066 struct sge *sge = adapter->sge;
1067 struct respQ *q = &sge->respQ;
1068 struct respQ_e *e = &q->entries[q->cidx];
1069 int budget_left = budget;
1070 unsigned int flags = 0;
1071 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1072
1073
1074 while (likely(budget_left && e->GenerationBit == q->genbit)) {
1075 flags |= e->Qsleeping;
1076
1077 cmdq_processed[0] += e->Cmdq0CreditReturn;
1078 cmdq_processed[1] += e->Cmdq1CreditReturn;
1079
1080 /* We batch updates to the TX side to avoid cacheline
1081 * ping-pong of TX state information on MP where the sender
1082 * might run on a different CPU than this function...
1083 */
1084 if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
1085 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1086 cmdq_processed[0] = 0;
1087 }
1088 if (unlikely(cmdq_processed[1] > 16)) {
1089 sge->cmdQ[1].processed += cmdq_processed[1];
1090 cmdq_processed[1] = 0;
8199d3a7
CL
1091 }
1092 if (likely(e->DataValid)) {
559fb51b
SB
1093 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1094
5d9428de 1095 BUG_ON(!e->Sop || !e->Eop);
559fb51b
SB
1096 if (unlikely(e->Offload))
1097 unexpected_offload(adapter, fl);
1098 else
1099 sge_rx(sge, fl, e->BufferLength);
1100
1101 /*
1102 * Note: this depends on each packet consuming a
1103 * single free-list buffer; cf. the BUG above.
1104 */
1105 if (++fl->cidx == fl->size)
1106 fl->cidx = 0;
1107 if (unlikely(--fl->credits <
1108 fl->size - SGE_FREEL_REFILL_THRESH))
1109 refill_free_list(sge, fl);
1110 } else
1111 sge->stats.pure_rsps++;
8199d3a7 1112
8199d3a7 1113 e++;
559fb51b
SB
1114 if (unlikely(++q->cidx == q->size)) {
1115 q->cidx = 0;
1116 q->genbit ^= 1;
1117 e = q->entries;
1118 }
1119 prefetch(e);
1120
1121 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1122 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1123 q->credits = 0;
8199d3a7 1124 }
559fb51b 1125 --budget_left;
8199d3a7
CL
1126 }
1127
559fb51b
SB
1128 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1129 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1130
559fb51b
SB
1131 budget -= budget_left;
1132 return budget;
1133}
8199d3a7 1134
559fb51b
SB
1135/*
1136 * A simpler version of process_responses() that handles only pure (i.e.,
1137 * non data-carrying) responses. Such respones are too light-weight to justify
1138 * calling a softirq when using NAPI, so we handle them specially in hard
1139 * interrupt context. The function is called with a pointer to a response,
1140 * which the caller must ensure is a valid pure response. Returns 1 if it
1141 * encounters a valid data-carrying response, 0 otherwise.
1142 */
1143static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
1144{
1145 struct sge *sge = adapter->sge;
1146 struct respQ *q = &sge->respQ;
1147 unsigned int flags = 0;
1148 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
8199d3a7 1149
559fb51b
SB
1150 do {
1151 flags |= e->Qsleeping;
8199d3a7 1152
559fb51b
SB
1153 cmdq_processed[0] += e->Cmdq0CreditReturn;
1154 cmdq_processed[1] += e->Cmdq1CreditReturn;
1155
1156 e++;
1157 if (unlikely(++q->cidx == q->size)) {
1158 q->cidx = 0;
1159 q->genbit ^= 1;
1160 e = q->entries;
8199d3a7 1161 }
559fb51b 1162 prefetch(e);
8199d3a7 1163
559fb51b
SB
1164 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1165 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1166 q->credits = 0;
8199d3a7 1167 }
559fb51b
SB
1168 sge->stats.pure_rsps++;
1169 } while (e->GenerationBit == q->genbit && !e->DataValid);
8199d3a7 1170
559fb51b
SB
1171 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1172 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1173
559fb51b 1174 return e->GenerationBit == q->genbit;
8199d3a7
CL
1175}
1176
1177/*
559fb51b
SB
1178 * Handler for new data events when using NAPI. This does not need any locking
1179 * or protection from interrupts as data interrupts are off at this point and
1180 * other adapter interrupts do not interfere.
8199d3a7 1181 */
559fb51b 1182static int t1_poll(struct net_device *dev, int *budget)
8199d3a7 1183{
559fb51b
SB
1184 struct adapter *adapter = dev->priv;
1185 int effective_budget = min(*budget, dev->quota);
1186
1187 int work_done = process_responses(adapter, effective_budget);
1188 *budget -= work_done;
1189 dev->quota -= work_done;
8199d3a7 1190
559fb51b
SB
1191 if (work_done >= effective_budget)
1192 return 1;
1193
1194 __netif_rx_complete(dev);
8199d3a7
CL
1195
1196 /*
559fb51b
SB
1197 * Because we don't atomically flush the following write it is
1198 * possible that in very rare cases it can reach the device in a way
1199 * that races with a new response being written plus an error interrupt
1200 * causing the NAPI interrupt handler below to return unhandled status
1201 * to the OS. To protect against this would require flushing the write
1202 * and doing both the write and the flush with interrupts off. Way too
1203 * expensive and unjustifiable given the rarity of the race.
8199d3a7 1204 */
559fb51b
SB
1205 writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1206 return 0;
1207}
8199d3a7 1208
559fb51b
SB
1209/*
1210 * Returns true if the device is already scheduled for polling.
1211 */
1212static inline int napi_is_scheduled(struct net_device *dev)
1213{
1214 return test_bit(__LINK_STATE_RX_SCHED, &dev->state);
1215}
8199d3a7 1216
559fb51b
SB
1217/*
1218 * NAPI version of the main interrupt handler.
1219 */
7d12e780 1220static irqreturn_t t1_interrupt_napi(int irq, void *data)
559fb51b
SB
1221{
1222 int handled;
1223 struct adapter *adapter = data;
1224 struct sge *sge = adapter->sge;
1225 struct respQ *q = &adapter->sge->respQ;
8199d3a7 1226
559fb51b
SB
1227 /*
1228 * Clear the SGE_DATA interrupt first thing. Normally the NAPI
1229 * handler has control of the response queue and the interrupt handler
1230 * can look at the queue reliably only once it knows NAPI is off.
1231 * We can't wait that long to clear the SGE_DATA interrupt because we
1232 * could race with t1_poll rearming the SGE interrupt, so we need to
1233 * clear the interrupt speculatively and really early on.
1234 */
1235 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1236
1237 spin_lock(&adapter->async_lock);
1238 if (!napi_is_scheduled(sge->netdev)) {
1239 struct respQ_e *e = &q->entries[q->cidx];
1240
1241 if (e->GenerationBit == q->genbit) {
1242 if (e->DataValid ||
1243 process_pure_responses(adapter, e)) {
1244 if (likely(napi_schedule_prep(sge->netdev)))
1245 __netif_rx_schedule(sge->netdev);
1246 else
1247 printk(KERN_CRIT
1248 "NAPI schedule failure!\n");
1249 } else
1250 writel(q->cidx, adapter->regs + A_SG_SLEEPING);
1251 handled = 1;
1252 goto unlock;
1253 } else
1254 writel(q->cidx, adapter->regs + A_SG_SLEEPING);
1255 } else
1256 if (readl(adapter->regs + A_PL_CAUSE) & F_PL_INTR_SGE_DATA)
1257 printk(KERN_ERR "data interrupt while NAPI running\n");
1258
1259 handled = t1_slow_intr_handler(adapter);
1260 if (!handled)
1261 sge->stats.unhandled_irqs++;
1262 unlock:
1263 spin_unlock(&adapter->async_lock);
1264 return IRQ_RETVAL(handled != 0);
1265}
8199d3a7 1266
559fb51b
SB
1267/*
1268 * Main interrupt handler, optimized assuming that we took a 'DATA'
1269 * interrupt.
1270 *
1271 * 1. Clear the interrupt
1272 * 2. Loop while we find valid descriptors and process them; accumulate
1273 * information that can be processed after the loop
1274 * 3. Tell the SGE at which index we stopped processing descriptors
1275 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1276 * outstanding TX buffers waiting, replenish RX buffers, potentially
1277 * reenable upper layers if they were turned off due to lack of TX
1278 * resources which are available again.
1279 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1280 * let the slow_intr_handler run and do error handling.
1281 */
7d12e780 1282static irqreturn_t t1_interrupt(int irq, void *cookie)
559fb51b
SB
1283{
1284 int work_done;
1285 struct respQ_e *e;
1286 struct adapter *adapter = cookie;
1287 struct respQ *Q = &adapter->sge->respQ;
8199d3a7 1288
559fb51b
SB
1289 spin_lock(&adapter->async_lock);
1290 e = &Q->entries[Q->cidx];
1291 prefetch(e);
8199d3a7 1292
559fb51b 1293 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
8199d3a7 1294
559fb51b
SB
1295 if (likely(e->GenerationBit == Q->genbit))
1296 work_done = process_responses(adapter, -1);
1297 else
1298 work_done = t1_slow_intr_handler(adapter);
8199d3a7 1299
559fb51b
SB
1300 /*
1301 * The unconditional clearing of the PL_CAUSE above may have raced
1302 * with DMA completion and the corresponding generation of a response
1303 * to cause us to miss the resulting data interrupt. The next write
1304 * is also unconditional to recover the missed interrupt and render
1305 * this race harmless.
1306 */
1307 writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1308
1309 if (!work_done)
1310 adapter->sge->stats.unhandled_irqs++;
1311 spin_unlock(&adapter->async_lock);
1312 return IRQ_RETVAL(work_done != 0);
1313}
1314
7d12e780 1315irq_handler_t t1_select_intr_handler(adapter_t *adapter)
559fb51b
SB
1316{
1317 return adapter->params.sge.polling ? t1_interrupt_napi : t1_interrupt;
1318}
1319
1320/*
1321 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1322 *
1323 * The code figures out how many entries the sk_buff will require in the
1324 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1325 * has complete. Then, it doesn't access the global structure anymore, but
1326 * uses the corresponding fields on the stack. In conjuction with a spinlock
1327 * around that code, we can make the function reentrant without holding the
1328 * lock when we actually enqueue (which might be expensive, especially on
1329 * architectures with IO MMUs).
1330 *
1331 * This runs with softirqs disabled.
1332 */
aa84505f
SH
1333static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1334 unsigned int qid, struct net_device *dev)
559fb51b
SB
1335{
1336 struct sge *sge = adapter->sge;
1337 struct cmdQ *q = &sge->cmdQ[qid];
1338 unsigned int credits, pidx, genbit, count;
1339
1340 spin_lock(&q->lock);
1341 reclaim_completed_tx(sge, q);
1342
1343 pidx = q->pidx;
1344 credits = q->size - q->in_use;
1345 count = 1 + skb_shinfo(skb)->nr_frags;
1346
1347 { /* Ethernet packet */
1348 if (unlikely(credits < count)) {
1349 netif_stop_queue(dev);
1350 set_bit(dev->if_port, &sge->stopped_tx_queues);
232a347a 1351 sge->stats.cmdQ_full[2]++;
559fb51b 1352 spin_unlock(&q->lock);
aa84505f
SH
1353 if (!netif_queue_stopped(dev))
1354 CH_ERR("%s: Tx ring full while queue awake!\n",
1355 adapter->name);
1356 return NETDEV_TX_BUSY;
8199d3a7 1357 }
559fb51b 1358 if (unlikely(credits - count < q->stop_thres)) {
232a347a 1359 sge->stats.cmdQ_full[2]++;
559fb51b
SB
1360 netif_stop_queue(dev);
1361 set_bit(dev->if_port, &sge->stopped_tx_queues);
1362 }
1363 }
1364 q->in_use += count;
1365 genbit = q->genbit;
1366 q->pidx += count;
1367 if (q->pidx >= q->size) {
1368 q->pidx -= q->size;
1369 q->genbit ^= 1;
8199d3a7 1370 }
559fb51b 1371 spin_unlock(&q->lock);
8199d3a7 1372
559fb51b 1373 write_tx_descs(adapter, skb, pidx, genbit, q);
8199d3a7
CL
1374
1375 /*
1376 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1377 * the doorbell if the Q is asleep. There is a natural race, where
1378 * the hardware is going to sleep just after we checked, however,
1379 * then the interrupt handler will detect the outstanding TX packet
1380 * and ring the doorbell for us.
1381 */
559fb51b
SB
1382 if (qid)
1383 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1384 else {
1385 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1386 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1387 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1388 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1389 }
8199d3a7 1390 }
aa84505f 1391 return NETDEV_TX_OK;
8199d3a7
CL
1392}
1393
1394#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1395
559fb51b
SB
1396/*
1397 * eth_hdr_len - return the length of an Ethernet header
1398 * @data: pointer to the start of the Ethernet header
1399 *
1400 * Returns the length of an Ethernet header, including optional VLAN tag.
1401 */
1402static inline int eth_hdr_len(const void *data)
1403{
1404 const struct ethhdr *e = data;
1405
1406 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1407}
1408
8199d3a7
CL
1409/*
1410 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1411 */
1412int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1413{
1414 struct adapter *adapter = dev->priv;
559fb51b
SB
1415 struct sge_port_stats *st = &adapter->sge->port_stats[dev->if_port];
1416 struct sge *sge = adapter->sge;
8199d3a7 1417 struct cpl_tx_pkt *cpl;
8199d3a7 1418
559fb51b 1419#ifdef NETIF_F_TSO
89114afd 1420 if (skb_is_gso(skb)) {
8199d3a7
CL
1421 int eth_type;
1422 struct cpl_tx_pkt_lso *hdr;
1423
559fb51b
SB
1424 st->tso++;
1425
8199d3a7
CL
1426 eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
1427 CPL_ETH_II : CPL_ETH_II_VLAN;
1428
1429 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1430 hdr->opcode = CPL_TX_PKT_LSO;
1431 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1432 hdr->ip_hdr_words = skb->nh.iph->ihl;
1433 hdr->tcp_hdr_words = skb->h.th->doff;
1434 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
7967168c 1435 skb_shinfo(skb)->gso_size));
8199d3a7
CL
1436 hdr->len = htonl(skb->len - sizeof(*hdr));
1437 cpl = (struct cpl_tx_pkt *)hdr;
559fb51b 1438 sge->stats.tx_lso_pkts++;
8199d3a7 1439 } else
559fb51b 1440#endif
8199d3a7
CL
1441 {
1442 /*
559fb51b
SB
1443 * Packets shorter than ETH_HLEN can break the MAC, drop them
1444 * early. Also, we may get oversized packets because some
1445 * parts of the kernel don't handle our unusual hard_header_len
1446 * right, drop those too.
8199d3a7 1447 */
559fb51b
SB
1448 if (unlikely(skb->len < ETH_HLEN ||
1449 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1450 dev_kfree_skb_any(skb);
aa84505f 1451 return NETDEV_TX_OK;
559fb51b
SB
1452 }
1453
1454 /*
1455 * We are using a non-standard hard_header_len and some kernel
1456 * components, such as pktgen, do not handle it right.
1457 * Complain when this happens but try to fix things up.
1458 */
1459 if (unlikely(skb_headroom(skb) <
1460 dev->hard_header_len - ETH_HLEN)) {
1461 struct sk_buff *orig_skb = skb;
1462
1463 if (net_ratelimit())
1464 printk(KERN_ERR "%s: inadequate headroom in "
1465 "Tx packet\n", dev->name);
1466 skb = skb_realloc_headroom(skb, sizeof(*cpl));
1467 dev_kfree_skb_any(orig_skb);
1468 if (!skb)
aa84505f 1469 return NETDEV_TX_OK;
559fb51b 1470 }
8199d3a7
CL
1471
1472 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
84fa7933 1473 skb->ip_summed == CHECKSUM_PARTIAL &&
559fb51b 1474 skb->nh.iph->protocol == IPPROTO_UDP)
84fa7933 1475 if (unlikely(skb_checksum_help(skb))) {
559fb51b 1476 dev_kfree_skb_any(skb);
aa84505f 1477 return NETDEV_TX_OK;
559fb51b 1478 }
8199d3a7 1479
559fb51b
SB
1480 /* Hmmm, assuming to catch the gratious arp... and we'll use
1481 * it to flush out stuck espi packets...
1482 */
1483 if (unlikely(!adapter->sge->espibug_skb)) {
8199d3a7 1484 if (skb->protocol == htons(ETH_P_ARP) &&
559fb51b
SB
1485 skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
1486 adapter->sge->espibug_skb = skb;
1487 /* We want to re-use this skb later. We
1488 * simply bump the reference count and it
1489 * will not be freed...
1490 */
1491 skb = skb_get(skb);
1492 }
8199d3a7 1493 }
559fb51b
SB
1494
1495 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
8199d3a7
CL
1496 cpl->opcode = CPL_TX_PKT;
1497 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
84fa7933 1498 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
8199d3a7 1499 /* the length field isn't used so don't bother setting it */
559fb51b 1500
84fa7933
PM
1501 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1502 sge->stats.tx_do_cksum += (skb->ip_summed == CHECKSUM_PARTIAL);
559fb51b 1503 sge->stats.tx_reg_pkts++;
8199d3a7
CL
1504 }
1505 cpl->iff = dev->if_port;
1506
1507#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1508 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1509 cpl->vlan_valid = 1;
1510 cpl->vlan = htons(vlan_tx_tag_get(skb));
559fb51b 1511 st->vlan_insert++;
8199d3a7
CL
1512 } else
1513#endif
1514 cpl->vlan_valid = 0;
1515
1516 dev->trans_start = jiffies;
559fb51b
SB
1517 return t1_sge_tx(skb, adapter, 0, dev);
1518}
8199d3a7 1519
559fb51b
SB
1520/*
1521 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1522 */
1523static void sge_tx_reclaim_cb(unsigned long data)
1524{
1525 int i;
1526 struct sge *sge = (struct sge *)data;
1527
1528 for (i = 0; i < SGE_CMDQ_N; ++i) {
1529 struct cmdQ *q = &sge->cmdQ[i];
1530
1531 if (!spin_trylock(&q->lock))
1532 continue;
8199d3a7 1533
559fb51b
SB
1534 reclaim_completed_tx(sge, q);
1535 if (i == 0 && q->in_use) /* flush pending credits */
1536 writel(F_CMDQ0_ENABLE,
1537 sge->adapter->regs + A_SG_DOORBELL);
8199d3a7 1538
559fb51b
SB
1539 spin_unlock(&q->lock);
1540 }
1541 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1542}
1543
1544/*
1545 * Propagate changes of the SGE coalescing parameters to the HW.
1546 */
1547int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1548{
1549 sge->netdev->poll = t1_poll;
1550 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1551 core_ticks_per_usec(sge->adapter);
1552 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
8199d3a7
CL
1553 return 0;
1554}
1555
559fb51b
SB
1556/*
1557 * Allocates both RX and TX resources and configures the SGE. However,
1558 * the hardware is not enabled yet.
1559 */
1560int t1_sge_configure(struct sge *sge, struct sge_params *p)
8199d3a7 1561{
559fb51b
SB
1562 if (alloc_rx_resources(sge, p))
1563 return -ENOMEM;
1564 if (alloc_tx_resources(sge, p)) {
1565 free_rx_resources(sge);
1566 return -ENOMEM;
1567 }
1568 configure_sge(sge, p);
1569
1570 /*
1571 * Now that we have sized the free lists calculate the payload
1572 * capacity of the large buffers. Other parts of the driver use
1573 * this to set the max offload coalescing size so that RX packets
1574 * do not overflow our large buffers.
1575 */
1576 p->large_buf_capacity = jumbo_payload_capacity(sge);
1577 return 0;
1578}
8199d3a7 1579
559fb51b
SB
1580/*
1581 * Disables the DMA engine.
1582 */
1583void t1_sge_stop(struct sge *sge)
1584{
1585 writel(0, sge->adapter->regs + A_SG_CONTROL);
1586 (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1587 if (is_T2(sge->adapter))
1588 del_timer_sync(&sge->espibug_timer);
1589 del_timer_sync(&sge->tx_reclaim_timer);
8199d3a7
CL
1590}
1591
559fb51b
SB
1592/*
1593 * Enables the DMA engine.
1594 */
1595void t1_sge_start(struct sge *sge)
8199d3a7 1596{
559fb51b
SB
1597 refill_free_list(sge, &sge->freelQ[0]);
1598 refill_free_list(sge, &sge->freelQ[1]);
1599
1600 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1601 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1602 (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1603
1604 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1605
1606 if (is_T2(sge->adapter))
1607 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1608}
1609
1610/*
1611 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1612 */
1613static void espibug_workaround(void *data)
1614{
1615 struct adapter *adapter = (struct adapter *)data;
8199d3a7
CL
1616 struct sge *sge = adapter->sge;
1617
559fb51b
SB
1618 if (netif_running(adapter->port[0].dev)) {
1619 struct sk_buff *skb = sge->espibug_skb;
1620
1621 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
1622
1623 if ((seop & 0xfff0fff) == 0xfff && skb) {
1624 if (!skb->cb[0]) {
1625 u8 ch_mac_addr[ETH_ALEN] =
1626 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
1627 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
1628 ch_mac_addr, ETH_ALEN);
1629 memcpy(skb->data + skb->len - 10, ch_mac_addr,
1630 ETH_ALEN);
1631 skb->cb[0] = 0xff;
1632 }
1633
1634 /* bump the reference count to avoid freeing of the
1635 * skb once the DMA has completed.
1636 */
1637 skb = skb_get(skb);
1638 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
1639 }
1640 }
1641 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
8199d3a7
CL
1642}
1643
559fb51b
SB
1644/*
1645 * Creates a t1_sge structure and returns suggested resource parameters.
1646 */
1647struct sge * __devinit t1_sge_create(struct adapter *adapter,
1648 struct sge_params *p)
1649{
1650 struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
1651
1652 if (!sge)
1653 return NULL;
1654 memset(sge, 0, sizeof(*sge));
1655
1656 sge->adapter = adapter;
1657 sge->netdev = adapter->port[0].dev;
1658 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
1659 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
1660
1661 init_timer(&sge->tx_reclaim_timer);
1662 sge->tx_reclaim_timer.data = (unsigned long)sge;
1663 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
1664
1665 if (is_T2(sge->adapter)) {
1666 init_timer(&sge->espibug_timer);
1667 sge->espibug_timer.function = (void *)&espibug_workaround;
1668 sge->espibug_timer.data = (unsigned long)sge->adapter;
1669 sge->espibug_timeout = 1;
1670 }
1671
1672
1673 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
1674 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
1675 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
1676 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
1677 p->rx_coalesce_usecs = 50;
1678 p->coalesce_enable = 0;
1679 p->sample_interval_usecs = 0;
1680 p->polling = 0;
1681
1682 return sge;
1683}