]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/can/mcp251x.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[net-next-2.6.git] / drivers / net / can / mcp251x.c
CommitLineData
e0000163
CP
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 *
34 *
35 *
36 * Your platform definition file should specify something like:
37 *
38 * static struct mcp251x_platform_data mcp251x_info = {
39 * .oscillator_frequency = 8000000,
40 * .board_specific_setup = &mcp251x_setup,
e0000163
CP
41 * .power_enable = mcp251x_power_enable,
42 * .transceiver_enable = NULL,
43 * };
44 *
45 * static struct spi_board_info spi_board_info[] = {
46 * {
f1f8c6cb
MKB
47 * .modalias = "mcp2510",
48 * // or "mcp2515" depending on your controller
e0000163
CP
49 * .platform_data = &mcp251x_info,
50 * .irq = IRQ_EINT13,
51 * .max_speed_hz = 2*1000*1000,
52 * .chip_select = 2,
53 * },
54 * };
55 *
56 * Please see mcp251x.h for a description of the fields in
57 * struct mcp251x_platform_data.
58 *
59 */
60
e0000163
CP
61#include <linux/can/core.h>
62#include <linux/can/dev.h>
63#include <linux/can/platform/mcp251x.h>
64#include <linux/completion.h>
65#include <linux/delay.h>
66#include <linux/device.h>
67#include <linux/dma-mapping.h>
68#include <linux/freezer.h>
69#include <linux/interrupt.h>
70#include <linux/io.h>
71#include <linux/kernel.h>
72#include <linux/module.h>
73#include <linux/netdevice.h>
74#include <linux/platform_device.h>
5a0e3ad6 75#include <linux/slab.h>
e0000163
CP
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78
79/* SPI interface instruction set */
80#define INSTRUCTION_WRITE 0x02
81#define INSTRUCTION_READ 0x03
82#define INSTRUCTION_BIT_MODIFY 0x05
83#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
84#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
85#define INSTRUCTION_RESET 0xC0
86
87/* MPC251x registers */
88#define CANSTAT 0x0e
89#define CANCTRL 0x0f
90# define CANCTRL_REQOP_MASK 0xe0
91# define CANCTRL_REQOP_CONF 0x80
92# define CANCTRL_REQOP_LISTEN_ONLY 0x60
93# define CANCTRL_REQOP_LOOPBACK 0x40
94# define CANCTRL_REQOP_SLEEP 0x20
95# define CANCTRL_REQOP_NORMAL 0x00
96# define CANCTRL_OSM 0x08
97# define CANCTRL_ABAT 0x10
98#define TEC 0x1c
99#define REC 0x1d
100#define CNF1 0x2a
101# define CNF1_SJW_SHIFT 6
102#define CNF2 0x29
103# define CNF2_BTLMODE 0x80
104# define CNF2_SAM 0x40
105# define CNF2_PS1_SHIFT 3
106#define CNF3 0x28
107# define CNF3_SOF 0x08
108# define CNF3_WAKFIL 0x04
109# define CNF3_PHSEG2_MASK 0x07
110#define CANINTE 0x2b
111# define CANINTE_MERRE 0x80
112# define CANINTE_WAKIE 0x40
113# define CANINTE_ERRIE 0x20
114# define CANINTE_TX2IE 0x10
115# define CANINTE_TX1IE 0x08
116# define CANINTE_TX0IE 0x04
117# define CANINTE_RX1IE 0x02
118# define CANINTE_RX0IE 0x01
119#define CANINTF 0x2c
120# define CANINTF_MERRF 0x80
121# define CANINTF_WAKIF 0x40
122# define CANINTF_ERRIF 0x20
123# define CANINTF_TX2IF 0x10
124# define CANINTF_TX1IF 0x08
125# define CANINTF_TX0IF 0x04
126# define CANINTF_RX1IF 0x02
127# define CANINTF_RX0IF 0x01
5601b2df
MKB
128# define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
129# define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
130# define CANINTF_ERR (CANINTF_ERRIF)
e0000163
CP
131#define EFLG 0x2d
132# define EFLG_EWARN 0x01
133# define EFLG_RXWAR 0x02
134# define EFLG_TXWAR 0x04
135# define EFLG_RXEP 0x08
136# define EFLG_TXEP 0x10
137# define EFLG_TXBO 0x20
138# define EFLG_RX0OVR 0x40
139# define EFLG_RX1OVR 0x80
140#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
141# define TXBCTRL_ABTF 0x40
142# define TXBCTRL_MLOA 0x20
143# define TXBCTRL_TXERR 0x10
144# define TXBCTRL_TXREQ 0x08
145#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
146# define SIDH_SHIFT 3
147#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
148# define SIDL_SID_MASK 7
149# define SIDL_SID_SHIFT 5
150# define SIDL_EXIDE_SHIFT 3
151# define SIDL_EID_SHIFT 16
152# define SIDL_EID_MASK 3
153#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
154#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
155#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
156# define DLC_RTR_SHIFT 6
157#define TXBCTRL_OFF 0
158#define TXBSIDH_OFF 1
159#define TXBSIDL_OFF 2
160#define TXBEID8_OFF 3
161#define TXBEID0_OFF 4
162#define TXBDLC_OFF 5
163#define TXBDAT_OFF 6
164#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
165# define RXBCTRL_BUKT 0x04
166# define RXBCTRL_RXM0 0x20
167# define RXBCTRL_RXM1 0x40
168#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
169# define RXBSIDH_SHIFT 3
170#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
171# define RXBSIDL_IDE 0x08
b9958a95 172# define RXBSIDL_SRR 0x10
e0000163
CP
173# define RXBSIDL_EID 3
174# define RXBSIDL_SHIFT 5
175#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
176#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
177#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
178# define RXBDLC_LEN_MASK 0x0f
179# define RXBDLC_RTR 0x40
180#define RXBCTRL_OFF 0
181#define RXBSIDH_OFF 1
182#define RXBSIDL_OFF 2
183#define RXBEID8_OFF 3
184#define RXBEID0_OFF 4
185#define RXBDLC_OFF 5
186#define RXBDAT_OFF 6
bf66f373
CP
187#define RXFSIDH(n) ((n) * 4)
188#define RXFSIDL(n) ((n) * 4 + 1)
189#define RXFEID8(n) ((n) * 4 + 2)
190#define RXFEID0(n) ((n) * 4 + 3)
191#define RXMSIDH(n) ((n) * 4 + 0x20)
192#define RXMSIDL(n) ((n) * 4 + 0x21)
193#define RXMEID8(n) ((n) * 4 + 0x22)
194#define RXMEID0(n) ((n) * 4 + 0x23)
e0000163
CP
195
196#define GET_BYTE(val, byte) \
197 (((val) >> ((byte) * 8)) & 0xff)
198#define SET_BYTE(val, byte) \
199 (((val) & 0xff) << ((byte) * 8))
200
201/*
202 * Buffer size required for the largest SPI transfer (i.e., reading a
203 * frame)
204 */
205#define CAN_FRAME_MAX_DATA_LEN 8
206#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
207#define CAN_FRAME_MAX_BITS 128
208
209#define TX_ECHO_SKB_MAX 1
210
211#define DEVICE_NAME "mcp251x"
212
213static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
214module_param(mcp251x_enable_dma, int, S_IRUGO);
215MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
216
217static struct can_bittiming_const mcp251x_bittiming_const = {
218 .name = DEVICE_NAME,
219 .tseg1_min = 3,
220 .tseg1_max = 16,
221 .tseg2_min = 2,
222 .tseg2_max = 8,
223 .sjw_max = 4,
224 .brp_min = 1,
225 .brp_max = 64,
226 .brp_inc = 1,
227};
228
f1f8c6cb
MKB
229enum mcp251x_model {
230 CAN_MCP251X_MCP2510 = 0x2510,
231 CAN_MCP251X_MCP2515 = 0x2515,
232};
233
e0000163
CP
234struct mcp251x_priv {
235 struct can_priv can;
236 struct net_device *net;
237 struct spi_device *spi;
f1f8c6cb 238 enum mcp251x_model model;
e0000163 239
bf66f373
CP
240 struct mutex mcp_lock; /* SPI device lock */
241
e0000163
CP
242 u8 *spi_tx_buf;
243 u8 *spi_rx_buf;
244 dma_addr_t spi_tx_dma;
245 dma_addr_t spi_rx_dma;
246
247 struct sk_buff *tx_skb;
248 int tx_len;
bf66f373 249
e0000163
CP
250 struct workqueue_struct *wq;
251 struct work_struct tx_work;
bf66f373
CP
252 struct work_struct restart_work;
253
e0000163
CP
254 int force_quit;
255 int after_suspend;
256#define AFTER_SUSPEND_UP 1
257#define AFTER_SUSPEND_DOWN 2
258#define AFTER_SUSPEND_POWER 4
259#define AFTER_SUSPEND_RESTART 8
260 int restart_tx;
261};
262
beab675c
MKB
263#define MCP251X_IS(_model) \
264static inline int mcp251x_is_##_model(struct spi_device *spi) \
265{ \
266 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
267 return priv->model == CAN_MCP251X_MCP##_model; \
268}
269
270MCP251X_IS(2510);
271MCP251X_IS(2515);
272
e0000163
CP
273static void mcp251x_clean(struct net_device *net)
274{
275 struct mcp251x_priv *priv = netdev_priv(net);
276
bf66f373
CP
277 if (priv->tx_skb || priv->tx_len)
278 net->stats.tx_errors++;
e0000163
CP
279 if (priv->tx_skb)
280 dev_kfree_skb(priv->tx_skb);
281 if (priv->tx_len)
282 can_free_echo_skb(priv->net, 0);
283 priv->tx_skb = NULL;
284 priv->tx_len = 0;
285}
286
287/*
288 * Note about handling of error return of mcp251x_spi_trans: accessing
289 * registers via SPI is not really different conceptually than using
290 * normal I/O assembler instructions, although it's much more
291 * complicated from a practical POV. So it's not advisable to always
292 * check the return value of this function. Imagine that every
293 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
294 * error();", it would be a great mess (well there are some situation
295 * when exception handling C++ like could be useful after all). So we
296 * just check that transfers are OK at the beginning of our
297 * conversation with the chip and to avoid doing really nasty things
298 * (like injecting bogus packets in the network stack).
299 */
300static int mcp251x_spi_trans(struct spi_device *spi, int len)
301{
302 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
303 struct spi_transfer t = {
304 .tx_buf = priv->spi_tx_buf,
305 .rx_buf = priv->spi_rx_buf,
306 .len = len,
307 .cs_change = 0,
308 };
309 struct spi_message m;
310 int ret;
311
312 spi_message_init(&m);
313
314 if (mcp251x_enable_dma) {
315 t.tx_dma = priv->spi_tx_dma;
316 t.rx_dma = priv->spi_rx_dma;
317 m.is_dma_mapped = 1;
318 }
319
320 spi_message_add_tail(&t, &m);
321
322 ret = spi_sync(spi, &m);
323 if (ret)
324 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
325 return ret;
326}
327
328static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
329{
330 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
331 u8 val = 0;
332
e0000163
CP
333 priv->spi_tx_buf[0] = INSTRUCTION_READ;
334 priv->spi_tx_buf[1] = reg;
335
336 mcp251x_spi_trans(spi, 3);
337 val = priv->spi_rx_buf[2];
338
e0000163
CP
339 return val;
340}
341
f3a3ed31
SH
342static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
343 uint8_t *v1, uint8_t *v2)
344{
345 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
346
347 priv->spi_tx_buf[0] = INSTRUCTION_READ;
348 priv->spi_tx_buf[1] = reg;
349
350 mcp251x_spi_trans(spi, 4);
351
352 *v1 = priv->spi_rx_buf[2];
353 *v2 = priv->spi_rx_buf[3];
354}
355
e0000163
CP
356static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
357{
358 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
359
e0000163
CP
360 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
361 priv->spi_tx_buf[1] = reg;
362 priv->spi_tx_buf[2] = val;
363
364 mcp251x_spi_trans(spi, 3);
e0000163
CP
365}
366
367static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
368 u8 mask, uint8_t val)
369{
370 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
371
e0000163
CP
372 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
373 priv->spi_tx_buf[1] = reg;
374 priv->spi_tx_buf[2] = mask;
375 priv->spi_tx_buf[3] = val;
376
377 mcp251x_spi_trans(spi, 4);
e0000163
CP
378}
379
380static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
381 int len, int tx_buf_idx)
382{
e0000163
CP
383 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
384
beab675c 385 if (mcp251x_is_2510(spi)) {
e0000163
CP
386 int i;
387
388 for (i = 1; i < TXBDAT_OFF + len; i++)
389 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
390 buf[i]);
391 } else {
e0000163
CP
392 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
393 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
e0000163
CP
394 }
395}
396
397static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
398 int tx_buf_idx)
399{
400 u32 sid, eid, exide, rtr;
401 u8 buf[SPI_TRANSFER_BUF_LEN];
402
403 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
404 if (exide)
405 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
406 else
407 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
408 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
409 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
410
411 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
412 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
413 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
414 (exide << SIDL_EXIDE_SHIFT) |
415 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
416 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
417 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
418 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
419 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
420 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
421 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
422}
423
424static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
425 int buf_idx)
426{
427 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
e0000163 428
beab675c 429 if (mcp251x_is_2510(spi)) {
e0000163
CP
430 int i, len;
431
432 for (i = 1; i < RXBDAT_OFF; i++)
433 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
c7cd606f
OH
434
435 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
436 for (; i < (RXBDAT_OFF + len); i++)
437 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
438 } else {
e0000163
CP
439 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
440 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
441 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
e0000163
CP
442 }
443}
444
445static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
446{
447 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
448 struct sk_buff *skb;
449 struct can_frame *frame;
450 u8 buf[SPI_TRANSFER_BUF_LEN];
451
452 skb = alloc_can_skb(priv->net, &frame);
453 if (!skb) {
454 dev_err(&spi->dev, "cannot allocate RX skb\n");
455 priv->net->stats.rx_dropped++;
456 return;
457 }
458
459 mcp251x_hw_rx_frame(spi, buf, buf_idx);
460 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
461 /* Extended ID format */
462 frame->can_id = CAN_EFF_FLAG;
463 frame->can_id |=
464 /* Extended ID part */
465 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
466 SET_BYTE(buf[RXBEID8_OFF], 1) |
467 SET_BYTE(buf[RXBEID0_OFF], 0) |
468 /* Standard ID part */
469 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
470 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
471 /* Remote transmission request */
472 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
473 frame->can_id |= CAN_RTR_FLAG;
474 } else {
475 /* Standard ID format */
476 frame->can_id =
477 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
478 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
b9958a95
MKB
479 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
480 frame->can_id |= CAN_RTR_FLAG;
e0000163
CP
481 }
482 /* Data length */
c7cd606f 483 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
484 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
485
486 priv->net->stats.rx_packets++;
487 priv->net->stats.rx_bytes += frame->can_dlc;
57d3c7b0 488 netif_rx_ni(skb);
e0000163
CP
489}
490
491static void mcp251x_hw_sleep(struct spi_device *spi)
492{
493 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
494}
495
e0000163
CP
496static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
497 struct net_device *net)
498{
499 struct mcp251x_priv *priv = netdev_priv(net);
500 struct spi_device *spi = priv->spi;
501
502 if (priv->tx_skb || priv->tx_len) {
503 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
e0000163
CP
504 return NETDEV_TX_BUSY;
505 }
506
3ccd4c61 507 if (can_dropped_invalid_skb(net, skb))
e0000163 508 return NETDEV_TX_OK;
e0000163
CP
509
510 netif_stop_queue(net);
511 priv->tx_skb = skb;
e0000163
CP
512 queue_work(priv->wq, &priv->tx_work);
513
514 return NETDEV_TX_OK;
515}
516
517static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
518{
519 struct mcp251x_priv *priv = netdev_priv(net);
520
521 switch (mode) {
522 case CAN_MODE_START:
bf66f373 523 mcp251x_clean(net);
e0000163
CP
524 /* We have to delay work since SPI I/O may sleep */
525 priv->can.state = CAN_STATE_ERROR_ACTIVE;
526 priv->restart_tx = 1;
527 if (priv->can.restart_ms == 0)
528 priv->after_suspend = AFTER_SUSPEND_RESTART;
bf66f373 529 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
530 break;
531 default:
532 return -EOPNOTSUPP;
533 }
534
535 return 0;
536}
537
bf66f373 538static int mcp251x_set_normal_mode(struct spi_device *spi)
e0000163
CP
539{
540 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
541 unsigned long timeout;
542
543 /* Enable interrupts */
544 mcp251x_write_reg(spi, CANINTE,
545 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
bf66f373 546 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
e0000163
CP
547
548 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
549 /* Put device into loopback mode */
550 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
ad72c347
CP
551 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
552 /* Put device into listen-only mode */
553 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
e0000163
CP
554 } else {
555 /* Put device into normal mode */
bf66f373 556 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
e0000163
CP
557
558 /* Wait for the device to enter normal mode */
559 timeout = jiffies + HZ;
560 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
561 schedule();
562 if (time_after(jiffies, timeout)) {
563 dev_err(&spi->dev, "MCP251x didn't"
564 " enter in normal mode\n");
bf66f373 565 return -EBUSY;
e0000163
CP
566 }
567 }
568 }
569 priv->can.state = CAN_STATE_ERROR_ACTIVE;
bf66f373 570 return 0;
e0000163
CP
571}
572
573static int mcp251x_do_set_bittiming(struct net_device *net)
574{
575 struct mcp251x_priv *priv = netdev_priv(net);
576 struct can_bittiming *bt = &priv->can.bittiming;
577 struct spi_device *spi = priv->spi;
578
579 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
580 (bt->brp - 1));
581 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
582 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
583 CNF2_SAM : 0) |
584 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
585 (bt->prop_seg - 1));
586 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
587 (bt->phase_seg2 - 1));
588 dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
589 mcp251x_read_reg(spi, CNF1),
590 mcp251x_read_reg(spi, CNF2),
591 mcp251x_read_reg(spi, CNF3));
592
593 return 0;
594}
595
596static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
597 struct spi_device *spi)
598{
615534bc 599 mcp251x_do_set_bittiming(net);
e0000163 600
bf66f373
CP
601 mcp251x_write_reg(spi, RXBCTRL(0),
602 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
603 mcp251x_write_reg(spi, RXBCTRL(1),
604 RXBCTRL_RXM0 | RXBCTRL_RXM1);
e0000163
CP
605 return 0;
606}
607
bf66f373 608static int mcp251x_hw_reset(struct spi_device *spi)
e0000163
CP
609{
610 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
611 int ret;
bf66f373 612 unsigned long timeout;
e0000163
CP
613
614 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
e0000163 615 ret = spi_write(spi, priv->spi_tx_buf, 1);
bf66f373 616 if (ret) {
e0000163 617 dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
bf66f373
CP
618 return -EIO;
619 }
620
e0000163 621 /* Wait for reset to finish */
bf66f373 622 timeout = jiffies + HZ;
e0000163 623 mdelay(10);
bf66f373
CP
624 while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
625 != CANCTRL_REQOP_CONF) {
626 schedule();
627 if (time_after(jiffies, timeout)) {
628 dev_err(&spi->dev, "MCP251x didn't"
629 " enter in conf mode after reset\n");
630 return -EBUSY;
631 }
632 }
633 return 0;
e0000163
CP
634}
635
636static int mcp251x_hw_probe(struct spi_device *spi)
637{
638 int st1, st2;
639
640 mcp251x_hw_reset(spi);
641
642 /*
643 * Please note that these are "magic values" based on after
644 * reset defaults taken from data sheet which allows us to see
645 * if we really have a chip on the bus (we avoid common all
646 * zeroes or all ones situations)
647 */
648 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
649 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
650
651 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
652
653 /* Check for power up default values */
654 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
655}
656
bf66f373 657static void mcp251x_open_clean(struct net_device *net)
e0000163
CP
658{
659 struct mcp251x_priv *priv = netdev_priv(net);
660 struct spi_device *spi = priv->spi;
661 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
615534bc 662
bf66f373
CP
663 free_irq(spi->irq, priv);
664 mcp251x_hw_sleep(spi);
e0000163 665 if (pdata->transceiver_enable)
bf66f373
CP
666 pdata->transceiver_enable(0);
667 close_candev(net);
e0000163
CP
668}
669
670static int mcp251x_stop(struct net_device *net)
671{
672 struct mcp251x_priv *priv = netdev_priv(net);
673 struct spi_device *spi = priv->spi;
674 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
675
676 close_candev(net);
677
bf66f373
CP
678 priv->force_quit = 1;
679 free_irq(spi->irq, priv);
680 destroy_workqueue(priv->wq);
681 priv->wq = NULL;
682
683 mutex_lock(&priv->mcp_lock);
684
e0000163
CP
685 /* Disable and clear pending interrupts */
686 mcp251x_write_reg(spi, CANINTE, 0x00);
687 mcp251x_write_reg(spi, CANINTF, 0x00);
688
e0000163 689 mcp251x_write_reg(spi, TXBCTRL(0), 0);
bf66f373 690 mcp251x_clean(net);
e0000163
CP
691
692 mcp251x_hw_sleep(spi);
693
694 if (pdata->transceiver_enable)
695 pdata->transceiver_enable(0);
696
697 priv->can.state = CAN_STATE_STOPPED;
698
bf66f373
CP
699 mutex_unlock(&priv->mcp_lock);
700
e0000163
CP
701 return 0;
702}
703
bf66f373
CP
704static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
705{
706 struct sk_buff *skb;
707 struct can_frame *frame;
708
709 skb = alloc_can_err_skb(net, &frame);
710 if (skb) {
612eef4f 711 frame->can_id |= can_id;
bf66f373 712 frame->data[1] = data1;
57d3c7b0 713 netif_rx_ni(skb);
bf66f373
CP
714 } else {
715 dev_err(&net->dev,
716 "cannot allocate error skb\n");
717 }
718}
719
e0000163
CP
720static void mcp251x_tx_work_handler(struct work_struct *ws)
721{
722 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
723 tx_work);
724 struct spi_device *spi = priv->spi;
725 struct net_device *net = priv->net;
726 struct can_frame *frame;
727
bf66f373 728 mutex_lock(&priv->mcp_lock);
e0000163 729 if (priv->tx_skb) {
e0000163
CP
730 if (priv->can.state == CAN_STATE_BUS_OFF) {
731 mcp251x_clean(net);
bf66f373
CP
732 } else {
733 frame = (struct can_frame *)priv->tx_skb->data;
734
735 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
736 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
737 mcp251x_hw_tx(spi, frame, 0);
738 priv->tx_len = 1 + frame->can_dlc;
739 can_put_echo_skb(priv->tx_skb, net, 0);
740 priv->tx_skb = NULL;
e0000163 741 }
e0000163 742 }
bf66f373 743 mutex_unlock(&priv->mcp_lock);
e0000163
CP
744}
745
bf66f373 746static void mcp251x_restart_work_handler(struct work_struct *ws)
e0000163
CP
747{
748 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
bf66f373 749 restart_work);
e0000163
CP
750 struct spi_device *spi = priv->spi;
751 struct net_device *net = priv->net;
e0000163 752
bf66f373 753 mutex_lock(&priv->mcp_lock);
e0000163
CP
754 if (priv->after_suspend) {
755 mdelay(10);
756 mcp251x_hw_reset(spi);
757 mcp251x_setup(net, priv, spi);
758 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
759 mcp251x_set_normal_mode(spi);
760 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
761 netif_device_attach(net);
bf66f373 762 mcp251x_clean(net);
e0000163 763 mcp251x_set_normal_mode(spi);
bf66f373 764 netif_wake_queue(net);
e0000163
CP
765 } else {
766 mcp251x_hw_sleep(spi);
767 }
768 priv->after_suspend = 0;
bf66f373 769 priv->force_quit = 0;
e0000163
CP
770 }
771
bf66f373
CP
772 if (priv->restart_tx) {
773 priv->restart_tx = 0;
774 mcp251x_write_reg(spi, TXBCTRL(0), 0);
775 mcp251x_clean(net);
776 netif_wake_queue(net);
777 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
778 }
779 mutex_unlock(&priv->mcp_lock);
780}
e0000163 781
bf66f373
CP
782static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
783{
784 struct mcp251x_priv *priv = dev_id;
785 struct spi_device *spi = priv->spi;
786 struct net_device *net = priv->net;
e0000163 787
bf66f373
CP
788 mutex_lock(&priv->mcp_lock);
789 while (!priv->force_quit) {
790 enum can_state new_state;
f3a3ed31 791 u8 intf, eflag;
d3cd1565 792 u8 clear_intf = 0;
bf66f373 793 int can_id = 0, data1 = 0;
e0000163 794
f3a3ed31
SH
795 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
796
5601b2df
MKB
797 /* mask out flags we don't care about */
798 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
799
d3cd1565 800 /* receive buffer 0 */
bf66f373
CP
801 if (intf & CANINTF_RX0IF) {
802 mcp251x_hw_rx(spi, 0);
9c473fc3
MKB
803 /*
804 * Free one buffer ASAP
805 * (The MCP2515 does this automatically.)
806 */
807 if (mcp251x_is_2510(spi))
808 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
e0000163
CP
809 }
810
d3cd1565
MKB
811 /* receive buffer 1 */
812 if (intf & CANINTF_RX1IF) {
bf66f373 813 mcp251x_hw_rx(spi, 1);
9c473fc3
MKB
814 /* the MCP2515 does this automatically */
815 if (mcp251x_is_2510(spi))
816 clear_intf |= CANINTF_RX1IF;
d3cd1565 817 }
e0000163 818
d3cd1565 819 /* any error or tx interrupt we need to clear? */
5601b2df
MKB
820 if (intf & (CANINTF_ERR | CANINTF_TX))
821 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
d3cd1565
MKB
822 if (clear_intf)
823 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
e0000163 824
7e15de3a
SH
825 if (eflag)
826 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
bf66f373 827
e0000163
CP
828 /* Update can state */
829 if (eflag & EFLG_TXBO) {
830 new_state = CAN_STATE_BUS_OFF;
831 can_id |= CAN_ERR_BUSOFF;
832 } else if (eflag & EFLG_TXEP) {
833 new_state = CAN_STATE_ERROR_PASSIVE;
834 can_id |= CAN_ERR_CRTL;
835 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
836 } else if (eflag & EFLG_RXEP) {
837 new_state = CAN_STATE_ERROR_PASSIVE;
838 can_id |= CAN_ERR_CRTL;
839 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
840 } else if (eflag & EFLG_TXWAR) {
841 new_state = CAN_STATE_ERROR_WARNING;
842 can_id |= CAN_ERR_CRTL;
843 data1 |= CAN_ERR_CRTL_TX_WARNING;
844 } else if (eflag & EFLG_RXWAR) {
845 new_state = CAN_STATE_ERROR_WARNING;
846 can_id |= CAN_ERR_CRTL;
847 data1 |= CAN_ERR_CRTL_RX_WARNING;
848 } else {
849 new_state = CAN_STATE_ERROR_ACTIVE;
850 }
851
852 /* Update can state statistics */
853 switch (priv->can.state) {
854 case CAN_STATE_ERROR_ACTIVE:
855 if (new_state >= CAN_STATE_ERROR_WARNING &&
856 new_state <= CAN_STATE_BUS_OFF)
857 priv->can.can_stats.error_warning++;
858 case CAN_STATE_ERROR_WARNING: /* fallthrough */
859 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
860 new_state <= CAN_STATE_BUS_OFF)
861 priv->can.can_stats.error_passive++;
862 break;
863 default:
864 break;
865 }
866 priv->can.state = new_state;
867
bf66f373
CP
868 if (intf & CANINTF_ERRIF) {
869 /* Handle overflow counters */
870 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
711e4d6e 871 if (eflag & EFLG_RX0OVR) {
bf66f373 872 net->stats.rx_over_errors++;
711e4d6e
SH
873 net->stats.rx_errors++;
874 }
875 if (eflag & EFLG_RX1OVR) {
bf66f373 876 net->stats.rx_over_errors++;
711e4d6e
SH
877 net->stats.rx_errors++;
878 }
bf66f373
CP
879 can_id |= CAN_ERR_CRTL;
880 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
e0000163 881 }
bf66f373 882 mcp251x_error_skb(net, can_id, data1);
e0000163
CP
883 }
884
885 if (priv->can.state == CAN_STATE_BUS_OFF) {
886 if (priv->can.restart_ms == 0) {
bf66f373 887 priv->force_quit = 1;
e0000163
CP
888 can_bus_off(net);
889 mcp251x_hw_sleep(spi);
bf66f373 890 break;
e0000163
CP
891 }
892 }
893
894 if (intf == 0)
895 break;
896
5601b2df 897 if (intf & CANINTF_TX) {
e0000163
CP
898 net->stats.tx_packets++;
899 net->stats.tx_bytes += priv->tx_len - 1;
900 if (priv->tx_len) {
901 can_get_echo_skb(net, 0);
902 priv->tx_len = 0;
903 }
904 netif_wake_queue(net);
905 }
906
bf66f373
CP
907 }
908 mutex_unlock(&priv->mcp_lock);
909 return IRQ_HANDLED;
910}
e0000163 911
bf66f373
CP
912static int mcp251x_open(struct net_device *net)
913{
914 struct mcp251x_priv *priv = netdev_priv(net);
915 struct spi_device *spi = priv->spi;
916 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
917 int ret;
918
919 ret = open_candev(net);
920 if (ret) {
921 dev_err(&spi->dev, "unable to set initial baudrate!\n");
922 return ret;
923 }
924
925 mutex_lock(&priv->mcp_lock);
926 if (pdata->transceiver_enable)
927 pdata->transceiver_enable(1);
928
929 priv->force_quit = 0;
930 priv->tx_skb = NULL;
931 priv->tx_len = 0;
932
933 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
934 IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
935 if (ret) {
936 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
937 if (pdata->transceiver_enable)
938 pdata->transceiver_enable(0);
939 close_candev(net);
940 goto open_unlock;
941 }
942
943 priv->wq = create_freezeable_workqueue("mcp251x_wq");
944 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
945 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
946
947 ret = mcp251x_hw_reset(spi);
948 if (ret) {
949 mcp251x_open_clean(net);
950 goto open_unlock;
951 }
952 ret = mcp251x_setup(net, priv, spi);
953 if (ret) {
954 mcp251x_open_clean(net);
955 goto open_unlock;
e0000163 956 }
bf66f373
CP
957 ret = mcp251x_set_normal_mode(spi);
958 if (ret) {
959 mcp251x_open_clean(net);
960 goto open_unlock;
961 }
962 netif_wake_queue(net);
963
964open_unlock:
965 mutex_unlock(&priv->mcp_lock);
966 return ret;
e0000163
CP
967}
968
969static const struct net_device_ops mcp251x_netdev_ops = {
970 .ndo_open = mcp251x_open,
971 .ndo_stop = mcp251x_stop,
972 .ndo_start_xmit = mcp251x_hard_start_xmit,
973};
974
975static int __devinit mcp251x_can_probe(struct spi_device *spi)
976{
977 struct net_device *net;
978 struct mcp251x_priv *priv;
979 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
980 int ret = -ENODEV;
981
982 if (!pdata)
983 /* Platform data is required for osc freq */
984 goto error_out;
985
986 /* Allocate can/net device */
987 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
988 if (!net) {
989 ret = -ENOMEM;
990 goto error_alloc;
991 }
992
993 net->netdev_ops = &mcp251x_netdev_ops;
994 net->flags |= IFF_ECHO;
995
996 priv = netdev_priv(net);
997 priv->can.bittiming_const = &mcp251x_bittiming_const;
998 priv->can.do_set_mode = mcp251x_do_set_mode;
999 priv->can.clock.freq = pdata->oscillator_frequency / 2;
ad72c347
CP
1000 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1001 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
f1f8c6cb 1002 priv->model = spi_get_device_id(spi)->driver_data;
e0000163
CP
1003 priv->net = net;
1004 dev_set_drvdata(&spi->dev, priv);
1005
1006 priv->spi = spi;
bf66f373 1007 mutex_init(&priv->mcp_lock);
e0000163
CP
1008
1009 /* If requested, allocate DMA buffers */
1010 if (mcp251x_enable_dma) {
1011 spi->dev.coherent_dma_mask = ~0;
1012
1013 /*
1014 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1015 * that much and share it between Tx and Rx DMA buffers.
1016 */
1017 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1018 PAGE_SIZE,
1019 &priv->spi_tx_dma,
1020 GFP_DMA);
1021
1022 if (priv->spi_tx_buf) {
1023 priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
1024 (PAGE_SIZE / 2));
1025 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1026 (PAGE_SIZE / 2));
1027 } else {
1028 /* Fall back to non-DMA */
1029 mcp251x_enable_dma = 0;
1030 }
1031 }
1032
1033 /* Allocate non-DMA buffers */
1034 if (!mcp251x_enable_dma) {
1035 priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1036 if (!priv->spi_tx_buf) {
1037 ret = -ENOMEM;
1038 goto error_tx_buf;
1039 }
1040 priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
ce739b47 1041 if (!priv->spi_rx_buf) {
e0000163
CP
1042 ret = -ENOMEM;
1043 goto error_rx_buf;
1044 }
1045 }
1046
1047 if (pdata->power_enable)
1048 pdata->power_enable(1);
1049
1050 /* Call out to platform specific setup */
1051 if (pdata->board_specific_setup)
1052 pdata->board_specific_setup(spi);
1053
1054 SET_NETDEV_DEV(net, &spi->dev);
1055
e0000163
CP
1056 /* Configure the SPI bus */
1057 spi->mode = SPI_MODE_0;
1058 spi->bits_per_word = 8;
1059 spi_setup(spi);
1060
bf66f373 1061 /* Here is OK to not lock the MCP, no one knows about it yet */
e0000163
CP
1062 if (!mcp251x_hw_probe(spi)) {
1063 dev_info(&spi->dev, "Probe failed\n");
1064 goto error_probe;
1065 }
1066 mcp251x_hw_sleep(spi);
1067
1068 if (pdata->transceiver_enable)
1069 pdata->transceiver_enable(0);
1070
1071 ret = register_candev(net);
1072 if (!ret) {
1073 dev_info(&spi->dev, "probed\n");
1074 return ret;
1075 }
1076error_probe:
1077 if (!mcp251x_enable_dma)
1078 kfree(priv->spi_rx_buf);
1079error_rx_buf:
1080 if (!mcp251x_enable_dma)
1081 kfree(priv->spi_tx_buf);
1082error_tx_buf:
1083 free_candev(net);
1084 if (mcp251x_enable_dma)
1085 dma_free_coherent(&spi->dev, PAGE_SIZE,
1086 priv->spi_tx_buf, priv->spi_tx_dma);
1087error_alloc:
1088 if (pdata->power_enable)
1089 pdata->power_enable(0);
1090 dev_err(&spi->dev, "probe failed\n");
1091error_out:
1092 return ret;
1093}
1094
1095static int __devexit mcp251x_can_remove(struct spi_device *spi)
1096{
1097 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1098 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1099 struct net_device *net = priv->net;
1100
1101 unregister_candev(net);
1102 free_candev(net);
1103
e0000163
CP
1104 if (mcp251x_enable_dma) {
1105 dma_free_coherent(&spi->dev, PAGE_SIZE,
1106 priv->spi_tx_buf, priv->spi_tx_dma);
1107 } else {
1108 kfree(priv->spi_tx_buf);
1109 kfree(priv->spi_rx_buf);
1110 }
1111
1112 if (pdata->power_enable)
1113 pdata->power_enable(0);
1114
1115 return 0;
1116}
1117
1118#ifdef CONFIG_PM
1119static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1120{
1121 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1122 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1123 struct net_device *net = priv->net;
1124
bf66f373
CP
1125 priv->force_quit = 1;
1126 disable_irq(spi->irq);
1127 /*
1128 * Note: at this point neither IST nor workqueues are running.
1129 * open/stop cannot be called anyway so locking is not needed
1130 */
e0000163
CP
1131 if (netif_running(net)) {
1132 netif_device_detach(net);
1133
1134 mcp251x_hw_sleep(spi);
1135 if (pdata->transceiver_enable)
1136 pdata->transceiver_enable(0);
1137 priv->after_suspend = AFTER_SUSPEND_UP;
1138 } else {
1139 priv->after_suspend = AFTER_SUSPEND_DOWN;
1140 }
1141
1142 if (pdata->power_enable) {
1143 pdata->power_enable(0);
1144 priv->after_suspend |= AFTER_SUSPEND_POWER;
1145 }
1146
1147 return 0;
1148}
1149
1150static int mcp251x_can_resume(struct spi_device *spi)
1151{
1152 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1153 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1154
1155 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1156 pdata->power_enable(1);
bf66f373 1157 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1158 } else {
1159 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1160 if (pdata->transceiver_enable)
1161 pdata->transceiver_enable(1);
bf66f373 1162 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1163 } else {
1164 priv->after_suspend = 0;
1165 }
1166 }
bf66f373
CP
1167 priv->force_quit = 0;
1168 enable_irq(spi->irq);
e0000163
CP
1169 return 0;
1170}
1171#else
1172#define mcp251x_can_suspend NULL
1173#define mcp251x_can_resume NULL
1174#endif
1175
f1f8c6cb 1176static const struct spi_device_id mcp251x_id_table[] = {
e446630c
MZ
1177 { "mcp2510", CAN_MCP251X_MCP2510 },
1178 { "mcp2515", CAN_MCP251X_MCP2515 },
1179 { },
1180};
1181
1182MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1183
e0000163
CP
1184static struct spi_driver mcp251x_can_driver = {
1185 .driver = {
1186 .name = DEVICE_NAME,
1187 .bus = &spi_bus_type,
1188 .owner = THIS_MODULE,
1189 },
1190
e446630c 1191 .id_table = mcp251x_id_table,
e0000163
CP
1192 .probe = mcp251x_can_probe,
1193 .remove = __devexit_p(mcp251x_can_remove),
1194 .suspend = mcp251x_can_suspend,
1195 .resume = mcp251x_can_resume,
1196};
1197
1198static int __init mcp251x_can_init(void)
1199{
1200 return spi_register_driver(&mcp251x_can_driver);
1201}
1202
1203static void __exit mcp251x_can_exit(void)
1204{
1205 spi_unregister_driver(&mcp251x_can_driver);
1206}
1207
1208module_init(mcp251x_can_init);
1209module_exit(mcp251x_can_exit);
1210
1211MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1212 "Christian Pellegrin <chripell@evolware.org>");
1213MODULE_DESCRIPTION("Microchip 251x CAN driver");
1214MODULE_LICENSE("GPL v2");