]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/3c527.c
scm: lower SCM_MAX_FD
[net-next-2.6.git] / drivers / net / 3c527.c
CommitLineData
1da177e4
LT
1/* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
2 *
3 * (c) Copyright 1998 Red Hat Software Inc
6aa20a22 4 * Written by Alan Cox.
1da177e4
LT
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
8 *
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
11 *
12 * Thanks to 3Com for making this possible by providing me with the
13 * documentation.
14 *
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
17 *
18 */
19
20#define DRV_NAME "3c527"
21#define DRV_VERSION "0.7-SMP"
22#define DRV_RELDATE "2003/09/21"
23
24static const char *version =
25DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";
26
27/**
28 * DOC: Traps for the unwary
29 *
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
32 *
6aa20a22
JG
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
1da177e4
LT
36 *
37 * Setting the SAV BP bit does not save bad packets, but
6aa20a22 38 * only enables RX on-card stats collection.
1da177e4
LT
39 *
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
43 *
44 * DOC: Theory Of Operation
45 *
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
52 *
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for inital setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
62 *
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
6aa20a22 67 *
1da177e4
LT
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
6aa20a22 73 * implementation was made necessary --- see mc32_update_stats().
1da177e4
LT
74 *
75 * DOC: Notes
6aa20a22 76 *
1da177e4
LT
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
79 *
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
82 * senders.
83**/
84
85#include <linux/module.h>
86
87#include <linux/errno.h>
88#include <linux/netdevice.h>
89#include <linux/etherdevice.h>
90#include <linux/if_ether.h>
91#include <linux/init.h>
92#include <linux/kernel.h>
93#include <linux/types.h>
94#include <linux/fcntl.h>
95#include <linux/interrupt.h>
96#include <linux/mca-legacy.h>
97#include <linux/ioport.h>
98#include <linux/in.h>
99#include <linux/skbuff.h>
100#include <linux/slab.h>
101#include <linux/string.h>
102#include <linux/wait.h>
103#include <linux/ethtool.h>
104#include <linux/completion.h>
105#include <linux/bitops.h>
6188e10d 106#include <linux/semaphore.h>
1da177e4 107
1da177e4
LT
108#include <asm/uaccess.h>
109#include <asm/system.h>
110#include <asm/io.h>
111#include <asm/dma.h>
112
113#include "3c527.h"
114
115MODULE_LICENSE("GPL");
116
117/*
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
120 */
121static const char* cardname = DRV_NAME;
122
123/* use 0 for production, 1 for verification, >2 for debug */
124#ifndef NET_DEBUG
125#define NET_DEBUG 2
126#endif
127
1da177e4
LT
128static unsigned int mc32_debug = NET_DEBUG;
129
130/* The number of low I/O ports used by the ethercard. */
131#define MC32_IO_EXTENT 8
132
6aa20a22 133/* As implemented, values must be a power-of-2 -- 4/8/16/32 */
1da177e4
LT
134#define TX_RING_LEN 32 /* Typically the card supports 37 */
135#define RX_RING_LEN 8 /* " " " */
136
6aa20a22
JG
137/* Copy break point, see above for details.
138 * Setting to > 1512 effectively disables this feature. */
1da177e4
LT
139#define RX_COPYBREAK 200 /* Value from 3c59x.c */
140
141/* Issue the 82586 workaround command - this is for "busy lans", but
6aa20a22
JG
142 * basically means for all lans now days - has a performance (latency)
143 * cost, but best set. */
1da177e4
LT
144static const int WORKAROUND_82586=1;
145
146/* Pointers to buffers and their on-card records */
6aa20a22 147struct mc32_ring_desc
1da177e4 148{
6aa20a22
JG
149 volatile struct skb_header *p;
150 struct sk_buff *skb;
1da177e4
LT
151};
152
153/* Information that needs to be kept for each board. */
6aa20a22 154struct mc32_local
1da177e4
LT
155{
156 int slot;
157
158 u32 base;
1da177e4
LT
159 volatile struct mc32_mailbox *rx_box;
160 volatile struct mc32_mailbox *tx_box;
161 volatile struct mc32_mailbox *exec_box;
162 volatile struct mc32_stats *stats; /* Start of on-card statistics */
163 u16 tx_chain; /* Transmit list start offset */
164 u16 rx_chain; /* Receive list start offset */
6aa20a22 165 u16 tx_len; /* Transmit list count */
1da177e4
LT
166 u16 rx_len; /* Receive list count */
167
168 u16 xceiver_desired_state; /* HALTED or RUNNING */
169 u16 cmd_nonblocking; /* Thread is uninterested in command result */
170 u16 mc_reload_wait; /* A multicast load request is pending */
171 u32 mc_list_valid; /* True when the mclist is set */
172
173 struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */
174 struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */
175
176 atomic_t tx_count; /* buffers left */
177 atomic_t tx_ring_head; /* index to tx en-queue end */
178 u16 tx_ring_tail; /* index to tx de-queue end */
179
6aa20a22 180 u16 rx_ring_tail; /* index to rx de-queue end */
1da177e4
LT
181
182 struct semaphore cmd_mutex; /* Serialises issuing of execute commands */
183 struct completion execution_cmd; /* Card has completed an execute command */
184 struct completion xceiver_cmd; /* Card has completed a tx or rx command */
185};
186
187/* The station (ethernet) address prefix, used for a sanity check. */
188#define SA_ADDR0 0x02
189#define SA_ADDR1 0x60
190#define SA_ADDR2 0xAC
191
192struct mca_adapters_t {
193 unsigned int id;
194 char *name;
195};
196
197static const struct mca_adapters_t mc32_adapters[] = {
198 { 0x0041, "3COM EtherLink MC/32" },
199 { 0x8EF5, "IBM High Performance Lan Adapter" },
200 { 0x0000, NULL }
201};
202
203
6aa20a22 204/* Macros for ring index manipulations */
1da177e4
LT
205static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
206static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };
207
208static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };
209
210
211/* Index to functions, as function prototypes. */
212static int mc32_probe1(struct net_device *dev, int ioaddr);
213static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
214static int mc32_open(struct net_device *dev);
215static void mc32_timeout(struct net_device *dev);
27a1de95
SH
216static netdev_tx_t mc32_send_packet(struct sk_buff *skb,
217 struct net_device *dev);
7d12e780 218static irqreturn_t mc32_interrupt(int irq, void *dev_id);
1da177e4
LT
219static int mc32_close(struct net_device *dev);
220static struct net_device_stats *mc32_get_stats(struct net_device *dev);
221static void mc32_set_multicast_list(struct net_device *dev);
222static void mc32_reset_multicast_list(struct net_device *dev);
7282d491 223static const struct ethtool_ops netdev_ethtool_ops;
1da177e4
LT
224
225static void cleanup_card(struct net_device *dev)
226{
227 struct mc32_local *lp = netdev_priv(dev);
228 unsigned slot = lp->slot;
229 mca_mark_as_unused(slot);
230 mca_set_adapter_name(slot, NULL);
231 free_irq(dev->irq, dev);
232 release_region(dev->base_addr, MC32_IO_EXTENT);
233}
234
235/**
236 * mc32_probe - Search for supported boards
237 * @unit: interface number to use
238 *
239 * Because MCA bus is a real bus and we can scan for cards we could do a
240 * single scan for all boards here. Right now we use the passed in device
241 * structure and scan for only one board. This needs fixing for modules
242 * in particular.
243 */
244
245struct net_device *__init mc32_probe(int unit)
246{
247 struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
248 static int current_mca_slot = -1;
249 int i;
250 int err;
251
252 if (!dev)
253 return ERR_PTR(-ENOMEM);
254
255 if (unit >= 0)
256 sprintf(dev->name, "eth%d", unit);
257
6aa20a22 258 /* Do not check any supplied i/o locations.
1da177e4
LT
259 POS registers usually don't fail :) */
260
6aa20a22
JG
261 /* MCA cards have POS registers.
262 Autodetecting MCA cards is extremely simple.
1da177e4
LT
263 Just search for the card. */
264
265 for(i = 0; (mc32_adapters[i].name != NULL); i++) {
6aa20a22 266 current_mca_slot =
1da177e4
LT
267 mca_find_unused_adapter(mc32_adapters[i].id, 0);
268
269 if(current_mca_slot != MCA_NOTFOUND) {
270 if(!mc32_probe1(dev, current_mca_slot))
271 {
6aa20a22 272 mca_set_adapter_name(current_mca_slot,
1da177e4
LT
273 mc32_adapters[i].name);
274 mca_mark_as_used(current_mca_slot);
275 err = register_netdev(dev);
276 if (err) {
277 cleanup_card(dev);
278 free_netdev(dev);
279 dev = ERR_PTR(err);
280 }
281 return dev;
282 }
6aa20a22 283
1da177e4
LT
284 }
285 }
286 free_netdev(dev);
287 return ERR_PTR(-ENODEV);
288}
289
4394e653
SH
290static const struct net_device_ops netdev_ops = {
291 .ndo_open = mc32_open,
292 .ndo_stop = mc32_close,
293 .ndo_start_xmit = mc32_send_packet,
294 .ndo_get_stats = mc32_get_stats,
295 .ndo_set_multicast_list = mc32_set_multicast_list,
296 .ndo_tx_timeout = mc32_timeout,
297 .ndo_change_mtu = eth_change_mtu,
298 .ndo_set_mac_address = eth_mac_addr,
299 .ndo_validate_addr = eth_validate_addr,
300};
301
1da177e4
LT
302/**
303 * mc32_probe1 - Check a given slot for a board and test the card
304 * @dev: Device structure to fill in
305 * @slot: The MCA bus slot being used by this card
306 *
307 * Decode the slot data and configure the card structures. Having done this we
308 * can reset the card and configure it. The card does a full self test cycle
6aa20a22 309 * in firmware so we have to wait for it to return and post us either a
1da177e4
LT
310 * failure case or some addresses we use to find the board internals.
311 */
312
313static int __init mc32_probe1(struct net_device *dev, int slot)
314{
315 static unsigned version_printed;
316 int i, err;
317 u8 POS;
318 u32 base;
319 struct mc32_local *lp = netdev_priv(dev);
320 static u16 mca_io_bases[]={
321 0x7280,0x7290,
322 0x7680,0x7690,
323 0x7A80,0x7A90,
324 0x7E80,0x7E90
325 };
326 static u32 mca_mem_bases[]={
327 0x00C0000,
328 0x00C4000,
329 0x00C8000,
330 0x00CC000,
331 0x00D0000,
332 0x00D4000,
333 0x00D8000,
334 0x00DC000
335 };
336 static char *failures[]={
337 "Processor instruction",
338 "Processor data bus",
339 "Processor data bus",
340 "Processor data bus",
341 "Adapter bus",
342 "ROM checksum",
343 "Base RAM",
344 "Extended RAM",
345 "82586 internal loopback",
346 "82586 initialisation failure",
347 "Adapter list configuration error"
348 };
349
350 /* Time to play MCA games */
351
352 if (mc32_debug && version_printed++ == 0)
39738e16 353 pr_debug("%s", version);
1da177e4 354
39738e16 355 pr_info("%s: %s found in slot %d: ", dev->name, cardname, slot);
1da177e4
LT
356
357 POS = mca_read_stored_pos(slot, 2);
6aa20a22 358
1da177e4
LT
359 if(!(POS&1))
360 {
39738e16 361 pr_cont("disabled.\n");
1da177e4
LT
362 return -ENODEV;
363 }
364
365 /* Fill in the 'dev' fields. */
366 dev->base_addr = mca_io_bases[(POS>>1)&7];
367 dev->mem_start = mca_mem_bases[(POS>>4)&7];
6aa20a22 368
1da177e4
LT
369 POS = mca_read_stored_pos(slot, 4);
370 if(!(POS&1))
371 {
39738e16 372 pr_cont("memory window disabled.\n");
1da177e4
LT
373 return -ENODEV;
374 }
375
376 POS = mca_read_stored_pos(slot, 5);
6aa20a22 377
1da177e4
LT
378 i=(POS>>4)&3;
379 if(i==3)
380 {
39738e16 381 pr_cont("invalid memory window.\n");
1da177e4
LT
382 return -ENODEV;
383 }
6aa20a22 384
1da177e4
LT
385 i*=16384;
386 i+=16384;
6aa20a22 387
1da177e4 388 dev->mem_end=dev->mem_start + i;
6aa20a22 389
1da177e4 390 dev->irq = ((POS>>2)&3)+9;
6aa20a22 391
1da177e4
LT
392 if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
393 {
39738e16 394 pr_cont("io 0x%3lX, which is busy.\n", dev->base_addr);
1da177e4
LT
395 return -EBUSY;
396 }
397
39738e16 398 pr_cont("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
1da177e4 399 dev->base_addr, dev->irq, dev->mem_start, i/1024);
6aa20a22
JG
400
401
1da177e4 402 /* We ought to set the cache line size here.. */
6aa20a22
JG
403
404
1da177e4
LT
405 /*
406 * Go PROM browsing
407 */
6aa20a22 408
1da177e4
LT
409 /* Retrieve and print the ethernet address. */
410 for (i = 0; i < 6; i++)
411 {
412 mca_write_pos(slot, 6, i+12);
413 mca_write_pos(slot, 7, 0);
6aa20a22 414
0795af57 415 dev->dev_addr[i] = mca_read_pos(slot,3);
1da177e4
LT
416 }
417
39738e16 418 pr_info("%s: Address %pM ", dev->name, dev->dev_addr);
0795af57 419
1da177e4
LT
420 mca_write_pos(slot, 6, 0);
421 mca_write_pos(slot, 7, 0);
422
423 POS = mca_read_stored_pos(slot, 4);
6aa20a22 424
1da177e4 425 if(POS&2)
39738e16 426 pr_cont(": BNC port selected.\n");
6aa20a22 427 else
39738e16 428 pr_cont(": AUI port selected.\n");
6aa20a22 429
1da177e4
LT
430 POS=inb(dev->base_addr+HOST_CTRL);
431 POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
432 POS&=~HOST_CTRL_INTE;
433 outb(POS, dev->base_addr+HOST_CTRL);
434 /* Reset adapter */
435 udelay(100);
436 /* Reset off */
437 POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
438 outb(POS, dev->base_addr+HOST_CTRL);
6aa20a22 439
1da177e4 440 udelay(300);
6aa20a22 441
1da177e4
LT
442 /*
443 * Grab the IRQ
444 */
445
5d6076bb 446 err = request_irq(dev->irq, mc32_interrupt, IRQF_SHARED, DRV_NAME, dev);
1da177e4
LT
447 if (err) {
448 release_region(dev->base_addr, MC32_IO_EXTENT);
39738e16 449 pr_err("%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
1da177e4
LT
450 goto err_exit_ports;
451 }
452
453 memset(lp, 0, sizeof(struct mc32_local));
454 lp->slot = slot;
455
456 i=0;
457
458 base = inb(dev->base_addr);
6aa20a22 459
1da177e4
LT
460 while(base == 0xFF)
461 {
462 i++;
463 if(i == 1000)
464 {
39738e16 465 pr_err("%s: failed to boot adapter.\n", dev->name);
6aa20a22 466 err = -ENODEV;
1da177e4
LT
467 goto err_exit_irq;
468 }
469 udelay(1000);
470 if(inb(dev->base_addr+2)&(1<<5))
471 base = inb(dev->base_addr);
472 }
473
474 if(base>0)
475 {
476 if(base < 0x0C)
39738e16 477 pr_err("%s: %s%s.\n", dev->name, failures[base-1],
1da177e4
LT
478 base<0x0A?" test failure":"");
479 else
39738e16 480 pr_err("%s: unknown failure %d.\n", dev->name, base);
6aa20a22 481 err = -ENODEV;
1da177e4
LT
482 goto err_exit_irq;
483 }
6aa20a22 484
1da177e4
LT
485 base=0;
486 for(i=0;i<4;i++)
487 {
488 int n=0;
6aa20a22 489
1da177e4
LT
490 while(!(inb(dev->base_addr+2)&(1<<5)))
491 {
492 n++;
493 udelay(50);
494 if(n>100)
495 {
39738e16 496 pr_err("%s: mailbox read fail (%d).\n", dev->name, i);
1da177e4
LT
497 err = -ENODEV;
498 goto err_exit_irq;
499 }
500 }
501
502 base|=(inb(dev->base_addr)<<(8*i));
503 }
6aa20a22 504
1da177e4 505 lp->exec_box=isa_bus_to_virt(dev->mem_start+base);
6aa20a22
JG
506
507 base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];
508
1da177e4 509 lp->base = dev->mem_start+base;
6aa20a22
JG
510
511 lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
1da177e4 512 lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);
6aa20a22 513
1da177e4
LT
514 lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);
515
516 /*
517 * Descriptor chains (card relative)
518 */
6aa20a22 519
1da177e4
LT
520 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
521 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
6aa20a22 522 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
1da177e4
LT
523 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
524
50948ee8 525 sema_init(&lp->cmd_mutex, 0);
1da177e4
LT
526 init_completion(&lp->execution_cmd);
527 init_completion(&lp->xceiver_cmd);
6aa20a22 528
39738e16 529 pr_info("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
1da177e4
LT
530 dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);
531
4394e653 532 dev->netdev_ops = &netdev_ops;
1da177e4
LT
533 dev->watchdog_timeo = HZ*5; /* Board does all the work */
534 dev->ethtool_ops = &netdev_ethtool_ops;
535
536 return 0;
537
538err_exit_irq:
539 free_irq(dev->irq, dev);
540err_exit_ports:
541 release_region(dev->base_addr, MC32_IO_EXTENT);
542 return err;
543}
544
545
546/**
547 * mc32_ready_poll - wait until we can feed it a command
548 * @dev: The device to wait for
6aa20a22 549 *
1da177e4
LT
550 * Wait until the card becomes ready to accept a command via the
551 * command register. This tells us nothing about the completion
552 * status of any pending commands and takes very little time at all.
553 */
6aa20a22 554
1da177e4
LT
555static inline void mc32_ready_poll(struct net_device *dev)
556{
557 int ioaddr = dev->base_addr;
558 while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
559}
560
561
562/**
563 * mc32_command_nowait - send a command non blocking
564 * @dev: The 3c527 to issue the command to
565 * @cmd: The command word to write to the mailbox
566 * @data: A data block if the command expects one
567 * @len: Length of the data block
568 *
569 * Send a command from interrupt state. If there is a command
570 * currently being executed then we return an error of -1. It
571 * simply isn't viable to wait around as commands may be
572 * slow. This can theoretically be starved on SMP, but it's hard
573 * to see a realistic situation. We do not wait for the command
574 * to complete --- we rely on the interrupt handler to tidy up
575 * after us.
576 */
577
578static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
579{
580 struct mc32_local *lp = netdev_priv(dev);
581 int ioaddr = dev->base_addr;
582 int ret = -1;
583
584 if (down_trylock(&lp->cmd_mutex) == 0)
585 {
586 lp->cmd_nonblocking=1;
587 lp->exec_box->mbox=0;
588 lp->exec_box->mbox=cmd;
589 memcpy((void *)lp->exec_box->data, data, len);
590 barrier(); /* the memcpy forgot the volatile so be sure */
591
592 /* Send the command */
593 mc32_ready_poll(dev);
594 outb(1<<6, ioaddr+HOST_CMD);
595
596 ret = 0;
597
598 /* Interrupt handler will signal mutex on completion */
599 }
600
601 return ret;
602}
603
604
605/**
606 * mc32_command - send a command and sleep until completion
607 * @dev: The 3c527 card to issue the command to
608 * @cmd: The command word to write to the mailbox
609 * @data: A data block if the command expects one
610 * @len: Length of the data block
611 *
612 * Sends exec commands in a user context. This permits us to wait around
613 * for the replies and also to wait for the command buffer to complete
6aa20a22 614 * from a previous command before we execute our command. After our
1da177e4
LT
615 * command completes we will attempt any pending multicast reload
616 * we blocked off by hogging the exec buffer.
617 *
6aa20a22 618 * You feed the card a command, you wait, it interrupts you get a
1da177e4
LT
619 * reply. All well and good. The complication arises because you use
620 * commands for filter list changes which come in at bh level from things
621 * like IPV6 group stuff.
622 */
6aa20a22 623
1da177e4
LT
624static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
625{
626 struct mc32_local *lp = netdev_priv(dev);
627 int ioaddr = dev->base_addr;
628 int ret = 0;
6aa20a22 629
1da177e4
LT
630 down(&lp->cmd_mutex);
631
632 /*
633 * My Turn
634 */
635
636 lp->cmd_nonblocking=0;
637 lp->exec_box->mbox=0;
638 lp->exec_box->mbox=cmd;
639 memcpy((void *)lp->exec_box->data, data, len);
640 barrier(); /* the memcpy forgot the volatile so be sure */
641
642 mc32_ready_poll(dev);
643 outb(1<<6, ioaddr+HOST_CMD);
644
645 wait_for_completion(&lp->execution_cmd);
6aa20a22 646
1da177e4
LT
647 if(lp->exec_box->mbox&(1<<13))
648 ret = -1;
649
650 up(&lp->cmd_mutex);
651
652 /*
653 * A multicast set got blocked - try it now
654 */
655
656 if(lp->mc_reload_wait)
657 {
658 mc32_reset_multicast_list(dev);
659 }
660
661 return ret;
662}
663
664
665/**
666 * mc32_start_transceiver - tell board to restart tx/rx
667 * @dev: The 3c527 card to issue the command to
668 *
669 * This may be called from the interrupt state, where it is used
6aa20a22
JG
670 * to restart the rx ring if the card runs out of rx buffers.
671 *
1da177e4
LT
672 * We must first check if it's ok to (re)start the transceiver. See
673 * mc32_close for details.
674 */
675
676static void mc32_start_transceiver(struct net_device *dev) {
677
678 struct mc32_local *lp = netdev_priv(dev);
679 int ioaddr = dev->base_addr;
680
6aa20a22 681 /* Ignore RX overflow on device closure */
1da177e4 682 if (lp->xceiver_desired_state==HALTED)
6aa20a22 683 return;
1da177e4
LT
684
685 /* Give the card the offset to the post-EOL-bit RX descriptor */
6aa20a22 686 mc32_ready_poll(dev);
1da177e4 687 lp->rx_box->mbox=0;
6aa20a22
JG
688 lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
689 outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);
1da177e4 690
6aa20a22 691 mc32_ready_poll(dev);
1da177e4 692 lp->tx_box->mbox=0;
6aa20a22
JG
693 outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */
694
695 /* We are not interrupted on start completion */
1da177e4
LT
696}
697
698
699/**
700 * mc32_halt_transceiver - tell board to stop tx/rx
701 * @dev: The 3c527 card to issue the command to
702 *
703 * We issue the commands to halt the card's transceiver. In fact,
704 * after some experimenting we now simply tell the card to
705 * suspend. When issuing aborts occasionally odd things happened.
706 *
707 * We then sleep until the card has notified us that both rx and
708 * tx have been suspended.
6aa20a22 709 */
1da177e4 710
6aa20a22 711static void mc32_halt_transceiver(struct net_device *dev)
1da177e4
LT
712{
713 struct mc32_local *lp = netdev_priv(dev);
714 int ioaddr = dev->base_addr;
715
6aa20a22 716 mc32_ready_poll(dev);
1da177e4 717 lp->rx_box->mbox=0;
6aa20a22 718 outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
1da177e4
LT
719 wait_for_completion(&lp->xceiver_cmd);
720
6aa20a22 721 mc32_ready_poll(dev);
1da177e4 722 lp->tx_box->mbox=0;
6aa20a22 723 outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
1da177e4
LT
724 wait_for_completion(&lp->xceiver_cmd);
725}
726
727
728/**
729 * mc32_load_rx_ring - load the ring of receive buffers
730 * @dev: 3c527 to build the ring for
731 *
421f91d2 732 * This initialises the on-card and driver datastructures to
1da177e4
LT
733 * the point where mc32_start_transceiver() can be called.
734 *
735 * The card sets up the receive ring for us. We are required to use the
736 * ring it provides, although the size of the ring is configurable.
737 *
738 * We allocate an sk_buff for each ring entry in turn and
421f91d2 739 * initialise its house-keeping info. At the same time, we read
1da177e4
LT
740 * each 'next' pointer in our rx_ring array. This reduces slow
741 * shared-memory reads and makes it easy to access predecessor
742 * descriptors.
743 *
744 * We then set the end-of-list bit for the last entry so that the
745 * card will know when it has run out of buffers.
746 */
6aa20a22 747
1da177e4
LT
748static int mc32_load_rx_ring(struct net_device *dev)
749{
750 struct mc32_local *lp = netdev_priv(dev);
751 int i;
752 u16 rx_base;
753 volatile struct skb_header *p;
6aa20a22 754
1da177e4
LT
755 rx_base=lp->rx_chain;
756
757 for(i=0; i<RX_RING_LEN; i++) {
758 lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
759 if (lp->rx_ring[i].skb==NULL) {
760 for (;i>=0;i--)
761 kfree_skb(lp->rx_ring[i].skb);
762 return -ENOBUFS;
763 }
764 skb_reserve(lp->rx_ring[i].skb, 18);
765
766 p=isa_bus_to_virt(lp->base+rx_base);
6aa20a22 767
1da177e4
LT
768 p->control=0;
769 p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
770 p->status=0;
771 p->length=1532;
6aa20a22
JG
772
773 lp->rx_ring[i].p=p;
774 rx_base=p->next;
1da177e4
LT
775 }
776
777 lp->rx_ring[i-1].p->control |= CONTROL_EOL;
778
779 lp->rx_ring_tail=0;
780
781 return 0;
6aa20a22 782}
1da177e4
LT
783
784
785/**
786 * mc32_flush_rx_ring - free the ring of receive buffers
787 * @lp: Local data of 3c527 to flush the rx ring of
788 *
6aa20a22 789 * Free the buffer for each ring slot. This may be called
1da177e4
LT
790 * before mc32_load_rx_ring(), eg. on error in mc32_open().
791 * Requires rx skb pointers to point to a valid skb, or NULL.
792 */
793
794static void mc32_flush_rx_ring(struct net_device *dev)
795{
796 struct mc32_local *lp = netdev_priv(dev);
6aa20a22 797 int i;
1da177e4 798
6aa20a22
JG
799 for(i=0; i < RX_RING_LEN; i++)
800 {
1da177e4
LT
801 if (lp->rx_ring[i].skb) {
802 dev_kfree_skb(lp->rx_ring[i].skb);
803 lp->rx_ring[i].skb = NULL;
804 }
6aa20a22
JG
805 lp->rx_ring[i].p=NULL;
806 }
1da177e4
LT
807}
808
809
810/**
811 * mc32_load_tx_ring - load transmit ring
812 * @dev: The 3c527 card to issue the command to
813 *
6aa20a22 814 * This sets up the host transmit data-structures.
1da177e4
LT
815 *
816 * First, we obtain from the card it's current postion in the tx
817 * ring, so that we will know where to begin transmitting
818 * packets.
6aa20a22 819 *
1da177e4
LT
820 * Then, we read the 'next' pointers from the on-card tx ring into
821 * our tx_ring array to reduce slow shared-mem reads. Finally, we
822 * intitalise the tx house keeping variables.
6aa20a22
JG
823 *
824 */
1da177e4
LT
825
826static void mc32_load_tx_ring(struct net_device *dev)
6aa20a22 827{
1da177e4
LT
828 struct mc32_local *lp = netdev_priv(dev);
829 volatile struct skb_header *p;
6aa20a22 830 int i;
1da177e4
LT
831 u16 tx_base;
832
6aa20a22 833 tx_base=lp->tx_box->data[0];
1da177e4
LT
834
835 for(i=0 ; i<TX_RING_LEN ; i++)
836 {
837 p=isa_bus_to_virt(lp->base+tx_base);
6aa20a22 838 lp->tx_ring[i].p=p;
1da177e4
LT
839 lp->tx_ring[i].skb=NULL;
840
841 tx_base=p->next;
842 }
843
844 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
845 /* see mc32_tx_ring */
846
6aa20a22
JG
847 atomic_set(&lp->tx_count, TX_RING_LEN-1);
848 atomic_set(&lp->tx_ring_head, 0);
849 lp->tx_ring_tail=0;
850}
1da177e4
LT
851
852
853/**
854 * mc32_flush_tx_ring - free transmit ring
855 * @lp: Local data of 3c527 to flush the tx ring of
856 *
857 * If the ring is non-empty, zip over the it, freeing any
858 * allocated skb_buffs. The tx ring house-keeping variables are
859 * then reset. Requires rx skb pointers to point to a valid skb,
860 * or NULL.
861 */
862
863static void mc32_flush_tx_ring(struct net_device *dev)
864{
865 struct mc32_local *lp = netdev_priv(dev);
866 int i;
867
868 for (i=0; i < TX_RING_LEN; i++)
869 {
870 if (lp->tx_ring[i].skb)
871 {
872 dev_kfree_skb(lp->tx_ring[i].skb);
873 lp->tx_ring[i].skb = NULL;
874 }
875 }
876
6aa20a22
JG
877 atomic_set(&lp->tx_count, 0);
878 atomic_set(&lp->tx_ring_head, 0);
1da177e4
LT
879 lp->tx_ring_tail=0;
880}
6aa20a22 881
1da177e4
LT
882
883/**
884 * mc32_open - handle 'up' of card
885 * @dev: device to open
886 *
887 * The user is trying to bring the card into ready state. This requires
888 * a brief dialogue with the card. Firstly we enable interrupts and then
889 * 'indications'. Without these enabled the card doesn't bother telling
890 * us what it has done. This had me puzzled for a week.
891 *
892 * We configure the number of card descriptors, then load the network
893 * address and multicast filters. Turn on the workaround mode. This
894 * works around a bug in the 82586 - it asks the firmware to do
895 * so. It has a performance (latency) hit but is needed on busy
896 * [read most] lans. We load the ring with buffers then we kick it
897 * all off.
898 */
899
900static int mc32_open(struct net_device *dev)
901{
902 int ioaddr = dev->base_addr;
903 struct mc32_local *lp = netdev_priv(dev);
904 u8 one=1;
905 u8 regs;
906 u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};
907
908 /*
909 * Interrupts enabled
910 */
911
912 regs=inb(ioaddr+HOST_CTRL);
913 regs|=HOST_CTRL_INTE;
914 outb(regs, ioaddr+HOST_CTRL);
6aa20a22 915
1da177e4
LT
916 /*
917 * Allow ourselves to issue commands
918 */
919
920 up(&lp->cmd_mutex);
921
922
923 /*
924 * Send the indications on command
925 */
926
927 mc32_command(dev, 4, &one, 2);
928
929 /*
6aa20a22 930 * Poke it to make sure it's really dead.
1da177e4
LT
931 */
932
6aa20a22
JG
933 mc32_halt_transceiver(dev);
934 mc32_flush_tx_ring(dev);
1da177e4 935
6aa20a22
JG
936 /*
937 * Ask card to set up on-card descriptors to our spec
938 */
1da177e4 939
6aa20a22 940 if(mc32_command(dev, 8, descnumbuffs, 4)) {
39738e16 941 pr_info("%s: %s rejected our buffer configuration!\n",
1da177e4 942 dev->name, cardname);
6aa20a22
JG
943 mc32_close(dev);
944 return -ENOBUFS;
1da177e4 945 }
6aa20a22
JG
946
947 /* Report new configuration */
948 mc32_command(dev, 6, NULL, 0);
1da177e4
LT
949
950 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
951 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
6aa20a22 952 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
1da177e4 953 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
6aa20a22 954
1da177e4
LT
955 /* Set Network Address */
956 mc32_command(dev, 1, dev->dev_addr, 6);
6aa20a22 957
1da177e4
LT
958 /* Set the filters */
959 mc32_set_multicast_list(dev);
6aa20a22
JG
960
961 if (WORKAROUND_82586) {
1da177e4
LT
962 u16 zero_word=0;
963 mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */
964 }
965
966 mc32_load_tx_ring(dev);
6aa20a22
JG
967
968 if(mc32_load_rx_ring(dev))
1da177e4
LT
969 {
970 mc32_close(dev);
971 return -ENOBUFS;
972 }
973
974 lp->xceiver_desired_state = RUNNING;
6aa20a22 975
1da177e4
LT
976 /* And finally, set the ball rolling... */
977 mc32_start_transceiver(dev);
978
979 netif_start_queue(dev);
980
981 return 0;
982}
983
984
985/**
986 * mc32_timeout - handle a timeout from the network layer
987 * @dev: 3c527 that timed out
988 *
989 * Handle a timeout on transmit from the 3c527. This normally means
990 * bad things as the hardware handles cable timeouts and mess for
991 * us.
992 *
993 */
994
995static void mc32_timeout(struct net_device *dev)
996{
39738e16 997 pr_warning("%s: transmit timed out?\n", dev->name);
1da177e4
LT
998 /* Try to restart the adaptor. */
999 netif_wake_queue(dev);
1000}
1001
1002
1003/**
1004 * mc32_send_packet - queue a frame for transmit
1005 * @skb: buffer to transmit
1006 * @dev: 3c527 to send it out of
1007 *
1008 * Transmit a buffer. This normally means throwing the buffer onto
1009 * the transmit queue as the queue is quite large. If the queue is
1010 * full then we set tx_busy and return. Once the interrupt handler
1011 * gets messages telling it to reclaim transmit queue entries, we will
1012 * clear tx_busy and the kernel will start calling this again.
1013 *
1014 * We do not disable interrupts or acquire any locks; this can
1015 * run concurrently with mc32_tx_ring(), and the function itself
1016 * is serialised at a higher layer. However, similarly for the
1017 * card itself, we must ensure that we update tx_ring_head only
1018 * after we've established a valid packet on the tx ring (and
1019 * before we let the card "see" it, to prevent it racing with the
1020 * irq handler).
6aa20a22 1021 *
1da177e4
LT
1022 */
1023
27a1de95
SH
1024static netdev_tx_t mc32_send_packet(struct sk_buff *skb,
1025 struct net_device *dev)
1da177e4
LT
1026{
1027 struct mc32_local *lp = netdev_priv(dev);
1028 u32 head = atomic_read(&lp->tx_ring_head);
6aa20a22 1029
1da177e4
LT
1030 volatile struct skb_header *p, *np;
1031
1032 netif_stop_queue(dev);
1033
1034 if(atomic_read(&lp->tx_count)==0) {
5b548140 1035 return NETDEV_TX_BUSY;
1da177e4
LT
1036 }
1037
5b057c6b 1038 if (skb_padto(skb, ETH_ZLEN)) {
1da177e4 1039 netif_wake_queue(dev);
6ed10654 1040 return NETDEV_TX_OK;
1da177e4
LT
1041 }
1042
6aa20a22 1043 atomic_dec(&lp->tx_count);
1da177e4
LT
1044
1045 /* P is the last sending/sent buffer as a pointer */
1046 p=lp->tx_ring[head].p;
6aa20a22 1047
1da177e4
LT
1048 head = next_tx(head);
1049
1050 /* NP is the buffer we will be loading */
6aa20a22
JG
1051 np=lp->tx_ring[head].p;
1052
1da177e4
LT
1053 /* We will need this to flush the buffer out */
1054 lp->tx_ring[head].skb=skb;
1055
6aa20a22 1056 np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
1da177e4
LT
1057 np->data = isa_virt_to_bus(skb->data);
1058 np->status = 0;
6aa20a22 1059 np->control = CONTROL_EOP | CONTROL_EOL;
1da177e4 1060 wmb();
6aa20a22 1061
1da177e4
LT
1062 /*
1063 * The new frame has been setup; we can now
1064 * let the interrupt handler and card "see" it
1065 */
1066
6aa20a22 1067 atomic_set(&lp->tx_ring_head, head);
1da177e4
LT
1068 p->control &= ~CONTROL_EOL;
1069
1070 netif_wake_queue(dev);
6ed10654 1071 return NETDEV_TX_OK;
1da177e4
LT
1072}
1073
1074
1075/**
1076 * mc32_update_stats - pull off the on board statistics
1077 * @dev: 3c527 to service
1078 *
6aa20a22 1079 *
1da177e4
LT
1080 * Query and reset the on-card stats. There's the small possibility
1081 * of a race here, which would result in an underestimation of
1082 * actual errors. As such, we'd prefer to keep all our stats
1083 * collection in software. As a rule, we do. However it can't be
1084 * used for rx errors and collisions as, by default, the card discards
6aa20a22 1085 * bad rx packets.
1da177e4
LT
1086 *
1087 * Setting the SAV BP in the rx filter command supposedly
1088 * stops this behaviour. However, testing shows that it only seems to
1089 * enable the collation of on-card rx statistics --- the driver
1090 * never sees an RX descriptor with an error status set.
1091 *
1092 */
1093
1094static void mc32_update_stats(struct net_device *dev)
1095{
1096 struct mc32_local *lp = netdev_priv(dev);
6aa20a22 1097 volatile struct mc32_stats *st = lp->stats;
1da177e4 1098
6aa20a22
JG
1099 u32 rx_errors=0;
1100
4711c841 1101 rx_errors+=dev->stats.rx_crc_errors +=st->rx_crc_errors;
1da177e4 1102 st->rx_crc_errors=0;
4711c841 1103 rx_errors+=dev->stats.rx_fifo_errors +=st->rx_overrun_errors;
6aa20a22 1104 st->rx_overrun_errors=0;
4711c841 1105 rx_errors+=dev->stats.rx_frame_errors +=st->rx_alignment_errors;
1da177e4 1106 st->rx_alignment_errors=0;
4711c841 1107 rx_errors+=dev->stats.rx_length_errors+=st->rx_tooshort_errors;
1da177e4 1108 st->rx_tooshort_errors=0;
4711c841 1109 rx_errors+=dev->stats.rx_missed_errors+=st->rx_outofresource_errors;
6aa20a22 1110 st->rx_outofresource_errors=0;
4711c841 1111 dev->stats.rx_errors=rx_errors;
6aa20a22 1112
1da177e4 1113 /* Number of packets which saw one collision */
4711c841 1114 dev->stats.collisions+=st->dataC[10];
6aa20a22 1115 st->dataC[10]=0;
1da177e4 1116
6aa20a22 1117 /* Number of packets which saw 2--15 collisions */
4711c841 1118 dev->stats.collisions+=st->dataC[11];
6aa20a22
JG
1119 st->dataC[11]=0;
1120}
1da177e4
LT
1121
1122
1123/**
1124 * mc32_rx_ring - process the receive ring
1125 * @dev: 3c527 that needs its receive ring processing
1126 *
1127 *
1128 * We have received one or more indications from the card that a
1129 * receive has completed. The buffer ring thus contains dirty
1130 * entries. We walk the ring by iterating over the circular rx_ring
1131 * array, starting at the next dirty buffer (which happens to be the
1132 * one we finished up at last time around).
1133 *
1134 * For each completed packet, we will either copy it and pass it up
1135 * the stack or, if the packet is near MTU sized, we allocate
1136 * another buffer and flip the old one up the stack.
6aa20a22 1137 *
1da177e4
LT
1138 * We must succeed in keeping a buffer on the ring. If necessary we
1139 * will toss a received packet rather than lose a ring entry. Once
1140 * the first uncompleted descriptor is found, we move the
1141 * End-Of-List bit to include the buffers just processed.
1142 *
1143 */
1144
1145static void mc32_rx_ring(struct net_device *dev)
1146{
1147 struct mc32_local *lp = netdev_priv(dev);
1148 volatile struct skb_header *p;
1149 u16 rx_ring_tail;
1150 u16 rx_old_tail;
1151 int x=0;
1152
1153 rx_old_tail = rx_ring_tail = lp->rx_ring_tail;
6aa20a22 1154
1da177e4 1155 do
6aa20a22
JG
1156 {
1157 p=lp->rx_ring[rx_ring_tail].p;
1da177e4 1158
6aa20a22 1159 if(!(p->status & (1<<7))) { /* Not COMPLETED */
1da177e4 1160 break;
6aa20a22 1161 }
1da177e4 1162 if(p->status & (1<<6)) /* COMPLETED_OK */
6aa20a22 1163 {
1da177e4
LT
1164
1165 u16 length=p->length;
6aa20a22
JG
1166 struct sk_buff *skb;
1167 struct sk_buff *newskb;
1da177e4
LT
1168
1169 /* Try to save time by avoiding a copy on big frames */
1170
8e95a202
JP
1171 if ((length > RX_COPYBREAK) &&
1172 ((newskb=dev_alloc_skb(1532)) != NULL))
6aa20a22 1173 {
1da177e4
LT
1174 skb=lp->rx_ring[rx_ring_tail].skb;
1175 skb_put(skb, length);
6aa20a22
JG
1176
1177 skb_reserve(newskb,18);
1178 lp->rx_ring[rx_ring_tail].skb=newskb;
1179 p->data=isa_virt_to_bus(newskb->data);
1180 }
1181 else
1da177e4 1182 {
6aa20a22 1183 skb=dev_alloc_skb(length+2);
1da177e4
LT
1184
1185 if(skb==NULL) {
4711c841 1186 dev->stats.rx_dropped++;
6aa20a22 1187 goto dropped;
1da177e4
LT
1188 }
1189
1190 skb_reserve(skb,2);
1191 memcpy(skb_put(skb, length),
1192 lp->rx_ring[rx_ring_tail].skb->data, length);
1193 }
6aa20a22
JG
1194
1195 skb->protocol=eth_type_trans(skb,dev);
4711c841
PZ
1196 dev->stats.rx_packets++;
1197 dev->stats.rx_bytes += length;
1da177e4
LT
1198 netif_rx(skb);
1199 }
1200
1201 dropped:
6aa20a22 1202 p->length = 1532;
1da177e4 1203 p->status = 0;
6aa20a22
JG
1204
1205 rx_ring_tail=next_rx(rx_ring_tail);
1da177e4 1206 }
6aa20a22 1207 while(x++<48);
1da177e4 1208
6aa20a22
JG
1209 /* If there was actually a frame to be processed, place the EOL bit */
1210 /* at the descriptor prior to the one to be filled next */
1da177e4 1211
6aa20a22
JG
1212 if (rx_ring_tail != rx_old_tail)
1213 {
1214 lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL;
1215 lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL;
1da177e4 1216
6aa20a22 1217 lp->rx_ring_tail=rx_ring_tail;
1da177e4
LT
1218 }
1219}
1220
1221
1222/**
1223 * mc32_tx_ring - process completed transmits
1224 * @dev: 3c527 that needs its transmit ring processing
1225 *
1226 *
1227 * This operates in a similar fashion to mc32_rx_ring. We iterate
1228 * over the transmit ring. For each descriptor which has been
1229 * processed by the card, we free its associated buffer and note
1230 * any errors. This continues until the transmit ring is emptied
1231 * or we reach a descriptor that hasn't yet been processed by the
1232 * card.
6aa20a22 1233 *
1da177e4
LT
1234 */
1235
6aa20a22 1236static void mc32_tx_ring(struct net_device *dev)
1da177e4
LT
1237{
1238 struct mc32_local *lp = netdev_priv(dev);
1239 volatile struct skb_header *np;
1240
1241 /*
1242 * We rely on head==tail to mean 'queue empty'.
1243 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1244 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1245 * condition with 'queue full'
1246 */
1247
6aa20a22
JG
1248 while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
1249 {
1250 u16 t;
1da177e4 1251
6aa20a22
JG
1252 t=next_tx(lp->tx_ring_tail);
1253 np=lp->tx_ring[t].p;
1da177e4 1254
6aa20a22 1255 if(!(np->status & (1<<7)))
1da177e4 1256 {
6aa20a22
JG
1257 /* Not COMPLETED */
1258 break;
1259 }
4711c841 1260 dev->stats.tx_packets++;
1da177e4
LT
1261 if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
1262 {
4711c841 1263 dev->stats.tx_errors++;
1da177e4
LT
1264
1265 switch(np->status&0x0F)
1266 {
1267 case 1:
4711c841 1268 dev->stats.tx_aborted_errors++;
6aa20a22 1269 break; /* Max collisions */
1da177e4 1270 case 2:
4711c841 1271 dev->stats.tx_fifo_errors++;
1da177e4
LT
1272 break;
1273 case 3:
4711c841 1274 dev->stats.tx_carrier_errors++;
1da177e4
LT
1275 break;
1276 case 4:
4711c841 1277 dev->stats.tx_window_errors++;
6aa20a22 1278 break; /* CTS Lost */
1da177e4 1279 case 5:
4711c841 1280 dev->stats.tx_aborted_errors++;
6aa20a22 1281 break; /* Transmit timeout */
1da177e4
LT
1282 }
1283 }
1284 /* Packets are sent in order - this is
1285 basically a FIFO queue of buffers matching
1286 the card ring */
4711c841 1287 dev->stats.tx_bytes+=lp->tx_ring[t].skb->len;
1da177e4
LT
1288 dev_kfree_skb_irq(lp->tx_ring[t].skb);
1289 lp->tx_ring[t].skb=NULL;
1290 atomic_inc(&lp->tx_count);
1291 netif_wake_queue(dev);
1292
6aa20a22 1293 lp->tx_ring_tail=t;
1da177e4
LT
1294 }
1295
6aa20a22 1296}
1da177e4
LT
1297
1298
1299/**
1300 * mc32_interrupt - handle an interrupt from a 3c527
1301 * @irq: Interrupt number
1302 * @dev_id: 3c527 that requires servicing
1303 * @regs: Registers (unused)
1304 *
1305 *
1306 * An interrupt is raised whenever the 3c527 writes to the command
1307 * register. This register contains the message it wishes to send us
1308 * packed into a single byte field. We keep reading status entries
1309 * until we have processed all the control items, but simply count
1310 * transmit and receive reports. When all reports are in we empty the
1311 * transceiver rings as appropriate. This saves the overhead of
1312 * multiple command requests.
1313 *
1314 * Because MCA is level-triggered, we shouldn't miss indications.
1315 * Therefore, we needn't ask the card to suspend interrupts within
1316 * this handler. The card receives an implicit acknowledgment of the
1317 * current interrupt when we read the command register.
1318 *
1319 */
1320
7d12e780 1321static irqreturn_t mc32_interrupt(int irq, void *dev_id)
1da177e4
LT
1322{
1323 struct net_device *dev = dev_id;
1324 struct mc32_local *lp;
1325 int ioaddr, status, boguscount = 0;
1326 int rx_event = 0;
6aa20a22
JG
1327 int tx_event = 0;
1328
1da177e4
LT
1329 ioaddr = dev->base_addr;
1330 lp = netdev_priv(dev);
1331
1332 /* See whats cooking */
1333
1334 while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
1335 {
1336 status=inb(ioaddr+HOST_CMD);
1337
39738e16 1338 pr_debug("Status TX%d RX%d EX%d OV%d BC%d\n",
1da177e4
LT
1339 (status&7), (status>>3)&7, (status>>6)&1,
1340 (status>>7)&1, boguscount);
6aa20a22 1341
1da177e4
LT
1342 switch(status&7)
1343 {
1344 case 0:
1345 break;
1346 case 6: /* TX fail */
1347 case 2: /* TX ok */
6aa20a22 1348 tx_event = 1;
1da177e4
LT
1349 break;
1350 case 3: /* Halt */
1351 case 4: /* Abort */
1352 complete(&lp->xceiver_cmd);
1353 break;
1354 default:
39738e16 1355 pr_notice("%s: strange tx ack %d\n", dev->name, status&7);
1da177e4
LT
1356 }
1357 status>>=3;
1358 switch(status&7)
1359 {
1360 case 0:
1361 break;
1362 case 2: /* RX */
6aa20a22 1363 rx_event=1;
1da177e4
LT
1364 break;
1365 case 3: /* Halt */
1366 case 4: /* Abort */
1367 complete(&lp->xceiver_cmd);
1368 break;
1369 case 6:
1370 /* Out of RX buffers stat */
1371 /* Must restart rx */
4711c841 1372 dev->stats.rx_dropped++;
6aa20a22
JG
1373 mc32_rx_ring(dev);
1374 mc32_start_transceiver(dev);
1da177e4
LT
1375 break;
1376 default:
39738e16 1377 pr_notice("%s: strange rx ack %d\n",
6aa20a22 1378 dev->name, status&7);
1da177e4
LT
1379 }
1380 status>>=3;
1381 if(status&1)
1382 {
1383 /*
1384 * No thread is waiting: we need to tidy
1385 * up ourself.
1386 */
6aa20a22 1387
1da177e4
LT
1388 if (lp->cmd_nonblocking) {
1389 up(&lp->cmd_mutex);
6aa20a22 1390 if (lp->mc_reload_wait)
1da177e4
LT
1391 mc32_reset_multicast_list(dev);
1392 }
1393 else complete(&lp->execution_cmd);
1394 }
1395 if(status&2)
1396 {
1397 /*
1398 * We get interrupted once per
6aa20a22 1399 * counter that is about to overflow.
1da177e4
LT
1400 */
1401
6aa20a22 1402 mc32_update_stats(dev);
1da177e4
LT
1403 }
1404 }
1405
1406
1407 /*
6aa20a22 1408 * Process the transmit and receive rings
1da177e4
LT
1409 */
1410
6aa20a22 1411 if(tx_event)
1da177e4 1412 mc32_tx_ring(dev);
6aa20a22
JG
1413
1414 if(rx_event)
1da177e4
LT
1415 mc32_rx_ring(dev);
1416
1417 return IRQ_HANDLED;
1418}
1419
1420
1421/**
1422 * mc32_close - user configuring the 3c527 down
1423 * @dev: 3c527 card to shut down
1424 *
1425 * The 3c527 is a bus mastering device. We must be careful how we
1426 * shut it down. It may also be running shared interrupt so we have
1427 * to be sure to silence it properly
1428 *
1429 * We indicate that the card is closing to the rest of the
1430 * driver. Otherwise, it is possible that the card may run out
1431 * of receive buffers and restart the transceiver while we're
1432 * trying to close it.
6aa20a22 1433 *
1da177e4
LT
1434 * We abort any receive and transmits going on and then wait until
1435 * any pending exec commands have completed in other code threads.
1436 * In theory we can't get here while that is true, in practice I am
1437 * paranoid
1438 *
1439 * We turn off the interrupt enable for the board to be sure it can't
1440 * intefere with other devices.
1441 */
1442
1443static int mc32_close(struct net_device *dev)
1444{
1445 struct mc32_local *lp = netdev_priv(dev);
1446 int ioaddr = dev->base_addr;
1447
1448 u8 regs;
1449 u16 one=1;
6aa20a22 1450
1da177e4
LT
1451 lp->xceiver_desired_state = HALTED;
1452 netif_stop_queue(dev);
1453
1454 /*
1455 * Send the indications on command (handy debug check)
1456 */
1457
1458 mc32_command(dev, 4, &one, 2);
1459
1460 /* Shut down the transceiver */
1461
6aa20a22
JG
1462 mc32_halt_transceiver(dev);
1463
1da177e4
LT
1464 /* Ensure we issue no more commands beyond this point */
1465
1466 down(&lp->cmd_mutex);
6aa20a22
JG
1467
1468 /* Ok the card is now stopping */
1469
1da177e4
LT
1470 regs=inb(ioaddr+HOST_CTRL);
1471 regs&=~HOST_CTRL_INTE;
1472 outb(regs, ioaddr+HOST_CTRL);
1473
1474 mc32_flush_rx_ring(dev);
1475 mc32_flush_tx_ring(dev);
6aa20a22
JG
1476
1477 mc32_update_stats(dev);
1da177e4
LT
1478
1479 return 0;
1480}
1481
1482
1483/**
1484 * mc32_get_stats - hand back stats to network layer
1485 * @dev: The 3c527 card to handle
1486 *
1487 * We've collected all the stats we can in software already. Now
6aa20a22
JG
1488 * it's time to update those kept on-card and return the lot.
1489 *
1da177e4
LT
1490 */
1491
1492static struct net_device_stats *mc32_get_stats(struct net_device *dev)
1493{
6aa20a22 1494 mc32_update_stats(dev);
4711c841 1495 return &dev->stats;
1da177e4
LT
1496}
1497
1498
1499/**
1500 * do_mc32_set_multicast_list - attempt to update multicasts
1501 * @dev: 3c527 device to load the list on
6aa20a22 1502 * @retry: indicates this is not the first call.
1da177e4
LT
1503 *
1504 *
1505 * Actually set or clear the multicast filter for this adaptor. The
1506 * locking issues are handled by this routine. We have to track
1507 * state as it may take multiple calls to get the command sequence
1508 * completed. We just keep trying to schedule the loads until we
1509 * manage to process them all.
6aa20a22 1510 *
1da177e4 1511 * num_addrs == -1 Promiscuous mode, receive all packets
6aa20a22 1512 *
1da177e4 1513 * num_addrs == 0 Normal mode, clear multicast list
1da177e4 1514 *
6aa20a22
JG
1515 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1516 * and do best-effort filtering.
1517 *
1518 * See mc32_update_stats() regards setting the SAV BP bit.
1da177e4
LT
1519 *
1520 */
1521
1522static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
1523{
1524 struct mc32_local *lp = netdev_priv(dev);
6aa20a22 1525 u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */
1da177e4 1526
c16d1185
WC
1527 if ((dev->flags&IFF_PROMISC) ||
1528 (dev->flags&IFF_ALLMULTI) ||
4cd24eaf 1529 netdev_mc_count(dev) > 10)
1da177e4
LT
1530 /* Enable promiscuous mode */
1531 filt |= 1;
4cd24eaf 1532 else if (!netdev_mc_empty(dev))
1da177e4
LT
1533 {
1534 unsigned char block[62];
1535 unsigned char *bp;
22bedad3 1536 struct netdev_hw_addr *ha;
6aa20a22 1537
1da177e4
LT
1538 if(retry==0)
1539 lp->mc_list_valid = 0;
1540 if(!lp->mc_list_valid)
1541 {
1542 block[1]=0;
4cd24eaf 1543 block[0]=netdev_mc_count(dev);
1da177e4 1544 bp=block+2;
6aa20a22 1545
22bedad3
JP
1546 netdev_for_each_mc_addr(ha, dev) {
1547 memcpy(bp, ha->addr, 6);
1da177e4 1548 bp+=6;
1da177e4 1549 }
4cd24eaf
JP
1550 if(mc32_command_nowait(dev, 2, block,
1551 2+6*netdev_mc_count(dev))==-1)
1da177e4
LT
1552 {
1553 lp->mc_reload_wait = 1;
1554 return;
1555 }
1556 lp->mc_list_valid=1;
1557 }
1558 }
6aa20a22
JG
1559
1560 if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
1da177e4
LT
1561 {
1562 lp->mc_reload_wait = 1;
6aa20a22
JG
1563 }
1564 else {
1da177e4
LT
1565 lp->mc_reload_wait = 0;
1566 }
1567}
1568
1569
1570/**
1571 * mc32_set_multicast_list - queue multicast list update
1572 * @dev: The 3c527 to use
1573 *
1574 * Commence loading the multicast list. This is called when the kernel
1575 * changes the lists. It will override any pending list we are trying to
1576 * load.
1577 */
1578
1579static void mc32_set_multicast_list(struct net_device *dev)
1580{
1581 do_mc32_set_multicast_list(dev,0);
1582}
1583
1584
1585/**
1586 * mc32_reset_multicast_list - reset multicast list
1587 * @dev: The 3c527 to use
1588 *
1589 * Attempt the next step in loading the multicast lists. If this attempt
1590 * fails to complete then it will be scheduled and this function called
1591 * again later from elsewhere.
1592 */
1593
1594static void mc32_reset_multicast_list(struct net_device *dev)
1595{
1596 do_mc32_set_multicast_list(dev,1);
1597}
1598
1599static void netdev_get_drvinfo(struct net_device *dev,
1600 struct ethtool_drvinfo *info)
1601{
1602 strcpy(info->driver, DRV_NAME);
1603 strcpy(info->version, DRV_VERSION);
1604 sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
1605}
1606
1607static u32 netdev_get_msglevel(struct net_device *dev)
1608{
1609 return mc32_debug;
1610}
1611
1612static void netdev_set_msglevel(struct net_device *dev, u32 level)
1613{
1614 mc32_debug = level;
1615}
1616
7282d491 1617static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
1618 .get_drvinfo = netdev_get_drvinfo,
1619 .get_msglevel = netdev_get_msglevel,
1620 .set_msglevel = netdev_set_msglevel,
1621};
1622
1623#ifdef MODULE
1624
1625static struct net_device *this_device;
1626
1627/**
1628 * init_module - entry point
1629 *
1630 * Probe and locate a 3c527 card. This really should probe and locate
1631 * all the 3c527 cards in the machine not just one of them. Yes you can
1632 * insmod multiple modules for now but it's a hack.
1633 */
1634
96e672c7 1635int __init init_module(void)
1da177e4
LT
1636{
1637 this_device = mc32_probe(-1);
1638 if (IS_ERR(this_device))
1639 return PTR_ERR(this_device);
1640 return 0;
1641}
1642
1643/**
1644 * cleanup_module - free resources for an unload
1645 *
1646 * Unloading time. We release the MCA bus resources and the interrupt
1647 * at which point everything is ready to unload. The card must be stopped
1648 * at this point or we would not have been called. When we unload we
1649 * leave the card stopped but not totally shut down. When the card is
1650 * initialized it must be rebooted or the rings reloaded before any
1651 * transmit operations are allowed to start scribbling into memory.
1652 */
1653
afc8eb46 1654void __exit cleanup_module(void)
1da177e4
LT
1655{
1656 unregister_netdev(this_device);
1657 cleanup_card(this_device);
1658 free_netdev(this_device);
1659}
1660
1661#endif /* MODULE */