]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/ubi/io.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
85c6e6e2 23 * UBI input/output sub-system.
801c135c 24 *
85c6e6e2
AB
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
801c135c
AB
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
85c6e6e2
AB
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
801c135c
AB
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
85c6e6e2
AB
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
801c135c
AB
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
5a0e3ad6 91#include <linux/slab.h>
801c135c
AB
92#include "ubi.h"
93
94#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
801c135c
AB
102#else
103#define paranoid_check_not_bad(ubi, pnum) 0
104#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
801c135c
AB
108#endif
109
110/**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
801c135c
AB
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134{
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
adbf05e3 147 return err;
801c135c
AB
148
149 addr = (loff_t)pnum * ubi->peb_size + offset;
150retry:
151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 if (err) {
153 if (err == -EUCLEAN) {
154 /*
155 * -EUCLEAN is reported if there was a bit-flip which
156 * was corrected, so this is harmless.
8c1e6ee1
AB
157 *
158 * We do not report about it here unless debugging is
159 * enabled. A corresponding message will be printed
160 * later, when it is has been scrubbed.
801c135c 161 */
8c1e6ee1 162 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
801c135c
AB
163 ubi_assert(len == read);
164 return UBI_IO_BITFLIPS;
165 }
166
167 if (read != len && retries++ < UBI_IO_RETRIES) {
9c9ec147
AB
168 dbg_io("error %d while reading %d bytes from PEB %d:%d,"
169 " read only %zd bytes, retry",
801c135c
AB
170 err, len, pnum, offset, read);
171 yield();
172 goto retry;
173 }
174
175 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
176 "read %zd bytes", err, len, pnum, offset, read);
177 ubi_dbg_dump_stack();
2362a53e
AB
178
179 /*
180 * The driver should never return -EBADMSG if it failed to read
181 * all the requested data. But some buggy drivers might do
182 * this, so we change it to -EIO.
183 */
184 if (read != len && err == -EBADMSG) {
185 ubi_assert(0);
186 err = -EIO;
187 }
801c135c
AB
188 } else {
189 ubi_assert(len == read);
190
191 if (ubi_dbg_is_bitflip()) {
c8566350 192 dbg_gen("bit-flip (emulated)");
801c135c
AB
193 err = UBI_IO_BITFLIPS;
194 }
195 }
196
197 return err;
198}
199
200/**
201 * ubi_io_write - write data to a physical eraseblock.
202 * @ubi: UBI device description object
203 * @buf: buffer with the data to write
204 * @pnum: physical eraseblock number to write to
205 * @offset: offset within the physical eraseblock where to write
206 * @len: how many bytes to write
207 *
208 * This function writes @len bytes of data from buffer @buf to offset @offset
209 * of physical eraseblock @pnum. If all the data were successfully written,
210 * zero is returned. If an error occurred, this function returns a negative
211 * error code. If %-EIO is returned, the physical eraseblock most probably went
212 * bad.
213 *
214 * Note, in case of an error, it is possible that something was still written
215 * to the flash media, but may be some garbage.
216 */
e88d6e10
AB
217int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
218 int len)
801c135c
AB
219{
220 int err;
221 size_t written;
222 loff_t addr;
223
224 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
225
226 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
227 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
228 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
229 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
230
231 if (ubi->ro_mode) {
232 ubi_err("read-only mode");
233 return -EROFS;
234 }
235
236 /* The below has to be compiled out if paranoid checks are disabled */
237
238 err = paranoid_check_not_bad(ubi, pnum);
239 if (err)
adbf05e3 240 return err;
801c135c
AB
241
242 /* The area we are writing to has to contain all 0xFF bytes */
40a71a87 243 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
801c135c 244 if (err)
adbf05e3 245 return err;
801c135c
AB
246
247 if (offset >= ubi->leb_start) {
248 /*
249 * We write to the data area of the physical eraseblock. Make
250 * sure it has valid EC and VID headers.
251 */
252 err = paranoid_check_peb_ec_hdr(ubi, pnum);
253 if (err)
adbf05e3 254 return err;
801c135c
AB
255 err = paranoid_check_peb_vid_hdr(ubi, pnum);
256 if (err)
adbf05e3 257 return err;
801c135c
AB
258 }
259
260 if (ubi_dbg_is_write_failure()) {
261 dbg_err("cannot write %d bytes to PEB %d:%d "
262 "(emulated)", len, pnum, offset);
263 ubi_dbg_dump_stack();
264 return -EIO;
265 }
266
267 addr = (loff_t)pnum * ubi->peb_size + offset;
268 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
269 if (err) {
ebf53f42
AB
270 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
271 "%zd bytes", err, len, pnum, offset, written);
801c135c 272 ubi_dbg_dump_stack();
867996b1 273 ubi_dbg_dump_flash(ubi, pnum, offset, len);
801c135c
AB
274 } else
275 ubi_assert(written == len);
276
6e9065d7
AB
277 if (!err) {
278 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
279 if (err)
280 return err;
281
282 /*
283 * Since we always write sequentially, the rest of the PEB has
284 * to contain only 0xFF bytes.
285 */
286 offset += len;
287 len = ubi->peb_size - offset;
288 if (len)
289 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
290 }
291
801c135c
AB
292 return err;
293}
294
295/**
296 * erase_callback - MTD erasure call-back.
297 * @ei: MTD erase information object.
298 *
299 * Note, even though MTD erase interface is asynchronous, all the current
300 * implementations are synchronous anyway.
301 */
302static void erase_callback(struct erase_info *ei)
303{
304 wake_up_interruptible((wait_queue_head_t *)ei->priv);
305}
306
307/**
308 * do_sync_erase - synchronously erase a physical eraseblock.
309 * @ubi: UBI device description object
310 * @pnum: the physical eraseblock number to erase
311 *
312 * This function synchronously erases physical eraseblock @pnum and returns
313 * zero in case of success and a negative error code in case of failure. If
314 * %-EIO is returned, the physical eraseblock most probably went bad.
315 */
e88d6e10 316static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
317{
318 int err, retries = 0;
319 struct erase_info ei;
320 wait_queue_head_t wq;
321
322 dbg_io("erase PEB %d", pnum);
323
324retry:
325 init_waitqueue_head(&wq);
326 memset(&ei, 0, sizeof(struct erase_info));
327
328 ei.mtd = ubi->mtd;
2f176f79 329 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
330 ei.len = ubi->peb_size;
331 ei.callback = erase_callback;
332 ei.priv = (unsigned long)&wq;
333
334 err = ubi->mtd->erase(ubi->mtd, &ei);
335 if (err) {
336 if (retries++ < UBI_IO_RETRIES) {
337 dbg_io("error %d while erasing PEB %d, retry",
338 err, pnum);
339 yield();
340 goto retry;
341 }
342 ubi_err("cannot erase PEB %d, error %d", pnum, err);
343 ubi_dbg_dump_stack();
344 return err;
345 }
346
347 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
348 ei.state == MTD_ERASE_FAILED);
349 if (err) {
350 ubi_err("interrupted PEB %d erasure", pnum);
351 return -EINTR;
352 }
353
354 if (ei.state == MTD_ERASE_FAILED) {
355 if (retries++ < UBI_IO_RETRIES) {
356 dbg_io("error while erasing PEB %d, retry", pnum);
357 yield();
358 goto retry;
359 }
360 ubi_err("cannot erase PEB %d", pnum);
361 ubi_dbg_dump_stack();
362 return -EIO;
363 }
364
40a71a87 365 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
801c135c 366 if (err)
adbf05e3 367 return err;
801c135c
AB
368
369 if (ubi_dbg_is_erase_failure() && !err) {
370 dbg_err("cannot erase PEB %d (emulated)", pnum);
371 return -EIO;
372 }
373
374 return 0;
375}
376
377/**
378 * check_pattern - check if buffer contains only a certain byte pattern.
379 * @buf: buffer to check
380 * @patt: the pattern to check
381 * @size: buffer size in bytes
382 *
383 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
384 * something else was also found.
385 */
386static int check_pattern(const void *buf, uint8_t patt, int size)
387{
388 int i;
389
390 for (i = 0; i < size; i++)
391 if (((const uint8_t *)buf)[i] != patt)
392 return 0;
393 return 1;
394}
395
396/* Patterns to write to a physical eraseblock when torturing it */
397static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
398
399/**
400 * torture_peb - test a supposedly bad physical eraseblock.
401 * @ubi: UBI device description object
402 * @pnum: the physical eraseblock number to test
403 *
404 * This function returns %-EIO if the physical eraseblock did not pass the
405 * test, a positive number of erase operations done if the test was
406 * successfully passed, and other negative error codes in case of other errors.
407 */
e88d6e10 408static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 409{
801c135c
AB
410 int err, i, patt_count;
411
8c1e6ee1 412 ubi_msg("run torture test for PEB %d", pnum);
801c135c
AB
413 patt_count = ARRAY_SIZE(patterns);
414 ubi_assert(patt_count > 0);
415
e88d6e10 416 mutex_lock(&ubi->buf_mutex);
801c135c
AB
417 for (i = 0; i < patt_count; i++) {
418 err = do_sync_erase(ubi, pnum);
419 if (err)
420 goto out;
421
422 /* Make sure the PEB contains only 0xFF bytes */
e88d6e10 423 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
424 if (err)
425 goto out;
426
e88d6e10 427 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
801c135c
AB
428 if (err == 0) {
429 ubi_err("erased PEB %d, but a non-0xFF byte found",
430 pnum);
431 err = -EIO;
432 goto out;
433 }
434
435 /* Write a pattern and check it */
e88d6e10
AB
436 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
437 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
438 if (err)
439 goto out;
440
e88d6e10
AB
441 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
442 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
443 if (err)
444 goto out;
445
e88d6e10 446 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
801c135c
AB
447 if (err == 0) {
448 ubi_err("pattern %x checking failed for PEB %d",
449 patterns[i], pnum);
450 err = -EIO;
451 goto out;
452 }
453 }
454
455 err = patt_count;
8c1e6ee1 456 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
801c135c
AB
457
458out:
e88d6e10 459 mutex_unlock(&ubi->buf_mutex);
8d2d4011 460 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
801c135c
AB
461 /*
462 * If a bit-flip or data integrity error was detected, the test
463 * has not passed because it happened on a freshly erased
464 * physical eraseblock which means something is wrong with it.
465 */
8d2d4011
AB
466 ubi_err("read problems on freshly erased PEB %d, must be bad",
467 pnum);
801c135c 468 err = -EIO;
8d2d4011 469 }
801c135c
AB
470 return err;
471}
472
ebf53f42
AB
473/**
474 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
475 * @ubi: UBI device description object
476 * @pnum: physical eraseblock number to prepare
477 *
478 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
479 * algorithm: the PEB is first filled with zeroes, then it is erased. And
480 * filling with zeroes starts from the end of the PEB. This was observed with
481 * Spansion S29GL512N NOR flash.
482 *
483 * This means that in case of a power cut we may end up with intact data at the
484 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
485 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
486 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
487 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
488 *
489 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
490 * magic numbers in order to invalidate them and prevent the failures. Returns
491 * zero in case of success and a negative error code in case of failure.
492 */
493static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
494{
de75c771 495 int err, err1;
ebf53f42
AB
496 size_t written;
497 loff_t addr;
498 uint32_t data = 0;
de75c771 499 struct ubi_vid_hdr vid_hdr;
ebf53f42 500
5b289b56 501 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
83c2099f 502 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
de75c771
AB
503 if (!err) {
504 addr -= ubi->vid_hdr_aloffset;
505 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
506 (void *)&data);
507 if (!err)
508 return 0;
ebf53f42
AB
509 }
510
de75c771
AB
511 /*
512 * We failed to write to the media. This was observed with Spansion
513 * S29GL512N NOR flash. Most probably the eraseblock erasure was
514 * interrupted at a very inappropriate moment, so it became unwritable.
515 * In this case we probably anyway have garbage in this PEB.
516 */
517 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
518 if (err1 == UBI_IO_BAD_VID_HDR)
519 /*
520 * The VID header is corrupted, so we can safely erase this
521 * PEB and not afraid that it will be treated as a valid PEB in
522 * case of an unclean reboot.
523 */
524 return 0;
525
526 /*
527 * The PEB contains a valid VID header, but we cannot invalidate it.
528 * Supposedly the flash media or the driver is screwed up, so return an
529 * error.
530 */
531 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
532 pnum, err, err1);
533 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
534 return -EIO;
ebf53f42
AB
535}
536
801c135c
AB
537/**
538 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
539 * @ubi: UBI device description object
540 * @pnum: physical eraseblock number to erase
541 * @torture: if this physical eraseblock has to be tortured
542 *
543 * This function synchronously erases physical eraseblock @pnum. If @torture
544 * flag is not zero, the physical eraseblock is checked by means of writing
545 * different patterns to it and reading them back. If the torturing is enabled,
025dfdaf 546 * the physical eraseblock is erased more than once.
801c135c
AB
547 *
548 * This function returns the number of erasures made in case of success, %-EIO
549 * if the erasure failed or the torturing test failed, and other negative error
550 * codes in case of other errors. Note, %-EIO means that the physical
551 * eraseblock is bad.
552 */
e88d6e10 553int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
554{
555 int err, ret = 0;
556
557 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
558
559 err = paranoid_check_not_bad(ubi, pnum);
560 if (err != 0)
adbf05e3 561 return err;
801c135c
AB
562
563 if (ubi->ro_mode) {
564 ubi_err("read-only mode");
565 return -EROFS;
566 }
567
ebf53f42
AB
568 if (ubi->nor_flash) {
569 err = nor_erase_prepare(ubi, pnum);
570 if (err)
571 return err;
572 }
573
801c135c
AB
574 if (torture) {
575 ret = torture_peb(ubi, pnum);
576 if (ret < 0)
577 return ret;
578 }
579
580 err = do_sync_erase(ubi, pnum);
581 if (err)
582 return err;
583
584 return ret + 1;
585}
586
587/**
588 * ubi_io_is_bad - check if a physical eraseblock is bad.
589 * @ubi: UBI device description object
590 * @pnum: the physical eraseblock number to check
591 *
592 * This function returns a positive number if the physical eraseblock is bad,
593 * zero if not, and a negative error code if an error occurred.
594 */
595int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
596{
597 struct mtd_info *mtd = ubi->mtd;
598
599 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
600
601 if (ubi->bad_allowed) {
602 int ret;
603
604 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
605 if (ret < 0)
606 ubi_err("error %d while checking if PEB %d is bad",
607 ret, pnum);
608 else if (ret)
609 dbg_io("PEB %d is bad", pnum);
610 return ret;
611 }
612
613 return 0;
614}
615
616/**
617 * ubi_io_mark_bad - mark a physical eraseblock as bad.
618 * @ubi: UBI device description object
619 * @pnum: the physical eraseblock number to mark
620 *
621 * This function returns zero in case of success and a negative error code in
622 * case of failure.
623 */
624int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
625{
626 int err;
627 struct mtd_info *mtd = ubi->mtd;
628
629 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
630
631 if (ubi->ro_mode) {
632 ubi_err("read-only mode");
633 return -EROFS;
634 }
635
636 if (!ubi->bad_allowed)
637 return 0;
638
639 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
640 if (err)
641 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
642 return err;
643}
644
645/**
646 * validate_ec_hdr - validate an erase counter header.
647 * @ubi: UBI device description object
648 * @ec_hdr: the erase counter header to check
649 *
650 * This function returns zero if the erase counter header is OK, and %1 if
651 * not.
652 */
fe96efc1 653static int validate_ec_hdr(const struct ubi_device *ubi,
801c135c
AB
654 const struct ubi_ec_hdr *ec_hdr)
655{
656 long long ec;
fe96efc1 657 int vid_hdr_offset, leb_start;
801c135c 658
3261ebd7
CH
659 ec = be64_to_cpu(ec_hdr->ec);
660 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
661 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
662
663 if (ec_hdr->version != UBI_VERSION) {
664 ubi_err("node with incompatible UBI version found: "
665 "this UBI version is %d, image version is %d",
666 UBI_VERSION, (int)ec_hdr->version);
667 goto bad;
668 }
669
670 if (vid_hdr_offset != ubi->vid_hdr_offset) {
671 ubi_err("bad VID header offset %d, expected %d",
672 vid_hdr_offset, ubi->vid_hdr_offset);
673 goto bad;
674 }
675
676 if (leb_start != ubi->leb_start) {
677 ubi_err("bad data offset %d, expected %d",
678 leb_start, ubi->leb_start);
679 goto bad;
680 }
681
682 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
683 ubi_err("bad erase counter %lld", ec);
684 goto bad;
685 }
686
687 return 0;
688
689bad:
690 ubi_err("bad EC header");
691 ubi_dbg_dump_ec_hdr(ec_hdr);
692 ubi_dbg_dump_stack();
693 return 1;
694}
695
696/**
697 * ubi_io_read_ec_hdr - read and check an erase counter header.
698 * @ubi: UBI device description object
699 * @pnum: physical eraseblock to read from
700 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
701 * header
702 * @verbose: be verbose if the header is corrupted or was not found
703 *
704 * This function reads erase counter header from physical eraseblock @pnum and
705 * stores it in @ec_hdr. This function also checks CRC checksum of the read
706 * erase counter header. The following codes may be returned:
707 *
708 * o %0 if the CRC checksum is correct and the header was successfully read;
709 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
710 * and corrected by the flash driver; this is harmless but may indicate that
711 * this eraseblock may become bad soon (but may be not);
712 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
713 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
714 * o a negative error code in case of failure.
715 */
e88d6e10 716int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
717 struct ubi_ec_hdr *ec_hdr, int verbose)
718{
719 int err, read_err = 0;
720 uint32_t crc, magic, hdr_crc;
721
722 dbg_io("read EC header from PEB %d", pnum);
723 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
724
725 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
726 if (err) {
727 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
728 return err;
729
730 /*
731 * We read all the data, but either a correctable bit-flip
732 * occurred, or MTD reported about some data integrity error,
733 * like an ECC error in case of NAND. The former is harmless,
734 * the later may mean that the read data is corrupted. But we
735 * have a CRC check-sum and we will detect this. If the EC
736 * header is still OK, we just report this as there was a
737 * bit-flip.
738 */
739 read_err = err;
740 }
741
3261ebd7 742 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
743 if (magic != UBI_EC_HDR_MAGIC) {
744 /*
745 * The magic field is wrong. Let's check if we have read all
746 * 0xFF. If yes, this physical eraseblock is assumed to be
747 * empty.
748 *
749 * But if there was a read error, we do not test it for all
750 * 0xFFs. Even if it does contain all 0xFFs, this error
751 * indicates that something is still wrong with this physical
752 * eraseblock and we anyway cannot treat it as empty.
753 */
754 if (read_err != -EBADMSG &&
755 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
756 /* The physical eraseblock is supposedly empty */
801c135c
AB
757 if (verbose)
758 ubi_warn("no EC header found at PEB %d, "
759 "only 0xFF bytes", pnum);
ed45819f
AB
760 else if (UBI_IO_DEBUG)
761 dbg_msg("no EC header found at PEB %d, "
762 "only 0xFF bytes", pnum);
801c135c
AB
763 return UBI_IO_PEB_EMPTY;
764 }
765
766 /*
767 * This is not a valid erase counter header, and these are not
768 * 0xFF bytes. Report that the header is corrupted.
769 */
770 if (verbose) {
771 ubi_warn("bad magic number at PEB %d: %08x instead of "
772 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
773 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
774 } else if (UBI_IO_DEBUG)
775 dbg_msg("bad magic number at PEB %d: %08x instead of "
776 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
801c135c
AB
777 return UBI_IO_BAD_EC_HDR;
778 }
779
780 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 781 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
782
783 if (hdr_crc != crc) {
784 if (verbose) {
9c9ec147
AB
785 ubi_warn("bad EC header CRC at PEB %d, calculated "
786 "%#08x, read %#08x", pnum, crc, hdr_crc);
801c135c 787 ubi_dbg_dump_ec_hdr(ec_hdr);
ed45819f
AB
788 } else if (UBI_IO_DEBUG)
789 dbg_msg("bad EC header CRC at PEB %d, calculated "
790 "%#08x, read %#08x", pnum, crc, hdr_crc);
801c135c
AB
791 return UBI_IO_BAD_EC_HDR;
792 }
793
794 /* And of course validate what has just been read from the media */
795 err = validate_ec_hdr(ubi, ec_hdr);
796 if (err) {
797 ubi_err("validation failed for PEB %d", pnum);
798 return -EINVAL;
799 }
800
801 return read_err ? UBI_IO_BITFLIPS : 0;
802}
803
804/**
805 * ubi_io_write_ec_hdr - write an erase counter header.
806 * @ubi: UBI device description object
807 * @pnum: physical eraseblock to write to
808 * @ec_hdr: the erase counter header to write
809 *
810 * This function writes erase counter header described by @ec_hdr to physical
811 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
812 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
813 * field.
814 *
815 * This function returns zero in case of success and a negative error code in
816 * case of failure. If %-EIO is returned, the physical eraseblock most probably
817 * went bad.
818 */
e88d6e10 819int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
820 struct ubi_ec_hdr *ec_hdr)
821{
822 int err;
823 uint32_t crc;
824
825 dbg_io("write EC header to PEB %d", pnum);
826 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
827
3261ebd7 828 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 829 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
830 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
831 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
0c6c7fa1 832 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801c135c 833 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 834 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
835
836 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
837 if (err)
adbf05e3 838 return err;
801c135c
AB
839
840 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
841 return err;
842}
843
844/**
845 * validate_vid_hdr - validate a volume identifier header.
846 * @ubi: UBI device description object
847 * @vid_hdr: the volume identifier header to check
848 *
849 * This function checks that data stored in the volume identifier header
850 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
851 */
852static int validate_vid_hdr(const struct ubi_device *ubi,
853 const struct ubi_vid_hdr *vid_hdr)
854{
855 int vol_type = vid_hdr->vol_type;
856 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
857 int vol_id = be32_to_cpu(vid_hdr->vol_id);
858 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 859 int compat = vid_hdr->compat;
3261ebd7
CH
860 int data_size = be32_to_cpu(vid_hdr->data_size);
861 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
862 int data_pad = be32_to_cpu(vid_hdr->data_pad);
863 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
864 int usable_leb_size = ubi->leb_size - data_pad;
865
866 if (copy_flag != 0 && copy_flag != 1) {
867 dbg_err("bad copy_flag");
868 goto bad;
869 }
870
871 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
872 data_pad < 0) {
873 dbg_err("negative values");
874 goto bad;
875 }
876
877 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
878 dbg_err("bad vol_id");
879 goto bad;
880 }
881
882 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
883 dbg_err("bad compat");
884 goto bad;
885 }
886
887 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
888 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
889 compat != UBI_COMPAT_REJECT) {
890 dbg_err("bad compat");
891 goto bad;
892 }
893
894 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
895 dbg_err("bad vol_type");
896 goto bad;
897 }
898
899 if (data_pad >= ubi->leb_size / 2) {
900 dbg_err("bad data_pad");
901 goto bad;
902 }
903
904 if (vol_type == UBI_VID_STATIC) {
905 /*
906 * Although from high-level point of view static volumes may
907 * contain zero bytes of data, but no VID headers can contain
908 * zero at these fields, because they empty volumes do not have
909 * mapped logical eraseblocks.
910 */
911 if (used_ebs == 0) {
912 dbg_err("zero used_ebs");
913 goto bad;
914 }
915 if (data_size == 0) {
916 dbg_err("zero data_size");
917 goto bad;
918 }
919 if (lnum < used_ebs - 1) {
920 if (data_size != usable_leb_size) {
921 dbg_err("bad data_size");
922 goto bad;
923 }
924 } else if (lnum == used_ebs - 1) {
925 if (data_size == 0) {
926 dbg_err("bad data_size at last LEB");
927 goto bad;
928 }
929 } else {
930 dbg_err("too high lnum");
931 goto bad;
932 }
933 } else {
934 if (copy_flag == 0) {
935 if (data_crc != 0) {
936 dbg_err("non-zero data CRC");
937 goto bad;
938 }
939 if (data_size != 0) {
940 dbg_err("non-zero data_size");
941 goto bad;
942 }
943 } else {
944 if (data_size == 0) {
945 dbg_err("zero data_size of copy");
946 goto bad;
947 }
948 }
949 if (used_ebs != 0) {
950 dbg_err("bad used_ebs");
951 goto bad;
952 }
953 }
954
955 return 0;
956
957bad:
958 ubi_err("bad VID header");
959 ubi_dbg_dump_vid_hdr(vid_hdr);
960 ubi_dbg_dump_stack();
961 return 1;
962}
963
964/**
965 * ubi_io_read_vid_hdr - read and check a volume identifier header.
966 * @ubi: UBI device description object
967 * @pnum: physical eraseblock number to read from
968 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
969 * identifier header
970 * @verbose: be verbose if the header is corrupted or wasn't found
971 *
972 * This function reads the volume identifier header from physical eraseblock
973 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
974 * volume identifier header. The following codes may be returned:
975 *
976 * o %0 if the CRC checksum is correct and the header was successfully read;
977 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
978 * and corrected by the flash driver; this is harmless but may indicate that
979 * this eraseblock may become bad soon;
815bc5f8 980 * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
801c135c
AB
981 * error detected);
982 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
983 * header there);
984 * o a negative error code in case of failure.
985 */
e88d6e10 986int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
987 struct ubi_vid_hdr *vid_hdr, int verbose)
988{
989 int err, read_err = 0;
990 uint32_t crc, magic, hdr_crc;
991 void *p;
992
993 dbg_io("read VID header from PEB %d", pnum);
994 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
995
996 p = (char *)vid_hdr - ubi->vid_hdr_shift;
997 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
998 ubi->vid_hdr_alsize);
999 if (err) {
1000 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
1001 return err;
1002
1003 /*
1004 * We read all the data, but either a correctable bit-flip
1005 * occurred, or MTD reported about some data integrity error,
1006 * like an ECC error in case of NAND. The former is harmless,
1007 * the later may mean the read data is corrupted. But we have a
1008 * CRC check-sum and we will identify this. If the VID header is
1009 * still OK, we just report this as there was a bit-flip.
1010 */
1011 read_err = err;
1012 }
1013
3261ebd7 1014 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1015 if (magic != UBI_VID_HDR_MAGIC) {
1016 /*
1017 * If we have read all 0xFF bytes, the VID header probably does
1018 * not exist and the physical eraseblock is assumed to be free.
1019 *
1020 * But if there was a read error, we do not test the data for
1021 * 0xFFs. Even if it does contain all 0xFFs, this error
1022 * indicates that something is still wrong with this physical
1023 * eraseblock and it cannot be regarded as free.
1024 */
1025 if (read_err != -EBADMSG &&
1026 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1027 /* The physical eraseblock is supposedly free */
801c135c
AB
1028 if (verbose)
1029 ubi_warn("no VID header found at PEB %d, "
1030 "only 0xFF bytes", pnum);
ed45819f
AB
1031 else if (UBI_IO_DEBUG)
1032 dbg_msg("no VID header found at PEB %d, "
1033 "only 0xFF bytes", pnum);
801c135c
AB
1034 return UBI_IO_PEB_FREE;
1035 }
1036
1037 /*
1038 * This is not a valid VID header, and these are not 0xFF
1039 * bytes. Report that the header is corrupted.
1040 */
1041 if (verbose) {
1042 ubi_warn("bad magic number at PEB %d: %08x instead of "
1043 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1044 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1045 } else if (UBI_IO_DEBUG)
1046 dbg_msg("bad magic number at PEB %d: %08x instead of "
1047 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
801c135c
AB
1048 return UBI_IO_BAD_VID_HDR;
1049 }
1050
1051 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1052 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1053
1054 if (hdr_crc != crc) {
1055 if (verbose) {
1056 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1057 "read %#08x", pnum, crc, hdr_crc);
1058 ubi_dbg_dump_vid_hdr(vid_hdr);
ed45819f
AB
1059 } else if (UBI_IO_DEBUG)
1060 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1061 "read %#08x", pnum, crc, hdr_crc);
801c135c
AB
1062 return UBI_IO_BAD_VID_HDR;
1063 }
1064
1065 /* Validate the VID header that we have just read */
1066 err = validate_vid_hdr(ubi, vid_hdr);
1067 if (err) {
1068 ubi_err("validation failed for PEB %d", pnum);
1069 return -EINVAL;
1070 }
1071
1072 return read_err ? UBI_IO_BITFLIPS : 0;
1073}
1074
1075/**
1076 * ubi_io_write_vid_hdr - write a volume identifier header.
1077 * @ubi: UBI device description object
1078 * @pnum: the physical eraseblock number to write to
1079 * @vid_hdr: the volume identifier header to write
1080 *
1081 * This function writes the volume identifier header described by @vid_hdr to
1082 * physical eraseblock @pnum. This function automatically fills the
1083 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1084 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1085 *
1086 * This function returns zero in case of success and a negative error code in
1087 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1088 * bad.
1089 */
e88d6e10 1090int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
1091 struct ubi_vid_hdr *vid_hdr)
1092{
1093 int err;
1094 uint32_t crc;
1095 void *p;
1096
1097 dbg_io("write VID header to PEB %d", pnum);
1098 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1099
1100 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1101 if (err)
adbf05e3 1102 return err;
801c135c 1103
3261ebd7 1104 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1105 vid_hdr->version = UBI_VERSION;
1106 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1107 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
1108
1109 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1110 if (err)
adbf05e3 1111 return err;
801c135c
AB
1112
1113 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1114 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1115 ubi->vid_hdr_alsize);
1116 return err;
1117}
1118
1119#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1120
1121/**
1122 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1123 * @ubi: UBI device description object
1124 * @pnum: physical eraseblock number to check
1125 *
adbf05e3
AB
1126 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1127 * it is bad and a negative error code if an error occurred.
801c135c
AB
1128 */
1129static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1130{
1131 int err;
1132
1133 err = ubi_io_is_bad(ubi, pnum);
1134 if (!err)
1135 return err;
1136
1137 ubi_err("paranoid check failed for PEB %d", pnum);
1138 ubi_dbg_dump_stack();
adbf05e3 1139 return err > 0 ? -EINVAL : err;
801c135c
AB
1140}
1141
1142/**
1143 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1144 * @ubi: UBI device description object
1145 * @pnum: physical eraseblock number the erase counter header belongs to
1146 * @ec_hdr: the erase counter header to check
1147 *
1148 * This function returns zero if the erase counter header contains valid
adbf05e3 1149 * values, and %-EINVAL if not.
801c135c
AB
1150 */
1151static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1152 const struct ubi_ec_hdr *ec_hdr)
1153{
1154 int err;
1155 uint32_t magic;
1156
3261ebd7 1157 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
1158 if (magic != UBI_EC_HDR_MAGIC) {
1159 ubi_err("bad magic %#08x, must be %#08x",
1160 magic, UBI_EC_HDR_MAGIC);
1161 goto fail;
1162 }
1163
1164 err = validate_ec_hdr(ubi, ec_hdr);
1165 if (err) {
1166 ubi_err("paranoid check failed for PEB %d", pnum);
1167 goto fail;
1168 }
1169
1170 return 0;
1171
1172fail:
1173 ubi_dbg_dump_ec_hdr(ec_hdr);
1174 ubi_dbg_dump_stack();
adbf05e3 1175 return -EINVAL;
801c135c
AB
1176}
1177
1178/**
ebaaf1af 1179 * paranoid_check_peb_ec_hdr - check erase counter header.
801c135c
AB
1180 * @ubi: UBI device description object
1181 * @pnum: the physical eraseblock number to check
1182 *
adbf05e3
AB
1183 * This function returns zero if the erase counter header is all right and and
1184 * a negative error code if not or if an error occurred.
801c135c
AB
1185 */
1186static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1187{
1188 int err;
1189 uint32_t crc, hdr_crc;
1190 struct ubi_ec_hdr *ec_hdr;
1191
33818bbb 1192 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1193 if (!ec_hdr)
1194 return -ENOMEM;
1195
1196 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1197 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1198 goto exit;
1199
1200 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1201 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
1202 if (hdr_crc != crc) {
1203 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1204 ubi_err("paranoid check failed for PEB %d", pnum);
1205 ubi_dbg_dump_ec_hdr(ec_hdr);
1206 ubi_dbg_dump_stack();
adbf05e3 1207 err = -EINVAL;
801c135c
AB
1208 goto exit;
1209 }
1210
1211 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1212
1213exit:
1214 kfree(ec_hdr);
1215 return err;
1216}
1217
1218/**
1219 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1220 * @ubi: UBI device description object
1221 * @pnum: physical eraseblock number the volume identifier header belongs to
1222 * @vid_hdr: the volume identifier header to check
1223 *
1224 * This function returns zero if the volume identifier header is all right, and
adbf05e3 1225 * %-EINVAL if not.
801c135c
AB
1226 */
1227static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1228 const struct ubi_vid_hdr *vid_hdr)
1229{
1230 int err;
1231 uint32_t magic;
1232
3261ebd7 1233 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1234 if (magic != UBI_VID_HDR_MAGIC) {
1235 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1236 magic, pnum, UBI_VID_HDR_MAGIC);
1237 goto fail;
1238 }
1239
1240 err = validate_vid_hdr(ubi, vid_hdr);
1241 if (err) {
1242 ubi_err("paranoid check failed for PEB %d", pnum);
1243 goto fail;
1244 }
1245
1246 return err;
1247
1248fail:
1249 ubi_err("paranoid check failed for PEB %d", pnum);
1250 ubi_dbg_dump_vid_hdr(vid_hdr);
1251 ubi_dbg_dump_stack();
adbf05e3 1252 return -EINVAL;
801c135c
AB
1253
1254}
1255
1256/**
ebaaf1af 1257 * paranoid_check_peb_vid_hdr - check volume identifier header.
801c135c
AB
1258 * @ubi: UBI device description object
1259 * @pnum: the physical eraseblock number to check
1260 *
1261 * This function returns zero if the volume identifier header is all right,
adbf05e3 1262 * and a negative error code if not or if an error occurred.
801c135c
AB
1263 */
1264static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1265{
1266 int err;
1267 uint32_t crc, hdr_crc;
1268 struct ubi_vid_hdr *vid_hdr;
1269 void *p;
1270
33818bbb 1271 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
1272 if (!vid_hdr)
1273 return -ENOMEM;
1274
1275 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1276 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1277 ubi->vid_hdr_alsize);
1278 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1279 goto exit;
1280
1281 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1282 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1283 if (hdr_crc != crc) {
1284 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1285 "read %#08x", pnum, crc, hdr_crc);
1286 ubi_err("paranoid check failed for PEB %d", pnum);
1287 ubi_dbg_dump_vid_hdr(vid_hdr);
1288 ubi_dbg_dump_stack();
adbf05e3 1289 err = -EINVAL;
801c135c
AB
1290 goto exit;
1291 }
1292
1293 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1294
1295exit:
1296 ubi_free_vid_hdr(ubi, vid_hdr);
1297 return err;
1298}
1299
6e9065d7
AB
1300/**
1301 * ubi_dbg_check_write - make sure write succeeded.
1302 * @ubi: UBI device description object
1303 * @buf: buffer with data which were written
1304 * @pnum: physical eraseblock number the data were written to
1305 * @offset: offset within the physical eraseblock the data were written to
1306 * @len: how many bytes were written
1307 *
1308 * This functions reads data which were recently written and compares it with
1309 * the original data buffer - the data have to match. Returns zero if the data
1310 * match and a negative error code if not or in case of failure.
1311 */
1312int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1313 int offset, int len)
1314{
1315 int err, i;
1316
1317 mutex_lock(&ubi->dbg_buf_mutex);
1318 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1319 if (err)
1320 goto out_unlock;
1321
1322 for (i = 0; i < len; i++) {
1323 uint8_t c = ((uint8_t *)buf)[i];
1324 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1325 int dump_len;
1326
1327 if (c == c1)
1328 continue;
1329
1330 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1331 pnum, offset, len);
1332 ubi_msg("data differ at position %d", i);
1333 dump_len = max_t(int, 128, len - i);
1334 ubi_msg("hex dump of the original buffer from %d to %d",
1335 i, i + dump_len);
1336 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1337 buf + i, dump_len, 1);
1338 ubi_msg("hex dump of the read buffer from %d to %d",
1339 i, i + dump_len);
1340 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1341 ubi->dbg_peb_buf + i, dump_len, 1);
1342 ubi_dbg_dump_stack();
1343 err = -EINVAL;
1344 goto out_unlock;
1345 }
1346 mutex_unlock(&ubi->dbg_buf_mutex);
1347
1348 return 0;
1349
1350out_unlock:
1351 mutex_unlock(&ubi->dbg_buf_mutex);
1352 return err;
1353}
1354
801c135c 1355/**
40a71a87 1356 * ubi_dbg_check_all_ff - check that a region of flash is empty.
801c135c
AB
1357 * @ubi: UBI device description object
1358 * @pnum: the physical eraseblock number to check
1359 * @offset: the starting offset within the physical eraseblock to check
1360 * @len: the length of the region to check
1361 *
1362 * This function returns zero if only 0xFF bytes are present at offset
adbf05e3
AB
1363 * @offset of the physical eraseblock @pnum, and a negative error code if not
1364 * or if an error occurred.
801c135c 1365 */
40a71a87 1366int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
801c135c
AB
1367{
1368 size_t read;
1369 int err;
801c135c
AB
1370 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1371
e88d6e10
AB
1372 mutex_lock(&ubi->dbg_buf_mutex);
1373 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
801c135c
AB
1374 if (err && err != -EUCLEAN) {
1375 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1376 "read %zd bytes", err, len, pnum, offset, read);
1377 goto error;
1378 }
1379
e88d6e10 1380 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
801c135c
AB
1381 if (err == 0) {
1382 ubi_err("flash region at PEB %d:%d, length %d does not "
1383 "contain all 0xFF bytes", pnum, offset, len);
1384 goto fail;
1385 }
e88d6e10 1386 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c 1387
801c135c
AB
1388 return 0;
1389
1390fail:
1391 ubi_err("paranoid check failed for PEB %d", pnum);
c8566350 1392 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
6986646b 1393 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
e88d6e10 1394 ubi->dbg_peb_buf, len, 1);
adbf05e3 1395 err = -EINVAL;
801c135c
AB
1396error:
1397 ubi_dbg_dump_stack();
e88d6e10 1398 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c
AB
1399 return err;
1400}
1401
1402#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */