]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/ubi/io.c
[MTD] mtdoops cleanup
[net-next-2.6.git] / drivers / mtd / ubi / io.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22/*
23 * UBI input/output unit.
24 *
25 * This unit provides a uniform way to work with all kinds of the underlying
26 * MTD devices. It also implements handy functions for reading and writing UBI
27 * headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this unit
31 * validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O unit does the following trick in order to avoid this extra copy.
83 * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84 * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85 * VID header is being written out, it shifts the VID header pointer back and
86 * writes the whole sub-page.
87 */
88
89#include <linux/crc32.h>
90#include <linux/err.h>
91#include "ubi.h"
92
93#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
e88d6e10
AB
101static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
102 int len);
801c135c
AB
103#else
104#define paranoid_check_not_bad(ubi, pnum) 0
105#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
106#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
107#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109#define paranoid_check_all_ff(ubi, pnum, offset, len) 0
110#endif
111
112/**
113 * ubi_io_read - read data from a physical eraseblock.
114 * @ubi: UBI device description object
115 * @buf: buffer where to store the read data
116 * @pnum: physical eraseblock number to read from
117 * @offset: offset within the physical eraseblock from where to read
118 * @len: how many bytes to read
119 *
120 * This function reads data from offset @offset of physical eraseblock @pnum
121 * and stores the read data in the @buf buffer. The following return codes are
122 * possible:
123 *
124 * o %0 if all the requested data were successfully read;
125 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126 * correctable bit-flips were detected; this is harmless but may indicate
127 * that this eraseblock may become bad soon (but do not have to);
63b6c1ed
AB
128 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129 * example it can be an ECC error in case of NAND; this most probably means
130 * that the data is corrupted;
801c135c
AB
131 * o %-EIO if some I/O error occurred;
132 * o other negative error codes in case of other errors.
133 */
134int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
135 int len)
136{
137 int err, retries = 0;
138 size_t read;
139 loff_t addr;
140
141 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
142
143 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
144 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
145 ubi_assert(len > 0);
146
147 err = paranoid_check_not_bad(ubi, pnum);
148 if (err)
149 return err > 0 ? -EINVAL : err;
150
151 addr = (loff_t)pnum * ubi->peb_size + offset;
152retry:
153 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
154 if (err) {
155 if (err == -EUCLEAN) {
156 /*
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
159 */
160 ubi_msg("fixable bit-flip detected at PEB %d", pnum);
161 ubi_assert(len == read);
162 return UBI_IO_BITFLIPS;
163 }
164
165 if (read != len && retries++ < UBI_IO_RETRIES) {
166 dbg_io("error %d while reading %d bytes from PEB %d:%d, "
167 "read only %zd bytes, retry",
168 err, len, pnum, offset, read);
169 yield();
170 goto retry;
171 }
172
173 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
174 "read %zd bytes", err, len, pnum, offset, read);
175 ubi_dbg_dump_stack();
176 } else {
177 ubi_assert(len == read);
178
179 if (ubi_dbg_is_bitflip()) {
180 dbg_msg("bit-flip (emulated)");
181 err = UBI_IO_BITFLIPS;
182 }
183 }
184
185 return err;
186}
187
188/**
189 * ubi_io_write - write data to a physical eraseblock.
190 * @ubi: UBI device description object
191 * @buf: buffer with the data to write
192 * @pnum: physical eraseblock number to write to
193 * @offset: offset within the physical eraseblock where to write
194 * @len: how many bytes to write
195 *
196 * This function writes @len bytes of data from buffer @buf to offset @offset
197 * of physical eraseblock @pnum. If all the data were successfully written,
198 * zero is returned. If an error occurred, this function returns a negative
199 * error code. If %-EIO is returned, the physical eraseblock most probably went
200 * bad.
201 *
202 * Note, in case of an error, it is possible that something was still written
203 * to the flash media, but may be some garbage.
204 */
e88d6e10
AB
205int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
206 int len)
801c135c
AB
207{
208 int err;
209 size_t written;
210 loff_t addr;
211
212 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
213
214 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
215 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
216 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
217 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
218
219 if (ubi->ro_mode) {
220 ubi_err("read-only mode");
221 return -EROFS;
222 }
223
224 /* The below has to be compiled out if paranoid checks are disabled */
225
226 err = paranoid_check_not_bad(ubi, pnum);
227 if (err)
228 return err > 0 ? -EINVAL : err;
229
230 /* The area we are writing to has to contain all 0xFF bytes */
231 err = paranoid_check_all_ff(ubi, pnum, offset, len);
232 if (err)
233 return err > 0 ? -EINVAL : err;
234
235 if (offset >= ubi->leb_start) {
236 /*
237 * We write to the data area of the physical eraseblock. Make
238 * sure it has valid EC and VID headers.
239 */
240 err = paranoid_check_peb_ec_hdr(ubi, pnum);
241 if (err)
242 return err > 0 ? -EINVAL : err;
243 err = paranoid_check_peb_vid_hdr(ubi, pnum);
244 if (err)
245 return err > 0 ? -EINVAL : err;
246 }
247
248 if (ubi_dbg_is_write_failure()) {
249 dbg_err("cannot write %d bytes to PEB %d:%d "
250 "(emulated)", len, pnum, offset);
251 ubi_dbg_dump_stack();
252 return -EIO;
253 }
254
255 addr = (loff_t)pnum * ubi->peb_size + offset;
256 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
257 if (err) {
258 ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
259 " %zd bytes", err, len, pnum, offset, written);
260 ubi_dbg_dump_stack();
261 } else
262 ubi_assert(written == len);
263
264 return err;
265}
266
267/**
268 * erase_callback - MTD erasure call-back.
269 * @ei: MTD erase information object.
270 *
271 * Note, even though MTD erase interface is asynchronous, all the current
272 * implementations are synchronous anyway.
273 */
274static void erase_callback(struct erase_info *ei)
275{
276 wake_up_interruptible((wait_queue_head_t *)ei->priv);
277}
278
279/**
280 * do_sync_erase - synchronously erase a physical eraseblock.
281 * @ubi: UBI device description object
282 * @pnum: the physical eraseblock number to erase
283 *
284 * This function synchronously erases physical eraseblock @pnum and returns
285 * zero in case of success and a negative error code in case of failure. If
286 * %-EIO is returned, the physical eraseblock most probably went bad.
287 */
e88d6e10 288static int do_sync_erase(struct ubi_device *ubi, int pnum)
801c135c
AB
289{
290 int err, retries = 0;
291 struct erase_info ei;
292 wait_queue_head_t wq;
293
294 dbg_io("erase PEB %d", pnum);
295
296retry:
297 init_waitqueue_head(&wq);
298 memset(&ei, 0, sizeof(struct erase_info));
299
300 ei.mtd = ubi->mtd;
2f176f79 301 ei.addr = (loff_t)pnum * ubi->peb_size;
801c135c
AB
302 ei.len = ubi->peb_size;
303 ei.callback = erase_callback;
304 ei.priv = (unsigned long)&wq;
305
306 err = ubi->mtd->erase(ubi->mtd, &ei);
307 if (err) {
308 if (retries++ < UBI_IO_RETRIES) {
309 dbg_io("error %d while erasing PEB %d, retry",
310 err, pnum);
311 yield();
312 goto retry;
313 }
314 ubi_err("cannot erase PEB %d, error %d", pnum, err);
315 ubi_dbg_dump_stack();
316 return err;
317 }
318
319 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
320 ei.state == MTD_ERASE_FAILED);
321 if (err) {
322 ubi_err("interrupted PEB %d erasure", pnum);
323 return -EINTR;
324 }
325
326 if (ei.state == MTD_ERASE_FAILED) {
327 if (retries++ < UBI_IO_RETRIES) {
328 dbg_io("error while erasing PEB %d, retry", pnum);
329 yield();
330 goto retry;
331 }
332 ubi_err("cannot erase PEB %d", pnum);
333 ubi_dbg_dump_stack();
334 return -EIO;
335 }
336
337 err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
338 if (err)
339 return err > 0 ? -EINVAL : err;
340
341 if (ubi_dbg_is_erase_failure() && !err) {
342 dbg_err("cannot erase PEB %d (emulated)", pnum);
343 return -EIO;
344 }
345
346 return 0;
347}
348
349/**
350 * check_pattern - check if buffer contains only a certain byte pattern.
351 * @buf: buffer to check
352 * @patt: the pattern to check
353 * @size: buffer size in bytes
354 *
355 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
356 * something else was also found.
357 */
358static int check_pattern(const void *buf, uint8_t patt, int size)
359{
360 int i;
361
362 for (i = 0; i < size; i++)
363 if (((const uint8_t *)buf)[i] != patt)
364 return 0;
365 return 1;
366}
367
368/* Patterns to write to a physical eraseblock when torturing it */
369static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
370
371/**
372 * torture_peb - test a supposedly bad physical eraseblock.
373 * @ubi: UBI device description object
374 * @pnum: the physical eraseblock number to test
375 *
376 * This function returns %-EIO if the physical eraseblock did not pass the
377 * test, a positive number of erase operations done if the test was
378 * successfully passed, and other negative error codes in case of other errors.
379 */
e88d6e10 380static int torture_peb(struct ubi_device *ubi, int pnum)
801c135c 381{
801c135c
AB
382 int err, i, patt_count;
383
801c135c
AB
384 patt_count = ARRAY_SIZE(patterns);
385 ubi_assert(patt_count > 0);
386
e88d6e10 387 mutex_lock(&ubi->buf_mutex);
801c135c
AB
388 for (i = 0; i < patt_count; i++) {
389 err = do_sync_erase(ubi, pnum);
390 if (err)
391 goto out;
392
393 /* Make sure the PEB contains only 0xFF bytes */
e88d6e10 394 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
395 if (err)
396 goto out;
397
e88d6e10 398 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
801c135c
AB
399 if (err == 0) {
400 ubi_err("erased PEB %d, but a non-0xFF byte found",
401 pnum);
402 err = -EIO;
403 goto out;
404 }
405
406 /* Write a pattern and check it */
e88d6e10
AB
407 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
408 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
409 if (err)
410 goto out;
411
e88d6e10
AB
412 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
413 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
801c135c
AB
414 if (err)
415 goto out;
416
e88d6e10 417 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
801c135c
AB
418 if (err == 0) {
419 ubi_err("pattern %x checking failed for PEB %d",
420 patterns[i], pnum);
421 err = -EIO;
422 goto out;
423 }
424 }
425
426 err = patt_count;
427
428out:
e88d6e10 429 mutex_unlock(&ubi->buf_mutex);
8d2d4011 430 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
801c135c
AB
431 /*
432 * If a bit-flip or data integrity error was detected, the test
433 * has not passed because it happened on a freshly erased
434 * physical eraseblock which means something is wrong with it.
435 */
8d2d4011
AB
436 ubi_err("read problems on freshly erased PEB %d, must be bad",
437 pnum);
801c135c 438 err = -EIO;
8d2d4011 439 }
801c135c
AB
440 return err;
441}
442
443/**
444 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
445 * @ubi: UBI device description object
446 * @pnum: physical eraseblock number to erase
447 * @torture: if this physical eraseblock has to be tortured
448 *
449 * This function synchronously erases physical eraseblock @pnum. If @torture
450 * flag is not zero, the physical eraseblock is checked by means of writing
451 * different patterns to it and reading them back. If the torturing is enabled,
452 * the physical eraseblock is erased more then once.
453 *
454 * This function returns the number of erasures made in case of success, %-EIO
455 * if the erasure failed or the torturing test failed, and other negative error
456 * codes in case of other errors. Note, %-EIO means that the physical
457 * eraseblock is bad.
458 */
e88d6e10 459int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
801c135c
AB
460{
461 int err, ret = 0;
462
463 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
464
465 err = paranoid_check_not_bad(ubi, pnum);
466 if (err != 0)
467 return err > 0 ? -EINVAL : err;
468
469 if (ubi->ro_mode) {
470 ubi_err("read-only mode");
471 return -EROFS;
472 }
473
474 if (torture) {
475 ret = torture_peb(ubi, pnum);
476 if (ret < 0)
477 return ret;
478 }
479
480 err = do_sync_erase(ubi, pnum);
481 if (err)
482 return err;
483
484 return ret + 1;
485}
486
487/**
488 * ubi_io_is_bad - check if a physical eraseblock is bad.
489 * @ubi: UBI device description object
490 * @pnum: the physical eraseblock number to check
491 *
492 * This function returns a positive number if the physical eraseblock is bad,
493 * zero if not, and a negative error code if an error occurred.
494 */
495int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
496{
497 struct mtd_info *mtd = ubi->mtd;
498
499 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
500
501 if (ubi->bad_allowed) {
502 int ret;
503
504 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
505 if (ret < 0)
506 ubi_err("error %d while checking if PEB %d is bad",
507 ret, pnum);
508 else if (ret)
509 dbg_io("PEB %d is bad", pnum);
510 return ret;
511 }
512
513 return 0;
514}
515
516/**
517 * ubi_io_mark_bad - mark a physical eraseblock as bad.
518 * @ubi: UBI device description object
519 * @pnum: the physical eraseblock number to mark
520 *
521 * This function returns zero in case of success and a negative error code in
522 * case of failure.
523 */
524int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
525{
526 int err;
527 struct mtd_info *mtd = ubi->mtd;
528
529 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
530
531 if (ubi->ro_mode) {
532 ubi_err("read-only mode");
533 return -EROFS;
534 }
535
536 if (!ubi->bad_allowed)
537 return 0;
538
539 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
540 if (err)
541 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
542 return err;
543}
544
545/**
546 * validate_ec_hdr - validate an erase counter header.
547 * @ubi: UBI device description object
548 * @ec_hdr: the erase counter header to check
549 *
550 * This function returns zero if the erase counter header is OK, and %1 if
551 * not.
552 */
553static int validate_ec_hdr(const struct ubi_device *ubi,
554 const struct ubi_ec_hdr *ec_hdr)
555{
556 long long ec;
557 int vid_hdr_offset, leb_start;
558
3261ebd7
CH
559 ec = be64_to_cpu(ec_hdr->ec);
560 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
561 leb_start = be32_to_cpu(ec_hdr->data_offset);
801c135c
AB
562
563 if (ec_hdr->version != UBI_VERSION) {
564 ubi_err("node with incompatible UBI version found: "
565 "this UBI version is %d, image version is %d",
566 UBI_VERSION, (int)ec_hdr->version);
567 goto bad;
568 }
569
570 if (vid_hdr_offset != ubi->vid_hdr_offset) {
571 ubi_err("bad VID header offset %d, expected %d",
572 vid_hdr_offset, ubi->vid_hdr_offset);
573 goto bad;
574 }
575
576 if (leb_start != ubi->leb_start) {
577 ubi_err("bad data offset %d, expected %d",
578 leb_start, ubi->leb_start);
579 goto bad;
580 }
581
582 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
583 ubi_err("bad erase counter %lld", ec);
584 goto bad;
585 }
586
587 return 0;
588
589bad:
590 ubi_err("bad EC header");
591 ubi_dbg_dump_ec_hdr(ec_hdr);
592 ubi_dbg_dump_stack();
593 return 1;
594}
595
596/**
597 * ubi_io_read_ec_hdr - read and check an erase counter header.
598 * @ubi: UBI device description object
599 * @pnum: physical eraseblock to read from
600 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
601 * header
602 * @verbose: be verbose if the header is corrupted or was not found
603 *
604 * This function reads erase counter header from physical eraseblock @pnum and
605 * stores it in @ec_hdr. This function also checks CRC checksum of the read
606 * erase counter header. The following codes may be returned:
607 *
608 * o %0 if the CRC checksum is correct and the header was successfully read;
609 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
610 * and corrected by the flash driver; this is harmless but may indicate that
611 * this eraseblock may become bad soon (but may be not);
612 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
613 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
614 * o a negative error code in case of failure.
615 */
e88d6e10 616int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
617 struct ubi_ec_hdr *ec_hdr, int verbose)
618{
619 int err, read_err = 0;
620 uint32_t crc, magic, hdr_crc;
621
622 dbg_io("read EC header from PEB %d", pnum);
623 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
624
625 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
626 if (err) {
627 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
628 return err;
629
630 /*
631 * We read all the data, but either a correctable bit-flip
632 * occurred, or MTD reported about some data integrity error,
633 * like an ECC error in case of NAND. The former is harmless,
634 * the later may mean that the read data is corrupted. But we
635 * have a CRC check-sum and we will detect this. If the EC
636 * header is still OK, we just report this as there was a
637 * bit-flip.
638 */
639 read_err = err;
640 }
641
3261ebd7 642 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
643 if (magic != UBI_EC_HDR_MAGIC) {
644 /*
645 * The magic field is wrong. Let's check if we have read all
646 * 0xFF. If yes, this physical eraseblock is assumed to be
647 * empty.
648 *
649 * But if there was a read error, we do not test it for all
650 * 0xFFs. Even if it does contain all 0xFFs, this error
651 * indicates that something is still wrong with this physical
652 * eraseblock and we anyway cannot treat it as empty.
653 */
654 if (read_err != -EBADMSG &&
655 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
656 /* The physical eraseblock is supposedly empty */
657
658 /*
659 * The below is just a paranoid check, it has to be
660 * compiled out if paranoid checks are disabled.
661 */
662 err = paranoid_check_all_ff(ubi, pnum, 0,
663 ubi->peb_size);
664 if (err)
665 return err > 0 ? UBI_IO_BAD_EC_HDR : err;
666
667 if (verbose)
668 ubi_warn("no EC header found at PEB %d, "
669 "only 0xFF bytes", pnum);
670 return UBI_IO_PEB_EMPTY;
671 }
672
673 /*
674 * This is not a valid erase counter header, and these are not
675 * 0xFF bytes. Report that the header is corrupted.
676 */
677 if (verbose) {
678 ubi_warn("bad magic number at PEB %d: %08x instead of "
679 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
680 ubi_dbg_dump_ec_hdr(ec_hdr);
681 }
682 return UBI_IO_BAD_EC_HDR;
683 }
684
685 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 686 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
687
688 if (hdr_crc != crc) {
689 if (verbose) {
690 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
691 " read %#08x", pnum, crc, hdr_crc);
692 ubi_dbg_dump_ec_hdr(ec_hdr);
693 }
694 return UBI_IO_BAD_EC_HDR;
695 }
696
697 /* And of course validate what has just been read from the media */
698 err = validate_ec_hdr(ubi, ec_hdr);
699 if (err) {
700 ubi_err("validation failed for PEB %d", pnum);
701 return -EINVAL;
702 }
703
704 return read_err ? UBI_IO_BITFLIPS : 0;
705}
706
707/**
708 * ubi_io_write_ec_hdr - write an erase counter header.
709 * @ubi: UBI device description object
710 * @pnum: physical eraseblock to write to
711 * @ec_hdr: the erase counter header to write
712 *
713 * This function writes erase counter header described by @ec_hdr to physical
714 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
715 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
716 * field.
717 *
718 * This function returns zero in case of success and a negative error code in
719 * case of failure. If %-EIO is returned, the physical eraseblock most probably
720 * went bad.
721 */
e88d6e10 722int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
723 struct ubi_ec_hdr *ec_hdr)
724{
725 int err;
726 uint32_t crc;
727
728 dbg_io("write EC header to PEB %d", pnum);
729 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
730
3261ebd7 731 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
801c135c 732 ec_hdr->version = UBI_VERSION;
3261ebd7
CH
733 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
734 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
801c135c 735 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 736 ec_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
737
738 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
739 if (err)
740 return -EINVAL;
741
742 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
743 return err;
744}
745
746/**
747 * validate_vid_hdr - validate a volume identifier header.
748 * @ubi: UBI device description object
749 * @vid_hdr: the volume identifier header to check
750 *
751 * This function checks that data stored in the volume identifier header
752 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
753 */
754static int validate_vid_hdr(const struct ubi_device *ubi,
755 const struct ubi_vid_hdr *vid_hdr)
756{
757 int vol_type = vid_hdr->vol_type;
758 int copy_flag = vid_hdr->copy_flag;
3261ebd7
CH
759 int vol_id = be32_to_cpu(vid_hdr->vol_id);
760 int lnum = be32_to_cpu(vid_hdr->lnum);
801c135c 761 int compat = vid_hdr->compat;
3261ebd7
CH
762 int data_size = be32_to_cpu(vid_hdr->data_size);
763 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
764 int data_pad = be32_to_cpu(vid_hdr->data_pad);
765 int data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
766 int usable_leb_size = ubi->leb_size - data_pad;
767
768 if (copy_flag != 0 && copy_flag != 1) {
769 dbg_err("bad copy_flag");
770 goto bad;
771 }
772
773 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
774 data_pad < 0) {
775 dbg_err("negative values");
776 goto bad;
777 }
778
779 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
780 dbg_err("bad vol_id");
781 goto bad;
782 }
783
784 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
785 dbg_err("bad compat");
786 goto bad;
787 }
788
789 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
790 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
791 compat != UBI_COMPAT_REJECT) {
792 dbg_err("bad compat");
793 goto bad;
794 }
795
796 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
797 dbg_err("bad vol_type");
798 goto bad;
799 }
800
801 if (data_pad >= ubi->leb_size / 2) {
802 dbg_err("bad data_pad");
803 goto bad;
804 }
805
806 if (vol_type == UBI_VID_STATIC) {
807 /*
808 * Although from high-level point of view static volumes may
809 * contain zero bytes of data, but no VID headers can contain
810 * zero at these fields, because they empty volumes do not have
811 * mapped logical eraseblocks.
812 */
813 if (used_ebs == 0) {
814 dbg_err("zero used_ebs");
815 goto bad;
816 }
817 if (data_size == 0) {
818 dbg_err("zero data_size");
819 goto bad;
820 }
821 if (lnum < used_ebs - 1) {
822 if (data_size != usable_leb_size) {
823 dbg_err("bad data_size");
824 goto bad;
825 }
826 } else if (lnum == used_ebs - 1) {
827 if (data_size == 0) {
828 dbg_err("bad data_size at last LEB");
829 goto bad;
830 }
831 } else {
832 dbg_err("too high lnum");
833 goto bad;
834 }
835 } else {
836 if (copy_flag == 0) {
837 if (data_crc != 0) {
838 dbg_err("non-zero data CRC");
839 goto bad;
840 }
841 if (data_size != 0) {
842 dbg_err("non-zero data_size");
843 goto bad;
844 }
845 } else {
846 if (data_size == 0) {
847 dbg_err("zero data_size of copy");
848 goto bad;
849 }
850 }
851 if (used_ebs != 0) {
852 dbg_err("bad used_ebs");
853 goto bad;
854 }
855 }
856
857 return 0;
858
859bad:
860 ubi_err("bad VID header");
861 ubi_dbg_dump_vid_hdr(vid_hdr);
862 ubi_dbg_dump_stack();
863 return 1;
864}
865
866/**
867 * ubi_io_read_vid_hdr - read and check a volume identifier header.
868 * @ubi: UBI device description object
869 * @pnum: physical eraseblock number to read from
870 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
871 * identifier header
872 * @verbose: be verbose if the header is corrupted or wasn't found
873 *
874 * This function reads the volume identifier header from physical eraseblock
875 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
876 * volume identifier header. The following codes may be returned:
877 *
878 * o %0 if the CRC checksum is correct and the header was successfully read;
879 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
880 * and corrected by the flash driver; this is harmless but may indicate that
881 * this eraseblock may become bad soon;
882 * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
883 * error detected);
884 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
885 * header there);
886 * o a negative error code in case of failure.
887 */
e88d6e10 888int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
889 struct ubi_vid_hdr *vid_hdr, int verbose)
890{
891 int err, read_err = 0;
892 uint32_t crc, magic, hdr_crc;
893 void *p;
894
895 dbg_io("read VID header from PEB %d", pnum);
896 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
897
898 p = (char *)vid_hdr - ubi->vid_hdr_shift;
899 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
900 ubi->vid_hdr_alsize);
901 if (err) {
902 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
903 return err;
904
905 /*
906 * We read all the data, but either a correctable bit-flip
907 * occurred, or MTD reported about some data integrity error,
908 * like an ECC error in case of NAND. The former is harmless,
909 * the later may mean the read data is corrupted. But we have a
910 * CRC check-sum and we will identify this. If the VID header is
911 * still OK, we just report this as there was a bit-flip.
912 */
913 read_err = err;
914 }
915
3261ebd7 916 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
917 if (magic != UBI_VID_HDR_MAGIC) {
918 /*
919 * If we have read all 0xFF bytes, the VID header probably does
920 * not exist and the physical eraseblock is assumed to be free.
921 *
922 * But if there was a read error, we do not test the data for
923 * 0xFFs. Even if it does contain all 0xFFs, this error
924 * indicates that something is still wrong with this physical
925 * eraseblock and it cannot be regarded as free.
926 */
927 if (read_err != -EBADMSG &&
928 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
929 /* The physical eraseblock is supposedly free */
930
931 /*
932 * The below is just a paranoid check, it has to be
933 * compiled out if paranoid checks are disabled.
934 */
935 err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
936 ubi->leb_size);
937 if (err)
938 return err > 0 ? UBI_IO_BAD_VID_HDR : err;
939
940 if (verbose)
941 ubi_warn("no VID header found at PEB %d, "
942 "only 0xFF bytes", pnum);
943 return UBI_IO_PEB_FREE;
944 }
945
946 /*
947 * This is not a valid VID header, and these are not 0xFF
948 * bytes. Report that the header is corrupted.
949 */
950 if (verbose) {
951 ubi_warn("bad magic number at PEB %d: %08x instead of "
952 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
953 ubi_dbg_dump_vid_hdr(vid_hdr);
954 }
955 return UBI_IO_BAD_VID_HDR;
956 }
957
958 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 959 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
960
961 if (hdr_crc != crc) {
962 if (verbose) {
963 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
964 "read %#08x", pnum, crc, hdr_crc);
965 ubi_dbg_dump_vid_hdr(vid_hdr);
966 }
967 return UBI_IO_BAD_VID_HDR;
968 }
969
970 /* Validate the VID header that we have just read */
971 err = validate_vid_hdr(ubi, vid_hdr);
972 if (err) {
973 ubi_err("validation failed for PEB %d", pnum);
974 return -EINVAL;
975 }
976
977 return read_err ? UBI_IO_BITFLIPS : 0;
978}
979
980/**
981 * ubi_io_write_vid_hdr - write a volume identifier header.
982 * @ubi: UBI device description object
983 * @pnum: the physical eraseblock number to write to
984 * @vid_hdr: the volume identifier header to write
985 *
986 * This function writes the volume identifier header described by @vid_hdr to
987 * physical eraseblock @pnum. This function automatically fills the
988 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
989 * header CRC checksum and stores it at vid_hdr->hdr_crc.
990 *
991 * This function returns zero in case of success and a negative error code in
992 * case of failure. If %-EIO is returned, the physical eraseblock probably went
993 * bad.
994 */
e88d6e10 995int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
801c135c
AB
996 struct ubi_vid_hdr *vid_hdr)
997{
998 int err;
999 uint32_t crc;
1000 void *p;
1001
1002 dbg_io("write VID header to PEB %d", pnum);
1003 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1004
1005 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1006 if (err)
1007 return err > 0 ? -EINVAL: err;
1008
3261ebd7 1009 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
801c135c
AB
1010 vid_hdr->version = UBI_VERSION;
1011 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
3261ebd7 1012 vid_hdr->hdr_crc = cpu_to_be32(crc);
801c135c
AB
1013
1014 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1015 if (err)
1016 return -EINVAL;
1017
1018 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1019 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1020 ubi->vid_hdr_alsize);
1021 return err;
1022}
1023
1024#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1025
1026/**
1027 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1028 * @ubi: UBI device description object
1029 * @pnum: physical eraseblock number to check
1030 *
1031 * This function returns zero if the physical eraseblock is good, a positive
1032 * number if it is bad and a negative error code if an error occurred.
1033 */
1034static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1035{
1036 int err;
1037
1038 err = ubi_io_is_bad(ubi, pnum);
1039 if (!err)
1040 return err;
1041
1042 ubi_err("paranoid check failed for PEB %d", pnum);
1043 ubi_dbg_dump_stack();
1044 return err;
1045}
1046
1047/**
1048 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1049 * @ubi: UBI device description object
1050 * @pnum: physical eraseblock number the erase counter header belongs to
1051 * @ec_hdr: the erase counter header to check
1052 *
1053 * This function returns zero if the erase counter header contains valid
1054 * values, and %1 if not.
1055 */
1056static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1057 const struct ubi_ec_hdr *ec_hdr)
1058{
1059 int err;
1060 uint32_t magic;
1061
3261ebd7 1062 magic = be32_to_cpu(ec_hdr->magic);
801c135c
AB
1063 if (magic != UBI_EC_HDR_MAGIC) {
1064 ubi_err("bad magic %#08x, must be %#08x",
1065 magic, UBI_EC_HDR_MAGIC);
1066 goto fail;
1067 }
1068
1069 err = validate_ec_hdr(ubi, ec_hdr);
1070 if (err) {
1071 ubi_err("paranoid check failed for PEB %d", pnum);
1072 goto fail;
1073 }
1074
1075 return 0;
1076
1077fail:
1078 ubi_dbg_dump_ec_hdr(ec_hdr);
1079 ubi_dbg_dump_stack();
1080 return 1;
1081}
1082
1083/**
1084 * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1085 * physical eraseblock is in-place and is all right.
1086 * @ubi: UBI device description object
1087 * @pnum: the physical eraseblock number to check
1088 *
1089 * This function returns zero if the erase counter header is all right, %1 if
1090 * not, and a negative error code if an error occurred.
1091 */
1092static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1093{
1094 int err;
1095 uint32_t crc, hdr_crc;
1096 struct ubi_ec_hdr *ec_hdr;
1097
33818bbb 1098 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
801c135c
AB
1099 if (!ec_hdr)
1100 return -ENOMEM;
1101
1102 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1103 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1104 goto exit;
1105
1106 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1107 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
801c135c
AB
1108 if (hdr_crc != crc) {
1109 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1110 ubi_err("paranoid check failed for PEB %d", pnum);
1111 ubi_dbg_dump_ec_hdr(ec_hdr);
1112 ubi_dbg_dump_stack();
1113 err = 1;
1114 goto exit;
1115 }
1116
1117 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1118
1119exit:
1120 kfree(ec_hdr);
1121 return err;
1122}
1123
1124/**
1125 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1126 * @ubi: UBI device description object
1127 * @pnum: physical eraseblock number the volume identifier header belongs to
1128 * @vid_hdr: the volume identifier header to check
1129 *
1130 * This function returns zero if the volume identifier header is all right, and
1131 * %1 if not.
1132 */
1133static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1134 const struct ubi_vid_hdr *vid_hdr)
1135{
1136 int err;
1137 uint32_t magic;
1138
3261ebd7 1139 magic = be32_to_cpu(vid_hdr->magic);
801c135c
AB
1140 if (magic != UBI_VID_HDR_MAGIC) {
1141 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1142 magic, pnum, UBI_VID_HDR_MAGIC);
1143 goto fail;
1144 }
1145
1146 err = validate_vid_hdr(ubi, vid_hdr);
1147 if (err) {
1148 ubi_err("paranoid check failed for PEB %d", pnum);
1149 goto fail;
1150 }
1151
1152 return err;
1153
1154fail:
1155 ubi_err("paranoid check failed for PEB %d", pnum);
1156 ubi_dbg_dump_vid_hdr(vid_hdr);
1157 ubi_dbg_dump_stack();
1158 return 1;
1159
1160}
1161
1162/**
1163 * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1164 * physical eraseblock is in-place and is all right.
1165 * @ubi: UBI device description object
1166 * @pnum: the physical eraseblock number to check
1167 *
1168 * This function returns zero if the volume identifier header is all right,
1169 * %1 if not, and a negative error code if an error occurred.
1170 */
1171static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1172{
1173 int err;
1174 uint32_t crc, hdr_crc;
1175 struct ubi_vid_hdr *vid_hdr;
1176 void *p;
1177
33818bbb 1178 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
801c135c
AB
1179 if (!vid_hdr)
1180 return -ENOMEM;
1181
1182 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1183 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1184 ubi->vid_hdr_alsize);
1185 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1186 goto exit;
1187
1188 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
3261ebd7 1189 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
801c135c
AB
1190 if (hdr_crc != crc) {
1191 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1192 "read %#08x", pnum, crc, hdr_crc);
1193 ubi_err("paranoid check failed for PEB %d", pnum);
1194 ubi_dbg_dump_vid_hdr(vid_hdr);
1195 ubi_dbg_dump_stack();
1196 err = 1;
1197 goto exit;
1198 }
1199
1200 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1201
1202exit:
1203 ubi_free_vid_hdr(ubi, vid_hdr);
1204 return err;
1205}
1206
1207/**
1208 * paranoid_check_all_ff - check that a region of flash is empty.
1209 * @ubi: UBI device description object
1210 * @pnum: the physical eraseblock number to check
1211 * @offset: the starting offset within the physical eraseblock to check
1212 * @len: the length of the region to check
1213 *
1214 * This function returns zero if only 0xFF bytes are present at offset
1215 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1216 * code if an error occurred.
1217 */
e88d6e10
AB
1218static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1219 int len)
801c135c
AB
1220{
1221 size_t read;
1222 int err;
801c135c
AB
1223 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1224
e88d6e10
AB
1225 mutex_lock(&ubi->dbg_buf_mutex);
1226 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
801c135c
AB
1227 if (err && err != -EUCLEAN) {
1228 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1229 "read %zd bytes", err, len, pnum, offset, read);
1230 goto error;
1231 }
1232
e88d6e10 1233 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
801c135c
AB
1234 if (err == 0) {
1235 ubi_err("flash region at PEB %d:%d, length %d does not "
1236 "contain all 0xFF bytes", pnum, offset, len);
1237 goto fail;
1238 }
e88d6e10 1239 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c 1240
801c135c
AB
1241 return 0;
1242
1243fail:
1244 ubi_err("paranoid check failed for PEB %d", pnum);
1245 dbg_msg("hex dump of the %d-%d region", offset, offset + len);
6986646b 1246 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
e88d6e10 1247 ubi->dbg_peb_buf, len, 1);
801c135c
AB
1248 err = 1;
1249error:
1250 ubi_dbg_dump_stack();
e88d6e10 1251 mutex_unlock(&ubi->dbg_buf_mutex);
801c135c
AB
1252 return err;
1253}
1254
1255#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */