]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md: unify raid5/6 i/o submission
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685 54#include <linux/raid/bitmap.h>
91c00924 55#include <linux/async_tx.h>
72626685 56
1da177e4
LT
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES 256
62#define STRIPE_SIZE PAGE_SIZE
63#define STRIPE_SHIFT (PAGE_SHIFT - 9)
64#define STRIPE_SECTORS (STRIPE_SIZE>>9)
65#define IO_THRESHOLD 1
8b3e6cdc 66#define BYPASS_THRESHOLD 1
fccddba0 67#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
68#define HASH_MASK (NR_HASH - 1)
69
fccddba0 70#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
71
72/* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82/*
83 * The following can be used to debug the driver
84 */
1da177e4
LT
85#define RAID5_PARANOIA 1
86#if RAID5_PARANOIA && defined(CONFIG_SMP)
87# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88#else
89# define CHECK_DEVLOCK()
90#endif
91
45b4233c 92#ifdef DEBUG
1da177e4
LT
93#define inline
94#define __inline__
95#endif
96
6be9d494
BS
97#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
16a53ecc
N
99#if !RAID6_USE_EMPTY_ZERO_PAGE
100/* In .bss so it's zeroed */
101const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102#endif
103
104static inline int raid6_next_disk(int disk, int raid_disks)
105{
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
108}
a4456856
DW
109
110static void return_io(struct bio *return_bi)
111{
112 struct bio *bi = return_bi;
113 while (bi) {
a4456856
DW
114
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
0e13fe23 118 bio_endio(bi, 0);
a4456856
DW
119 bi = return_bi;
120 }
121}
122
1da177e4
LT
123static void print_raid5_conf (raid5_conf_t *conf);
124
858119e1 125static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
126{
127 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 132 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 135 sh->bm_seq - conf->seq_write > 0) {
72626685 136 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
137 blk_plug_device(conf->mddev->queue);
138 } else {
72626685 139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 140 list_add_tail(&sh->lru, &conf->handle_list);
72626685 141 }
1da177e4
LT
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
d84e0f10 144 BUG_ON(sh->ops.pending);
1da177e4
LT
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
1da177e4 150 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 153 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 156 }
1da177e4
LT
157 }
158 }
159}
160static void release_stripe(struct stripe_head *sh)
161{
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
16a53ecc 164
1da177e4
LT
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168}
169
fccddba0 170static inline void remove_hash(struct stripe_head *sh)
1da177e4 171{
45b4233c
DW
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
1da177e4 174
fccddba0 175 hlist_del_init(&sh->hash);
1da177e4
LT
176}
177
16a53ecc 178static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 179{
fccddba0 180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 181
45b4233c
DW
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
1da177e4
LT
184
185 CHECK_DEVLOCK();
fccddba0 186 hlist_add_head(&sh->hash, hp);
1da177e4
LT
187}
188
189
190/* find an idle stripe, make sure it is unhashed, and return it. */
191static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192{
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
195
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204out:
205 return sh;
206}
207
208static void shrink_buffers(struct stripe_head *sh, int num)
209{
210 struct page *p;
211 int i;
212
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
2d1f3b5d 218 put_page(p);
1da177e4
LT
219 }
220}
221
222static int grow_buffers(struct stripe_head *sh, int num)
223{
224 int i;
225
226 for (i=0; i<num; i++) {
227 struct page *page;
228
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
231 }
232 sh->dev[i].page = page;
233 }
234 return 0;
235}
236
237static void raid5_build_block (struct stripe_head *sh, int i);
238
7ecaa1e6 239static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
240{
241 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 242 int i;
1da177e4 243
78bafebd
ES
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
d84e0f10
DW
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
1da177e4 248 CHECK_DEVLOCK();
45b4233c 249 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
250 (unsigned long long)sh->sector);
251
252 remove_hash(sh);
16a53ecc 253
1da177e4
LT
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
257
7ecaa1e6
N
258 sh->disks = disks;
259
260 for (i = sh->disks; i--; ) {
1da177e4
LT
261 struct r5dev *dev = &sh->dev[i];
262
d84e0f10 263 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 264 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 266 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 267 dev->read, dev->towrite, dev->written,
1da177e4
LT
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
270 }
271 dev->flags = 0;
272 raid5_build_block(sh, i);
273 }
274 insert_hash(conf, sh);
275}
276
7ecaa1e6 277static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
278{
279 struct stripe_head *sh;
fccddba0 280 struct hlist_node *hn;
1da177e4
LT
281
282 CHECK_DEVLOCK();
45b4233c 283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 285 if (sh->sector == sector && sh->disks == disks)
1da177e4 286 return sh;
45b4233c 287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
288 return NULL;
289}
290
291static void unplug_slaves(mddev_t *mddev);
165125e1 292static void raid5_unplug_device(struct request_queue *q);
1da177e4 293
7ecaa1e6
N
294static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
1da177e4
LT
296{
297 struct stripe_head *sh;
298
45b4233c 299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
300
301 spin_lock_irq(&conf->device_lock);
302
303 do {
72626685
N
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
7ecaa1e6 307 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
5036805b
N
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
1da177e4
LT
319 || !conf->inactive_blocked),
320 conf->device_lock,
f4370781 321 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
322 );
323 conf->inactive_blocked = 0;
324 } else
7ecaa1e6 325 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
326 } else {
327 if (atomic_read(&sh->count)) {
78bafebd 328 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
334 BUG();
335 list_del_init(&sh->lru);
1da177e4
LT
336 }
337 }
338 } while (sh == NULL);
339
340 if (sh)
341 atomic_inc(&sh->count);
342
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
345}
346
d84e0f10
DW
347/* test_and_ack_op() ensures that we only dequeue an operation once */
348#define test_and_ack_op(op, pend) \
349do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358} while (0)
359
360/* find new work to run, do not resubmit work that is already
361 * in flight
362 */
363static unsigned long get_stripe_work(struct stripe_head *sh)
364{
365 unsigned long pending;
366 int ack = 0;
367
368 pending = sh->ops.pending;
369
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
d84e0f10
DW
376
377 sh->ops.count -= ack;
4ae3f847
DW
378 if (unlikely(sh->ops.count < 0)) {
379 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
380 "ops.complete: %#lx\n", pending, sh->ops.pending,
381 sh->ops.ack, sh->ops.complete);
382 BUG();
383 }
d84e0f10
DW
384
385 return pending;
386}
387
6712ecf8
N
388static void
389raid5_end_read_request(struct bio *bi, int error);
390static void
391raid5_end_write_request(struct bio *bi, int error);
91c00924 392
c4e5ac0a 393static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
394{
395 raid5_conf_t *conf = sh->raid_conf;
396 int i, disks = sh->disks;
397
398 might_sleep();
399
400 for (i = disks; i--; ) {
401 int rw;
402 struct bio *bi;
403 mdk_rdev_t *rdev;
404 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405 rw = WRITE;
406 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407 rw = READ;
408 else
409 continue;
410
411 bi = &sh->dev[i].req;
412
413 bi->bi_rw = rw;
414 if (rw == WRITE)
415 bi->bi_end_io = raid5_end_write_request;
416 else
417 bi->bi_end_io = raid5_end_read_request;
418
419 rcu_read_lock();
420 rdev = rcu_dereference(conf->disks[i].rdev);
421 if (rdev && test_bit(Faulty, &rdev->flags))
422 rdev = NULL;
423 if (rdev)
424 atomic_inc(&rdev->nr_pending);
425 rcu_read_unlock();
426
427 if (rdev) {
c4e5ac0a 428 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
429 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430
2b7497f0
DW
431 set_bit(STRIPE_IO_STARTED, &sh->state);
432
91c00924
DW
433 bi->bi_bdev = rdev->bdev;
434 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 435 __func__, (unsigned long long)sh->sector,
91c00924
DW
436 bi->bi_rw, i);
437 atomic_inc(&sh->count);
438 bi->bi_sector = sh->sector + rdev->data_offset;
439 bi->bi_flags = 1 << BIO_UPTODATE;
440 bi->bi_vcnt = 1;
441 bi->bi_max_vecs = 1;
442 bi->bi_idx = 0;
443 bi->bi_io_vec = &sh->dev[i].vec;
444 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
445 bi->bi_io_vec[0].bv_offset = 0;
446 bi->bi_size = STRIPE_SIZE;
447 bi->bi_next = NULL;
448 if (rw == WRITE &&
449 test_bit(R5_ReWrite, &sh->dev[i].flags))
450 atomic_add(STRIPE_SECTORS,
451 &rdev->corrected_errors);
452 generic_make_request(bi);
453 } else {
454 if (rw == WRITE)
455 set_bit(STRIPE_DEGRADED, &sh->state);
456 pr_debug("skip op %ld on disc %d for sector %llu\n",
457 bi->bi_rw, i, (unsigned long long)sh->sector);
458 clear_bit(R5_LOCKED, &sh->dev[i].flags);
459 set_bit(STRIPE_HANDLE, &sh->state);
460 }
461 }
462}
463
464static struct dma_async_tx_descriptor *
465async_copy_data(int frombio, struct bio *bio, struct page *page,
466 sector_t sector, struct dma_async_tx_descriptor *tx)
467{
468 struct bio_vec *bvl;
469 struct page *bio_page;
470 int i;
471 int page_offset;
472
473 if (bio->bi_sector >= sector)
474 page_offset = (signed)(bio->bi_sector - sector) * 512;
475 else
476 page_offset = (signed)(sector - bio->bi_sector) * -512;
477 bio_for_each_segment(bvl, bio, i) {
478 int len = bio_iovec_idx(bio, i)->bv_len;
479 int clen;
480 int b_offset = 0;
481
482 if (page_offset < 0) {
483 b_offset = -page_offset;
484 page_offset += b_offset;
485 len -= b_offset;
486 }
487
488 if (len > 0 && page_offset + len > STRIPE_SIZE)
489 clen = STRIPE_SIZE - page_offset;
490 else
491 clen = len;
492
493 if (clen > 0) {
494 b_offset += bio_iovec_idx(bio, i)->bv_offset;
495 bio_page = bio_iovec_idx(bio, i)->bv_page;
496 if (frombio)
497 tx = async_memcpy(page, bio_page, page_offset,
498 b_offset, clen,
eb0645a8 499 ASYNC_TX_DEP_ACK,
91c00924
DW
500 tx, NULL, NULL);
501 else
502 tx = async_memcpy(bio_page, page, b_offset,
503 page_offset, clen,
eb0645a8 504 ASYNC_TX_DEP_ACK,
91c00924
DW
505 tx, NULL, NULL);
506 }
507 if (clen < len) /* hit end of page */
508 break;
509 page_offset += len;
510 }
511
512 return tx;
513}
514
515static void ops_complete_biofill(void *stripe_head_ref)
516{
517 struct stripe_head *sh = stripe_head_ref;
518 struct bio *return_bi = NULL;
519 raid5_conf_t *conf = sh->raid_conf;
e4d84909 520 int i;
91c00924 521
e46b272b 522 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
523 (unsigned long long)sh->sector);
524
525 /* clear completed biofills */
526 for (i = sh->disks; i--; ) {
527 struct r5dev *dev = &sh->dev[i];
91c00924
DW
528
529 /* acknowledge completion of a biofill operation */
e4d84909
DW
530 /* and check if we need to reply to a read request,
531 * new R5_Wantfill requests are held off until
532 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
533 */
534 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 535 struct bio *rbi, *rbi2;
91c00924
DW
536
537 /* The access to dev->read is outside of the
538 * spin_lock_irq(&conf->device_lock), but is protected
539 * by the STRIPE_OP_BIOFILL pending bit
540 */
541 BUG_ON(!dev->read);
542 rbi = dev->read;
543 dev->read = NULL;
544 while (rbi && rbi->bi_sector <
545 dev->sector + STRIPE_SECTORS) {
546 rbi2 = r5_next_bio(rbi, dev->sector);
547 spin_lock_irq(&conf->device_lock);
548 if (--rbi->bi_phys_segments == 0) {
549 rbi->bi_next = return_bi;
550 return_bi = rbi;
551 }
552 spin_unlock_irq(&conf->device_lock);
553 rbi = rbi2;
554 }
555 }
556 }
4ae3f847 557 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
91c00924
DW
558
559 return_io(return_bi);
560
e4d84909 561 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
562 release_stripe(sh);
563}
564
565static void ops_run_biofill(struct stripe_head *sh)
566{
567 struct dma_async_tx_descriptor *tx = NULL;
568 raid5_conf_t *conf = sh->raid_conf;
569 int i;
570
e46b272b 571 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
572 (unsigned long long)sh->sector);
573
574 for (i = sh->disks; i--; ) {
575 struct r5dev *dev = &sh->dev[i];
576 if (test_bit(R5_Wantfill, &dev->flags)) {
577 struct bio *rbi;
578 spin_lock_irq(&conf->device_lock);
579 dev->read = rbi = dev->toread;
580 dev->toread = NULL;
581 spin_unlock_irq(&conf->device_lock);
582 while (rbi && rbi->bi_sector <
583 dev->sector + STRIPE_SECTORS) {
584 tx = async_copy_data(0, rbi, dev->page,
585 dev->sector, tx);
586 rbi = r5_next_bio(rbi, dev->sector);
587 }
588 }
589 }
590
591 atomic_inc(&sh->count);
592 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
593 ops_complete_biofill, sh);
594}
595
596static void ops_complete_compute5(void *stripe_head_ref)
597{
598 struct stripe_head *sh = stripe_head_ref;
599 int target = sh->ops.target;
600 struct r5dev *tgt = &sh->dev[target];
601
e46b272b 602 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
603 (unsigned long long)sh->sector);
604
605 set_bit(R5_UPTODATE, &tgt->flags);
606 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
607 clear_bit(R5_Wantcompute, &tgt->flags);
608 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
609 set_bit(STRIPE_HANDLE, &sh->state);
610 release_stripe(sh);
611}
612
613static struct dma_async_tx_descriptor *
614ops_run_compute5(struct stripe_head *sh, unsigned long pending)
615{
616 /* kernel stack size limits the total number of disks */
617 int disks = sh->disks;
618 struct page *xor_srcs[disks];
619 int target = sh->ops.target;
620 struct r5dev *tgt = &sh->dev[target];
621 struct page *xor_dest = tgt->page;
622 int count = 0;
623 struct dma_async_tx_descriptor *tx;
624 int i;
625
626 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 627 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
628 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
629
630 for (i = disks; i--; )
631 if (i != target)
632 xor_srcs[count++] = sh->dev[i].page;
633
634 atomic_inc(&sh->count);
635
636 if (unlikely(count == 1))
637 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
638 0, NULL, ops_complete_compute5, sh);
639 else
640 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
641 ASYNC_TX_XOR_ZERO_DST, NULL,
642 ops_complete_compute5, sh);
643
644 /* ack now if postxor is not set to be run */
645 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
646 async_tx_ack(tx);
647
648 return tx;
649}
650
651static void ops_complete_prexor(void *stripe_head_ref)
652{
653 struct stripe_head *sh = stripe_head_ref;
654
e46b272b 655 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
656 (unsigned long long)sh->sector);
657
658 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
659}
660
661static struct dma_async_tx_descriptor *
662ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
663{
664 /* kernel stack size limits the total number of disks */
665 int disks = sh->disks;
666 struct page *xor_srcs[disks];
667 int count = 0, pd_idx = sh->pd_idx, i;
668
669 /* existing parity data subtracted */
670 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
671
e46b272b 672 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
673 (unsigned long long)sh->sector);
674
675 for (i = disks; i--; ) {
676 struct r5dev *dev = &sh->dev[i];
677 /* Only process blocks that are known to be uptodate */
678 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
679 xor_srcs[count++] = dev->page;
680 }
681
682 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
683 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
684 ops_complete_prexor, sh);
685
686 return tx;
687}
688
689static struct dma_async_tx_descriptor *
6c55be8b
DW
690ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
691 unsigned long pending)
91c00924
DW
692{
693 int disks = sh->disks;
694 int pd_idx = sh->pd_idx, i;
695
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
698 */
6c55be8b 699 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924 700
e46b272b 701 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
702 (unsigned long long)sh->sector);
703
704 for (i = disks; i--; ) {
705 struct r5dev *dev = &sh->dev[i];
706 struct bio *chosen;
707 int towrite;
708
709 towrite = 0;
710 if (prexor) { /* rmw */
711 if (dev->towrite &&
712 test_bit(R5_Wantprexor, &dev->flags))
713 towrite = 1;
714 } else { /* rcw */
715 if (i != pd_idx && dev->towrite &&
716 test_bit(R5_LOCKED, &dev->flags))
717 towrite = 1;
718 }
719
720 if (towrite) {
721 struct bio *wbi;
722
723 spin_lock(&sh->lock);
724 chosen = dev->towrite;
725 dev->towrite = NULL;
726 BUG_ON(dev->written);
727 wbi = dev->written = chosen;
728 spin_unlock(&sh->lock);
729
730 while (wbi && wbi->bi_sector <
731 dev->sector + STRIPE_SECTORS) {
732 tx = async_copy_data(1, wbi, dev->page,
733 dev->sector, tx);
734 wbi = r5_next_bio(wbi, dev->sector);
735 }
736 }
737 }
738
739 return tx;
740}
741
742static void ops_complete_postxor(void *stripe_head_ref)
743{
744 struct stripe_head *sh = stripe_head_ref;
745
e46b272b 746 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
747 (unsigned long long)sh->sector);
748
749 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 set_bit(STRIPE_HANDLE, &sh->state);
751 release_stripe(sh);
752}
753
754static void ops_complete_write(void *stripe_head_ref)
755{
756 struct stripe_head *sh = stripe_head_ref;
757 int disks = sh->disks, i, pd_idx = sh->pd_idx;
758
e46b272b 759 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
760 (unsigned long long)sh->sector);
761
762 for (i = disks; i--; ) {
763 struct r5dev *dev = &sh->dev[i];
764 if (dev->written || i == pd_idx)
765 set_bit(R5_UPTODATE, &dev->flags);
766 }
767
768 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770
771 set_bit(STRIPE_HANDLE, &sh->state);
772 release_stripe(sh);
773}
774
775static void
6c55be8b
DW
776ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
777 unsigned long pending)
91c00924
DW
778{
779 /* kernel stack size limits the total number of disks */
780 int disks = sh->disks;
781 struct page *xor_srcs[disks];
782
783 int count = 0, pd_idx = sh->pd_idx, i;
784 struct page *xor_dest;
6c55be8b 785 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924
DW
786 unsigned long flags;
787 dma_async_tx_callback callback;
788
e46b272b 789 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
790 (unsigned long long)sh->sector);
791
792 /* check if prexor is active which means only process blocks
793 * that are part of a read-modify-write (written)
794 */
795 if (prexor) {
796 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
797 for (i = disks; i--; ) {
798 struct r5dev *dev = &sh->dev[i];
799 if (dev->written)
800 xor_srcs[count++] = dev->page;
801 }
802 } else {
803 xor_dest = sh->dev[pd_idx].page;
804 for (i = disks; i--; ) {
805 struct r5dev *dev = &sh->dev[i];
806 if (i != pd_idx)
807 xor_srcs[count++] = dev->page;
808 }
809 }
810
811 /* check whether this postxor is part of a write */
6c55be8b 812 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
91c00924
DW
813 ops_complete_write : ops_complete_postxor;
814
815 /* 1/ if we prexor'd then the dest is reused as a source
816 * 2/ if we did not prexor then we are redoing the parity
817 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
818 * for the synchronous xor case
819 */
820 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
821 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
822
823 atomic_inc(&sh->count);
824
825 if (unlikely(count == 1)) {
826 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
827 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
828 flags, tx, callback, sh);
829 } else
830 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
831 flags, tx, callback, sh);
832}
833
834static void ops_complete_check(void *stripe_head_ref)
835{
836 struct stripe_head *sh = stripe_head_ref;
91c00924 837
e46b272b 838 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
839 (unsigned long long)sh->sector);
840
91c00924
DW
841 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
842 set_bit(STRIPE_HANDLE, &sh->state);
843 release_stripe(sh);
844}
845
846static void ops_run_check(struct stripe_head *sh)
847{
848 /* kernel stack size limits the total number of disks */
849 int disks = sh->disks;
850 struct page *xor_srcs[disks];
851 struct dma_async_tx_descriptor *tx;
852
853 int count = 0, pd_idx = sh->pd_idx, i;
854 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
855
e46b272b 856 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
857 (unsigned long long)sh->sector);
858
859 for (i = disks; i--; ) {
860 struct r5dev *dev = &sh->dev[i];
861 if (i != pd_idx)
862 xor_srcs[count++] = dev->page;
863 }
864
865 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
866 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
867
91c00924
DW
868 atomic_inc(&sh->count);
869 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
870 ops_complete_check, sh);
871}
872
873static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
874{
875 int overlap_clear = 0, i, disks = sh->disks;
876 struct dma_async_tx_descriptor *tx = NULL;
877
878 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
879 ops_run_biofill(sh);
880 overlap_clear++;
881 }
882
883 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
884 tx = ops_run_compute5(sh, pending);
885
886 if (test_bit(STRIPE_OP_PREXOR, &pending))
887 tx = ops_run_prexor(sh, tx);
888
889 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
6c55be8b 890 tx = ops_run_biodrain(sh, tx, pending);
91c00924
DW
891 overlap_clear++;
892 }
893
894 if (test_bit(STRIPE_OP_POSTXOR, &pending))
6c55be8b 895 ops_run_postxor(sh, tx, pending);
91c00924
DW
896
897 if (test_bit(STRIPE_OP_CHECK, &pending))
898 ops_run_check(sh);
899
91c00924
DW
900 if (overlap_clear)
901 for (i = disks; i--; ) {
902 struct r5dev *dev = &sh->dev[i];
903 if (test_and_clear_bit(R5_Overlap, &dev->flags))
904 wake_up(&sh->raid_conf->wait_for_overlap);
905 }
906}
907
3f294f4f 908static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
909{
910 struct stripe_head *sh;
3f294f4f
N
911 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
912 if (!sh)
913 return 0;
914 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
915 sh->raid_conf = conf;
916 spin_lock_init(&sh->lock);
917
918 if (grow_buffers(sh, conf->raid_disks)) {
919 shrink_buffers(sh, conf->raid_disks);
920 kmem_cache_free(conf->slab_cache, sh);
921 return 0;
922 }
7ecaa1e6 923 sh->disks = conf->raid_disks;
3f294f4f
N
924 /* we just created an active stripe so... */
925 atomic_set(&sh->count, 1);
926 atomic_inc(&conf->active_stripes);
927 INIT_LIST_HEAD(&sh->lru);
928 release_stripe(sh);
929 return 1;
930}
931
932static int grow_stripes(raid5_conf_t *conf, int num)
933{
e18b890b 934 struct kmem_cache *sc;
1da177e4
LT
935 int devs = conf->raid_disks;
936
42b9bebe
N
937 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
938 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
939 conf->active_name = 0;
940 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 941 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 942 0, 0, NULL);
1da177e4
LT
943 if (!sc)
944 return 1;
945 conf->slab_cache = sc;
ad01c9e3 946 conf->pool_size = devs;
16a53ecc 947 while (num--)
3f294f4f 948 if (!grow_one_stripe(conf))
1da177e4 949 return 1;
1da177e4
LT
950 return 0;
951}
29269553
N
952
953#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
954static int resize_stripes(raid5_conf_t *conf, int newsize)
955{
956 /* Make all the stripes able to hold 'newsize' devices.
957 * New slots in each stripe get 'page' set to a new page.
958 *
959 * This happens in stages:
960 * 1/ create a new kmem_cache and allocate the required number of
961 * stripe_heads.
962 * 2/ gather all the old stripe_heads and tranfer the pages across
963 * to the new stripe_heads. This will have the side effect of
964 * freezing the array as once all stripe_heads have been collected,
965 * no IO will be possible. Old stripe heads are freed once their
966 * pages have been transferred over, and the old kmem_cache is
967 * freed when all stripes are done.
968 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
969 * we simple return a failre status - no need to clean anything up.
970 * 4/ allocate new pages for the new slots in the new stripe_heads.
971 * If this fails, we don't bother trying the shrink the
972 * stripe_heads down again, we just leave them as they are.
973 * As each stripe_head is processed the new one is released into
974 * active service.
975 *
976 * Once step2 is started, we cannot afford to wait for a write,
977 * so we use GFP_NOIO allocations.
978 */
979 struct stripe_head *osh, *nsh;
980 LIST_HEAD(newstripes);
981 struct disk_info *ndisks;
982 int err = 0;
e18b890b 983 struct kmem_cache *sc;
ad01c9e3
N
984 int i;
985
986 if (newsize <= conf->pool_size)
987 return 0; /* never bother to shrink */
988
2a2275d6
N
989 md_allow_write(conf->mddev);
990
ad01c9e3
N
991 /* Step 1 */
992 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
993 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 994 0, 0, NULL);
ad01c9e3
N
995 if (!sc)
996 return -ENOMEM;
997
998 for (i = conf->max_nr_stripes; i; i--) {
999 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1000 if (!nsh)
1001 break;
1002
1003 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1004
1005 nsh->raid_conf = conf;
1006 spin_lock_init(&nsh->lock);
1007
1008 list_add(&nsh->lru, &newstripes);
1009 }
1010 if (i) {
1011 /* didn't get enough, give up */
1012 while (!list_empty(&newstripes)) {
1013 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1014 list_del(&nsh->lru);
1015 kmem_cache_free(sc, nsh);
1016 }
1017 kmem_cache_destroy(sc);
1018 return -ENOMEM;
1019 }
1020 /* Step 2 - Must use GFP_NOIO now.
1021 * OK, we have enough stripes, start collecting inactive
1022 * stripes and copying them over
1023 */
1024 list_for_each_entry(nsh, &newstripes, lru) {
1025 spin_lock_irq(&conf->device_lock);
1026 wait_event_lock_irq(conf->wait_for_stripe,
1027 !list_empty(&conf->inactive_list),
1028 conf->device_lock,
b3b46be3 1029 unplug_slaves(conf->mddev)
ad01c9e3
N
1030 );
1031 osh = get_free_stripe(conf);
1032 spin_unlock_irq(&conf->device_lock);
1033 atomic_set(&nsh->count, 1);
1034 for(i=0; i<conf->pool_size; i++)
1035 nsh->dev[i].page = osh->dev[i].page;
1036 for( ; i<newsize; i++)
1037 nsh->dev[i].page = NULL;
1038 kmem_cache_free(conf->slab_cache, osh);
1039 }
1040 kmem_cache_destroy(conf->slab_cache);
1041
1042 /* Step 3.
1043 * At this point, we are holding all the stripes so the array
1044 * is completely stalled, so now is a good time to resize
1045 * conf->disks.
1046 */
1047 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1048 if (ndisks) {
1049 for (i=0; i<conf->raid_disks; i++)
1050 ndisks[i] = conf->disks[i];
1051 kfree(conf->disks);
1052 conf->disks = ndisks;
1053 } else
1054 err = -ENOMEM;
1055
1056 /* Step 4, return new stripes to service */
1057 while(!list_empty(&newstripes)) {
1058 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1059 list_del_init(&nsh->lru);
1060 for (i=conf->raid_disks; i < newsize; i++)
1061 if (nsh->dev[i].page == NULL) {
1062 struct page *p = alloc_page(GFP_NOIO);
1063 nsh->dev[i].page = p;
1064 if (!p)
1065 err = -ENOMEM;
1066 }
1067 release_stripe(nsh);
1068 }
1069 /* critical section pass, GFP_NOIO no longer needed */
1070
1071 conf->slab_cache = sc;
1072 conf->active_name = 1-conf->active_name;
1073 conf->pool_size = newsize;
1074 return err;
1075}
29269553 1076#endif
1da177e4 1077
3f294f4f 1078static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1079{
1080 struct stripe_head *sh;
1081
3f294f4f
N
1082 spin_lock_irq(&conf->device_lock);
1083 sh = get_free_stripe(conf);
1084 spin_unlock_irq(&conf->device_lock);
1085 if (!sh)
1086 return 0;
78bafebd 1087 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1088 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1089 kmem_cache_free(conf->slab_cache, sh);
1090 atomic_dec(&conf->active_stripes);
1091 return 1;
1092}
1093
1094static void shrink_stripes(raid5_conf_t *conf)
1095{
1096 while (drop_one_stripe(conf))
1097 ;
1098
29fc7e3e
N
1099 if (conf->slab_cache)
1100 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1101 conf->slab_cache = NULL;
1102}
1103
6712ecf8 1104static void raid5_end_read_request(struct bio * bi, int error)
1da177e4
LT
1105{
1106 struct stripe_head *sh = bi->bi_private;
1107 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1108 int disks = sh->disks, i;
1da177e4 1109 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1110 char b[BDEVNAME_SIZE];
1111 mdk_rdev_t *rdev;
1da177e4 1112
1da177e4
LT
1113
1114 for (i=0 ; i<disks; i++)
1115 if (bi == &sh->dev[i].req)
1116 break;
1117
45b4233c
DW
1118 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1119 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1120 uptodate);
1121 if (i == disks) {
1122 BUG();
6712ecf8 1123 return;
1da177e4
LT
1124 }
1125
1126 if (uptodate) {
1da177e4 1127 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1128 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1129 rdev = conf->disks[i].rdev;
6be9d494
BS
1130 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1131 " (%lu sectors at %llu on %s)\n",
1132 mdname(conf->mddev), STRIPE_SECTORS,
1133 (unsigned long long)(sh->sector
1134 + rdev->data_offset),
1135 bdevname(rdev->bdev, b));
4e5314b5
N
1136 clear_bit(R5_ReadError, &sh->dev[i].flags);
1137 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1138 }
ba22dcbf
N
1139 if (atomic_read(&conf->disks[i].rdev->read_errors))
1140 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1141 } else {
d6950432 1142 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1143 int retry = 0;
d6950432
N
1144 rdev = conf->disks[i].rdev;
1145
1da177e4 1146 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1147 atomic_inc(&rdev->read_errors);
ba22dcbf 1148 if (conf->mddev->degraded)
6be9d494
BS
1149 printk_rl(KERN_WARNING
1150 "raid5:%s: read error not correctable "
1151 "(sector %llu on %s).\n",
1152 mdname(conf->mddev),
1153 (unsigned long long)(sh->sector
1154 + rdev->data_offset),
1155 bdn);
ba22dcbf 1156 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1157 /* Oh, no!!! */
6be9d494
BS
1158 printk_rl(KERN_WARNING
1159 "raid5:%s: read error NOT corrected!! "
1160 "(sector %llu on %s).\n",
1161 mdname(conf->mddev),
1162 (unsigned long long)(sh->sector
1163 + rdev->data_offset),
1164 bdn);
d6950432 1165 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1166 > conf->max_nr_stripes)
14f8d26b 1167 printk(KERN_WARNING
d6950432
N
1168 "raid5:%s: Too many read errors, failing device %s.\n",
1169 mdname(conf->mddev), bdn);
ba22dcbf
N
1170 else
1171 retry = 1;
1172 if (retry)
1173 set_bit(R5_ReadError, &sh->dev[i].flags);
1174 else {
4e5314b5
N
1175 clear_bit(R5_ReadError, &sh->dev[i].flags);
1176 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1177 md_error(conf->mddev, rdev);
ba22dcbf 1178 }
1da177e4
LT
1179 }
1180 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1181 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1182 set_bit(STRIPE_HANDLE, &sh->state);
1183 release_stripe(sh);
1da177e4
LT
1184}
1185
6712ecf8 1186static void raid5_end_write_request (struct bio *bi, int error)
1da177e4
LT
1187{
1188 struct stripe_head *sh = bi->bi_private;
1189 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1190 int disks = sh->disks, i;
1da177e4
LT
1191 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1192
1da177e4
LT
1193 for (i=0 ; i<disks; i++)
1194 if (bi == &sh->dev[i].req)
1195 break;
1196
45b4233c 1197 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1198 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1199 uptodate);
1200 if (i == disks) {
1201 BUG();
6712ecf8 1202 return;
1da177e4
LT
1203 }
1204
1da177e4
LT
1205 if (!uptodate)
1206 md_error(conf->mddev, conf->disks[i].rdev);
1207
1208 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1209
1210 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1211 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1212 release_stripe(sh);
1da177e4
LT
1213}
1214
1215
1216static sector_t compute_blocknr(struct stripe_head *sh, int i);
1217
1218static void raid5_build_block (struct stripe_head *sh, int i)
1219{
1220 struct r5dev *dev = &sh->dev[i];
1221
1222 bio_init(&dev->req);
1223 dev->req.bi_io_vec = &dev->vec;
1224 dev->req.bi_vcnt++;
1225 dev->req.bi_max_vecs++;
1226 dev->vec.bv_page = dev->page;
1227 dev->vec.bv_len = STRIPE_SIZE;
1228 dev->vec.bv_offset = 0;
1229
1230 dev->req.bi_sector = sh->sector;
1231 dev->req.bi_private = sh;
1232
1233 dev->flags = 0;
16a53ecc 1234 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1235}
1236
1237static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1238{
1239 char b[BDEVNAME_SIZE];
1240 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1241 pr_debug("raid5: error called\n");
1da177e4 1242
b2d444d7 1243 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1244 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1245 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1246 unsigned long flags;
1247 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1248 mddev->degraded++;
c04be0aa 1249 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1250 /*
1251 * if recovery was running, make sure it aborts.
1252 */
dfc70645 1253 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1254 }
b2d444d7 1255 set_bit(Faulty, &rdev->flags);
1da177e4 1256 printk (KERN_ALERT
d7a420c9
NA
1257 "raid5: Disk failure on %s, disabling device.\n"
1258 "raid5: Operation continuing on %d devices.\n",
02c2de8c 1259 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1260 }
16a53ecc 1261}
1da177e4
LT
1262
1263/*
1264 * Input: a 'big' sector number,
1265 * Output: index of the data and parity disk, and the sector # in them.
1266 */
1267static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1268 unsigned int data_disks, unsigned int * dd_idx,
1269 unsigned int * pd_idx, raid5_conf_t *conf)
1270{
1271 long stripe;
1272 unsigned long chunk_number;
1273 unsigned int chunk_offset;
1274 sector_t new_sector;
1275 int sectors_per_chunk = conf->chunk_size >> 9;
1276
1277 /* First compute the information on this sector */
1278
1279 /*
1280 * Compute the chunk number and the sector offset inside the chunk
1281 */
1282 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1283 chunk_number = r_sector;
1284 BUG_ON(r_sector != chunk_number);
1285
1286 /*
1287 * Compute the stripe number
1288 */
1289 stripe = chunk_number / data_disks;
1290
1291 /*
1292 * Compute the data disk and parity disk indexes inside the stripe
1293 */
1294 *dd_idx = chunk_number % data_disks;
1295
1296 /*
1297 * Select the parity disk based on the user selected algorithm.
1298 */
16a53ecc
N
1299 switch(conf->level) {
1300 case 4:
1da177e4 1301 *pd_idx = data_disks;
16a53ecc
N
1302 break;
1303 case 5:
1304 switch (conf->algorithm) {
1da177e4
LT
1305 case ALGORITHM_LEFT_ASYMMETRIC:
1306 *pd_idx = data_disks - stripe % raid_disks;
1307 if (*dd_idx >= *pd_idx)
1308 (*dd_idx)++;
1309 break;
1310 case ALGORITHM_RIGHT_ASYMMETRIC:
1311 *pd_idx = stripe % raid_disks;
1312 if (*dd_idx >= *pd_idx)
1313 (*dd_idx)++;
1314 break;
1315 case ALGORITHM_LEFT_SYMMETRIC:
1316 *pd_idx = data_disks - stripe % raid_disks;
1317 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1318 break;
1319 case ALGORITHM_RIGHT_SYMMETRIC:
1320 *pd_idx = stripe % raid_disks;
1321 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1322 break;
1323 default:
14f8d26b 1324 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1325 conf->algorithm);
16a53ecc
N
1326 }
1327 break;
1328 case 6:
1329
1330 /**** FIX THIS ****/
1331 switch (conf->algorithm) {
1332 case ALGORITHM_LEFT_ASYMMETRIC:
1333 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1334 if (*pd_idx == raid_disks-1)
1335 (*dd_idx)++; /* Q D D D P */
1336 else if (*dd_idx >= *pd_idx)
1337 (*dd_idx) += 2; /* D D P Q D */
1338 break;
1339 case ALGORITHM_RIGHT_ASYMMETRIC:
1340 *pd_idx = stripe % raid_disks;
1341 if (*pd_idx == raid_disks-1)
1342 (*dd_idx)++; /* Q D D D P */
1343 else if (*dd_idx >= *pd_idx)
1344 (*dd_idx) += 2; /* D D P Q D */
1345 break;
1346 case ALGORITHM_LEFT_SYMMETRIC:
1347 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1349 break;
1350 case ALGORITHM_RIGHT_SYMMETRIC:
1351 *pd_idx = stripe % raid_disks;
1352 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1353 break;
1354 default:
1355 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1356 conf->algorithm);
1357 }
1358 break;
1da177e4
LT
1359 }
1360
1361 /*
1362 * Finally, compute the new sector number
1363 */
1364 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1365 return new_sector;
1366}
1367
1368
1369static sector_t compute_blocknr(struct stripe_head *sh, int i)
1370{
1371 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1372 int raid_disks = sh->disks;
1373 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1374 sector_t new_sector = sh->sector, check;
1375 int sectors_per_chunk = conf->chunk_size >> 9;
1376 sector_t stripe;
1377 int chunk_offset;
1378 int chunk_number, dummy1, dummy2, dd_idx = i;
1379 sector_t r_sector;
1380
16a53ecc 1381
1da177e4
LT
1382 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1383 stripe = new_sector;
1384 BUG_ON(new_sector != stripe);
1385
16a53ecc
N
1386 if (i == sh->pd_idx)
1387 return 0;
1388 switch(conf->level) {
1389 case 4: break;
1390 case 5:
1391 switch (conf->algorithm) {
1da177e4
LT
1392 case ALGORITHM_LEFT_ASYMMETRIC:
1393 case ALGORITHM_RIGHT_ASYMMETRIC:
1394 if (i > sh->pd_idx)
1395 i--;
1396 break;
1397 case ALGORITHM_LEFT_SYMMETRIC:
1398 case ALGORITHM_RIGHT_SYMMETRIC:
1399 if (i < sh->pd_idx)
1400 i += raid_disks;
1401 i -= (sh->pd_idx + 1);
1402 break;
1403 default:
14f8d26b 1404 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1405 conf->algorithm);
1406 }
1407 break;
1408 case 6:
16a53ecc
N
1409 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1410 return 0; /* It is the Q disk */
1411 switch (conf->algorithm) {
1412 case ALGORITHM_LEFT_ASYMMETRIC:
1413 case ALGORITHM_RIGHT_ASYMMETRIC:
1414 if (sh->pd_idx == raid_disks-1)
1415 i--; /* Q D D D P */
1416 else if (i > sh->pd_idx)
1417 i -= 2; /* D D P Q D */
1418 break;
1419 case ALGORITHM_LEFT_SYMMETRIC:
1420 case ALGORITHM_RIGHT_SYMMETRIC:
1421 if (sh->pd_idx == raid_disks-1)
1422 i--; /* Q D D D P */
1423 else {
1424 /* D D P Q D */
1425 if (i < sh->pd_idx)
1426 i += raid_disks;
1427 i -= (sh->pd_idx + 2);
1428 }
1429 break;
1430 default:
1431 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 1432 conf->algorithm);
16a53ecc
N
1433 }
1434 break;
1da177e4
LT
1435 }
1436
1437 chunk_number = stripe * data_disks + i;
1438 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1439
1440 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1441 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 1442 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1443 return 0;
1444 }
1445 return r_sector;
1446}
1447
1448
1449
1450/*
16a53ecc
N
1451 * Copy data between a page in the stripe cache, and one or more bion
1452 * The page could align with the middle of the bio, or there could be
1453 * several bion, each with several bio_vecs, which cover part of the page
1454 * Multiple bion are linked together on bi_next. There may be extras
1455 * at the end of this list. We ignore them.
1da177e4
LT
1456 */
1457static void copy_data(int frombio, struct bio *bio,
1458 struct page *page,
1459 sector_t sector)
1460{
1461 char *pa = page_address(page);
1462 struct bio_vec *bvl;
1463 int i;
1464 int page_offset;
1465
1466 if (bio->bi_sector >= sector)
1467 page_offset = (signed)(bio->bi_sector - sector) * 512;
1468 else
1469 page_offset = (signed)(sector - bio->bi_sector) * -512;
1470 bio_for_each_segment(bvl, bio, i) {
1471 int len = bio_iovec_idx(bio,i)->bv_len;
1472 int clen;
1473 int b_offset = 0;
1474
1475 if (page_offset < 0) {
1476 b_offset = -page_offset;
1477 page_offset += b_offset;
1478 len -= b_offset;
1479 }
1480
1481 if (len > 0 && page_offset + len > STRIPE_SIZE)
1482 clen = STRIPE_SIZE - page_offset;
1483 else clen = len;
16a53ecc 1484
1da177e4
LT
1485 if (clen > 0) {
1486 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1487 if (frombio)
1488 memcpy(pa+page_offset, ba+b_offset, clen);
1489 else
1490 memcpy(ba+b_offset, pa+page_offset, clen);
1491 __bio_kunmap_atomic(ba, KM_USER0);
1492 }
1493 if (clen < len) /* hit end of page */
1494 break;
1495 page_offset += len;
1496 }
1497}
1498
9bc89cd8
DW
1499#define check_xor() do { \
1500 if (count == MAX_XOR_BLOCKS) { \
1501 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1502 count = 0; \
1503 } \
1da177e4
LT
1504 } while(0)
1505
16a53ecc
N
1506static void compute_parity6(struct stripe_head *sh, int method)
1507{
1508 raid6_conf_t *conf = sh->raid_conf;
f416885e 1509 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1510 struct bio *chosen;
1511 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1512 void *ptrs[disks];
1513
1514 qd_idx = raid6_next_disk(pd_idx, disks);
1515 d0_idx = raid6_next_disk(qd_idx, disks);
1516
45b4233c 1517 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1518 (unsigned long long)sh->sector, method);
1519
1520 switch(method) {
1521 case READ_MODIFY_WRITE:
1522 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1523 case RECONSTRUCT_WRITE:
1524 for (i= disks; i-- ;)
1525 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1526 chosen = sh->dev[i].towrite;
1527 sh->dev[i].towrite = NULL;
1528
1529 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1530 wake_up(&conf->wait_for_overlap);
1531
52e5f9d1 1532 BUG_ON(sh->dev[i].written);
16a53ecc
N
1533 sh->dev[i].written = chosen;
1534 }
1535 break;
1536 case CHECK_PARITY:
1537 BUG(); /* Not implemented yet */
1538 }
1539
1540 for (i = disks; i--;)
1541 if (sh->dev[i].written) {
1542 sector_t sector = sh->dev[i].sector;
1543 struct bio *wbi = sh->dev[i].written;
1544 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1545 copy_data(1, wbi, sh->dev[i].page, sector);
1546 wbi = r5_next_bio(wbi, sector);
1547 }
1548
1549 set_bit(R5_LOCKED, &sh->dev[i].flags);
1550 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1551 }
1552
1553// switch(method) {
1554// case RECONSTRUCT_WRITE:
1555// case CHECK_PARITY:
1556// case UPDATE_PARITY:
1557 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1558 /* FIX: Is this ordering of drives even remotely optimal? */
1559 count = 0;
1560 i = d0_idx;
1561 do {
1562 ptrs[count++] = page_address(sh->dev[i].page);
1563 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1564 printk("block %d/%d not uptodate on parity calc\n", i,count);
1565 i = raid6_next_disk(i, disks);
1566 } while ( i != d0_idx );
1567// break;
1568// }
1569
1570 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1571
1572 switch(method) {
1573 case RECONSTRUCT_WRITE:
1574 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1575 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1576 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1577 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1578 break;
1579 case UPDATE_PARITY:
1580 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582 break;
1583 }
1584}
1585
1586
1587/* Compute one missing block */
1588static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1589{
f416885e 1590 int i, count, disks = sh->disks;
9bc89cd8 1591 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1592 int pd_idx = sh->pd_idx;
1593 int qd_idx = raid6_next_disk(pd_idx, disks);
1594
45b4233c 1595 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1596 (unsigned long long)sh->sector, dd_idx);
1597
1598 if ( dd_idx == qd_idx ) {
1599 /* We're actually computing the Q drive */
1600 compute_parity6(sh, UPDATE_PARITY);
1601 } else {
9bc89cd8
DW
1602 dest = page_address(sh->dev[dd_idx].page);
1603 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1604 count = 0;
16a53ecc
N
1605 for (i = disks ; i--; ) {
1606 if (i == dd_idx || i == qd_idx)
1607 continue;
1608 p = page_address(sh->dev[i].page);
1609 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1610 ptr[count++] = p;
1611 else
1612 printk("compute_block() %d, stripe %llu, %d"
1613 " not present\n", dd_idx,
1614 (unsigned long long)sh->sector, i);
1615
1616 check_xor();
1617 }
9bc89cd8
DW
1618 if (count)
1619 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1620 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1621 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1622 }
1623}
1624
1625/* Compute two missing blocks */
1626static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1627{
f416885e 1628 int i, count, disks = sh->disks;
16a53ecc
N
1629 int pd_idx = sh->pd_idx;
1630 int qd_idx = raid6_next_disk(pd_idx, disks);
1631 int d0_idx = raid6_next_disk(qd_idx, disks);
1632 int faila, failb;
1633
1634 /* faila and failb are disk numbers relative to d0_idx */
1635 /* pd_idx become disks-2 and qd_idx become disks-1 */
1636 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1637 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1638
1639 BUG_ON(faila == failb);
1640 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1641
45b4233c 1642 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
16a53ecc
N
1643 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1644
1645 if ( failb == disks-1 ) {
1646 /* Q disk is one of the missing disks */
1647 if ( faila == disks-2 ) {
1648 /* Missing P+Q, just recompute */
1649 compute_parity6(sh, UPDATE_PARITY);
1650 return;
1651 } else {
1652 /* We're missing D+Q; recompute D from P */
1653 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1654 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1655 return;
1656 }
1657 }
1658
1659 /* We're missing D+P or D+D; build pointer table */
1660 {
1661 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1662 void *ptrs[disks];
1663
1664 count = 0;
1665 i = d0_idx;
1666 do {
1667 ptrs[count++] = page_address(sh->dev[i].page);
1668 i = raid6_next_disk(i, disks);
1669 if (i != dd_idx1 && i != dd_idx2 &&
1670 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1671 printk("compute_2 with missing block %d/%d\n", count, i);
1672 } while ( i != d0_idx );
1673
1674 if ( failb == disks-2 ) {
1675 /* We're missing D+P. */
1676 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1677 } else {
1678 /* We're missing D+D. */
1679 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1680 }
1681
1682 /* Both the above update both missing blocks */
1683 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1684 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1685 }
1686}
1687
e33129d8
DW
1688static int
1689handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1690{
1691 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1692 int locked = 0;
1693
1694 if (rcw) {
1695 /* if we are not expanding this is a proper write request, and
1696 * there will be bios with new data to be drained into the
1697 * stripe cache
1698 */
1699 if (!expand) {
1700 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1701 sh->ops.count++;
1702 }
16a53ecc 1703
e33129d8
DW
1704 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1705 sh->ops.count++;
1706
1707 for (i = disks; i--; ) {
1708 struct r5dev *dev = &sh->dev[i];
1709
1710 if (dev->towrite) {
1711 set_bit(R5_LOCKED, &dev->flags);
1712 if (!expand)
1713 clear_bit(R5_UPTODATE, &dev->flags);
1714 locked++;
1715 }
1716 }
8b3e6cdc
DW
1717 if (locked + 1 == disks)
1718 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1719 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1720 } else {
1721 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1722 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1723
1724 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1725 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1726 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1727
1728 sh->ops.count += 3;
1729
1730 for (i = disks; i--; ) {
1731 struct r5dev *dev = &sh->dev[i];
1732 if (i == pd_idx)
1733 continue;
1734
1735 /* For a read-modify write there may be blocks that are
1736 * locked for reading while others are ready to be
1737 * written so we distinguish these blocks by the
1738 * R5_Wantprexor bit
1739 */
1740 if (dev->towrite &&
1741 (test_bit(R5_UPTODATE, &dev->flags) ||
1742 test_bit(R5_Wantcompute, &dev->flags))) {
1743 set_bit(R5_Wantprexor, &dev->flags);
1744 set_bit(R5_LOCKED, &dev->flags);
1745 clear_bit(R5_UPTODATE, &dev->flags);
1746 locked++;
1747 }
1748 }
1749 }
1750
1751 /* keep the parity disk locked while asynchronous operations
1752 * are in flight
1753 */
1754 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1755 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1756 locked++;
1757
1758 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
e46b272b 1759 __func__, (unsigned long long)sh->sector,
e33129d8
DW
1760 locked, sh->ops.pending);
1761
1762 return locked;
1763}
16a53ecc 1764
1da177e4
LT
1765/*
1766 * Each stripe/dev can have one or more bion attached.
16a53ecc 1767 * toread/towrite point to the first in a chain.
1da177e4
LT
1768 * The bi_next chain must be in order.
1769 */
1770static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1771{
1772 struct bio **bip;
1773 raid5_conf_t *conf = sh->raid_conf;
72626685 1774 int firstwrite=0;
1da177e4 1775
45b4233c 1776 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1777 (unsigned long long)bi->bi_sector,
1778 (unsigned long long)sh->sector);
1779
1780
1781 spin_lock(&sh->lock);
1782 spin_lock_irq(&conf->device_lock);
72626685 1783 if (forwrite) {
1da177e4 1784 bip = &sh->dev[dd_idx].towrite;
72626685
N
1785 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1786 firstwrite = 1;
1787 } else
1da177e4
LT
1788 bip = &sh->dev[dd_idx].toread;
1789 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1790 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1791 goto overlap;
1792 bip = & (*bip)->bi_next;
1793 }
1794 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1795 goto overlap;
1796
78bafebd 1797 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1798 if (*bip)
1799 bi->bi_next = *bip;
1800 *bip = bi;
1801 bi->bi_phys_segments ++;
1802 spin_unlock_irq(&conf->device_lock);
1803 spin_unlock(&sh->lock);
1804
45b4233c 1805 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1806 (unsigned long long)bi->bi_sector,
1807 (unsigned long long)sh->sector, dd_idx);
1808
72626685 1809 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1810 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1811 STRIPE_SECTORS, 0);
ae3c20cc 1812 sh->bm_seq = conf->seq_flush+1;
72626685
N
1813 set_bit(STRIPE_BIT_DELAY, &sh->state);
1814 }
1815
1da177e4
LT
1816 if (forwrite) {
1817 /* check if page is covered */
1818 sector_t sector = sh->dev[dd_idx].sector;
1819 for (bi=sh->dev[dd_idx].towrite;
1820 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1821 bi && bi->bi_sector <= sector;
1822 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1823 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1824 sector = bi->bi_sector + (bi->bi_size>>9);
1825 }
1826 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1827 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1828 }
1829 return 1;
1830
1831 overlap:
1832 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1833 spin_unlock_irq(&conf->device_lock);
1834 spin_unlock(&sh->lock);
1835 return 0;
1836}
1837
29269553
N
1838static void end_reshape(raid5_conf_t *conf);
1839
16a53ecc
N
1840static int page_is_zero(struct page *p)
1841{
1842 char *a = page_address(p);
1843 return ((*(u32*)a) == 0 &&
1844 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1845}
1846
ccfcc3c1
N
1847static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1848{
1849 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1850 int pd_idx, dd_idx;
2d2063ce
CQH
1851 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1852
b875e531
N
1853 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1854 *sectors_per_chunk + chunk_offset,
1855 disks, disks - conf->max_degraded,
1856 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1857 return pd_idx;
1858}
1859
a4456856
DW
1860static void
1861handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1862 struct stripe_head_state *s, int disks,
1863 struct bio **return_bi)
1864{
1865 int i;
1866 for (i = disks; i--; ) {
1867 struct bio *bi;
1868 int bitmap_end = 0;
1869
1870 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1871 mdk_rdev_t *rdev;
1872 rcu_read_lock();
1873 rdev = rcu_dereference(conf->disks[i].rdev);
1874 if (rdev && test_bit(In_sync, &rdev->flags))
1875 /* multiple read failures in one stripe */
1876 md_error(conf->mddev, rdev);
1877 rcu_read_unlock();
1878 }
1879 spin_lock_irq(&conf->device_lock);
1880 /* fail all writes first */
1881 bi = sh->dev[i].towrite;
1882 sh->dev[i].towrite = NULL;
1883 if (bi) {
1884 s->to_write--;
1885 bitmap_end = 1;
1886 }
1887
1888 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1889 wake_up(&conf->wait_for_overlap);
1890
1891 while (bi && bi->bi_sector <
1892 sh->dev[i].sector + STRIPE_SECTORS) {
1893 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1894 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1895 if (--bi->bi_phys_segments == 0) {
1896 md_write_end(conf->mddev);
1897 bi->bi_next = *return_bi;
1898 *return_bi = bi;
1899 }
1900 bi = nextbi;
1901 }
1902 /* and fail all 'written' */
1903 bi = sh->dev[i].written;
1904 sh->dev[i].written = NULL;
1905 if (bi) bitmap_end = 1;
1906 while (bi && bi->bi_sector <
1907 sh->dev[i].sector + STRIPE_SECTORS) {
1908 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1909 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1910 if (--bi->bi_phys_segments == 0) {
1911 md_write_end(conf->mddev);
1912 bi->bi_next = *return_bi;
1913 *return_bi = bi;
1914 }
1915 bi = bi2;
1916 }
1917
b5e98d65
DW
1918 /* fail any reads if this device is non-operational and
1919 * the data has not reached the cache yet.
1920 */
1921 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1922 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1923 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
1924 bi = sh->dev[i].toread;
1925 sh->dev[i].toread = NULL;
1926 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1927 wake_up(&conf->wait_for_overlap);
1928 if (bi) s->to_read--;
1929 while (bi && bi->bi_sector <
1930 sh->dev[i].sector + STRIPE_SECTORS) {
1931 struct bio *nextbi =
1932 r5_next_bio(bi, sh->dev[i].sector);
1933 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1934 if (--bi->bi_phys_segments == 0) {
1935 bi->bi_next = *return_bi;
1936 *return_bi = bi;
1937 }
1938 bi = nextbi;
1939 }
1940 }
1941 spin_unlock_irq(&conf->device_lock);
1942 if (bitmap_end)
1943 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1944 STRIPE_SECTORS, 0, 0);
1945 }
1946
8b3e6cdc
DW
1947 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1948 if (atomic_dec_and_test(&conf->pending_full_writes))
1949 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
1950}
1951
f38e1219
DW
1952/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1953 * to process
1954 */
1955static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1956 struct stripe_head_state *s, int disk_idx, int disks)
1957{
1958 struct r5dev *dev = &sh->dev[disk_idx];
1959 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1960
1961 /* don't schedule compute operations or reads on the parity block while
1962 * a check is in flight
1963 */
1964 if ((disk_idx == sh->pd_idx) &&
1965 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1966 return ~0;
1967
1968 /* is the data in this block needed, and can we get it? */
1969 if (!test_bit(R5_LOCKED, &dev->flags) &&
1970 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1971 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1972 s->syncing || s->expanding || (s->failed &&
1973 (failed_dev->toread || (failed_dev->towrite &&
1974 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1975 ))))) {
1976 /* 1/ We would like to get this block, possibly by computing it,
1977 * but we might not be able to.
1978 *
1979 * 2/ Since parity check operations potentially make the parity
1980 * block !uptodate it will need to be refreshed before any
1981 * compute operations on data disks are scheduled.
1982 *
1983 * 3/ We hold off parity block re-reads until check operations
1984 * have quiesced.
1985 */
1986 if ((s->uptodate == disks - 1) &&
c337869d 1987 (s->failed && disk_idx == s->failed_num) &&
f38e1219
DW
1988 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1989 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1990 set_bit(R5_Wantcompute, &dev->flags);
1991 sh->ops.target = disk_idx;
1992 s->req_compute = 1;
1993 sh->ops.count++;
1994 /* Careful: from this point on 'uptodate' is in the eye
1995 * of raid5_run_ops which services 'compute' operations
1996 * before writes. R5_Wantcompute flags a block that will
1997 * be R5_UPTODATE by the time it is needed for a
1998 * subsequent operation.
1999 */
2000 s->uptodate++;
2001 return 0; /* uptodate + compute == disks */
2002 } else if ((s->uptodate < disks - 1) &&
2003 test_bit(R5_Insync, &dev->flags)) {
2004 /* Note: we hold off compute operations while checks are
2005 * in flight, but we still prefer 'compute' over 'read'
2006 * hence we only read if (uptodate < * disks-1)
2007 */
2008 set_bit(R5_LOCKED, &dev->flags);
2009 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2010 s->locked++;
2011 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2012 s->syncing);
2013 }
2014 }
2015
2016 return ~0;
2017}
2018
a4456856
DW
2019static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2020 struct stripe_head_state *s, int disks)
2021{
2022 int i;
f38e1219
DW
2023
2024 /* Clear completed compute operations. Parity recovery
2025 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2026 * later on in this routine
2027 */
2028 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2029 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2030 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2031 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2032 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2033 }
2034
2035 /* look for blocks to read/compute, skip this if a compute
2036 * is already in flight, or if the stripe contents are in the
2037 * midst of changing due to a write
2038 */
2039 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2040 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2041 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2042 for (i = disks; i--; )
2043 if (__handle_issuing_new_read_requests5(
2044 sh, s, i, disks) == 0)
2045 break;
a4456856
DW
2046 }
2047 set_bit(STRIPE_HANDLE, &sh->state);
2048}
2049
2050static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2051 struct stripe_head_state *s, struct r6_state *r6s,
2052 int disks)
2053{
2054 int i;
2055 for (i = disks; i--; ) {
2056 struct r5dev *dev = &sh->dev[i];
2057 if (!test_bit(R5_LOCKED, &dev->flags) &&
2058 !test_bit(R5_UPTODATE, &dev->flags) &&
2059 (dev->toread || (dev->towrite &&
2060 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2061 s->syncing || s->expanding ||
2062 (s->failed >= 1 &&
2063 (sh->dev[r6s->failed_num[0]].toread ||
2064 s->to_write)) ||
2065 (s->failed >= 2 &&
2066 (sh->dev[r6s->failed_num[1]].toread ||
2067 s->to_write)))) {
2068 /* we would like to get this block, possibly
2069 * by computing it, but we might not be able to
2070 */
c337869d
DW
2071 if ((s->uptodate == disks - 1) &&
2072 (s->failed && (i == r6s->failed_num[0] ||
2073 i == r6s->failed_num[1]))) {
45b4233c 2074 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2075 (unsigned long long)sh->sector, i);
2076 compute_block_1(sh, i, 0);
2077 s->uptodate++;
2078 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2079 /* Computing 2-failure is *very* expensive; only
2080 * do it if failed >= 2
2081 */
2082 int other;
2083 for (other = disks; other--; ) {
2084 if (other == i)
2085 continue;
2086 if (!test_bit(R5_UPTODATE,
2087 &sh->dev[other].flags))
2088 break;
2089 }
2090 BUG_ON(other < 0);
45b4233c 2091 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2092 (unsigned long long)sh->sector,
2093 i, other);
2094 compute_block_2(sh, i, other);
2095 s->uptodate += 2;
2096 } else if (test_bit(R5_Insync, &dev->flags)) {
2097 set_bit(R5_LOCKED, &dev->flags);
2098 set_bit(R5_Wantread, &dev->flags);
2099 s->locked++;
45b4233c 2100 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2101 i, s->syncing);
2102 }
2103 }
2104 }
2105 set_bit(STRIPE_HANDLE, &sh->state);
2106}
2107
2108
2109/* handle_completed_write_requests
2110 * any written block on an uptodate or failed drive can be returned.
2111 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2112 * never LOCKED, so we don't need to test 'failed' directly.
2113 */
2114static void handle_completed_write_requests(raid5_conf_t *conf,
2115 struct stripe_head *sh, int disks, struct bio **return_bi)
2116{
2117 int i;
2118 struct r5dev *dev;
2119
2120 for (i = disks; i--; )
2121 if (sh->dev[i].written) {
2122 dev = &sh->dev[i];
2123 if (!test_bit(R5_LOCKED, &dev->flags) &&
2124 test_bit(R5_UPTODATE, &dev->flags)) {
2125 /* We can return any write requests */
2126 struct bio *wbi, *wbi2;
2127 int bitmap_end = 0;
45b4233c 2128 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2129 spin_lock_irq(&conf->device_lock);
2130 wbi = dev->written;
2131 dev->written = NULL;
2132 while (wbi && wbi->bi_sector <
2133 dev->sector + STRIPE_SECTORS) {
2134 wbi2 = r5_next_bio(wbi, dev->sector);
2135 if (--wbi->bi_phys_segments == 0) {
2136 md_write_end(conf->mddev);
2137 wbi->bi_next = *return_bi;
2138 *return_bi = wbi;
2139 }
2140 wbi = wbi2;
2141 }
2142 if (dev->towrite == NULL)
2143 bitmap_end = 1;
2144 spin_unlock_irq(&conf->device_lock);
2145 if (bitmap_end)
2146 bitmap_endwrite(conf->mddev->bitmap,
2147 sh->sector,
2148 STRIPE_SECTORS,
2149 !test_bit(STRIPE_DEGRADED, &sh->state),
2150 0);
2151 }
2152 }
8b3e6cdc
DW
2153
2154 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2155 if (atomic_dec_and_test(&conf->pending_full_writes))
2156 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2157}
2158
2159static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2160 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2161{
2162 int rmw = 0, rcw = 0, i;
2163 for (i = disks; i--; ) {
2164 /* would I have to read this buffer for read_modify_write */
2165 struct r5dev *dev = &sh->dev[i];
2166 if ((dev->towrite || i == sh->pd_idx) &&
2167 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2168 !(test_bit(R5_UPTODATE, &dev->flags) ||
2169 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2170 if (test_bit(R5_Insync, &dev->flags))
2171 rmw++;
2172 else
2173 rmw += 2*disks; /* cannot read it */
2174 }
2175 /* Would I have to read this buffer for reconstruct_write */
2176 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2177 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2178 !(test_bit(R5_UPTODATE, &dev->flags) ||
2179 test_bit(R5_Wantcompute, &dev->flags))) {
2180 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2181 else
2182 rcw += 2*disks;
2183 }
2184 }
45b4233c 2185 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2186 (unsigned long long)sh->sector, rmw, rcw);
2187 set_bit(STRIPE_HANDLE, &sh->state);
2188 if (rmw < rcw && rmw > 0)
2189 /* prefer read-modify-write, but need to get some data */
2190 for (i = disks; i--; ) {
2191 struct r5dev *dev = &sh->dev[i];
2192 if ((dev->towrite || i == sh->pd_idx) &&
2193 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2194 !(test_bit(R5_UPTODATE, &dev->flags) ||
2195 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2196 test_bit(R5_Insync, &dev->flags)) {
2197 if (
2198 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2199 pr_debug("Read_old block "
a4456856
DW
2200 "%d for r-m-w\n", i);
2201 set_bit(R5_LOCKED, &dev->flags);
2202 set_bit(R5_Wantread, &dev->flags);
2203 s->locked++;
2204 } else {
2205 set_bit(STRIPE_DELAYED, &sh->state);
2206 set_bit(STRIPE_HANDLE, &sh->state);
2207 }
2208 }
2209 }
2210 if (rcw <= rmw && rcw > 0)
2211 /* want reconstruct write, but need to get some data */
2212 for (i = disks; i--; ) {
2213 struct r5dev *dev = &sh->dev[i];
2214 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2215 i != sh->pd_idx &&
2216 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2217 !(test_bit(R5_UPTODATE, &dev->flags) ||
2218 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2219 test_bit(R5_Insync, &dev->flags)) {
2220 if (
2221 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2222 pr_debug("Read_old block "
a4456856
DW
2223 "%d for Reconstruct\n", i);
2224 set_bit(R5_LOCKED, &dev->flags);
2225 set_bit(R5_Wantread, &dev->flags);
2226 s->locked++;
2227 } else {
2228 set_bit(STRIPE_DELAYED, &sh->state);
2229 set_bit(STRIPE_HANDLE, &sh->state);
2230 }
2231 }
2232 }
2233 /* now if nothing is locked, and if we have enough data,
2234 * we can start a write request
2235 */
f38e1219
DW
2236 /* since handle_stripe can be called at any time we need to handle the
2237 * case where a compute block operation has been submitted and then a
2238 * subsequent call wants to start a write request. raid5_run_ops only
2239 * handles the case where compute block and postxor are requested
2240 * simultaneously. If this is not the case then new writes need to be
2241 * held off until the compute completes.
2242 */
2243 if ((s->req_compute ||
2244 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2245 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2246 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
e33129d8 2247 s->locked += handle_write_operations5(sh, rcw == 0, 0);
a4456856
DW
2248}
2249
2250static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2251 struct stripe_head *sh, struct stripe_head_state *s,
2252 struct r6_state *r6s, int disks)
2253{
2254 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2255 int qd_idx = r6s->qd_idx;
2256 for (i = disks; i--; ) {
2257 struct r5dev *dev = &sh->dev[i];
2258 /* Would I have to read this buffer for reconstruct_write */
2259 if (!test_bit(R5_OVERWRITE, &dev->flags)
2260 && i != pd_idx && i != qd_idx
2261 && (!test_bit(R5_LOCKED, &dev->flags)
2262 ) &&
2263 !test_bit(R5_UPTODATE, &dev->flags)) {
2264 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2265 else {
45b4233c 2266 pr_debug("raid6: must_compute: "
a4456856
DW
2267 "disk %d flags=%#lx\n", i, dev->flags);
2268 must_compute++;
2269 }
2270 }
2271 }
45b4233c 2272 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2273 (unsigned long long)sh->sector, rcw, must_compute);
2274 set_bit(STRIPE_HANDLE, &sh->state);
2275
2276 if (rcw > 0)
2277 /* want reconstruct write, but need to get some data */
2278 for (i = disks; i--; ) {
2279 struct r5dev *dev = &sh->dev[i];
2280 if (!test_bit(R5_OVERWRITE, &dev->flags)
2281 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2282 && !test_bit(R5_LOCKED, &dev->flags) &&
2283 !test_bit(R5_UPTODATE, &dev->flags) &&
2284 test_bit(R5_Insync, &dev->flags)) {
2285 if (
2286 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2287 pr_debug("Read_old stripe %llu "
a4456856
DW
2288 "block %d for Reconstruct\n",
2289 (unsigned long long)sh->sector, i);
2290 set_bit(R5_LOCKED, &dev->flags);
2291 set_bit(R5_Wantread, &dev->flags);
2292 s->locked++;
2293 } else {
45b4233c 2294 pr_debug("Request delayed stripe %llu "
a4456856
DW
2295 "block %d for Reconstruct\n",
2296 (unsigned long long)sh->sector, i);
2297 set_bit(STRIPE_DELAYED, &sh->state);
2298 set_bit(STRIPE_HANDLE, &sh->state);
2299 }
2300 }
2301 }
2302 /* now if nothing is locked, and if we have enough data, we can start a
2303 * write request
2304 */
2305 if (s->locked == 0 && rcw == 0 &&
2306 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2307 if (must_compute > 0) {
2308 /* We have failed blocks and need to compute them */
2309 switch (s->failed) {
2310 case 0:
2311 BUG();
2312 case 1:
2313 compute_block_1(sh, r6s->failed_num[0], 0);
2314 break;
2315 case 2:
2316 compute_block_2(sh, r6s->failed_num[0],
2317 r6s->failed_num[1]);
2318 break;
2319 default: /* This request should have been failed? */
2320 BUG();
2321 }
2322 }
2323
45b4233c 2324 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2325 (unsigned long long)sh->sector);
2326 compute_parity6(sh, RECONSTRUCT_WRITE);
2327 /* now every locked buffer is ready to be written */
2328 for (i = disks; i--; )
2329 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2330 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2331 (unsigned long long)sh->sector, i);
2332 s->locked++;
2333 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2334 }
8b3e6cdc
DW
2335 if (s->locked == disks)
2336 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2337 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2338 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2339 set_bit(STRIPE_INSYNC, &sh->state);
2340
2341 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2342 atomic_dec(&conf->preread_active_stripes);
2343 if (atomic_read(&conf->preread_active_stripes) <
2344 IO_THRESHOLD)
2345 md_wakeup_thread(conf->mddev->thread);
2346 }
2347 }
2348}
2349
2350static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2351 struct stripe_head_state *s, int disks)
2352{
bd2ab670
DW
2353 int canceled_check = 0;
2354
a4456856 2355 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2356
bd2ab670
DW
2357 /* complete a check operation */
2358 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
c8894419
DW
2359 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2360 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
bd2ab670 2361 if (s->failed == 0) {
e89f8962
DW
2362 if (sh->ops.zero_sum_result == 0)
2363 /* parity is correct (on disc,
2364 * not in buffer any more)
2365 */
a4456856
DW
2366 set_bit(STRIPE_INSYNC, &sh->state);
2367 else {
e89f8962
DW
2368 conf->mddev->resync_mismatches +=
2369 STRIPE_SECTORS;
2370 if (test_bit(
2371 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2372 /* don't try to repair!! */
2373 set_bit(STRIPE_INSYNC, &sh->state);
2374 else {
2375 set_bit(STRIPE_OP_COMPUTE_BLK,
2376 &sh->ops.pending);
2377 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2378 &sh->ops.pending);
2379 set_bit(R5_Wantcompute,
2380 &sh->dev[sh->pd_idx].flags);
2381 sh->ops.target = sh->pd_idx;
2382 sh->ops.count++;
2383 s->uptodate++;
2384 }
a4456856 2385 }
bd2ab670
DW
2386 } else
2387 canceled_check = 1; /* STRIPE_INSYNC is not set */
a4456856 2388 }
e89f8962 2389
bd2ab670
DW
2390 /* start a new check operation if there are no failures, the stripe is
2391 * not insync, and a repair is not in flight
2392 */
2393 if (s->failed == 0 &&
2394 !test_bit(STRIPE_INSYNC, &sh->state) &&
2395 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2396 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2397 BUG_ON(s->uptodate != disks);
2398 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2399 sh->ops.count++;
2400 s->uptodate--;
2401 }
2402 }
2403
c8894419
DW
2404 /* check if we can clear a parity disk reconstruct */
2405 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2406 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2407
2408 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2409 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2410 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2411 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2412 }
2413
2414
e89f8962 2415 /* Wait for check parity and compute block operations to complete
bd2ab670
DW
2416 * before write-back. If a failure occurred while the check operation
2417 * was in flight we need to cycle this stripe through handle_stripe
2418 * since the parity block may not be uptodate
e89f8962 2419 */
bd2ab670
DW
2420 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2421 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2422 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
a4456856
DW
2423 struct r5dev *dev;
2424 /* either failed parity check, or recovery is happening */
2425 if (s->failed == 0)
2426 s->failed_num = sh->pd_idx;
2427 dev = &sh->dev[s->failed_num];
2428 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2429 BUG_ON(s->uptodate != disks);
2430
2431 set_bit(R5_LOCKED, &dev->flags);
2432 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2433
a4456856
DW
2434 clear_bit(STRIPE_DEGRADED, &sh->state);
2435 s->locked++;
2436 set_bit(STRIPE_INSYNC, &sh->state);
2437 }
2438}
2439
2440
2441static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2442 struct stripe_head_state *s,
2443 struct r6_state *r6s, struct page *tmp_page,
2444 int disks)
2445{
2446 int update_p = 0, update_q = 0;
2447 struct r5dev *dev;
2448 int pd_idx = sh->pd_idx;
2449 int qd_idx = r6s->qd_idx;
2450
2451 set_bit(STRIPE_HANDLE, &sh->state);
2452
2453 BUG_ON(s->failed > 2);
2454 BUG_ON(s->uptodate < disks);
2455 /* Want to check and possibly repair P and Q.
2456 * However there could be one 'failed' device, in which
2457 * case we can only check one of them, possibly using the
2458 * other to generate missing data
2459 */
2460
2461 /* If !tmp_page, we cannot do the calculations,
2462 * but as we have set STRIPE_HANDLE, we will soon be called
2463 * by stripe_handle with a tmp_page - just wait until then.
2464 */
2465 if (tmp_page) {
2466 if (s->failed == r6s->q_failed) {
2467 /* The only possible failed device holds 'Q', so it
2468 * makes sense to check P (If anything else were failed,
2469 * we would have used P to recreate it).
2470 */
2471 compute_block_1(sh, pd_idx, 1);
2472 if (!page_is_zero(sh->dev[pd_idx].page)) {
2473 compute_block_1(sh, pd_idx, 0);
2474 update_p = 1;
2475 }
2476 }
2477 if (!r6s->q_failed && s->failed < 2) {
2478 /* q is not failed, and we didn't use it to generate
2479 * anything, so it makes sense to check it
2480 */
2481 memcpy(page_address(tmp_page),
2482 page_address(sh->dev[qd_idx].page),
2483 STRIPE_SIZE);
2484 compute_parity6(sh, UPDATE_PARITY);
2485 if (memcmp(page_address(tmp_page),
2486 page_address(sh->dev[qd_idx].page),
2487 STRIPE_SIZE) != 0) {
2488 clear_bit(STRIPE_INSYNC, &sh->state);
2489 update_q = 1;
2490 }
2491 }
2492 if (update_p || update_q) {
2493 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2494 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2495 /* don't try to repair!! */
2496 update_p = update_q = 0;
2497 }
2498
2499 /* now write out any block on a failed drive,
2500 * or P or Q if they need it
2501 */
2502
2503 if (s->failed == 2) {
2504 dev = &sh->dev[r6s->failed_num[1]];
2505 s->locked++;
2506 set_bit(R5_LOCKED, &dev->flags);
2507 set_bit(R5_Wantwrite, &dev->flags);
2508 }
2509 if (s->failed >= 1) {
2510 dev = &sh->dev[r6s->failed_num[0]];
2511 s->locked++;
2512 set_bit(R5_LOCKED, &dev->flags);
2513 set_bit(R5_Wantwrite, &dev->flags);
2514 }
2515
2516 if (update_p) {
2517 dev = &sh->dev[pd_idx];
2518 s->locked++;
2519 set_bit(R5_LOCKED, &dev->flags);
2520 set_bit(R5_Wantwrite, &dev->flags);
2521 }
2522 if (update_q) {
2523 dev = &sh->dev[qd_idx];
2524 s->locked++;
2525 set_bit(R5_LOCKED, &dev->flags);
2526 set_bit(R5_Wantwrite, &dev->flags);
2527 }
2528 clear_bit(STRIPE_DEGRADED, &sh->state);
2529
2530 set_bit(STRIPE_INSYNC, &sh->state);
2531 }
2532}
2533
2534static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2535 struct r6_state *r6s)
2536{
2537 int i;
2538
2539 /* We have read all the blocks in this stripe and now we need to
2540 * copy some of them into a target stripe for expand.
2541 */
f0a50d37 2542 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2543 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2544 for (i = 0; i < sh->disks; i++)
a2e08551 2545 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
a4456856
DW
2546 int dd_idx, pd_idx, j;
2547 struct stripe_head *sh2;
2548
2549 sector_t bn = compute_blocknr(sh, i);
2550 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2551 conf->raid_disks -
2552 conf->max_degraded, &dd_idx,
2553 &pd_idx, conf);
2554 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2555 pd_idx, 1);
2556 if (sh2 == NULL)
2557 /* so far only the early blocks of this stripe
2558 * have been requested. When later blocks
2559 * get requested, we will try again
2560 */
2561 continue;
2562 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2563 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2564 /* must have already done this block */
2565 release_stripe(sh2);
2566 continue;
2567 }
f0a50d37
DW
2568
2569 /* place all the copies on one channel */
2570 tx = async_memcpy(sh2->dev[dd_idx].page,
2571 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2572 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2573
a4456856
DW
2574 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2575 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2576 for (j = 0; j < conf->raid_disks; j++)
2577 if (j != sh2->pd_idx &&
a2e08551
N
2578 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2579 sh2->disks)) &&
a4456856
DW
2580 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2581 break;
2582 if (j == conf->raid_disks) {
2583 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2584 set_bit(STRIPE_HANDLE, &sh2->state);
2585 }
2586 release_stripe(sh2);
f0a50d37 2587
a4456856 2588 }
a2e08551
N
2589 /* done submitting copies, wait for them to complete */
2590 if (tx) {
2591 async_tx_ack(tx);
2592 dma_wait_for_async_tx(tx);
2593 }
a4456856 2594}
1da177e4 2595
6bfe0b49 2596
1da177e4
LT
2597/*
2598 * handle_stripe - do things to a stripe.
2599 *
2600 * We lock the stripe and then examine the state of various bits
2601 * to see what needs to be done.
2602 * Possible results:
2603 * return some read request which now have data
2604 * return some write requests which are safely on disc
2605 * schedule a read on some buffers
2606 * schedule a write of some buffers
2607 * return confirmation of parity correctness
2608 *
1da177e4
LT
2609 * buffers are taken off read_list or write_list, and bh_cache buffers
2610 * get BH_Lock set before the stripe lock is released.
2611 *
2612 */
a4456856 2613
16a53ecc 2614static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2615{
2616 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2617 int disks = sh->disks, i;
2618 struct bio *return_bi = NULL;
2619 struct stripe_head_state s;
1da177e4 2620 struct r5dev *dev;
d84e0f10 2621 unsigned long pending = 0;
6bfe0b49 2622 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2623 int prexor;
1da177e4 2624
a4456856 2625 memset(&s, 0, sizeof(s));
d84e0f10
DW
2626 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2627 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2628 atomic_read(&sh->count), sh->pd_idx,
2629 sh->ops.pending, sh->ops.ack, sh->ops.complete);
1da177e4
LT
2630
2631 spin_lock(&sh->lock);
2632 clear_bit(STRIPE_HANDLE, &sh->state);
2633 clear_bit(STRIPE_DELAYED, &sh->state);
2634
a4456856
DW
2635 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2636 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2637 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
2638 /* Now to look around and see what can be done */
2639
def6ae26
NB
2640 /* clean-up completed biofill operations */
2641 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2642 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2643 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2644 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2645 }
2646
9910f16a 2647 rcu_read_lock();
1da177e4
LT
2648 for (i=disks; i--; ) {
2649 mdk_rdev_t *rdev;
a4456856 2650 struct r5dev *dev = &sh->dev[i];
1da177e4 2651 clear_bit(R5_Insync, &dev->flags);
1da177e4 2652
b5e98d65
DW
2653 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2654 "written %p\n", i, dev->flags, dev->toread, dev->read,
2655 dev->towrite, dev->written);
2656
2657 /* maybe we can request a biofill operation
2658 *
2659 * new wantfill requests are only permitted while
2660 * STRIPE_OP_BIOFILL is clear
2661 */
2662 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2663 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2664 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2665
2666 /* now count some things */
a4456856
DW
2667 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2668 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2669 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2670
b5e98d65
DW
2671 if (test_bit(R5_Wantfill, &dev->flags))
2672 s.to_fill++;
2673 else if (dev->toread)
a4456856 2674 s.to_read++;
1da177e4 2675 if (dev->towrite) {
a4456856 2676 s.to_write++;
1da177e4 2677 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2678 s.non_overwrite++;
1da177e4 2679 }
a4456856
DW
2680 if (dev->written)
2681 s.written++;
9910f16a 2682 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
2683 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2684 blocked_rdev = rdev;
2685 atomic_inc(&rdev->nr_pending);
2686 break;
2687 }
b2d444d7 2688 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2689 /* The ReadError flag will just be confusing now */
4e5314b5
N
2690 clear_bit(R5_ReadError, &dev->flags);
2691 clear_bit(R5_ReWrite, &dev->flags);
2692 }
b2d444d7 2693 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2694 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2695 s.failed++;
2696 s.failed_num = i;
1da177e4
LT
2697 } else
2698 set_bit(R5_Insync, &dev->flags);
2699 }
9910f16a 2700 rcu_read_unlock();
b5e98d65 2701
6bfe0b49
DW
2702 if (unlikely(blocked_rdev)) {
2703 set_bit(STRIPE_HANDLE, &sh->state);
2704 goto unlock;
2705 }
2706
b5e98d65
DW
2707 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2708 sh->ops.count++;
2709
45b4233c 2710 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2711 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2712 s.locked, s.uptodate, s.to_read, s.to_write,
2713 s.failed, s.failed_num);
1da177e4
LT
2714 /* check if the array has lost two devices and, if so, some requests might
2715 * need to be failed
2716 */
a4456856
DW
2717 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2718 handle_requests_to_failed_array(conf, sh, &s, disks,
2719 &return_bi);
2720 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2721 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2722 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2723 s.syncing = 0;
1da177e4
LT
2724 }
2725
2726 /* might be able to return some write requests if the parity block
2727 * is safe, or on a failed drive
2728 */
2729 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2730 if ( s.written &&
2731 ((test_bit(R5_Insync, &dev->flags) &&
2732 !test_bit(R5_LOCKED, &dev->flags) &&
2733 test_bit(R5_UPTODATE, &dev->flags)) ||
2734 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2735 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2736
2737 /* Now we might consider reading some blocks, either to check/generate
2738 * parity, or to satisfy requests
2739 * or to load a block that is being partially written.
2740 */
a4456856 2741 if (s.to_read || s.non_overwrite ||
f38e1219
DW
2742 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2743 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2744 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4 2745
e33129d8
DW
2746 /* Now we check to see if any write operations have recently
2747 * completed
2748 */
2749
2750 /* leave prexor set until postxor is done, allows us to distinguish
2751 * a rmw from a rcw during biodrain
2752 */
e0a115e5 2753 prexor = 0;
e33129d8
DW
2754 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2755 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2756
e0a115e5 2757 prexor = 1;
e33129d8
DW
2758 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2759 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2760 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2761
2762 for (i = disks; i--; )
2763 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2764 }
2765
2766 /* if only POSTXOR is set then this is an 'expand' postxor */
2767 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2768 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2769
2770 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2771 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2772 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2773
2774 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2775 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2776 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2777
2778 /* All the 'written' buffers and the parity block are ready to
2779 * be written back to disk
2780 */
2781 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2782 for (i = disks; i--; ) {
2783 dev = &sh->dev[i];
2784 if (test_bit(R5_LOCKED, &dev->flags) &&
2785 (i == sh->pd_idx || dev->written)) {
2786 pr_debug("Writing block %d\n", i);
2787 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2788 if (prexor)
2789 continue;
e33129d8
DW
2790 if (!test_bit(R5_Insync, &dev->flags) ||
2791 (i == sh->pd_idx && s.failed == 0))
2792 set_bit(STRIPE_INSYNC, &sh->state);
2793 }
2794 }
2795 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2796 atomic_dec(&conf->preread_active_stripes);
2797 if (atomic_read(&conf->preread_active_stripes) <
2798 IO_THRESHOLD)
2799 md_wakeup_thread(conf->mddev->thread);
2800 }
2801 }
2802
2803 /* Now to consider new write requests and what else, if anything
2804 * should be read. We do not handle new writes when:
2805 * 1/ A 'write' operation (copy+xor) is already in flight.
2806 * 2/ A 'check' operation is in flight, as it may clobber the parity
2807 * block.
2808 */
2809 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2810 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
a4456856 2811 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2812
2813 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2814 * Any reads will already have been scheduled, so we just see if enough
2815 * data is available. The parity check is held off while parity
2816 * dependent operations are in flight.
1da177e4 2817 */
e89f8962
DW
2818 if ((s.syncing && s.locked == 0 &&
2819 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2820 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2821 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2822 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
a4456856 2823 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2824
a4456856 2825 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2826 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2827 clear_bit(STRIPE_SYNCING, &sh->state);
2828 }
4e5314b5
N
2829
2830 /* If the failed drive is just a ReadError, then we might need to progress
2831 * the repair/check process
2832 */
a4456856
DW
2833 if (s.failed == 1 && !conf->mddev->ro &&
2834 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2835 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2836 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2837 ) {
a4456856 2838 dev = &sh->dev[s.failed_num];
4e5314b5
N
2839 if (!test_bit(R5_ReWrite, &dev->flags)) {
2840 set_bit(R5_Wantwrite, &dev->flags);
2841 set_bit(R5_ReWrite, &dev->flags);
2842 set_bit(R5_LOCKED, &dev->flags);
a4456856 2843 s.locked++;
4e5314b5
N
2844 } else {
2845 /* let's read it back */
2846 set_bit(R5_Wantread, &dev->flags);
2847 set_bit(R5_LOCKED, &dev->flags);
a4456856 2848 s.locked++;
4e5314b5
N
2849 }
2850 }
2851
f0a50d37
DW
2852 /* Finish postxor operations initiated by the expansion
2853 * process
2854 */
2855 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2856 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2857
2858 clear_bit(STRIPE_EXPANDING, &sh->state);
2859
2860 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2861 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2862 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2863
2b7497f0 2864 for (i = conf->raid_disks; i--; )
ccfcc3c1 2865 set_bit(R5_Wantwrite, &sh->dev[i].flags);
efe31143
NB
2866 set_bit(R5_LOCKED, &dev->flags);
2867 s.locked++;
f0a50d37
DW
2868 }
2869
2870 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2871 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2872 /* Need to write out all blocks after computing parity */
2873 sh->disks = conf->raid_disks;
2874 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2875 conf->raid_disks);
a2e08551 2876 s.locked += handle_write_operations5(sh, 1, 1);
f0a50d37 2877 } else if (s.expanded &&
efe31143 2878 s.locked == 0 &&
f0a50d37 2879 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
ccfcc3c1 2880 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2881 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2882 wake_up(&conf->wait_for_overlap);
2883 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2884 }
2885
0f94e87c
DW
2886 if (s.expanding && s.locked == 0 &&
2887 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2888 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2889
d84e0f10
DW
2890 if (sh->ops.count)
2891 pending = get_stripe_work(sh);
2892
6bfe0b49 2893 unlock:
1da177e4
LT
2894 spin_unlock(&sh->lock);
2895
6bfe0b49
DW
2896 /* wait for this device to become unblocked */
2897 if (unlikely(blocked_rdev))
2898 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2899
d84e0f10
DW
2900 if (pending)
2901 raid5_run_ops(sh, pending);
2902
c4e5ac0a 2903 ops_run_io(sh, &s);
2b7497f0 2904
a4456856 2905 return_io(return_bi);
1da177e4
LT
2906}
2907
16a53ecc 2908static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2909{
16a53ecc 2910 raid6_conf_t *conf = sh->raid_conf;
f416885e 2911 int disks = sh->disks;
a4456856
DW
2912 struct bio *return_bi = NULL;
2913 int i, pd_idx = sh->pd_idx;
2914 struct stripe_head_state s;
2915 struct r6_state r6s;
16a53ecc 2916 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 2917 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 2918
a4456856 2919 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
45b4233c 2920 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2921 "pd_idx=%d, qd_idx=%d\n",
2922 (unsigned long long)sh->sector, sh->state,
2923 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2924 memset(&s, 0, sizeof(s));
72626685 2925
16a53ecc
N
2926 spin_lock(&sh->lock);
2927 clear_bit(STRIPE_HANDLE, &sh->state);
2928 clear_bit(STRIPE_DELAYED, &sh->state);
2929
a4456856
DW
2930 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2931 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2932 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2933 /* Now to look around and see what can be done */
1da177e4
LT
2934
2935 rcu_read_lock();
16a53ecc
N
2936 for (i=disks; i--; ) {
2937 mdk_rdev_t *rdev;
2938 dev = &sh->dev[i];
2939 clear_bit(R5_Insync, &dev->flags);
1da177e4 2940
45b4233c 2941 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
2942 i, dev->flags, dev->toread, dev->towrite, dev->written);
2943 /* maybe we can reply to a read */
2944 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2945 struct bio *rbi, *rbi2;
45b4233c 2946 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
2947 spin_lock_irq(&conf->device_lock);
2948 rbi = dev->toread;
2949 dev->toread = NULL;
2950 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2951 wake_up(&conf->wait_for_overlap);
2952 spin_unlock_irq(&conf->device_lock);
2953 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2954 copy_data(0, rbi, dev->page, dev->sector);
2955 rbi2 = r5_next_bio(rbi, dev->sector);
2956 spin_lock_irq(&conf->device_lock);
2957 if (--rbi->bi_phys_segments == 0) {
2958 rbi->bi_next = return_bi;
2959 return_bi = rbi;
2960 }
2961 spin_unlock_irq(&conf->device_lock);
2962 rbi = rbi2;
2963 }
2964 }
1da177e4 2965
16a53ecc 2966 /* now count some things */
a4456856
DW
2967 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2968 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2969
16a53ecc 2970
a4456856
DW
2971 if (dev->toread)
2972 s.to_read++;
16a53ecc 2973 if (dev->towrite) {
a4456856 2974 s.to_write++;
16a53ecc 2975 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2976 s.non_overwrite++;
16a53ecc 2977 }
a4456856
DW
2978 if (dev->written)
2979 s.written++;
16a53ecc 2980 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
2981 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2982 blocked_rdev = rdev;
2983 atomic_inc(&rdev->nr_pending);
2984 break;
2985 }
16a53ecc
N
2986 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2987 /* The ReadError flag will just be confusing now */
2988 clear_bit(R5_ReadError, &dev->flags);
2989 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2990 }
16a53ecc
N
2991 if (!rdev || !test_bit(In_sync, &rdev->flags)
2992 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2993 if (s.failed < 2)
2994 r6s.failed_num[s.failed] = i;
2995 s.failed++;
16a53ecc
N
2996 } else
2997 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2998 }
2999 rcu_read_unlock();
6bfe0b49
DW
3000
3001 if (unlikely(blocked_rdev)) {
3002 set_bit(STRIPE_HANDLE, &sh->state);
3003 goto unlock;
3004 }
45b4233c 3005 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3006 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3007 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3008 r6s.failed_num[0], r6s.failed_num[1]);
3009 /* check if the array has lost >2 devices and, if so, some requests
3010 * might need to be failed
16a53ecc 3011 */
a4456856
DW
3012 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3013 handle_requests_to_failed_array(conf, sh, &s, disks,
3014 &return_bi);
3015 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3016 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3017 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3018 s.syncing = 0;
16a53ecc
N
3019 }
3020
3021 /*
3022 * might be able to return some write requests if the parity blocks
3023 * are safe, or on a failed drive
3024 */
3025 pdev = &sh->dev[pd_idx];
a4456856
DW
3026 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3027 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3028 qdev = &sh->dev[r6s.qd_idx];
3029 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3030 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3031
3032 if ( s.written &&
3033 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3034 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3035 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3036 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3037 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
3038 && test_bit(R5_UPTODATE, &qdev->flags)))))
3039 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
3040
3041 /* Now we might consider reading some blocks, either to check/generate
3042 * parity, or to satisfy requests
3043 * or to load a block that is being partially written.
3044 */
a4456856
DW
3045 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3046 (s.syncing && (s.uptodate < disks)) || s.expanding)
3047 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
3048
3049 /* now to consider writing and what else, if anything should be read */
a4456856
DW
3050 if (s.to_write)
3051 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3052
3053 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3054 * Any reads will already have been scheduled, so we just see if enough
3055 * data is available
16a53ecc 3056 */
a4456856
DW
3057 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3058 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3059
a4456856 3060 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3061 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3062 clear_bit(STRIPE_SYNCING, &sh->state);
3063 }
3064
3065 /* If the failed drives are just a ReadError, then we might need
3066 * to progress the repair/check process
3067 */
a4456856
DW
3068 if (s.failed <= 2 && !conf->mddev->ro)
3069 for (i = 0; i < s.failed; i++) {
3070 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3071 if (test_bit(R5_ReadError, &dev->flags)
3072 && !test_bit(R5_LOCKED, &dev->flags)
3073 && test_bit(R5_UPTODATE, &dev->flags)
3074 ) {
3075 if (!test_bit(R5_ReWrite, &dev->flags)) {
3076 set_bit(R5_Wantwrite, &dev->flags);
3077 set_bit(R5_ReWrite, &dev->flags);
3078 set_bit(R5_LOCKED, &dev->flags);
3079 } else {
3080 /* let's read it back */
3081 set_bit(R5_Wantread, &dev->flags);
3082 set_bit(R5_LOCKED, &dev->flags);
3083 }
3084 }
3085 }
f416885e 3086
a4456856 3087 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3088 /* Need to write out all blocks after computing P&Q */
3089 sh->disks = conf->raid_disks;
3090 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3091 conf->raid_disks);
3092 compute_parity6(sh, RECONSTRUCT_WRITE);
3093 for (i = conf->raid_disks ; i-- ; ) {
3094 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3095 s.locked++;
f416885e
N
3096 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3097 }
3098 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3099 } else if (s.expanded) {
f416885e
N
3100 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3101 atomic_dec(&conf->reshape_stripes);
3102 wake_up(&conf->wait_for_overlap);
3103 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3104 }
3105
0f94e87c
DW
3106 if (s.expanding && s.locked == 0 &&
3107 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 3108 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3109
6bfe0b49 3110 unlock:
16a53ecc
N
3111 spin_unlock(&sh->lock);
3112
6bfe0b49
DW
3113 /* wait for this device to become unblocked */
3114 if (unlikely(blocked_rdev))
3115 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3116
f0e43bcd 3117 ops_run_io(sh, &s);
16a53ecc 3118
f0e43bcd 3119 return_io(return_bi);
16a53ecc
N
3120}
3121
3122static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3123{
3124 if (sh->raid_conf->level == 6)
3125 handle_stripe6(sh, tmp_page);
3126 else
3127 handle_stripe5(sh);
3128}
3129
3130
3131
3132static void raid5_activate_delayed(raid5_conf_t *conf)
3133{
3134 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3135 while (!list_empty(&conf->delayed_list)) {
3136 struct list_head *l = conf->delayed_list.next;
3137 struct stripe_head *sh;
3138 sh = list_entry(l, struct stripe_head, lru);
3139 list_del_init(l);
3140 clear_bit(STRIPE_DELAYED, &sh->state);
3141 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3142 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3143 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3144 }
6ed3003c
N
3145 } else
3146 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3147}
3148
3149static void activate_bit_delay(raid5_conf_t *conf)
3150{
3151 /* device_lock is held */
3152 struct list_head head;
3153 list_add(&head, &conf->bitmap_list);
3154 list_del_init(&conf->bitmap_list);
3155 while (!list_empty(&head)) {
3156 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3157 list_del_init(&sh->lru);
3158 atomic_inc(&sh->count);
3159 __release_stripe(conf, sh);
3160 }
3161}
3162
3163static void unplug_slaves(mddev_t *mddev)
3164{
3165 raid5_conf_t *conf = mddev_to_conf(mddev);
3166 int i;
3167
3168 rcu_read_lock();
3169 for (i=0; i<mddev->raid_disks; i++) {
3170 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3171 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3172 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3173
3174 atomic_inc(&rdev->nr_pending);
3175 rcu_read_unlock();
3176
2ad8b1ef 3177 blk_unplug(r_queue);
16a53ecc
N
3178
3179 rdev_dec_pending(rdev, mddev);
3180 rcu_read_lock();
3181 }
3182 }
3183 rcu_read_unlock();
3184}
3185
165125e1 3186static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3187{
3188 mddev_t *mddev = q->queuedata;
3189 raid5_conf_t *conf = mddev_to_conf(mddev);
3190 unsigned long flags;
3191
3192 spin_lock_irqsave(&conf->device_lock, flags);
3193
3194 if (blk_remove_plug(q)) {
3195 conf->seq_flush++;
3196 raid5_activate_delayed(conf);
72626685 3197 }
1da177e4
LT
3198 md_wakeup_thread(mddev->thread);
3199
3200 spin_unlock_irqrestore(&conf->device_lock, flags);
3201
3202 unplug_slaves(mddev);
3203}
3204
f022b2fd
N
3205static int raid5_congested(void *data, int bits)
3206{
3207 mddev_t *mddev = data;
3208 raid5_conf_t *conf = mddev_to_conf(mddev);
3209
3210 /* No difference between reads and writes. Just check
3211 * how busy the stripe_cache is
3212 */
3213 if (conf->inactive_blocked)
3214 return 1;
3215 if (conf->quiesce)
3216 return 1;
3217 if (list_empty_careful(&conf->inactive_list))
3218 return 1;
3219
3220 return 0;
3221}
3222
23032a0e
RBJ
3223/* We want read requests to align with chunks where possible,
3224 * but write requests don't need to.
3225 */
165125e1 3226static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
23032a0e
RBJ
3227{
3228 mddev_t *mddev = q->queuedata;
3229 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3230 int max;
3231 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3232 unsigned int bio_sectors = bio->bi_size >> 9;
3233
802ba064 3234 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
3235 return biovec->bv_len; /* always allow writes to be mergeable */
3236
3237 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3238 if (max < 0) max = 0;
3239 if (max <= biovec->bv_len && bio_sectors == 0)
3240 return biovec->bv_len;
3241 else
3242 return max;
3243}
3244
f679623f
RBJ
3245
3246static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3247{
3248 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3249 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3250 unsigned int bio_sectors = bio->bi_size >> 9;
3251
3252 return chunk_sectors >=
3253 ((sector & (chunk_sectors - 1)) + bio_sectors);
3254}
3255
46031f9a
RBJ
3256/*
3257 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3258 * later sampled by raid5d.
3259 */
3260static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3261{
3262 unsigned long flags;
3263
3264 spin_lock_irqsave(&conf->device_lock, flags);
3265
3266 bi->bi_next = conf->retry_read_aligned_list;
3267 conf->retry_read_aligned_list = bi;
3268
3269 spin_unlock_irqrestore(&conf->device_lock, flags);
3270 md_wakeup_thread(conf->mddev->thread);
3271}
3272
3273
3274static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3275{
3276 struct bio *bi;
3277
3278 bi = conf->retry_read_aligned;
3279 if (bi) {
3280 conf->retry_read_aligned = NULL;
3281 return bi;
3282 }
3283 bi = conf->retry_read_aligned_list;
3284 if(bi) {
387bb173 3285 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
3286 bi->bi_next = NULL;
3287 bi->bi_phys_segments = 1; /* biased count of active stripes */
3288 bi->bi_hw_segments = 0; /* count of processed stripes */
3289 }
3290
3291 return bi;
3292}
3293
3294
f679623f
RBJ
3295/*
3296 * The "raid5_align_endio" should check if the read succeeded and if it
3297 * did, call bio_endio on the original bio (having bio_put the new bio
3298 * first).
3299 * If the read failed..
3300 */
6712ecf8 3301static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3302{
3303 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3304 mddev_t *mddev;
3305 raid5_conf_t *conf;
3306 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3307 mdk_rdev_t *rdev;
3308
f679623f 3309 bio_put(bi);
46031f9a
RBJ
3310
3311 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3312 conf = mddev_to_conf(mddev);
3313 rdev = (void*)raid_bi->bi_next;
3314 raid_bi->bi_next = NULL;
3315
3316 rdev_dec_pending(rdev, conf->mddev);
3317
3318 if (!error && uptodate) {
6712ecf8 3319 bio_endio(raid_bi, 0);
46031f9a
RBJ
3320 if (atomic_dec_and_test(&conf->active_aligned_reads))
3321 wake_up(&conf->wait_for_stripe);
6712ecf8 3322 return;
46031f9a
RBJ
3323 }
3324
3325
45b4233c 3326 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3327
3328 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3329}
3330
387bb173
NB
3331static int bio_fits_rdev(struct bio *bi)
3332{
165125e1 3333 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3334
3335 if ((bi->bi_size>>9) > q->max_sectors)
3336 return 0;
3337 blk_recount_segments(q, bi);
3338 if (bi->bi_phys_segments > q->max_phys_segments ||
3339 bi->bi_hw_segments > q->max_hw_segments)
3340 return 0;
3341
3342 if (q->merge_bvec_fn)
3343 /* it's too hard to apply the merge_bvec_fn at this stage,
3344 * just just give up
3345 */
3346 return 0;
3347
3348 return 1;
3349}
3350
3351
165125e1 3352static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3353{
3354 mddev_t *mddev = q->queuedata;
3355 raid5_conf_t *conf = mddev_to_conf(mddev);
3356 const unsigned int raid_disks = conf->raid_disks;
46031f9a 3357 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
3358 unsigned int dd_idx, pd_idx;
3359 struct bio* align_bi;
3360 mdk_rdev_t *rdev;
3361
3362 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3363 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3364 return 0;
3365 }
3366 /*
3367 * use bio_clone to make a copy of the bio
3368 */
3369 align_bi = bio_clone(raid_bio, GFP_NOIO);
3370 if (!align_bi)
3371 return 0;
3372 /*
3373 * set bi_end_io to a new function, and set bi_private to the
3374 * original bio.
3375 */
3376 align_bi->bi_end_io = raid5_align_endio;
3377 align_bi->bi_private = raid_bio;
3378 /*
3379 * compute position
3380 */
3381 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3382 raid_disks,
3383 data_disks,
3384 &dd_idx,
3385 &pd_idx,
3386 conf);
3387
3388 rcu_read_lock();
3389 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3390 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3391 atomic_inc(&rdev->nr_pending);
3392 rcu_read_unlock();
46031f9a
RBJ
3393 raid_bio->bi_next = (void*)rdev;
3394 align_bi->bi_bdev = rdev->bdev;
3395 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3396 align_bi->bi_sector += rdev->data_offset;
3397
387bb173
NB
3398 if (!bio_fits_rdev(align_bi)) {
3399 /* too big in some way */
3400 bio_put(align_bi);
3401 rdev_dec_pending(rdev, mddev);
3402 return 0;
3403 }
3404
46031f9a
RBJ
3405 spin_lock_irq(&conf->device_lock);
3406 wait_event_lock_irq(conf->wait_for_stripe,
3407 conf->quiesce == 0,
3408 conf->device_lock, /* nothing */);
3409 atomic_inc(&conf->active_aligned_reads);
3410 spin_unlock_irq(&conf->device_lock);
3411
f679623f
RBJ
3412 generic_make_request(align_bi);
3413 return 1;
3414 } else {
3415 rcu_read_unlock();
46031f9a 3416 bio_put(align_bi);
f679623f
RBJ
3417 return 0;
3418 }
3419}
3420
8b3e6cdc
DW
3421/* __get_priority_stripe - get the next stripe to process
3422 *
3423 * Full stripe writes are allowed to pass preread active stripes up until
3424 * the bypass_threshold is exceeded. In general the bypass_count
3425 * increments when the handle_list is handled before the hold_list; however, it
3426 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3427 * stripe with in flight i/o. The bypass_count will be reset when the
3428 * head of the hold_list has changed, i.e. the head was promoted to the
3429 * handle_list.
3430 */
3431static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3432{
3433 struct stripe_head *sh;
3434
3435 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3436 __func__,
3437 list_empty(&conf->handle_list) ? "empty" : "busy",
3438 list_empty(&conf->hold_list) ? "empty" : "busy",
3439 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3440
3441 if (!list_empty(&conf->handle_list)) {
3442 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3443
3444 if (list_empty(&conf->hold_list))
3445 conf->bypass_count = 0;
3446 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3447 if (conf->hold_list.next == conf->last_hold)
3448 conf->bypass_count++;
3449 else {
3450 conf->last_hold = conf->hold_list.next;
3451 conf->bypass_count -= conf->bypass_threshold;
3452 if (conf->bypass_count < 0)
3453 conf->bypass_count = 0;
3454 }
3455 }
3456 } else if (!list_empty(&conf->hold_list) &&
3457 ((conf->bypass_threshold &&
3458 conf->bypass_count > conf->bypass_threshold) ||
3459 atomic_read(&conf->pending_full_writes) == 0)) {
3460 sh = list_entry(conf->hold_list.next,
3461 typeof(*sh), lru);
3462 conf->bypass_count -= conf->bypass_threshold;
3463 if (conf->bypass_count < 0)
3464 conf->bypass_count = 0;
3465 } else
3466 return NULL;
3467
3468 list_del_init(&sh->lru);
3469 atomic_inc(&sh->count);
3470 BUG_ON(atomic_read(&sh->count) != 1);
3471 return sh;
3472}
f679623f 3473
165125e1 3474static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3475{
3476 mddev_t *mddev = q->queuedata;
3477 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
3478 unsigned int dd_idx, pd_idx;
3479 sector_t new_sector;
3480 sector_t logical_sector, last_sector;
3481 struct stripe_head *sh;
a362357b 3482 const int rw = bio_data_dir(bi);
f6344757 3483 int remaining;
1da177e4 3484
e5dcdd80 3485 if (unlikely(bio_barrier(bi))) {
6712ecf8 3486 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3487 return 0;
3488 }
3489
3d310eb7 3490 md_write_start(mddev, bi);
06d91a5f 3491
a362357b
JA
3492 disk_stat_inc(mddev->gendisk, ios[rw]);
3493 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 3494
802ba064 3495 if (rw == READ &&
52488615
RBJ
3496 mddev->reshape_position == MaxSector &&
3497 chunk_aligned_read(q,bi))
3498 return 0;
3499
1da177e4
LT
3500 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3501 last_sector = bi->bi_sector + (bi->bi_size>>9);
3502 bi->bi_next = NULL;
3503 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3504
1da177e4
LT
3505 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3506 DEFINE_WAIT(w);
16a53ecc 3507 int disks, data_disks;
b578d55f 3508
7ecaa1e6 3509 retry:
b578d55f 3510 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3511 if (likely(conf->expand_progress == MaxSector))
3512 disks = conf->raid_disks;
3513 else {
df8e7f76
N
3514 /* spinlock is needed as expand_progress may be
3515 * 64bit on a 32bit platform, and so it might be
3516 * possible to see a half-updated value
3517 * Ofcourse expand_progress could change after
3518 * the lock is dropped, so once we get a reference
3519 * to the stripe that we think it is, we will have
3520 * to check again.
3521 */
7ecaa1e6
N
3522 spin_lock_irq(&conf->device_lock);
3523 disks = conf->raid_disks;
3524 if (logical_sector >= conf->expand_progress)
3525 disks = conf->previous_raid_disks;
b578d55f
N
3526 else {
3527 if (logical_sector >= conf->expand_lo) {
3528 spin_unlock_irq(&conf->device_lock);
3529 schedule();
3530 goto retry;
3531 }
3532 }
7ecaa1e6
N
3533 spin_unlock_irq(&conf->device_lock);
3534 }
16a53ecc
N
3535 data_disks = disks - conf->max_degraded;
3536
3537 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 3538 &dd_idx, &pd_idx, conf);
45b4233c 3539 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3540 (unsigned long long)new_sector,
3541 (unsigned long long)logical_sector);
3542
7ecaa1e6 3543 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 3544 if (sh) {
7ecaa1e6
N
3545 if (unlikely(conf->expand_progress != MaxSector)) {
3546 /* expansion might have moved on while waiting for a
df8e7f76
N
3547 * stripe, so we must do the range check again.
3548 * Expansion could still move past after this
3549 * test, but as we are holding a reference to
3550 * 'sh', we know that if that happens,
3551 * STRIPE_EXPANDING will get set and the expansion
3552 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3553 */
3554 int must_retry = 0;
3555 spin_lock_irq(&conf->device_lock);
3556 if (logical_sector < conf->expand_progress &&
3557 disks == conf->previous_raid_disks)
3558 /* mismatch, need to try again */
3559 must_retry = 1;
3560 spin_unlock_irq(&conf->device_lock);
3561 if (must_retry) {
3562 release_stripe(sh);
3563 goto retry;
3564 }
3565 }
e464eafd
N
3566 /* FIXME what if we get a false positive because these
3567 * are being updated.
3568 */
3569 if (logical_sector >= mddev->suspend_lo &&
3570 logical_sector < mddev->suspend_hi) {
3571 release_stripe(sh);
3572 schedule();
3573 goto retry;
3574 }
7ecaa1e6
N
3575
3576 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3577 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3578 /* Stripe is busy expanding or
3579 * add failed due to overlap. Flush everything
1da177e4
LT
3580 * and wait a while
3581 */
3582 raid5_unplug_device(mddev->queue);
3583 release_stripe(sh);
3584 schedule();
3585 goto retry;
3586 }
3587 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3588 set_bit(STRIPE_HANDLE, &sh->state);
3589 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3590 release_stripe(sh);
1da177e4
LT
3591 } else {
3592 /* cannot get stripe for read-ahead, just give-up */
3593 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3594 finish_wait(&conf->wait_for_overlap, &w);
3595 break;
3596 }
3597
3598 }
3599 spin_lock_irq(&conf->device_lock);
f6344757
N
3600 remaining = --bi->bi_phys_segments;
3601 spin_unlock_irq(&conf->device_lock);
3602 if (remaining == 0) {
1da177e4 3603
16a53ecc 3604 if ( rw == WRITE )
1da177e4 3605 md_write_end(mddev);
6712ecf8 3606
0e13fe23 3607 bio_endio(bi, 0);
1da177e4 3608 }
1da177e4
LT
3609 return 0;
3610}
3611
52c03291 3612static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3613{
52c03291
N
3614 /* reshaping is quite different to recovery/resync so it is
3615 * handled quite separately ... here.
3616 *
3617 * On each call to sync_request, we gather one chunk worth of
3618 * destination stripes and flag them as expanding.
3619 * Then we find all the source stripes and request reads.
3620 * As the reads complete, handle_stripe will copy the data
3621 * into the destination stripe and release that stripe.
3622 */
1da177e4
LT
3623 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3624 struct stripe_head *sh;
ccfcc3c1
N
3625 int pd_idx;
3626 sector_t first_sector, last_sector;
f416885e
N
3627 int raid_disks = conf->previous_raid_disks;
3628 int data_disks = raid_disks - conf->max_degraded;
3629 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3630 int i;
3631 int dd_idx;
3632 sector_t writepos, safepos, gap;
3633
3634 if (sector_nr == 0 &&
3635 conf->expand_progress != 0) {
3636 /* restarting in the middle, skip the initial sectors */
3637 sector_nr = conf->expand_progress;
f416885e 3638 sector_div(sector_nr, new_data_disks);
52c03291
N
3639 *skipped = 1;
3640 return sector_nr;
3641 }
3642
3643 /* we update the metadata when there is more than 3Meg
3644 * in the block range (that is rather arbitrary, should
3645 * probably be time based) or when the data about to be
3646 * copied would over-write the source of the data at
3647 * the front of the range.
3648 * i.e. one new_stripe forward from expand_progress new_maps
3649 * to after where expand_lo old_maps to
3650 */
3651 writepos = conf->expand_progress +
f416885e
N
3652 conf->chunk_size/512*(new_data_disks);
3653 sector_div(writepos, new_data_disks);
52c03291 3654 safepos = conf->expand_lo;
f416885e 3655 sector_div(safepos, data_disks);
52c03291
N
3656 gap = conf->expand_progress - conf->expand_lo;
3657
3658 if (writepos >= safepos ||
f416885e 3659 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3660 /* Cannot proceed until we've updated the superblock... */
3661 wait_event(conf->wait_for_overlap,
3662 atomic_read(&conf->reshape_stripes)==0);
3663 mddev->reshape_position = conf->expand_progress;
850b2b42 3664 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3665 md_wakeup_thread(mddev->thread);
850b2b42 3666 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3667 kthread_should_stop());
3668 spin_lock_irq(&conf->device_lock);
3669 conf->expand_lo = mddev->reshape_position;
3670 spin_unlock_irq(&conf->device_lock);
3671 wake_up(&conf->wait_for_overlap);
3672 }
3673
3674 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3675 int j;
3676 int skipped = 0;
3677 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3678 sh = get_active_stripe(conf, sector_nr+i,
3679 conf->raid_disks, pd_idx, 0);
3680 set_bit(STRIPE_EXPANDING, &sh->state);
3681 atomic_inc(&conf->reshape_stripes);
3682 /* If any of this stripe is beyond the end of the old
3683 * array, then we need to zero those blocks
3684 */
3685 for (j=sh->disks; j--;) {
3686 sector_t s;
3687 if (j == sh->pd_idx)
3688 continue;
f416885e
N
3689 if (conf->level == 6 &&
3690 j == raid6_next_disk(sh->pd_idx, sh->disks))
3691 continue;
52c03291
N
3692 s = compute_blocknr(sh, j);
3693 if (s < (mddev->array_size<<1)) {
3694 skipped = 1;
3695 continue;
3696 }
3697 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3698 set_bit(R5_Expanded, &sh->dev[j].flags);
3699 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3700 }
3701 if (!skipped) {
3702 set_bit(STRIPE_EXPAND_READY, &sh->state);
3703 set_bit(STRIPE_HANDLE, &sh->state);
3704 }
3705 release_stripe(sh);
3706 }
3707 spin_lock_irq(&conf->device_lock);
6d3baf2e 3708 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3709 spin_unlock_irq(&conf->device_lock);
3710 /* Ok, those stripe are ready. We can start scheduling
3711 * reads on the source stripes.
3712 * The source stripes are determined by mapping the first and last
3713 * block on the destination stripes.
3714 */
52c03291 3715 first_sector =
f416885e 3716 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3717 raid_disks, data_disks,
3718 &dd_idx, &pd_idx, conf);
3719 last_sector =
3720 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3721 *(new_data_disks) -1,
52c03291
N
3722 raid_disks, data_disks,
3723 &dd_idx, &pd_idx, conf);
3724 if (last_sector >= (mddev->size<<1))
3725 last_sector = (mddev->size<<1)-1;
3726 while (first_sector <= last_sector) {
f416885e
N
3727 pd_idx = stripe_to_pdidx(first_sector, conf,
3728 conf->previous_raid_disks);
52c03291
N
3729 sh = get_active_stripe(conf, first_sector,
3730 conf->previous_raid_disks, pd_idx, 0);
3731 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3732 set_bit(STRIPE_HANDLE, &sh->state);
3733 release_stripe(sh);
3734 first_sector += STRIPE_SECTORS;
3735 }
c6207277
N
3736 /* If this takes us to the resync_max point where we have to pause,
3737 * then we need to write out the superblock.
3738 */
3739 sector_nr += conf->chunk_size>>9;
3740 if (sector_nr >= mddev->resync_max) {
3741 /* Cannot proceed until we've updated the superblock... */
3742 wait_event(conf->wait_for_overlap,
3743 atomic_read(&conf->reshape_stripes) == 0);
3744 mddev->reshape_position = conf->expand_progress;
3745 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3746 md_wakeup_thread(mddev->thread);
3747 wait_event(mddev->sb_wait,
3748 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3749 || kthread_should_stop());
3750 spin_lock_irq(&conf->device_lock);
3751 conf->expand_lo = mddev->reshape_position;
3752 spin_unlock_irq(&conf->device_lock);
3753 wake_up(&conf->wait_for_overlap);
3754 }
52c03291
N
3755 return conf->chunk_size>>9;
3756}
3757
3758/* FIXME go_faster isn't used */
3759static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3760{
3761 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3762 struct stripe_head *sh;
3763 int pd_idx;
1da177e4 3764 int raid_disks = conf->raid_disks;
72626685
N
3765 sector_t max_sector = mddev->size << 1;
3766 int sync_blocks;
16a53ecc
N
3767 int still_degraded = 0;
3768 int i;
1da177e4 3769
72626685 3770 if (sector_nr >= max_sector) {
1da177e4
LT
3771 /* just being told to finish up .. nothing much to do */
3772 unplug_slaves(mddev);
29269553
N
3773 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3774 end_reshape(conf);
3775 return 0;
3776 }
72626685
N
3777
3778 if (mddev->curr_resync < max_sector) /* aborted */
3779 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3780 &sync_blocks, 1);
16a53ecc 3781 else /* completed sync */
72626685
N
3782 conf->fullsync = 0;
3783 bitmap_close_sync(mddev->bitmap);
3784
1da177e4
LT
3785 return 0;
3786 }
ccfcc3c1 3787
52c03291
N
3788 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3789 return reshape_request(mddev, sector_nr, skipped);
f6705578 3790
c6207277
N
3791 /* No need to check resync_max as we never do more than one
3792 * stripe, and as resync_max will always be on a chunk boundary,
3793 * if the check in md_do_sync didn't fire, there is no chance
3794 * of overstepping resync_max here
3795 */
3796
16a53ecc 3797 /* if there is too many failed drives and we are trying
1da177e4
LT
3798 * to resync, then assert that we are finished, because there is
3799 * nothing we can do.
3800 */
3285edf1 3801 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3802 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3803 sector_t rv = (mddev->size << 1) - sector_nr;
3804 *skipped = 1;
1da177e4
LT
3805 return rv;
3806 }
72626685 3807 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3808 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3809 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3810 /* we can skip this block, and probably more */
3811 sync_blocks /= STRIPE_SECTORS;
3812 *skipped = 1;
3813 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3814 }
1da177e4 3815
b47490c9
N
3816
3817 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3818
ccfcc3c1 3819 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3820 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3821 if (sh == NULL) {
7ecaa1e6 3822 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3823 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3824 * is trying to get access
1da177e4 3825 */
66c006a5 3826 schedule_timeout_uninterruptible(1);
1da177e4 3827 }
16a53ecc
N
3828 /* Need to check if array will still be degraded after recovery/resync
3829 * We don't need to check the 'failed' flag as when that gets set,
3830 * recovery aborts.
3831 */
3832 for (i=0; i<mddev->raid_disks; i++)
3833 if (conf->disks[i].rdev == NULL)
3834 still_degraded = 1;
3835
3836 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3837
3838 spin_lock(&sh->lock);
1da177e4
LT
3839 set_bit(STRIPE_SYNCING, &sh->state);
3840 clear_bit(STRIPE_INSYNC, &sh->state);
3841 spin_unlock(&sh->lock);
3842
16a53ecc 3843 handle_stripe(sh, NULL);
1da177e4
LT
3844 release_stripe(sh);
3845
3846 return STRIPE_SECTORS;
3847}
3848
46031f9a
RBJ
3849static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3850{
3851 /* We may not be able to submit a whole bio at once as there
3852 * may not be enough stripe_heads available.
3853 * We cannot pre-allocate enough stripe_heads as we may need
3854 * more than exist in the cache (if we allow ever large chunks).
3855 * So we do one stripe head at a time and record in
3856 * ->bi_hw_segments how many have been done.
3857 *
3858 * We *know* that this entire raid_bio is in one chunk, so
3859 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3860 */
3861 struct stripe_head *sh;
3862 int dd_idx, pd_idx;
3863 sector_t sector, logical_sector, last_sector;
3864 int scnt = 0;
3865 int remaining;
3866 int handled = 0;
3867
3868 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3869 sector = raid5_compute_sector( logical_sector,
3870 conf->raid_disks,
3871 conf->raid_disks - conf->max_degraded,
3872 &dd_idx,
3873 &pd_idx,
3874 conf);
3875 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3876
3877 for (; logical_sector < last_sector;
387bb173
NB
3878 logical_sector += STRIPE_SECTORS,
3879 sector += STRIPE_SECTORS,
3880 scnt++) {
46031f9a
RBJ
3881
3882 if (scnt < raid_bio->bi_hw_segments)
3883 /* already done this stripe */
3884 continue;
3885
3886 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3887
3888 if (!sh) {
3889 /* failed to get a stripe - must wait */
3890 raid_bio->bi_hw_segments = scnt;
3891 conf->retry_read_aligned = raid_bio;
3892 return handled;
3893 }
3894
3895 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3896 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3897 release_stripe(sh);
3898 raid_bio->bi_hw_segments = scnt;
3899 conf->retry_read_aligned = raid_bio;
3900 return handled;
3901 }
3902
46031f9a
RBJ
3903 handle_stripe(sh, NULL);
3904 release_stripe(sh);
3905 handled++;
3906 }
3907 spin_lock_irq(&conf->device_lock);
3908 remaining = --raid_bio->bi_phys_segments;
3909 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
3910 if (remaining == 0)
3911 bio_endio(raid_bio, 0);
46031f9a
RBJ
3912 if (atomic_dec_and_test(&conf->active_aligned_reads))
3913 wake_up(&conf->wait_for_stripe);
3914 return handled;
3915}
3916
3917
3918
1da177e4
LT
3919/*
3920 * This is our raid5 kernel thread.
3921 *
3922 * We scan the hash table for stripes which can be handled now.
3923 * During the scan, completed stripes are saved for us by the interrupt
3924 * handler, so that they will not have to wait for our next wakeup.
3925 */
6ed3003c 3926static void raid5d(mddev_t *mddev)
1da177e4
LT
3927{
3928 struct stripe_head *sh;
3929 raid5_conf_t *conf = mddev_to_conf(mddev);
3930 int handled;
3931
45b4233c 3932 pr_debug("+++ raid5d active\n");
1da177e4
LT
3933
3934 md_check_recovery(mddev);
1da177e4
LT
3935
3936 handled = 0;
3937 spin_lock_irq(&conf->device_lock);
3938 while (1) {
46031f9a 3939 struct bio *bio;
1da177e4 3940
ae3c20cc 3941 if (conf->seq_flush != conf->seq_write) {
72626685 3942 int seq = conf->seq_flush;
700e432d 3943 spin_unlock_irq(&conf->device_lock);
72626685 3944 bitmap_unplug(mddev->bitmap);
700e432d 3945 spin_lock_irq(&conf->device_lock);
72626685
N
3946 conf->seq_write = seq;
3947 activate_bit_delay(conf);
3948 }
3949
46031f9a
RBJ
3950 while ((bio = remove_bio_from_retry(conf))) {
3951 int ok;
3952 spin_unlock_irq(&conf->device_lock);
3953 ok = retry_aligned_read(conf, bio);
3954 spin_lock_irq(&conf->device_lock);
3955 if (!ok)
3956 break;
3957 handled++;
3958 }
3959
8b3e6cdc
DW
3960 sh = __get_priority_stripe(conf);
3961
3962 if (!sh) {
d84e0f10 3963 async_tx_issue_pending_all();
1da177e4 3964 break;
d84e0f10 3965 }
1da177e4
LT
3966 spin_unlock_irq(&conf->device_lock);
3967
3968 handled++;
16a53ecc 3969 handle_stripe(sh, conf->spare_page);
1da177e4
LT
3970 release_stripe(sh);
3971
3972 spin_lock_irq(&conf->device_lock);
3973 }
45b4233c 3974 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
3975
3976 spin_unlock_irq(&conf->device_lock);
3977
3978 unplug_slaves(mddev);
3979
45b4233c 3980 pr_debug("--- raid5d inactive\n");
1da177e4
LT
3981}
3982
3f294f4f 3983static ssize_t
007583c9 3984raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 3985{
007583c9 3986 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3987 if (conf)
3988 return sprintf(page, "%d\n", conf->max_nr_stripes);
3989 else
3990 return 0;
3f294f4f
N
3991}
3992
3993static ssize_t
007583c9 3994raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 3995{
007583c9 3996 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 3997 unsigned long new;
3f294f4f
N
3998 if (len >= PAGE_SIZE)
3999 return -EINVAL;
96de1e66
N
4000 if (!conf)
4001 return -ENODEV;
3f294f4f 4002
4ef197d8 4003 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4004 return -EINVAL;
4005 if (new <= 16 || new > 32768)
4006 return -EINVAL;
4007 while (new < conf->max_nr_stripes) {
4008 if (drop_one_stripe(conf))
4009 conf->max_nr_stripes--;
4010 else
4011 break;
4012 }
2a2275d6 4013 md_allow_write(mddev);
3f294f4f
N
4014 while (new > conf->max_nr_stripes) {
4015 if (grow_one_stripe(conf))
4016 conf->max_nr_stripes++;
4017 else break;
4018 }
4019 return len;
4020}
007583c9 4021
96de1e66
N
4022static struct md_sysfs_entry
4023raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4024 raid5_show_stripe_cache_size,
4025 raid5_store_stripe_cache_size);
3f294f4f 4026
8b3e6cdc
DW
4027static ssize_t
4028raid5_show_preread_threshold(mddev_t *mddev, char *page)
4029{
4030 raid5_conf_t *conf = mddev_to_conf(mddev);
4031 if (conf)
4032 return sprintf(page, "%d\n", conf->bypass_threshold);
4033 else
4034 return 0;
4035}
4036
4037static ssize_t
4038raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4039{
4040 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4041 unsigned long new;
8b3e6cdc
DW
4042 if (len >= PAGE_SIZE)
4043 return -EINVAL;
4044 if (!conf)
4045 return -ENODEV;
4046
4ef197d8 4047 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4048 return -EINVAL;
4ef197d8 4049 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4050 return -EINVAL;
4051 conf->bypass_threshold = new;
4052 return len;
4053}
4054
4055static struct md_sysfs_entry
4056raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4057 S_IRUGO | S_IWUSR,
4058 raid5_show_preread_threshold,
4059 raid5_store_preread_threshold);
4060
3f294f4f 4061static ssize_t
96de1e66 4062stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4063{
007583c9 4064 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4065 if (conf)
4066 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4067 else
4068 return 0;
3f294f4f
N
4069}
4070
96de1e66
N
4071static struct md_sysfs_entry
4072raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4073
007583c9 4074static struct attribute *raid5_attrs[] = {
3f294f4f
N
4075 &raid5_stripecache_size.attr,
4076 &raid5_stripecache_active.attr,
8b3e6cdc 4077 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4078 NULL,
4079};
007583c9
N
4080static struct attribute_group raid5_attrs_group = {
4081 .name = NULL,
4082 .attrs = raid5_attrs,
3f294f4f
N
4083};
4084
72626685 4085static int run(mddev_t *mddev)
1da177e4
LT
4086{
4087 raid5_conf_t *conf;
4088 int raid_disk, memory;
4089 mdk_rdev_t *rdev;
4090 struct disk_info *disk;
4091 struct list_head *tmp;
02c2de8c 4092 int working_disks = 0;
1da177e4 4093
16a53ecc
N
4094 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4095 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 4096 mdname(mddev), mddev->level);
1da177e4
LT
4097 return -EIO;
4098 }
4099
f6705578
N
4100 if (mddev->reshape_position != MaxSector) {
4101 /* Check that we can continue the reshape.
4102 * Currently only disks can change, it must
4103 * increase, and we must be past the point where
4104 * a stripe over-writes itself
4105 */
4106 sector_t here_new, here_old;
4107 int old_disks;
f416885e 4108 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
4109
4110 if (mddev->new_level != mddev->level ||
4111 mddev->new_layout != mddev->layout ||
4112 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
4113 printk(KERN_ERR "raid5: %s: unsupported reshape "
4114 "required - aborting.\n",
f6705578
N
4115 mdname(mddev));
4116 return -EINVAL;
4117 }
4118 if (mddev->delta_disks <= 0) {
f416885e
N
4119 printk(KERN_ERR "raid5: %s: unsupported reshape "
4120 "(reduce disks) required - aborting.\n",
f6705578
N
4121 mdname(mddev));
4122 return -EINVAL;
4123 }
4124 old_disks = mddev->raid_disks - mddev->delta_disks;
4125 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4126 * further up in new geometry must map after here in old
4127 * geometry.
f6705578
N
4128 */
4129 here_new = mddev->reshape_position;
f416885e
N
4130 if (sector_div(here_new, (mddev->chunk_size>>9)*
4131 (mddev->raid_disks - max_degraded))) {
4132 printk(KERN_ERR "raid5: reshape_position not "
4133 "on a stripe boundary\n");
f6705578
N
4134 return -EINVAL;
4135 }
4136 /* here_new is the stripe we will write to */
4137 here_old = mddev->reshape_position;
f416885e
N
4138 sector_div(here_old, (mddev->chunk_size>>9)*
4139 (old_disks-max_degraded));
4140 /* here_old is the first stripe that we might need to read
4141 * from */
f6705578
N
4142 if (here_new >= here_old) {
4143 /* Reading from the same stripe as writing to - bad */
f416885e
N
4144 printk(KERN_ERR "raid5: reshape_position too early for "
4145 "auto-recovery - aborting.\n");
f6705578
N
4146 return -EINVAL;
4147 }
4148 printk(KERN_INFO "raid5: reshape will continue\n");
4149 /* OK, we should be able to continue; */
4150 }
4151
4152
b55e6bfc 4153 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4154 if ((conf = mddev->private) == NULL)
4155 goto abort;
f6705578
N
4156 if (mddev->reshape_position == MaxSector) {
4157 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4158 } else {
4159 conf->raid_disks = mddev->raid_disks;
4160 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4161 }
4162
4163 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4164 GFP_KERNEL);
4165 if (!conf->disks)
4166 goto abort;
9ffae0cf 4167
1da177e4
LT
4168 conf->mddev = mddev;
4169
fccddba0 4170 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4171 goto abort;
1da177e4 4172
16a53ecc
N
4173 if (mddev->level == 6) {
4174 conf->spare_page = alloc_page(GFP_KERNEL);
4175 if (!conf->spare_page)
4176 goto abort;
4177 }
1da177e4 4178 spin_lock_init(&conf->device_lock);
e7e72bf6 4179 mddev->queue->queue_lock = &conf->device_lock;
1da177e4
LT
4180 init_waitqueue_head(&conf->wait_for_stripe);
4181 init_waitqueue_head(&conf->wait_for_overlap);
4182 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4183 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4184 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4185 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4186 INIT_LIST_HEAD(&conf->inactive_list);
4187 atomic_set(&conf->active_stripes, 0);
4188 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4189 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4190 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4191
45b4233c 4192 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4193
d089c6af 4194 rdev_for_each(rdev, tmp, mddev) {
1da177e4 4195 raid_disk = rdev->raid_disk;
f6705578 4196 if (raid_disk >= conf->raid_disks
1da177e4
LT
4197 || raid_disk < 0)
4198 continue;
4199 disk = conf->disks + raid_disk;
4200
4201 disk->rdev = rdev;
4202
b2d444d7 4203 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4204 char b[BDEVNAME_SIZE];
4205 printk(KERN_INFO "raid5: device %s operational as raid"
4206 " disk %d\n", bdevname(rdev->bdev,b),
4207 raid_disk);
02c2de8c 4208 working_disks++;
8c2e870a
NB
4209 } else
4210 /* Cannot rely on bitmap to complete recovery */
4211 conf->fullsync = 1;
1da177e4
LT
4212 }
4213
1da177e4 4214 /*
16a53ecc 4215 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4216 */
02c2de8c 4217 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4218 conf->mddev = mddev;
4219 conf->chunk_size = mddev->chunk_size;
4220 conf->level = mddev->level;
16a53ecc
N
4221 if (conf->level == 6)
4222 conf->max_degraded = 2;
4223 else
4224 conf->max_degraded = 1;
1da177e4
LT
4225 conf->algorithm = mddev->layout;
4226 conf->max_nr_stripes = NR_STRIPES;
f6705578 4227 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4228
4229 /* device size must be a multiple of chunk size */
4230 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 4231 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 4232
16a53ecc
N
4233 if (conf->level == 6 && conf->raid_disks < 4) {
4234 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4235 mdname(mddev), conf->raid_disks);
4236 goto abort;
4237 }
1da177e4
LT
4238 if (!conf->chunk_size || conf->chunk_size % 4) {
4239 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4240 conf->chunk_size, mdname(mddev));
4241 goto abort;
4242 }
4243 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4244 printk(KERN_ERR
4245 "raid5: unsupported parity algorithm %d for %s\n",
4246 conf->algorithm, mdname(mddev));
4247 goto abort;
4248 }
16a53ecc 4249 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4250 printk(KERN_ERR "raid5: not enough operational devices for %s"
4251 " (%d/%d failed)\n",
02c2de8c 4252 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4253 goto abort;
4254 }
4255
16a53ecc 4256 if (mddev->degraded > 0 &&
1da177e4 4257 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4258 if (mddev->ok_start_degraded)
4259 printk(KERN_WARNING
4260 "raid5: starting dirty degraded array: %s"
4261 "- data corruption possible.\n",
4262 mdname(mddev));
4263 else {
4264 printk(KERN_ERR
4265 "raid5: cannot start dirty degraded array for %s\n",
4266 mdname(mddev));
4267 goto abort;
4268 }
1da177e4
LT
4269 }
4270
4271 {
4272 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4273 if (!mddev->thread) {
4274 printk(KERN_ERR
4275 "raid5: couldn't allocate thread for %s\n",
4276 mdname(mddev));
4277 goto abort;
4278 }
4279 }
5036805b 4280 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4281 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4282 if (grow_stripes(conf, conf->max_nr_stripes)) {
4283 printk(KERN_ERR
4284 "raid5: couldn't allocate %dkB for buffers\n", memory);
4285 shrink_stripes(conf);
4286 md_unregister_thread(mddev->thread);
4287 goto abort;
4288 } else
4289 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4290 memory, mdname(mddev));
4291
4292 if (mddev->degraded == 0)
4293 printk("raid5: raid level %d set %s active with %d out of %d"
4294 " devices, algorithm %d\n", conf->level, mdname(mddev),
4295 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4296 conf->algorithm);
4297 else
4298 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4299 " out of %d devices, algorithm %d\n", conf->level,
4300 mdname(mddev), mddev->raid_disks - mddev->degraded,
4301 mddev->raid_disks, conf->algorithm);
4302
4303 print_raid5_conf(conf);
4304
f6705578
N
4305 if (conf->expand_progress != MaxSector) {
4306 printk("...ok start reshape thread\n");
b578d55f 4307 conf->expand_lo = conf->expand_progress;
f6705578
N
4308 atomic_set(&conf->reshape_stripes, 0);
4309 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4310 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4311 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4312 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4313 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4314 "%s_reshape");
f6705578
N
4315 }
4316
1da177e4 4317 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4318 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4319 */
4320 {
16a53ecc
N
4321 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4322 int stripe = data_disks *
8932c2e0 4323 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4324 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4325 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4326 }
4327
4328 /* Ok, everything is just fine now */
5e55e2f5
N
4329 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4330 printk(KERN_WARNING
4331 "raid5: failed to create sysfs attributes for %s\n",
4332 mdname(mddev));
7a5febe9
N
4333
4334 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4335 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4336 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4337
16a53ecc
N
4338 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4339 conf->max_degraded);
7a5febe9 4340
23032a0e
RBJ
4341 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4342
1da177e4
LT
4343 return 0;
4344abort:
4345 if (conf) {
4346 print_raid5_conf(conf);
16a53ecc 4347 safe_put_page(conf->spare_page);
b55e6bfc 4348 kfree(conf->disks);
fccddba0 4349 kfree(conf->stripe_hashtbl);
1da177e4
LT
4350 kfree(conf);
4351 }
4352 mddev->private = NULL;
4353 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4354 return -EIO;
4355}
4356
4357
4358
3f294f4f 4359static int stop(mddev_t *mddev)
1da177e4
LT
4360{
4361 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4362
4363 md_unregister_thread(mddev->thread);
4364 mddev->thread = NULL;
4365 shrink_stripes(conf);
fccddba0 4366 kfree(conf->stripe_hashtbl);
041ae52e 4367 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4368 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4369 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4370 kfree(conf->disks);
96de1e66 4371 kfree(conf);
1da177e4
LT
4372 mddev->private = NULL;
4373 return 0;
4374}
4375
45b4233c 4376#ifdef DEBUG
16a53ecc 4377static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4378{
4379 int i;
4380
16a53ecc
N
4381 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4382 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4383 seq_printf(seq, "sh %llu, count %d.\n",
4384 (unsigned long long)sh->sector, atomic_read(&sh->count));
4385 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4386 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4387 seq_printf(seq, "(cache%d: %p %ld) ",
4388 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4389 }
16a53ecc 4390 seq_printf(seq, "\n");
1da177e4
LT
4391}
4392
16a53ecc 4393static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4394{
4395 struct stripe_head *sh;
fccddba0 4396 struct hlist_node *hn;
1da177e4
LT
4397 int i;
4398
4399 spin_lock_irq(&conf->device_lock);
4400 for (i = 0; i < NR_HASH; i++) {
fccddba0 4401 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4402 if (sh->raid_conf != conf)
4403 continue;
16a53ecc 4404 print_sh(seq, sh);
1da177e4
LT
4405 }
4406 }
4407 spin_unlock_irq(&conf->device_lock);
4408}
4409#endif
4410
4411static void status (struct seq_file *seq, mddev_t *mddev)
4412{
4413 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4414 int i;
4415
4416 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4417 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4418 for (i = 0; i < conf->raid_disks; i++)
4419 seq_printf (seq, "%s",
4420 conf->disks[i].rdev &&
b2d444d7 4421 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4422 seq_printf (seq, "]");
45b4233c 4423#ifdef DEBUG
16a53ecc
N
4424 seq_printf (seq, "\n");
4425 printall(seq, conf);
1da177e4
LT
4426#endif
4427}
4428
4429static void print_raid5_conf (raid5_conf_t *conf)
4430{
4431 int i;
4432 struct disk_info *tmp;
4433
4434 printk("RAID5 conf printout:\n");
4435 if (!conf) {
4436 printk("(conf==NULL)\n");
4437 return;
4438 }
02c2de8c
N
4439 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4440 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4441
4442 for (i = 0; i < conf->raid_disks; i++) {
4443 char b[BDEVNAME_SIZE];
4444 tmp = conf->disks + i;
4445 if (tmp->rdev)
4446 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4447 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4448 bdevname(tmp->rdev->bdev,b));
4449 }
4450}
4451
4452static int raid5_spare_active(mddev_t *mddev)
4453{
4454 int i;
4455 raid5_conf_t *conf = mddev->private;
4456 struct disk_info *tmp;
4457
4458 for (i = 0; i < conf->raid_disks; i++) {
4459 tmp = conf->disks + i;
4460 if (tmp->rdev
b2d444d7 4461 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4462 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4463 unsigned long flags;
4464 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4465 mddev->degraded--;
c04be0aa 4466 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4467 }
4468 }
4469 print_raid5_conf(conf);
4470 return 0;
4471}
4472
4473static int raid5_remove_disk(mddev_t *mddev, int number)
4474{
4475 raid5_conf_t *conf = mddev->private;
4476 int err = 0;
4477 mdk_rdev_t *rdev;
4478 struct disk_info *p = conf->disks + number;
4479
4480 print_raid5_conf(conf);
4481 rdev = p->rdev;
4482 if (rdev) {
b2d444d7 4483 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4484 atomic_read(&rdev->nr_pending)) {
4485 err = -EBUSY;
4486 goto abort;
4487 }
dfc70645
N
4488 /* Only remove non-faulty devices if recovery
4489 * isn't possible.
4490 */
4491 if (!test_bit(Faulty, &rdev->flags) &&
4492 mddev->degraded <= conf->max_degraded) {
4493 err = -EBUSY;
4494 goto abort;
4495 }
1da177e4 4496 p->rdev = NULL;
fbd568a3 4497 synchronize_rcu();
1da177e4
LT
4498 if (atomic_read(&rdev->nr_pending)) {
4499 /* lost the race, try later */
4500 err = -EBUSY;
4501 p->rdev = rdev;
4502 }
4503 }
4504abort:
4505
4506 print_raid5_conf(conf);
4507 return err;
4508}
4509
4510static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4511{
4512 raid5_conf_t *conf = mddev->private;
199050ea 4513 int err = -EEXIST;
1da177e4
LT
4514 int disk;
4515 struct disk_info *p;
6c2fce2e
NB
4516 int first = 0;
4517 int last = conf->raid_disks - 1;
1da177e4 4518
16a53ecc 4519 if (mddev->degraded > conf->max_degraded)
1da177e4 4520 /* no point adding a device */
199050ea 4521 return -EINVAL;
1da177e4 4522
6c2fce2e
NB
4523 if (rdev->raid_disk >= 0)
4524 first = last = rdev->raid_disk;
4525
1da177e4 4526 /*
16a53ecc
N
4527 * find the disk ... but prefer rdev->saved_raid_disk
4528 * if possible.
1da177e4 4529 */
16a53ecc 4530 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4531 rdev->saved_raid_disk >= first &&
16a53ecc
N
4532 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4533 disk = rdev->saved_raid_disk;
4534 else
6c2fce2e
NB
4535 disk = first;
4536 for ( ; disk <= last ; disk++)
1da177e4 4537 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4538 clear_bit(In_sync, &rdev->flags);
1da177e4 4539 rdev->raid_disk = disk;
199050ea 4540 err = 0;
72626685
N
4541 if (rdev->saved_raid_disk != disk)
4542 conf->fullsync = 1;
d6065f7b 4543 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4544 break;
4545 }
4546 print_raid5_conf(conf);
199050ea 4547 return err;
1da177e4
LT
4548}
4549
4550static int raid5_resize(mddev_t *mddev, sector_t sectors)
4551{
4552 /* no resync is happening, and there is enough space
4553 * on all devices, so we can resize.
4554 * We need to make sure resync covers any new space.
4555 * If the array is shrinking we should possibly wait until
4556 * any io in the removed space completes, but it hardly seems
4557 * worth it.
4558 */
16a53ecc
N
4559 raid5_conf_t *conf = mddev_to_conf(mddev);
4560
1da177e4 4561 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 4562 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 4563 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 4564 mddev->changed = 1;
1da177e4
LT
4565 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4566 mddev->recovery_cp = mddev->size << 1;
4567 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4568 }
4569 mddev->size = sectors /2;
4b5c7ae8 4570 mddev->resync_max_sectors = sectors;
1da177e4
LT
4571 return 0;
4572}
4573
29269553 4574#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4575static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4576{
4577 raid5_conf_t *conf = mddev_to_conf(mddev);
4578 int err;
29269553 4579
63c70c4f
N
4580 if (mddev->delta_disks < 0 ||
4581 mddev->new_level != mddev->level)
4582 return -EINVAL; /* Cannot shrink array or change level yet */
4583 if (mddev->delta_disks == 0)
29269553
N
4584 return 0; /* nothing to do */
4585
4586 /* Can only proceed if there are plenty of stripe_heads.
4587 * We need a minimum of one full stripe,, and for sensible progress
4588 * it is best to have about 4 times that.
4589 * If we require 4 times, then the default 256 4K stripe_heads will
4590 * allow for chunk sizes up to 256K, which is probably OK.
4591 * If the chunk size is greater, user-space should request more
4592 * stripe_heads first.
4593 */
63c70c4f
N
4594 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4595 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4596 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4597 (mddev->chunk_size / STRIPE_SIZE)*4);
4598 return -ENOSPC;
4599 }
4600
63c70c4f
N
4601 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4602 if (err)
4603 return err;
4604
b4c4c7b8
N
4605 if (mddev->degraded > conf->max_degraded)
4606 return -EINVAL;
63c70c4f
N
4607 /* looks like we might be able to manage this */
4608 return 0;
4609}
4610
4611static int raid5_start_reshape(mddev_t *mddev)
4612{
4613 raid5_conf_t *conf = mddev_to_conf(mddev);
4614 mdk_rdev_t *rdev;
4615 struct list_head *rtmp;
4616 int spares = 0;
4617 int added_devices = 0;
c04be0aa 4618 unsigned long flags;
63c70c4f 4619
f416885e 4620 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4621 return -EBUSY;
4622
d089c6af 4623 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4624 if (rdev->raid_disk < 0 &&
4625 !test_bit(Faulty, &rdev->flags))
4626 spares++;
63c70c4f 4627
f416885e 4628 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4629 /* Not enough devices even to make a degraded array
4630 * of that size
4631 */
4632 return -EINVAL;
4633
f6705578 4634 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4635 spin_lock_irq(&conf->device_lock);
4636 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4637 conf->raid_disks += mddev->delta_disks;
29269553 4638 conf->expand_progress = 0;
b578d55f 4639 conf->expand_lo = 0;
29269553
N
4640 spin_unlock_irq(&conf->device_lock);
4641
4642 /* Add some new drives, as many as will fit.
4643 * We know there are enough to make the newly sized array work.
4644 */
d089c6af 4645 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4646 if (rdev->raid_disk < 0 &&
4647 !test_bit(Faulty, &rdev->flags)) {
199050ea 4648 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4649 char nm[20];
4650 set_bit(In_sync, &rdev->flags);
29269553 4651 added_devices++;
5fd6c1dc 4652 rdev->recovery_offset = 0;
29269553 4653 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4654 if (sysfs_create_link(&mddev->kobj,
4655 &rdev->kobj, nm))
4656 printk(KERN_WARNING
4657 "raid5: failed to create "
4658 " link %s for %s\n",
4659 nm, mdname(mddev));
29269553
N
4660 } else
4661 break;
4662 }
4663
c04be0aa 4664 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4665 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4666 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4667 mddev->raid_disks = conf->raid_disks;
f6705578 4668 mddev->reshape_position = 0;
850b2b42 4669 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4670
29269553
N
4671 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4672 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4673 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4674 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4675 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4676 "%s_reshape");
4677 if (!mddev->sync_thread) {
4678 mddev->recovery = 0;
4679 spin_lock_irq(&conf->device_lock);
4680 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4681 conf->expand_progress = MaxSector;
4682 spin_unlock_irq(&conf->device_lock);
4683 return -EAGAIN;
4684 }
4685 md_wakeup_thread(mddev->sync_thread);
4686 md_new_event(mddev);
4687 return 0;
4688}
4689#endif
4690
4691static void end_reshape(raid5_conf_t *conf)
4692{
4693 struct block_device *bdev;
4694
f6705578 4695 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
4696 conf->mddev->array_size = conf->mddev->size *
4697 (conf->raid_disks - conf->max_degraded);
f6705578 4698 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 4699 conf->mddev->changed = 1;
f6705578
N
4700
4701 bdev = bdget_disk(conf->mddev->gendisk, 0);
4702 if (bdev) {
4703 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 4704 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
4705 mutex_unlock(&bdev->bd_inode->i_mutex);
4706 bdput(bdev);
4707 }
4708 spin_lock_irq(&conf->device_lock);
4709 conf->expand_progress = MaxSector;
4710 spin_unlock_irq(&conf->device_lock);
4711 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4712
4713 /* read-ahead size must cover two whole stripes, which is
4714 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4715 */
4716 {
4717 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4718 int stripe = data_disks *
4719 (conf->mddev->chunk_size / PAGE_SIZE);
4720 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4721 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4722 }
29269553 4723 }
29269553
N
4724}
4725
72626685
N
4726static void raid5_quiesce(mddev_t *mddev, int state)
4727{
4728 raid5_conf_t *conf = mddev_to_conf(mddev);
4729
4730 switch(state) {
e464eafd
N
4731 case 2: /* resume for a suspend */
4732 wake_up(&conf->wait_for_overlap);
4733 break;
4734
72626685
N
4735 case 1: /* stop all writes */
4736 spin_lock_irq(&conf->device_lock);
4737 conf->quiesce = 1;
4738 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4739 atomic_read(&conf->active_stripes) == 0 &&
4740 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4741 conf->device_lock, /* nothing */);
4742 spin_unlock_irq(&conf->device_lock);
4743 break;
4744
4745 case 0: /* re-enable writes */
4746 spin_lock_irq(&conf->device_lock);
4747 conf->quiesce = 0;
4748 wake_up(&conf->wait_for_stripe);
e464eafd 4749 wake_up(&conf->wait_for_overlap);
72626685
N
4750 spin_unlock_irq(&conf->device_lock);
4751 break;
4752 }
72626685 4753}
b15c2e57 4754
16a53ecc
N
4755static struct mdk_personality raid6_personality =
4756{
4757 .name = "raid6",
4758 .level = 6,
4759 .owner = THIS_MODULE,
4760 .make_request = make_request,
4761 .run = run,
4762 .stop = stop,
4763 .status = status,
4764 .error_handler = error,
4765 .hot_add_disk = raid5_add_disk,
4766 .hot_remove_disk= raid5_remove_disk,
4767 .spare_active = raid5_spare_active,
4768 .sync_request = sync_request,
4769 .resize = raid5_resize,
f416885e
N
4770#ifdef CONFIG_MD_RAID5_RESHAPE
4771 .check_reshape = raid5_check_reshape,
4772 .start_reshape = raid5_start_reshape,
4773#endif
16a53ecc
N
4774 .quiesce = raid5_quiesce,
4775};
2604b703 4776static struct mdk_personality raid5_personality =
1da177e4
LT
4777{
4778 .name = "raid5",
2604b703 4779 .level = 5,
1da177e4
LT
4780 .owner = THIS_MODULE,
4781 .make_request = make_request,
4782 .run = run,
4783 .stop = stop,
4784 .status = status,
4785 .error_handler = error,
4786 .hot_add_disk = raid5_add_disk,
4787 .hot_remove_disk= raid5_remove_disk,
4788 .spare_active = raid5_spare_active,
4789 .sync_request = sync_request,
4790 .resize = raid5_resize,
29269553 4791#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4792 .check_reshape = raid5_check_reshape,
4793 .start_reshape = raid5_start_reshape,
29269553 4794#endif
72626685 4795 .quiesce = raid5_quiesce,
1da177e4
LT
4796};
4797
2604b703 4798static struct mdk_personality raid4_personality =
1da177e4 4799{
2604b703
N
4800 .name = "raid4",
4801 .level = 4,
4802 .owner = THIS_MODULE,
4803 .make_request = make_request,
4804 .run = run,
4805 .stop = stop,
4806 .status = status,
4807 .error_handler = error,
4808 .hot_add_disk = raid5_add_disk,
4809 .hot_remove_disk= raid5_remove_disk,
4810 .spare_active = raid5_spare_active,
4811 .sync_request = sync_request,
4812 .resize = raid5_resize,
3d37890b
N
4813#ifdef CONFIG_MD_RAID5_RESHAPE
4814 .check_reshape = raid5_check_reshape,
4815 .start_reshape = raid5_start_reshape,
4816#endif
2604b703
N
4817 .quiesce = raid5_quiesce,
4818};
4819
4820static int __init raid5_init(void)
4821{
16a53ecc
N
4822 int e;
4823
4824 e = raid6_select_algo();
4825 if ( e )
4826 return e;
4827 register_md_personality(&raid6_personality);
2604b703
N
4828 register_md_personality(&raid5_personality);
4829 register_md_personality(&raid4_personality);
4830 return 0;
1da177e4
LT
4831}
4832
2604b703 4833static void raid5_exit(void)
1da177e4 4834{
16a53ecc 4835 unregister_md_personality(&raid6_personality);
2604b703
N
4836 unregister_md_personality(&raid5_personality);
4837 unregister_md_personality(&raid4_personality);
1da177e4
LT
4838}
4839
4840module_init(raid5_init);
4841module_exit(raid5_exit);
4842MODULE_LICENSE("GPL");
4843MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4844MODULE_ALIAS("md-raid5");
4845MODULE_ALIAS("md-raid4");
2604b703
N
4846MODULE_ALIAS("md-level-5");
4847MODULE_ALIAS("md-level-4");
16a53ecc
N
4848MODULE_ALIAS("md-personality-8"); /* RAID6 */
4849MODULE_ALIAS("md-raid6");
4850MODULE_ALIAS("md-level-6");
4851
4852/* This used to be two separate modules, they were: */
4853MODULE_ALIAS("raid5");
4854MODULE_ALIAS("raid6");