]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md: replace STRIPE_OP_COMPUTE_BLK with STRIPE_COMPUTE_RUN
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685 54#include <linux/raid/bitmap.h>
91c00924 55#include <linux/async_tx.h>
72626685 56
1da177e4
LT
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES 256
62#define STRIPE_SIZE PAGE_SIZE
63#define STRIPE_SHIFT (PAGE_SHIFT - 9)
64#define STRIPE_SECTORS (STRIPE_SIZE>>9)
65#define IO_THRESHOLD 1
8b3e6cdc 66#define BYPASS_THRESHOLD 1
fccddba0 67#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
68#define HASH_MASK (NR_HASH - 1)
69
fccddba0 70#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
71
72/* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82/*
83 * The following can be used to debug the driver
84 */
1da177e4
LT
85#define RAID5_PARANOIA 1
86#if RAID5_PARANOIA && defined(CONFIG_SMP)
87# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88#else
89# define CHECK_DEVLOCK()
90#endif
91
45b4233c 92#ifdef DEBUG
1da177e4
LT
93#define inline
94#define __inline__
95#endif
96
6be9d494
BS
97#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
16a53ecc
N
99#if !RAID6_USE_EMPTY_ZERO_PAGE
100/* In .bss so it's zeroed */
101const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102#endif
103
104static inline int raid6_next_disk(int disk, int raid_disks)
105{
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
108}
a4456856
DW
109
110static void return_io(struct bio *return_bi)
111{
112 struct bio *bi = return_bi;
113 while (bi) {
a4456856
DW
114
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
0e13fe23 118 bio_endio(bi, 0);
a4456856
DW
119 bi = return_bi;
120 }
121}
122
1da177e4
LT
123static void print_raid5_conf (raid5_conf_t *conf);
124
858119e1 125static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
126{
127 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 132 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 135 sh->bm_seq - conf->seq_write > 0) {
72626685 136 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
137 blk_plug_device(conf->mddev->queue);
138 } else {
72626685 139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 140 list_add_tail(&sh->lru, &conf->handle_list);
72626685 141 }
1da177e4
LT
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
d84e0f10 144 BUG_ON(sh->ops.pending);
1da177e4
LT
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
1da177e4 150 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 153 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 156 }
1da177e4
LT
157 }
158 }
159}
160static void release_stripe(struct stripe_head *sh)
161{
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
16a53ecc 164
1da177e4
LT
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168}
169
fccddba0 170static inline void remove_hash(struct stripe_head *sh)
1da177e4 171{
45b4233c
DW
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
1da177e4 174
fccddba0 175 hlist_del_init(&sh->hash);
1da177e4
LT
176}
177
16a53ecc 178static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 179{
fccddba0 180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 181
45b4233c
DW
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
1da177e4
LT
184
185 CHECK_DEVLOCK();
fccddba0 186 hlist_add_head(&sh->hash, hp);
1da177e4
LT
187}
188
189
190/* find an idle stripe, make sure it is unhashed, and return it. */
191static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192{
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
195
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204out:
205 return sh;
206}
207
208static void shrink_buffers(struct stripe_head *sh, int num)
209{
210 struct page *p;
211 int i;
212
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
2d1f3b5d 218 put_page(p);
1da177e4
LT
219 }
220}
221
222static int grow_buffers(struct stripe_head *sh, int num)
223{
224 int i;
225
226 for (i=0; i<num; i++) {
227 struct page *page;
228
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
231 }
232 sh->dev[i].page = page;
233 }
234 return 0;
235}
236
237static void raid5_build_block (struct stripe_head *sh, int i);
238
7ecaa1e6 239static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
240{
241 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 242 int i;
1da177e4 243
78bafebd
ES
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
d84e0f10
DW
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
1da177e4 248 CHECK_DEVLOCK();
45b4233c 249 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
250 (unsigned long long)sh->sector);
251
252 remove_hash(sh);
16a53ecc 253
1da177e4
LT
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
257
7ecaa1e6
N
258 sh->disks = disks;
259
260 for (i = sh->disks; i--; ) {
1da177e4
LT
261 struct r5dev *dev = &sh->dev[i];
262
d84e0f10 263 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 264 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 266 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 267 dev->read, dev->towrite, dev->written,
1da177e4
LT
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
270 }
271 dev->flags = 0;
272 raid5_build_block(sh, i);
273 }
274 insert_hash(conf, sh);
275}
276
7ecaa1e6 277static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
278{
279 struct stripe_head *sh;
fccddba0 280 struct hlist_node *hn;
1da177e4
LT
281
282 CHECK_DEVLOCK();
45b4233c 283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 285 if (sh->sector == sector && sh->disks == disks)
1da177e4 286 return sh;
45b4233c 287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
288 return NULL;
289}
290
291static void unplug_slaves(mddev_t *mddev);
165125e1 292static void raid5_unplug_device(struct request_queue *q);
1da177e4 293
7ecaa1e6
N
294static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
1da177e4
LT
296{
297 struct stripe_head *sh;
298
45b4233c 299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
300
301 spin_lock_irq(&conf->device_lock);
302
303 do {
72626685
N
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
7ecaa1e6 307 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
5036805b
N
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
1da177e4
LT
319 || !conf->inactive_blocked),
320 conf->device_lock,
f4370781 321 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
322 );
323 conf->inactive_blocked = 0;
324 } else
7ecaa1e6 325 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
326 } else {
327 if (atomic_read(&sh->count)) {
78bafebd 328 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
334 BUG();
335 list_del_init(&sh->lru);
1da177e4
LT
336 }
337 }
338 } while (sh == NULL);
339
340 if (sh)
341 atomic_inc(&sh->count);
342
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
345}
346
d84e0f10
DW
347/* test_and_ack_op() ensures that we only dequeue an operation once */
348#define test_and_ack_op(op, pend) \
349do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358} while (0)
359
360/* find new work to run, do not resubmit work that is already
361 * in flight
362 */
363static unsigned long get_stripe_work(struct stripe_head *sh)
364{
365 unsigned long pending;
366 int ack = 0;
367
368 pending = sh->ops.pending;
369
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
d84e0f10
DW
376
377 sh->ops.count -= ack;
4ae3f847
DW
378 if (unlikely(sh->ops.count < 0)) {
379 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
380 "ops.complete: %#lx\n", pending, sh->ops.pending,
381 sh->ops.ack, sh->ops.complete);
382 BUG();
383 }
d84e0f10
DW
384
385 return pending;
386}
387
6712ecf8
N
388static void
389raid5_end_read_request(struct bio *bi, int error);
390static void
391raid5_end_write_request(struct bio *bi, int error);
91c00924 392
c4e5ac0a 393static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
394{
395 raid5_conf_t *conf = sh->raid_conf;
396 int i, disks = sh->disks;
397
398 might_sleep();
399
400 for (i = disks; i--; ) {
401 int rw;
402 struct bio *bi;
403 mdk_rdev_t *rdev;
404 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405 rw = WRITE;
406 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407 rw = READ;
408 else
409 continue;
410
411 bi = &sh->dev[i].req;
412
413 bi->bi_rw = rw;
414 if (rw == WRITE)
415 bi->bi_end_io = raid5_end_write_request;
416 else
417 bi->bi_end_io = raid5_end_read_request;
418
419 rcu_read_lock();
420 rdev = rcu_dereference(conf->disks[i].rdev);
421 if (rdev && test_bit(Faulty, &rdev->flags))
422 rdev = NULL;
423 if (rdev)
424 atomic_inc(&rdev->nr_pending);
425 rcu_read_unlock();
426
427 if (rdev) {
c4e5ac0a 428 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
429 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430
2b7497f0
DW
431 set_bit(STRIPE_IO_STARTED, &sh->state);
432
91c00924
DW
433 bi->bi_bdev = rdev->bdev;
434 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 435 __func__, (unsigned long long)sh->sector,
91c00924
DW
436 bi->bi_rw, i);
437 atomic_inc(&sh->count);
438 bi->bi_sector = sh->sector + rdev->data_offset;
439 bi->bi_flags = 1 << BIO_UPTODATE;
440 bi->bi_vcnt = 1;
441 bi->bi_max_vecs = 1;
442 bi->bi_idx = 0;
443 bi->bi_io_vec = &sh->dev[i].vec;
444 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
445 bi->bi_io_vec[0].bv_offset = 0;
446 bi->bi_size = STRIPE_SIZE;
447 bi->bi_next = NULL;
448 if (rw == WRITE &&
449 test_bit(R5_ReWrite, &sh->dev[i].flags))
450 atomic_add(STRIPE_SECTORS,
451 &rdev->corrected_errors);
452 generic_make_request(bi);
453 } else {
454 if (rw == WRITE)
455 set_bit(STRIPE_DEGRADED, &sh->state);
456 pr_debug("skip op %ld on disc %d for sector %llu\n",
457 bi->bi_rw, i, (unsigned long long)sh->sector);
458 clear_bit(R5_LOCKED, &sh->dev[i].flags);
459 set_bit(STRIPE_HANDLE, &sh->state);
460 }
461 }
462}
463
464static struct dma_async_tx_descriptor *
465async_copy_data(int frombio, struct bio *bio, struct page *page,
466 sector_t sector, struct dma_async_tx_descriptor *tx)
467{
468 struct bio_vec *bvl;
469 struct page *bio_page;
470 int i;
471 int page_offset;
472
473 if (bio->bi_sector >= sector)
474 page_offset = (signed)(bio->bi_sector - sector) * 512;
475 else
476 page_offset = (signed)(sector - bio->bi_sector) * -512;
477 bio_for_each_segment(bvl, bio, i) {
478 int len = bio_iovec_idx(bio, i)->bv_len;
479 int clen;
480 int b_offset = 0;
481
482 if (page_offset < 0) {
483 b_offset = -page_offset;
484 page_offset += b_offset;
485 len -= b_offset;
486 }
487
488 if (len > 0 && page_offset + len > STRIPE_SIZE)
489 clen = STRIPE_SIZE - page_offset;
490 else
491 clen = len;
492
493 if (clen > 0) {
494 b_offset += bio_iovec_idx(bio, i)->bv_offset;
495 bio_page = bio_iovec_idx(bio, i)->bv_page;
496 if (frombio)
497 tx = async_memcpy(page, bio_page, page_offset,
498 b_offset, clen,
eb0645a8 499 ASYNC_TX_DEP_ACK,
91c00924
DW
500 tx, NULL, NULL);
501 else
502 tx = async_memcpy(bio_page, page, b_offset,
503 page_offset, clen,
eb0645a8 504 ASYNC_TX_DEP_ACK,
91c00924
DW
505 tx, NULL, NULL);
506 }
507 if (clen < len) /* hit end of page */
508 break;
509 page_offset += len;
510 }
511
512 return tx;
513}
514
515static void ops_complete_biofill(void *stripe_head_ref)
516{
517 struct stripe_head *sh = stripe_head_ref;
518 struct bio *return_bi = NULL;
519 raid5_conf_t *conf = sh->raid_conf;
e4d84909 520 int i;
91c00924 521
e46b272b 522 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
523 (unsigned long long)sh->sector);
524
525 /* clear completed biofills */
83de75cc 526 spin_lock_irq(&conf->device_lock);
91c00924
DW
527 for (i = sh->disks; i--; ) {
528 struct r5dev *dev = &sh->dev[i];
91c00924
DW
529
530 /* acknowledge completion of a biofill operation */
e4d84909
DW
531 /* and check if we need to reply to a read request,
532 * new R5_Wantfill requests are held off until
83de75cc 533 * !STRIPE_BIOFILL_RUN
e4d84909
DW
534 */
535 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 536 struct bio *rbi, *rbi2;
91c00924 537
91c00924
DW
538 BUG_ON(!dev->read);
539 rbi = dev->read;
540 dev->read = NULL;
541 while (rbi && rbi->bi_sector <
542 dev->sector + STRIPE_SECTORS) {
543 rbi2 = r5_next_bio(rbi, dev->sector);
91c00924
DW
544 if (--rbi->bi_phys_segments == 0) {
545 rbi->bi_next = return_bi;
546 return_bi = rbi;
547 }
91c00924
DW
548 rbi = rbi2;
549 }
550 }
551 }
83de75cc
DW
552 spin_unlock_irq(&conf->device_lock);
553 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
554
555 return_io(return_bi);
556
e4d84909 557 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
558 release_stripe(sh);
559}
560
561static void ops_run_biofill(struct stripe_head *sh)
562{
563 struct dma_async_tx_descriptor *tx = NULL;
564 raid5_conf_t *conf = sh->raid_conf;
565 int i;
566
e46b272b 567 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
568 (unsigned long long)sh->sector);
569
570 for (i = sh->disks; i--; ) {
571 struct r5dev *dev = &sh->dev[i];
572 if (test_bit(R5_Wantfill, &dev->flags)) {
573 struct bio *rbi;
574 spin_lock_irq(&conf->device_lock);
575 dev->read = rbi = dev->toread;
576 dev->toread = NULL;
577 spin_unlock_irq(&conf->device_lock);
578 while (rbi && rbi->bi_sector <
579 dev->sector + STRIPE_SECTORS) {
580 tx = async_copy_data(0, rbi, dev->page,
581 dev->sector, tx);
582 rbi = r5_next_bio(rbi, dev->sector);
583 }
584 }
585 }
586
587 atomic_inc(&sh->count);
588 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
589 ops_complete_biofill, sh);
590}
591
592static void ops_complete_compute5(void *stripe_head_ref)
593{
594 struct stripe_head *sh = stripe_head_ref;
595 int target = sh->ops.target;
596 struct r5dev *tgt = &sh->dev[target];
597
e46b272b 598 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
599 (unsigned long long)sh->sector);
600
601 set_bit(R5_UPTODATE, &tgt->flags);
602 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
603 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
604 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
605 if (sh->check_state == check_state_compute_run)
606 sh->check_state = check_state_compute_result;
91c00924
DW
607 set_bit(STRIPE_HANDLE, &sh->state);
608 release_stripe(sh);
609}
610
611static struct dma_async_tx_descriptor *
612ops_run_compute5(struct stripe_head *sh, unsigned long pending)
613{
614 /* kernel stack size limits the total number of disks */
615 int disks = sh->disks;
616 struct page *xor_srcs[disks];
617 int target = sh->ops.target;
618 struct r5dev *tgt = &sh->dev[target];
619 struct page *xor_dest = tgt->page;
620 int count = 0;
621 struct dma_async_tx_descriptor *tx;
622 int i;
623
624 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 625 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
626 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
627
628 for (i = disks; i--; )
629 if (i != target)
630 xor_srcs[count++] = sh->dev[i].page;
631
632 atomic_inc(&sh->count);
633
634 if (unlikely(count == 1))
635 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
636 0, NULL, ops_complete_compute5, sh);
637 else
638 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
639 ASYNC_TX_XOR_ZERO_DST, NULL,
640 ops_complete_compute5, sh);
641
642 /* ack now if postxor is not set to be run */
643 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
644 async_tx_ack(tx);
645
646 return tx;
647}
648
649static void ops_complete_prexor(void *stripe_head_ref)
650{
651 struct stripe_head *sh = stripe_head_ref;
652
e46b272b 653 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
654 (unsigned long long)sh->sector);
655
656 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
657}
658
659static struct dma_async_tx_descriptor *
660ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
661{
662 /* kernel stack size limits the total number of disks */
663 int disks = sh->disks;
664 struct page *xor_srcs[disks];
665 int count = 0, pd_idx = sh->pd_idx, i;
666
667 /* existing parity data subtracted */
668 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
669
e46b272b 670 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
671 (unsigned long long)sh->sector);
672
673 for (i = disks; i--; ) {
674 struct r5dev *dev = &sh->dev[i];
675 /* Only process blocks that are known to be uptodate */
676 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
677 xor_srcs[count++] = dev->page;
678 }
679
680 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
681 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
682 ops_complete_prexor, sh);
683
684 return tx;
685}
686
687static struct dma_async_tx_descriptor *
6c55be8b
DW
688ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
689 unsigned long pending)
91c00924
DW
690{
691 int disks = sh->disks;
692 int pd_idx = sh->pd_idx, i;
693
694 /* check if prexor is active which means only process blocks
695 * that are part of a read-modify-write (Wantprexor)
696 */
6c55be8b 697 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924 698
e46b272b 699 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
700 (unsigned long long)sh->sector);
701
702 for (i = disks; i--; ) {
703 struct r5dev *dev = &sh->dev[i];
704 struct bio *chosen;
705 int towrite;
706
707 towrite = 0;
708 if (prexor) { /* rmw */
709 if (dev->towrite &&
710 test_bit(R5_Wantprexor, &dev->flags))
711 towrite = 1;
712 } else { /* rcw */
713 if (i != pd_idx && dev->towrite &&
714 test_bit(R5_LOCKED, &dev->flags))
715 towrite = 1;
716 }
717
718 if (towrite) {
719 struct bio *wbi;
720
721 spin_lock(&sh->lock);
722 chosen = dev->towrite;
723 dev->towrite = NULL;
724 BUG_ON(dev->written);
725 wbi = dev->written = chosen;
726 spin_unlock(&sh->lock);
727
728 while (wbi && wbi->bi_sector <
729 dev->sector + STRIPE_SECTORS) {
730 tx = async_copy_data(1, wbi, dev->page,
731 dev->sector, tx);
732 wbi = r5_next_bio(wbi, dev->sector);
733 }
734 }
735 }
736
737 return tx;
738}
739
740static void ops_complete_postxor(void *stripe_head_ref)
741{
742 struct stripe_head *sh = stripe_head_ref;
743
e46b272b 744 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
745 (unsigned long long)sh->sector);
746
747 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
748 set_bit(STRIPE_HANDLE, &sh->state);
749 release_stripe(sh);
750}
751
752static void ops_complete_write(void *stripe_head_ref)
753{
754 struct stripe_head *sh = stripe_head_ref;
755 int disks = sh->disks, i, pd_idx = sh->pd_idx;
756
e46b272b 757 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
758 (unsigned long long)sh->sector);
759
760 for (i = disks; i--; ) {
761 struct r5dev *dev = &sh->dev[i];
762 if (dev->written || i == pd_idx)
763 set_bit(R5_UPTODATE, &dev->flags);
764 }
765
766 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
767 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
768
769 set_bit(STRIPE_HANDLE, &sh->state);
770 release_stripe(sh);
771}
772
773static void
6c55be8b
DW
774ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
775 unsigned long pending)
91c00924
DW
776{
777 /* kernel stack size limits the total number of disks */
778 int disks = sh->disks;
779 struct page *xor_srcs[disks];
780
781 int count = 0, pd_idx = sh->pd_idx, i;
782 struct page *xor_dest;
6c55be8b 783 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924
DW
784 unsigned long flags;
785 dma_async_tx_callback callback;
786
e46b272b 787 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
788 (unsigned long long)sh->sector);
789
790 /* check if prexor is active which means only process blocks
791 * that are part of a read-modify-write (written)
792 */
793 if (prexor) {
794 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
795 for (i = disks; i--; ) {
796 struct r5dev *dev = &sh->dev[i];
797 if (dev->written)
798 xor_srcs[count++] = dev->page;
799 }
800 } else {
801 xor_dest = sh->dev[pd_idx].page;
802 for (i = disks; i--; ) {
803 struct r5dev *dev = &sh->dev[i];
804 if (i != pd_idx)
805 xor_srcs[count++] = dev->page;
806 }
807 }
808
809 /* check whether this postxor is part of a write */
6c55be8b 810 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
91c00924
DW
811 ops_complete_write : ops_complete_postxor;
812
813 /* 1/ if we prexor'd then the dest is reused as a source
814 * 2/ if we did not prexor then we are redoing the parity
815 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
816 * for the synchronous xor case
817 */
818 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
819 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
820
821 atomic_inc(&sh->count);
822
823 if (unlikely(count == 1)) {
824 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
825 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
826 flags, tx, callback, sh);
827 } else
828 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
829 flags, tx, callback, sh);
830}
831
832static void ops_complete_check(void *stripe_head_ref)
833{
834 struct stripe_head *sh = stripe_head_ref;
91c00924 835
e46b272b 836 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
837 (unsigned long long)sh->sector);
838
ecc65c9b 839 sh->check_state = check_state_check_result;
91c00924
DW
840 set_bit(STRIPE_HANDLE, &sh->state);
841 release_stripe(sh);
842}
843
844static void ops_run_check(struct stripe_head *sh)
845{
846 /* kernel stack size limits the total number of disks */
847 int disks = sh->disks;
848 struct page *xor_srcs[disks];
849 struct dma_async_tx_descriptor *tx;
850
851 int count = 0, pd_idx = sh->pd_idx, i;
852 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
853
e46b272b 854 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
855 (unsigned long long)sh->sector);
856
857 for (i = disks; i--; ) {
858 struct r5dev *dev = &sh->dev[i];
859 if (i != pd_idx)
860 xor_srcs[count++] = dev->page;
861 }
862
863 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
864 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
865
91c00924
DW
866 atomic_inc(&sh->count);
867 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
868 ops_complete_check, sh);
869}
870
ecc65c9b
DW
871static void raid5_run_ops(struct stripe_head *sh, unsigned long pending,
872 unsigned long ops_request)
91c00924
DW
873{
874 int overlap_clear = 0, i, disks = sh->disks;
875 struct dma_async_tx_descriptor *tx = NULL;
876
83de75cc 877 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
878 ops_run_biofill(sh);
879 overlap_clear++;
880 }
881
976ea8d4 882 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request))
91c00924
DW
883 tx = ops_run_compute5(sh, pending);
884
885 if (test_bit(STRIPE_OP_PREXOR, &pending))
886 tx = ops_run_prexor(sh, tx);
887
888 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
6c55be8b 889 tx = ops_run_biodrain(sh, tx, pending);
91c00924
DW
890 overlap_clear++;
891 }
892
893 if (test_bit(STRIPE_OP_POSTXOR, &pending))
6c55be8b 894 ops_run_postxor(sh, tx, pending);
91c00924 895
ecc65c9b 896 if (test_bit(STRIPE_OP_CHECK, &ops_request))
91c00924
DW
897 ops_run_check(sh);
898
91c00924
DW
899 if (overlap_clear)
900 for (i = disks; i--; ) {
901 struct r5dev *dev = &sh->dev[i];
902 if (test_and_clear_bit(R5_Overlap, &dev->flags))
903 wake_up(&sh->raid_conf->wait_for_overlap);
904 }
905}
906
3f294f4f 907static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
908{
909 struct stripe_head *sh;
3f294f4f
N
910 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
911 if (!sh)
912 return 0;
913 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
914 sh->raid_conf = conf;
915 spin_lock_init(&sh->lock);
916
917 if (grow_buffers(sh, conf->raid_disks)) {
918 shrink_buffers(sh, conf->raid_disks);
919 kmem_cache_free(conf->slab_cache, sh);
920 return 0;
921 }
7ecaa1e6 922 sh->disks = conf->raid_disks;
3f294f4f
N
923 /* we just created an active stripe so... */
924 atomic_set(&sh->count, 1);
925 atomic_inc(&conf->active_stripes);
926 INIT_LIST_HEAD(&sh->lru);
927 release_stripe(sh);
928 return 1;
929}
930
931static int grow_stripes(raid5_conf_t *conf, int num)
932{
e18b890b 933 struct kmem_cache *sc;
1da177e4
LT
934 int devs = conf->raid_disks;
935
42b9bebe
N
936 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
937 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
938 conf->active_name = 0;
939 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 940 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 941 0, 0, NULL);
1da177e4
LT
942 if (!sc)
943 return 1;
944 conf->slab_cache = sc;
ad01c9e3 945 conf->pool_size = devs;
16a53ecc 946 while (num--)
3f294f4f 947 if (!grow_one_stripe(conf))
1da177e4 948 return 1;
1da177e4
LT
949 return 0;
950}
29269553
N
951
952#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
953static int resize_stripes(raid5_conf_t *conf, int newsize)
954{
955 /* Make all the stripes able to hold 'newsize' devices.
956 * New slots in each stripe get 'page' set to a new page.
957 *
958 * This happens in stages:
959 * 1/ create a new kmem_cache and allocate the required number of
960 * stripe_heads.
961 * 2/ gather all the old stripe_heads and tranfer the pages across
962 * to the new stripe_heads. This will have the side effect of
963 * freezing the array as once all stripe_heads have been collected,
964 * no IO will be possible. Old stripe heads are freed once their
965 * pages have been transferred over, and the old kmem_cache is
966 * freed when all stripes are done.
967 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
968 * we simple return a failre status - no need to clean anything up.
969 * 4/ allocate new pages for the new slots in the new stripe_heads.
970 * If this fails, we don't bother trying the shrink the
971 * stripe_heads down again, we just leave them as they are.
972 * As each stripe_head is processed the new one is released into
973 * active service.
974 *
975 * Once step2 is started, we cannot afford to wait for a write,
976 * so we use GFP_NOIO allocations.
977 */
978 struct stripe_head *osh, *nsh;
979 LIST_HEAD(newstripes);
980 struct disk_info *ndisks;
981 int err = 0;
e18b890b 982 struct kmem_cache *sc;
ad01c9e3
N
983 int i;
984
985 if (newsize <= conf->pool_size)
986 return 0; /* never bother to shrink */
987
2a2275d6
N
988 md_allow_write(conf->mddev);
989
ad01c9e3
N
990 /* Step 1 */
991 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 993 0, 0, NULL);
ad01c9e3
N
994 if (!sc)
995 return -ENOMEM;
996
997 for (i = conf->max_nr_stripes; i; i--) {
998 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999 if (!nsh)
1000 break;
1001
1002 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004 nsh->raid_conf = conf;
1005 spin_lock_init(&nsh->lock);
1006
1007 list_add(&nsh->lru, &newstripes);
1008 }
1009 if (i) {
1010 /* didn't get enough, give up */
1011 while (!list_empty(&newstripes)) {
1012 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013 list_del(&nsh->lru);
1014 kmem_cache_free(sc, nsh);
1015 }
1016 kmem_cache_destroy(sc);
1017 return -ENOMEM;
1018 }
1019 /* Step 2 - Must use GFP_NOIO now.
1020 * OK, we have enough stripes, start collecting inactive
1021 * stripes and copying them over
1022 */
1023 list_for_each_entry(nsh, &newstripes, lru) {
1024 spin_lock_irq(&conf->device_lock);
1025 wait_event_lock_irq(conf->wait_for_stripe,
1026 !list_empty(&conf->inactive_list),
1027 conf->device_lock,
b3b46be3 1028 unplug_slaves(conf->mddev)
ad01c9e3
N
1029 );
1030 osh = get_free_stripe(conf);
1031 spin_unlock_irq(&conf->device_lock);
1032 atomic_set(&nsh->count, 1);
1033 for(i=0; i<conf->pool_size; i++)
1034 nsh->dev[i].page = osh->dev[i].page;
1035 for( ; i<newsize; i++)
1036 nsh->dev[i].page = NULL;
1037 kmem_cache_free(conf->slab_cache, osh);
1038 }
1039 kmem_cache_destroy(conf->slab_cache);
1040
1041 /* Step 3.
1042 * At this point, we are holding all the stripes so the array
1043 * is completely stalled, so now is a good time to resize
1044 * conf->disks.
1045 */
1046 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047 if (ndisks) {
1048 for (i=0; i<conf->raid_disks; i++)
1049 ndisks[i] = conf->disks[i];
1050 kfree(conf->disks);
1051 conf->disks = ndisks;
1052 } else
1053 err = -ENOMEM;
1054
1055 /* Step 4, return new stripes to service */
1056 while(!list_empty(&newstripes)) {
1057 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058 list_del_init(&nsh->lru);
1059 for (i=conf->raid_disks; i < newsize; i++)
1060 if (nsh->dev[i].page == NULL) {
1061 struct page *p = alloc_page(GFP_NOIO);
1062 nsh->dev[i].page = p;
1063 if (!p)
1064 err = -ENOMEM;
1065 }
1066 release_stripe(nsh);
1067 }
1068 /* critical section pass, GFP_NOIO no longer needed */
1069
1070 conf->slab_cache = sc;
1071 conf->active_name = 1-conf->active_name;
1072 conf->pool_size = newsize;
1073 return err;
1074}
29269553 1075#endif
1da177e4 1076
3f294f4f 1077static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1078{
1079 struct stripe_head *sh;
1080
3f294f4f
N
1081 spin_lock_irq(&conf->device_lock);
1082 sh = get_free_stripe(conf);
1083 spin_unlock_irq(&conf->device_lock);
1084 if (!sh)
1085 return 0;
78bafebd 1086 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1087 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1088 kmem_cache_free(conf->slab_cache, sh);
1089 atomic_dec(&conf->active_stripes);
1090 return 1;
1091}
1092
1093static void shrink_stripes(raid5_conf_t *conf)
1094{
1095 while (drop_one_stripe(conf))
1096 ;
1097
29fc7e3e
N
1098 if (conf->slab_cache)
1099 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1100 conf->slab_cache = NULL;
1101}
1102
6712ecf8 1103static void raid5_end_read_request(struct bio * bi, int error)
1da177e4
LT
1104{
1105 struct stripe_head *sh = bi->bi_private;
1106 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1107 int disks = sh->disks, i;
1da177e4 1108 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1109 char b[BDEVNAME_SIZE];
1110 mdk_rdev_t *rdev;
1da177e4 1111
1da177e4
LT
1112
1113 for (i=0 ; i<disks; i++)
1114 if (bi == &sh->dev[i].req)
1115 break;
1116
45b4233c
DW
1117 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1118 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1119 uptodate);
1120 if (i == disks) {
1121 BUG();
6712ecf8 1122 return;
1da177e4
LT
1123 }
1124
1125 if (uptodate) {
1da177e4 1126 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1127 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1128 rdev = conf->disks[i].rdev;
6be9d494
BS
1129 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1130 " (%lu sectors at %llu on %s)\n",
1131 mdname(conf->mddev), STRIPE_SECTORS,
1132 (unsigned long long)(sh->sector
1133 + rdev->data_offset),
1134 bdevname(rdev->bdev, b));
4e5314b5
N
1135 clear_bit(R5_ReadError, &sh->dev[i].flags);
1136 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137 }
ba22dcbf
N
1138 if (atomic_read(&conf->disks[i].rdev->read_errors))
1139 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1140 } else {
d6950432 1141 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1142 int retry = 0;
d6950432
N
1143 rdev = conf->disks[i].rdev;
1144
1da177e4 1145 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1146 atomic_inc(&rdev->read_errors);
ba22dcbf 1147 if (conf->mddev->degraded)
6be9d494
BS
1148 printk_rl(KERN_WARNING
1149 "raid5:%s: read error not correctable "
1150 "(sector %llu on %s).\n",
1151 mdname(conf->mddev),
1152 (unsigned long long)(sh->sector
1153 + rdev->data_offset),
1154 bdn);
ba22dcbf 1155 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1156 /* Oh, no!!! */
6be9d494
BS
1157 printk_rl(KERN_WARNING
1158 "raid5:%s: read error NOT corrected!! "
1159 "(sector %llu on %s).\n",
1160 mdname(conf->mddev),
1161 (unsigned long long)(sh->sector
1162 + rdev->data_offset),
1163 bdn);
d6950432 1164 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1165 > conf->max_nr_stripes)
14f8d26b 1166 printk(KERN_WARNING
d6950432
N
1167 "raid5:%s: Too many read errors, failing device %s.\n",
1168 mdname(conf->mddev), bdn);
ba22dcbf
N
1169 else
1170 retry = 1;
1171 if (retry)
1172 set_bit(R5_ReadError, &sh->dev[i].flags);
1173 else {
4e5314b5
N
1174 clear_bit(R5_ReadError, &sh->dev[i].flags);
1175 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1176 md_error(conf->mddev, rdev);
ba22dcbf 1177 }
1da177e4
LT
1178 }
1179 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1180 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1181 set_bit(STRIPE_HANDLE, &sh->state);
1182 release_stripe(sh);
1da177e4
LT
1183}
1184
6712ecf8 1185static void raid5_end_write_request (struct bio *bi, int error)
1da177e4
LT
1186{
1187 struct stripe_head *sh = bi->bi_private;
1188 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1189 int disks = sh->disks, i;
1da177e4
LT
1190 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191
1da177e4
LT
1192 for (i=0 ; i<disks; i++)
1193 if (bi == &sh->dev[i].req)
1194 break;
1195
45b4233c 1196 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1197 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1198 uptodate);
1199 if (i == disks) {
1200 BUG();
6712ecf8 1201 return;
1da177e4
LT
1202 }
1203
1da177e4
LT
1204 if (!uptodate)
1205 md_error(conf->mddev, conf->disks[i].rdev);
1206
1207 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208
1209 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1211 release_stripe(sh);
1da177e4
LT
1212}
1213
1214
1215static sector_t compute_blocknr(struct stripe_head *sh, int i);
1216
1217static void raid5_build_block (struct stripe_head *sh, int i)
1218{
1219 struct r5dev *dev = &sh->dev[i];
1220
1221 bio_init(&dev->req);
1222 dev->req.bi_io_vec = &dev->vec;
1223 dev->req.bi_vcnt++;
1224 dev->req.bi_max_vecs++;
1225 dev->vec.bv_page = dev->page;
1226 dev->vec.bv_len = STRIPE_SIZE;
1227 dev->vec.bv_offset = 0;
1228
1229 dev->req.bi_sector = sh->sector;
1230 dev->req.bi_private = sh;
1231
1232 dev->flags = 0;
16a53ecc 1233 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1234}
1235
1236static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237{
1238 char b[BDEVNAME_SIZE];
1239 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1240 pr_debug("raid5: error called\n");
1da177e4 1241
b2d444d7 1242 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1243 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1244 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1245 unsigned long flags;
1246 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1247 mddev->degraded++;
c04be0aa 1248 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1249 /*
1250 * if recovery was running, make sure it aborts.
1251 */
dfc70645 1252 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1253 }
b2d444d7 1254 set_bit(Faulty, &rdev->flags);
1da177e4 1255 printk (KERN_ALERT
d7a420c9
NA
1256 "raid5: Disk failure on %s, disabling device.\n"
1257 "raid5: Operation continuing on %d devices.\n",
02c2de8c 1258 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1259 }
16a53ecc 1260}
1da177e4
LT
1261
1262/*
1263 * Input: a 'big' sector number,
1264 * Output: index of the data and parity disk, and the sector # in them.
1265 */
1266static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1267 unsigned int data_disks, unsigned int * dd_idx,
1268 unsigned int * pd_idx, raid5_conf_t *conf)
1269{
1270 long stripe;
1271 unsigned long chunk_number;
1272 unsigned int chunk_offset;
1273 sector_t new_sector;
1274 int sectors_per_chunk = conf->chunk_size >> 9;
1275
1276 /* First compute the information on this sector */
1277
1278 /*
1279 * Compute the chunk number and the sector offset inside the chunk
1280 */
1281 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1282 chunk_number = r_sector;
1283 BUG_ON(r_sector != chunk_number);
1284
1285 /*
1286 * Compute the stripe number
1287 */
1288 stripe = chunk_number / data_disks;
1289
1290 /*
1291 * Compute the data disk and parity disk indexes inside the stripe
1292 */
1293 *dd_idx = chunk_number % data_disks;
1294
1295 /*
1296 * Select the parity disk based on the user selected algorithm.
1297 */
16a53ecc
N
1298 switch(conf->level) {
1299 case 4:
1da177e4 1300 *pd_idx = data_disks;
16a53ecc
N
1301 break;
1302 case 5:
1303 switch (conf->algorithm) {
1da177e4
LT
1304 case ALGORITHM_LEFT_ASYMMETRIC:
1305 *pd_idx = data_disks - stripe % raid_disks;
1306 if (*dd_idx >= *pd_idx)
1307 (*dd_idx)++;
1308 break;
1309 case ALGORITHM_RIGHT_ASYMMETRIC:
1310 *pd_idx = stripe % raid_disks;
1311 if (*dd_idx >= *pd_idx)
1312 (*dd_idx)++;
1313 break;
1314 case ALGORITHM_LEFT_SYMMETRIC:
1315 *pd_idx = data_disks - stripe % raid_disks;
1316 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1317 break;
1318 case ALGORITHM_RIGHT_SYMMETRIC:
1319 *pd_idx = stripe % raid_disks;
1320 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1321 break;
1322 default:
14f8d26b 1323 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1324 conf->algorithm);
16a53ecc
N
1325 }
1326 break;
1327 case 6:
1328
1329 /**** FIX THIS ****/
1330 switch (conf->algorithm) {
1331 case ALGORITHM_LEFT_ASYMMETRIC:
1332 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1333 if (*pd_idx == raid_disks-1)
1334 (*dd_idx)++; /* Q D D D P */
1335 else if (*dd_idx >= *pd_idx)
1336 (*dd_idx) += 2; /* D D P Q D */
1337 break;
1338 case ALGORITHM_RIGHT_ASYMMETRIC:
1339 *pd_idx = stripe % raid_disks;
1340 if (*pd_idx == raid_disks-1)
1341 (*dd_idx)++; /* Q D D D P */
1342 else if (*dd_idx >= *pd_idx)
1343 (*dd_idx) += 2; /* D D P Q D */
1344 break;
1345 case ALGORITHM_LEFT_SYMMETRIC:
1346 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1348 break;
1349 case ALGORITHM_RIGHT_SYMMETRIC:
1350 *pd_idx = stripe % raid_disks;
1351 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1352 break;
1353 default:
1354 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1355 conf->algorithm);
1356 }
1357 break;
1da177e4
LT
1358 }
1359
1360 /*
1361 * Finally, compute the new sector number
1362 */
1363 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1364 return new_sector;
1365}
1366
1367
1368static sector_t compute_blocknr(struct stripe_head *sh, int i)
1369{
1370 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1371 int raid_disks = sh->disks;
1372 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1373 sector_t new_sector = sh->sector, check;
1374 int sectors_per_chunk = conf->chunk_size >> 9;
1375 sector_t stripe;
1376 int chunk_offset;
1377 int chunk_number, dummy1, dummy2, dd_idx = i;
1378 sector_t r_sector;
1379
16a53ecc 1380
1da177e4
LT
1381 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1382 stripe = new_sector;
1383 BUG_ON(new_sector != stripe);
1384
16a53ecc
N
1385 if (i == sh->pd_idx)
1386 return 0;
1387 switch(conf->level) {
1388 case 4: break;
1389 case 5:
1390 switch (conf->algorithm) {
1da177e4
LT
1391 case ALGORITHM_LEFT_ASYMMETRIC:
1392 case ALGORITHM_RIGHT_ASYMMETRIC:
1393 if (i > sh->pd_idx)
1394 i--;
1395 break;
1396 case ALGORITHM_LEFT_SYMMETRIC:
1397 case ALGORITHM_RIGHT_SYMMETRIC:
1398 if (i < sh->pd_idx)
1399 i += raid_disks;
1400 i -= (sh->pd_idx + 1);
1401 break;
1402 default:
14f8d26b 1403 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1404 conf->algorithm);
1405 }
1406 break;
1407 case 6:
16a53ecc
N
1408 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1409 return 0; /* It is the Q disk */
1410 switch (conf->algorithm) {
1411 case ALGORITHM_LEFT_ASYMMETRIC:
1412 case ALGORITHM_RIGHT_ASYMMETRIC:
1413 if (sh->pd_idx == raid_disks-1)
1414 i--; /* Q D D D P */
1415 else if (i > sh->pd_idx)
1416 i -= 2; /* D D P Q D */
1417 break;
1418 case ALGORITHM_LEFT_SYMMETRIC:
1419 case ALGORITHM_RIGHT_SYMMETRIC:
1420 if (sh->pd_idx == raid_disks-1)
1421 i--; /* Q D D D P */
1422 else {
1423 /* D D P Q D */
1424 if (i < sh->pd_idx)
1425 i += raid_disks;
1426 i -= (sh->pd_idx + 2);
1427 }
1428 break;
1429 default:
1430 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 1431 conf->algorithm);
16a53ecc
N
1432 }
1433 break;
1da177e4
LT
1434 }
1435
1436 chunk_number = stripe * data_disks + i;
1437 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1438
1439 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1440 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 1441 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1442 return 0;
1443 }
1444 return r_sector;
1445}
1446
1447
1448
1449/*
16a53ecc
N
1450 * Copy data between a page in the stripe cache, and one or more bion
1451 * The page could align with the middle of the bio, or there could be
1452 * several bion, each with several bio_vecs, which cover part of the page
1453 * Multiple bion are linked together on bi_next. There may be extras
1454 * at the end of this list. We ignore them.
1da177e4
LT
1455 */
1456static void copy_data(int frombio, struct bio *bio,
1457 struct page *page,
1458 sector_t sector)
1459{
1460 char *pa = page_address(page);
1461 struct bio_vec *bvl;
1462 int i;
1463 int page_offset;
1464
1465 if (bio->bi_sector >= sector)
1466 page_offset = (signed)(bio->bi_sector - sector) * 512;
1467 else
1468 page_offset = (signed)(sector - bio->bi_sector) * -512;
1469 bio_for_each_segment(bvl, bio, i) {
1470 int len = bio_iovec_idx(bio,i)->bv_len;
1471 int clen;
1472 int b_offset = 0;
1473
1474 if (page_offset < 0) {
1475 b_offset = -page_offset;
1476 page_offset += b_offset;
1477 len -= b_offset;
1478 }
1479
1480 if (len > 0 && page_offset + len > STRIPE_SIZE)
1481 clen = STRIPE_SIZE - page_offset;
1482 else clen = len;
16a53ecc 1483
1da177e4
LT
1484 if (clen > 0) {
1485 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1486 if (frombio)
1487 memcpy(pa+page_offset, ba+b_offset, clen);
1488 else
1489 memcpy(ba+b_offset, pa+page_offset, clen);
1490 __bio_kunmap_atomic(ba, KM_USER0);
1491 }
1492 if (clen < len) /* hit end of page */
1493 break;
1494 page_offset += len;
1495 }
1496}
1497
9bc89cd8
DW
1498#define check_xor() do { \
1499 if (count == MAX_XOR_BLOCKS) { \
1500 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1501 count = 0; \
1502 } \
1da177e4
LT
1503 } while(0)
1504
16a53ecc
N
1505static void compute_parity6(struct stripe_head *sh, int method)
1506{
1507 raid6_conf_t *conf = sh->raid_conf;
f416885e 1508 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1509 struct bio *chosen;
1510 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1511 void *ptrs[disks];
1512
1513 qd_idx = raid6_next_disk(pd_idx, disks);
1514 d0_idx = raid6_next_disk(qd_idx, disks);
1515
45b4233c 1516 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1517 (unsigned long long)sh->sector, method);
1518
1519 switch(method) {
1520 case READ_MODIFY_WRITE:
1521 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1522 case RECONSTRUCT_WRITE:
1523 for (i= disks; i-- ;)
1524 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1525 chosen = sh->dev[i].towrite;
1526 sh->dev[i].towrite = NULL;
1527
1528 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1529 wake_up(&conf->wait_for_overlap);
1530
52e5f9d1 1531 BUG_ON(sh->dev[i].written);
16a53ecc
N
1532 sh->dev[i].written = chosen;
1533 }
1534 break;
1535 case CHECK_PARITY:
1536 BUG(); /* Not implemented yet */
1537 }
1538
1539 for (i = disks; i--;)
1540 if (sh->dev[i].written) {
1541 sector_t sector = sh->dev[i].sector;
1542 struct bio *wbi = sh->dev[i].written;
1543 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1544 copy_data(1, wbi, sh->dev[i].page, sector);
1545 wbi = r5_next_bio(wbi, sector);
1546 }
1547
1548 set_bit(R5_LOCKED, &sh->dev[i].flags);
1549 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1550 }
1551
1552// switch(method) {
1553// case RECONSTRUCT_WRITE:
1554// case CHECK_PARITY:
1555// case UPDATE_PARITY:
1556 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1557 /* FIX: Is this ordering of drives even remotely optimal? */
1558 count = 0;
1559 i = d0_idx;
1560 do {
1561 ptrs[count++] = page_address(sh->dev[i].page);
1562 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1563 printk("block %d/%d not uptodate on parity calc\n", i,count);
1564 i = raid6_next_disk(i, disks);
1565 } while ( i != d0_idx );
1566// break;
1567// }
1568
1569 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1570
1571 switch(method) {
1572 case RECONSTRUCT_WRITE:
1573 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1574 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1575 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1576 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1577 break;
1578 case UPDATE_PARITY:
1579 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1580 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1581 break;
1582 }
1583}
1584
1585
1586/* Compute one missing block */
1587static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1588{
f416885e 1589 int i, count, disks = sh->disks;
9bc89cd8 1590 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1591 int pd_idx = sh->pd_idx;
1592 int qd_idx = raid6_next_disk(pd_idx, disks);
1593
45b4233c 1594 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1595 (unsigned long long)sh->sector, dd_idx);
1596
1597 if ( dd_idx == qd_idx ) {
1598 /* We're actually computing the Q drive */
1599 compute_parity6(sh, UPDATE_PARITY);
1600 } else {
9bc89cd8
DW
1601 dest = page_address(sh->dev[dd_idx].page);
1602 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1603 count = 0;
16a53ecc
N
1604 for (i = disks ; i--; ) {
1605 if (i == dd_idx || i == qd_idx)
1606 continue;
1607 p = page_address(sh->dev[i].page);
1608 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1609 ptr[count++] = p;
1610 else
1611 printk("compute_block() %d, stripe %llu, %d"
1612 " not present\n", dd_idx,
1613 (unsigned long long)sh->sector, i);
1614
1615 check_xor();
1616 }
9bc89cd8
DW
1617 if (count)
1618 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1619 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1620 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1621 }
1622}
1623
1624/* Compute two missing blocks */
1625static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1626{
f416885e 1627 int i, count, disks = sh->disks;
16a53ecc
N
1628 int pd_idx = sh->pd_idx;
1629 int qd_idx = raid6_next_disk(pd_idx, disks);
1630 int d0_idx = raid6_next_disk(qd_idx, disks);
1631 int faila, failb;
1632
1633 /* faila and failb are disk numbers relative to d0_idx */
1634 /* pd_idx become disks-2 and qd_idx become disks-1 */
1635 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1636 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1637
1638 BUG_ON(faila == failb);
1639 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1640
45b4233c 1641 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
16a53ecc
N
1642 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1643
1644 if ( failb == disks-1 ) {
1645 /* Q disk is one of the missing disks */
1646 if ( faila == disks-2 ) {
1647 /* Missing P+Q, just recompute */
1648 compute_parity6(sh, UPDATE_PARITY);
1649 return;
1650 } else {
1651 /* We're missing D+Q; recompute D from P */
1652 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1653 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1654 return;
1655 }
1656 }
1657
1658 /* We're missing D+P or D+D; build pointer table */
1659 {
1660 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661 void *ptrs[disks];
1662
1663 count = 0;
1664 i = d0_idx;
1665 do {
1666 ptrs[count++] = page_address(sh->dev[i].page);
1667 i = raid6_next_disk(i, disks);
1668 if (i != dd_idx1 && i != dd_idx2 &&
1669 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1670 printk("compute_2 with missing block %d/%d\n", count, i);
1671 } while ( i != d0_idx );
1672
1673 if ( failb == disks-2 ) {
1674 /* We're missing D+P. */
1675 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1676 } else {
1677 /* We're missing D+D. */
1678 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1679 }
1680
1681 /* Both the above update both missing blocks */
1682 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1683 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1684 }
1685}
1686
e33129d8
DW
1687static int
1688handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1689{
1690 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1691 int locked = 0;
1692
1693 if (rcw) {
1694 /* if we are not expanding this is a proper write request, and
1695 * there will be bios with new data to be drained into the
1696 * stripe cache
1697 */
1698 if (!expand) {
1699 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1700 sh->ops.count++;
1701 }
16a53ecc 1702
e33129d8
DW
1703 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1704 sh->ops.count++;
1705
1706 for (i = disks; i--; ) {
1707 struct r5dev *dev = &sh->dev[i];
1708
1709 if (dev->towrite) {
1710 set_bit(R5_LOCKED, &dev->flags);
1711 if (!expand)
1712 clear_bit(R5_UPTODATE, &dev->flags);
1713 locked++;
1714 }
1715 }
8b3e6cdc
DW
1716 if (locked + 1 == disks)
1717 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1718 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1719 } else {
1720 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1721 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1722
1723 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1724 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1725 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1726
1727 sh->ops.count += 3;
1728
1729 for (i = disks; i--; ) {
1730 struct r5dev *dev = &sh->dev[i];
1731 if (i == pd_idx)
1732 continue;
1733
1734 /* For a read-modify write there may be blocks that are
1735 * locked for reading while others are ready to be
1736 * written so we distinguish these blocks by the
1737 * R5_Wantprexor bit
1738 */
1739 if (dev->towrite &&
1740 (test_bit(R5_UPTODATE, &dev->flags) ||
1741 test_bit(R5_Wantcompute, &dev->flags))) {
1742 set_bit(R5_Wantprexor, &dev->flags);
1743 set_bit(R5_LOCKED, &dev->flags);
1744 clear_bit(R5_UPTODATE, &dev->flags);
1745 locked++;
1746 }
1747 }
1748 }
1749
1750 /* keep the parity disk locked while asynchronous operations
1751 * are in flight
1752 */
1753 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1754 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1755 locked++;
1756
1757 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
e46b272b 1758 __func__, (unsigned long long)sh->sector,
e33129d8
DW
1759 locked, sh->ops.pending);
1760
1761 return locked;
1762}
16a53ecc 1763
1da177e4
LT
1764/*
1765 * Each stripe/dev can have one or more bion attached.
16a53ecc 1766 * toread/towrite point to the first in a chain.
1da177e4
LT
1767 * The bi_next chain must be in order.
1768 */
1769static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1770{
1771 struct bio **bip;
1772 raid5_conf_t *conf = sh->raid_conf;
72626685 1773 int firstwrite=0;
1da177e4 1774
45b4233c 1775 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1776 (unsigned long long)bi->bi_sector,
1777 (unsigned long long)sh->sector);
1778
1779
1780 spin_lock(&sh->lock);
1781 spin_lock_irq(&conf->device_lock);
72626685 1782 if (forwrite) {
1da177e4 1783 bip = &sh->dev[dd_idx].towrite;
72626685
N
1784 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1785 firstwrite = 1;
1786 } else
1da177e4
LT
1787 bip = &sh->dev[dd_idx].toread;
1788 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1789 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1790 goto overlap;
1791 bip = & (*bip)->bi_next;
1792 }
1793 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1794 goto overlap;
1795
78bafebd 1796 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1797 if (*bip)
1798 bi->bi_next = *bip;
1799 *bip = bi;
1800 bi->bi_phys_segments ++;
1801 spin_unlock_irq(&conf->device_lock);
1802 spin_unlock(&sh->lock);
1803
45b4233c 1804 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1805 (unsigned long long)bi->bi_sector,
1806 (unsigned long long)sh->sector, dd_idx);
1807
72626685 1808 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1809 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1810 STRIPE_SECTORS, 0);
ae3c20cc 1811 sh->bm_seq = conf->seq_flush+1;
72626685
N
1812 set_bit(STRIPE_BIT_DELAY, &sh->state);
1813 }
1814
1da177e4
LT
1815 if (forwrite) {
1816 /* check if page is covered */
1817 sector_t sector = sh->dev[dd_idx].sector;
1818 for (bi=sh->dev[dd_idx].towrite;
1819 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1820 bi && bi->bi_sector <= sector;
1821 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1822 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1823 sector = bi->bi_sector + (bi->bi_size>>9);
1824 }
1825 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1826 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1827 }
1828 return 1;
1829
1830 overlap:
1831 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1832 spin_unlock_irq(&conf->device_lock);
1833 spin_unlock(&sh->lock);
1834 return 0;
1835}
1836
29269553
N
1837static void end_reshape(raid5_conf_t *conf);
1838
16a53ecc
N
1839static int page_is_zero(struct page *p)
1840{
1841 char *a = page_address(p);
1842 return ((*(u32*)a) == 0 &&
1843 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1844}
1845
ccfcc3c1
N
1846static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1847{
1848 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1849 int pd_idx, dd_idx;
2d2063ce
CQH
1850 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1851
b875e531
N
1852 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1853 *sectors_per_chunk + chunk_offset,
1854 disks, disks - conf->max_degraded,
1855 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1856 return pd_idx;
1857}
1858
a4456856
DW
1859static void
1860handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1861 struct stripe_head_state *s, int disks,
1862 struct bio **return_bi)
1863{
1864 int i;
1865 for (i = disks; i--; ) {
1866 struct bio *bi;
1867 int bitmap_end = 0;
1868
1869 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1870 mdk_rdev_t *rdev;
1871 rcu_read_lock();
1872 rdev = rcu_dereference(conf->disks[i].rdev);
1873 if (rdev && test_bit(In_sync, &rdev->flags))
1874 /* multiple read failures in one stripe */
1875 md_error(conf->mddev, rdev);
1876 rcu_read_unlock();
1877 }
1878 spin_lock_irq(&conf->device_lock);
1879 /* fail all writes first */
1880 bi = sh->dev[i].towrite;
1881 sh->dev[i].towrite = NULL;
1882 if (bi) {
1883 s->to_write--;
1884 bitmap_end = 1;
1885 }
1886
1887 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1888 wake_up(&conf->wait_for_overlap);
1889
1890 while (bi && bi->bi_sector <
1891 sh->dev[i].sector + STRIPE_SECTORS) {
1892 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1893 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1894 if (--bi->bi_phys_segments == 0) {
1895 md_write_end(conf->mddev);
1896 bi->bi_next = *return_bi;
1897 *return_bi = bi;
1898 }
1899 bi = nextbi;
1900 }
1901 /* and fail all 'written' */
1902 bi = sh->dev[i].written;
1903 sh->dev[i].written = NULL;
1904 if (bi) bitmap_end = 1;
1905 while (bi && bi->bi_sector <
1906 sh->dev[i].sector + STRIPE_SECTORS) {
1907 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1908 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1909 if (--bi->bi_phys_segments == 0) {
1910 md_write_end(conf->mddev);
1911 bi->bi_next = *return_bi;
1912 *return_bi = bi;
1913 }
1914 bi = bi2;
1915 }
1916
b5e98d65
DW
1917 /* fail any reads if this device is non-operational and
1918 * the data has not reached the cache yet.
1919 */
1920 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1921 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1922 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
1923 bi = sh->dev[i].toread;
1924 sh->dev[i].toread = NULL;
1925 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1926 wake_up(&conf->wait_for_overlap);
1927 if (bi) s->to_read--;
1928 while (bi && bi->bi_sector <
1929 sh->dev[i].sector + STRIPE_SECTORS) {
1930 struct bio *nextbi =
1931 r5_next_bio(bi, sh->dev[i].sector);
1932 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1933 if (--bi->bi_phys_segments == 0) {
1934 bi->bi_next = *return_bi;
1935 *return_bi = bi;
1936 }
1937 bi = nextbi;
1938 }
1939 }
1940 spin_unlock_irq(&conf->device_lock);
1941 if (bitmap_end)
1942 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1943 STRIPE_SECTORS, 0, 0);
1944 }
1945
8b3e6cdc
DW
1946 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1947 if (atomic_dec_and_test(&conf->pending_full_writes))
1948 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
1949}
1950
f38e1219
DW
1951/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1952 * to process
1953 */
1954static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1955 struct stripe_head_state *s, int disk_idx, int disks)
1956{
1957 struct r5dev *dev = &sh->dev[disk_idx];
1958 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1959
f38e1219
DW
1960 /* is the data in this block needed, and can we get it? */
1961 if (!test_bit(R5_LOCKED, &dev->flags) &&
1962 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1963 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1964 s->syncing || s->expanding || (s->failed &&
1965 (failed_dev->toread || (failed_dev->towrite &&
1966 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1967 ))))) {
976ea8d4
DW
1968 /* We would like to get this block, possibly by computing it,
1969 * otherwise read it if the backing disk is insync
f38e1219 1970 */
976ea8d4 1971 if ((s->uptodate == disks - 1) &&
ecc65c9b 1972 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
1973 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1974 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
1975 set_bit(R5_Wantcompute, &dev->flags);
1976 sh->ops.target = disk_idx;
1977 s->req_compute = 1;
f38e1219
DW
1978 /* Careful: from this point on 'uptodate' is in the eye
1979 * of raid5_run_ops which services 'compute' operations
1980 * before writes. R5_Wantcompute flags a block that will
1981 * be R5_UPTODATE by the time it is needed for a
1982 * subsequent operation.
1983 */
1984 s->uptodate++;
1985 return 0; /* uptodate + compute == disks */
976ea8d4 1986 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
1987 set_bit(R5_LOCKED, &dev->flags);
1988 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
1989 s->locked++;
1990 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1991 s->syncing);
1992 }
1993 }
1994
1995 return ~0;
1996}
1997
a4456856
DW
1998static void handle_issuing_new_read_requests5(struct stripe_head *sh,
1999 struct stripe_head_state *s, int disks)
2000{
2001 int i;
f38e1219 2002
f38e1219
DW
2003 /* look for blocks to read/compute, skip this if a compute
2004 * is already in flight, or if the stripe contents are in the
2005 * midst of changing due to a write
2006 */
976ea8d4
DW
2007 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2008 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2009 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
f38e1219
DW
2010 for (i = disks; i--; )
2011 if (__handle_issuing_new_read_requests5(
2012 sh, s, i, disks) == 0)
2013 break;
a4456856
DW
2014 }
2015 set_bit(STRIPE_HANDLE, &sh->state);
2016}
2017
2018static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2019 struct stripe_head_state *s, struct r6_state *r6s,
2020 int disks)
2021{
2022 int i;
2023 for (i = disks; i--; ) {
2024 struct r5dev *dev = &sh->dev[i];
2025 if (!test_bit(R5_LOCKED, &dev->flags) &&
2026 !test_bit(R5_UPTODATE, &dev->flags) &&
2027 (dev->toread || (dev->towrite &&
2028 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2029 s->syncing || s->expanding ||
2030 (s->failed >= 1 &&
2031 (sh->dev[r6s->failed_num[0]].toread ||
2032 s->to_write)) ||
2033 (s->failed >= 2 &&
2034 (sh->dev[r6s->failed_num[1]].toread ||
2035 s->to_write)))) {
2036 /* we would like to get this block, possibly
2037 * by computing it, but we might not be able to
2038 */
c337869d
DW
2039 if ((s->uptodate == disks - 1) &&
2040 (s->failed && (i == r6s->failed_num[0] ||
2041 i == r6s->failed_num[1]))) {
45b4233c 2042 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2043 (unsigned long long)sh->sector, i);
2044 compute_block_1(sh, i, 0);
2045 s->uptodate++;
2046 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2047 /* Computing 2-failure is *very* expensive; only
2048 * do it if failed >= 2
2049 */
2050 int other;
2051 for (other = disks; other--; ) {
2052 if (other == i)
2053 continue;
2054 if (!test_bit(R5_UPTODATE,
2055 &sh->dev[other].flags))
2056 break;
2057 }
2058 BUG_ON(other < 0);
45b4233c 2059 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2060 (unsigned long long)sh->sector,
2061 i, other);
2062 compute_block_2(sh, i, other);
2063 s->uptodate += 2;
2064 } else if (test_bit(R5_Insync, &dev->flags)) {
2065 set_bit(R5_LOCKED, &dev->flags);
2066 set_bit(R5_Wantread, &dev->flags);
2067 s->locked++;
45b4233c 2068 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2069 i, s->syncing);
2070 }
2071 }
2072 }
2073 set_bit(STRIPE_HANDLE, &sh->state);
2074}
2075
2076
2077/* handle_completed_write_requests
2078 * any written block on an uptodate or failed drive can be returned.
2079 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2080 * never LOCKED, so we don't need to test 'failed' directly.
2081 */
2082static void handle_completed_write_requests(raid5_conf_t *conf,
2083 struct stripe_head *sh, int disks, struct bio **return_bi)
2084{
2085 int i;
2086 struct r5dev *dev;
2087
2088 for (i = disks; i--; )
2089 if (sh->dev[i].written) {
2090 dev = &sh->dev[i];
2091 if (!test_bit(R5_LOCKED, &dev->flags) &&
2092 test_bit(R5_UPTODATE, &dev->flags)) {
2093 /* We can return any write requests */
2094 struct bio *wbi, *wbi2;
2095 int bitmap_end = 0;
45b4233c 2096 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2097 spin_lock_irq(&conf->device_lock);
2098 wbi = dev->written;
2099 dev->written = NULL;
2100 while (wbi && wbi->bi_sector <
2101 dev->sector + STRIPE_SECTORS) {
2102 wbi2 = r5_next_bio(wbi, dev->sector);
2103 if (--wbi->bi_phys_segments == 0) {
2104 md_write_end(conf->mddev);
2105 wbi->bi_next = *return_bi;
2106 *return_bi = wbi;
2107 }
2108 wbi = wbi2;
2109 }
2110 if (dev->towrite == NULL)
2111 bitmap_end = 1;
2112 spin_unlock_irq(&conf->device_lock);
2113 if (bitmap_end)
2114 bitmap_endwrite(conf->mddev->bitmap,
2115 sh->sector,
2116 STRIPE_SECTORS,
2117 !test_bit(STRIPE_DEGRADED, &sh->state),
2118 0);
2119 }
2120 }
8b3e6cdc
DW
2121
2122 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2123 if (atomic_dec_and_test(&conf->pending_full_writes))
2124 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2125}
2126
2127static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2128 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2129{
2130 int rmw = 0, rcw = 0, i;
2131 for (i = disks; i--; ) {
2132 /* would I have to read this buffer for read_modify_write */
2133 struct r5dev *dev = &sh->dev[i];
2134 if ((dev->towrite || i == sh->pd_idx) &&
2135 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2136 !(test_bit(R5_UPTODATE, &dev->flags) ||
2137 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2138 if (test_bit(R5_Insync, &dev->flags))
2139 rmw++;
2140 else
2141 rmw += 2*disks; /* cannot read it */
2142 }
2143 /* Would I have to read this buffer for reconstruct_write */
2144 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2145 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2146 !(test_bit(R5_UPTODATE, &dev->flags) ||
2147 test_bit(R5_Wantcompute, &dev->flags))) {
2148 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2149 else
2150 rcw += 2*disks;
2151 }
2152 }
45b4233c 2153 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2154 (unsigned long long)sh->sector, rmw, rcw);
2155 set_bit(STRIPE_HANDLE, &sh->state);
2156 if (rmw < rcw && rmw > 0)
2157 /* prefer read-modify-write, but need to get some data */
2158 for (i = disks; i--; ) {
2159 struct r5dev *dev = &sh->dev[i];
2160 if ((dev->towrite || i == sh->pd_idx) &&
2161 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2162 !(test_bit(R5_UPTODATE, &dev->flags) ||
2163 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2164 test_bit(R5_Insync, &dev->flags)) {
2165 if (
2166 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2167 pr_debug("Read_old block "
a4456856
DW
2168 "%d for r-m-w\n", i);
2169 set_bit(R5_LOCKED, &dev->flags);
2170 set_bit(R5_Wantread, &dev->flags);
2171 s->locked++;
2172 } else {
2173 set_bit(STRIPE_DELAYED, &sh->state);
2174 set_bit(STRIPE_HANDLE, &sh->state);
2175 }
2176 }
2177 }
2178 if (rcw <= rmw && rcw > 0)
2179 /* want reconstruct write, but need to get some data */
2180 for (i = disks; i--; ) {
2181 struct r5dev *dev = &sh->dev[i];
2182 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2183 i != sh->pd_idx &&
2184 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2185 !(test_bit(R5_UPTODATE, &dev->flags) ||
2186 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2187 test_bit(R5_Insync, &dev->flags)) {
2188 if (
2189 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2190 pr_debug("Read_old block "
a4456856
DW
2191 "%d for Reconstruct\n", i);
2192 set_bit(R5_LOCKED, &dev->flags);
2193 set_bit(R5_Wantread, &dev->flags);
2194 s->locked++;
2195 } else {
2196 set_bit(STRIPE_DELAYED, &sh->state);
2197 set_bit(STRIPE_HANDLE, &sh->state);
2198 }
2199 }
2200 }
2201 /* now if nothing is locked, and if we have enough data,
2202 * we can start a write request
2203 */
f38e1219
DW
2204 /* since handle_stripe can be called at any time we need to handle the
2205 * case where a compute block operation has been submitted and then a
2206 * subsequent call wants to start a write request. raid5_run_ops only
2207 * handles the case where compute block and postxor are requested
2208 * simultaneously. If this is not the case then new writes need to be
2209 * held off until the compute completes.
2210 */
976ea8d4
DW
2211 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2212 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2213 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
e33129d8 2214 s->locked += handle_write_operations5(sh, rcw == 0, 0);
a4456856
DW
2215}
2216
2217static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2218 struct stripe_head *sh, struct stripe_head_state *s,
2219 struct r6_state *r6s, int disks)
2220{
2221 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2222 int qd_idx = r6s->qd_idx;
2223 for (i = disks; i--; ) {
2224 struct r5dev *dev = &sh->dev[i];
2225 /* Would I have to read this buffer for reconstruct_write */
2226 if (!test_bit(R5_OVERWRITE, &dev->flags)
2227 && i != pd_idx && i != qd_idx
2228 && (!test_bit(R5_LOCKED, &dev->flags)
2229 ) &&
2230 !test_bit(R5_UPTODATE, &dev->flags)) {
2231 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2232 else {
45b4233c 2233 pr_debug("raid6: must_compute: "
a4456856
DW
2234 "disk %d flags=%#lx\n", i, dev->flags);
2235 must_compute++;
2236 }
2237 }
2238 }
45b4233c 2239 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2240 (unsigned long long)sh->sector, rcw, must_compute);
2241 set_bit(STRIPE_HANDLE, &sh->state);
2242
2243 if (rcw > 0)
2244 /* want reconstruct write, but need to get some data */
2245 for (i = disks; i--; ) {
2246 struct r5dev *dev = &sh->dev[i];
2247 if (!test_bit(R5_OVERWRITE, &dev->flags)
2248 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2249 && !test_bit(R5_LOCKED, &dev->flags) &&
2250 !test_bit(R5_UPTODATE, &dev->flags) &&
2251 test_bit(R5_Insync, &dev->flags)) {
2252 if (
2253 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2254 pr_debug("Read_old stripe %llu "
a4456856
DW
2255 "block %d for Reconstruct\n",
2256 (unsigned long long)sh->sector, i);
2257 set_bit(R5_LOCKED, &dev->flags);
2258 set_bit(R5_Wantread, &dev->flags);
2259 s->locked++;
2260 } else {
45b4233c 2261 pr_debug("Request delayed stripe %llu "
a4456856
DW
2262 "block %d for Reconstruct\n",
2263 (unsigned long long)sh->sector, i);
2264 set_bit(STRIPE_DELAYED, &sh->state);
2265 set_bit(STRIPE_HANDLE, &sh->state);
2266 }
2267 }
2268 }
2269 /* now if nothing is locked, and if we have enough data, we can start a
2270 * write request
2271 */
2272 if (s->locked == 0 && rcw == 0 &&
2273 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2274 if (must_compute > 0) {
2275 /* We have failed blocks and need to compute them */
2276 switch (s->failed) {
2277 case 0:
2278 BUG();
2279 case 1:
2280 compute_block_1(sh, r6s->failed_num[0], 0);
2281 break;
2282 case 2:
2283 compute_block_2(sh, r6s->failed_num[0],
2284 r6s->failed_num[1]);
2285 break;
2286 default: /* This request should have been failed? */
2287 BUG();
2288 }
2289 }
2290
45b4233c 2291 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2292 (unsigned long long)sh->sector);
2293 compute_parity6(sh, RECONSTRUCT_WRITE);
2294 /* now every locked buffer is ready to be written */
2295 for (i = disks; i--; )
2296 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2297 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2298 (unsigned long long)sh->sector, i);
2299 s->locked++;
2300 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2301 }
8b3e6cdc
DW
2302 if (s->locked == disks)
2303 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2304 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2305 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2306 set_bit(STRIPE_INSYNC, &sh->state);
2307
2308 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2309 atomic_dec(&conf->preread_active_stripes);
2310 if (atomic_read(&conf->preread_active_stripes) <
2311 IO_THRESHOLD)
2312 md_wakeup_thread(conf->mddev->thread);
2313 }
2314 }
2315}
2316
2317static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2318 struct stripe_head_state *s, int disks)
2319{
ecc65c9b 2320 struct r5dev *dev = NULL;
bd2ab670 2321
a4456856 2322 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2323
ecc65c9b
DW
2324 switch (sh->check_state) {
2325 case check_state_idle:
2326 /* start a new check operation if there are no failures */
bd2ab670 2327 if (s->failed == 0) {
bd2ab670 2328 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2329 sh->check_state = check_state_run;
2330 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2331 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2332 s->uptodate--;
ecc65c9b 2333 break;
bd2ab670 2334 }
ecc65c9b
DW
2335 dev = &sh->dev[s->failed_num];
2336 /* fall through */
2337 case check_state_compute_result:
2338 sh->check_state = check_state_idle;
2339 if (!dev)
2340 dev = &sh->dev[sh->pd_idx];
2341
2342 /* check that a write has not made the stripe insync */
2343 if (test_bit(STRIPE_INSYNC, &sh->state))
2344 break;
c8894419 2345
a4456856 2346 /* either failed parity check, or recovery is happening */
a4456856
DW
2347 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2348 BUG_ON(s->uptodate != disks);
2349
2350 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2351 s->locked++;
a4456856 2352 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2353
a4456856 2354 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2355 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2356 break;
2357 case check_state_run:
2358 break; /* we will be called again upon completion */
2359 case check_state_check_result:
2360 sh->check_state = check_state_idle;
2361
2362 /* if a failure occurred during the check operation, leave
2363 * STRIPE_INSYNC not set and let the stripe be handled again
2364 */
2365 if (s->failed)
2366 break;
2367
2368 /* handle a successful check operation, if parity is correct
2369 * we are done. Otherwise update the mismatch count and repair
2370 * parity if !MD_RECOVERY_CHECK
2371 */
2372 if (sh->ops.zero_sum_result == 0)
2373 /* parity is correct (on disc,
2374 * not in buffer any more)
2375 */
2376 set_bit(STRIPE_INSYNC, &sh->state);
2377 else {
2378 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2379 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2380 /* don't try to repair!! */
2381 set_bit(STRIPE_INSYNC, &sh->state);
2382 else {
2383 sh->check_state = check_state_compute_run;
976ea8d4 2384 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2385 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2386 set_bit(R5_Wantcompute,
2387 &sh->dev[sh->pd_idx].flags);
2388 sh->ops.target = sh->pd_idx;
2389 s->uptodate++;
2390 }
2391 }
2392 break;
2393 case check_state_compute_run:
2394 break;
2395 default:
2396 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2397 __func__, sh->check_state,
2398 (unsigned long long) sh->sector);
2399 BUG();
a4456856
DW
2400 }
2401}
2402
2403
2404static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2405 struct stripe_head_state *s,
2406 struct r6_state *r6s, struct page *tmp_page,
2407 int disks)
2408{
2409 int update_p = 0, update_q = 0;
2410 struct r5dev *dev;
2411 int pd_idx = sh->pd_idx;
2412 int qd_idx = r6s->qd_idx;
2413
2414 set_bit(STRIPE_HANDLE, &sh->state);
2415
2416 BUG_ON(s->failed > 2);
2417 BUG_ON(s->uptodate < disks);
2418 /* Want to check and possibly repair P and Q.
2419 * However there could be one 'failed' device, in which
2420 * case we can only check one of them, possibly using the
2421 * other to generate missing data
2422 */
2423
2424 /* If !tmp_page, we cannot do the calculations,
2425 * but as we have set STRIPE_HANDLE, we will soon be called
2426 * by stripe_handle with a tmp_page - just wait until then.
2427 */
2428 if (tmp_page) {
2429 if (s->failed == r6s->q_failed) {
2430 /* The only possible failed device holds 'Q', so it
2431 * makes sense to check P (If anything else were failed,
2432 * we would have used P to recreate it).
2433 */
2434 compute_block_1(sh, pd_idx, 1);
2435 if (!page_is_zero(sh->dev[pd_idx].page)) {
2436 compute_block_1(sh, pd_idx, 0);
2437 update_p = 1;
2438 }
2439 }
2440 if (!r6s->q_failed && s->failed < 2) {
2441 /* q is not failed, and we didn't use it to generate
2442 * anything, so it makes sense to check it
2443 */
2444 memcpy(page_address(tmp_page),
2445 page_address(sh->dev[qd_idx].page),
2446 STRIPE_SIZE);
2447 compute_parity6(sh, UPDATE_PARITY);
2448 if (memcmp(page_address(tmp_page),
2449 page_address(sh->dev[qd_idx].page),
2450 STRIPE_SIZE) != 0) {
2451 clear_bit(STRIPE_INSYNC, &sh->state);
2452 update_q = 1;
2453 }
2454 }
2455 if (update_p || update_q) {
2456 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2457 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2458 /* don't try to repair!! */
2459 update_p = update_q = 0;
2460 }
2461
2462 /* now write out any block on a failed drive,
2463 * or P or Q if they need it
2464 */
2465
2466 if (s->failed == 2) {
2467 dev = &sh->dev[r6s->failed_num[1]];
2468 s->locked++;
2469 set_bit(R5_LOCKED, &dev->flags);
2470 set_bit(R5_Wantwrite, &dev->flags);
2471 }
2472 if (s->failed >= 1) {
2473 dev = &sh->dev[r6s->failed_num[0]];
2474 s->locked++;
2475 set_bit(R5_LOCKED, &dev->flags);
2476 set_bit(R5_Wantwrite, &dev->flags);
2477 }
2478
2479 if (update_p) {
2480 dev = &sh->dev[pd_idx];
2481 s->locked++;
2482 set_bit(R5_LOCKED, &dev->flags);
2483 set_bit(R5_Wantwrite, &dev->flags);
2484 }
2485 if (update_q) {
2486 dev = &sh->dev[qd_idx];
2487 s->locked++;
2488 set_bit(R5_LOCKED, &dev->flags);
2489 set_bit(R5_Wantwrite, &dev->flags);
2490 }
2491 clear_bit(STRIPE_DEGRADED, &sh->state);
2492
2493 set_bit(STRIPE_INSYNC, &sh->state);
2494 }
2495}
2496
2497static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2498 struct r6_state *r6s)
2499{
2500 int i;
2501
2502 /* We have read all the blocks in this stripe and now we need to
2503 * copy some of them into a target stripe for expand.
2504 */
f0a50d37 2505 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2506 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2507 for (i = 0; i < sh->disks; i++)
a2e08551 2508 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
a4456856
DW
2509 int dd_idx, pd_idx, j;
2510 struct stripe_head *sh2;
2511
2512 sector_t bn = compute_blocknr(sh, i);
2513 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2514 conf->raid_disks -
2515 conf->max_degraded, &dd_idx,
2516 &pd_idx, conf);
2517 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2518 pd_idx, 1);
2519 if (sh2 == NULL)
2520 /* so far only the early blocks of this stripe
2521 * have been requested. When later blocks
2522 * get requested, we will try again
2523 */
2524 continue;
2525 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2526 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2527 /* must have already done this block */
2528 release_stripe(sh2);
2529 continue;
2530 }
f0a50d37
DW
2531
2532 /* place all the copies on one channel */
2533 tx = async_memcpy(sh2->dev[dd_idx].page,
2534 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2535 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2536
a4456856
DW
2537 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2538 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2539 for (j = 0; j < conf->raid_disks; j++)
2540 if (j != sh2->pd_idx &&
a2e08551
N
2541 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2542 sh2->disks)) &&
a4456856
DW
2543 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2544 break;
2545 if (j == conf->raid_disks) {
2546 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2547 set_bit(STRIPE_HANDLE, &sh2->state);
2548 }
2549 release_stripe(sh2);
f0a50d37 2550
a4456856 2551 }
a2e08551
N
2552 /* done submitting copies, wait for them to complete */
2553 if (tx) {
2554 async_tx_ack(tx);
2555 dma_wait_for_async_tx(tx);
2556 }
a4456856 2557}
1da177e4 2558
6bfe0b49 2559
1da177e4
LT
2560/*
2561 * handle_stripe - do things to a stripe.
2562 *
2563 * We lock the stripe and then examine the state of various bits
2564 * to see what needs to be done.
2565 * Possible results:
2566 * return some read request which now have data
2567 * return some write requests which are safely on disc
2568 * schedule a read on some buffers
2569 * schedule a write of some buffers
2570 * return confirmation of parity correctness
2571 *
1da177e4
LT
2572 * buffers are taken off read_list or write_list, and bh_cache buffers
2573 * get BH_Lock set before the stripe lock is released.
2574 *
2575 */
a4456856 2576
16a53ecc 2577static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2578{
2579 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2580 int disks = sh->disks, i;
2581 struct bio *return_bi = NULL;
2582 struct stripe_head_state s;
1da177e4 2583 struct r5dev *dev;
d84e0f10 2584 unsigned long pending = 0;
6bfe0b49 2585 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2586 int prexor;
1da177e4 2587
a4456856 2588 memset(&s, 0, sizeof(s));
d84e0f10
DW
2589 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2590 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2591 atomic_read(&sh->count), sh->pd_idx,
2592 sh->ops.pending, sh->ops.ack, sh->ops.complete);
1da177e4
LT
2593
2594 spin_lock(&sh->lock);
2595 clear_bit(STRIPE_HANDLE, &sh->state);
2596 clear_bit(STRIPE_DELAYED, &sh->state);
2597
a4456856
DW
2598 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2599 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2600 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2601
83de75cc 2602 /* Now to look around and see what can be done */
9910f16a 2603 rcu_read_lock();
1da177e4
LT
2604 for (i=disks; i--; ) {
2605 mdk_rdev_t *rdev;
a4456856 2606 struct r5dev *dev = &sh->dev[i];
1da177e4 2607 clear_bit(R5_Insync, &dev->flags);
1da177e4 2608
b5e98d65
DW
2609 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2610 "written %p\n", i, dev->flags, dev->toread, dev->read,
2611 dev->towrite, dev->written);
2612
2613 /* maybe we can request a biofill operation
2614 *
2615 * new wantfill requests are only permitted while
83de75cc 2616 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2617 */
2618 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2619 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2620 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2621
2622 /* now count some things */
a4456856
DW
2623 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2624 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2625 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2626
b5e98d65
DW
2627 if (test_bit(R5_Wantfill, &dev->flags))
2628 s.to_fill++;
2629 else if (dev->toread)
a4456856 2630 s.to_read++;
1da177e4 2631 if (dev->towrite) {
a4456856 2632 s.to_write++;
1da177e4 2633 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2634 s.non_overwrite++;
1da177e4 2635 }
a4456856
DW
2636 if (dev->written)
2637 s.written++;
9910f16a 2638 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
2639 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2640 blocked_rdev = rdev;
2641 atomic_inc(&rdev->nr_pending);
2642 break;
2643 }
b2d444d7 2644 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2645 /* The ReadError flag will just be confusing now */
4e5314b5
N
2646 clear_bit(R5_ReadError, &dev->flags);
2647 clear_bit(R5_ReWrite, &dev->flags);
2648 }
b2d444d7 2649 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2650 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2651 s.failed++;
2652 s.failed_num = i;
1da177e4
LT
2653 } else
2654 set_bit(R5_Insync, &dev->flags);
2655 }
9910f16a 2656 rcu_read_unlock();
b5e98d65 2657
6bfe0b49
DW
2658 if (unlikely(blocked_rdev)) {
2659 set_bit(STRIPE_HANDLE, &sh->state);
2660 goto unlock;
2661 }
2662
83de75cc
DW
2663 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2664 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2665 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2666 }
b5e98d65 2667
45b4233c 2668 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2669 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2670 s.locked, s.uptodate, s.to_read, s.to_write,
2671 s.failed, s.failed_num);
1da177e4
LT
2672 /* check if the array has lost two devices and, if so, some requests might
2673 * need to be failed
2674 */
a4456856
DW
2675 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2676 handle_requests_to_failed_array(conf, sh, &s, disks,
2677 &return_bi);
2678 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2679 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2680 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2681 s.syncing = 0;
1da177e4
LT
2682 }
2683
2684 /* might be able to return some write requests if the parity block
2685 * is safe, or on a failed drive
2686 */
2687 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2688 if ( s.written &&
2689 ((test_bit(R5_Insync, &dev->flags) &&
2690 !test_bit(R5_LOCKED, &dev->flags) &&
2691 test_bit(R5_UPTODATE, &dev->flags)) ||
2692 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2693 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2694
2695 /* Now we might consider reading some blocks, either to check/generate
2696 * parity, or to satisfy requests
2697 * or to load a block that is being partially written.
2698 */
a4456856 2699 if (s.to_read || s.non_overwrite ||
976ea8d4 2700 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
a4456856 2701 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4 2702
e33129d8
DW
2703 /* Now we check to see if any write operations have recently
2704 * completed
2705 */
2706
2707 /* leave prexor set until postxor is done, allows us to distinguish
2708 * a rmw from a rcw during biodrain
2709 */
e0a115e5 2710 prexor = 0;
e33129d8
DW
2711 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2712 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2713
e0a115e5 2714 prexor = 1;
e33129d8
DW
2715 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2716 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2717 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2718
2719 for (i = disks; i--; )
2720 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2721 }
2722
2723 /* if only POSTXOR is set then this is an 'expand' postxor */
2724 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2725 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2726
2727 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2728 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2729 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2730
2731 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2732 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2733 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2734
2735 /* All the 'written' buffers and the parity block are ready to
2736 * be written back to disk
2737 */
2738 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2739 for (i = disks; i--; ) {
2740 dev = &sh->dev[i];
2741 if (test_bit(R5_LOCKED, &dev->flags) &&
2742 (i == sh->pd_idx || dev->written)) {
2743 pr_debug("Writing block %d\n", i);
2744 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2745 if (prexor)
2746 continue;
e33129d8
DW
2747 if (!test_bit(R5_Insync, &dev->flags) ||
2748 (i == sh->pd_idx && s.failed == 0))
2749 set_bit(STRIPE_INSYNC, &sh->state);
2750 }
2751 }
2752 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2753 atomic_dec(&conf->preread_active_stripes);
2754 if (atomic_read(&conf->preread_active_stripes) <
2755 IO_THRESHOLD)
2756 md_wakeup_thread(conf->mddev->thread);
2757 }
2758 }
2759
2760 /* Now to consider new write requests and what else, if anything
2761 * should be read. We do not handle new writes when:
2762 * 1/ A 'write' operation (copy+xor) is already in flight.
2763 * 2/ A 'check' operation is in flight, as it may clobber the parity
2764 * block.
2765 */
2766 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
ecc65c9b 2767 !sh->check_state)
a4456856 2768 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2769
2770 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2771 * Any reads will already have been scheduled, so we just see if enough
2772 * data is available. The parity check is held off while parity
2773 * dependent operations are in flight.
1da177e4 2774 */
ecc65c9b
DW
2775 if (sh->check_state ||
2776 (s.syncing && s.locked == 0 &&
976ea8d4 2777 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2778 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2779 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2780
a4456856 2781 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2782 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2783 clear_bit(STRIPE_SYNCING, &sh->state);
2784 }
4e5314b5
N
2785
2786 /* If the failed drive is just a ReadError, then we might need to progress
2787 * the repair/check process
2788 */
a4456856
DW
2789 if (s.failed == 1 && !conf->mddev->ro &&
2790 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2791 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2792 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2793 ) {
a4456856 2794 dev = &sh->dev[s.failed_num];
4e5314b5
N
2795 if (!test_bit(R5_ReWrite, &dev->flags)) {
2796 set_bit(R5_Wantwrite, &dev->flags);
2797 set_bit(R5_ReWrite, &dev->flags);
2798 set_bit(R5_LOCKED, &dev->flags);
a4456856 2799 s.locked++;
4e5314b5
N
2800 } else {
2801 /* let's read it back */
2802 set_bit(R5_Wantread, &dev->flags);
2803 set_bit(R5_LOCKED, &dev->flags);
a4456856 2804 s.locked++;
4e5314b5
N
2805 }
2806 }
2807
f0a50d37
DW
2808 /* Finish postxor operations initiated by the expansion
2809 * process
2810 */
2811 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2812 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2813
2814 clear_bit(STRIPE_EXPANDING, &sh->state);
2815
2816 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2817 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2818 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2819
2b7497f0 2820 for (i = conf->raid_disks; i--; )
ccfcc3c1 2821 set_bit(R5_Wantwrite, &sh->dev[i].flags);
efe31143
NB
2822 set_bit(R5_LOCKED, &dev->flags);
2823 s.locked++;
f0a50d37
DW
2824 }
2825
2826 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2827 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2828 /* Need to write out all blocks after computing parity */
2829 sh->disks = conf->raid_disks;
2830 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2831 conf->raid_disks);
a2e08551 2832 s.locked += handle_write_operations5(sh, 1, 1);
f0a50d37 2833 } else if (s.expanded &&
efe31143 2834 s.locked == 0 &&
f0a50d37 2835 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
ccfcc3c1 2836 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2837 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2838 wake_up(&conf->wait_for_overlap);
2839 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2840 }
2841
0f94e87c 2842 if (s.expanding && s.locked == 0 &&
976ea8d4 2843 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2844 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2845
d84e0f10
DW
2846 if (sh->ops.count)
2847 pending = get_stripe_work(sh);
2848
6bfe0b49 2849 unlock:
1da177e4
LT
2850 spin_unlock(&sh->lock);
2851
6bfe0b49
DW
2852 /* wait for this device to become unblocked */
2853 if (unlikely(blocked_rdev))
2854 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2855
ecc65c9b
DW
2856 if (pending || s.ops_request)
2857 raid5_run_ops(sh, pending, s.ops_request);
d84e0f10 2858
c4e5ac0a 2859 ops_run_io(sh, &s);
2b7497f0 2860
a4456856 2861 return_io(return_bi);
1da177e4
LT
2862}
2863
16a53ecc 2864static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2865{
16a53ecc 2866 raid6_conf_t *conf = sh->raid_conf;
f416885e 2867 int disks = sh->disks;
a4456856
DW
2868 struct bio *return_bi = NULL;
2869 int i, pd_idx = sh->pd_idx;
2870 struct stripe_head_state s;
2871 struct r6_state r6s;
16a53ecc 2872 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 2873 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 2874
a4456856 2875 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
45b4233c 2876 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2877 "pd_idx=%d, qd_idx=%d\n",
2878 (unsigned long long)sh->sector, sh->state,
2879 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2880 memset(&s, 0, sizeof(s));
72626685 2881
16a53ecc
N
2882 spin_lock(&sh->lock);
2883 clear_bit(STRIPE_HANDLE, &sh->state);
2884 clear_bit(STRIPE_DELAYED, &sh->state);
2885
a4456856
DW
2886 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2887 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2888 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2889 /* Now to look around and see what can be done */
1da177e4
LT
2890
2891 rcu_read_lock();
16a53ecc
N
2892 for (i=disks; i--; ) {
2893 mdk_rdev_t *rdev;
2894 dev = &sh->dev[i];
2895 clear_bit(R5_Insync, &dev->flags);
1da177e4 2896
45b4233c 2897 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
2898 i, dev->flags, dev->toread, dev->towrite, dev->written);
2899 /* maybe we can reply to a read */
2900 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2901 struct bio *rbi, *rbi2;
45b4233c 2902 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
2903 spin_lock_irq(&conf->device_lock);
2904 rbi = dev->toread;
2905 dev->toread = NULL;
2906 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2907 wake_up(&conf->wait_for_overlap);
2908 spin_unlock_irq(&conf->device_lock);
2909 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2910 copy_data(0, rbi, dev->page, dev->sector);
2911 rbi2 = r5_next_bio(rbi, dev->sector);
2912 spin_lock_irq(&conf->device_lock);
2913 if (--rbi->bi_phys_segments == 0) {
2914 rbi->bi_next = return_bi;
2915 return_bi = rbi;
2916 }
2917 spin_unlock_irq(&conf->device_lock);
2918 rbi = rbi2;
2919 }
2920 }
1da177e4 2921
16a53ecc 2922 /* now count some things */
a4456856
DW
2923 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2924 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2925
16a53ecc 2926
a4456856
DW
2927 if (dev->toread)
2928 s.to_read++;
16a53ecc 2929 if (dev->towrite) {
a4456856 2930 s.to_write++;
16a53ecc 2931 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2932 s.non_overwrite++;
16a53ecc 2933 }
a4456856
DW
2934 if (dev->written)
2935 s.written++;
16a53ecc 2936 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
2937 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2938 blocked_rdev = rdev;
2939 atomic_inc(&rdev->nr_pending);
2940 break;
2941 }
16a53ecc
N
2942 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2943 /* The ReadError flag will just be confusing now */
2944 clear_bit(R5_ReadError, &dev->flags);
2945 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2946 }
16a53ecc
N
2947 if (!rdev || !test_bit(In_sync, &rdev->flags)
2948 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2949 if (s.failed < 2)
2950 r6s.failed_num[s.failed] = i;
2951 s.failed++;
16a53ecc
N
2952 } else
2953 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2954 }
2955 rcu_read_unlock();
6bfe0b49
DW
2956
2957 if (unlikely(blocked_rdev)) {
2958 set_bit(STRIPE_HANDLE, &sh->state);
2959 goto unlock;
2960 }
45b4233c 2961 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 2962 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
2963 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2964 r6s.failed_num[0], r6s.failed_num[1]);
2965 /* check if the array has lost >2 devices and, if so, some requests
2966 * might need to be failed
16a53ecc 2967 */
a4456856
DW
2968 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2969 handle_requests_to_failed_array(conf, sh, &s, disks,
2970 &return_bi);
2971 if (s.failed > 2 && s.syncing) {
16a53ecc
N
2972 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2973 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2974 s.syncing = 0;
16a53ecc
N
2975 }
2976
2977 /*
2978 * might be able to return some write requests if the parity blocks
2979 * are safe, or on a failed drive
2980 */
2981 pdev = &sh->dev[pd_idx];
a4456856
DW
2982 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2983 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2984 qdev = &sh->dev[r6s.qd_idx];
2985 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2986 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2987
2988 if ( s.written &&
2989 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 2990 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
2991 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2992 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 2993 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
2994 && test_bit(R5_UPTODATE, &qdev->flags)))))
2995 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
2996
2997 /* Now we might consider reading some blocks, either to check/generate
2998 * parity, or to satisfy requests
2999 * or to load a block that is being partially written.
3000 */
a4456856
DW
3001 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3002 (s.syncing && (s.uptodate < disks)) || s.expanding)
3003 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
3004
3005 /* now to consider writing and what else, if anything should be read */
a4456856
DW
3006 if (s.to_write)
3007 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3008
3009 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3010 * Any reads will already have been scheduled, so we just see if enough
3011 * data is available
16a53ecc 3012 */
a4456856
DW
3013 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3014 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3015
a4456856 3016 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3017 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3018 clear_bit(STRIPE_SYNCING, &sh->state);
3019 }
3020
3021 /* If the failed drives are just a ReadError, then we might need
3022 * to progress the repair/check process
3023 */
a4456856
DW
3024 if (s.failed <= 2 && !conf->mddev->ro)
3025 for (i = 0; i < s.failed; i++) {
3026 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3027 if (test_bit(R5_ReadError, &dev->flags)
3028 && !test_bit(R5_LOCKED, &dev->flags)
3029 && test_bit(R5_UPTODATE, &dev->flags)
3030 ) {
3031 if (!test_bit(R5_ReWrite, &dev->flags)) {
3032 set_bit(R5_Wantwrite, &dev->flags);
3033 set_bit(R5_ReWrite, &dev->flags);
3034 set_bit(R5_LOCKED, &dev->flags);
3035 } else {
3036 /* let's read it back */
3037 set_bit(R5_Wantread, &dev->flags);
3038 set_bit(R5_LOCKED, &dev->flags);
3039 }
3040 }
3041 }
f416885e 3042
a4456856 3043 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3044 /* Need to write out all blocks after computing P&Q */
3045 sh->disks = conf->raid_disks;
3046 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3047 conf->raid_disks);
3048 compute_parity6(sh, RECONSTRUCT_WRITE);
3049 for (i = conf->raid_disks ; i-- ; ) {
3050 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3051 s.locked++;
f416885e
N
3052 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3053 }
3054 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3055 } else if (s.expanded) {
f416885e
N
3056 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3057 atomic_dec(&conf->reshape_stripes);
3058 wake_up(&conf->wait_for_overlap);
3059 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3060 }
3061
0f94e87c 3062 if (s.expanding && s.locked == 0 &&
976ea8d4 3063 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3064 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3065
6bfe0b49 3066 unlock:
16a53ecc
N
3067 spin_unlock(&sh->lock);
3068
6bfe0b49
DW
3069 /* wait for this device to become unblocked */
3070 if (unlikely(blocked_rdev))
3071 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3072
f0e43bcd 3073 ops_run_io(sh, &s);
16a53ecc 3074
f0e43bcd 3075 return_io(return_bi);
16a53ecc
N
3076}
3077
3078static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3079{
3080 if (sh->raid_conf->level == 6)
3081 handle_stripe6(sh, tmp_page);
3082 else
3083 handle_stripe5(sh);
3084}
3085
3086
3087
3088static void raid5_activate_delayed(raid5_conf_t *conf)
3089{
3090 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3091 while (!list_empty(&conf->delayed_list)) {
3092 struct list_head *l = conf->delayed_list.next;
3093 struct stripe_head *sh;
3094 sh = list_entry(l, struct stripe_head, lru);
3095 list_del_init(l);
3096 clear_bit(STRIPE_DELAYED, &sh->state);
3097 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3098 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3099 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3100 }
6ed3003c
N
3101 } else
3102 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3103}
3104
3105static void activate_bit_delay(raid5_conf_t *conf)
3106{
3107 /* device_lock is held */
3108 struct list_head head;
3109 list_add(&head, &conf->bitmap_list);
3110 list_del_init(&conf->bitmap_list);
3111 while (!list_empty(&head)) {
3112 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3113 list_del_init(&sh->lru);
3114 atomic_inc(&sh->count);
3115 __release_stripe(conf, sh);
3116 }
3117}
3118
3119static void unplug_slaves(mddev_t *mddev)
3120{
3121 raid5_conf_t *conf = mddev_to_conf(mddev);
3122 int i;
3123
3124 rcu_read_lock();
3125 for (i=0; i<mddev->raid_disks; i++) {
3126 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3127 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3128 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3129
3130 atomic_inc(&rdev->nr_pending);
3131 rcu_read_unlock();
3132
2ad8b1ef 3133 blk_unplug(r_queue);
16a53ecc
N
3134
3135 rdev_dec_pending(rdev, mddev);
3136 rcu_read_lock();
3137 }
3138 }
3139 rcu_read_unlock();
3140}
3141
165125e1 3142static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3143{
3144 mddev_t *mddev = q->queuedata;
3145 raid5_conf_t *conf = mddev_to_conf(mddev);
3146 unsigned long flags;
3147
3148 spin_lock_irqsave(&conf->device_lock, flags);
3149
3150 if (blk_remove_plug(q)) {
3151 conf->seq_flush++;
3152 raid5_activate_delayed(conf);
72626685 3153 }
1da177e4
LT
3154 md_wakeup_thread(mddev->thread);
3155
3156 spin_unlock_irqrestore(&conf->device_lock, flags);
3157
3158 unplug_slaves(mddev);
3159}
3160
f022b2fd
N
3161static int raid5_congested(void *data, int bits)
3162{
3163 mddev_t *mddev = data;
3164 raid5_conf_t *conf = mddev_to_conf(mddev);
3165
3166 /* No difference between reads and writes. Just check
3167 * how busy the stripe_cache is
3168 */
3169 if (conf->inactive_blocked)
3170 return 1;
3171 if (conf->quiesce)
3172 return 1;
3173 if (list_empty_careful(&conf->inactive_list))
3174 return 1;
3175
3176 return 0;
3177}
3178
23032a0e
RBJ
3179/* We want read requests to align with chunks where possible,
3180 * but write requests don't need to.
3181 */
165125e1 3182static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
23032a0e
RBJ
3183{
3184 mddev_t *mddev = q->queuedata;
3185 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3186 int max;
3187 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3188 unsigned int bio_sectors = bio->bi_size >> 9;
3189
802ba064 3190 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
3191 return biovec->bv_len; /* always allow writes to be mergeable */
3192
3193 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3194 if (max < 0) max = 0;
3195 if (max <= biovec->bv_len && bio_sectors == 0)
3196 return biovec->bv_len;
3197 else
3198 return max;
3199}
3200
f679623f
RBJ
3201
3202static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3203{
3204 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3205 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3206 unsigned int bio_sectors = bio->bi_size >> 9;
3207
3208 return chunk_sectors >=
3209 ((sector & (chunk_sectors - 1)) + bio_sectors);
3210}
3211
46031f9a
RBJ
3212/*
3213 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3214 * later sampled by raid5d.
3215 */
3216static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3217{
3218 unsigned long flags;
3219
3220 spin_lock_irqsave(&conf->device_lock, flags);
3221
3222 bi->bi_next = conf->retry_read_aligned_list;
3223 conf->retry_read_aligned_list = bi;
3224
3225 spin_unlock_irqrestore(&conf->device_lock, flags);
3226 md_wakeup_thread(conf->mddev->thread);
3227}
3228
3229
3230static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3231{
3232 struct bio *bi;
3233
3234 bi = conf->retry_read_aligned;
3235 if (bi) {
3236 conf->retry_read_aligned = NULL;
3237 return bi;
3238 }
3239 bi = conf->retry_read_aligned_list;
3240 if(bi) {
387bb173 3241 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
3242 bi->bi_next = NULL;
3243 bi->bi_phys_segments = 1; /* biased count of active stripes */
3244 bi->bi_hw_segments = 0; /* count of processed stripes */
3245 }
3246
3247 return bi;
3248}
3249
3250
f679623f
RBJ
3251/*
3252 * The "raid5_align_endio" should check if the read succeeded and if it
3253 * did, call bio_endio on the original bio (having bio_put the new bio
3254 * first).
3255 * If the read failed..
3256 */
6712ecf8 3257static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3258{
3259 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3260 mddev_t *mddev;
3261 raid5_conf_t *conf;
3262 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3263 mdk_rdev_t *rdev;
3264
f679623f 3265 bio_put(bi);
46031f9a
RBJ
3266
3267 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3268 conf = mddev_to_conf(mddev);
3269 rdev = (void*)raid_bi->bi_next;
3270 raid_bi->bi_next = NULL;
3271
3272 rdev_dec_pending(rdev, conf->mddev);
3273
3274 if (!error && uptodate) {
6712ecf8 3275 bio_endio(raid_bi, 0);
46031f9a
RBJ
3276 if (atomic_dec_and_test(&conf->active_aligned_reads))
3277 wake_up(&conf->wait_for_stripe);
6712ecf8 3278 return;
46031f9a
RBJ
3279 }
3280
3281
45b4233c 3282 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3283
3284 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3285}
3286
387bb173
NB
3287static int bio_fits_rdev(struct bio *bi)
3288{
165125e1 3289 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3290
3291 if ((bi->bi_size>>9) > q->max_sectors)
3292 return 0;
3293 blk_recount_segments(q, bi);
3294 if (bi->bi_phys_segments > q->max_phys_segments ||
3295 bi->bi_hw_segments > q->max_hw_segments)
3296 return 0;
3297
3298 if (q->merge_bvec_fn)
3299 /* it's too hard to apply the merge_bvec_fn at this stage,
3300 * just just give up
3301 */
3302 return 0;
3303
3304 return 1;
3305}
3306
3307
165125e1 3308static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3309{
3310 mddev_t *mddev = q->queuedata;
3311 raid5_conf_t *conf = mddev_to_conf(mddev);
3312 const unsigned int raid_disks = conf->raid_disks;
46031f9a 3313 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
3314 unsigned int dd_idx, pd_idx;
3315 struct bio* align_bi;
3316 mdk_rdev_t *rdev;
3317
3318 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3319 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3320 return 0;
3321 }
3322 /*
3323 * use bio_clone to make a copy of the bio
3324 */
3325 align_bi = bio_clone(raid_bio, GFP_NOIO);
3326 if (!align_bi)
3327 return 0;
3328 /*
3329 * set bi_end_io to a new function, and set bi_private to the
3330 * original bio.
3331 */
3332 align_bi->bi_end_io = raid5_align_endio;
3333 align_bi->bi_private = raid_bio;
3334 /*
3335 * compute position
3336 */
3337 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3338 raid_disks,
3339 data_disks,
3340 &dd_idx,
3341 &pd_idx,
3342 conf);
3343
3344 rcu_read_lock();
3345 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3346 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3347 atomic_inc(&rdev->nr_pending);
3348 rcu_read_unlock();
46031f9a
RBJ
3349 raid_bio->bi_next = (void*)rdev;
3350 align_bi->bi_bdev = rdev->bdev;
3351 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3352 align_bi->bi_sector += rdev->data_offset;
3353
387bb173
NB
3354 if (!bio_fits_rdev(align_bi)) {
3355 /* too big in some way */
3356 bio_put(align_bi);
3357 rdev_dec_pending(rdev, mddev);
3358 return 0;
3359 }
3360
46031f9a
RBJ
3361 spin_lock_irq(&conf->device_lock);
3362 wait_event_lock_irq(conf->wait_for_stripe,
3363 conf->quiesce == 0,
3364 conf->device_lock, /* nothing */);
3365 atomic_inc(&conf->active_aligned_reads);
3366 spin_unlock_irq(&conf->device_lock);
3367
f679623f
RBJ
3368 generic_make_request(align_bi);
3369 return 1;
3370 } else {
3371 rcu_read_unlock();
46031f9a 3372 bio_put(align_bi);
f679623f
RBJ
3373 return 0;
3374 }
3375}
3376
8b3e6cdc
DW
3377/* __get_priority_stripe - get the next stripe to process
3378 *
3379 * Full stripe writes are allowed to pass preread active stripes up until
3380 * the bypass_threshold is exceeded. In general the bypass_count
3381 * increments when the handle_list is handled before the hold_list; however, it
3382 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3383 * stripe with in flight i/o. The bypass_count will be reset when the
3384 * head of the hold_list has changed, i.e. the head was promoted to the
3385 * handle_list.
3386 */
3387static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3388{
3389 struct stripe_head *sh;
3390
3391 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3392 __func__,
3393 list_empty(&conf->handle_list) ? "empty" : "busy",
3394 list_empty(&conf->hold_list) ? "empty" : "busy",
3395 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3396
3397 if (!list_empty(&conf->handle_list)) {
3398 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3399
3400 if (list_empty(&conf->hold_list))
3401 conf->bypass_count = 0;
3402 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3403 if (conf->hold_list.next == conf->last_hold)
3404 conf->bypass_count++;
3405 else {
3406 conf->last_hold = conf->hold_list.next;
3407 conf->bypass_count -= conf->bypass_threshold;
3408 if (conf->bypass_count < 0)
3409 conf->bypass_count = 0;
3410 }
3411 }
3412 } else if (!list_empty(&conf->hold_list) &&
3413 ((conf->bypass_threshold &&
3414 conf->bypass_count > conf->bypass_threshold) ||
3415 atomic_read(&conf->pending_full_writes) == 0)) {
3416 sh = list_entry(conf->hold_list.next,
3417 typeof(*sh), lru);
3418 conf->bypass_count -= conf->bypass_threshold;
3419 if (conf->bypass_count < 0)
3420 conf->bypass_count = 0;
3421 } else
3422 return NULL;
3423
3424 list_del_init(&sh->lru);
3425 atomic_inc(&sh->count);
3426 BUG_ON(atomic_read(&sh->count) != 1);
3427 return sh;
3428}
f679623f 3429
165125e1 3430static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3431{
3432 mddev_t *mddev = q->queuedata;
3433 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
3434 unsigned int dd_idx, pd_idx;
3435 sector_t new_sector;
3436 sector_t logical_sector, last_sector;
3437 struct stripe_head *sh;
a362357b 3438 const int rw = bio_data_dir(bi);
f6344757 3439 int remaining;
1da177e4 3440
e5dcdd80 3441 if (unlikely(bio_barrier(bi))) {
6712ecf8 3442 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3443 return 0;
3444 }
3445
3d310eb7 3446 md_write_start(mddev, bi);
06d91a5f 3447
a362357b
JA
3448 disk_stat_inc(mddev->gendisk, ios[rw]);
3449 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 3450
802ba064 3451 if (rw == READ &&
52488615
RBJ
3452 mddev->reshape_position == MaxSector &&
3453 chunk_aligned_read(q,bi))
3454 return 0;
3455
1da177e4
LT
3456 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3457 last_sector = bi->bi_sector + (bi->bi_size>>9);
3458 bi->bi_next = NULL;
3459 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3460
1da177e4
LT
3461 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3462 DEFINE_WAIT(w);
16a53ecc 3463 int disks, data_disks;
b578d55f 3464
7ecaa1e6 3465 retry:
b578d55f 3466 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3467 if (likely(conf->expand_progress == MaxSector))
3468 disks = conf->raid_disks;
3469 else {
df8e7f76
N
3470 /* spinlock is needed as expand_progress may be
3471 * 64bit on a 32bit platform, and so it might be
3472 * possible to see a half-updated value
3473 * Ofcourse expand_progress could change after
3474 * the lock is dropped, so once we get a reference
3475 * to the stripe that we think it is, we will have
3476 * to check again.
3477 */
7ecaa1e6
N
3478 spin_lock_irq(&conf->device_lock);
3479 disks = conf->raid_disks;
3480 if (logical_sector >= conf->expand_progress)
3481 disks = conf->previous_raid_disks;
b578d55f
N
3482 else {
3483 if (logical_sector >= conf->expand_lo) {
3484 spin_unlock_irq(&conf->device_lock);
3485 schedule();
3486 goto retry;
3487 }
3488 }
7ecaa1e6
N
3489 spin_unlock_irq(&conf->device_lock);
3490 }
16a53ecc
N
3491 data_disks = disks - conf->max_degraded;
3492
3493 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 3494 &dd_idx, &pd_idx, conf);
45b4233c 3495 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3496 (unsigned long long)new_sector,
3497 (unsigned long long)logical_sector);
3498
7ecaa1e6 3499 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 3500 if (sh) {
7ecaa1e6
N
3501 if (unlikely(conf->expand_progress != MaxSector)) {
3502 /* expansion might have moved on while waiting for a
df8e7f76
N
3503 * stripe, so we must do the range check again.
3504 * Expansion could still move past after this
3505 * test, but as we are holding a reference to
3506 * 'sh', we know that if that happens,
3507 * STRIPE_EXPANDING will get set and the expansion
3508 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3509 */
3510 int must_retry = 0;
3511 spin_lock_irq(&conf->device_lock);
3512 if (logical_sector < conf->expand_progress &&
3513 disks == conf->previous_raid_disks)
3514 /* mismatch, need to try again */
3515 must_retry = 1;
3516 spin_unlock_irq(&conf->device_lock);
3517 if (must_retry) {
3518 release_stripe(sh);
3519 goto retry;
3520 }
3521 }
e464eafd
N
3522 /* FIXME what if we get a false positive because these
3523 * are being updated.
3524 */
3525 if (logical_sector >= mddev->suspend_lo &&
3526 logical_sector < mddev->suspend_hi) {
3527 release_stripe(sh);
3528 schedule();
3529 goto retry;
3530 }
7ecaa1e6
N
3531
3532 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3533 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3534 /* Stripe is busy expanding or
3535 * add failed due to overlap. Flush everything
1da177e4
LT
3536 * and wait a while
3537 */
3538 raid5_unplug_device(mddev->queue);
3539 release_stripe(sh);
3540 schedule();
3541 goto retry;
3542 }
3543 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3544 set_bit(STRIPE_HANDLE, &sh->state);
3545 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3546 release_stripe(sh);
1da177e4
LT
3547 } else {
3548 /* cannot get stripe for read-ahead, just give-up */
3549 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3550 finish_wait(&conf->wait_for_overlap, &w);
3551 break;
3552 }
3553
3554 }
3555 spin_lock_irq(&conf->device_lock);
f6344757
N
3556 remaining = --bi->bi_phys_segments;
3557 spin_unlock_irq(&conf->device_lock);
3558 if (remaining == 0) {
1da177e4 3559
16a53ecc 3560 if ( rw == WRITE )
1da177e4 3561 md_write_end(mddev);
6712ecf8 3562
0e13fe23 3563 bio_endio(bi, 0);
1da177e4 3564 }
1da177e4
LT
3565 return 0;
3566}
3567
52c03291 3568static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3569{
52c03291
N
3570 /* reshaping is quite different to recovery/resync so it is
3571 * handled quite separately ... here.
3572 *
3573 * On each call to sync_request, we gather one chunk worth of
3574 * destination stripes and flag them as expanding.
3575 * Then we find all the source stripes and request reads.
3576 * As the reads complete, handle_stripe will copy the data
3577 * into the destination stripe and release that stripe.
3578 */
1da177e4
LT
3579 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3580 struct stripe_head *sh;
ccfcc3c1
N
3581 int pd_idx;
3582 sector_t first_sector, last_sector;
f416885e
N
3583 int raid_disks = conf->previous_raid_disks;
3584 int data_disks = raid_disks - conf->max_degraded;
3585 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3586 int i;
3587 int dd_idx;
3588 sector_t writepos, safepos, gap;
3589
3590 if (sector_nr == 0 &&
3591 conf->expand_progress != 0) {
3592 /* restarting in the middle, skip the initial sectors */
3593 sector_nr = conf->expand_progress;
f416885e 3594 sector_div(sector_nr, new_data_disks);
52c03291
N
3595 *skipped = 1;
3596 return sector_nr;
3597 }
3598
3599 /* we update the metadata when there is more than 3Meg
3600 * in the block range (that is rather arbitrary, should
3601 * probably be time based) or when the data about to be
3602 * copied would over-write the source of the data at
3603 * the front of the range.
3604 * i.e. one new_stripe forward from expand_progress new_maps
3605 * to after where expand_lo old_maps to
3606 */
3607 writepos = conf->expand_progress +
f416885e
N
3608 conf->chunk_size/512*(new_data_disks);
3609 sector_div(writepos, new_data_disks);
52c03291 3610 safepos = conf->expand_lo;
f416885e 3611 sector_div(safepos, data_disks);
52c03291
N
3612 gap = conf->expand_progress - conf->expand_lo;
3613
3614 if (writepos >= safepos ||
f416885e 3615 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3616 /* Cannot proceed until we've updated the superblock... */
3617 wait_event(conf->wait_for_overlap,
3618 atomic_read(&conf->reshape_stripes)==0);
3619 mddev->reshape_position = conf->expand_progress;
850b2b42 3620 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3621 md_wakeup_thread(mddev->thread);
850b2b42 3622 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3623 kthread_should_stop());
3624 spin_lock_irq(&conf->device_lock);
3625 conf->expand_lo = mddev->reshape_position;
3626 spin_unlock_irq(&conf->device_lock);
3627 wake_up(&conf->wait_for_overlap);
3628 }
3629
3630 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3631 int j;
3632 int skipped = 0;
3633 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3634 sh = get_active_stripe(conf, sector_nr+i,
3635 conf->raid_disks, pd_idx, 0);
3636 set_bit(STRIPE_EXPANDING, &sh->state);
3637 atomic_inc(&conf->reshape_stripes);
3638 /* If any of this stripe is beyond the end of the old
3639 * array, then we need to zero those blocks
3640 */
3641 for (j=sh->disks; j--;) {
3642 sector_t s;
3643 if (j == sh->pd_idx)
3644 continue;
f416885e
N
3645 if (conf->level == 6 &&
3646 j == raid6_next_disk(sh->pd_idx, sh->disks))
3647 continue;
52c03291
N
3648 s = compute_blocknr(sh, j);
3649 if (s < (mddev->array_size<<1)) {
3650 skipped = 1;
3651 continue;
3652 }
3653 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3654 set_bit(R5_Expanded, &sh->dev[j].flags);
3655 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3656 }
3657 if (!skipped) {
3658 set_bit(STRIPE_EXPAND_READY, &sh->state);
3659 set_bit(STRIPE_HANDLE, &sh->state);
3660 }
3661 release_stripe(sh);
3662 }
3663 spin_lock_irq(&conf->device_lock);
6d3baf2e 3664 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3665 spin_unlock_irq(&conf->device_lock);
3666 /* Ok, those stripe are ready. We can start scheduling
3667 * reads on the source stripes.
3668 * The source stripes are determined by mapping the first and last
3669 * block on the destination stripes.
3670 */
52c03291 3671 first_sector =
f416885e 3672 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3673 raid_disks, data_disks,
3674 &dd_idx, &pd_idx, conf);
3675 last_sector =
3676 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3677 *(new_data_disks) -1,
52c03291
N
3678 raid_disks, data_disks,
3679 &dd_idx, &pd_idx, conf);
3680 if (last_sector >= (mddev->size<<1))
3681 last_sector = (mddev->size<<1)-1;
3682 while (first_sector <= last_sector) {
f416885e
N
3683 pd_idx = stripe_to_pdidx(first_sector, conf,
3684 conf->previous_raid_disks);
52c03291
N
3685 sh = get_active_stripe(conf, first_sector,
3686 conf->previous_raid_disks, pd_idx, 0);
3687 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3688 set_bit(STRIPE_HANDLE, &sh->state);
3689 release_stripe(sh);
3690 first_sector += STRIPE_SECTORS;
3691 }
c6207277
N
3692 /* If this takes us to the resync_max point where we have to pause,
3693 * then we need to write out the superblock.
3694 */
3695 sector_nr += conf->chunk_size>>9;
3696 if (sector_nr >= mddev->resync_max) {
3697 /* Cannot proceed until we've updated the superblock... */
3698 wait_event(conf->wait_for_overlap,
3699 atomic_read(&conf->reshape_stripes) == 0);
3700 mddev->reshape_position = conf->expand_progress;
3701 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3702 md_wakeup_thread(mddev->thread);
3703 wait_event(mddev->sb_wait,
3704 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3705 || kthread_should_stop());
3706 spin_lock_irq(&conf->device_lock);
3707 conf->expand_lo = mddev->reshape_position;
3708 spin_unlock_irq(&conf->device_lock);
3709 wake_up(&conf->wait_for_overlap);
3710 }
52c03291
N
3711 return conf->chunk_size>>9;
3712}
3713
3714/* FIXME go_faster isn't used */
3715static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3716{
3717 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3718 struct stripe_head *sh;
3719 int pd_idx;
1da177e4 3720 int raid_disks = conf->raid_disks;
72626685
N
3721 sector_t max_sector = mddev->size << 1;
3722 int sync_blocks;
16a53ecc
N
3723 int still_degraded = 0;
3724 int i;
1da177e4 3725
72626685 3726 if (sector_nr >= max_sector) {
1da177e4
LT
3727 /* just being told to finish up .. nothing much to do */
3728 unplug_slaves(mddev);
29269553
N
3729 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3730 end_reshape(conf);
3731 return 0;
3732 }
72626685
N
3733
3734 if (mddev->curr_resync < max_sector) /* aborted */
3735 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3736 &sync_blocks, 1);
16a53ecc 3737 else /* completed sync */
72626685
N
3738 conf->fullsync = 0;
3739 bitmap_close_sync(mddev->bitmap);
3740
1da177e4
LT
3741 return 0;
3742 }
ccfcc3c1 3743
52c03291
N
3744 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3745 return reshape_request(mddev, sector_nr, skipped);
f6705578 3746
c6207277
N
3747 /* No need to check resync_max as we never do more than one
3748 * stripe, and as resync_max will always be on a chunk boundary,
3749 * if the check in md_do_sync didn't fire, there is no chance
3750 * of overstepping resync_max here
3751 */
3752
16a53ecc 3753 /* if there is too many failed drives and we are trying
1da177e4
LT
3754 * to resync, then assert that we are finished, because there is
3755 * nothing we can do.
3756 */
3285edf1 3757 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3758 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3759 sector_t rv = (mddev->size << 1) - sector_nr;
3760 *skipped = 1;
1da177e4
LT
3761 return rv;
3762 }
72626685 3763 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3764 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3765 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3766 /* we can skip this block, and probably more */
3767 sync_blocks /= STRIPE_SECTORS;
3768 *skipped = 1;
3769 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3770 }
1da177e4 3771
b47490c9
N
3772
3773 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3774
ccfcc3c1 3775 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3776 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3777 if (sh == NULL) {
7ecaa1e6 3778 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3779 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3780 * is trying to get access
1da177e4 3781 */
66c006a5 3782 schedule_timeout_uninterruptible(1);
1da177e4 3783 }
16a53ecc
N
3784 /* Need to check if array will still be degraded after recovery/resync
3785 * We don't need to check the 'failed' flag as when that gets set,
3786 * recovery aborts.
3787 */
3788 for (i=0; i<mddev->raid_disks; i++)
3789 if (conf->disks[i].rdev == NULL)
3790 still_degraded = 1;
3791
3792 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3793
3794 spin_lock(&sh->lock);
1da177e4
LT
3795 set_bit(STRIPE_SYNCING, &sh->state);
3796 clear_bit(STRIPE_INSYNC, &sh->state);
3797 spin_unlock(&sh->lock);
3798
16a53ecc 3799 handle_stripe(sh, NULL);
1da177e4
LT
3800 release_stripe(sh);
3801
3802 return STRIPE_SECTORS;
3803}
3804
46031f9a
RBJ
3805static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3806{
3807 /* We may not be able to submit a whole bio at once as there
3808 * may not be enough stripe_heads available.
3809 * We cannot pre-allocate enough stripe_heads as we may need
3810 * more than exist in the cache (if we allow ever large chunks).
3811 * So we do one stripe head at a time and record in
3812 * ->bi_hw_segments how many have been done.
3813 *
3814 * We *know* that this entire raid_bio is in one chunk, so
3815 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3816 */
3817 struct stripe_head *sh;
3818 int dd_idx, pd_idx;
3819 sector_t sector, logical_sector, last_sector;
3820 int scnt = 0;
3821 int remaining;
3822 int handled = 0;
3823
3824 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3825 sector = raid5_compute_sector( logical_sector,
3826 conf->raid_disks,
3827 conf->raid_disks - conf->max_degraded,
3828 &dd_idx,
3829 &pd_idx,
3830 conf);
3831 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3832
3833 for (; logical_sector < last_sector;
387bb173
NB
3834 logical_sector += STRIPE_SECTORS,
3835 sector += STRIPE_SECTORS,
3836 scnt++) {
46031f9a
RBJ
3837
3838 if (scnt < raid_bio->bi_hw_segments)
3839 /* already done this stripe */
3840 continue;
3841
3842 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3843
3844 if (!sh) {
3845 /* failed to get a stripe - must wait */
3846 raid_bio->bi_hw_segments = scnt;
3847 conf->retry_read_aligned = raid_bio;
3848 return handled;
3849 }
3850
3851 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3852 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3853 release_stripe(sh);
3854 raid_bio->bi_hw_segments = scnt;
3855 conf->retry_read_aligned = raid_bio;
3856 return handled;
3857 }
3858
46031f9a
RBJ
3859 handle_stripe(sh, NULL);
3860 release_stripe(sh);
3861 handled++;
3862 }
3863 spin_lock_irq(&conf->device_lock);
3864 remaining = --raid_bio->bi_phys_segments;
3865 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
3866 if (remaining == 0)
3867 bio_endio(raid_bio, 0);
46031f9a
RBJ
3868 if (atomic_dec_and_test(&conf->active_aligned_reads))
3869 wake_up(&conf->wait_for_stripe);
3870 return handled;
3871}
3872
3873
3874
1da177e4
LT
3875/*
3876 * This is our raid5 kernel thread.
3877 *
3878 * We scan the hash table for stripes which can be handled now.
3879 * During the scan, completed stripes are saved for us by the interrupt
3880 * handler, so that they will not have to wait for our next wakeup.
3881 */
6ed3003c 3882static void raid5d(mddev_t *mddev)
1da177e4
LT
3883{
3884 struct stripe_head *sh;
3885 raid5_conf_t *conf = mddev_to_conf(mddev);
3886 int handled;
3887
45b4233c 3888 pr_debug("+++ raid5d active\n");
1da177e4
LT
3889
3890 md_check_recovery(mddev);
1da177e4
LT
3891
3892 handled = 0;
3893 spin_lock_irq(&conf->device_lock);
3894 while (1) {
46031f9a 3895 struct bio *bio;
1da177e4 3896
ae3c20cc 3897 if (conf->seq_flush != conf->seq_write) {
72626685 3898 int seq = conf->seq_flush;
700e432d 3899 spin_unlock_irq(&conf->device_lock);
72626685 3900 bitmap_unplug(mddev->bitmap);
700e432d 3901 spin_lock_irq(&conf->device_lock);
72626685
N
3902 conf->seq_write = seq;
3903 activate_bit_delay(conf);
3904 }
3905
46031f9a
RBJ
3906 while ((bio = remove_bio_from_retry(conf))) {
3907 int ok;
3908 spin_unlock_irq(&conf->device_lock);
3909 ok = retry_aligned_read(conf, bio);
3910 spin_lock_irq(&conf->device_lock);
3911 if (!ok)
3912 break;
3913 handled++;
3914 }
3915
8b3e6cdc
DW
3916 sh = __get_priority_stripe(conf);
3917
3918 if (!sh) {
d84e0f10 3919 async_tx_issue_pending_all();
1da177e4 3920 break;
d84e0f10 3921 }
1da177e4
LT
3922 spin_unlock_irq(&conf->device_lock);
3923
3924 handled++;
16a53ecc 3925 handle_stripe(sh, conf->spare_page);
1da177e4
LT
3926 release_stripe(sh);
3927
3928 spin_lock_irq(&conf->device_lock);
3929 }
45b4233c 3930 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
3931
3932 spin_unlock_irq(&conf->device_lock);
3933
3934 unplug_slaves(mddev);
3935
45b4233c 3936 pr_debug("--- raid5d inactive\n");
1da177e4
LT
3937}
3938
3f294f4f 3939static ssize_t
007583c9 3940raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 3941{
007583c9 3942 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3943 if (conf)
3944 return sprintf(page, "%d\n", conf->max_nr_stripes);
3945 else
3946 return 0;
3f294f4f
N
3947}
3948
3949static ssize_t
007583c9 3950raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 3951{
007583c9 3952 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 3953 unsigned long new;
3f294f4f
N
3954 if (len >= PAGE_SIZE)
3955 return -EINVAL;
96de1e66
N
3956 if (!conf)
3957 return -ENODEV;
3f294f4f 3958
4ef197d8 3959 if (strict_strtoul(page, 10, &new))
3f294f4f
N
3960 return -EINVAL;
3961 if (new <= 16 || new > 32768)
3962 return -EINVAL;
3963 while (new < conf->max_nr_stripes) {
3964 if (drop_one_stripe(conf))
3965 conf->max_nr_stripes--;
3966 else
3967 break;
3968 }
2a2275d6 3969 md_allow_write(mddev);
3f294f4f
N
3970 while (new > conf->max_nr_stripes) {
3971 if (grow_one_stripe(conf))
3972 conf->max_nr_stripes++;
3973 else break;
3974 }
3975 return len;
3976}
007583c9 3977
96de1e66
N
3978static struct md_sysfs_entry
3979raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3980 raid5_show_stripe_cache_size,
3981 raid5_store_stripe_cache_size);
3f294f4f 3982
8b3e6cdc
DW
3983static ssize_t
3984raid5_show_preread_threshold(mddev_t *mddev, char *page)
3985{
3986 raid5_conf_t *conf = mddev_to_conf(mddev);
3987 if (conf)
3988 return sprintf(page, "%d\n", conf->bypass_threshold);
3989 else
3990 return 0;
3991}
3992
3993static ssize_t
3994raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3995{
3996 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 3997 unsigned long new;
8b3e6cdc
DW
3998 if (len >= PAGE_SIZE)
3999 return -EINVAL;
4000 if (!conf)
4001 return -ENODEV;
4002
4ef197d8 4003 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4004 return -EINVAL;
4ef197d8 4005 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4006 return -EINVAL;
4007 conf->bypass_threshold = new;
4008 return len;
4009}
4010
4011static struct md_sysfs_entry
4012raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4013 S_IRUGO | S_IWUSR,
4014 raid5_show_preread_threshold,
4015 raid5_store_preread_threshold);
4016
3f294f4f 4017static ssize_t
96de1e66 4018stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4019{
007583c9 4020 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4021 if (conf)
4022 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4023 else
4024 return 0;
3f294f4f
N
4025}
4026
96de1e66
N
4027static struct md_sysfs_entry
4028raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4029
007583c9 4030static struct attribute *raid5_attrs[] = {
3f294f4f
N
4031 &raid5_stripecache_size.attr,
4032 &raid5_stripecache_active.attr,
8b3e6cdc 4033 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4034 NULL,
4035};
007583c9
N
4036static struct attribute_group raid5_attrs_group = {
4037 .name = NULL,
4038 .attrs = raid5_attrs,
3f294f4f
N
4039};
4040
72626685 4041static int run(mddev_t *mddev)
1da177e4
LT
4042{
4043 raid5_conf_t *conf;
4044 int raid_disk, memory;
4045 mdk_rdev_t *rdev;
4046 struct disk_info *disk;
4047 struct list_head *tmp;
02c2de8c 4048 int working_disks = 0;
1da177e4 4049
16a53ecc
N
4050 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4051 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 4052 mdname(mddev), mddev->level);
1da177e4
LT
4053 return -EIO;
4054 }
4055
f6705578
N
4056 if (mddev->reshape_position != MaxSector) {
4057 /* Check that we can continue the reshape.
4058 * Currently only disks can change, it must
4059 * increase, and we must be past the point where
4060 * a stripe over-writes itself
4061 */
4062 sector_t here_new, here_old;
4063 int old_disks;
f416885e 4064 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
4065
4066 if (mddev->new_level != mddev->level ||
4067 mddev->new_layout != mddev->layout ||
4068 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
4069 printk(KERN_ERR "raid5: %s: unsupported reshape "
4070 "required - aborting.\n",
f6705578
N
4071 mdname(mddev));
4072 return -EINVAL;
4073 }
4074 if (mddev->delta_disks <= 0) {
f416885e
N
4075 printk(KERN_ERR "raid5: %s: unsupported reshape "
4076 "(reduce disks) required - aborting.\n",
f6705578
N
4077 mdname(mddev));
4078 return -EINVAL;
4079 }
4080 old_disks = mddev->raid_disks - mddev->delta_disks;
4081 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4082 * further up in new geometry must map after here in old
4083 * geometry.
f6705578
N
4084 */
4085 here_new = mddev->reshape_position;
f416885e
N
4086 if (sector_div(here_new, (mddev->chunk_size>>9)*
4087 (mddev->raid_disks - max_degraded))) {
4088 printk(KERN_ERR "raid5: reshape_position not "
4089 "on a stripe boundary\n");
f6705578
N
4090 return -EINVAL;
4091 }
4092 /* here_new is the stripe we will write to */
4093 here_old = mddev->reshape_position;
f416885e
N
4094 sector_div(here_old, (mddev->chunk_size>>9)*
4095 (old_disks-max_degraded));
4096 /* here_old is the first stripe that we might need to read
4097 * from */
f6705578
N
4098 if (here_new >= here_old) {
4099 /* Reading from the same stripe as writing to - bad */
f416885e
N
4100 printk(KERN_ERR "raid5: reshape_position too early for "
4101 "auto-recovery - aborting.\n");
f6705578
N
4102 return -EINVAL;
4103 }
4104 printk(KERN_INFO "raid5: reshape will continue\n");
4105 /* OK, we should be able to continue; */
4106 }
4107
4108
b55e6bfc 4109 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4110 if ((conf = mddev->private) == NULL)
4111 goto abort;
f6705578
N
4112 if (mddev->reshape_position == MaxSector) {
4113 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4114 } else {
4115 conf->raid_disks = mddev->raid_disks;
4116 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4117 }
4118
4119 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4120 GFP_KERNEL);
4121 if (!conf->disks)
4122 goto abort;
9ffae0cf 4123
1da177e4
LT
4124 conf->mddev = mddev;
4125
fccddba0 4126 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4127 goto abort;
1da177e4 4128
16a53ecc
N
4129 if (mddev->level == 6) {
4130 conf->spare_page = alloc_page(GFP_KERNEL);
4131 if (!conf->spare_page)
4132 goto abort;
4133 }
1da177e4 4134 spin_lock_init(&conf->device_lock);
e7e72bf6 4135 mddev->queue->queue_lock = &conf->device_lock;
1da177e4
LT
4136 init_waitqueue_head(&conf->wait_for_stripe);
4137 init_waitqueue_head(&conf->wait_for_overlap);
4138 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4139 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4140 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4141 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4142 INIT_LIST_HEAD(&conf->inactive_list);
4143 atomic_set(&conf->active_stripes, 0);
4144 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4145 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4146 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4147
45b4233c 4148 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4149
d089c6af 4150 rdev_for_each(rdev, tmp, mddev) {
1da177e4 4151 raid_disk = rdev->raid_disk;
f6705578 4152 if (raid_disk >= conf->raid_disks
1da177e4
LT
4153 || raid_disk < 0)
4154 continue;
4155 disk = conf->disks + raid_disk;
4156
4157 disk->rdev = rdev;
4158
b2d444d7 4159 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4160 char b[BDEVNAME_SIZE];
4161 printk(KERN_INFO "raid5: device %s operational as raid"
4162 " disk %d\n", bdevname(rdev->bdev,b),
4163 raid_disk);
02c2de8c 4164 working_disks++;
8c2e870a
NB
4165 } else
4166 /* Cannot rely on bitmap to complete recovery */
4167 conf->fullsync = 1;
1da177e4
LT
4168 }
4169
1da177e4 4170 /*
16a53ecc 4171 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4172 */
02c2de8c 4173 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4174 conf->mddev = mddev;
4175 conf->chunk_size = mddev->chunk_size;
4176 conf->level = mddev->level;
16a53ecc
N
4177 if (conf->level == 6)
4178 conf->max_degraded = 2;
4179 else
4180 conf->max_degraded = 1;
1da177e4
LT
4181 conf->algorithm = mddev->layout;
4182 conf->max_nr_stripes = NR_STRIPES;
f6705578 4183 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4184
4185 /* device size must be a multiple of chunk size */
4186 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 4187 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 4188
16a53ecc
N
4189 if (conf->level == 6 && conf->raid_disks < 4) {
4190 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4191 mdname(mddev), conf->raid_disks);
4192 goto abort;
4193 }
1da177e4
LT
4194 if (!conf->chunk_size || conf->chunk_size % 4) {
4195 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4196 conf->chunk_size, mdname(mddev));
4197 goto abort;
4198 }
4199 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4200 printk(KERN_ERR
4201 "raid5: unsupported parity algorithm %d for %s\n",
4202 conf->algorithm, mdname(mddev));
4203 goto abort;
4204 }
16a53ecc 4205 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4206 printk(KERN_ERR "raid5: not enough operational devices for %s"
4207 " (%d/%d failed)\n",
02c2de8c 4208 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4209 goto abort;
4210 }
4211
16a53ecc 4212 if (mddev->degraded > 0 &&
1da177e4 4213 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4214 if (mddev->ok_start_degraded)
4215 printk(KERN_WARNING
4216 "raid5: starting dirty degraded array: %s"
4217 "- data corruption possible.\n",
4218 mdname(mddev));
4219 else {
4220 printk(KERN_ERR
4221 "raid5: cannot start dirty degraded array for %s\n",
4222 mdname(mddev));
4223 goto abort;
4224 }
1da177e4
LT
4225 }
4226
4227 {
4228 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4229 if (!mddev->thread) {
4230 printk(KERN_ERR
4231 "raid5: couldn't allocate thread for %s\n",
4232 mdname(mddev));
4233 goto abort;
4234 }
4235 }
5036805b 4236 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4237 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4238 if (grow_stripes(conf, conf->max_nr_stripes)) {
4239 printk(KERN_ERR
4240 "raid5: couldn't allocate %dkB for buffers\n", memory);
4241 shrink_stripes(conf);
4242 md_unregister_thread(mddev->thread);
4243 goto abort;
4244 } else
4245 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4246 memory, mdname(mddev));
4247
4248 if (mddev->degraded == 0)
4249 printk("raid5: raid level %d set %s active with %d out of %d"
4250 " devices, algorithm %d\n", conf->level, mdname(mddev),
4251 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4252 conf->algorithm);
4253 else
4254 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4255 " out of %d devices, algorithm %d\n", conf->level,
4256 mdname(mddev), mddev->raid_disks - mddev->degraded,
4257 mddev->raid_disks, conf->algorithm);
4258
4259 print_raid5_conf(conf);
4260
f6705578
N
4261 if (conf->expand_progress != MaxSector) {
4262 printk("...ok start reshape thread\n");
b578d55f 4263 conf->expand_lo = conf->expand_progress;
f6705578
N
4264 atomic_set(&conf->reshape_stripes, 0);
4265 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4266 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4267 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4268 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4269 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4270 "%s_reshape");
f6705578
N
4271 }
4272
1da177e4 4273 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4274 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4275 */
4276 {
16a53ecc
N
4277 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4278 int stripe = data_disks *
8932c2e0 4279 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4280 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4281 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4282 }
4283
4284 /* Ok, everything is just fine now */
5e55e2f5
N
4285 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4286 printk(KERN_WARNING
4287 "raid5: failed to create sysfs attributes for %s\n",
4288 mdname(mddev));
7a5febe9
N
4289
4290 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4291 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4292 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4293
16a53ecc
N
4294 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4295 conf->max_degraded);
7a5febe9 4296
23032a0e
RBJ
4297 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4298
1da177e4
LT
4299 return 0;
4300abort:
4301 if (conf) {
4302 print_raid5_conf(conf);
16a53ecc 4303 safe_put_page(conf->spare_page);
b55e6bfc 4304 kfree(conf->disks);
fccddba0 4305 kfree(conf->stripe_hashtbl);
1da177e4
LT
4306 kfree(conf);
4307 }
4308 mddev->private = NULL;
4309 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4310 return -EIO;
4311}
4312
4313
4314
3f294f4f 4315static int stop(mddev_t *mddev)
1da177e4
LT
4316{
4317 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4318
4319 md_unregister_thread(mddev->thread);
4320 mddev->thread = NULL;
4321 shrink_stripes(conf);
fccddba0 4322 kfree(conf->stripe_hashtbl);
041ae52e 4323 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4324 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4325 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4326 kfree(conf->disks);
96de1e66 4327 kfree(conf);
1da177e4
LT
4328 mddev->private = NULL;
4329 return 0;
4330}
4331
45b4233c 4332#ifdef DEBUG
16a53ecc 4333static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4334{
4335 int i;
4336
16a53ecc
N
4337 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4338 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4339 seq_printf(seq, "sh %llu, count %d.\n",
4340 (unsigned long long)sh->sector, atomic_read(&sh->count));
4341 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4342 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4343 seq_printf(seq, "(cache%d: %p %ld) ",
4344 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4345 }
16a53ecc 4346 seq_printf(seq, "\n");
1da177e4
LT
4347}
4348
16a53ecc 4349static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4350{
4351 struct stripe_head *sh;
fccddba0 4352 struct hlist_node *hn;
1da177e4
LT
4353 int i;
4354
4355 spin_lock_irq(&conf->device_lock);
4356 for (i = 0; i < NR_HASH; i++) {
fccddba0 4357 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4358 if (sh->raid_conf != conf)
4359 continue;
16a53ecc 4360 print_sh(seq, sh);
1da177e4
LT
4361 }
4362 }
4363 spin_unlock_irq(&conf->device_lock);
4364}
4365#endif
4366
4367static void status (struct seq_file *seq, mddev_t *mddev)
4368{
4369 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4370 int i;
4371
4372 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4373 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4374 for (i = 0; i < conf->raid_disks; i++)
4375 seq_printf (seq, "%s",
4376 conf->disks[i].rdev &&
b2d444d7 4377 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4378 seq_printf (seq, "]");
45b4233c 4379#ifdef DEBUG
16a53ecc
N
4380 seq_printf (seq, "\n");
4381 printall(seq, conf);
1da177e4
LT
4382#endif
4383}
4384
4385static void print_raid5_conf (raid5_conf_t *conf)
4386{
4387 int i;
4388 struct disk_info *tmp;
4389
4390 printk("RAID5 conf printout:\n");
4391 if (!conf) {
4392 printk("(conf==NULL)\n");
4393 return;
4394 }
02c2de8c
N
4395 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4396 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4397
4398 for (i = 0; i < conf->raid_disks; i++) {
4399 char b[BDEVNAME_SIZE];
4400 tmp = conf->disks + i;
4401 if (tmp->rdev)
4402 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4403 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4404 bdevname(tmp->rdev->bdev,b));
4405 }
4406}
4407
4408static int raid5_spare_active(mddev_t *mddev)
4409{
4410 int i;
4411 raid5_conf_t *conf = mddev->private;
4412 struct disk_info *tmp;
4413
4414 for (i = 0; i < conf->raid_disks; i++) {
4415 tmp = conf->disks + i;
4416 if (tmp->rdev
b2d444d7 4417 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4418 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4419 unsigned long flags;
4420 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4421 mddev->degraded--;
c04be0aa 4422 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4423 }
4424 }
4425 print_raid5_conf(conf);
4426 return 0;
4427}
4428
4429static int raid5_remove_disk(mddev_t *mddev, int number)
4430{
4431 raid5_conf_t *conf = mddev->private;
4432 int err = 0;
4433 mdk_rdev_t *rdev;
4434 struct disk_info *p = conf->disks + number;
4435
4436 print_raid5_conf(conf);
4437 rdev = p->rdev;
4438 if (rdev) {
b2d444d7 4439 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4440 atomic_read(&rdev->nr_pending)) {
4441 err = -EBUSY;
4442 goto abort;
4443 }
dfc70645
N
4444 /* Only remove non-faulty devices if recovery
4445 * isn't possible.
4446 */
4447 if (!test_bit(Faulty, &rdev->flags) &&
4448 mddev->degraded <= conf->max_degraded) {
4449 err = -EBUSY;
4450 goto abort;
4451 }
1da177e4 4452 p->rdev = NULL;
fbd568a3 4453 synchronize_rcu();
1da177e4
LT
4454 if (atomic_read(&rdev->nr_pending)) {
4455 /* lost the race, try later */
4456 err = -EBUSY;
4457 p->rdev = rdev;
4458 }
4459 }
4460abort:
4461
4462 print_raid5_conf(conf);
4463 return err;
4464}
4465
4466static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4467{
4468 raid5_conf_t *conf = mddev->private;
199050ea 4469 int err = -EEXIST;
1da177e4
LT
4470 int disk;
4471 struct disk_info *p;
6c2fce2e
NB
4472 int first = 0;
4473 int last = conf->raid_disks - 1;
1da177e4 4474
16a53ecc 4475 if (mddev->degraded > conf->max_degraded)
1da177e4 4476 /* no point adding a device */
199050ea 4477 return -EINVAL;
1da177e4 4478
6c2fce2e
NB
4479 if (rdev->raid_disk >= 0)
4480 first = last = rdev->raid_disk;
4481
1da177e4 4482 /*
16a53ecc
N
4483 * find the disk ... but prefer rdev->saved_raid_disk
4484 * if possible.
1da177e4 4485 */
16a53ecc 4486 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4487 rdev->saved_raid_disk >= first &&
16a53ecc
N
4488 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4489 disk = rdev->saved_raid_disk;
4490 else
6c2fce2e
NB
4491 disk = first;
4492 for ( ; disk <= last ; disk++)
1da177e4 4493 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4494 clear_bit(In_sync, &rdev->flags);
1da177e4 4495 rdev->raid_disk = disk;
199050ea 4496 err = 0;
72626685
N
4497 if (rdev->saved_raid_disk != disk)
4498 conf->fullsync = 1;
d6065f7b 4499 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4500 break;
4501 }
4502 print_raid5_conf(conf);
199050ea 4503 return err;
1da177e4
LT
4504}
4505
4506static int raid5_resize(mddev_t *mddev, sector_t sectors)
4507{
4508 /* no resync is happening, and there is enough space
4509 * on all devices, so we can resize.
4510 * We need to make sure resync covers any new space.
4511 * If the array is shrinking we should possibly wait until
4512 * any io in the removed space completes, but it hardly seems
4513 * worth it.
4514 */
16a53ecc
N
4515 raid5_conf_t *conf = mddev_to_conf(mddev);
4516
1da177e4 4517 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 4518 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 4519 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 4520 mddev->changed = 1;
1da177e4
LT
4521 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4522 mddev->recovery_cp = mddev->size << 1;
4523 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4524 }
4525 mddev->size = sectors /2;
4b5c7ae8 4526 mddev->resync_max_sectors = sectors;
1da177e4
LT
4527 return 0;
4528}
4529
29269553 4530#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4531static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4532{
4533 raid5_conf_t *conf = mddev_to_conf(mddev);
4534 int err;
29269553 4535
63c70c4f
N
4536 if (mddev->delta_disks < 0 ||
4537 mddev->new_level != mddev->level)
4538 return -EINVAL; /* Cannot shrink array or change level yet */
4539 if (mddev->delta_disks == 0)
29269553
N
4540 return 0; /* nothing to do */
4541
4542 /* Can only proceed if there are plenty of stripe_heads.
4543 * We need a minimum of one full stripe,, and for sensible progress
4544 * it is best to have about 4 times that.
4545 * If we require 4 times, then the default 256 4K stripe_heads will
4546 * allow for chunk sizes up to 256K, which is probably OK.
4547 * If the chunk size is greater, user-space should request more
4548 * stripe_heads first.
4549 */
63c70c4f
N
4550 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4551 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4552 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4553 (mddev->chunk_size / STRIPE_SIZE)*4);
4554 return -ENOSPC;
4555 }
4556
63c70c4f
N
4557 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4558 if (err)
4559 return err;
4560
b4c4c7b8
N
4561 if (mddev->degraded > conf->max_degraded)
4562 return -EINVAL;
63c70c4f
N
4563 /* looks like we might be able to manage this */
4564 return 0;
4565}
4566
4567static int raid5_start_reshape(mddev_t *mddev)
4568{
4569 raid5_conf_t *conf = mddev_to_conf(mddev);
4570 mdk_rdev_t *rdev;
4571 struct list_head *rtmp;
4572 int spares = 0;
4573 int added_devices = 0;
c04be0aa 4574 unsigned long flags;
63c70c4f 4575
f416885e 4576 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4577 return -EBUSY;
4578
d089c6af 4579 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4580 if (rdev->raid_disk < 0 &&
4581 !test_bit(Faulty, &rdev->flags))
4582 spares++;
63c70c4f 4583
f416885e 4584 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4585 /* Not enough devices even to make a degraded array
4586 * of that size
4587 */
4588 return -EINVAL;
4589
f6705578 4590 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4591 spin_lock_irq(&conf->device_lock);
4592 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4593 conf->raid_disks += mddev->delta_disks;
29269553 4594 conf->expand_progress = 0;
b578d55f 4595 conf->expand_lo = 0;
29269553
N
4596 spin_unlock_irq(&conf->device_lock);
4597
4598 /* Add some new drives, as many as will fit.
4599 * We know there are enough to make the newly sized array work.
4600 */
d089c6af 4601 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4602 if (rdev->raid_disk < 0 &&
4603 !test_bit(Faulty, &rdev->flags)) {
199050ea 4604 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4605 char nm[20];
4606 set_bit(In_sync, &rdev->flags);
29269553 4607 added_devices++;
5fd6c1dc 4608 rdev->recovery_offset = 0;
29269553 4609 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4610 if (sysfs_create_link(&mddev->kobj,
4611 &rdev->kobj, nm))
4612 printk(KERN_WARNING
4613 "raid5: failed to create "
4614 " link %s for %s\n",
4615 nm, mdname(mddev));
29269553
N
4616 } else
4617 break;
4618 }
4619
c04be0aa 4620 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4621 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4622 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4623 mddev->raid_disks = conf->raid_disks;
f6705578 4624 mddev->reshape_position = 0;
850b2b42 4625 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4626
29269553
N
4627 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4628 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4629 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4630 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4631 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4632 "%s_reshape");
4633 if (!mddev->sync_thread) {
4634 mddev->recovery = 0;
4635 spin_lock_irq(&conf->device_lock);
4636 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4637 conf->expand_progress = MaxSector;
4638 spin_unlock_irq(&conf->device_lock);
4639 return -EAGAIN;
4640 }
4641 md_wakeup_thread(mddev->sync_thread);
4642 md_new_event(mddev);
4643 return 0;
4644}
4645#endif
4646
4647static void end_reshape(raid5_conf_t *conf)
4648{
4649 struct block_device *bdev;
4650
f6705578 4651 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
4652 conf->mddev->array_size = conf->mddev->size *
4653 (conf->raid_disks - conf->max_degraded);
f6705578 4654 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 4655 conf->mddev->changed = 1;
f6705578
N
4656
4657 bdev = bdget_disk(conf->mddev->gendisk, 0);
4658 if (bdev) {
4659 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 4660 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
4661 mutex_unlock(&bdev->bd_inode->i_mutex);
4662 bdput(bdev);
4663 }
4664 spin_lock_irq(&conf->device_lock);
4665 conf->expand_progress = MaxSector;
4666 spin_unlock_irq(&conf->device_lock);
4667 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4668
4669 /* read-ahead size must cover two whole stripes, which is
4670 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4671 */
4672 {
4673 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4674 int stripe = data_disks *
4675 (conf->mddev->chunk_size / PAGE_SIZE);
4676 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4677 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4678 }
29269553 4679 }
29269553
N
4680}
4681
72626685
N
4682static void raid5_quiesce(mddev_t *mddev, int state)
4683{
4684 raid5_conf_t *conf = mddev_to_conf(mddev);
4685
4686 switch(state) {
e464eafd
N
4687 case 2: /* resume for a suspend */
4688 wake_up(&conf->wait_for_overlap);
4689 break;
4690
72626685
N
4691 case 1: /* stop all writes */
4692 spin_lock_irq(&conf->device_lock);
4693 conf->quiesce = 1;
4694 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4695 atomic_read(&conf->active_stripes) == 0 &&
4696 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4697 conf->device_lock, /* nothing */);
4698 spin_unlock_irq(&conf->device_lock);
4699 break;
4700
4701 case 0: /* re-enable writes */
4702 spin_lock_irq(&conf->device_lock);
4703 conf->quiesce = 0;
4704 wake_up(&conf->wait_for_stripe);
e464eafd 4705 wake_up(&conf->wait_for_overlap);
72626685
N
4706 spin_unlock_irq(&conf->device_lock);
4707 break;
4708 }
72626685 4709}
b15c2e57 4710
16a53ecc
N
4711static struct mdk_personality raid6_personality =
4712{
4713 .name = "raid6",
4714 .level = 6,
4715 .owner = THIS_MODULE,
4716 .make_request = make_request,
4717 .run = run,
4718 .stop = stop,
4719 .status = status,
4720 .error_handler = error,
4721 .hot_add_disk = raid5_add_disk,
4722 .hot_remove_disk= raid5_remove_disk,
4723 .spare_active = raid5_spare_active,
4724 .sync_request = sync_request,
4725 .resize = raid5_resize,
f416885e
N
4726#ifdef CONFIG_MD_RAID5_RESHAPE
4727 .check_reshape = raid5_check_reshape,
4728 .start_reshape = raid5_start_reshape,
4729#endif
16a53ecc
N
4730 .quiesce = raid5_quiesce,
4731};
2604b703 4732static struct mdk_personality raid5_personality =
1da177e4
LT
4733{
4734 .name = "raid5",
2604b703 4735 .level = 5,
1da177e4
LT
4736 .owner = THIS_MODULE,
4737 .make_request = make_request,
4738 .run = run,
4739 .stop = stop,
4740 .status = status,
4741 .error_handler = error,
4742 .hot_add_disk = raid5_add_disk,
4743 .hot_remove_disk= raid5_remove_disk,
4744 .spare_active = raid5_spare_active,
4745 .sync_request = sync_request,
4746 .resize = raid5_resize,
29269553 4747#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4748 .check_reshape = raid5_check_reshape,
4749 .start_reshape = raid5_start_reshape,
29269553 4750#endif
72626685 4751 .quiesce = raid5_quiesce,
1da177e4
LT
4752};
4753
2604b703 4754static struct mdk_personality raid4_personality =
1da177e4 4755{
2604b703
N
4756 .name = "raid4",
4757 .level = 4,
4758 .owner = THIS_MODULE,
4759 .make_request = make_request,
4760 .run = run,
4761 .stop = stop,
4762 .status = status,
4763 .error_handler = error,
4764 .hot_add_disk = raid5_add_disk,
4765 .hot_remove_disk= raid5_remove_disk,
4766 .spare_active = raid5_spare_active,
4767 .sync_request = sync_request,
4768 .resize = raid5_resize,
3d37890b
N
4769#ifdef CONFIG_MD_RAID5_RESHAPE
4770 .check_reshape = raid5_check_reshape,
4771 .start_reshape = raid5_start_reshape,
4772#endif
2604b703
N
4773 .quiesce = raid5_quiesce,
4774};
4775
4776static int __init raid5_init(void)
4777{
16a53ecc
N
4778 int e;
4779
4780 e = raid6_select_algo();
4781 if ( e )
4782 return e;
4783 register_md_personality(&raid6_personality);
2604b703
N
4784 register_md_personality(&raid5_personality);
4785 register_md_personality(&raid4_personality);
4786 return 0;
1da177e4
LT
4787}
4788
2604b703 4789static void raid5_exit(void)
1da177e4 4790{
16a53ecc 4791 unregister_md_personality(&raid6_personality);
2604b703
N
4792 unregister_md_personality(&raid5_personality);
4793 unregister_md_personality(&raid4_personality);
1da177e4
LT
4794}
4795
4796module_init(raid5_init);
4797module_exit(raid5_exit);
4798MODULE_LICENSE("GPL");
4799MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4800MODULE_ALIAS("md-raid5");
4801MODULE_ALIAS("md-raid4");
2604b703
N
4802MODULE_ALIAS("md-level-5");
4803MODULE_ALIAS("md-level-4");
16a53ecc
N
4804MODULE_ALIAS("md-personality-8"); /* RAID6 */
4805MODULE_ALIAS("md-raid6");
4806MODULE_ALIAS("md-level-6");
4807
4808/* This used to be two separate modules, they were: */
4809MODULE_ALIAS("raid5");
4810MODULE_ALIAS("raid6");