]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md: introduce get_priority_stripe() to improve raid456 write performance
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685 54#include <linux/raid/bitmap.h>
91c00924 55#include <linux/async_tx.h>
72626685 56
1da177e4
LT
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES 256
62#define STRIPE_SIZE PAGE_SIZE
63#define STRIPE_SHIFT (PAGE_SHIFT - 9)
64#define STRIPE_SECTORS (STRIPE_SIZE>>9)
65#define IO_THRESHOLD 1
8b3e6cdc 66#define BYPASS_THRESHOLD 1
fccddba0 67#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
68#define HASH_MASK (NR_HASH - 1)
69
fccddba0 70#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
71
72/* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82/*
83 * The following can be used to debug the driver
84 */
1da177e4
LT
85#define RAID5_PARANOIA 1
86#if RAID5_PARANOIA && defined(CONFIG_SMP)
87# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88#else
89# define CHECK_DEVLOCK()
90#endif
91
45b4233c 92#ifdef DEBUG
1da177e4
LT
93#define inline
94#define __inline__
95#endif
96
16a53ecc
N
97#if !RAID6_USE_EMPTY_ZERO_PAGE
98/* In .bss so it's zeroed */
99const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100#endif
101
102static inline int raid6_next_disk(int disk, int raid_disks)
103{
104 disk++;
105 return (disk < raid_disks) ? disk : 0;
106}
a4456856
DW
107
108static void return_io(struct bio *return_bi)
109{
110 struct bio *bi = return_bi;
111 while (bi) {
a4456856
DW
112
113 return_bi = bi->bi_next;
114 bi->bi_next = NULL;
115 bi->bi_size = 0;
6712ecf8 116 bi->bi_end_io(bi,
a4456856
DW
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
118 ? 0 : -EIO);
119 bi = return_bi;
120 }
121}
122
1da177e4
LT
123static void print_raid5_conf (raid5_conf_t *conf);
124
858119e1 125static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
126{
127 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 132 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 135 sh->bm_seq - conf->seq_write > 0) {
72626685 136 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
137 blk_plug_device(conf->mddev->queue);
138 } else {
72626685 139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 140 list_add_tail(&sh->lru, &conf->handle_list);
72626685 141 }
1da177e4
LT
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
d84e0f10 144 BUG_ON(sh->ops.pending);
1da177e4
LT
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
1da177e4 150 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 153 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 156 }
1da177e4
LT
157 }
158 }
159}
160static void release_stripe(struct stripe_head *sh)
161{
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
16a53ecc 164
1da177e4
LT
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168}
169
fccddba0 170static inline void remove_hash(struct stripe_head *sh)
1da177e4 171{
45b4233c
DW
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
1da177e4 174
fccddba0 175 hlist_del_init(&sh->hash);
1da177e4
LT
176}
177
16a53ecc 178static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 179{
fccddba0 180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 181
45b4233c
DW
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
1da177e4
LT
184
185 CHECK_DEVLOCK();
fccddba0 186 hlist_add_head(&sh->hash, hp);
1da177e4
LT
187}
188
189
190/* find an idle stripe, make sure it is unhashed, and return it. */
191static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192{
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
195
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204out:
205 return sh;
206}
207
208static void shrink_buffers(struct stripe_head *sh, int num)
209{
210 struct page *p;
211 int i;
212
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
2d1f3b5d 218 put_page(p);
1da177e4
LT
219 }
220}
221
222static int grow_buffers(struct stripe_head *sh, int num)
223{
224 int i;
225
226 for (i=0; i<num; i++) {
227 struct page *page;
228
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
231 }
232 sh->dev[i].page = page;
233 }
234 return 0;
235}
236
237static void raid5_build_block (struct stripe_head *sh, int i);
238
7ecaa1e6 239static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
240{
241 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 242 int i;
1da177e4 243
78bafebd
ES
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
d84e0f10
DW
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
1da177e4 248 CHECK_DEVLOCK();
45b4233c 249 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
250 (unsigned long long)sh->sector);
251
252 remove_hash(sh);
16a53ecc 253
1da177e4
LT
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
257
7ecaa1e6
N
258 sh->disks = disks;
259
260 for (i = sh->disks; i--; ) {
1da177e4
LT
261 struct r5dev *dev = &sh->dev[i];
262
d84e0f10 263 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 264 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 266 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 267 dev->read, dev->towrite, dev->written,
1da177e4
LT
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
270 }
271 dev->flags = 0;
272 raid5_build_block(sh, i);
273 }
274 insert_hash(conf, sh);
275}
276
7ecaa1e6 277static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
278{
279 struct stripe_head *sh;
fccddba0 280 struct hlist_node *hn;
1da177e4
LT
281
282 CHECK_DEVLOCK();
45b4233c 283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 285 if (sh->sector == sector && sh->disks == disks)
1da177e4 286 return sh;
45b4233c 287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
288 return NULL;
289}
290
291static void unplug_slaves(mddev_t *mddev);
165125e1 292static void raid5_unplug_device(struct request_queue *q);
1da177e4 293
7ecaa1e6
N
294static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
1da177e4
LT
296{
297 struct stripe_head *sh;
298
45b4233c 299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
300
301 spin_lock_irq(&conf->device_lock);
302
303 do {
72626685
N
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
7ecaa1e6 307 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
5036805b
N
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
1da177e4
LT
319 || !conf->inactive_blocked),
320 conf->device_lock,
f4370781 321 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
322 );
323 conf->inactive_blocked = 0;
324 } else
7ecaa1e6 325 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
326 } else {
327 if (atomic_read(&sh->count)) {
78bafebd 328 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
334 BUG();
335 list_del_init(&sh->lru);
1da177e4
LT
336 }
337 }
338 } while (sh == NULL);
339
340 if (sh)
341 atomic_inc(&sh->count);
342
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
345}
346
d84e0f10
DW
347/* test_and_ack_op() ensures that we only dequeue an operation once */
348#define test_and_ack_op(op, pend) \
349do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358} while (0)
359
360/* find new work to run, do not resubmit work that is already
361 * in flight
362 */
363static unsigned long get_stripe_work(struct stripe_head *sh)
364{
365 unsigned long pending;
366 int ack = 0;
367
368 pending = sh->ops.pending;
369
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
378
379 sh->ops.count -= ack;
4ae3f847
DW
380 if (unlikely(sh->ops.count < 0)) {
381 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382 "ops.complete: %#lx\n", pending, sh->ops.pending,
383 sh->ops.ack, sh->ops.complete);
384 BUG();
385 }
d84e0f10
DW
386
387 return pending;
388}
389
6712ecf8
N
390static void
391raid5_end_read_request(struct bio *bi, int error);
392static void
393raid5_end_write_request(struct bio *bi, int error);
91c00924
DW
394
395static void ops_run_io(struct stripe_head *sh)
396{
397 raid5_conf_t *conf = sh->raid_conf;
398 int i, disks = sh->disks;
399
400 might_sleep();
401
8b3e6cdc 402 set_bit(STRIPE_IO_STARTED, &sh->state);
91c00924
DW
403 for (i = disks; i--; ) {
404 int rw;
405 struct bio *bi;
406 mdk_rdev_t *rdev;
407 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
408 rw = WRITE;
409 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
410 rw = READ;
411 else
412 continue;
413
414 bi = &sh->dev[i].req;
415
416 bi->bi_rw = rw;
417 if (rw == WRITE)
418 bi->bi_end_io = raid5_end_write_request;
419 else
420 bi->bi_end_io = raid5_end_read_request;
421
422 rcu_read_lock();
423 rdev = rcu_dereference(conf->disks[i].rdev);
424 if (rdev && test_bit(Faulty, &rdev->flags))
425 rdev = NULL;
426 if (rdev)
427 atomic_inc(&rdev->nr_pending);
428 rcu_read_unlock();
429
430 if (rdev) {
431 if (test_bit(STRIPE_SYNCING, &sh->state) ||
432 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
433 test_bit(STRIPE_EXPAND_READY, &sh->state))
434 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
435
436 bi->bi_bdev = rdev->bdev;
437 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 438 __func__, (unsigned long long)sh->sector,
91c00924
DW
439 bi->bi_rw, i);
440 atomic_inc(&sh->count);
441 bi->bi_sector = sh->sector + rdev->data_offset;
442 bi->bi_flags = 1 << BIO_UPTODATE;
443 bi->bi_vcnt = 1;
444 bi->bi_max_vecs = 1;
445 bi->bi_idx = 0;
446 bi->bi_io_vec = &sh->dev[i].vec;
447 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
448 bi->bi_io_vec[0].bv_offset = 0;
449 bi->bi_size = STRIPE_SIZE;
450 bi->bi_next = NULL;
451 if (rw == WRITE &&
452 test_bit(R5_ReWrite, &sh->dev[i].flags))
453 atomic_add(STRIPE_SECTORS,
454 &rdev->corrected_errors);
455 generic_make_request(bi);
456 } else {
457 if (rw == WRITE)
458 set_bit(STRIPE_DEGRADED, &sh->state);
459 pr_debug("skip op %ld on disc %d for sector %llu\n",
460 bi->bi_rw, i, (unsigned long long)sh->sector);
461 clear_bit(R5_LOCKED, &sh->dev[i].flags);
462 set_bit(STRIPE_HANDLE, &sh->state);
463 }
464 }
465}
466
467static struct dma_async_tx_descriptor *
468async_copy_data(int frombio, struct bio *bio, struct page *page,
469 sector_t sector, struct dma_async_tx_descriptor *tx)
470{
471 struct bio_vec *bvl;
472 struct page *bio_page;
473 int i;
474 int page_offset;
475
476 if (bio->bi_sector >= sector)
477 page_offset = (signed)(bio->bi_sector - sector) * 512;
478 else
479 page_offset = (signed)(sector - bio->bi_sector) * -512;
480 bio_for_each_segment(bvl, bio, i) {
481 int len = bio_iovec_idx(bio, i)->bv_len;
482 int clen;
483 int b_offset = 0;
484
485 if (page_offset < 0) {
486 b_offset = -page_offset;
487 page_offset += b_offset;
488 len -= b_offset;
489 }
490
491 if (len > 0 && page_offset + len > STRIPE_SIZE)
492 clen = STRIPE_SIZE - page_offset;
493 else
494 clen = len;
495
496 if (clen > 0) {
497 b_offset += bio_iovec_idx(bio, i)->bv_offset;
498 bio_page = bio_iovec_idx(bio, i)->bv_page;
499 if (frombio)
500 tx = async_memcpy(page, bio_page, page_offset,
501 b_offset, clen,
eb0645a8 502 ASYNC_TX_DEP_ACK,
91c00924
DW
503 tx, NULL, NULL);
504 else
505 tx = async_memcpy(bio_page, page, b_offset,
506 page_offset, clen,
eb0645a8 507 ASYNC_TX_DEP_ACK,
91c00924
DW
508 tx, NULL, NULL);
509 }
510 if (clen < len) /* hit end of page */
511 break;
512 page_offset += len;
513 }
514
515 return tx;
516}
517
518static void ops_complete_biofill(void *stripe_head_ref)
519{
520 struct stripe_head *sh = stripe_head_ref;
521 struct bio *return_bi = NULL;
522 raid5_conf_t *conf = sh->raid_conf;
e4d84909 523 int i;
91c00924 524
e46b272b 525 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
526 (unsigned long long)sh->sector);
527
528 /* clear completed biofills */
529 for (i = sh->disks; i--; ) {
530 struct r5dev *dev = &sh->dev[i];
91c00924
DW
531
532 /* acknowledge completion of a biofill operation */
e4d84909
DW
533 /* and check if we need to reply to a read request,
534 * new R5_Wantfill requests are held off until
535 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
536 */
537 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 538 struct bio *rbi, *rbi2;
91c00924
DW
539
540 /* The access to dev->read is outside of the
541 * spin_lock_irq(&conf->device_lock), but is protected
542 * by the STRIPE_OP_BIOFILL pending bit
543 */
544 BUG_ON(!dev->read);
545 rbi = dev->read;
546 dev->read = NULL;
547 while (rbi && rbi->bi_sector <
548 dev->sector + STRIPE_SECTORS) {
549 rbi2 = r5_next_bio(rbi, dev->sector);
550 spin_lock_irq(&conf->device_lock);
551 if (--rbi->bi_phys_segments == 0) {
552 rbi->bi_next = return_bi;
553 return_bi = rbi;
554 }
555 spin_unlock_irq(&conf->device_lock);
556 rbi = rbi2;
557 }
558 }
559 }
4ae3f847 560 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
91c00924
DW
561
562 return_io(return_bi);
563
e4d84909 564 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
565 release_stripe(sh);
566}
567
568static void ops_run_biofill(struct stripe_head *sh)
569{
570 struct dma_async_tx_descriptor *tx = NULL;
571 raid5_conf_t *conf = sh->raid_conf;
572 int i;
573
e46b272b 574 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
575 (unsigned long long)sh->sector);
576
577 for (i = sh->disks; i--; ) {
578 struct r5dev *dev = &sh->dev[i];
579 if (test_bit(R5_Wantfill, &dev->flags)) {
580 struct bio *rbi;
581 spin_lock_irq(&conf->device_lock);
582 dev->read = rbi = dev->toread;
583 dev->toread = NULL;
584 spin_unlock_irq(&conf->device_lock);
585 while (rbi && rbi->bi_sector <
586 dev->sector + STRIPE_SECTORS) {
587 tx = async_copy_data(0, rbi, dev->page,
588 dev->sector, tx);
589 rbi = r5_next_bio(rbi, dev->sector);
590 }
591 }
592 }
593
594 atomic_inc(&sh->count);
595 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
596 ops_complete_biofill, sh);
597}
598
599static void ops_complete_compute5(void *stripe_head_ref)
600{
601 struct stripe_head *sh = stripe_head_ref;
602 int target = sh->ops.target;
603 struct r5dev *tgt = &sh->dev[target];
604
e46b272b 605 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
606 (unsigned long long)sh->sector);
607
608 set_bit(R5_UPTODATE, &tgt->flags);
609 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
610 clear_bit(R5_Wantcompute, &tgt->flags);
611 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
612 set_bit(STRIPE_HANDLE, &sh->state);
613 release_stripe(sh);
614}
615
616static struct dma_async_tx_descriptor *
617ops_run_compute5(struct stripe_head *sh, unsigned long pending)
618{
619 /* kernel stack size limits the total number of disks */
620 int disks = sh->disks;
621 struct page *xor_srcs[disks];
622 int target = sh->ops.target;
623 struct r5dev *tgt = &sh->dev[target];
624 struct page *xor_dest = tgt->page;
625 int count = 0;
626 struct dma_async_tx_descriptor *tx;
627 int i;
628
629 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 630 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
631 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632
633 for (i = disks; i--; )
634 if (i != target)
635 xor_srcs[count++] = sh->dev[i].page;
636
637 atomic_inc(&sh->count);
638
639 if (unlikely(count == 1))
640 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
641 0, NULL, ops_complete_compute5, sh);
642 else
643 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
644 ASYNC_TX_XOR_ZERO_DST, NULL,
645 ops_complete_compute5, sh);
646
647 /* ack now if postxor is not set to be run */
648 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
649 async_tx_ack(tx);
650
651 return tx;
652}
653
654static void ops_complete_prexor(void *stripe_head_ref)
655{
656 struct stripe_head *sh = stripe_head_ref;
657
e46b272b 658 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
659 (unsigned long long)sh->sector);
660
661 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662}
663
664static struct dma_async_tx_descriptor *
665ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
666{
667 /* kernel stack size limits the total number of disks */
668 int disks = sh->disks;
669 struct page *xor_srcs[disks];
670 int count = 0, pd_idx = sh->pd_idx, i;
671
672 /* existing parity data subtracted */
673 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
674
e46b272b 675 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
676 (unsigned long long)sh->sector);
677
678 for (i = disks; i--; ) {
679 struct r5dev *dev = &sh->dev[i];
680 /* Only process blocks that are known to be uptodate */
681 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
682 xor_srcs[count++] = dev->page;
683 }
684
685 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
686 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
687 ops_complete_prexor, sh);
688
689 return tx;
690}
691
692static struct dma_async_tx_descriptor *
6c55be8b
DW
693ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
694 unsigned long pending)
91c00924
DW
695{
696 int disks = sh->disks;
697 int pd_idx = sh->pd_idx, i;
698
699 /* check if prexor is active which means only process blocks
700 * that are part of a read-modify-write (Wantprexor)
701 */
6c55be8b 702 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924 703
e46b272b 704 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
705 (unsigned long long)sh->sector);
706
707 for (i = disks; i--; ) {
708 struct r5dev *dev = &sh->dev[i];
709 struct bio *chosen;
710 int towrite;
711
712 towrite = 0;
713 if (prexor) { /* rmw */
714 if (dev->towrite &&
715 test_bit(R5_Wantprexor, &dev->flags))
716 towrite = 1;
717 } else { /* rcw */
718 if (i != pd_idx && dev->towrite &&
719 test_bit(R5_LOCKED, &dev->flags))
720 towrite = 1;
721 }
722
723 if (towrite) {
724 struct bio *wbi;
725
726 spin_lock(&sh->lock);
727 chosen = dev->towrite;
728 dev->towrite = NULL;
729 BUG_ON(dev->written);
730 wbi = dev->written = chosen;
731 spin_unlock(&sh->lock);
732
733 while (wbi && wbi->bi_sector <
734 dev->sector + STRIPE_SECTORS) {
735 tx = async_copy_data(1, wbi, dev->page,
736 dev->sector, tx);
737 wbi = r5_next_bio(wbi, dev->sector);
738 }
739 }
740 }
741
742 return tx;
743}
744
745static void ops_complete_postxor(void *stripe_head_ref)
746{
747 struct stripe_head *sh = stripe_head_ref;
748
e46b272b 749 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
750 (unsigned long long)sh->sector);
751
752 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
753 set_bit(STRIPE_HANDLE, &sh->state);
754 release_stripe(sh);
755}
756
757static void ops_complete_write(void *stripe_head_ref)
758{
759 struct stripe_head *sh = stripe_head_ref;
760 int disks = sh->disks, i, pd_idx = sh->pd_idx;
761
e46b272b 762 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
763 (unsigned long long)sh->sector);
764
765 for (i = disks; i--; ) {
766 struct r5dev *dev = &sh->dev[i];
767 if (dev->written || i == pd_idx)
768 set_bit(R5_UPTODATE, &dev->flags);
769 }
770
771 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
772 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
773
774 set_bit(STRIPE_HANDLE, &sh->state);
775 release_stripe(sh);
776}
777
778static void
6c55be8b
DW
779ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
780 unsigned long pending)
91c00924
DW
781{
782 /* kernel stack size limits the total number of disks */
783 int disks = sh->disks;
784 struct page *xor_srcs[disks];
785
786 int count = 0, pd_idx = sh->pd_idx, i;
787 struct page *xor_dest;
6c55be8b 788 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924
DW
789 unsigned long flags;
790 dma_async_tx_callback callback;
791
e46b272b 792 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
793 (unsigned long long)sh->sector);
794
795 /* check if prexor is active which means only process blocks
796 * that are part of a read-modify-write (written)
797 */
798 if (prexor) {
799 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
800 for (i = disks; i--; ) {
801 struct r5dev *dev = &sh->dev[i];
802 if (dev->written)
803 xor_srcs[count++] = dev->page;
804 }
805 } else {
806 xor_dest = sh->dev[pd_idx].page;
807 for (i = disks; i--; ) {
808 struct r5dev *dev = &sh->dev[i];
809 if (i != pd_idx)
810 xor_srcs[count++] = dev->page;
811 }
812 }
813
814 /* check whether this postxor is part of a write */
6c55be8b 815 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
91c00924
DW
816 ops_complete_write : ops_complete_postxor;
817
818 /* 1/ if we prexor'd then the dest is reused as a source
819 * 2/ if we did not prexor then we are redoing the parity
820 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821 * for the synchronous xor case
822 */
823 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
824 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
825
826 atomic_inc(&sh->count);
827
828 if (unlikely(count == 1)) {
829 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
830 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
831 flags, tx, callback, sh);
832 } else
833 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
834 flags, tx, callback, sh);
835}
836
837static void ops_complete_check(void *stripe_head_ref)
838{
839 struct stripe_head *sh = stripe_head_ref;
840 int pd_idx = sh->pd_idx;
841
e46b272b 842 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
843 (unsigned long long)sh->sector);
844
845 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
846 sh->ops.zero_sum_result == 0)
847 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
848
849 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
850 set_bit(STRIPE_HANDLE, &sh->state);
851 release_stripe(sh);
852}
853
854static void ops_run_check(struct stripe_head *sh)
855{
856 /* kernel stack size limits the total number of disks */
857 int disks = sh->disks;
858 struct page *xor_srcs[disks];
859 struct dma_async_tx_descriptor *tx;
860
861 int count = 0, pd_idx = sh->pd_idx, i;
862 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
863
e46b272b 864 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
865 (unsigned long long)sh->sector);
866
867 for (i = disks; i--; ) {
868 struct r5dev *dev = &sh->dev[i];
869 if (i != pd_idx)
870 xor_srcs[count++] = dev->page;
871 }
872
873 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
874 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
875
876 if (tx)
877 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
878 else
879 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
880
881 atomic_inc(&sh->count);
882 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
883 ops_complete_check, sh);
884}
885
886static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
887{
888 int overlap_clear = 0, i, disks = sh->disks;
889 struct dma_async_tx_descriptor *tx = NULL;
890
891 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
892 ops_run_biofill(sh);
893 overlap_clear++;
894 }
895
896 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
897 tx = ops_run_compute5(sh, pending);
898
899 if (test_bit(STRIPE_OP_PREXOR, &pending))
900 tx = ops_run_prexor(sh, tx);
901
902 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
6c55be8b 903 tx = ops_run_biodrain(sh, tx, pending);
91c00924
DW
904 overlap_clear++;
905 }
906
907 if (test_bit(STRIPE_OP_POSTXOR, &pending))
6c55be8b 908 ops_run_postxor(sh, tx, pending);
91c00924
DW
909
910 if (test_bit(STRIPE_OP_CHECK, &pending))
911 ops_run_check(sh);
912
913 if (test_bit(STRIPE_OP_IO, &pending))
914 ops_run_io(sh);
915
916 if (overlap_clear)
917 for (i = disks; i--; ) {
918 struct r5dev *dev = &sh->dev[i];
919 if (test_and_clear_bit(R5_Overlap, &dev->flags))
920 wake_up(&sh->raid_conf->wait_for_overlap);
921 }
922}
923
3f294f4f 924static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
925{
926 struct stripe_head *sh;
3f294f4f
N
927 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
928 if (!sh)
929 return 0;
930 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
931 sh->raid_conf = conf;
932 spin_lock_init(&sh->lock);
933
934 if (grow_buffers(sh, conf->raid_disks)) {
935 shrink_buffers(sh, conf->raid_disks);
936 kmem_cache_free(conf->slab_cache, sh);
937 return 0;
938 }
7ecaa1e6 939 sh->disks = conf->raid_disks;
3f294f4f
N
940 /* we just created an active stripe so... */
941 atomic_set(&sh->count, 1);
942 atomic_inc(&conf->active_stripes);
943 INIT_LIST_HEAD(&sh->lru);
944 release_stripe(sh);
945 return 1;
946}
947
948static int grow_stripes(raid5_conf_t *conf, int num)
949{
e18b890b 950 struct kmem_cache *sc;
1da177e4
LT
951 int devs = conf->raid_disks;
952
42b9bebe
N
953 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
954 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
955 conf->active_name = 0;
956 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 957 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 958 0, 0, NULL);
1da177e4
LT
959 if (!sc)
960 return 1;
961 conf->slab_cache = sc;
ad01c9e3 962 conf->pool_size = devs;
16a53ecc 963 while (num--)
3f294f4f 964 if (!grow_one_stripe(conf))
1da177e4 965 return 1;
1da177e4
LT
966 return 0;
967}
29269553
N
968
969#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
970static int resize_stripes(raid5_conf_t *conf, int newsize)
971{
972 /* Make all the stripes able to hold 'newsize' devices.
973 * New slots in each stripe get 'page' set to a new page.
974 *
975 * This happens in stages:
976 * 1/ create a new kmem_cache and allocate the required number of
977 * stripe_heads.
978 * 2/ gather all the old stripe_heads and tranfer the pages across
979 * to the new stripe_heads. This will have the side effect of
980 * freezing the array as once all stripe_heads have been collected,
981 * no IO will be possible. Old stripe heads are freed once their
982 * pages have been transferred over, and the old kmem_cache is
983 * freed when all stripes are done.
984 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
985 * we simple return a failre status - no need to clean anything up.
986 * 4/ allocate new pages for the new slots in the new stripe_heads.
987 * If this fails, we don't bother trying the shrink the
988 * stripe_heads down again, we just leave them as they are.
989 * As each stripe_head is processed the new one is released into
990 * active service.
991 *
992 * Once step2 is started, we cannot afford to wait for a write,
993 * so we use GFP_NOIO allocations.
994 */
995 struct stripe_head *osh, *nsh;
996 LIST_HEAD(newstripes);
997 struct disk_info *ndisks;
998 int err = 0;
e18b890b 999 struct kmem_cache *sc;
ad01c9e3
N
1000 int i;
1001
1002 if (newsize <= conf->pool_size)
1003 return 0; /* never bother to shrink */
1004
2a2275d6
N
1005 md_allow_write(conf->mddev);
1006
ad01c9e3
N
1007 /* Step 1 */
1008 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1009 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1010 0, 0, NULL);
ad01c9e3
N
1011 if (!sc)
1012 return -ENOMEM;
1013
1014 for (i = conf->max_nr_stripes; i; i--) {
1015 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1016 if (!nsh)
1017 break;
1018
1019 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1020
1021 nsh->raid_conf = conf;
1022 spin_lock_init(&nsh->lock);
1023
1024 list_add(&nsh->lru, &newstripes);
1025 }
1026 if (i) {
1027 /* didn't get enough, give up */
1028 while (!list_empty(&newstripes)) {
1029 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1030 list_del(&nsh->lru);
1031 kmem_cache_free(sc, nsh);
1032 }
1033 kmem_cache_destroy(sc);
1034 return -ENOMEM;
1035 }
1036 /* Step 2 - Must use GFP_NOIO now.
1037 * OK, we have enough stripes, start collecting inactive
1038 * stripes and copying them over
1039 */
1040 list_for_each_entry(nsh, &newstripes, lru) {
1041 spin_lock_irq(&conf->device_lock);
1042 wait_event_lock_irq(conf->wait_for_stripe,
1043 !list_empty(&conf->inactive_list),
1044 conf->device_lock,
b3b46be3 1045 unplug_slaves(conf->mddev)
ad01c9e3
N
1046 );
1047 osh = get_free_stripe(conf);
1048 spin_unlock_irq(&conf->device_lock);
1049 atomic_set(&nsh->count, 1);
1050 for(i=0; i<conf->pool_size; i++)
1051 nsh->dev[i].page = osh->dev[i].page;
1052 for( ; i<newsize; i++)
1053 nsh->dev[i].page = NULL;
1054 kmem_cache_free(conf->slab_cache, osh);
1055 }
1056 kmem_cache_destroy(conf->slab_cache);
1057
1058 /* Step 3.
1059 * At this point, we are holding all the stripes so the array
1060 * is completely stalled, so now is a good time to resize
1061 * conf->disks.
1062 */
1063 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1064 if (ndisks) {
1065 for (i=0; i<conf->raid_disks; i++)
1066 ndisks[i] = conf->disks[i];
1067 kfree(conf->disks);
1068 conf->disks = ndisks;
1069 } else
1070 err = -ENOMEM;
1071
1072 /* Step 4, return new stripes to service */
1073 while(!list_empty(&newstripes)) {
1074 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1075 list_del_init(&nsh->lru);
1076 for (i=conf->raid_disks; i < newsize; i++)
1077 if (nsh->dev[i].page == NULL) {
1078 struct page *p = alloc_page(GFP_NOIO);
1079 nsh->dev[i].page = p;
1080 if (!p)
1081 err = -ENOMEM;
1082 }
1083 release_stripe(nsh);
1084 }
1085 /* critical section pass, GFP_NOIO no longer needed */
1086
1087 conf->slab_cache = sc;
1088 conf->active_name = 1-conf->active_name;
1089 conf->pool_size = newsize;
1090 return err;
1091}
29269553 1092#endif
1da177e4 1093
3f294f4f 1094static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1095{
1096 struct stripe_head *sh;
1097
3f294f4f
N
1098 spin_lock_irq(&conf->device_lock);
1099 sh = get_free_stripe(conf);
1100 spin_unlock_irq(&conf->device_lock);
1101 if (!sh)
1102 return 0;
78bafebd 1103 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1104 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1105 kmem_cache_free(conf->slab_cache, sh);
1106 atomic_dec(&conf->active_stripes);
1107 return 1;
1108}
1109
1110static void shrink_stripes(raid5_conf_t *conf)
1111{
1112 while (drop_one_stripe(conf))
1113 ;
1114
29fc7e3e
N
1115 if (conf->slab_cache)
1116 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1117 conf->slab_cache = NULL;
1118}
1119
6712ecf8 1120static void raid5_end_read_request(struct bio * bi, int error)
1da177e4
LT
1121{
1122 struct stripe_head *sh = bi->bi_private;
1123 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1124 int disks = sh->disks, i;
1da177e4 1125 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1126 char b[BDEVNAME_SIZE];
1127 mdk_rdev_t *rdev;
1da177e4 1128
1da177e4
LT
1129
1130 for (i=0 ; i<disks; i++)
1131 if (bi == &sh->dev[i].req)
1132 break;
1133
45b4233c
DW
1134 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1135 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1136 uptodate);
1137 if (i == disks) {
1138 BUG();
6712ecf8 1139 return;
1da177e4
LT
1140 }
1141
1142 if (uptodate) {
1da177e4 1143 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1144 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432
N
1145 rdev = conf->disks[i].rdev;
1146 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1147 mdname(conf->mddev), STRIPE_SECTORS,
9ea85eba 1148 (unsigned long long)(sh->sector + rdev->data_offset),
d6950432 1149 bdevname(rdev->bdev, b));
4e5314b5
N
1150 clear_bit(R5_ReadError, &sh->dev[i].flags);
1151 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1152 }
ba22dcbf
N
1153 if (atomic_read(&conf->disks[i].rdev->read_errors))
1154 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1155 } else {
d6950432 1156 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1157 int retry = 0;
d6950432
N
1158 rdev = conf->disks[i].rdev;
1159
1da177e4 1160 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1161 atomic_inc(&rdev->read_errors);
ba22dcbf 1162 if (conf->mddev->degraded)
d6950432
N
1163 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1164 mdname(conf->mddev),
9ea85eba 1165 (unsigned long long)(sh->sector + rdev->data_offset),
d6950432 1166 bdn);
ba22dcbf 1167 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1168 /* Oh, no!!! */
d6950432
N
1169 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1170 mdname(conf->mddev),
9ea85eba 1171 (unsigned long long)(sh->sector + rdev->data_offset),
d6950432
N
1172 bdn);
1173 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1174 > conf->max_nr_stripes)
14f8d26b 1175 printk(KERN_WARNING
d6950432
N
1176 "raid5:%s: Too many read errors, failing device %s.\n",
1177 mdname(conf->mddev), bdn);
ba22dcbf
N
1178 else
1179 retry = 1;
1180 if (retry)
1181 set_bit(R5_ReadError, &sh->dev[i].flags);
1182 else {
4e5314b5
N
1183 clear_bit(R5_ReadError, &sh->dev[i].flags);
1184 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1185 md_error(conf->mddev, rdev);
ba22dcbf 1186 }
1da177e4
LT
1187 }
1188 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1189 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1190 set_bit(STRIPE_HANDLE, &sh->state);
1191 release_stripe(sh);
1da177e4
LT
1192}
1193
6712ecf8 1194static void raid5_end_write_request (struct bio *bi, int error)
1da177e4
LT
1195{
1196 struct stripe_head *sh = bi->bi_private;
1197 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1198 int disks = sh->disks, i;
1da177e4
LT
1199 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1200
1da177e4
LT
1201 for (i=0 ; i<disks; i++)
1202 if (bi == &sh->dev[i].req)
1203 break;
1204
45b4233c 1205 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1206 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1207 uptodate);
1208 if (i == disks) {
1209 BUG();
6712ecf8 1210 return;
1da177e4
LT
1211 }
1212
1da177e4
LT
1213 if (!uptodate)
1214 md_error(conf->mddev, conf->disks[i].rdev);
1215
1216 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1217
1218 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1219 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1220 release_stripe(sh);
1da177e4
LT
1221}
1222
1223
1224static sector_t compute_blocknr(struct stripe_head *sh, int i);
1225
1226static void raid5_build_block (struct stripe_head *sh, int i)
1227{
1228 struct r5dev *dev = &sh->dev[i];
1229
1230 bio_init(&dev->req);
1231 dev->req.bi_io_vec = &dev->vec;
1232 dev->req.bi_vcnt++;
1233 dev->req.bi_max_vecs++;
1234 dev->vec.bv_page = dev->page;
1235 dev->vec.bv_len = STRIPE_SIZE;
1236 dev->vec.bv_offset = 0;
1237
1238 dev->req.bi_sector = sh->sector;
1239 dev->req.bi_private = sh;
1240
1241 dev->flags = 0;
16a53ecc 1242 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1243}
1244
1245static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1246{
1247 char b[BDEVNAME_SIZE];
1248 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1249 pr_debug("raid5: error called\n");
1da177e4 1250
b2d444d7 1251 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1252 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1253 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1254 unsigned long flags;
1255 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1256 mddev->degraded++;
c04be0aa 1257 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1258 /*
1259 * if recovery was running, make sure it aborts.
1260 */
1261 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1262 }
b2d444d7 1263 set_bit(Faulty, &rdev->flags);
1da177e4
LT
1264 printk (KERN_ALERT
1265 "raid5: Disk failure on %s, disabling device."
1266 " Operation continuing on %d devices\n",
02c2de8c 1267 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1268 }
16a53ecc 1269}
1da177e4
LT
1270
1271/*
1272 * Input: a 'big' sector number,
1273 * Output: index of the data and parity disk, and the sector # in them.
1274 */
1275static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1276 unsigned int data_disks, unsigned int * dd_idx,
1277 unsigned int * pd_idx, raid5_conf_t *conf)
1278{
1279 long stripe;
1280 unsigned long chunk_number;
1281 unsigned int chunk_offset;
1282 sector_t new_sector;
1283 int sectors_per_chunk = conf->chunk_size >> 9;
1284
1285 /* First compute the information on this sector */
1286
1287 /*
1288 * Compute the chunk number and the sector offset inside the chunk
1289 */
1290 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1291 chunk_number = r_sector;
1292 BUG_ON(r_sector != chunk_number);
1293
1294 /*
1295 * Compute the stripe number
1296 */
1297 stripe = chunk_number / data_disks;
1298
1299 /*
1300 * Compute the data disk and parity disk indexes inside the stripe
1301 */
1302 *dd_idx = chunk_number % data_disks;
1303
1304 /*
1305 * Select the parity disk based on the user selected algorithm.
1306 */
16a53ecc
N
1307 switch(conf->level) {
1308 case 4:
1da177e4 1309 *pd_idx = data_disks;
16a53ecc
N
1310 break;
1311 case 5:
1312 switch (conf->algorithm) {
1da177e4
LT
1313 case ALGORITHM_LEFT_ASYMMETRIC:
1314 *pd_idx = data_disks - stripe % raid_disks;
1315 if (*dd_idx >= *pd_idx)
1316 (*dd_idx)++;
1317 break;
1318 case ALGORITHM_RIGHT_ASYMMETRIC:
1319 *pd_idx = stripe % raid_disks;
1320 if (*dd_idx >= *pd_idx)
1321 (*dd_idx)++;
1322 break;
1323 case ALGORITHM_LEFT_SYMMETRIC:
1324 *pd_idx = data_disks - stripe % raid_disks;
1325 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1326 break;
1327 case ALGORITHM_RIGHT_SYMMETRIC:
1328 *pd_idx = stripe % raid_disks;
1329 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1330 break;
1331 default:
14f8d26b 1332 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1333 conf->algorithm);
16a53ecc
N
1334 }
1335 break;
1336 case 6:
1337
1338 /**** FIX THIS ****/
1339 switch (conf->algorithm) {
1340 case ALGORITHM_LEFT_ASYMMETRIC:
1341 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1342 if (*pd_idx == raid_disks-1)
1343 (*dd_idx)++; /* Q D D D P */
1344 else if (*dd_idx >= *pd_idx)
1345 (*dd_idx) += 2; /* D D P Q D */
1346 break;
1347 case ALGORITHM_RIGHT_ASYMMETRIC:
1348 *pd_idx = stripe % raid_disks;
1349 if (*pd_idx == raid_disks-1)
1350 (*dd_idx)++; /* Q D D D P */
1351 else if (*dd_idx >= *pd_idx)
1352 (*dd_idx) += 2; /* D D P Q D */
1353 break;
1354 case ALGORITHM_LEFT_SYMMETRIC:
1355 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1356 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1357 break;
1358 case ALGORITHM_RIGHT_SYMMETRIC:
1359 *pd_idx = stripe % raid_disks;
1360 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1361 break;
1362 default:
1363 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1364 conf->algorithm);
1365 }
1366 break;
1da177e4
LT
1367 }
1368
1369 /*
1370 * Finally, compute the new sector number
1371 */
1372 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1373 return new_sector;
1374}
1375
1376
1377static sector_t compute_blocknr(struct stripe_head *sh, int i)
1378{
1379 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1380 int raid_disks = sh->disks;
1381 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1382 sector_t new_sector = sh->sector, check;
1383 int sectors_per_chunk = conf->chunk_size >> 9;
1384 sector_t stripe;
1385 int chunk_offset;
1386 int chunk_number, dummy1, dummy2, dd_idx = i;
1387 sector_t r_sector;
1388
16a53ecc 1389
1da177e4
LT
1390 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1391 stripe = new_sector;
1392 BUG_ON(new_sector != stripe);
1393
16a53ecc
N
1394 if (i == sh->pd_idx)
1395 return 0;
1396 switch(conf->level) {
1397 case 4: break;
1398 case 5:
1399 switch (conf->algorithm) {
1da177e4
LT
1400 case ALGORITHM_LEFT_ASYMMETRIC:
1401 case ALGORITHM_RIGHT_ASYMMETRIC:
1402 if (i > sh->pd_idx)
1403 i--;
1404 break;
1405 case ALGORITHM_LEFT_SYMMETRIC:
1406 case ALGORITHM_RIGHT_SYMMETRIC:
1407 if (i < sh->pd_idx)
1408 i += raid_disks;
1409 i -= (sh->pd_idx + 1);
1410 break;
1411 default:
14f8d26b 1412 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1413 conf->algorithm);
1414 }
1415 break;
1416 case 6:
16a53ecc
N
1417 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1418 return 0; /* It is the Q disk */
1419 switch (conf->algorithm) {
1420 case ALGORITHM_LEFT_ASYMMETRIC:
1421 case ALGORITHM_RIGHT_ASYMMETRIC:
1422 if (sh->pd_idx == raid_disks-1)
1423 i--; /* Q D D D P */
1424 else if (i > sh->pd_idx)
1425 i -= 2; /* D D P Q D */
1426 break;
1427 case ALGORITHM_LEFT_SYMMETRIC:
1428 case ALGORITHM_RIGHT_SYMMETRIC:
1429 if (sh->pd_idx == raid_disks-1)
1430 i--; /* Q D D D P */
1431 else {
1432 /* D D P Q D */
1433 if (i < sh->pd_idx)
1434 i += raid_disks;
1435 i -= (sh->pd_idx + 2);
1436 }
1437 break;
1438 default:
1439 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 1440 conf->algorithm);
16a53ecc
N
1441 }
1442 break;
1da177e4
LT
1443 }
1444
1445 chunk_number = stripe * data_disks + i;
1446 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1447
1448 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1449 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 1450 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1451 return 0;
1452 }
1453 return r_sector;
1454}
1455
1456
1457
1458/*
16a53ecc
N
1459 * Copy data between a page in the stripe cache, and one or more bion
1460 * The page could align with the middle of the bio, or there could be
1461 * several bion, each with several bio_vecs, which cover part of the page
1462 * Multiple bion are linked together on bi_next. There may be extras
1463 * at the end of this list. We ignore them.
1da177e4
LT
1464 */
1465static void copy_data(int frombio, struct bio *bio,
1466 struct page *page,
1467 sector_t sector)
1468{
1469 char *pa = page_address(page);
1470 struct bio_vec *bvl;
1471 int i;
1472 int page_offset;
1473
1474 if (bio->bi_sector >= sector)
1475 page_offset = (signed)(bio->bi_sector - sector) * 512;
1476 else
1477 page_offset = (signed)(sector - bio->bi_sector) * -512;
1478 bio_for_each_segment(bvl, bio, i) {
1479 int len = bio_iovec_idx(bio,i)->bv_len;
1480 int clen;
1481 int b_offset = 0;
1482
1483 if (page_offset < 0) {
1484 b_offset = -page_offset;
1485 page_offset += b_offset;
1486 len -= b_offset;
1487 }
1488
1489 if (len > 0 && page_offset + len > STRIPE_SIZE)
1490 clen = STRIPE_SIZE - page_offset;
1491 else clen = len;
16a53ecc 1492
1da177e4
LT
1493 if (clen > 0) {
1494 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1495 if (frombio)
1496 memcpy(pa+page_offset, ba+b_offset, clen);
1497 else
1498 memcpy(ba+b_offset, pa+page_offset, clen);
1499 __bio_kunmap_atomic(ba, KM_USER0);
1500 }
1501 if (clen < len) /* hit end of page */
1502 break;
1503 page_offset += len;
1504 }
1505}
1506
9bc89cd8
DW
1507#define check_xor() do { \
1508 if (count == MAX_XOR_BLOCKS) { \
1509 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1510 count = 0; \
1511 } \
1da177e4
LT
1512 } while(0)
1513
16a53ecc
N
1514static void compute_parity6(struct stripe_head *sh, int method)
1515{
1516 raid6_conf_t *conf = sh->raid_conf;
f416885e 1517 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1518 struct bio *chosen;
1519 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1520 void *ptrs[disks];
1521
1522 qd_idx = raid6_next_disk(pd_idx, disks);
1523 d0_idx = raid6_next_disk(qd_idx, disks);
1524
45b4233c 1525 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1526 (unsigned long long)sh->sector, method);
1527
1528 switch(method) {
1529 case READ_MODIFY_WRITE:
1530 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1531 case RECONSTRUCT_WRITE:
1532 for (i= disks; i-- ;)
1533 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1534 chosen = sh->dev[i].towrite;
1535 sh->dev[i].towrite = NULL;
1536
1537 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1538 wake_up(&conf->wait_for_overlap);
1539
52e5f9d1 1540 BUG_ON(sh->dev[i].written);
16a53ecc
N
1541 sh->dev[i].written = chosen;
1542 }
1543 break;
1544 case CHECK_PARITY:
1545 BUG(); /* Not implemented yet */
1546 }
1547
1548 for (i = disks; i--;)
1549 if (sh->dev[i].written) {
1550 sector_t sector = sh->dev[i].sector;
1551 struct bio *wbi = sh->dev[i].written;
1552 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1553 copy_data(1, wbi, sh->dev[i].page, sector);
1554 wbi = r5_next_bio(wbi, sector);
1555 }
1556
1557 set_bit(R5_LOCKED, &sh->dev[i].flags);
1558 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1559 }
1560
1561// switch(method) {
1562// case RECONSTRUCT_WRITE:
1563// case CHECK_PARITY:
1564// case UPDATE_PARITY:
1565 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1566 /* FIX: Is this ordering of drives even remotely optimal? */
1567 count = 0;
1568 i = d0_idx;
1569 do {
1570 ptrs[count++] = page_address(sh->dev[i].page);
1571 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1572 printk("block %d/%d not uptodate on parity calc\n", i,count);
1573 i = raid6_next_disk(i, disks);
1574 } while ( i != d0_idx );
1575// break;
1576// }
1577
1578 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1579
1580 switch(method) {
1581 case RECONSTRUCT_WRITE:
1582 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1583 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1584 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1585 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1586 break;
1587 case UPDATE_PARITY:
1588 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1589 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1590 break;
1591 }
1592}
1593
1594
1595/* Compute one missing block */
1596static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1597{
f416885e 1598 int i, count, disks = sh->disks;
9bc89cd8 1599 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1600 int pd_idx = sh->pd_idx;
1601 int qd_idx = raid6_next_disk(pd_idx, disks);
1602
45b4233c 1603 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1604 (unsigned long long)sh->sector, dd_idx);
1605
1606 if ( dd_idx == qd_idx ) {
1607 /* We're actually computing the Q drive */
1608 compute_parity6(sh, UPDATE_PARITY);
1609 } else {
9bc89cd8
DW
1610 dest = page_address(sh->dev[dd_idx].page);
1611 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1612 count = 0;
16a53ecc
N
1613 for (i = disks ; i--; ) {
1614 if (i == dd_idx || i == qd_idx)
1615 continue;
1616 p = page_address(sh->dev[i].page);
1617 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1618 ptr[count++] = p;
1619 else
1620 printk("compute_block() %d, stripe %llu, %d"
1621 " not present\n", dd_idx,
1622 (unsigned long long)sh->sector, i);
1623
1624 check_xor();
1625 }
9bc89cd8
DW
1626 if (count)
1627 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1628 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1629 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1630 }
1631}
1632
1633/* Compute two missing blocks */
1634static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1635{
f416885e 1636 int i, count, disks = sh->disks;
16a53ecc
N
1637 int pd_idx = sh->pd_idx;
1638 int qd_idx = raid6_next_disk(pd_idx, disks);
1639 int d0_idx = raid6_next_disk(qd_idx, disks);
1640 int faila, failb;
1641
1642 /* faila and failb are disk numbers relative to d0_idx */
1643 /* pd_idx become disks-2 and qd_idx become disks-1 */
1644 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1645 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1646
1647 BUG_ON(faila == failb);
1648 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1649
45b4233c 1650 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
16a53ecc
N
1651 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1652
1653 if ( failb == disks-1 ) {
1654 /* Q disk is one of the missing disks */
1655 if ( faila == disks-2 ) {
1656 /* Missing P+Q, just recompute */
1657 compute_parity6(sh, UPDATE_PARITY);
1658 return;
1659 } else {
1660 /* We're missing D+Q; recompute D from P */
1661 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1662 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1663 return;
1664 }
1665 }
1666
1667 /* We're missing D+P or D+D; build pointer table */
1668 {
1669 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1670 void *ptrs[disks];
1671
1672 count = 0;
1673 i = d0_idx;
1674 do {
1675 ptrs[count++] = page_address(sh->dev[i].page);
1676 i = raid6_next_disk(i, disks);
1677 if (i != dd_idx1 && i != dd_idx2 &&
1678 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1679 printk("compute_2 with missing block %d/%d\n", count, i);
1680 } while ( i != d0_idx );
1681
1682 if ( failb == disks-2 ) {
1683 /* We're missing D+P. */
1684 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1685 } else {
1686 /* We're missing D+D. */
1687 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1688 }
1689
1690 /* Both the above update both missing blocks */
1691 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1692 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1693 }
1694}
1695
e33129d8
DW
1696static int
1697handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1698{
1699 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1700 int locked = 0;
1701
1702 if (rcw) {
1703 /* if we are not expanding this is a proper write request, and
1704 * there will be bios with new data to be drained into the
1705 * stripe cache
1706 */
1707 if (!expand) {
1708 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1709 sh->ops.count++;
1710 }
16a53ecc 1711
e33129d8
DW
1712 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1713 sh->ops.count++;
1714
1715 for (i = disks; i--; ) {
1716 struct r5dev *dev = &sh->dev[i];
1717
1718 if (dev->towrite) {
1719 set_bit(R5_LOCKED, &dev->flags);
1720 if (!expand)
1721 clear_bit(R5_UPTODATE, &dev->flags);
1722 locked++;
1723 }
1724 }
8b3e6cdc
DW
1725 if (locked + 1 == disks)
1726 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1727 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1728 } else {
1729 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1730 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1731
1732 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1733 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1734 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1735
1736 sh->ops.count += 3;
1737
1738 for (i = disks; i--; ) {
1739 struct r5dev *dev = &sh->dev[i];
1740 if (i == pd_idx)
1741 continue;
1742
1743 /* For a read-modify write there may be blocks that are
1744 * locked for reading while others are ready to be
1745 * written so we distinguish these blocks by the
1746 * R5_Wantprexor bit
1747 */
1748 if (dev->towrite &&
1749 (test_bit(R5_UPTODATE, &dev->flags) ||
1750 test_bit(R5_Wantcompute, &dev->flags))) {
1751 set_bit(R5_Wantprexor, &dev->flags);
1752 set_bit(R5_LOCKED, &dev->flags);
1753 clear_bit(R5_UPTODATE, &dev->flags);
1754 locked++;
1755 }
1756 }
1757 }
1758
1759 /* keep the parity disk locked while asynchronous operations
1760 * are in flight
1761 */
1762 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1763 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1764 locked++;
1765
1766 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
e46b272b 1767 __func__, (unsigned long long)sh->sector,
e33129d8
DW
1768 locked, sh->ops.pending);
1769
1770 return locked;
1771}
16a53ecc 1772
1da177e4
LT
1773/*
1774 * Each stripe/dev can have one or more bion attached.
16a53ecc 1775 * toread/towrite point to the first in a chain.
1da177e4
LT
1776 * The bi_next chain must be in order.
1777 */
1778static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1779{
1780 struct bio **bip;
1781 raid5_conf_t *conf = sh->raid_conf;
72626685 1782 int firstwrite=0;
1da177e4 1783
45b4233c 1784 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1785 (unsigned long long)bi->bi_sector,
1786 (unsigned long long)sh->sector);
1787
1788
1789 spin_lock(&sh->lock);
1790 spin_lock_irq(&conf->device_lock);
72626685 1791 if (forwrite) {
1da177e4 1792 bip = &sh->dev[dd_idx].towrite;
72626685
N
1793 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1794 firstwrite = 1;
1795 } else
1da177e4
LT
1796 bip = &sh->dev[dd_idx].toread;
1797 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1798 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1799 goto overlap;
1800 bip = & (*bip)->bi_next;
1801 }
1802 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1803 goto overlap;
1804
78bafebd 1805 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1806 if (*bip)
1807 bi->bi_next = *bip;
1808 *bip = bi;
1809 bi->bi_phys_segments ++;
1810 spin_unlock_irq(&conf->device_lock);
1811 spin_unlock(&sh->lock);
1812
45b4233c 1813 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1814 (unsigned long long)bi->bi_sector,
1815 (unsigned long long)sh->sector, dd_idx);
1816
72626685 1817 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1818 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1819 STRIPE_SECTORS, 0);
ae3c20cc 1820 sh->bm_seq = conf->seq_flush+1;
72626685
N
1821 set_bit(STRIPE_BIT_DELAY, &sh->state);
1822 }
1823
1da177e4
LT
1824 if (forwrite) {
1825 /* check if page is covered */
1826 sector_t sector = sh->dev[dd_idx].sector;
1827 for (bi=sh->dev[dd_idx].towrite;
1828 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1829 bi && bi->bi_sector <= sector;
1830 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1831 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1832 sector = bi->bi_sector + (bi->bi_size>>9);
1833 }
1834 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1835 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1836 }
1837 return 1;
1838
1839 overlap:
1840 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1841 spin_unlock_irq(&conf->device_lock);
1842 spin_unlock(&sh->lock);
1843 return 0;
1844}
1845
29269553
N
1846static void end_reshape(raid5_conf_t *conf);
1847
16a53ecc
N
1848static int page_is_zero(struct page *p)
1849{
1850 char *a = page_address(p);
1851 return ((*(u32*)a) == 0 &&
1852 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1853}
1854
ccfcc3c1
N
1855static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1856{
1857 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1858 int pd_idx, dd_idx;
2d2063ce
CQH
1859 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1860
b875e531
N
1861 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1862 *sectors_per_chunk + chunk_offset,
1863 disks, disks - conf->max_degraded,
1864 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1865 return pd_idx;
1866}
1867
a4456856
DW
1868static void
1869handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1870 struct stripe_head_state *s, int disks,
1871 struct bio **return_bi)
1872{
1873 int i;
1874 for (i = disks; i--; ) {
1875 struct bio *bi;
1876 int bitmap_end = 0;
1877
1878 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1879 mdk_rdev_t *rdev;
1880 rcu_read_lock();
1881 rdev = rcu_dereference(conf->disks[i].rdev);
1882 if (rdev && test_bit(In_sync, &rdev->flags))
1883 /* multiple read failures in one stripe */
1884 md_error(conf->mddev, rdev);
1885 rcu_read_unlock();
1886 }
1887 spin_lock_irq(&conf->device_lock);
1888 /* fail all writes first */
1889 bi = sh->dev[i].towrite;
1890 sh->dev[i].towrite = NULL;
1891 if (bi) {
1892 s->to_write--;
1893 bitmap_end = 1;
1894 }
1895
1896 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1897 wake_up(&conf->wait_for_overlap);
1898
1899 while (bi && bi->bi_sector <
1900 sh->dev[i].sector + STRIPE_SECTORS) {
1901 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1902 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1903 if (--bi->bi_phys_segments == 0) {
1904 md_write_end(conf->mddev);
1905 bi->bi_next = *return_bi;
1906 *return_bi = bi;
1907 }
1908 bi = nextbi;
1909 }
1910 /* and fail all 'written' */
1911 bi = sh->dev[i].written;
1912 sh->dev[i].written = NULL;
1913 if (bi) bitmap_end = 1;
1914 while (bi && bi->bi_sector <
1915 sh->dev[i].sector + STRIPE_SECTORS) {
1916 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1917 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1918 if (--bi->bi_phys_segments == 0) {
1919 md_write_end(conf->mddev);
1920 bi->bi_next = *return_bi;
1921 *return_bi = bi;
1922 }
1923 bi = bi2;
1924 }
1925
b5e98d65
DW
1926 /* fail any reads if this device is non-operational and
1927 * the data has not reached the cache yet.
1928 */
1929 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1930 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1931 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
1932 bi = sh->dev[i].toread;
1933 sh->dev[i].toread = NULL;
1934 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1935 wake_up(&conf->wait_for_overlap);
1936 if (bi) s->to_read--;
1937 while (bi && bi->bi_sector <
1938 sh->dev[i].sector + STRIPE_SECTORS) {
1939 struct bio *nextbi =
1940 r5_next_bio(bi, sh->dev[i].sector);
1941 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1942 if (--bi->bi_phys_segments == 0) {
1943 bi->bi_next = *return_bi;
1944 *return_bi = bi;
1945 }
1946 bi = nextbi;
1947 }
1948 }
1949 spin_unlock_irq(&conf->device_lock);
1950 if (bitmap_end)
1951 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1952 STRIPE_SECTORS, 0, 0);
1953 }
1954
8b3e6cdc
DW
1955 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1956 if (atomic_dec_and_test(&conf->pending_full_writes))
1957 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
1958}
1959
f38e1219
DW
1960/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1961 * to process
1962 */
1963static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1964 struct stripe_head_state *s, int disk_idx, int disks)
1965{
1966 struct r5dev *dev = &sh->dev[disk_idx];
1967 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1968
1969 /* don't schedule compute operations or reads on the parity block while
1970 * a check is in flight
1971 */
1972 if ((disk_idx == sh->pd_idx) &&
1973 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1974 return ~0;
1975
1976 /* is the data in this block needed, and can we get it? */
1977 if (!test_bit(R5_LOCKED, &dev->flags) &&
1978 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1979 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1980 s->syncing || s->expanding || (s->failed &&
1981 (failed_dev->toread || (failed_dev->towrite &&
1982 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1983 ))))) {
1984 /* 1/ We would like to get this block, possibly by computing it,
1985 * but we might not be able to.
1986 *
1987 * 2/ Since parity check operations potentially make the parity
1988 * block !uptodate it will need to be refreshed before any
1989 * compute operations on data disks are scheduled.
1990 *
1991 * 3/ We hold off parity block re-reads until check operations
1992 * have quiesced.
1993 */
1994 if ((s->uptodate == disks - 1) &&
1995 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1996 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1997 set_bit(R5_Wantcompute, &dev->flags);
1998 sh->ops.target = disk_idx;
1999 s->req_compute = 1;
2000 sh->ops.count++;
2001 /* Careful: from this point on 'uptodate' is in the eye
2002 * of raid5_run_ops which services 'compute' operations
2003 * before writes. R5_Wantcompute flags a block that will
2004 * be R5_UPTODATE by the time it is needed for a
2005 * subsequent operation.
2006 */
2007 s->uptodate++;
2008 return 0; /* uptodate + compute == disks */
2009 } else if ((s->uptodate < disks - 1) &&
2010 test_bit(R5_Insync, &dev->flags)) {
2011 /* Note: we hold off compute operations while checks are
2012 * in flight, but we still prefer 'compute' over 'read'
2013 * hence we only read if (uptodate < * disks-1)
2014 */
2015 set_bit(R5_LOCKED, &dev->flags);
2016 set_bit(R5_Wantread, &dev->flags);
2017 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2018 sh->ops.count++;
2019 s->locked++;
2020 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2021 s->syncing);
2022 }
2023 }
2024
2025 return ~0;
2026}
2027
a4456856
DW
2028static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2029 struct stripe_head_state *s, int disks)
2030{
2031 int i;
f38e1219
DW
2032
2033 /* Clear completed compute operations. Parity recovery
2034 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2035 * later on in this routine
2036 */
2037 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2038 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2039 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2041 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2042 }
2043
2044 /* look for blocks to read/compute, skip this if a compute
2045 * is already in flight, or if the stripe contents are in the
2046 * midst of changing due to a write
2047 */
2048 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2049 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2050 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2051 for (i = disks; i--; )
2052 if (__handle_issuing_new_read_requests5(
2053 sh, s, i, disks) == 0)
2054 break;
a4456856
DW
2055 }
2056 set_bit(STRIPE_HANDLE, &sh->state);
2057}
2058
2059static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2060 struct stripe_head_state *s, struct r6_state *r6s,
2061 int disks)
2062{
2063 int i;
2064 for (i = disks; i--; ) {
2065 struct r5dev *dev = &sh->dev[i];
2066 if (!test_bit(R5_LOCKED, &dev->flags) &&
2067 !test_bit(R5_UPTODATE, &dev->flags) &&
2068 (dev->toread || (dev->towrite &&
2069 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2070 s->syncing || s->expanding ||
2071 (s->failed >= 1 &&
2072 (sh->dev[r6s->failed_num[0]].toread ||
2073 s->to_write)) ||
2074 (s->failed >= 2 &&
2075 (sh->dev[r6s->failed_num[1]].toread ||
2076 s->to_write)))) {
2077 /* we would like to get this block, possibly
2078 * by computing it, but we might not be able to
2079 */
2080 if (s->uptodate == disks-1) {
45b4233c 2081 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2082 (unsigned long long)sh->sector, i);
2083 compute_block_1(sh, i, 0);
2084 s->uptodate++;
2085 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2086 /* Computing 2-failure is *very* expensive; only
2087 * do it if failed >= 2
2088 */
2089 int other;
2090 for (other = disks; other--; ) {
2091 if (other == i)
2092 continue;
2093 if (!test_bit(R5_UPTODATE,
2094 &sh->dev[other].flags))
2095 break;
2096 }
2097 BUG_ON(other < 0);
45b4233c 2098 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2099 (unsigned long long)sh->sector,
2100 i, other);
2101 compute_block_2(sh, i, other);
2102 s->uptodate += 2;
2103 } else if (test_bit(R5_Insync, &dev->flags)) {
2104 set_bit(R5_LOCKED, &dev->flags);
2105 set_bit(R5_Wantread, &dev->flags);
2106 s->locked++;
45b4233c 2107 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2108 i, s->syncing);
2109 }
2110 }
2111 }
2112 set_bit(STRIPE_HANDLE, &sh->state);
2113}
2114
2115
2116/* handle_completed_write_requests
2117 * any written block on an uptodate or failed drive can be returned.
2118 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2119 * never LOCKED, so we don't need to test 'failed' directly.
2120 */
2121static void handle_completed_write_requests(raid5_conf_t *conf,
2122 struct stripe_head *sh, int disks, struct bio **return_bi)
2123{
2124 int i;
2125 struct r5dev *dev;
2126
2127 for (i = disks; i--; )
2128 if (sh->dev[i].written) {
2129 dev = &sh->dev[i];
2130 if (!test_bit(R5_LOCKED, &dev->flags) &&
2131 test_bit(R5_UPTODATE, &dev->flags)) {
2132 /* We can return any write requests */
2133 struct bio *wbi, *wbi2;
2134 int bitmap_end = 0;
45b4233c 2135 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2136 spin_lock_irq(&conf->device_lock);
2137 wbi = dev->written;
2138 dev->written = NULL;
2139 while (wbi && wbi->bi_sector <
2140 dev->sector + STRIPE_SECTORS) {
2141 wbi2 = r5_next_bio(wbi, dev->sector);
2142 if (--wbi->bi_phys_segments == 0) {
2143 md_write_end(conf->mddev);
2144 wbi->bi_next = *return_bi;
2145 *return_bi = wbi;
2146 }
2147 wbi = wbi2;
2148 }
2149 if (dev->towrite == NULL)
2150 bitmap_end = 1;
2151 spin_unlock_irq(&conf->device_lock);
2152 if (bitmap_end)
2153 bitmap_endwrite(conf->mddev->bitmap,
2154 sh->sector,
2155 STRIPE_SECTORS,
2156 !test_bit(STRIPE_DEGRADED, &sh->state),
2157 0);
2158 }
2159 }
8b3e6cdc
DW
2160
2161 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2162 if (atomic_dec_and_test(&conf->pending_full_writes))
2163 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2164}
2165
2166static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2167 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2168{
2169 int rmw = 0, rcw = 0, i;
2170 for (i = disks; i--; ) {
2171 /* would I have to read this buffer for read_modify_write */
2172 struct r5dev *dev = &sh->dev[i];
2173 if ((dev->towrite || i == sh->pd_idx) &&
2174 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2175 !(test_bit(R5_UPTODATE, &dev->flags) ||
2176 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2177 if (test_bit(R5_Insync, &dev->flags))
2178 rmw++;
2179 else
2180 rmw += 2*disks; /* cannot read it */
2181 }
2182 /* Would I have to read this buffer for reconstruct_write */
2183 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2184 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2185 !(test_bit(R5_UPTODATE, &dev->flags) ||
2186 test_bit(R5_Wantcompute, &dev->flags))) {
2187 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2188 else
2189 rcw += 2*disks;
2190 }
2191 }
45b4233c 2192 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2193 (unsigned long long)sh->sector, rmw, rcw);
2194 set_bit(STRIPE_HANDLE, &sh->state);
2195 if (rmw < rcw && rmw > 0)
2196 /* prefer read-modify-write, but need to get some data */
2197 for (i = disks; i--; ) {
2198 struct r5dev *dev = &sh->dev[i];
2199 if ((dev->towrite || i == sh->pd_idx) &&
2200 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2201 !(test_bit(R5_UPTODATE, &dev->flags) ||
2202 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2203 test_bit(R5_Insync, &dev->flags)) {
2204 if (
2205 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2206 pr_debug("Read_old block "
a4456856
DW
2207 "%d for r-m-w\n", i);
2208 set_bit(R5_LOCKED, &dev->flags);
2209 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2210 if (!test_and_set_bit(
2211 STRIPE_OP_IO, &sh->ops.pending))
2212 sh->ops.count++;
a4456856
DW
2213 s->locked++;
2214 } else {
2215 set_bit(STRIPE_DELAYED, &sh->state);
2216 set_bit(STRIPE_HANDLE, &sh->state);
2217 }
2218 }
2219 }
2220 if (rcw <= rmw && rcw > 0)
2221 /* want reconstruct write, but need to get some data */
2222 for (i = disks; i--; ) {
2223 struct r5dev *dev = &sh->dev[i];
2224 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2225 i != sh->pd_idx &&
2226 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2227 !(test_bit(R5_UPTODATE, &dev->flags) ||
2228 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2229 test_bit(R5_Insync, &dev->flags)) {
2230 if (
2231 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2232 pr_debug("Read_old block "
a4456856
DW
2233 "%d for Reconstruct\n", i);
2234 set_bit(R5_LOCKED, &dev->flags);
2235 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2236 if (!test_and_set_bit(
2237 STRIPE_OP_IO, &sh->ops.pending))
2238 sh->ops.count++;
a4456856
DW
2239 s->locked++;
2240 } else {
2241 set_bit(STRIPE_DELAYED, &sh->state);
2242 set_bit(STRIPE_HANDLE, &sh->state);
2243 }
2244 }
2245 }
2246 /* now if nothing is locked, and if we have enough data,
2247 * we can start a write request
2248 */
f38e1219
DW
2249 /* since handle_stripe can be called at any time we need to handle the
2250 * case where a compute block operation has been submitted and then a
2251 * subsequent call wants to start a write request. raid5_run_ops only
2252 * handles the case where compute block and postxor are requested
2253 * simultaneously. If this is not the case then new writes need to be
2254 * held off until the compute completes.
2255 */
2256 if ((s->req_compute ||
2257 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2258 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2259 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
e33129d8 2260 s->locked += handle_write_operations5(sh, rcw == 0, 0);
a4456856
DW
2261}
2262
2263static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2264 struct stripe_head *sh, struct stripe_head_state *s,
2265 struct r6_state *r6s, int disks)
2266{
2267 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2268 int qd_idx = r6s->qd_idx;
2269 for (i = disks; i--; ) {
2270 struct r5dev *dev = &sh->dev[i];
2271 /* Would I have to read this buffer for reconstruct_write */
2272 if (!test_bit(R5_OVERWRITE, &dev->flags)
2273 && i != pd_idx && i != qd_idx
2274 && (!test_bit(R5_LOCKED, &dev->flags)
2275 ) &&
2276 !test_bit(R5_UPTODATE, &dev->flags)) {
2277 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2278 else {
45b4233c 2279 pr_debug("raid6: must_compute: "
a4456856
DW
2280 "disk %d flags=%#lx\n", i, dev->flags);
2281 must_compute++;
2282 }
2283 }
2284 }
45b4233c 2285 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2286 (unsigned long long)sh->sector, rcw, must_compute);
2287 set_bit(STRIPE_HANDLE, &sh->state);
2288
2289 if (rcw > 0)
2290 /* want reconstruct write, but need to get some data */
2291 for (i = disks; i--; ) {
2292 struct r5dev *dev = &sh->dev[i];
2293 if (!test_bit(R5_OVERWRITE, &dev->flags)
2294 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2295 && !test_bit(R5_LOCKED, &dev->flags) &&
2296 !test_bit(R5_UPTODATE, &dev->flags) &&
2297 test_bit(R5_Insync, &dev->flags)) {
2298 if (
2299 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2300 pr_debug("Read_old stripe %llu "
a4456856
DW
2301 "block %d for Reconstruct\n",
2302 (unsigned long long)sh->sector, i);
2303 set_bit(R5_LOCKED, &dev->flags);
2304 set_bit(R5_Wantread, &dev->flags);
2305 s->locked++;
2306 } else {
45b4233c 2307 pr_debug("Request delayed stripe %llu "
a4456856
DW
2308 "block %d for Reconstruct\n",
2309 (unsigned long long)sh->sector, i);
2310 set_bit(STRIPE_DELAYED, &sh->state);
2311 set_bit(STRIPE_HANDLE, &sh->state);
2312 }
2313 }
2314 }
2315 /* now if nothing is locked, and if we have enough data, we can start a
2316 * write request
2317 */
2318 if (s->locked == 0 && rcw == 0 &&
2319 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2320 if (must_compute > 0) {
2321 /* We have failed blocks and need to compute them */
2322 switch (s->failed) {
2323 case 0:
2324 BUG();
2325 case 1:
2326 compute_block_1(sh, r6s->failed_num[0], 0);
2327 break;
2328 case 2:
2329 compute_block_2(sh, r6s->failed_num[0],
2330 r6s->failed_num[1]);
2331 break;
2332 default: /* This request should have been failed? */
2333 BUG();
2334 }
2335 }
2336
45b4233c 2337 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2338 (unsigned long long)sh->sector);
2339 compute_parity6(sh, RECONSTRUCT_WRITE);
2340 /* now every locked buffer is ready to be written */
2341 for (i = disks; i--; )
2342 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2343 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2344 (unsigned long long)sh->sector, i);
2345 s->locked++;
2346 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2347 }
8b3e6cdc
DW
2348 if (s->locked == disks)
2349 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2350 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2351 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2352 set_bit(STRIPE_INSYNC, &sh->state);
2353
2354 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2355 atomic_dec(&conf->preread_active_stripes);
2356 if (atomic_read(&conf->preread_active_stripes) <
2357 IO_THRESHOLD)
2358 md_wakeup_thread(conf->mddev->thread);
2359 }
2360 }
2361}
2362
2363static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2364 struct stripe_head_state *s, int disks)
2365{
bd2ab670
DW
2366 int canceled_check = 0;
2367
a4456856 2368 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2369
bd2ab670
DW
2370 /* complete a check operation */
2371 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2372 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2373 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2374 if (s->failed == 0) {
e89f8962
DW
2375 if (sh->ops.zero_sum_result == 0)
2376 /* parity is correct (on disc,
2377 * not in buffer any more)
2378 */
a4456856
DW
2379 set_bit(STRIPE_INSYNC, &sh->state);
2380 else {
e89f8962
DW
2381 conf->mddev->resync_mismatches +=
2382 STRIPE_SECTORS;
2383 if (test_bit(
2384 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2385 /* don't try to repair!! */
2386 set_bit(STRIPE_INSYNC, &sh->state);
2387 else {
2388 set_bit(STRIPE_OP_COMPUTE_BLK,
2389 &sh->ops.pending);
2390 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2391 &sh->ops.pending);
2392 set_bit(R5_Wantcompute,
2393 &sh->dev[sh->pd_idx].flags);
2394 sh->ops.target = sh->pd_idx;
2395 sh->ops.count++;
2396 s->uptodate++;
2397 }
a4456856 2398 }
bd2ab670
DW
2399 } else
2400 canceled_check = 1; /* STRIPE_INSYNC is not set */
a4456856 2401 }
e89f8962
DW
2402
2403 /* check if we can clear a parity disk reconstruct */
2404 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2405 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2406
2407 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2408 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2409 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2410 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2411 }
2412
bd2ab670
DW
2413 /* start a new check operation if there are no failures, the stripe is
2414 * not insync, and a repair is not in flight
2415 */
2416 if (s->failed == 0 &&
2417 !test_bit(STRIPE_INSYNC, &sh->state) &&
2418 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2419 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2420 BUG_ON(s->uptodate != disks);
2421 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2422 sh->ops.count++;
2423 s->uptodate--;
2424 }
2425 }
2426
e89f8962 2427 /* Wait for check parity and compute block operations to complete
bd2ab670
DW
2428 * before write-back. If a failure occurred while the check operation
2429 * was in flight we need to cycle this stripe through handle_stripe
2430 * since the parity block may not be uptodate
e89f8962 2431 */
bd2ab670
DW
2432 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2433 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2434 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
a4456856
DW
2435 struct r5dev *dev;
2436 /* either failed parity check, or recovery is happening */
2437 if (s->failed == 0)
2438 s->failed_num = sh->pd_idx;
2439 dev = &sh->dev[s->failed_num];
2440 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2441 BUG_ON(s->uptodate != disks);
2442
2443 set_bit(R5_LOCKED, &dev->flags);
2444 set_bit(R5_Wantwrite, &dev->flags);
830ea016
DW
2445 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2446 sh->ops.count++;
2447
a4456856
DW
2448 clear_bit(STRIPE_DEGRADED, &sh->state);
2449 s->locked++;
2450 set_bit(STRIPE_INSYNC, &sh->state);
2451 }
2452}
2453
2454
2455static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2456 struct stripe_head_state *s,
2457 struct r6_state *r6s, struct page *tmp_page,
2458 int disks)
2459{
2460 int update_p = 0, update_q = 0;
2461 struct r5dev *dev;
2462 int pd_idx = sh->pd_idx;
2463 int qd_idx = r6s->qd_idx;
2464
2465 set_bit(STRIPE_HANDLE, &sh->state);
2466
2467 BUG_ON(s->failed > 2);
2468 BUG_ON(s->uptodate < disks);
2469 /* Want to check and possibly repair P and Q.
2470 * However there could be one 'failed' device, in which
2471 * case we can only check one of them, possibly using the
2472 * other to generate missing data
2473 */
2474
2475 /* If !tmp_page, we cannot do the calculations,
2476 * but as we have set STRIPE_HANDLE, we will soon be called
2477 * by stripe_handle with a tmp_page - just wait until then.
2478 */
2479 if (tmp_page) {
2480 if (s->failed == r6s->q_failed) {
2481 /* The only possible failed device holds 'Q', so it
2482 * makes sense to check P (If anything else were failed,
2483 * we would have used P to recreate it).
2484 */
2485 compute_block_1(sh, pd_idx, 1);
2486 if (!page_is_zero(sh->dev[pd_idx].page)) {
2487 compute_block_1(sh, pd_idx, 0);
2488 update_p = 1;
2489 }
2490 }
2491 if (!r6s->q_failed && s->failed < 2) {
2492 /* q is not failed, and we didn't use it to generate
2493 * anything, so it makes sense to check it
2494 */
2495 memcpy(page_address(tmp_page),
2496 page_address(sh->dev[qd_idx].page),
2497 STRIPE_SIZE);
2498 compute_parity6(sh, UPDATE_PARITY);
2499 if (memcmp(page_address(tmp_page),
2500 page_address(sh->dev[qd_idx].page),
2501 STRIPE_SIZE) != 0) {
2502 clear_bit(STRIPE_INSYNC, &sh->state);
2503 update_q = 1;
2504 }
2505 }
2506 if (update_p || update_q) {
2507 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2508 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2509 /* don't try to repair!! */
2510 update_p = update_q = 0;
2511 }
2512
2513 /* now write out any block on a failed drive,
2514 * or P or Q if they need it
2515 */
2516
2517 if (s->failed == 2) {
2518 dev = &sh->dev[r6s->failed_num[1]];
2519 s->locked++;
2520 set_bit(R5_LOCKED, &dev->flags);
2521 set_bit(R5_Wantwrite, &dev->flags);
2522 }
2523 if (s->failed >= 1) {
2524 dev = &sh->dev[r6s->failed_num[0]];
2525 s->locked++;
2526 set_bit(R5_LOCKED, &dev->flags);
2527 set_bit(R5_Wantwrite, &dev->flags);
2528 }
2529
2530 if (update_p) {
2531 dev = &sh->dev[pd_idx];
2532 s->locked++;
2533 set_bit(R5_LOCKED, &dev->flags);
2534 set_bit(R5_Wantwrite, &dev->flags);
2535 }
2536 if (update_q) {
2537 dev = &sh->dev[qd_idx];
2538 s->locked++;
2539 set_bit(R5_LOCKED, &dev->flags);
2540 set_bit(R5_Wantwrite, &dev->flags);
2541 }
2542 clear_bit(STRIPE_DEGRADED, &sh->state);
2543
2544 set_bit(STRIPE_INSYNC, &sh->state);
2545 }
2546}
2547
2548static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2549 struct r6_state *r6s)
2550{
2551 int i;
2552
2553 /* We have read all the blocks in this stripe and now we need to
2554 * copy some of them into a target stripe for expand.
2555 */
f0a50d37 2556 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2557 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2558 for (i = 0; i < sh->disks; i++)
a2e08551 2559 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
a4456856
DW
2560 int dd_idx, pd_idx, j;
2561 struct stripe_head *sh2;
2562
2563 sector_t bn = compute_blocknr(sh, i);
2564 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2565 conf->raid_disks -
2566 conf->max_degraded, &dd_idx,
2567 &pd_idx, conf);
2568 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2569 pd_idx, 1);
2570 if (sh2 == NULL)
2571 /* so far only the early blocks of this stripe
2572 * have been requested. When later blocks
2573 * get requested, we will try again
2574 */
2575 continue;
2576 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2577 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2578 /* must have already done this block */
2579 release_stripe(sh2);
2580 continue;
2581 }
f0a50d37
DW
2582
2583 /* place all the copies on one channel */
2584 tx = async_memcpy(sh2->dev[dd_idx].page,
2585 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2586 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2587
a4456856
DW
2588 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2589 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2590 for (j = 0; j < conf->raid_disks; j++)
2591 if (j != sh2->pd_idx &&
a2e08551
N
2592 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2593 sh2->disks)) &&
a4456856
DW
2594 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2595 break;
2596 if (j == conf->raid_disks) {
2597 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2598 set_bit(STRIPE_HANDLE, &sh2->state);
2599 }
2600 release_stripe(sh2);
f0a50d37 2601
a4456856 2602 }
a2e08551
N
2603 /* done submitting copies, wait for them to complete */
2604 if (tx) {
2605 async_tx_ack(tx);
2606 dma_wait_for_async_tx(tx);
2607 }
a4456856 2608}
1da177e4
LT
2609
2610/*
2611 * handle_stripe - do things to a stripe.
2612 *
2613 * We lock the stripe and then examine the state of various bits
2614 * to see what needs to be done.
2615 * Possible results:
2616 * return some read request which now have data
2617 * return some write requests which are safely on disc
2618 * schedule a read on some buffers
2619 * schedule a write of some buffers
2620 * return confirmation of parity correctness
2621 *
1da177e4
LT
2622 * buffers are taken off read_list or write_list, and bh_cache buffers
2623 * get BH_Lock set before the stripe lock is released.
2624 *
2625 */
a4456856 2626
16a53ecc 2627static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2628{
2629 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2630 int disks = sh->disks, i;
2631 struct bio *return_bi = NULL;
2632 struct stripe_head_state s;
1da177e4 2633 struct r5dev *dev;
d84e0f10 2634 unsigned long pending = 0;
1da177e4 2635
a4456856 2636 memset(&s, 0, sizeof(s));
d84e0f10
DW
2637 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2638 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2639 atomic_read(&sh->count), sh->pd_idx,
2640 sh->ops.pending, sh->ops.ack, sh->ops.complete);
1da177e4
LT
2641
2642 spin_lock(&sh->lock);
2643 clear_bit(STRIPE_HANDLE, &sh->state);
2644 clear_bit(STRIPE_DELAYED, &sh->state);
2645
a4456856
DW
2646 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2647 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2648 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
2649 /* Now to look around and see what can be done */
2650
def6ae26
NB
2651 /* clean-up completed biofill operations */
2652 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2653 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2654 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2655 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2656 }
2657
9910f16a 2658 rcu_read_lock();
1da177e4
LT
2659 for (i=disks; i--; ) {
2660 mdk_rdev_t *rdev;
a4456856 2661 struct r5dev *dev = &sh->dev[i];
1da177e4 2662 clear_bit(R5_Insync, &dev->flags);
1da177e4 2663
b5e98d65
DW
2664 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2665 "written %p\n", i, dev->flags, dev->toread, dev->read,
2666 dev->towrite, dev->written);
2667
2668 /* maybe we can request a biofill operation
2669 *
2670 * new wantfill requests are only permitted while
2671 * STRIPE_OP_BIOFILL is clear
2672 */
2673 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2674 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2675 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2676
2677 /* now count some things */
a4456856
DW
2678 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2679 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2680 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2681
b5e98d65
DW
2682 if (test_bit(R5_Wantfill, &dev->flags))
2683 s.to_fill++;
2684 else if (dev->toread)
a4456856 2685 s.to_read++;
1da177e4 2686 if (dev->towrite) {
a4456856 2687 s.to_write++;
1da177e4 2688 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2689 s.non_overwrite++;
1da177e4 2690 }
a4456856
DW
2691 if (dev->written)
2692 s.written++;
9910f16a 2693 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2694 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2695 /* The ReadError flag will just be confusing now */
4e5314b5
N
2696 clear_bit(R5_ReadError, &dev->flags);
2697 clear_bit(R5_ReWrite, &dev->flags);
2698 }
b2d444d7 2699 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2700 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2701 s.failed++;
2702 s.failed_num = i;
1da177e4
LT
2703 } else
2704 set_bit(R5_Insync, &dev->flags);
2705 }
9910f16a 2706 rcu_read_unlock();
b5e98d65
DW
2707
2708 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2709 sh->ops.count++;
2710
45b4233c 2711 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2712 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2713 s.locked, s.uptodate, s.to_read, s.to_write,
2714 s.failed, s.failed_num);
1da177e4
LT
2715 /* check if the array has lost two devices and, if so, some requests might
2716 * need to be failed
2717 */
a4456856
DW
2718 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2719 handle_requests_to_failed_array(conf, sh, &s, disks,
2720 &return_bi);
2721 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2722 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2723 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2724 s.syncing = 0;
1da177e4
LT
2725 }
2726
2727 /* might be able to return some write requests if the parity block
2728 * is safe, or on a failed drive
2729 */
2730 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2731 if ( s.written &&
2732 ((test_bit(R5_Insync, &dev->flags) &&
2733 !test_bit(R5_LOCKED, &dev->flags) &&
2734 test_bit(R5_UPTODATE, &dev->flags)) ||
2735 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2736 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2737
2738 /* Now we might consider reading some blocks, either to check/generate
2739 * parity, or to satisfy requests
2740 * or to load a block that is being partially written.
2741 */
a4456856 2742 if (s.to_read || s.non_overwrite ||
f38e1219
DW
2743 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2744 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2745 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4 2746
e33129d8
DW
2747 /* Now we check to see if any write operations have recently
2748 * completed
2749 */
2750
2751 /* leave prexor set until postxor is done, allows us to distinguish
2752 * a rmw from a rcw during biodrain
2753 */
2754 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2755 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2756
2757 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2758 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2759 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2760
2761 for (i = disks; i--; )
2762 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2763 }
2764
2765 /* if only POSTXOR is set then this is an 'expand' postxor */
2766 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2767 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2768
2769 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2770 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2771 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2772
2773 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2774 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2775 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2776
2777 /* All the 'written' buffers and the parity block are ready to
2778 * be written back to disk
2779 */
2780 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2781 for (i = disks; i--; ) {
2782 dev = &sh->dev[i];
2783 if (test_bit(R5_LOCKED, &dev->flags) &&
2784 (i == sh->pd_idx || dev->written)) {
2785 pr_debug("Writing block %d\n", i);
2786 set_bit(R5_Wantwrite, &dev->flags);
2787 if (!test_and_set_bit(
2788 STRIPE_OP_IO, &sh->ops.pending))
2789 sh->ops.count++;
2790 if (!test_bit(R5_Insync, &dev->flags) ||
2791 (i == sh->pd_idx && s.failed == 0))
2792 set_bit(STRIPE_INSYNC, &sh->state);
2793 }
2794 }
2795 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2796 atomic_dec(&conf->preread_active_stripes);
2797 if (atomic_read(&conf->preread_active_stripes) <
2798 IO_THRESHOLD)
2799 md_wakeup_thread(conf->mddev->thread);
2800 }
2801 }
2802
2803 /* Now to consider new write requests and what else, if anything
2804 * should be read. We do not handle new writes when:
2805 * 1/ A 'write' operation (copy+xor) is already in flight.
2806 * 2/ A 'check' operation is in flight, as it may clobber the parity
2807 * block.
2808 */
2809 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2810 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
a4456856 2811 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2812
2813 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2814 * Any reads will already have been scheduled, so we just see if enough
2815 * data is available. The parity check is held off while parity
2816 * dependent operations are in flight.
1da177e4 2817 */
e89f8962
DW
2818 if ((s.syncing && s.locked == 0 &&
2819 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2820 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2821 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2822 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
a4456856 2823 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2824
a4456856 2825 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2826 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2827 clear_bit(STRIPE_SYNCING, &sh->state);
2828 }
4e5314b5
N
2829
2830 /* If the failed drive is just a ReadError, then we might need to progress
2831 * the repair/check process
2832 */
a4456856
DW
2833 if (s.failed == 1 && !conf->mddev->ro &&
2834 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2835 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2836 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2837 ) {
a4456856 2838 dev = &sh->dev[s.failed_num];
4e5314b5
N
2839 if (!test_bit(R5_ReWrite, &dev->flags)) {
2840 set_bit(R5_Wantwrite, &dev->flags);
830ea016
DW
2841 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2842 sh->ops.count++;
4e5314b5
N
2843 set_bit(R5_ReWrite, &dev->flags);
2844 set_bit(R5_LOCKED, &dev->flags);
a4456856 2845 s.locked++;
4e5314b5
N
2846 } else {
2847 /* let's read it back */
2848 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2849 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2850 sh->ops.count++;
4e5314b5 2851 set_bit(R5_LOCKED, &dev->flags);
a4456856 2852 s.locked++;
4e5314b5
N
2853 }
2854 }
2855
f0a50d37
DW
2856 /* Finish postxor operations initiated by the expansion
2857 * process
2858 */
2859 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2860 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2861
2862 clear_bit(STRIPE_EXPANDING, &sh->state);
2863
2864 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2865 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2866 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2867
a4456856 2868 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2869 set_bit(R5_Wantwrite, &sh->dev[i].flags);
f0a50d37
DW
2870 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2871 sh->ops.count++;
ccfcc3c1 2872 }
f0a50d37
DW
2873 }
2874
2875 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2876 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2877 /* Need to write out all blocks after computing parity */
2878 sh->disks = conf->raid_disks;
2879 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2880 conf->raid_disks);
a2e08551 2881 s.locked += handle_write_operations5(sh, 1, 1);
f0a50d37
DW
2882 } else if (s.expanded &&
2883 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
ccfcc3c1 2884 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2885 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2886 wake_up(&conf->wait_for_overlap);
2887 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2888 }
2889
0f94e87c
DW
2890 if (s.expanding && s.locked == 0 &&
2891 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2892 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2893
d84e0f10
DW
2894 if (sh->ops.count)
2895 pending = get_stripe_work(sh);
2896
1da177e4
LT
2897 spin_unlock(&sh->lock);
2898
d84e0f10
DW
2899 if (pending)
2900 raid5_run_ops(sh, pending);
2901
a4456856 2902 return_io(return_bi);
1da177e4 2903
1da177e4
LT
2904}
2905
16a53ecc 2906static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2907{
16a53ecc 2908 raid6_conf_t *conf = sh->raid_conf;
f416885e 2909 int disks = sh->disks;
a4456856
DW
2910 struct bio *return_bi = NULL;
2911 int i, pd_idx = sh->pd_idx;
2912 struct stripe_head_state s;
2913 struct r6_state r6s;
16a53ecc 2914 struct r5dev *dev, *pdev, *qdev;
1da177e4 2915
a4456856 2916 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
45b4233c 2917 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2918 "pd_idx=%d, qd_idx=%d\n",
2919 (unsigned long long)sh->sector, sh->state,
2920 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2921 memset(&s, 0, sizeof(s));
72626685 2922
16a53ecc
N
2923 spin_lock(&sh->lock);
2924 clear_bit(STRIPE_HANDLE, &sh->state);
2925 clear_bit(STRIPE_DELAYED, &sh->state);
2926
a4456856
DW
2927 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2928 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2929 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2930 /* Now to look around and see what can be done */
1da177e4
LT
2931
2932 rcu_read_lock();
16a53ecc
N
2933 for (i=disks; i--; ) {
2934 mdk_rdev_t *rdev;
2935 dev = &sh->dev[i];
2936 clear_bit(R5_Insync, &dev->flags);
1da177e4 2937
45b4233c 2938 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
2939 i, dev->flags, dev->toread, dev->towrite, dev->written);
2940 /* maybe we can reply to a read */
2941 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2942 struct bio *rbi, *rbi2;
45b4233c 2943 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
2944 spin_lock_irq(&conf->device_lock);
2945 rbi = dev->toread;
2946 dev->toread = NULL;
2947 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2948 wake_up(&conf->wait_for_overlap);
2949 spin_unlock_irq(&conf->device_lock);
2950 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2951 copy_data(0, rbi, dev->page, dev->sector);
2952 rbi2 = r5_next_bio(rbi, dev->sector);
2953 spin_lock_irq(&conf->device_lock);
2954 if (--rbi->bi_phys_segments == 0) {
2955 rbi->bi_next = return_bi;
2956 return_bi = rbi;
2957 }
2958 spin_unlock_irq(&conf->device_lock);
2959 rbi = rbi2;
2960 }
2961 }
1da177e4 2962
16a53ecc 2963 /* now count some things */
a4456856
DW
2964 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2965 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2966
16a53ecc 2967
a4456856
DW
2968 if (dev->toread)
2969 s.to_read++;
16a53ecc 2970 if (dev->towrite) {
a4456856 2971 s.to_write++;
16a53ecc 2972 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2973 s.non_overwrite++;
16a53ecc 2974 }
a4456856
DW
2975 if (dev->written)
2976 s.written++;
16a53ecc
N
2977 rdev = rcu_dereference(conf->disks[i].rdev);
2978 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2979 /* The ReadError flag will just be confusing now */
2980 clear_bit(R5_ReadError, &dev->flags);
2981 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2982 }
16a53ecc
N
2983 if (!rdev || !test_bit(In_sync, &rdev->flags)
2984 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2985 if (s.failed < 2)
2986 r6s.failed_num[s.failed] = i;
2987 s.failed++;
16a53ecc
N
2988 } else
2989 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2990 }
2991 rcu_read_unlock();
45b4233c 2992 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 2993 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
2994 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2995 r6s.failed_num[0], r6s.failed_num[1]);
2996 /* check if the array has lost >2 devices and, if so, some requests
2997 * might need to be failed
16a53ecc 2998 */
a4456856
DW
2999 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3000 handle_requests_to_failed_array(conf, sh, &s, disks,
3001 &return_bi);
3002 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3003 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3004 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3005 s.syncing = 0;
16a53ecc
N
3006 }
3007
3008 /*
3009 * might be able to return some write requests if the parity blocks
3010 * are safe, or on a failed drive
3011 */
3012 pdev = &sh->dev[pd_idx];
a4456856
DW
3013 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3014 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3015 qdev = &sh->dev[r6s.qd_idx];
3016 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3017 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3018
3019 if ( s.written &&
3020 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3021 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3022 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3023 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3024 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
3025 && test_bit(R5_UPTODATE, &qdev->flags)))))
3026 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
3027
3028 /* Now we might consider reading some blocks, either to check/generate
3029 * parity, or to satisfy requests
3030 * or to load a block that is being partially written.
3031 */
a4456856
DW
3032 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3033 (s.syncing && (s.uptodate < disks)) || s.expanding)
3034 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
3035
3036 /* now to consider writing and what else, if anything should be read */
a4456856
DW
3037 if (s.to_write)
3038 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3039
3040 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3041 * Any reads will already have been scheduled, so we just see if enough
3042 * data is available
16a53ecc 3043 */
a4456856
DW
3044 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3045 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3046
a4456856 3047 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3048 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3049 clear_bit(STRIPE_SYNCING, &sh->state);
3050 }
3051
3052 /* If the failed drives are just a ReadError, then we might need
3053 * to progress the repair/check process
3054 */
a4456856
DW
3055 if (s.failed <= 2 && !conf->mddev->ro)
3056 for (i = 0; i < s.failed; i++) {
3057 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3058 if (test_bit(R5_ReadError, &dev->flags)
3059 && !test_bit(R5_LOCKED, &dev->flags)
3060 && test_bit(R5_UPTODATE, &dev->flags)
3061 ) {
3062 if (!test_bit(R5_ReWrite, &dev->flags)) {
3063 set_bit(R5_Wantwrite, &dev->flags);
3064 set_bit(R5_ReWrite, &dev->flags);
3065 set_bit(R5_LOCKED, &dev->flags);
3066 } else {
3067 /* let's read it back */
3068 set_bit(R5_Wantread, &dev->flags);
3069 set_bit(R5_LOCKED, &dev->flags);
3070 }
3071 }
3072 }
f416885e 3073
a4456856 3074 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3075 /* Need to write out all blocks after computing P&Q */
3076 sh->disks = conf->raid_disks;
3077 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3078 conf->raid_disks);
3079 compute_parity6(sh, RECONSTRUCT_WRITE);
3080 for (i = conf->raid_disks ; i-- ; ) {
3081 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3082 s.locked++;
f416885e
N
3083 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3084 }
3085 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3086 } else if (s.expanded) {
f416885e
N
3087 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3088 atomic_dec(&conf->reshape_stripes);
3089 wake_up(&conf->wait_for_overlap);
3090 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3091 }
3092
0f94e87c
DW
3093 if (s.expanding && s.locked == 0 &&
3094 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 3095 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3096
16a53ecc
N
3097 spin_unlock(&sh->lock);
3098
a4456856 3099 return_io(return_bi);
16a53ecc 3100
16a53ecc
N
3101 for (i=disks; i-- ;) {
3102 int rw;
3103 struct bio *bi;
3104 mdk_rdev_t *rdev;
3105 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
802ba064 3106 rw = WRITE;
16a53ecc 3107 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
802ba064 3108 rw = READ;
16a53ecc
N
3109 else
3110 continue;
3111
8b3e6cdc
DW
3112 set_bit(STRIPE_IO_STARTED, &sh->state);
3113
16a53ecc
N
3114 bi = &sh->dev[i].req;
3115
3116 bi->bi_rw = rw;
802ba064 3117 if (rw == WRITE)
16a53ecc
N
3118 bi->bi_end_io = raid5_end_write_request;
3119 else
3120 bi->bi_end_io = raid5_end_read_request;
3121
3122 rcu_read_lock();
3123 rdev = rcu_dereference(conf->disks[i].rdev);
3124 if (rdev && test_bit(Faulty, &rdev->flags))
3125 rdev = NULL;
3126 if (rdev)
3127 atomic_inc(&rdev->nr_pending);
3128 rcu_read_unlock();
3129
3130 if (rdev) {
a4456856 3131 if (s.syncing || s.expanding || s.expanded)
16a53ecc
N
3132 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3133
3134 bi->bi_bdev = rdev->bdev;
45b4233c 3135 pr_debug("for %llu schedule op %ld on disc %d\n",
16a53ecc
N
3136 (unsigned long long)sh->sector, bi->bi_rw, i);
3137 atomic_inc(&sh->count);
3138 bi->bi_sector = sh->sector + rdev->data_offset;
3139 bi->bi_flags = 1 << BIO_UPTODATE;
3140 bi->bi_vcnt = 1;
3141 bi->bi_max_vecs = 1;
3142 bi->bi_idx = 0;
3143 bi->bi_io_vec = &sh->dev[i].vec;
3144 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3145 bi->bi_io_vec[0].bv_offset = 0;
3146 bi->bi_size = STRIPE_SIZE;
3147 bi->bi_next = NULL;
3148 if (rw == WRITE &&
3149 test_bit(R5_ReWrite, &sh->dev[i].flags))
3150 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3151 generic_make_request(bi);
3152 } else {
802ba064 3153 if (rw == WRITE)
16a53ecc 3154 set_bit(STRIPE_DEGRADED, &sh->state);
45b4233c 3155 pr_debug("skip op %ld on disc %d for sector %llu\n",
16a53ecc
N
3156 bi->bi_rw, i, (unsigned long long)sh->sector);
3157 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3158 set_bit(STRIPE_HANDLE, &sh->state);
3159 }
3160 }
3161}
3162
3163static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3164{
3165 if (sh->raid_conf->level == 6)
3166 handle_stripe6(sh, tmp_page);
3167 else
3168 handle_stripe5(sh);
3169}
3170
3171
3172
3173static void raid5_activate_delayed(raid5_conf_t *conf)
3174{
3175 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3176 while (!list_empty(&conf->delayed_list)) {
3177 struct list_head *l = conf->delayed_list.next;
3178 struct stripe_head *sh;
3179 sh = list_entry(l, struct stripe_head, lru);
3180 list_del_init(l);
3181 clear_bit(STRIPE_DELAYED, &sh->state);
3182 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3183 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3184 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3185 }
6ed3003c
N
3186 } else
3187 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3188}
3189
3190static void activate_bit_delay(raid5_conf_t *conf)
3191{
3192 /* device_lock is held */
3193 struct list_head head;
3194 list_add(&head, &conf->bitmap_list);
3195 list_del_init(&conf->bitmap_list);
3196 while (!list_empty(&head)) {
3197 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3198 list_del_init(&sh->lru);
3199 atomic_inc(&sh->count);
3200 __release_stripe(conf, sh);
3201 }
3202}
3203
3204static void unplug_slaves(mddev_t *mddev)
3205{
3206 raid5_conf_t *conf = mddev_to_conf(mddev);
3207 int i;
3208
3209 rcu_read_lock();
3210 for (i=0; i<mddev->raid_disks; i++) {
3211 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3212 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3213 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3214
3215 atomic_inc(&rdev->nr_pending);
3216 rcu_read_unlock();
3217
2ad8b1ef 3218 blk_unplug(r_queue);
16a53ecc
N
3219
3220 rdev_dec_pending(rdev, mddev);
3221 rcu_read_lock();
3222 }
3223 }
3224 rcu_read_unlock();
3225}
3226
165125e1 3227static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3228{
3229 mddev_t *mddev = q->queuedata;
3230 raid5_conf_t *conf = mddev_to_conf(mddev);
3231 unsigned long flags;
3232
3233 spin_lock_irqsave(&conf->device_lock, flags);
3234
3235 if (blk_remove_plug(q)) {
3236 conf->seq_flush++;
3237 raid5_activate_delayed(conf);
72626685 3238 }
1da177e4
LT
3239 md_wakeup_thread(mddev->thread);
3240
3241 spin_unlock_irqrestore(&conf->device_lock, flags);
3242
3243 unplug_slaves(mddev);
3244}
3245
f022b2fd
N
3246static int raid5_congested(void *data, int bits)
3247{
3248 mddev_t *mddev = data;
3249 raid5_conf_t *conf = mddev_to_conf(mddev);
3250
3251 /* No difference between reads and writes. Just check
3252 * how busy the stripe_cache is
3253 */
3254 if (conf->inactive_blocked)
3255 return 1;
3256 if (conf->quiesce)
3257 return 1;
3258 if (list_empty_careful(&conf->inactive_list))
3259 return 1;
3260
3261 return 0;
3262}
3263
23032a0e
RBJ
3264/* We want read requests to align with chunks where possible,
3265 * but write requests don't need to.
3266 */
165125e1 3267static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
23032a0e
RBJ
3268{
3269 mddev_t *mddev = q->queuedata;
3270 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3271 int max;
3272 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3273 unsigned int bio_sectors = bio->bi_size >> 9;
3274
802ba064 3275 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
3276 return biovec->bv_len; /* always allow writes to be mergeable */
3277
3278 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3279 if (max < 0) max = 0;
3280 if (max <= biovec->bv_len && bio_sectors == 0)
3281 return biovec->bv_len;
3282 else
3283 return max;
3284}
3285
f679623f
RBJ
3286
3287static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3288{
3289 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3290 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3291 unsigned int bio_sectors = bio->bi_size >> 9;
3292
3293 return chunk_sectors >=
3294 ((sector & (chunk_sectors - 1)) + bio_sectors);
3295}
3296
46031f9a
RBJ
3297/*
3298 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3299 * later sampled by raid5d.
3300 */
3301static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3302{
3303 unsigned long flags;
3304
3305 spin_lock_irqsave(&conf->device_lock, flags);
3306
3307 bi->bi_next = conf->retry_read_aligned_list;
3308 conf->retry_read_aligned_list = bi;
3309
3310 spin_unlock_irqrestore(&conf->device_lock, flags);
3311 md_wakeup_thread(conf->mddev->thread);
3312}
3313
3314
3315static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3316{
3317 struct bio *bi;
3318
3319 bi = conf->retry_read_aligned;
3320 if (bi) {
3321 conf->retry_read_aligned = NULL;
3322 return bi;
3323 }
3324 bi = conf->retry_read_aligned_list;
3325 if(bi) {
387bb173 3326 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
3327 bi->bi_next = NULL;
3328 bi->bi_phys_segments = 1; /* biased count of active stripes */
3329 bi->bi_hw_segments = 0; /* count of processed stripes */
3330 }
3331
3332 return bi;
3333}
3334
3335
f679623f
RBJ
3336/*
3337 * The "raid5_align_endio" should check if the read succeeded and if it
3338 * did, call bio_endio on the original bio (having bio_put the new bio
3339 * first).
3340 * If the read failed..
3341 */
6712ecf8 3342static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3343{
3344 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3345 mddev_t *mddev;
3346 raid5_conf_t *conf;
3347 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3348 mdk_rdev_t *rdev;
3349
f679623f 3350 bio_put(bi);
46031f9a
RBJ
3351
3352 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3353 conf = mddev_to_conf(mddev);
3354 rdev = (void*)raid_bi->bi_next;
3355 raid_bi->bi_next = NULL;
3356
3357 rdev_dec_pending(rdev, conf->mddev);
3358
3359 if (!error && uptodate) {
6712ecf8 3360 bio_endio(raid_bi, 0);
46031f9a
RBJ
3361 if (atomic_dec_and_test(&conf->active_aligned_reads))
3362 wake_up(&conf->wait_for_stripe);
6712ecf8 3363 return;
46031f9a
RBJ
3364 }
3365
3366
45b4233c 3367 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3368
3369 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3370}
3371
387bb173
NB
3372static int bio_fits_rdev(struct bio *bi)
3373{
165125e1 3374 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3375
3376 if ((bi->bi_size>>9) > q->max_sectors)
3377 return 0;
3378 blk_recount_segments(q, bi);
3379 if (bi->bi_phys_segments > q->max_phys_segments ||
3380 bi->bi_hw_segments > q->max_hw_segments)
3381 return 0;
3382
3383 if (q->merge_bvec_fn)
3384 /* it's too hard to apply the merge_bvec_fn at this stage,
3385 * just just give up
3386 */
3387 return 0;
3388
3389 return 1;
3390}
3391
3392
165125e1 3393static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3394{
3395 mddev_t *mddev = q->queuedata;
3396 raid5_conf_t *conf = mddev_to_conf(mddev);
3397 const unsigned int raid_disks = conf->raid_disks;
46031f9a 3398 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
3399 unsigned int dd_idx, pd_idx;
3400 struct bio* align_bi;
3401 mdk_rdev_t *rdev;
3402
3403 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3404 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3405 return 0;
3406 }
3407 /*
3408 * use bio_clone to make a copy of the bio
3409 */
3410 align_bi = bio_clone(raid_bio, GFP_NOIO);
3411 if (!align_bi)
3412 return 0;
3413 /*
3414 * set bi_end_io to a new function, and set bi_private to the
3415 * original bio.
3416 */
3417 align_bi->bi_end_io = raid5_align_endio;
3418 align_bi->bi_private = raid_bio;
3419 /*
3420 * compute position
3421 */
3422 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3423 raid_disks,
3424 data_disks,
3425 &dd_idx,
3426 &pd_idx,
3427 conf);
3428
3429 rcu_read_lock();
3430 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3431 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3432 atomic_inc(&rdev->nr_pending);
3433 rcu_read_unlock();
46031f9a
RBJ
3434 raid_bio->bi_next = (void*)rdev;
3435 align_bi->bi_bdev = rdev->bdev;
3436 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3437 align_bi->bi_sector += rdev->data_offset;
3438
387bb173
NB
3439 if (!bio_fits_rdev(align_bi)) {
3440 /* too big in some way */
3441 bio_put(align_bi);
3442 rdev_dec_pending(rdev, mddev);
3443 return 0;
3444 }
3445
46031f9a
RBJ
3446 spin_lock_irq(&conf->device_lock);
3447 wait_event_lock_irq(conf->wait_for_stripe,
3448 conf->quiesce == 0,
3449 conf->device_lock, /* nothing */);
3450 atomic_inc(&conf->active_aligned_reads);
3451 spin_unlock_irq(&conf->device_lock);
3452
f679623f
RBJ
3453 generic_make_request(align_bi);
3454 return 1;
3455 } else {
3456 rcu_read_unlock();
46031f9a 3457 bio_put(align_bi);
f679623f
RBJ
3458 return 0;
3459 }
3460}
3461
8b3e6cdc
DW
3462/* __get_priority_stripe - get the next stripe to process
3463 *
3464 * Full stripe writes are allowed to pass preread active stripes up until
3465 * the bypass_threshold is exceeded. In general the bypass_count
3466 * increments when the handle_list is handled before the hold_list; however, it
3467 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3468 * stripe with in flight i/o. The bypass_count will be reset when the
3469 * head of the hold_list has changed, i.e. the head was promoted to the
3470 * handle_list.
3471 */
3472static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3473{
3474 struct stripe_head *sh;
3475
3476 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3477 __func__,
3478 list_empty(&conf->handle_list) ? "empty" : "busy",
3479 list_empty(&conf->hold_list) ? "empty" : "busy",
3480 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3481
3482 if (!list_empty(&conf->handle_list)) {
3483 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3484
3485 if (list_empty(&conf->hold_list))
3486 conf->bypass_count = 0;
3487 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3488 if (conf->hold_list.next == conf->last_hold)
3489 conf->bypass_count++;
3490 else {
3491 conf->last_hold = conf->hold_list.next;
3492 conf->bypass_count -= conf->bypass_threshold;
3493 if (conf->bypass_count < 0)
3494 conf->bypass_count = 0;
3495 }
3496 }
3497 } else if (!list_empty(&conf->hold_list) &&
3498 ((conf->bypass_threshold &&
3499 conf->bypass_count > conf->bypass_threshold) ||
3500 atomic_read(&conf->pending_full_writes) == 0)) {
3501 sh = list_entry(conf->hold_list.next,
3502 typeof(*sh), lru);
3503 conf->bypass_count -= conf->bypass_threshold;
3504 if (conf->bypass_count < 0)
3505 conf->bypass_count = 0;
3506 } else
3507 return NULL;
3508
3509 list_del_init(&sh->lru);
3510 atomic_inc(&sh->count);
3511 BUG_ON(atomic_read(&sh->count) != 1);
3512 return sh;
3513}
f679623f 3514
165125e1 3515static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3516{
3517 mddev_t *mddev = q->queuedata;
3518 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
3519 unsigned int dd_idx, pd_idx;
3520 sector_t new_sector;
3521 sector_t logical_sector, last_sector;
3522 struct stripe_head *sh;
a362357b 3523 const int rw = bio_data_dir(bi);
f6344757 3524 int remaining;
1da177e4 3525
e5dcdd80 3526 if (unlikely(bio_barrier(bi))) {
6712ecf8 3527 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3528 return 0;
3529 }
3530
3d310eb7 3531 md_write_start(mddev, bi);
06d91a5f 3532
a362357b
JA
3533 disk_stat_inc(mddev->gendisk, ios[rw]);
3534 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 3535
802ba064 3536 if (rw == READ &&
52488615
RBJ
3537 mddev->reshape_position == MaxSector &&
3538 chunk_aligned_read(q,bi))
3539 return 0;
3540
1da177e4
LT
3541 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3542 last_sector = bi->bi_sector + (bi->bi_size>>9);
3543 bi->bi_next = NULL;
3544 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3545
1da177e4
LT
3546 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3547 DEFINE_WAIT(w);
16a53ecc 3548 int disks, data_disks;
b578d55f 3549
7ecaa1e6 3550 retry:
b578d55f 3551 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3552 if (likely(conf->expand_progress == MaxSector))
3553 disks = conf->raid_disks;
3554 else {
df8e7f76
N
3555 /* spinlock is needed as expand_progress may be
3556 * 64bit on a 32bit platform, and so it might be
3557 * possible to see a half-updated value
3558 * Ofcourse expand_progress could change after
3559 * the lock is dropped, so once we get a reference
3560 * to the stripe that we think it is, we will have
3561 * to check again.
3562 */
7ecaa1e6
N
3563 spin_lock_irq(&conf->device_lock);
3564 disks = conf->raid_disks;
3565 if (logical_sector >= conf->expand_progress)
3566 disks = conf->previous_raid_disks;
b578d55f
N
3567 else {
3568 if (logical_sector >= conf->expand_lo) {
3569 spin_unlock_irq(&conf->device_lock);
3570 schedule();
3571 goto retry;
3572 }
3573 }
7ecaa1e6
N
3574 spin_unlock_irq(&conf->device_lock);
3575 }
16a53ecc
N
3576 data_disks = disks - conf->max_degraded;
3577
3578 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 3579 &dd_idx, &pd_idx, conf);
45b4233c 3580 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3581 (unsigned long long)new_sector,
3582 (unsigned long long)logical_sector);
3583
7ecaa1e6 3584 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 3585 if (sh) {
7ecaa1e6
N
3586 if (unlikely(conf->expand_progress != MaxSector)) {
3587 /* expansion might have moved on while waiting for a
df8e7f76
N
3588 * stripe, so we must do the range check again.
3589 * Expansion could still move past after this
3590 * test, but as we are holding a reference to
3591 * 'sh', we know that if that happens,
3592 * STRIPE_EXPANDING will get set and the expansion
3593 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3594 */
3595 int must_retry = 0;
3596 spin_lock_irq(&conf->device_lock);
3597 if (logical_sector < conf->expand_progress &&
3598 disks == conf->previous_raid_disks)
3599 /* mismatch, need to try again */
3600 must_retry = 1;
3601 spin_unlock_irq(&conf->device_lock);
3602 if (must_retry) {
3603 release_stripe(sh);
3604 goto retry;
3605 }
3606 }
e464eafd
N
3607 /* FIXME what if we get a false positive because these
3608 * are being updated.
3609 */
3610 if (logical_sector >= mddev->suspend_lo &&
3611 logical_sector < mddev->suspend_hi) {
3612 release_stripe(sh);
3613 schedule();
3614 goto retry;
3615 }
7ecaa1e6
N
3616
3617 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3618 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3619 /* Stripe is busy expanding or
3620 * add failed due to overlap. Flush everything
1da177e4
LT
3621 * and wait a while
3622 */
3623 raid5_unplug_device(mddev->queue);
3624 release_stripe(sh);
3625 schedule();
3626 goto retry;
3627 }
3628 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3629 set_bit(STRIPE_HANDLE, &sh->state);
3630 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3631 release_stripe(sh);
1da177e4
LT
3632 } else {
3633 /* cannot get stripe for read-ahead, just give-up */
3634 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3635 finish_wait(&conf->wait_for_overlap, &w);
3636 break;
3637 }
3638
3639 }
3640 spin_lock_irq(&conf->device_lock);
f6344757
N
3641 remaining = --bi->bi_phys_segments;
3642 spin_unlock_irq(&conf->device_lock);
3643 if (remaining == 0) {
1da177e4 3644
16a53ecc 3645 if ( rw == WRITE )
1da177e4 3646 md_write_end(mddev);
6712ecf8
N
3647
3648 bi->bi_end_io(bi,
c2b00852
N
3649 test_bit(BIO_UPTODATE, &bi->bi_flags)
3650 ? 0 : -EIO);
1da177e4 3651 }
1da177e4
LT
3652 return 0;
3653}
3654
52c03291 3655static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3656{
52c03291
N
3657 /* reshaping is quite different to recovery/resync so it is
3658 * handled quite separately ... here.
3659 *
3660 * On each call to sync_request, we gather one chunk worth of
3661 * destination stripes and flag them as expanding.
3662 * Then we find all the source stripes and request reads.
3663 * As the reads complete, handle_stripe will copy the data
3664 * into the destination stripe and release that stripe.
3665 */
1da177e4
LT
3666 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3667 struct stripe_head *sh;
ccfcc3c1
N
3668 int pd_idx;
3669 sector_t first_sector, last_sector;
f416885e
N
3670 int raid_disks = conf->previous_raid_disks;
3671 int data_disks = raid_disks - conf->max_degraded;
3672 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3673 int i;
3674 int dd_idx;
3675 sector_t writepos, safepos, gap;
3676
3677 if (sector_nr == 0 &&
3678 conf->expand_progress != 0) {
3679 /* restarting in the middle, skip the initial sectors */
3680 sector_nr = conf->expand_progress;
f416885e 3681 sector_div(sector_nr, new_data_disks);
52c03291
N
3682 *skipped = 1;
3683 return sector_nr;
3684 }
3685
3686 /* we update the metadata when there is more than 3Meg
3687 * in the block range (that is rather arbitrary, should
3688 * probably be time based) or when the data about to be
3689 * copied would over-write the source of the data at
3690 * the front of the range.
3691 * i.e. one new_stripe forward from expand_progress new_maps
3692 * to after where expand_lo old_maps to
3693 */
3694 writepos = conf->expand_progress +
f416885e
N
3695 conf->chunk_size/512*(new_data_disks);
3696 sector_div(writepos, new_data_disks);
52c03291 3697 safepos = conf->expand_lo;
f416885e 3698 sector_div(safepos, data_disks);
52c03291
N
3699 gap = conf->expand_progress - conf->expand_lo;
3700
3701 if (writepos >= safepos ||
f416885e 3702 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3703 /* Cannot proceed until we've updated the superblock... */
3704 wait_event(conf->wait_for_overlap,
3705 atomic_read(&conf->reshape_stripes)==0);
3706 mddev->reshape_position = conf->expand_progress;
850b2b42 3707 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3708 md_wakeup_thread(mddev->thread);
850b2b42 3709 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3710 kthread_should_stop());
3711 spin_lock_irq(&conf->device_lock);
3712 conf->expand_lo = mddev->reshape_position;
3713 spin_unlock_irq(&conf->device_lock);
3714 wake_up(&conf->wait_for_overlap);
3715 }
3716
3717 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3718 int j;
3719 int skipped = 0;
3720 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3721 sh = get_active_stripe(conf, sector_nr+i,
3722 conf->raid_disks, pd_idx, 0);
3723 set_bit(STRIPE_EXPANDING, &sh->state);
3724 atomic_inc(&conf->reshape_stripes);
3725 /* If any of this stripe is beyond the end of the old
3726 * array, then we need to zero those blocks
3727 */
3728 for (j=sh->disks; j--;) {
3729 sector_t s;
3730 if (j == sh->pd_idx)
3731 continue;
f416885e
N
3732 if (conf->level == 6 &&
3733 j == raid6_next_disk(sh->pd_idx, sh->disks))
3734 continue;
52c03291
N
3735 s = compute_blocknr(sh, j);
3736 if (s < (mddev->array_size<<1)) {
3737 skipped = 1;
3738 continue;
3739 }
3740 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3741 set_bit(R5_Expanded, &sh->dev[j].flags);
3742 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3743 }
3744 if (!skipped) {
3745 set_bit(STRIPE_EXPAND_READY, &sh->state);
3746 set_bit(STRIPE_HANDLE, &sh->state);
3747 }
3748 release_stripe(sh);
3749 }
3750 spin_lock_irq(&conf->device_lock);
6d3baf2e 3751 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3752 spin_unlock_irq(&conf->device_lock);
3753 /* Ok, those stripe are ready. We can start scheduling
3754 * reads on the source stripes.
3755 * The source stripes are determined by mapping the first and last
3756 * block on the destination stripes.
3757 */
52c03291 3758 first_sector =
f416885e 3759 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3760 raid_disks, data_disks,
3761 &dd_idx, &pd_idx, conf);
3762 last_sector =
3763 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3764 *(new_data_disks) -1,
52c03291
N
3765 raid_disks, data_disks,
3766 &dd_idx, &pd_idx, conf);
3767 if (last_sector >= (mddev->size<<1))
3768 last_sector = (mddev->size<<1)-1;
3769 while (first_sector <= last_sector) {
f416885e
N
3770 pd_idx = stripe_to_pdidx(first_sector, conf,
3771 conf->previous_raid_disks);
52c03291
N
3772 sh = get_active_stripe(conf, first_sector,
3773 conf->previous_raid_disks, pd_idx, 0);
3774 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3775 set_bit(STRIPE_HANDLE, &sh->state);
3776 release_stripe(sh);
3777 first_sector += STRIPE_SECTORS;
3778 }
c6207277
N
3779 /* If this takes us to the resync_max point where we have to pause,
3780 * then we need to write out the superblock.
3781 */
3782 sector_nr += conf->chunk_size>>9;
3783 if (sector_nr >= mddev->resync_max) {
3784 /* Cannot proceed until we've updated the superblock... */
3785 wait_event(conf->wait_for_overlap,
3786 atomic_read(&conf->reshape_stripes) == 0);
3787 mddev->reshape_position = conf->expand_progress;
3788 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3789 md_wakeup_thread(mddev->thread);
3790 wait_event(mddev->sb_wait,
3791 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3792 || kthread_should_stop());
3793 spin_lock_irq(&conf->device_lock);
3794 conf->expand_lo = mddev->reshape_position;
3795 spin_unlock_irq(&conf->device_lock);
3796 wake_up(&conf->wait_for_overlap);
3797 }
52c03291
N
3798 return conf->chunk_size>>9;
3799}
3800
3801/* FIXME go_faster isn't used */
3802static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3803{
3804 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3805 struct stripe_head *sh;
3806 int pd_idx;
1da177e4 3807 int raid_disks = conf->raid_disks;
72626685
N
3808 sector_t max_sector = mddev->size << 1;
3809 int sync_blocks;
16a53ecc
N
3810 int still_degraded = 0;
3811 int i;
1da177e4 3812
72626685 3813 if (sector_nr >= max_sector) {
1da177e4
LT
3814 /* just being told to finish up .. nothing much to do */
3815 unplug_slaves(mddev);
29269553
N
3816 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3817 end_reshape(conf);
3818 return 0;
3819 }
72626685
N
3820
3821 if (mddev->curr_resync < max_sector) /* aborted */
3822 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3823 &sync_blocks, 1);
16a53ecc 3824 else /* completed sync */
72626685
N
3825 conf->fullsync = 0;
3826 bitmap_close_sync(mddev->bitmap);
3827
1da177e4
LT
3828 return 0;
3829 }
ccfcc3c1 3830
52c03291
N
3831 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3832 return reshape_request(mddev, sector_nr, skipped);
f6705578 3833
c6207277
N
3834 /* No need to check resync_max as we never do more than one
3835 * stripe, and as resync_max will always be on a chunk boundary,
3836 * if the check in md_do_sync didn't fire, there is no chance
3837 * of overstepping resync_max here
3838 */
3839
16a53ecc 3840 /* if there is too many failed drives and we are trying
1da177e4
LT
3841 * to resync, then assert that we are finished, because there is
3842 * nothing we can do.
3843 */
3285edf1 3844 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3845 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3846 sector_t rv = (mddev->size << 1) - sector_nr;
3847 *skipped = 1;
1da177e4
LT
3848 return rv;
3849 }
72626685 3850 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3851 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3852 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3853 /* we can skip this block, and probably more */
3854 sync_blocks /= STRIPE_SECTORS;
3855 *skipped = 1;
3856 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3857 }
1da177e4 3858
b47490c9
N
3859
3860 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3861
ccfcc3c1 3862 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3863 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3864 if (sh == NULL) {
7ecaa1e6 3865 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3866 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3867 * is trying to get access
1da177e4 3868 */
66c006a5 3869 schedule_timeout_uninterruptible(1);
1da177e4 3870 }
16a53ecc
N
3871 /* Need to check if array will still be degraded after recovery/resync
3872 * We don't need to check the 'failed' flag as when that gets set,
3873 * recovery aborts.
3874 */
3875 for (i=0; i<mddev->raid_disks; i++)
3876 if (conf->disks[i].rdev == NULL)
3877 still_degraded = 1;
3878
3879 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3880
3881 spin_lock(&sh->lock);
1da177e4
LT
3882 set_bit(STRIPE_SYNCING, &sh->state);
3883 clear_bit(STRIPE_INSYNC, &sh->state);
3884 spin_unlock(&sh->lock);
3885
16a53ecc 3886 handle_stripe(sh, NULL);
1da177e4
LT
3887 release_stripe(sh);
3888
3889 return STRIPE_SECTORS;
3890}
3891
46031f9a
RBJ
3892static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3893{
3894 /* We may not be able to submit a whole bio at once as there
3895 * may not be enough stripe_heads available.
3896 * We cannot pre-allocate enough stripe_heads as we may need
3897 * more than exist in the cache (if we allow ever large chunks).
3898 * So we do one stripe head at a time and record in
3899 * ->bi_hw_segments how many have been done.
3900 *
3901 * We *know* that this entire raid_bio is in one chunk, so
3902 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3903 */
3904 struct stripe_head *sh;
3905 int dd_idx, pd_idx;
3906 sector_t sector, logical_sector, last_sector;
3907 int scnt = 0;
3908 int remaining;
3909 int handled = 0;
3910
3911 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3912 sector = raid5_compute_sector( logical_sector,
3913 conf->raid_disks,
3914 conf->raid_disks - conf->max_degraded,
3915 &dd_idx,
3916 &pd_idx,
3917 conf);
3918 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3919
3920 for (; logical_sector < last_sector;
387bb173
NB
3921 logical_sector += STRIPE_SECTORS,
3922 sector += STRIPE_SECTORS,
3923 scnt++) {
46031f9a
RBJ
3924
3925 if (scnt < raid_bio->bi_hw_segments)
3926 /* already done this stripe */
3927 continue;
3928
3929 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3930
3931 if (!sh) {
3932 /* failed to get a stripe - must wait */
3933 raid_bio->bi_hw_segments = scnt;
3934 conf->retry_read_aligned = raid_bio;
3935 return handled;
3936 }
3937
3938 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3939 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3940 release_stripe(sh);
3941 raid_bio->bi_hw_segments = scnt;
3942 conf->retry_read_aligned = raid_bio;
3943 return handled;
3944 }
3945
46031f9a
RBJ
3946 handle_stripe(sh, NULL);
3947 release_stripe(sh);
3948 handled++;
3949 }
3950 spin_lock_irq(&conf->device_lock);
3951 remaining = --raid_bio->bi_phys_segments;
3952 spin_unlock_irq(&conf->device_lock);
3953 if (remaining == 0) {
46031f9a 3954
6712ecf8 3955 raid_bio->bi_end_io(raid_bio,
c2b00852
N
3956 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3957 ? 0 : -EIO);
46031f9a
RBJ
3958 }
3959 if (atomic_dec_and_test(&conf->active_aligned_reads))
3960 wake_up(&conf->wait_for_stripe);
3961 return handled;
3962}
3963
3964
3965
1da177e4
LT
3966/*
3967 * This is our raid5 kernel thread.
3968 *
3969 * We scan the hash table for stripes which can be handled now.
3970 * During the scan, completed stripes are saved for us by the interrupt
3971 * handler, so that they will not have to wait for our next wakeup.
3972 */
6ed3003c 3973static void raid5d(mddev_t *mddev)
1da177e4
LT
3974{
3975 struct stripe_head *sh;
3976 raid5_conf_t *conf = mddev_to_conf(mddev);
3977 int handled;
3978
45b4233c 3979 pr_debug("+++ raid5d active\n");
1da177e4
LT
3980
3981 md_check_recovery(mddev);
1da177e4
LT
3982
3983 handled = 0;
3984 spin_lock_irq(&conf->device_lock);
3985 while (1) {
46031f9a 3986 struct bio *bio;
1da177e4 3987
ae3c20cc 3988 if (conf->seq_flush != conf->seq_write) {
72626685 3989 int seq = conf->seq_flush;
700e432d 3990 spin_unlock_irq(&conf->device_lock);
72626685 3991 bitmap_unplug(mddev->bitmap);
700e432d 3992 spin_lock_irq(&conf->device_lock);
72626685
N
3993 conf->seq_write = seq;
3994 activate_bit_delay(conf);
3995 }
3996
46031f9a
RBJ
3997 while ((bio = remove_bio_from_retry(conf))) {
3998 int ok;
3999 spin_unlock_irq(&conf->device_lock);
4000 ok = retry_aligned_read(conf, bio);
4001 spin_lock_irq(&conf->device_lock);
4002 if (!ok)
4003 break;
4004 handled++;
4005 }
4006
8b3e6cdc
DW
4007 sh = __get_priority_stripe(conf);
4008
4009 if (!sh) {
d84e0f10 4010 async_tx_issue_pending_all();
1da177e4 4011 break;
d84e0f10 4012 }
1da177e4
LT
4013 spin_unlock_irq(&conf->device_lock);
4014
4015 handled++;
16a53ecc 4016 handle_stripe(sh, conf->spare_page);
1da177e4
LT
4017 release_stripe(sh);
4018
4019 spin_lock_irq(&conf->device_lock);
4020 }
45b4233c 4021 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4022
4023 spin_unlock_irq(&conf->device_lock);
4024
4025 unplug_slaves(mddev);
4026
45b4233c 4027 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4028}
4029
3f294f4f 4030static ssize_t
007583c9 4031raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4032{
007583c9 4033 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4034 if (conf)
4035 return sprintf(page, "%d\n", conf->max_nr_stripes);
4036 else
4037 return 0;
3f294f4f
N
4038}
4039
4040static ssize_t
007583c9 4041raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4042{
007583c9 4043 raid5_conf_t *conf = mddev_to_conf(mddev);
3f294f4f
N
4044 char *end;
4045 int new;
4046 if (len >= PAGE_SIZE)
4047 return -EINVAL;
96de1e66
N
4048 if (!conf)
4049 return -ENODEV;
3f294f4f
N
4050
4051 new = simple_strtoul(page, &end, 10);
4052 if (!*page || (*end && *end != '\n') )
4053 return -EINVAL;
4054 if (new <= 16 || new > 32768)
4055 return -EINVAL;
4056 while (new < conf->max_nr_stripes) {
4057 if (drop_one_stripe(conf))
4058 conf->max_nr_stripes--;
4059 else
4060 break;
4061 }
2a2275d6 4062 md_allow_write(mddev);
3f294f4f
N
4063 while (new > conf->max_nr_stripes) {
4064 if (grow_one_stripe(conf))
4065 conf->max_nr_stripes++;
4066 else break;
4067 }
4068 return len;
4069}
007583c9 4070
96de1e66
N
4071static struct md_sysfs_entry
4072raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4073 raid5_show_stripe_cache_size,
4074 raid5_store_stripe_cache_size);
3f294f4f 4075
8b3e6cdc
DW
4076static ssize_t
4077raid5_show_preread_threshold(mddev_t *mddev, char *page)
4078{
4079 raid5_conf_t *conf = mddev_to_conf(mddev);
4080 if (conf)
4081 return sprintf(page, "%d\n", conf->bypass_threshold);
4082 else
4083 return 0;
4084}
4085
4086static ssize_t
4087raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4088{
4089 raid5_conf_t *conf = mddev_to_conf(mddev);
4090 char *end;
4091 int new;
4092 if (len >= PAGE_SIZE)
4093 return -EINVAL;
4094 if (!conf)
4095 return -ENODEV;
4096
4097 new = simple_strtoul(page, &end, 10);
4098 if (!*page || (*end && *end != '\n'))
4099 return -EINVAL;
4100 if (new > conf->max_nr_stripes || new < 0)
4101 return -EINVAL;
4102 conf->bypass_threshold = new;
4103 return len;
4104}
4105
4106static struct md_sysfs_entry
4107raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4108 S_IRUGO | S_IWUSR,
4109 raid5_show_preread_threshold,
4110 raid5_store_preread_threshold);
4111
3f294f4f 4112static ssize_t
96de1e66 4113stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4114{
007583c9 4115 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4116 if (conf)
4117 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4118 else
4119 return 0;
3f294f4f
N
4120}
4121
96de1e66
N
4122static struct md_sysfs_entry
4123raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4124
007583c9 4125static struct attribute *raid5_attrs[] = {
3f294f4f
N
4126 &raid5_stripecache_size.attr,
4127 &raid5_stripecache_active.attr,
8b3e6cdc 4128 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4129 NULL,
4130};
007583c9
N
4131static struct attribute_group raid5_attrs_group = {
4132 .name = NULL,
4133 .attrs = raid5_attrs,
3f294f4f
N
4134};
4135
72626685 4136static int run(mddev_t *mddev)
1da177e4
LT
4137{
4138 raid5_conf_t *conf;
4139 int raid_disk, memory;
4140 mdk_rdev_t *rdev;
4141 struct disk_info *disk;
4142 struct list_head *tmp;
02c2de8c 4143 int working_disks = 0;
1da177e4 4144
16a53ecc
N
4145 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4146 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 4147 mdname(mddev), mddev->level);
1da177e4
LT
4148 return -EIO;
4149 }
4150
f6705578
N
4151 if (mddev->reshape_position != MaxSector) {
4152 /* Check that we can continue the reshape.
4153 * Currently only disks can change, it must
4154 * increase, and we must be past the point where
4155 * a stripe over-writes itself
4156 */
4157 sector_t here_new, here_old;
4158 int old_disks;
f416885e 4159 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
4160
4161 if (mddev->new_level != mddev->level ||
4162 mddev->new_layout != mddev->layout ||
4163 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
4164 printk(KERN_ERR "raid5: %s: unsupported reshape "
4165 "required - aborting.\n",
f6705578
N
4166 mdname(mddev));
4167 return -EINVAL;
4168 }
4169 if (mddev->delta_disks <= 0) {
f416885e
N
4170 printk(KERN_ERR "raid5: %s: unsupported reshape "
4171 "(reduce disks) required - aborting.\n",
f6705578
N
4172 mdname(mddev));
4173 return -EINVAL;
4174 }
4175 old_disks = mddev->raid_disks - mddev->delta_disks;
4176 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4177 * further up in new geometry must map after here in old
4178 * geometry.
f6705578
N
4179 */
4180 here_new = mddev->reshape_position;
f416885e
N
4181 if (sector_div(here_new, (mddev->chunk_size>>9)*
4182 (mddev->raid_disks - max_degraded))) {
4183 printk(KERN_ERR "raid5: reshape_position not "
4184 "on a stripe boundary\n");
f6705578
N
4185 return -EINVAL;
4186 }
4187 /* here_new is the stripe we will write to */
4188 here_old = mddev->reshape_position;
f416885e
N
4189 sector_div(here_old, (mddev->chunk_size>>9)*
4190 (old_disks-max_degraded));
4191 /* here_old is the first stripe that we might need to read
4192 * from */
f6705578
N
4193 if (here_new >= here_old) {
4194 /* Reading from the same stripe as writing to - bad */
f416885e
N
4195 printk(KERN_ERR "raid5: reshape_position too early for "
4196 "auto-recovery - aborting.\n");
f6705578
N
4197 return -EINVAL;
4198 }
4199 printk(KERN_INFO "raid5: reshape will continue\n");
4200 /* OK, we should be able to continue; */
4201 }
4202
4203
b55e6bfc 4204 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4205 if ((conf = mddev->private) == NULL)
4206 goto abort;
f6705578
N
4207 if (mddev->reshape_position == MaxSector) {
4208 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4209 } else {
4210 conf->raid_disks = mddev->raid_disks;
4211 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4212 }
4213
4214 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4215 GFP_KERNEL);
4216 if (!conf->disks)
4217 goto abort;
9ffae0cf 4218
1da177e4
LT
4219 conf->mddev = mddev;
4220
fccddba0 4221 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4222 goto abort;
1da177e4 4223
16a53ecc
N
4224 if (mddev->level == 6) {
4225 conf->spare_page = alloc_page(GFP_KERNEL);
4226 if (!conf->spare_page)
4227 goto abort;
4228 }
1da177e4
LT
4229 spin_lock_init(&conf->device_lock);
4230 init_waitqueue_head(&conf->wait_for_stripe);
4231 init_waitqueue_head(&conf->wait_for_overlap);
4232 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4233 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4234 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4235 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4236 INIT_LIST_HEAD(&conf->inactive_list);
4237 atomic_set(&conf->active_stripes, 0);
4238 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4239 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4240 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4241
45b4233c 4242 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4243
d089c6af 4244 rdev_for_each(rdev, tmp, mddev) {
1da177e4 4245 raid_disk = rdev->raid_disk;
f6705578 4246 if (raid_disk >= conf->raid_disks
1da177e4
LT
4247 || raid_disk < 0)
4248 continue;
4249 disk = conf->disks + raid_disk;
4250
4251 disk->rdev = rdev;
4252
b2d444d7 4253 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4254 char b[BDEVNAME_SIZE];
4255 printk(KERN_INFO "raid5: device %s operational as raid"
4256 " disk %d\n", bdevname(rdev->bdev,b),
4257 raid_disk);
02c2de8c 4258 working_disks++;
1da177e4
LT
4259 }
4260 }
4261
1da177e4 4262 /*
16a53ecc 4263 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4264 */
02c2de8c 4265 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4266 conf->mddev = mddev;
4267 conf->chunk_size = mddev->chunk_size;
4268 conf->level = mddev->level;
16a53ecc
N
4269 if (conf->level == 6)
4270 conf->max_degraded = 2;
4271 else
4272 conf->max_degraded = 1;
1da177e4
LT
4273 conf->algorithm = mddev->layout;
4274 conf->max_nr_stripes = NR_STRIPES;
f6705578 4275 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4276
4277 /* device size must be a multiple of chunk size */
4278 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 4279 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 4280
16a53ecc
N
4281 if (conf->level == 6 && conf->raid_disks < 4) {
4282 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4283 mdname(mddev), conf->raid_disks);
4284 goto abort;
4285 }
1da177e4
LT
4286 if (!conf->chunk_size || conf->chunk_size % 4) {
4287 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4288 conf->chunk_size, mdname(mddev));
4289 goto abort;
4290 }
4291 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4292 printk(KERN_ERR
4293 "raid5: unsupported parity algorithm %d for %s\n",
4294 conf->algorithm, mdname(mddev));
4295 goto abort;
4296 }
16a53ecc 4297 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4298 printk(KERN_ERR "raid5: not enough operational devices for %s"
4299 " (%d/%d failed)\n",
02c2de8c 4300 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4301 goto abort;
4302 }
4303
16a53ecc 4304 if (mddev->degraded > 0 &&
1da177e4 4305 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4306 if (mddev->ok_start_degraded)
4307 printk(KERN_WARNING
4308 "raid5: starting dirty degraded array: %s"
4309 "- data corruption possible.\n",
4310 mdname(mddev));
4311 else {
4312 printk(KERN_ERR
4313 "raid5: cannot start dirty degraded array for %s\n",
4314 mdname(mddev));
4315 goto abort;
4316 }
1da177e4
LT
4317 }
4318
4319 {
4320 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4321 if (!mddev->thread) {
4322 printk(KERN_ERR
4323 "raid5: couldn't allocate thread for %s\n",
4324 mdname(mddev));
4325 goto abort;
4326 }
4327 }
5036805b 4328 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4329 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4330 if (grow_stripes(conf, conf->max_nr_stripes)) {
4331 printk(KERN_ERR
4332 "raid5: couldn't allocate %dkB for buffers\n", memory);
4333 shrink_stripes(conf);
4334 md_unregister_thread(mddev->thread);
4335 goto abort;
4336 } else
4337 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4338 memory, mdname(mddev));
4339
4340 if (mddev->degraded == 0)
4341 printk("raid5: raid level %d set %s active with %d out of %d"
4342 " devices, algorithm %d\n", conf->level, mdname(mddev),
4343 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4344 conf->algorithm);
4345 else
4346 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4347 " out of %d devices, algorithm %d\n", conf->level,
4348 mdname(mddev), mddev->raid_disks - mddev->degraded,
4349 mddev->raid_disks, conf->algorithm);
4350
4351 print_raid5_conf(conf);
4352
f6705578
N
4353 if (conf->expand_progress != MaxSector) {
4354 printk("...ok start reshape thread\n");
b578d55f 4355 conf->expand_lo = conf->expand_progress;
f6705578
N
4356 atomic_set(&conf->reshape_stripes, 0);
4357 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4358 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4359 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4360 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4361 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4362 "%s_reshape");
f6705578
N
4363 }
4364
1da177e4 4365 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4366 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4367 */
4368 {
16a53ecc
N
4369 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4370 int stripe = data_disks *
8932c2e0 4371 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4372 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4373 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4374 }
4375
4376 /* Ok, everything is just fine now */
5e55e2f5
N
4377 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4378 printk(KERN_WARNING
4379 "raid5: failed to create sysfs attributes for %s\n",
4380 mdname(mddev));
7a5febe9
N
4381
4382 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4383 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4384 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4385
16a53ecc
N
4386 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4387 conf->max_degraded);
7a5febe9 4388
23032a0e
RBJ
4389 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4390
1da177e4
LT
4391 return 0;
4392abort:
4393 if (conf) {
4394 print_raid5_conf(conf);
16a53ecc 4395 safe_put_page(conf->spare_page);
b55e6bfc 4396 kfree(conf->disks);
fccddba0 4397 kfree(conf->stripe_hashtbl);
1da177e4
LT
4398 kfree(conf);
4399 }
4400 mddev->private = NULL;
4401 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4402 return -EIO;
4403}
4404
4405
4406
3f294f4f 4407static int stop(mddev_t *mddev)
1da177e4
LT
4408{
4409 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4410
4411 md_unregister_thread(mddev->thread);
4412 mddev->thread = NULL;
4413 shrink_stripes(conf);
fccddba0 4414 kfree(conf->stripe_hashtbl);
041ae52e 4415 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4416 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4417 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4418 kfree(conf->disks);
96de1e66 4419 kfree(conf);
1da177e4
LT
4420 mddev->private = NULL;
4421 return 0;
4422}
4423
45b4233c 4424#ifdef DEBUG
16a53ecc 4425static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4426{
4427 int i;
4428
16a53ecc
N
4429 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4430 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4431 seq_printf(seq, "sh %llu, count %d.\n",
4432 (unsigned long long)sh->sector, atomic_read(&sh->count));
4433 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4434 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4435 seq_printf(seq, "(cache%d: %p %ld) ",
4436 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4437 }
16a53ecc 4438 seq_printf(seq, "\n");
1da177e4
LT
4439}
4440
16a53ecc 4441static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4442{
4443 struct stripe_head *sh;
fccddba0 4444 struct hlist_node *hn;
1da177e4
LT
4445 int i;
4446
4447 spin_lock_irq(&conf->device_lock);
4448 for (i = 0; i < NR_HASH; i++) {
fccddba0 4449 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4450 if (sh->raid_conf != conf)
4451 continue;
16a53ecc 4452 print_sh(seq, sh);
1da177e4
LT
4453 }
4454 }
4455 spin_unlock_irq(&conf->device_lock);
4456}
4457#endif
4458
4459static void status (struct seq_file *seq, mddev_t *mddev)
4460{
4461 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4462 int i;
4463
4464 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4465 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4466 for (i = 0; i < conf->raid_disks; i++)
4467 seq_printf (seq, "%s",
4468 conf->disks[i].rdev &&
b2d444d7 4469 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4470 seq_printf (seq, "]");
45b4233c 4471#ifdef DEBUG
16a53ecc
N
4472 seq_printf (seq, "\n");
4473 printall(seq, conf);
1da177e4
LT
4474#endif
4475}
4476
4477static void print_raid5_conf (raid5_conf_t *conf)
4478{
4479 int i;
4480 struct disk_info *tmp;
4481
4482 printk("RAID5 conf printout:\n");
4483 if (!conf) {
4484 printk("(conf==NULL)\n");
4485 return;
4486 }
02c2de8c
N
4487 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4488 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4489
4490 for (i = 0; i < conf->raid_disks; i++) {
4491 char b[BDEVNAME_SIZE];
4492 tmp = conf->disks + i;
4493 if (tmp->rdev)
4494 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4495 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4496 bdevname(tmp->rdev->bdev,b));
4497 }
4498}
4499
4500static int raid5_spare_active(mddev_t *mddev)
4501{
4502 int i;
4503 raid5_conf_t *conf = mddev->private;
4504 struct disk_info *tmp;
4505
4506 for (i = 0; i < conf->raid_disks; i++) {
4507 tmp = conf->disks + i;
4508 if (tmp->rdev
b2d444d7 4509 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4510 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4511 unsigned long flags;
4512 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4513 mddev->degraded--;
c04be0aa 4514 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4515 }
4516 }
4517 print_raid5_conf(conf);
4518 return 0;
4519}
4520
4521static int raid5_remove_disk(mddev_t *mddev, int number)
4522{
4523 raid5_conf_t *conf = mddev->private;
4524 int err = 0;
4525 mdk_rdev_t *rdev;
4526 struct disk_info *p = conf->disks + number;
4527
4528 print_raid5_conf(conf);
4529 rdev = p->rdev;
4530 if (rdev) {
b2d444d7 4531 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4532 atomic_read(&rdev->nr_pending)) {
4533 err = -EBUSY;
4534 goto abort;
4535 }
4536 p->rdev = NULL;
fbd568a3 4537 synchronize_rcu();
1da177e4
LT
4538 if (atomic_read(&rdev->nr_pending)) {
4539 /* lost the race, try later */
4540 err = -EBUSY;
4541 p->rdev = rdev;
4542 }
4543 }
4544abort:
4545
4546 print_raid5_conf(conf);
4547 return err;
4548}
4549
4550static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4551{
4552 raid5_conf_t *conf = mddev->private;
4553 int found = 0;
4554 int disk;
4555 struct disk_info *p;
4556
16a53ecc 4557 if (mddev->degraded > conf->max_degraded)
1da177e4
LT
4558 /* no point adding a device */
4559 return 0;
4560
4561 /*
16a53ecc
N
4562 * find the disk ... but prefer rdev->saved_raid_disk
4563 * if possible.
1da177e4 4564 */
16a53ecc
N
4565 if (rdev->saved_raid_disk >= 0 &&
4566 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4567 disk = rdev->saved_raid_disk;
4568 else
4569 disk = 0;
4570 for ( ; disk < conf->raid_disks; disk++)
1da177e4 4571 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4572 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
4573 rdev->raid_disk = disk;
4574 found = 1;
72626685
N
4575 if (rdev->saved_raid_disk != disk)
4576 conf->fullsync = 1;
d6065f7b 4577 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4578 break;
4579 }
4580 print_raid5_conf(conf);
4581 return found;
4582}
4583
4584static int raid5_resize(mddev_t *mddev, sector_t sectors)
4585{
4586 /* no resync is happening, and there is enough space
4587 * on all devices, so we can resize.
4588 * We need to make sure resync covers any new space.
4589 * If the array is shrinking we should possibly wait until
4590 * any io in the removed space completes, but it hardly seems
4591 * worth it.
4592 */
16a53ecc
N
4593 raid5_conf_t *conf = mddev_to_conf(mddev);
4594
1da177e4 4595 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 4596 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 4597 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 4598 mddev->changed = 1;
1da177e4
LT
4599 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4600 mddev->recovery_cp = mddev->size << 1;
4601 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4602 }
4603 mddev->size = sectors /2;
4b5c7ae8 4604 mddev->resync_max_sectors = sectors;
1da177e4
LT
4605 return 0;
4606}
4607
29269553 4608#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4609static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4610{
4611 raid5_conf_t *conf = mddev_to_conf(mddev);
4612 int err;
29269553 4613
63c70c4f
N
4614 if (mddev->delta_disks < 0 ||
4615 mddev->new_level != mddev->level)
4616 return -EINVAL; /* Cannot shrink array or change level yet */
4617 if (mddev->delta_disks == 0)
29269553
N
4618 return 0; /* nothing to do */
4619
4620 /* Can only proceed if there are plenty of stripe_heads.
4621 * We need a minimum of one full stripe,, and for sensible progress
4622 * it is best to have about 4 times that.
4623 * If we require 4 times, then the default 256 4K stripe_heads will
4624 * allow for chunk sizes up to 256K, which is probably OK.
4625 * If the chunk size is greater, user-space should request more
4626 * stripe_heads first.
4627 */
63c70c4f
N
4628 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4629 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4630 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4631 (mddev->chunk_size / STRIPE_SIZE)*4);
4632 return -ENOSPC;
4633 }
4634
63c70c4f
N
4635 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4636 if (err)
4637 return err;
4638
b4c4c7b8
N
4639 if (mddev->degraded > conf->max_degraded)
4640 return -EINVAL;
63c70c4f
N
4641 /* looks like we might be able to manage this */
4642 return 0;
4643}
4644
4645static int raid5_start_reshape(mddev_t *mddev)
4646{
4647 raid5_conf_t *conf = mddev_to_conf(mddev);
4648 mdk_rdev_t *rdev;
4649 struct list_head *rtmp;
4650 int spares = 0;
4651 int added_devices = 0;
c04be0aa 4652 unsigned long flags;
63c70c4f 4653
f416885e 4654 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4655 return -EBUSY;
4656
d089c6af 4657 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4658 if (rdev->raid_disk < 0 &&
4659 !test_bit(Faulty, &rdev->flags))
4660 spares++;
63c70c4f 4661
f416885e 4662 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4663 /* Not enough devices even to make a degraded array
4664 * of that size
4665 */
4666 return -EINVAL;
4667
f6705578 4668 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4669 spin_lock_irq(&conf->device_lock);
4670 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4671 conf->raid_disks += mddev->delta_disks;
29269553 4672 conf->expand_progress = 0;
b578d55f 4673 conf->expand_lo = 0;
29269553
N
4674 spin_unlock_irq(&conf->device_lock);
4675
4676 /* Add some new drives, as many as will fit.
4677 * We know there are enough to make the newly sized array work.
4678 */
d089c6af 4679 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4680 if (rdev->raid_disk < 0 &&
4681 !test_bit(Faulty, &rdev->flags)) {
4682 if (raid5_add_disk(mddev, rdev)) {
4683 char nm[20];
4684 set_bit(In_sync, &rdev->flags);
29269553 4685 added_devices++;
5fd6c1dc 4686 rdev->recovery_offset = 0;
29269553 4687 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4688 if (sysfs_create_link(&mddev->kobj,
4689 &rdev->kobj, nm))
4690 printk(KERN_WARNING
4691 "raid5: failed to create "
4692 " link %s for %s\n",
4693 nm, mdname(mddev));
29269553
N
4694 } else
4695 break;
4696 }
4697
c04be0aa 4698 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4699 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4700 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4701 mddev->raid_disks = conf->raid_disks;
f6705578 4702 mddev->reshape_position = 0;
850b2b42 4703 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4704
29269553
N
4705 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4706 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4707 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4708 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4709 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4710 "%s_reshape");
4711 if (!mddev->sync_thread) {
4712 mddev->recovery = 0;
4713 spin_lock_irq(&conf->device_lock);
4714 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4715 conf->expand_progress = MaxSector;
4716 spin_unlock_irq(&conf->device_lock);
4717 return -EAGAIN;
4718 }
4719 md_wakeup_thread(mddev->sync_thread);
4720 md_new_event(mddev);
4721 return 0;
4722}
4723#endif
4724
4725static void end_reshape(raid5_conf_t *conf)
4726{
4727 struct block_device *bdev;
4728
f6705578 4729 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
4730 conf->mddev->array_size = conf->mddev->size *
4731 (conf->raid_disks - conf->max_degraded);
f6705578 4732 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 4733 conf->mddev->changed = 1;
f6705578
N
4734
4735 bdev = bdget_disk(conf->mddev->gendisk, 0);
4736 if (bdev) {
4737 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 4738 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
4739 mutex_unlock(&bdev->bd_inode->i_mutex);
4740 bdput(bdev);
4741 }
4742 spin_lock_irq(&conf->device_lock);
4743 conf->expand_progress = MaxSector;
4744 spin_unlock_irq(&conf->device_lock);
4745 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4746
4747 /* read-ahead size must cover two whole stripes, which is
4748 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4749 */
4750 {
4751 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4752 int stripe = data_disks *
4753 (conf->mddev->chunk_size / PAGE_SIZE);
4754 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4755 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4756 }
29269553 4757 }
29269553
N
4758}
4759
72626685
N
4760static void raid5_quiesce(mddev_t *mddev, int state)
4761{
4762 raid5_conf_t *conf = mddev_to_conf(mddev);
4763
4764 switch(state) {
e464eafd
N
4765 case 2: /* resume for a suspend */
4766 wake_up(&conf->wait_for_overlap);
4767 break;
4768
72626685
N
4769 case 1: /* stop all writes */
4770 spin_lock_irq(&conf->device_lock);
4771 conf->quiesce = 1;
4772 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4773 atomic_read(&conf->active_stripes) == 0 &&
4774 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4775 conf->device_lock, /* nothing */);
4776 spin_unlock_irq(&conf->device_lock);
4777 break;
4778
4779 case 0: /* re-enable writes */
4780 spin_lock_irq(&conf->device_lock);
4781 conf->quiesce = 0;
4782 wake_up(&conf->wait_for_stripe);
e464eafd 4783 wake_up(&conf->wait_for_overlap);
72626685
N
4784 spin_unlock_irq(&conf->device_lock);
4785 break;
4786 }
72626685 4787}
b15c2e57 4788
16a53ecc
N
4789static struct mdk_personality raid6_personality =
4790{
4791 .name = "raid6",
4792 .level = 6,
4793 .owner = THIS_MODULE,
4794 .make_request = make_request,
4795 .run = run,
4796 .stop = stop,
4797 .status = status,
4798 .error_handler = error,
4799 .hot_add_disk = raid5_add_disk,
4800 .hot_remove_disk= raid5_remove_disk,
4801 .spare_active = raid5_spare_active,
4802 .sync_request = sync_request,
4803 .resize = raid5_resize,
f416885e
N
4804#ifdef CONFIG_MD_RAID5_RESHAPE
4805 .check_reshape = raid5_check_reshape,
4806 .start_reshape = raid5_start_reshape,
4807#endif
16a53ecc
N
4808 .quiesce = raid5_quiesce,
4809};
2604b703 4810static struct mdk_personality raid5_personality =
1da177e4
LT
4811{
4812 .name = "raid5",
2604b703 4813 .level = 5,
1da177e4
LT
4814 .owner = THIS_MODULE,
4815 .make_request = make_request,
4816 .run = run,
4817 .stop = stop,
4818 .status = status,
4819 .error_handler = error,
4820 .hot_add_disk = raid5_add_disk,
4821 .hot_remove_disk= raid5_remove_disk,
4822 .spare_active = raid5_spare_active,
4823 .sync_request = sync_request,
4824 .resize = raid5_resize,
29269553 4825#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4826 .check_reshape = raid5_check_reshape,
4827 .start_reshape = raid5_start_reshape,
29269553 4828#endif
72626685 4829 .quiesce = raid5_quiesce,
1da177e4
LT
4830};
4831
2604b703 4832static struct mdk_personality raid4_personality =
1da177e4 4833{
2604b703
N
4834 .name = "raid4",
4835 .level = 4,
4836 .owner = THIS_MODULE,
4837 .make_request = make_request,
4838 .run = run,
4839 .stop = stop,
4840 .status = status,
4841 .error_handler = error,
4842 .hot_add_disk = raid5_add_disk,
4843 .hot_remove_disk= raid5_remove_disk,
4844 .spare_active = raid5_spare_active,
4845 .sync_request = sync_request,
4846 .resize = raid5_resize,
3d37890b
N
4847#ifdef CONFIG_MD_RAID5_RESHAPE
4848 .check_reshape = raid5_check_reshape,
4849 .start_reshape = raid5_start_reshape,
4850#endif
2604b703
N
4851 .quiesce = raid5_quiesce,
4852};
4853
4854static int __init raid5_init(void)
4855{
16a53ecc
N
4856 int e;
4857
4858 e = raid6_select_algo();
4859 if ( e )
4860 return e;
4861 register_md_personality(&raid6_personality);
2604b703
N
4862 register_md_personality(&raid5_personality);
4863 register_md_personality(&raid4_personality);
4864 return 0;
1da177e4
LT
4865}
4866
2604b703 4867static void raid5_exit(void)
1da177e4 4868{
16a53ecc 4869 unregister_md_personality(&raid6_personality);
2604b703
N
4870 unregister_md_personality(&raid5_personality);
4871 unregister_md_personality(&raid4_personality);
1da177e4
LT
4872}
4873
4874module_init(raid5_init);
4875module_exit(raid5_exit);
4876MODULE_LICENSE("GPL");
4877MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4878MODULE_ALIAS("md-raid5");
4879MODULE_ALIAS("md-raid4");
2604b703
N
4880MODULE_ALIAS("md-level-5");
4881MODULE_ALIAS("md-level-4");
16a53ecc
N
4882MODULE_ALIAS("md-personality-8"); /* RAID6 */
4883MODULE_ALIAS("md-raid6");
4884MODULE_ALIAS("md-level-6");
4885
4886/* This used to be two separate modules, they were: */
4887MODULE_ALIAS("raid5");
4888MODULE_ALIAS("raid6");