]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
md/raid5: reshape using largest of old and new chunk size
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
bff61975 50#include <linux/seq_file.h>
43b2e5d8 51#include "md.h"
bff61975 52#include "raid5.h"
ef740c37 53#include "bitmap.h"
72626685 54
1da177e4
LT
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES 256
60#define STRIPE_SIZE PAGE_SIZE
61#define STRIPE_SHIFT (PAGE_SHIFT - 9)
62#define STRIPE_SECTORS (STRIPE_SIZE>>9)
63#define IO_THRESHOLD 1
8b3e6cdc 64#define BYPASS_THRESHOLD 1
fccddba0 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
66#define HASH_MASK (NR_HASH - 1)
67
fccddba0 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
1da177e4
LT
83#define RAID5_PARANOIA 1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
45b4233c 90#ifdef DEBUG
1da177e4
LT
91#define inline
92#define __inline__
93#endif
94
6be9d494
BS
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
960e739d 97/*
5b99c2ff
JA
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
100 */
101static inline int raid5_bi_phys_segments(struct bio *bio)
102{
5b99c2ff 103 return bio->bi_phys_segments & 0xffff;
960e739d
JA
104}
105
106static inline int raid5_bi_hw_segments(struct bio *bio)
107{
5b99c2ff 108 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
109}
110
111static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112{
113 --bio->bi_phys_segments;
114 return raid5_bi_phys_segments(bio);
115}
116
117static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118{
119 unsigned short val = raid5_bi_hw_segments(bio);
120
121 --val;
5b99c2ff 122 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
123 return val;
124}
125
126static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127{
5b99c2ff 128 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
129}
130
d0dabf7e
N
131/* Find first data disk in a raid6 stripe */
132static inline int raid6_d0(struct stripe_head *sh)
133{
67cc2b81
N
134 if (sh->ddf_layout)
135 /* ddf always start from first device */
136 return 0;
137 /* md starts just after Q block */
d0dabf7e
N
138 if (sh->qd_idx == sh->disks - 1)
139 return 0;
140 else
141 return sh->qd_idx + 1;
142}
16a53ecc
N
143static inline int raid6_next_disk(int disk, int raid_disks)
144{
145 disk++;
146 return (disk < raid_disks) ? disk : 0;
147}
a4456856 148
d0dabf7e
N
149/* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
153 */
67cc2b81
N
154static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 int *count, int syndrome_disks)
d0dabf7e
N
156{
157 int slot;
67cc2b81 158
d0dabf7e 159 if (idx == sh->pd_idx)
67cc2b81 160 return syndrome_disks;
d0dabf7e 161 if (idx == sh->qd_idx)
67cc2b81 162 return syndrome_disks + 1;
d0dabf7e
N
163 slot = (*count)++;
164 return slot;
165}
166
a4456856
DW
167static void return_io(struct bio *return_bi)
168{
169 struct bio *bi = return_bi;
170 while (bi) {
a4456856
DW
171
172 return_bi = bi->bi_next;
173 bi->bi_next = NULL;
174 bi->bi_size = 0;
0e13fe23 175 bio_endio(bi, 0);
a4456856
DW
176 bi = return_bi;
177 }
178}
179
1da177e4
LT
180static void print_raid5_conf (raid5_conf_t *conf);
181
600aa109
DW
182static int stripe_operations_active(struct stripe_head *sh)
183{
184 return sh->check_state || sh->reconstruct_state ||
185 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187}
188
858119e1 189static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
190{
191 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
192 BUG_ON(!list_empty(&sh->lru));
193 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 194 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 195 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 196 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
197 blk_plug_device(conf->mddev->queue);
198 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 199 sh->bm_seq - conf->seq_write > 0) {
72626685 200 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
201 blk_plug_device(conf->mddev->queue);
202 } else {
72626685 203 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 204 list_add_tail(&sh->lru, &conf->handle_list);
72626685 205 }
1da177e4
LT
206 md_wakeup_thread(conf->mddev->thread);
207 } else {
600aa109 208 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210 atomic_dec(&conf->preread_active_stripes);
211 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212 md_wakeup_thread(conf->mddev->thread);
213 }
1da177e4 214 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
215 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 217 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
218 if (conf->retry_read_aligned)
219 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 220 }
1da177e4
LT
221 }
222 }
223}
d0dabf7e 224
1da177e4
LT
225static void release_stripe(struct stripe_head *sh)
226{
227 raid5_conf_t *conf = sh->raid_conf;
228 unsigned long flags;
16a53ecc 229
1da177e4
LT
230 spin_lock_irqsave(&conf->device_lock, flags);
231 __release_stripe(conf, sh);
232 spin_unlock_irqrestore(&conf->device_lock, flags);
233}
234
fccddba0 235static inline void remove_hash(struct stripe_head *sh)
1da177e4 236{
45b4233c
DW
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh->sector);
1da177e4 239
fccddba0 240 hlist_del_init(&sh->hash);
1da177e4
LT
241}
242
16a53ecc 243static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 244{
fccddba0 245 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 246
45b4233c
DW
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh->sector);
1da177e4
LT
249
250 CHECK_DEVLOCK();
fccddba0 251 hlist_add_head(&sh->hash, hp);
1da177e4
LT
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
256static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257{
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
260
261 CHECK_DEVLOCK();
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269out:
270 return sh;
271}
272
273static void shrink_buffers(struct stripe_head *sh, int num)
274{
275 struct page *p;
276 int i;
277
278 for (i=0; i<num ; i++) {
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
2d1f3b5d 283 put_page(p);
1da177e4
LT
284 }
285}
286
287static int grow_buffers(struct stripe_head *sh, int num)
288{
289 int i;
290
291 for (i=0; i<num; i++) {
292 struct page *page;
293
294 if (!(page = alloc_page(GFP_KERNEL))) {
295 return 1;
296 }
297 sh->dev[i].page = page;
298 }
299 return 0;
300}
301
784052ec 302static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
303static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304 struct stripe_head *sh);
1da177e4 305
b5663ba4 306static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
307{
308 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 309 int i;
1da177e4 310
78bafebd
ES
311 BUG_ON(atomic_read(&sh->count) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 313 BUG_ON(stripe_operations_active(sh));
d84e0f10 314
1da177e4 315 CHECK_DEVLOCK();
45b4233c 316 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
317 (unsigned long long)sh->sector);
318
319 remove_hash(sh);
16a53ecc 320
86b42c71 321 sh->generation = conf->generation - previous;
b5663ba4 322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 323 sh->sector = sector;
911d4ee8 324 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
325 sh->state = 0;
326
7ecaa1e6
N
327
328 for (i = sh->disks; i--; ) {
1da177e4
LT
329 struct r5dev *dev = &sh->dev[i];
330
d84e0f10 331 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 332 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 334 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 335 dev->read, dev->towrite, dev->written,
1da177e4
LT
336 test_bit(R5_LOCKED, &dev->flags));
337 BUG();
338 }
339 dev->flags = 0;
784052ec 340 raid5_build_block(sh, i, previous);
1da177e4
LT
341 }
342 insert_hash(conf, sh);
343}
344
86b42c71
N
345static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346 short generation)
1da177e4
LT
347{
348 struct stripe_head *sh;
fccddba0 349 struct hlist_node *hn;
1da177e4
LT
350
351 CHECK_DEVLOCK();
45b4233c 352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 354 if (sh->sector == sector && sh->generation == generation)
1da177e4 355 return sh;
45b4233c 356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
357 return NULL;
358}
359
360static void unplug_slaves(mddev_t *mddev);
165125e1 361static void raid5_unplug_device(struct request_queue *q);
1da177e4 362
b5663ba4
N
363static struct stripe_head *
364get_active_stripe(raid5_conf_t *conf, sector_t sector,
365 int previous, int noblock)
1da177e4
LT
366{
367 struct stripe_head *sh;
368
45b4233c 369 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
370
371 spin_lock_irq(&conf->device_lock);
372
373 do {
72626685
N
374 wait_event_lock_irq(conf->wait_for_stripe,
375 conf->quiesce == 0,
376 conf->device_lock, /* nothing */);
86b42c71 377 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
378 if (!sh) {
379 if (!conf->inactive_blocked)
380 sh = get_free_stripe(conf);
381 if (noblock && sh == NULL)
382 break;
383 if (!sh) {
384 conf->inactive_blocked = 1;
385 wait_event_lock_irq(conf->wait_for_stripe,
386 !list_empty(&conf->inactive_list) &&
5036805b
N
387 (atomic_read(&conf->active_stripes)
388 < (conf->max_nr_stripes *3/4)
1da177e4
LT
389 || !conf->inactive_blocked),
390 conf->device_lock,
f4370781 391 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
392 );
393 conf->inactive_blocked = 0;
394 } else
b5663ba4 395 init_stripe(sh, sector, previous);
1da177e4
LT
396 } else {
397 if (atomic_read(&sh->count)) {
78bafebd 398 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
399 } else {
400 if (!test_bit(STRIPE_HANDLE, &sh->state))
401 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
402 if (list_empty(&sh->lru) &&
403 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
404 BUG();
405 list_del_init(&sh->lru);
1da177e4
LT
406 }
407 }
408 } while (sh == NULL);
409
410 if (sh)
411 atomic_inc(&sh->count);
412
413 spin_unlock_irq(&conf->device_lock);
414 return sh;
415}
416
6712ecf8
N
417static void
418raid5_end_read_request(struct bio *bi, int error);
419static void
420raid5_end_write_request(struct bio *bi, int error);
91c00924 421
c4e5ac0a 422static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
423{
424 raid5_conf_t *conf = sh->raid_conf;
425 int i, disks = sh->disks;
426
427 might_sleep();
428
429 for (i = disks; i--; ) {
430 int rw;
431 struct bio *bi;
432 mdk_rdev_t *rdev;
433 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
434 rw = WRITE;
435 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
436 rw = READ;
437 else
438 continue;
439
440 bi = &sh->dev[i].req;
441
442 bi->bi_rw = rw;
443 if (rw == WRITE)
444 bi->bi_end_io = raid5_end_write_request;
445 else
446 bi->bi_end_io = raid5_end_read_request;
447
448 rcu_read_lock();
449 rdev = rcu_dereference(conf->disks[i].rdev);
450 if (rdev && test_bit(Faulty, &rdev->flags))
451 rdev = NULL;
452 if (rdev)
453 atomic_inc(&rdev->nr_pending);
454 rcu_read_unlock();
455
456 if (rdev) {
c4e5ac0a 457 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
458 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
459
2b7497f0
DW
460 set_bit(STRIPE_IO_STARTED, &sh->state);
461
91c00924
DW
462 bi->bi_bdev = rdev->bdev;
463 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 464 __func__, (unsigned long long)sh->sector,
91c00924
DW
465 bi->bi_rw, i);
466 atomic_inc(&sh->count);
467 bi->bi_sector = sh->sector + rdev->data_offset;
468 bi->bi_flags = 1 << BIO_UPTODATE;
469 bi->bi_vcnt = 1;
470 bi->bi_max_vecs = 1;
471 bi->bi_idx = 0;
472 bi->bi_io_vec = &sh->dev[i].vec;
473 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
474 bi->bi_io_vec[0].bv_offset = 0;
475 bi->bi_size = STRIPE_SIZE;
476 bi->bi_next = NULL;
477 if (rw == WRITE &&
478 test_bit(R5_ReWrite, &sh->dev[i].flags))
479 atomic_add(STRIPE_SECTORS,
480 &rdev->corrected_errors);
481 generic_make_request(bi);
482 } else {
483 if (rw == WRITE)
484 set_bit(STRIPE_DEGRADED, &sh->state);
485 pr_debug("skip op %ld on disc %d for sector %llu\n",
486 bi->bi_rw, i, (unsigned long long)sh->sector);
487 clear_bit(R5_LOCKED, &sh->dev[i].flags);
488 set_bit(STRIPE_HANDLE, &sh->state);
489 }
490 }
491}
492
493static struct dma_async_tx_descriptor *
494async_copy_data(int frombio, struct bio *bio, struct page *page,
495 sector_t sector, struct dma_async_tx_descriptor *tx)
496{
497 struct bio_vec *bvl;
498 struct page *bio_page;
499 int i;
500 int page_offset;
501
502 if (bio->bi_sector >= sector)
503 page_offset = (signed)(bio->bi_sector - sector) * 512;
504 else
505 page_offset = (signed)(sector - bio->bi_sector) * -512;
506 bio_for_each_segment(bvl, bio, i) {
507 int len = bio_iovec_idx(bio, i)->bv_len;
508 int clen;
509 int b_offset = 0;
510
511 if (page_offset < 0) {
512 b_offset = -page_offset;
513 page_offset += b_offset;
514 len -= b_offset;
515 }
516
517 if (len > 0 && page_offset + len > STRIPE_SIZE)
518 clen = STRIPE_SIZE - page_offset;
519 else
520 clen = len;
521
522 if (clen > 0) {
523 b_offset += bio_iovec_idx(bio, i)->bv_offset;
524 bio_page = bio_iovec_idx(bio, i)->bv_page;
525 if (frombio)
526 tx = async_memcpy(page, bio_page, page_offset,
527 b_offset, clen,
eb0645a8 528 ASYNC_TX_DEP_ACK,
91c00924
DW
529 tx, NULL, NULL);
530 else
531 tx = async_memcpy(bio_page, page, b_offset,
532 page_offset, clen,
eb0645a8 533 ASYNC_TX_DEP_ACK,
91c00924
DW
534 tx, NULL, NULL);
535 }
536 if (clen < len) /* hit end of page */
537 break;
538 page_offset += len;
539 }
540
541 return tx;
542}
543
544static void ops_complete_biofill(void *stripe_head_ref)
545{
546 struct stripe_head *sh = stripe_head_ref;
547 struct bio *return_bi = NULL;
548 raid5_conf_t *conf = sh->raid_conf;
e4d84909 549 int i;
91c00924 550
e46b272b 551 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
552 (unsigned long long)sh->sector);
553
554 /* clear completed biofills */
83de75cc 555 spin_lock_irq(&conf->device_lock);
91c00924
DW
556 for (i = sh->disks; i--; ) {
557 struct r5dev *dev = &sh->dev[i];
91c00924
DW
558
559 /* acknowledge completion of a biofill operation */
e4d84909
DW
560 /* and check if we need to reply to a read request,
561 * new R5_Wantfill requests are held off until
83de75cc 562 * !STRIPE_BIOFILL_RUN
e4d84909
DW
563 */
564 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 565 struct bio *rbi, *rbi2;
91c00924 566
91c00924
DW
567 BUG_ON(!dev->read);
568 rbi = dev->read;
569 dev->read = NULL;
570 while (rbi && rbi->bi_sector <
571 dev->sector + STRIPE_SECTORS) {
572 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 573 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
574 rbi->bi_next = return_bi;
575 return_bi = rbi;
576 }
91c00924
DW
577 rbi = rbi2;
578 }
579 }
580 }
83de75cc
DW
581 spin_unlock_irq(&conf->device_lock);
582 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
583
584 return_io(return_bi);
585
e4d84909 586 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
587 release_stripe(sh);
588}
589
590static void ops_run_biofill(struct stripe_head *sh)
591{
592 struct dma_async_tx_descriptor *tx = NULL;
593 raid5_conf_t *conf = sh->raid_conf;
594 int i;
595
e46b272b 596 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
597 (unsigned long long)sh->sector);
598
599 for (i = sh->disks; i--; ) {
600 struct r5dev *dev = &sh->dev[i];
601 if (test_bit(R5_Wantfill, &dev->flags)) {
602 struct bio *rbi;
603 spin_lock_irq(&conf->device_lock);
604 dev->read = rbi = dev->toread;
605 dev->toread = NULL;
606 spin_unlock_irq(&conf->device_lock);
607 while (rbi && rbi->bi_sector <
608 dev->sector + STRIPE_SECTORS) {
609 tx = async_copy_data(0, rbi, dev->page,
610 dev->sector, tx);
611 rbi = r5_next_bio(rbi, dev->sector);
612 }
613 }
614 }
615
616 atomic_inc(&sh->count);
617 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
618 ops_complete_biofill, sh);
619}
620
621static void ops_complete_compute5(void *stripe_head_ref)
622{
623 struct stripe_head *sh = stripe_head_ref;
624 int target = sh->ops.target;
625 struct r5dev *tgt = &sh->dev[target];
626
e46b272b 627 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
628 (unsigned long long)sh->sector);
629
630 set_bit(R5_UPTODATE, &tgt->flags);
631 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
633 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
634 if (sh->check_state == check_state_compute_run)
635 sh->check_state = check_state_compute_result;
91c00924
DW
636 set_bit(STRIPE_HANDLE, &sh->state);
637 release_stripe(sh);
638}
639
7b3a871e 640static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
91c00924
DW
641{
642 /* kernel stack size limits the total number of disks */
643 int disks = sh->disks;
644 struct page *xor_srcs[disks];
645 int target = sh->ops.target;
646 struct r5dev *tgt = &sh->dev[target];
647 struct page *xor_dest = tgt->page;
648 int count = 0;
649 struct dma_async_tx_descriptor *tx;
650 int i;
651
652 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 653 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
654 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
655
656 for (i = disks; i--; )
657 if (i != target)
658 xor_srcs[count++] = sh->dev[i].page;
659
660 atomic_inc(&sh->count);
661
662 if (unlikely(count == 1))
663 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
664 0, NULL, ops_complete_compute5, sh);
665 else
666 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
667 ASYNC_TX_XOR_ZERO_DST, NULL,
668 ops_complete_compute5, sh);
669
91c00924
DW
670 return tx;
671}
672
673static void ops_complete_prexor(void *stripe_head_ref)
674{
675 struct stripe_head *sh = stripe_head_ref;
676
e46b272b 677 pr_debug("%s: stripe %llu\n", __func__,
91c00924 678 (unsigned long long)sh->sector);
91c00924
DW
679}
680
681static struct dma_async_tx_descriptor *
682ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
683{
684 /* kernel stack size limits the total number of disks */
685 int disks = sh->disks;
686 struct page *xor_srcs[disks];
687 int count = 0, pd_idx = sh->pd_idx, i;
688
689 /* existing parity data subtracted */
690 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
691
e46b272b 692 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
693 (unsigned long long)sh->sector);
694
695 for (i = disks; i--; ) {
696 struct r5dev *dev = &sh->dev[i];
697 /* Only process blocks that are known to be uptodate */
d8ee0728 698 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
699 xor_srcs[count++] = dev->page;
700 }
701
702 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
703 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
704 ops_complete_prexor, sh);
705
706 return tx;
707}
708
709static struct dma_async_tx_descriptor *
d8ee0728 710ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
711{
712 int disks = sh->disks;
d8ee0728 713 int i;
91c00924 714
e46b272b 715 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
716 (unsigned long long)sh->sector);
717
718 for (i = disks; i--; ) {
719 struct r5dev *dev = &sh->dev[i];
720 struct bio *chosen;
91c00924 721
d8ee0728 722 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
723 struct bio *wbi;
724
725 spin_lock(&sh->lock);
726 chosen = dev->towrite;
727 dev->towrite = NULL;
728 BUG_ON(dev->written);
729 wbi = dev->written = chosen;
730 spin_unlock(&sh->lock);
731
732 while (wbi && wbi->bi_sector <
733 dev->sector + STRIPE_SECTORS) {
734 tx = async_copy_data(1, wbi, dev->page,
735 dev->sector, tx);
736 wbi = r5_next_bio(wbi, dev->sector);
737 }
738 }
739 }
740
741 return tx;
742}
743
744static void ops_complete_postxor(void *stripe_head_ref)
91c00924
DW
745{
746 struct stripe_head *sh = stripe_head_ref;
747 int disks = sh->disks, i, pd_idx = sh->pd_idx;
748
e46b272b 749 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
750 (unsigned long long)sh->sector);
751
752 for (i = disks; i--; ) {
753 struct r5dev *dev = &sh->dev[i];
754 if (dev->written || i == pd_idx)
755 set_bit(R5_UPTODATE, &dev->flags);
756 }
757
d8ee0728
DW
758 if (sh->reconstruct_state == reconstruct_state_drain_run)
759 sh->reconstruct_state = reconstruct_state_drain_result;
760 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
761 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
762 else {
763 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
764 sh->reconstruct_state = reconstruct_state_result;
765 }
91c00924
DW
766
767 set_bit(STRIPE_HANDLE, &sh->state);
768 release_stripe(sh);
769}
770
771static void
d8ee0728 772ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
773{
774 /* kernel stack size limits the total number of disks */
775 int disks = sh->disks;
776 struct page *xor_srcs[disks];
777
778 int count = 0, pd_idx = sh->pd_idx, i;
779 struct page *xor_dest;
d8ee0728 780 int prexor = 0;
91c00924 781 unsigned long flags;
91c00924 782
e46b272b 783 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
784 (unsigned long long)sh->sector);
785
786 /* check if prexor is active which means only process blocks
787 * that are part of a read-modify-write (written)
788 */
d8ee0728
DW
789 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
790 prexor = 1;
91c00924
DW
791 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
792 for (i = disks; i--; ) {
793 struct r5dev *dev = &sh->dev[i];
794 if (dev->written)
795 xor_srcs[count++] = dev->page;
796 }
797 } else {
798 xor_dest = sh->dev[pd_idx].page;
799 for (i = disks; i--; ) {
800 struct r5dev *dev = &sh->dev[i];
801 if (i != pd_idx)
802 xor_srcs[count++] = dev->page;
803 }
804 }
805
91c00924
DW
806 /* 1/ if we prexor'd then the dest is reused as a source
807 * 2/ if we did not prexor then we are redoing the parity
808 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
809 * for the synchronous xor case
810 */
811 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
812 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
813
814 atomic_inc(&sh->count);
815
816 if (unlikely(count == 1)) {
817 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
818 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
d8ee0728 819 flags, tx, ops_complete_postxor, sh);
91c00924
DW
820 } else
821 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
d8ee0728 822 flags, tx, ops_complete_postxor, sh);
91c00924
DW
823}
824
825static void ops_complete_check(void *stripe_head_ref)
826{
827 struct stripe_head *sh = stripe_head_ref;
91c00924 828
e46b272b 829 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
830 (unsigned long long)sh->sector);
831
ecc65c9b 832 sh->check_state = check_state_check_result;
91c00924
DW
833 set_bit(STRIPE_HANDLE, &sh->state);
834 release_stripe(sh);
835}
836
837static void ops_run_check(struct stripe_head *sh)
838{
839 /* kernel stack size limits the total number of disks */
840 int disks = sh->disks;
841 struct page *xor_srcs[disks];
842 struct dma_async_tx_descriptor *tx;
843
844 int count = 0, pd_idx = sh->pd_idx, i;
845 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
846
e46b272b 847 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
848 (unsigned long long)sh->sector);
849
850 for (i = disks; i--; ) {
851 struct r5dev *dev = &sh->dev[i];
852 if (i != pd_idx)
853 xor_srcs[count++] = dev->page;
854 }
855
856 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
857 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
858
91c00924
DW
859 atomic_inc(&sh->count);
860 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
861 ops_complete_check, sh);
862}
863
600aa109 864static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
865{
866 int overlap_clear = 0, i, disks = sh->disks;
867 struct dma_async_tx_descriptor *tx = NULL;
868
83de75cc 869 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
870 ops_run_biofill(sh);
871 overlap_clear++;
872 }
873
7b3a871e
DW
874 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
875 tx = ops_run_compute5(sh);
876 /* terminate the chain if postxor is not set to be run */
877 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
878 async_tx_ack(tx);
879 }
91c00924 880
600aa109 881 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
91c00924
DW
882 tx = ops_run_prexor(sh, tx);
883
600aa109 884 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 885 tx = ops_run_biodrain(sh, tx);
91c00924
DW
886 overlap_clear++;
887 }
888
600aa109 889 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
d8ee0728 890 ops_run_postxor(sh, tx);
91c00924 891
ecc65c9b 892 if (test_bit(STRIPE_OP_CHECK, &ops_request))
91c00924
DW
893 ops_run_check(sh);
894
91c00924
DW
895 if (overlap_clear)
896 for (i = disks; i--; ) {
897 struct r5dev *dev = &sh->dev[i];
898 if (test_and_clear_bit(R5_Overlap, &dev->flags))
899 wake_up(&sh->raid_conf->wait_for_overlap);
900 }
901}
902
3f294f4f 903static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
904{
905 struct stripe_head *sh;
3f294f4f
N
906 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
907 if (!sh)
908 return 0;
909 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
910 sh->raid_conf = conf;
911 spin_lock_init(&sh->lock);
912
913 if (grow_buffers(sh, conf->raid_disks)) {
914 shrink_buffers(sh, conf->raid_disks);
915 kmem_cache_free(conf->slab_cache, sh);
916 return 0;
917 }
7ecaa1e6 918 sh->disks = conf->raid_disks;
3f294f4f
N
919 /* we just created an active stripe so... */
920 atomic_set(&sh->count, 1);
921 atomic_inc(&conf->active_stripes);
922 INIT_LIST_HEAD(&sh->lru);
923 release_stripe(sh);
924 return 1;
925}
926
927static int grow_stripes(raid5_conf_t *conf, int num)
928{
e18b890b 929 struct kmem_cache *sc;
1da177e4
LT
930 int devs = conf->raid_disks;
931
245f46c2
N
932 sprintf(conf->cache_name[0],
933 "raid%d-%s", conf->level, mdname(conf->mddev));
934 sprintf(conf->cache_name[1],
935 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
936 conf->active_name = 0;
937 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 938 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 939 0, 0, NULL);
1da177e4
LT
940 if (!sc)
941 return 1;
942 conf->slab_cache = sc;
ad01c9e3 943 conf->pool_size = devs;
16a53ecc 944 while (num--)
3f294f4f 945 if (!grow_one_stripe(conf))
1da177e4 946 return 1;
1da177e4
LT
947 return 0;
948}
29269553
N
949
950#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
951static int resize_stripes(raid5_conf_t *conf, int newsize)
952{
953 /* Make all the stripes able to hold 'newsize' devices.
954 * New slots in each stripe get 'page' set to a new page.
955 *
956 * This happens in stages:
957 * 1/ create a new kmem_cache and allocate the required number of
958 * stripe_heads.
959 * 2/ gather all the old stripe_heads and tranfer the pages across
960 * to the new stripe_heads. This will have the side effect of
961 * freezing the array as once all stripe_heads have been collected,
962 * no IO will be possible. Old stripe heads are freed once their
963 * pages have been transferred over, and the old kmem_cache is
964 * freed when all stripes are done.
965 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
966 * we simple return a failre status - no need to clean anything up.
967 * 4/ allocate new pages for the new slots in the new stripe_heads.
968 * If this fails, we don't bother trying the shrink the
969 * stripe_heads down again, we just leave them as they are.
970 * As each stripe_head is processed the new one is released into
971 * active service.
972 *
973 * Once step2 is started, we cannot afford to wait for a write,
974 * so we use GFP_NOIO allocations.
975 */
976 struct stripe_head *osh, *nsh;
977 LIST_HEAD(newstripes);
978 struct disk_info *ndisks;
b5470dc5 979 int err;
e18b890b 980 struct kmem_cache *sc;
ad01c9e3
N
981 int i;
982
983 if (newsize <= conf->pool_size)
984 return 0; /* never bother to shrink */
985
b5470dc5
DW
986 err = md_allow_write(conf->mddev);
987 if (err)
988 return err;
2a2275d6 989
ad01c9e3
N
990 /* Step 1 */
991 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 993 0, 0, NULL);
ad01c9e3
N
994 if (!sc)
995 return -ENOMEM;
996
997 for (i = conf->max_nr_stripes; i; i--) {
998 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999 if (!nsh)
1000 break;
1001
1002 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004 nsh->raid_conf = conf;
1005 spin_lock_init(&nsh->lock);
1006
1007 list_add(&nsh->lru, &newstripes);
1008 }
1009 if (i) {
1010 /* didn't get enough, give up */
1011 while (!list_empty(&newstripes)) {
1012 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013 list_del(&nsh->lru);
1014 kmem_cache_free(sc, nsh);
1015 }
1016 kmem_cache_destroy(sc);
1017 return -ENOMEM;
1018 }
1019 /* Step 2 - Must use GFP_NOIO now.
1020 * OK, we have enough stripes, start collecting inactive
1021 * stripes and copying them over
1022 */
1023 list_for_each_entry(nsh, &newstripes, lru) {
1024 spin_lock_irq(&conf->device_lock);
1025 wait_event_lock_irq(conf->wait_for_stripe,
1026 !list_empty(&conf->inactive_list),
1027 conf->device_lock,
b3b46be3 1028 unplug_slaves(conf->mddev)
ad01c9e3
N
1029 );
1030 osh = get_free_stripe(conf);
1031 spin_unlock_irq(&conf->device_lock);
1032 atomic_set(&nsh->count, 1);
1033 for(i=0; i<conf->pool_size; i++)
1034 nsh->dev[i].page = osh->dev[i].page;
1035 for( ; i<newsize; i++)
1036 nsh->dev[i].page = NULL;
1037 kmem_cache_free(conf->slab_cache, osh);
1038 }
1039 kmem_cache_destroy(conf->slab_cache);
1040
1041 /* Step 3.
1042 * At this point, we are holding all the stripes so the array
1043 * is completely stalled, so now is a good time to resize
1044 * conf->disks.
1045 */
1046 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047 if (ndisks) {
1048 for (i=0; i<conf->raid_disks; i++)
1049 ndisks[i] = conf->disks[i];
1050 kfree(conf->disks);
1051 conf->disks = ndisks;
1052 } else
1053 err = -ENOMEM;
1054
1055 /* Step 4, return new stripes to service */
1056 while(!list_empty(&newstripes)) {
1057 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058 list_del_init(&nsh->lru);
1059 for (i=conf->raid_disks; i < newsize; i++)
1060 if (nsh->dev[i].page == NULL) {
1061 struct page *p = alloc_page(GFP_NOIO);
1062 nsh->dev[i].page = p;
1063 if (!p)
1064 err = -ENOMEM;
1065 }
1066 release_stripe(nsh);
1067 }
1068 /* critical section pass, GFP_NOIO no longer needed */
1069
1070 conf->slab_cache = sc;
1071 conf->active_name = 1-conf->active_name;
1072 conf->pool_size = newsize;
1073 return err;
1074}
29269553 1075#endif
1da177e4 1076
3f294f4f 1077static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1078{
1079 struct stripe_head *sh;
1080
3f294f4f
N
1081 spin_lock_irq(&conf->device_lock);
1082 sh = get_free_stripe(conf);
1083 spin_unlock_irq(&conf->device_lock);
1084 if (!sh)
1085 return 0;
78bafebd 1086 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1087 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1088 kmem_cache_free(conf->slab_cache, sh);
1089 atomic_dec(&conf->active_stripes);
1090 return 1;
1091}
1092
1093static void shrink_stripes(raid5_conf_t *conf)
1094{
1095 while (drop_one_stripe(conf))
1096 ;
1097
29fc7e3e
N
1098 if (conf->slab_cache)
1099 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1100 conf->slab_cache = NULL;
1101}
1102
6712ecf8 1103static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1104{
99c0fb5f 1105 struct stripe_head *sh = bi->bi_private;
1da177e4 1106 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1107 int disks = sh->disks, i;
1da177e4 1108 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1109 char b[BDEVNAME_SIZE];
1110 mdk_rdev_t *rdev;
1da177e4 1111
1da177e4
LT
1112
1113 for (i=0 ; i<disks; i++)
1114 if (bi == &sh->dev[i].req)
1115 break;
1116
45b4233c
DW
1117 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1118 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1119 uptodate);
1120 if (i == disks) {
1121 BUG();
6712ecf8 1122 return;
1da177e4
LT
1123 }
1124
1125 if (uptodate) {
1da177e4 1126 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1127 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1128 rdev = conf->disks[i].rdev;
6be9d494
BS
1129 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1130 " (%lu sectors at %llu on %s)\n",
1131 mdname(conf->mddev), STRIPE_SECTORS,
1132 (unsigned long long)(sh->sector
1133 + rdev->data_offset),
1134 bdevname(rdev->bdev, b));
4e5314b5
N
1135 clear_bit(R5_ReadError, &sh->dev[i].flags);
1136 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137 }
ba22dcbf
N
1138 if (atomic_read(&conf->disks[i].rdev->read_errors))
1139 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1140 } else {
d6950432 1141 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1142 int retry = 0;
d6950432
N
1143 rdev = conf->disks[i].rdev;
1144
1da177e4 1145 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1146 atomic_inc(&rdev->read_errors);
ba22dcbf 1147 if (conf->mddev->degraded)
6be9d494
BS
1148 printk_rl(KERN_WARNING
1149 "raid5:%s: read error not correctable "
1150 "(sector %llu on %s).\n",
1151 mdname(conf->mddev),
1152 (unsigned long long)(sh->sector
1153 + rdev->data_offset),
1154 bdn);
ba22dcbf 1155 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1156 /* Oh, no!!! */
6be9d494
BS
1157 printk_rl(KERN_WARNING
1158 "raid5:%s: read error NOT corrected!! "
1159 "(sector %llu on %s).\n",
1160 mdname(conf->mddev),
1161 (unsigned long long)(sh->sector
1162 + rdev->data_offset),
1163 bdn);
d6950432 1164 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1165 > conf->max_nr_stripes)
14f8d26b 1166 printk(KERN_WARNING
d6950432
N
1167 "raid5:%s: Too many read errors, failing device %s.\n",
1168 mdname(conf->mddev), bdn);
ba22dcbf
N
1169 else
1170 retry = 1;
1171 if (retry)
1172 set_bit(R5_ReadError, &sh->dev[i].flags);
1173 else {
4e5314b5
N
1174 clear_bit(R5_ReadError, &sh->dev[i].flags);
1175 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1176 md_error(conf->mddev, rdev);
ba22dcbf 1177 }
1da177e4
LT
1178 }
1179 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1180 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1181 set_bit(STRIPE_HANDLE, &sh->state);
1182 release_stripe(sh);
1da177e4
LT
1183}
1184
d710e138 1185static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1186{
99c0fb5f 1187 struct stripe_head *sh = bi->bi_private;
1da177e4 1188 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1189 int disks = sh->disks, i;
1da177e4
LT
1190 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191
1da177e4
LT
1192 for (i=0 ; i<disks; i++)
1193 if (bi == &sh->dev[i].req)
1194 break;
1195
45b4233c 1196 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1197 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1198 uptodate);
1199 if (i == disks) {
1200 BUG();
6712ecf8 1201 return;
1da177e4
LT
1202 }
1203
1da177e4
LT
1204 if (!uptodate)
1205 md_error(conf->mddev, conf->disks[i].rdev);
1206
1207 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208
1209 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1211 release_stripe(sh);
1da177e4
LT
1212}
1213
1214
784052ec 1215static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1216
784052ec 1217static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1218{
1219 struct r5dev *dev = &sh->dev[i];
1220
1221 bio_init(&dev->req);
1222 dev->req.bi_io_vec = &dev->vec;
1223 dev->req.bi_vcnt++;
1224 dev->req.bi_max_vecs++;
1225 dev->vec.bv_page = dev->page;
1226 dev->vec.bv_len = STRIPE_SIZE;
1227 dev->vec.bv_offset = 0;
1228
1229 dev->req.bi_sector = sh->sector;
1230 dev->req.bi_private = sh;
1231
1232 dev->flags = 0;
784052ec 1233 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1234}
1235
1236static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237{
1238 char b[BDEVNAME_SIZE];
1239 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1240 pr_debug("raid5: error called\n");
1da177e4 1241
b2d444d7 1242 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1243 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1244 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1245 unsigned long flags;
1246 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1247 mddev->degraded++;
c04be0aa 1248 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1249 /*
1250 * if recovery was running, make sure it aborts.
1251 */
dfc70645 1252 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1253 }
b2d444d7 1254 set_bit(Faulty, &rdev->flags);
d710e138
N
1255 printk(KERN_ALERT
1256 "raid5: Disk failure on %s, disabling device.\n"
1257 "raid5: Operation continuing on %d devices.\n",
1258 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1259 }
16a53ecc 1260}
1da177e4
LT
1261
1262/*
1263 * Input: a 'big' sector number,
1264 * Output: index of the data and parity disk, and the sector # in them.
1265 */
112bf897 1266static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1267 int previous, int *dd_idx,
1268 struct stripe_head *sh)
1da177e4
LT
1269{
1270 long stripe;
1271 unsigned long chunk_number;
1272 unsigned int chunk_offset;
911d4ee8 1273 int pd_idx, qd_idx;
67cc2b81 1274 int ddf_layout = 0;
1da177e4 1275 sector_t new_sector;
e183eaed
N
1276 int algorithm = previous ? conf->prev_algo
1277 : conf->algorithm;
784052ec
N
1278 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1279 : (conf->chunk_size >> 9);
112bf897
N
1280 int raid_disks = previous ? conf->previous_raid_disks
1281 : conf->raid_disks;
1282 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1283
1284 /* First compute the information on this sector */
1285
1286 /*
1287 * Compute the chunk number and the sector offset inside the chunk
1288 */
1289 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1290 chunk_number = r_sector;
1291 BUG_ON(r_sector != chunk_number);
1292
1293 /*
1294 * Compute the stripe number
1295 */
1296 stripe = chunk_number / data_disks;
1297
1298 /*
1299 * Compute the data disk and parity disk indexes inside the stripe
1300 */
1301 *dd_idx = chunk_number % data_disks;
1302
1303 /*
1304 * Select the parity disk based on the user selected algorithm.
1305 */
911d4ee8 1306 pd_idx = qd_idx = ~0;
16a53ecc
N
1307 switch(conf->level) {
1308 case 4:
911d4ee8 1309 pd_idx = data_disks;
16a53ecc
N
1310 break;
1311 case 5:
e183eaed 1312 switch (algorithm) {
1da177e4 1313 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1314 pd_idx = data_disks - stripe % raid_disks;
1315 if (*dd_idx >= pd_idx)
1da177e4
LT
1316 (*dd_idx)++;
1317 break;
1318 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1319 pd_idx = stripe % raid_disks;
1320 if (*dd_idx >= pd_idx)
1da177e4
LT
1321 (*dd_idx)++;
1322 break;
1323 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1324 pd_idx = data_disks - stripe % raid_disks;
1325 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1326 break;
1327 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1328 pd_idx = stripe % raid_disks;
1329 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1330 break;
99c0fb5f
N
1331 case ALGORITHM_PARITY_0:
1332 pd_idx = 0;
1333 (*dd_idx)++;
1334 break;
1335 case ALGORITHM_PARITY_N:
1336 pd_idx = data_disks;
1337 break;
1da177e4 1338 default:
14f8d26b 1339 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1340 algorithm);
99c0fb5f 1341 BUG();
16a53ecc
N
1342 }
1343 break;
1344 case 6:
1345
e183eaed 1346 switch (algorithm) {
16a53ecc 1347 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1348 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1349 qd_idx = pd_idx + 1;
1350 if (pd_idx == raid_disks-1) {
99c0fb5f 1351 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1352 qd_idx = 0;
1353 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1354 (*dd_idx) += 2; /* D D P Q D */
1355 break;
1356 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1357 pd_idx = stripe % raid_disks;
1358 qd_idx = pd_idx + 1;
1359 if (pd_idx == raid_disks-1) {
99c0fb5f 1360 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1361 qd_idx = 0;
1362 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1363 (*dd_idx) += 2; /* D D P Q D */
1364 break;
1365 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1366 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1367 qd_idx = (pd_idx + 1) % raid_disks;
1368 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1369 break;
1370 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1371 pd_idx = stripe % raid_disks;
1372 qd_idx = (pd_idx + 1) % raid_disks;
1373 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1374 break;
99c0fb5f
N
1375
1376 case ALGORITHM_PARITY_0:
1377 pd_idx = 0;
1378 qd_idx = 1;
1379 (*dd_idx) += 2;
1380 break;
1381 case ALGORITHM_PARITY_N:
1382 pd_idx = data_disks;
1383 qd_idx = data_disks + 1;
1384 break;
1385
1386 case ALGORITHM_ROTATING_ZERO_RESTART:
1387 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1388 * of blocks for computing Q is different.
1389 */
1390 pd_idx = stripe % raid_disks;
1391 qd_idx = pd_idx + 1;
1392 if (pd_idx == raid_disks-1) {
1393 (*dd_idx)++; /* Q D D D P */
1394 qd_idx = 0;
1395 } else if (*dd_idx >= pd_idx)
1396 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1397 ddf_layout = 1;
99c0fb5f
N
1398 break;
1399
1400 case ALGORITHM_ROTATING_N_RESTART:
1401 /* Same a left_asymmetric, by first stripe is
1402 * D D D P Q rather than
1403 * Q D D D P
1404 */
1405 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1406 qd_idx = pd_idx + 1;
1407 if (pd_idx == raid_disks-1) {
1408 (*dd_idx)++; /* Q D D D P */
1409 qd_idx = 0;
1410 } else if (*dd_idx >= pd_idx)
1411 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1412 ddf_layout = 1;
99c0fb5f
N
1413 break;
1414
1415 case ALGORITHM_ROTATING_N_CONTINUE:
1416 /* Same as left_symmetric but Q is before P */
1417 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1418 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1419 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1420 ddf_layout = 1;
99c0fb5f
N
1421 break;
1422
1423 case ALGORITHM_LEFT_ASYMMETRIC_6:
1424 /* RAID5 left_asymmetric, with Q on last device */
1425 pd_idx = data_disks - stripe % (raid_disks-1);
1426 if (*dd_idx >= pd_idx)
1427 (*dd_idx)++;
1428 qd_idx = raid_disks - 1;
1429 break;
1430
1431 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1432 pd_idx = stripe % (raid_disks-1);
1433 if (*dd_idx >= pd_idx)
1434 (*dd_idx)++;
1435 qd_idx = raid_disks - 1;
1436 break;
1437
1438 case ALGORITHM_LEFT_SYMMETRIC_6:
1439 pd_idx = data_disks - stripe % (raid_disks-1);
1440 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1441 qd_idx = raid_disks - 1;
1442 break;
1443
1444 case ALGORITHM_RIGHT_SYMMETRIC_6:
1445 pd_idx = stripe % (raid_disks-1);
1446 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1447 qd_idx = raid_disks - 1;
1448 break;
1449
1450 case ALGORITHM_PARITY_0_6:
1451 pd_idx = 0;
1452 (*dd_idx)++;
1453 qd_idx = raid_disks - 1;
1454 break;
1455
1456
16a53ecc 1457 default:
d710e138 1458 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1459 algorithm);
99c0fb5f 1460 BUG();
16a53ecc
N
1461 }
1462 break;
1da177e4
LT
1463 }
1464
911d4ee8
N
1465 if (sh) {
1466 sh->pd_idx = pd_idx;
1467 sh->qd_idx = qd_idx;
67cc2b81 1468 sh->ddf_layout = ddf_layout;
911d4ee8 1469 }
1da177e4
LT
1470 /*
1471 * Finally, compute the new sector number
1472 */
1473 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1474 return new_sector;
1475}
1476
1477
784052ec 1478static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1479{
1480 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1481 int raid_disks = sh->disks;
1482 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1483 sector_t new_sector = sh->sector, check;
784052ec
N
1484 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1485 : (conf->chunk_size >> 9);
e183eaed
N
1486 int algorithm = previous ? conf->prev_algo
1487 : conf->algorithm;
1da177e4
LT
1488 sector_t stripe;
1489 int chunk_offset;
911d4ee8 1490 int chunk_number, dummy1, dd_idx = i;
1da177e4 1491 sector_t r_sector;
911d4ee8 1492 struct stripe_head sh2;
1da177e4 1493
16a53ecc 1494
1da177e4
LT
1495 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1496 stripe = new_sector;
1497 BUG_ON(new_sector != stripe);
1498
16a53ecc
N
1499 if (i == sh->pd_idx)
1500 return 0;
1501 switch(conf->level) {
1502 case 4: break;
1503 case 5:
e183eaed 1504 switch (algorithm) {
1da177e4
LT
1505 case ALGORITHM_LEFT_ASYMMETRIC:
1506 case ALGORITHM_RIGHT_ASYMMETRIC:
1507 if (i > sh->pd_idx)
1508 i--;
1509 break;
1510 case ALGORITHM_LEFT_SYMMETRIC:
1511 case ALGORITHM_RIGHT_SYMMETRIC:
1512 if (i < sh->pd_idx)
1513 i += raid_disks;
1514 i -= (sh->pd_idx + 1);
1515 break;
99c0fb5f
N
1516 case ALGORITHM_PARITY_0:
1517 i -= 1;
1518 break;
1519 case ALGORITHM_PARITY_N:
1520 break;
1da177e4 1521 default:
14f8d26b 1522 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1523 algorithm);
99c0fb5f 1524 BUG();
16a53ecc
N
1525 }
1526 break;
1527 case 6:
d0dabf7e 1528 if (i == sh->qd_idx)
16a53ecc 1529 return 0; /* It is the Q disk */
e183eaed 1530 switch (algorithm) {
16a53ecc
N
1531 case ALGORITHM_LEFT_ASYMMETRIC:
1532 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1533 case ALGORITHM_ROTATING_ZERO_RESTART:
1534 case ALGORITHM_ROTATING_N_RESTART:
1535 if (sh->pd_idx == raid_disks-1)
1536 i--; /* Q D D D P */
16a53ecc
N
1537 else if (i > sh->pd_idx)
1538 i -= 2; /* D D P Q D */
1539 break;
1540 case ALGORITHM_LEFT_SYMMETRIC:
1541 case ALGORITHM_RIGHT_SYMMETRIC:
1542 if (sh->pd_idx == raid_disks-1)
1543 i--; /* Q D D D P */
1544 else {
1545 /* D D P Q D */
1546 if (i < sh->pd_idx)
1547 i += raid_disks;
1548 i -= (sh->pd_idx + 2);
1549 }
1550 break;
99c0fb5f
N
1551 case ALGORITHM_PARITY_0:
1552 i -= 2;
1553 break;
1554 case ALGORITHM_PARITY_N:
1555 break;
1556 case ALGORITHM_ROTATING_N_CONTINUE:
1557 if (sh->pd_idx == 0)
1558 i--; /* P D D D Q */
1559 else if (i > sh->pd_idx)
1560 i -= 2; /* D D Q P D */
1561 break;
1562 case ALGORITHM_LEFT_ASYMMETRIC_6:
1563 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1564 if (i > sh->pd_idx)
1565 i--;
1566 break;
1567 case ALGORITHM_LEFT_SYMMETRIC_6:
1568 case ALGORITHM_RIGHT_SYMMETRIC_6:
1569 if (i < sh->pd_idx)
1570 i += data_disks + 1;
1571 i -= (sh->pd_idx + 1);
1572 break;
1573 case ALGORITHM_PARITY_0_6:
1574 i -= 1;
1575 break;
16a53ecc 1576 default:
d710e138 1577 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1578 algorithm);
99c0fb5f 1579 BUG();
16a53ecc
N
1580 }
1581 break;
1da177e4
LT
1582 }
1583
1584 chunk_number = stripe * data_disks + i;
1585 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1586
112bf897 1587 check = raid5_compute_sector(conf, r_sector,
784052ec 1588 previous, &dummy1, &sh2);
911d4ee8
N
1589 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1590 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1591 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1592 return 0;
1593 }
1594 return r_sector;
1595}
1596
1597
1598
1599/*
16a53ecc
N
1600 * Copy data between a page in the stripe cache, and one or more bion
1601 * The page could align with the middle of the bio, or there could be
1602 * several bion, each with several bio_vecs, which cover part of the page
1603 * Multiple bion are linked together on bi_next. There may be extras
1604 * at the end of this list. We ignore them.
1da177e4
LT
1605 */
1606static void copy_data(int frombio, struct bio *bio,
1607 struct page *page,
1608 sector_t sector)
1609{
1610 char *pa = page_address(page);
1611 struct bio_vec *bvl;
1612 int i;
1613 int page_offset;
1614
1615 if (bio->bi_sector >= sector)
1616 page_offset = (signed)(bio->bi_sector - sector) * 512;
1617 else
1618 page_offset = (signed)(sector - bio->bi_sector) * -512;
1619 bio_for_each_segment(bvl, bio, i) {
1620 int len = bio_iovec_idx(bio,i)->bv_len;
1621 int clen;
1622 int b_offset = 0;
1623
1624 if (page_offset < 0) {
1625 b_offset = -page_offset;
1626 page_offset += b_offset;
1627 len -= b_offset;
1628 }
1629
1630 if (len > 0 && page_offset + len > STRIPE_SIZE)
1631 clen = STRIPE_SIZE - page_offset;
1632 else clen = len;
16a53ecc 1633
1da177e4
LT
1634 if (clen > 0) {
1635 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1636 if (frombio)
1637 memcpy(pa+page_offset, ba+b_offset, clen);
1638 else
1639 memcpy(ba+b_offset, pa+page_offset, clen);
1640 __bio_kunmap_atomic(ba, KM_USER0);
1641 }
1642 if (clen < len) /* hit end of page */
1643 break;
1644 page_offset += len;
1645 }
1646}
1647
9bc89cd8
DW
1648#define check_xor() do { \
1649 if (count == MAX_XOR_BLOCKS) { \
1650 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1651 count = 0; \
1652 } \
1da177e4
LT
1653 } while(0)
1654
16a53ecc
N
1655static void compute_parity6(struct stripe_head *sh, int method)
1656{
bff61975 1657 raid5_conf_t *conf = sh->raid_conf;
d0dabf7e 1658 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
67cc2b81 1659 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
16a53ecc
N
1660 struct bio *chosen;
1661 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1662 void *ptrs[syndrome_disks+2];
16a53ecc 1663
d0dabf7e
N
1664 pd_idx = sh->pd_idx;
1665 qd_idx = sh->qd_idx;
1666 d0_idx = raid6_d0(sh);
16a53ecc 1667
45b4233c 1668 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1669 (unsigned long long)sh->sector, method);
1670
1671 switch(method) {
1672 case READ_MODIFY_WRITE:
1673 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1674 case RECONSTRUCT_WRITE:
1675 for (i= disks; i-- ;)
1676 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1677 chosen = sh->dev[i].towrite;
1678 sh->dev[i].towrite = NULL;
1679
1680 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1681 wake_up(&conf->wait_for_overlap);
1682
52e5f9d1 1683 BUG_ON(sh->dev[i].written);
16a53ecc
N
1684 sh->dev[i].written = chosen;
1685 }
1686 break;
1687 case CHECK_PARITY:
1688 BUG(); /* Not implemented yet */
1689 }
1690
1691 for (i = disks; i--;)
1692 if (sh->dev[i].written) {
1693 sector_t sector = sh->dev[i].sector;
1694 struct bio *wbi = sh->dev[i].written;
1695 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1696 copy_data(1, wbi, sh->dev[i].page, sector);
1697 wbi = r5_next_bio(wbi, sector);
1698 }
1699
1700 set_bit(R5_LOCKED, &sh->dev[i].flags);
1701 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1702 }
1703
d0dabf7e 1704 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
67cc2b81
N
1705
1706 for (i = 0; i < disks; i++)
1707 ptrs[i] = (void *)raid6_empty_zero_page;
1708
d0dabf7e
N
1709 count = 0;
1710 i = d0_idx;
1711 do {
67cc2b81
N
1712 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1713
d0dabf7e 1714 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1715 if (slot < syndrome_disks &&
d0dabf7e
N
1716 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1717 printk(KERN_ERR "block %d/%d not uptodate "
1718 "on parity calc\n", i, count);
1719 BUG();
1720 }
67cc2b81 1721
d0dabf7e
N
1722 i = raid6_next_disk(i, disks);
1723 } while (i != d0_idx);
67cc2b81 1724 BUG_ON(count != syndrome_disks);
16a53ecc 1725
67cc2b81 1726 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
16a53ecc
N
1727
1728 switch(method) {
1729 case RECONSTRUCT_WRITE:
1730 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1731 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1732 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1733 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1734 break;
1735 case UPDATE_PARITY:
1736 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1737 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1738 break;
1739 }
1740}
1741
1742
1743/* Compute one missing block */
1744static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1745{
f416885e 1746 int i, count, disks = sh->disks;
9bc89cd8 1747 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
d0dabf7e 1748 int qd_idx = sh->qd_idx;
16a53ecc 1749
45b4233c 1750 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1751 (unsigned long long)sh->sector, dd_idx);
1752
1753 if ( dd_idx == qd_idx ) {
1754 /* We're actually computing the Q drive */
1755 compute_parity6(sh, UPDATE_PARITY);
1756 } else {
9bc89cd8
DW
1757 dest = page_address(sh->dev[dd_idx].page);
1758 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1759 count = 0;
16a53ecc
N
1760 for (i = disks ; i--; ) {
1761 if (i == dd_idx || i == qd_idx)
1762 continue;
1763 p = page_address(sh->dev[i].page);
1764 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1765 ptr[count++] = p;
1766 else
1767 printk("compute_block() %d, stripe %llu, %d"
1768 " not present\n", dd_idx,
1769 (unsigned long long)sh->sector, i);
1770
1771 check_xor();
1772 }
9bc89cd8
DW
1773 if (count)
1774 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1775 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1776 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1777 }
1778}
1779
1780/* Compute two missing blocks */
1781static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1782{
f416885e 1783 int i, count, disks = sh->disks;
67cc2b81 1784 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
d0dabf7e
N
1785 int d0_idx = raid6_d0(sh);
1786 int faila = -1, failb = -1;
1787 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1788 void *ptrs[syndrome_disks+2];
16a53ecc 1789
67cc2b81
N
1790 for (i = 0; i < disks ; i++)
1791 ptrs[i] = (void *)raid6_empty_zero_page;
d0dabf7e
N
1792 count = 0;
1793 i = d0_idx;
1794 do {
67cc2b81
N
1795 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1796
d0dabf7e 1797 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1798
d0dabf7e
N
1799 if (i == dd_idx1)
1800 faila = slot;
1801 if (i == dd_idx2)
1802 failb = slot;
1803 i = raid6_next_disk(i, disks);
1804 } while (i != d0_idx);
67cc2b81 1805 BUG_ON(count != syndrome_disks);
16a53ecc
N
1806
1807 BUG_ON(faila == failb);
1808 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1809
45b4233c 1810 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
d0dabf7e
N
1811 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1812 faila, failb);
16a53ecc 1813
67cc2b81 1814 if (failb == syndrome_disks+1) {
16a53ecc 1815 /* Q disk is one of the missing disks */
67cc2b81 1816 if (faila == syndrome_disks) {
16a53ecc
N
1817 /* Missing P+Q, just recompute */
1818 compute_parity6(sh, UPDATE_PARITY);
1819 return;
1820 } else {
1821 /* We're missing D+Q; recompute D from P */
d0dabf7e
N
1822 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1823 dd_idx2 : dd_idx1),
1824 0);
16a53ecc
N
1825 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1826 return;
1827 }
1828 }
1829
d0dabf7e 1830 /* We're missing D+P or D+D; */
67cc2b81 1831 if (failb == syndrome_disks) {
d0dabf7e 1832 /* We're missing D+P. */
67cc2b81 1833 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
d0dabf7e
N
1834 } else {
1835 /* We're missing D+D. */
67cc2b81
N
1836 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1837 ptrs);
16a53ecc 1838 }
d0dabf7e
N
1839
1840 /* Both the above update both missing blocks */
1841 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1842 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
16a53ecc
N
1843}
1844
600aa109 1845static void
1fe797e6 1846schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 1847 int rcw, int expand)
e33129d8
DW
1848{
1849 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
1850
1851 if (rcw) {
1852 /* if we are not expanding this is a proper write request, and
1853 * there will be bios with new data to be drained into the
1854 * stripe cache
1855 */
1856 if (!expand) {
600aa109
DW
1857 sh->reconstruct_state = reconstruct_state_drain_run;
1858 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1859 } else
1860 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1861
600aa109 1862 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1863
1864 for (i = disks; i--; ) {
1865 struct r5dev *dev = &sh->dev[i];
1866
1867 if (dev->towrite) {
1868 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 1869 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1870 if (!expand)
1871 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1872 s->locked++;
e33129d8
DW
1873 }
1874 }
600aa109 1875 if (s->locked + 1 == disks)
8b3e6cdc
DW
1876 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1877 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1878 } else {
1879 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1880 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1881
d8ee0728 1882 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
1883 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1884 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1885 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1886
1887 for (i = disks; i--; ) {
1888 struct r5dev *dev = &sh->dev[i];
1889 if (i == pd_idx)
1890 continue;
1891
e33129d8
DW
1892 if (dev->towrite &&
1893 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
1894 test_bit(R5_Wantcompute, &dev->flags))) {
1895 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1896 set_bit(R5_LOCKED, &dev->flags);
1897 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1898 s->locked++;
e33129d8
DW
1899 }
1900 }
1901 }
1902
1903 /* keep the parity disk locked while asynchronous operations
1904 * are in flight
1905 */
1906 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1907 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 1908 s->locked++;
e33129d8 1909
600aa109 1910 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 1911 __func__, (unsigned long long)sh->sector,
600aa109 1912 s->locked, s->ops_request);
e33129d8 1913}
16a53ecc 1914
1da177e4
LT
1915/*
1916 * Each stripe/dev can have one or more bion attached.
16a53ecc 1917 * toread/towrite point to the first in a chain.
1da177e4
LT
1918 * The bi_next chain must be in order.
1919 */
1920static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1921{
1922 struct bio **bip;
1923 raid5_conf_t *conf = sh->raid_conf;
72626685 1924 int firstwrite=0;
1da177e4 1925
45b4233c 1926 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1927 (unsigned long long)bi->bi_sector,
1928 (unsigned long long)sh->sector);
1929
1930
1931 spin_lock(&sh->lock);
1932 spin_lock_irq(&conf->device_lock);
72626685 1933 if (forwrite) {
1da177e4 1934 bip = &sh->dev[dd_idx].towrite;
72626685
N
1935 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1936 firstwrite = 1;
1937 } else
1da177e4
LT
1938 bip = &sh->dev[dd_idx].toread;
1939 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1940 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1941 goto overlap;
1942 bip = & (*bip)->bi_next;
1943 }
1944 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1945 goto overlap;
1946
78bafebd 1947 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1948 if (*bip)
1949 bi->bi_next = *bip;
1950 *bip = bi;
960e739d 1951 bi->bi_phys_segments++;
1da177e4
LT
1952 spin_unlock_irq(&conf->device_lock);
1953 spin_unlock(&sh->lock);
1954
45b4233c 1955 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1956 (unsigned long long)bi->bi_sector,
1957 (unsigned long long)sh->sector, dd_idx);
1958
72626685 1959 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1960 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1961 STRIPE_SECTORS, 0);
ae3c20cc 1962 sh->bm_seq = conf->seq_flush+1;
72626685
N
1963 set_bit(STRIPE_BIT_DELAY, &sh->state);
1964 }
1965
1da177e4
LT
1966 if (forwrite) {
1967 /* check if page is covered */
1968 sector_t sector = sh->dev[dd_idx].sector;
1969 for (bi=sh->dev[dd_idx].towrite;
1970 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1971 bi && bi->bi_sector <= sector;
1972 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1973 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1974 sector = bi->bi_sector + (bi->bi_size>>9);
1975 }
1976 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1977 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1978 }
1979 return 1;
1980
1981 overlap:
1982 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1983 spin_unlock_irq(&conf->device_lock);
1984 spin_unlock(&sh->lock);
1985 return 0;
1986}
1987
29269553
N
1988static void end_reshape(raid5_conf_t *conf);
1989
16a53ecc
N
1990static int page_is_zero(struct page *p)
1991{
1992 char *a = page_address(p);
1993 return ((*(u32*)a) == 0 &&
1994 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1995}
1996
911d4ee8
N
1997static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1998 struct stripe_head *sh)
ccfcc3c1 1999{
784052ec
N
2000 int sectors_per_chunk =
2001 previous ? (conf->prev_chunk >> 9)
2002 : (conf->chunk_size >> 9);
911d4ee8 2003 int dd_idx;
2d2063ce 2004 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2005 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2006
112bf897
N
2007 raid5_compute_sector(conf,
2008 stripe * (disks - conf->max_degraded)
b875e531 2009 *sectors_per_chunk + chunk_offset,
112bf897 2010 previous,
911d4ee8 2011 &dd_idx, sh);
ccfcc3c1
N
2012}
2013
a4456856 2014static void
1fe797e6 2015handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2016 struct stripe_head_state *s, int disks,
2017 struct bio **return_bi)
2018{
2019 int i;
2020 for (i = disks; i--; ) {
2021 struct bio *bi;
2022 int bitmap_end = 0;
2023
2024 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2025 mdk_rdev_t *rdev;
2026 rcu_read_lock();
2027 rdev = rcu_dereference(conf->disks[i].rdev);
2028 if (rdev && test_bit(In_sync, &rdev->flags))
2029 /* multiple read failures in one stripe */
2030 md_error(conf->mddev, rdev);
2031 rcu_read_unlock();
2032 }
2033 spin_lock_irq(&conf->device_lock);
2034 /* fail all writes first */
2035 bi = sh->dev[i].towrite;
2036 sh->dev[i].towrite = NULL;
2037 if (bi) {
2038 s->to_write--;
2039 bitmap_end = 1;
2040 }
2041
2042 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2043 wake_up(&conf->wait_for_overlap);
2044
2045 while (bi && bi->bi_sector <
2046 sh->dev[i].sector + STRIPE_SECTORS) {
2047 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2048 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2049 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2050 md_write_end(conf->mddev);
2051 bi->bi_next = *return_bi;
2052 *return_bi = bi;
2053 }
2054 bi = nextbi;
2055 }
2056 /* and fail all 'written' */
2057 bi = sh->dev[i].written;
2058 sh->dev[i].written = NULL;
2059 if (bi) bitmap_end = 1;
2060 while (bi && bi->bi_sector <
2061 sh->dev[i].sector + STRIPE_SECTORS) {
2062 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2063 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2064 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2065 md_write_end(conf->mddev);
2066 bi->bi_next = *return_bi;
2067 *return_bi = bi;
2068 }
2069 bi = bi2;
2070 }
2071
b5e98d65
DW
2072 /* fail any reads if this device is non-operational and
2073 * the data has not reached the cache yet.
2074 */
2075 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2076 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2077 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2078 bi = sh->dev[i].toread;
2079 sh->dev[i].toread = NULL;
2080 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2081 wake_up(&conf->wait_for_overlap);
2082 if (bi) s->to_read--;
2083 while (bi && bi->bi_sector <
2084 sh->dev[i].sector + STRIPE_SECTORS) {
2085 struct bio *nextbi =
2086 r5_next_bio(bi, sh->dev[i].sector);
2087 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2088 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2089 bi->bi_next = *return_bi;
2090 *return_bi = bi;
2091 }
2092 bi = nextbi;
2093 }
2094 }
2095 spin_unlock_irq(&conf->device_lock);
2096 if (bitmap_end)
2097 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2098 STRIPE_SECTORS, 0, 0);
2099 }
2100
8b3e6cdc
DW
2101 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2102 if (atomic_dec_and_test(&conf->pending_full_writes))
2103 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2104}
2105
1fe797e6
DW
2106/* fetch_block5 - checks the given member device to see if its data needs
2107 * to be read or computed to satisfy a request.
2108 *
2109 * Returns 1 when no more member devices need to be checked, otherwise returns
2110 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2111 */
1fe797e6
DW
2112static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2113 int disk_idx, int disks)
f38e1219
DW
2114{
2115 struct r5dev *dev = &sh->dev[disk_idx];
2116 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2117
f38e1219
DW
2118 /* is the data in this block needed, and can we get it? */
2119 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2120 !test_bit(R5_UPTODATE, &dev->flags) &&
2121 (dev->toread ||
2122 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2123 s->syncing || s->expanding ||
2124 (s->failed &&
2125 (failed_dev->toread ||
2126 (failed_dev->towrite &&
2127 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2128 /* We would like to get this block, possibly by computing it,
2129 * otherwise read it if the backing disk is insync
f38e1219
DW
2130 */
2131 if ((s->uptodate == disks - 1) &&
ecc65c9b 2132 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2133 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2134 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2135 set_bit(R5_Wantcompute, &dev->flags);
2136 sh->ops.target = disk_idx;
2137 s->req_compute = 1;
f38e1219
DW
2138 /* Careful: from this point on 'uptodate' is in the eye
2139 * of raid5_run_ops which services 'compute' operations
2140 * before writes. R5_Wantcompute flags a block that will
2141 * be R5_UPTODATE by the time it is needed for a
2142 * subsequent operation.
2143 */
2144 s->uptodate++;
1fe797e6 2145 return 1; /* uptodate + compute == disks */
7a1fc53c 2146 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2147 set_bit(R5_LOCKED, &dev->flags);
2148 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2149 s->locked++;
2150 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2151 s->syncing);
2152 }
2153 }
2154
1fe797e6 2155 return 0;
f38e1219
DW
2156}
2157
1fe797e6
DW
2158/**
2159 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2160 */
2161static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2162 struct stripe_head_state *s, int disks)
2163{
2164 int i;
f38e1219 2165
f38e1219
DW
2166 /* look for blocks to read/compute, skip this if a compute
2167 * is already in flight, or if the stripe contents are in the
2168 * midst of changing due to a write
2169 */
976ea8d4 2170 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2171 !sh->reconstruct_state)
f38e1219 2172 for (i = disks; i--; )
1fe797e6 2173 if (fetch_block5(sh, s, i, disks))
f38e1219 2174 break;
a4456856
DW
2175 set_bit(STRIPE_HANDLE, &sh->state);
2176}
2177
1fe797e6 2178static void handle_stripe_fill6(struct stripe_head *sh,
a4456856
DW
2179 struct stripe_head_state *s, struct r6_state *r6s,
2180 int disks)
2181{
2182 int i;
2183 for (i = disks; i--; ) {
2184 struct r5dev *dev = &sh->dev[i];
2185 if (!test_bit(R5_LOCKED, &dev->flags) &&
2186 !test_bit(R5_UPTODATE, &dev->flags) &&
2187 (dev->toread || (dev->towrite &&
2188 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2189 s->syncing || s->expanding ||
2190 (s->failed >= 1 &&
2191 (sh->dev[r6s->failed_num[0]].toread ||
2192 s->to_write)) ||
2193 (s->failed >= 2 &&
2194 (sh->dev[r6s->failed_num[1]].toread ||
2195 s->to_write)))) {
2196 /* we would like to get this block, possibly
2197 * by computing it, but we might not be able to
2198 */
c337869d
DW
2199 if ((s->uptodate == disks - 1) &&
2200 (s->failed && (i == r6s->failed_num[0] ||
2201 i == r6s->failed_num[1]))) {
45b4233c 2202 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2203 (unsigned long long)sh->sector, i);
2204 compute_block_1(sh, i, 0);
2205 s->uptodate++;
2206 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2207 /* Computing 2-failure is *very* expensive; only
2208 * do it if failed >= 2
2209 */
2210 int other;
2211 for (other = disks; other--; ) {
2212 if (other == i)
2213 continue;
2214 if (!test_bit(R5_UPTODATE,
2215 &sh->dev[other].flags))
2216 break;
2217 }
2218 BUG_ON(other < 0);
45b4233c 2219 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2220 (unsigned long long)sh->sector,
2221 i, other);
2222 compute_block_2(sh, i, other);
2223 s->uptodate += 2;
2224 } else if (test_bit(R5_Insync, &dev->flags)) {
2225 set_bit(R5_LOCKED, &dev->flags);
2226 set_bit(R5_Wantread, &dev->flags);
2227 s->locked++;
45b4233c 2228 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2229 i, s->syncing);
2230 }
2231 }
2232 }
2233 set_bit(STRIPE_HANDLE, &sh->state);
2234}
2235
2236
1fe797e6 2237/* handle_stripe_clean_event
a4456856
DW
2238 * any written block on an uptodate or failed drive can be returned.
2239 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2240 * never LOCKED, so we don't need to test 'failed' directly.
2241 */
1fe797e6 2242static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2243 struct stripe_head *sh, int disks, struct bio **return_bi)
2244{
2245 int i;
2246 struct r5dev *dev;
2247
2248 for (i = disks; i--; )
2249 if (sh->dev[i].written) {
2250 dev = &sh->dev[i];
2251 if (!test_bit(R5_LOCKED, &dev->flags) &&
2252 test_bit(R5_UPTODATE, &dev->flags)) {
2253 /* We can return any write requests */
2254 struct bio *wbi, *wbi2;
2255 int bitmap_end = 0;
45b4233c 2256 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2257 spin_lock_irq(&conf->device_lock);
2258 wbi = dev->written;
2259 dev->written = NULL;
2260 while (wbi && wbi->bi_sector <
2261 dev->sector + STRIPE_SECTORS) {
2262 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2263 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2264 md_write_end(conf->mddev);
2265 wbi->bi_next = *return_bi;
2266 *return_bi = wbi;
2267 }
2268 wbi = wbi2;
2269 }
2270 if (dev->towrite == NULL)
2271 bitmap_end = 1;
2272 spin_unlock_irq(&conf->device_lock);
2273 if (bitmap_end)
2274 bitmap_endwrite(conf->mddev->bitmap,
2275 sh->sector,
2276 STRIPE_SECTORS,
2277 !test_bit(STRIPE_DEGRADED, &sh->state),
2278 0);
2279 }
2280 }
8b3e6cdc
DW
2281
2282 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2283 if (atomic_dec_and_test(&conf->pending_full_writes))
2284 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2285}
2286
1fe797e6 2287static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2288 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2289{
2290 int rmw = 0, rcw = 0, i;
2291 for (i = disks; i--; ) {
2292 /* would I have to read this buffer for read_modify_write */
2293 struct r5dev *dev = &sh->dev[i];
2294 if ((dev->towrite || i == sh->pd_idx) &&
2295 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2296 !(test_bit(R5_UPTODATE, &dev->flags) ||
2297 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2298 if (test_bit(R5_Insync, &dev->flags))
2299 rmw++;
2300 else
2301 rmw += 2*disks; /* cannot read it */
2302 }
2303 /* Would I have to read this buffer for reconstruct_write */
2304 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2305 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2306 !(test_bit(R5_UPTODATE, &dev->flags) ||
2307 test_bit(R5_Wantcompute, &dev->flags))) {
2308 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2309 else
2310 rcw += 2*disks;
2311 }
2312 }
45b4233c 2313 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2314 (unsigned long long)sh->sector, rmw, rcw);
2315 set_bit(STRIPE_HANDLE, &sh->state);
2316 if (rmw < rcw && rmw > 0)
2317 /* prefer read-modify-write, but need to get some data */
2318 for (i = disks; i--; ) {
2319 struct r5dev *dev = &sh->dev[i];
2320 if ((dev->towrite || i == sh->pd_idx) &&
2321 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2322 !(test_bit(R5_UPTODATE, &dev->flags) ||
2323 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2324 test_bit(R5_Insync, &dev->flags)) {
2325 if (
2326 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2327 pr_debug("Read_old block "
a4456856
DW
2328 "%d for r-m-w\n", i);
2329 set_bit(R5_LOCKED, &dev->flags);
2330 set_bit(R5_Wantread, &dev->flags);
2331 s->locked++;
2332 } else {
2333 set_bit(STRIPE_DELAYED, &sh->state);
2334 set_bit(STRIPE_HANDLE, &sh->state);
2335 }
2336 }
2337 }
2338 if (rcw <= rmw && rcw > 0)
2339 /* want reconstruct write, but need to get some data */
2340 for (i = disks; i--; ) {
2341 struct r5dev *dev = &sh->dev[i];
2342 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2343 i != sh->pd_idx &&
2344 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2345 !(test_bit(R5_UPTODATE, &dev->flags) ||
2346 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2347 test_bit(R5_Insync, &dev->flags)) {
2348 if (
2349 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2350 pr_debug("Read_old block "
a4456856
DW
2351 "%d for Reconstruct\n", i);
2352 set_bit(R5_LOCKED, &dev->flags);
2353 set_bit(R5_Wantread, &dev->flags);
2354 s->locked++;
2355 } else {
2356 set_bit(STRIPE_DELAYED, &sh->state);
2357 set_bit(STRIPE_HANDLE, &sh->state);
2358 }
2359 }
2360 }
2361 /* now if nothing is locked, and if we have enough data,
2362 * we can start a write request
2363 */
f38e1219
DW
2364 /* since handle_stripe can be called at any time we need to handle the
2365 * case where a compute block operation has been submitted and then a
2366 * subsequent call wants to start a write request. raid5_run_ops only
2367 * handles the case where compute block and postxor are requested
2368 * simultaneously. If this is not the case then new writes need to be
2369 * held off until the compute completes.
2370 */
976ea8d4
DW
2371 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2372 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2373 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
1fe797e6 2374 schedule_reconstruction5(sh, s, rcw == 0, 0);
a4456856
DW
2375}
2376
1fe797e6 2377static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2378 struct stripe_head *sh, struct stripe_head_state *s,
2379 struct r6_state *r6s, int disks)
2380{
2381 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
34e04e87 2382 int qd_idx = sh->qd_idx;
a4456856
DW
2383 for (i = disks; i--; ) {
2384 struct r5dev *dev = &sh->dev[i];
2385 /* Would I have to read this buffer for reconstruct_write */
2386 if (!test_bit(R5_OVERWRITE, &dev->flags)
2387 && i != pd_idx && i != qd_idx
2388 && (!test_bit(R5_LOCKED, &dev->flags)
2389 ) &&
2390 !test_bit(R5_UPTODATE, &dev->flags)) {
2391 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2392 else {
45b4233c 2393 pr_debug("raid6: must_compute: "
a4456856
DW
2394 "disk %d flags=%#lx\n", i, dev->flags);
2395 must_compute++;
2396 }
2397 }
2398 }
45b4233c 2399 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2400 (unsigned long long)sh->sector, rcw, must_compute);
2401 set_bit(STRIPE_HANDLE, &sh->state);
2402
2403 if (rcw > 0)
2404 /* want reconstruct write, but need to get some data */
2405 for (i = disks; i--; ) {
2406 struct r5dev *dev = &sh->dev[i];
2407 if (!test_bit(R5_OVERWRITE, &dev->flags)
2408 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2409 && !test_bit(R5_LOCKED, &dev->flags) &&
2410 !test_bit(R5_UPTODATE, &dev->flags) &&
2411 test_bit(R5_Insync, &dev->flags)) {
2412 if (
2413 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2414 pr_debug("Read_old stripe %llu "
a4456856
DW
2415 "block %d for Reconstruct\n",
2416 (unsigned long long)sh->sector, i);
2417 set_bit(R5_LOCKED, &dev->flags);
2418 set_bit(R5_Wantread, &dev->flags);
2419 s->locked++;
2420 } else {
45b4233c 2421 pr_debug("Request delayed stripe %llu "
a4456856
DW
2422 "block %d for Reconstruct\n",
2423 (unsigned long long)sh->sector, i);
2424 set_bit(STRIPE_DELAYED, &sh->state);
2425 set_bit(STRIPE_HANDLE, &sh->state);
2426 }
2427 }
2428 }
2429 /* now if nothing is locked, and if we have enough data, we can start a
2430 * write request
2431 */
2432 if (s->locked == 0 && rcw == 0 &&
2433 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2434 if (must_compute > 0) {
2435 /* We have failed blocks and need to compute them */
2436 switch (s->failed) {
2437 case 0:
2438 BUG();
2439 case 1:
2440 compute_block_1(sh, r6s->failed_num[0], 0);
2441 break;
2442 case 2:
2443 compute_block_2(sh, r6s->failed_num[0],
2444 r6s->failed_num[1]);
2445 break;
2446 default: /* This request should have been failed? */
2447 BUG();
2448 }
2449 }
2450
45b4233c 2451 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2452 (unsigned long long)sh->sector);
2453 compute_parity6(sh, RECONSTRUCT_WRITE);
2454 /* now every locked buffer is ready to be written */
2455 for (i = disks; i--; )
2456 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2457 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2458 (unsigned long long)sh->sector, i);
2459 s->locked++;
2460 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2461 }
8b3e6cdc
DW
2462 if (s->locked == disks)
2463 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2464 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2465 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2466 set_bit(STRIPE_INSYNC, &sh->state);
2467
2468 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2469 atomic_dec(&conf->preread_active_stripes);
2470 if (atomic_read(&conf->preread_active_stripes) <
2471 IO_THRESHOLD)
2472 md_wakeup_thread(conf->mddev->thread);
2473 }
2474 }
2475}
2476
2477static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2478 struct stripe_head_state *s, int disks)
2479{
ecc65c9b 2480 struct r5dev *dev = NULL;
bd2ab670 2481
a4456856 2482 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2483
ecc65c9b
DW
2484 switch (sh->check_state) {
2485 case check_state_idle:
2486 /* start a new check operation if there are no failures */
bd2ab670 2487 if (s->failed == 0) {
bd2ab670 2488 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2489 sh->check_state = check_state_run;
2490 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2491 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2492 s->uptodate--;
ecc65c9b 2493 break;
bd2ab670 2494 }
ecc65c9b
DW
2495 dev = &sh->dev[s->failed_num];
2496 /* fall through */
2497 case check_state_compute_result:
2498 sh->check_state = check_state_idle;
2499 if (!dev)
2500 dev = &sh->dev[sh->pd_idx];
2501
2502 /* check that a write has not made the stripe insync */
2503 if (test_bit(STRIPE_INSYNC, &sh->state))
2504 break;
c8894419 2505
a4456856 2506 /* either failed parity check, or recovery is happening */
a4456856
DW
2507 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2508 BUG_ON(s->uptodate != disks);
2509
2510 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2511 s->locked++;
a4456856 2512 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2513
a4456856 2514 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2515 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2516 break;
2517 case check_state_run:
2518 break; /* we will be called again upon completion */
2519 case check_state_check_result:
2520 sh->check_state = check_state_idle;
2521
2522 /* if a failure occurred during the check operation, leave
2523 * STRIPE_INSYNC not set and let the stripe be handled again
2524 */
2525 if (s->failed)
2526 break;
2527
2528 /* handle a successful check operation, if parity is correct
2529 * we are done. Otherwise update the mismatch count and repair
2530 * parity if !MD_RECOVERY_CHECK
2531 */
2532 if (sh->ops.zero_sum_result == 0)
2533 /* parity is correct (on disc,
2534 * not in buffer any more)
2535 */
2536 set_bit(STRIPE_INSYNC, &sh->state);
2537 else {
2538 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2539 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2540 /* don't try to repair!! */
2541 set_bit(STRIPE_INSYNC, &sh->state);
2542 else {
2543 sh->check_state = check_state_compute_run;
976ea8d4 2544 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2545 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2546 set_bit(R5_Wantcompute,
2547 &sh->dev[sh->pd_idx].flags);
2548 sh->ops.target = sh->pd_idx;
2549 s->uptodate++;
2550 }
2551 }
2552 break;
2553 case check_state_compute_run:
2554 break;
2555 default:
2556 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2557 __func__, sh->check_state,
2558 (unsigned long long) sh->sector);
2559 BUG();
a4456856
DW
2560 }
2561}
2562
2563
2564static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2565 struct stripe_head_state *s,
2566 struct r6_state *r6s, struct page *tmp_page,
2567 int disks)
2568{
2569 int update_p = 0, update_q = 0;
2570 struct r5dev *dev;
2571 int pd_idx = sh->pd_idx;
34e04e87 2572 int qd_idx = sh->qd_idx;
a4456856
DW
2573
2574 set_bit(STRIPE_HANDLE, &sh->state);
2575
2576 BUG_ON(s->failed > 2);
2577 BUG_ON(s->uptodate < disks);
2578 /* Want to check and possibly repair P and Q.
2579 * However there could be one 'failed' device, in which
2580 * case we can only check one of them, possibly using the
2581 * other to generate missing data
2582 */
2583
2584 /* If !tmp_page, we cannot do the calculations,
2585 * but as we have set STRIPE_HANDLE, we will soon be called
2586 * by stripe_handle with a tmp_page - just wait until then.
2587 */
2588 if (tmp_page) {
2589 if (s->failed == r6s->q_failed) {
2590 /* The only possible failed device holds 'Q', so it
2591 * makes sense to check P (If anything else were failed,
2592 * we would have used P to recreate it).
2593 */
2594 compute_block_1(sh, pd_idx, 1);
2595 if (!page_is_zero(sh->dev[pd_idx].page)) {
2596 compute_block_1(sh, pd_idx, 0);
2597 update_p = 1;
2598 }
2599 }
2600 if (!r6s->q_failed && s->failed < 2) {
2601 /* q is not failed, and we didn't use it to generate
2602 * anything, so it makes sense to check it
2603 */
2604 memcpy(page_address(tmp_page),
2605 page_address(sh->dev[qd_idx].page),
2606 STRIPE_SIZE);
2607 compute_parity6(sh, UPDATE_PARITY);
2608 if (memcmp(page_address(tmp_page),
2609 page_address(sh->dev[qd_idx].page),
2610 STRIPE_SIZE) != 0) {
2611 clear_bit(STRIPE_INSYNC, &sh->state);
2612 update_q = 1;
2613 }
2614 }
2615 if (update_p || update_q) {
2616 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2617 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2618 /* don't try to repair!! */
2619 update_p = update_q = 0;
2620 }
2621
2622 /* now write out any block on a failed drive,
2623 * or P or Q if they need it
2624 */
2625
2626 if (s->failed == 2) {
2627 dev = &sh->dev[r6s->failed_num[1]];
2628 s->locked++;
2629 set_bit(R5_LOCKED, &dev->flags);
2630 set_bit(R5_Wantwrite, &dev->flags);
2631 }
2632 if (s->failed >= 1) {
2633 dev = &sh->dev[r6s->failed_num[0]];
2634 s->locked++;
2635 set_bit(R5_LOCKED, &dev->flags);
2636 set_bit(R5_Wantwrite, &dev->flags);
2637 }
2638
2639 if (update_p) {
2640 dev = &sh->dev[pd_idx];
2641 s->locked++;
2642 set_bit(R5_LOCKED, &dev->flags);
2643 set_bit(R5_Wantwrite, &dev->flags);
2644 }
2645 if (update_q) {
2646 dev = &sh->dev[qd_idx];
2647 s->locked++;
2648 set_bit(R5_LOCKED, &dev->flags);
2649 set_bit(R5_Wantwrite, &dev->flags);
2650 }
2651 clear_bit(STRIPE_DEGRADED, &sh->state);
2652
2653 set_bit(STRIPE_INSYNC, &sh->state);
2654 }
2655}
2656
2657static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2658 struct r6_state *r6s)
2659{
2660 int i;
2661
2662 /* We have read all the blocks in this stripe and now we need to
2663 * copy some of them into a target stripe for expand.
2664 */
f0a50d37 2665 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2666 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2667 for (i = 0; i < sh->disks; i++)
34e04e87 2668 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2669 int dd_idx, j;
a4456856
DW
2670 struct stripe_head *sh2;
2671
784052ec 2672 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2673 sector_t s = raid5_compute_sector(conf, bn, 0,
2674 &dd_idx, NULL);
b5663ba4 2675 sh2 = get_active_stripe(conf, s, 0, 1);
a4456856
DW
2676 if (sh2 == NULL)
2677 /* so far only the early blocks of this stripe
2678 * have been requested. When later blocks
2679 * get requested, we will try again
2680 */
2681 continue;
2682 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2683 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2684 /* must have already done this block */
2685 release_stripe(sh2);
2686 continue;
2687 }
f0a50d37
DW
2688
2689 /* place all the copies on one channel */
2690 tx = async_memcpy(sh2->dev[dd_idx].page,
2691 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2692 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2693
a4456856
DW
2694 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2695 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2696 for (j = 0; j < conf->raid_disks; j++)
2697 if (j != sh2->pd_idx &&
d0dabf7e 2698 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2699 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2700 break;
2701 if (j == conf->raid_disks) {
2702 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2703 set_bit(STRIPE_HANDLE, &sh2->state);
2704 }
2705 release_stripe(sh2);
f0a50d37 2706
a4456856 2707 }
a2e08551
N
2708 /* done submitting copies, wait for them to complete */
2709 if (tx) {
2710 async_tx_ack(tx);
2711 dma_wait_for_async_tx(tx);
2712 }
a4456856 2713}
1da177e4 2714
6bfe0b49 2715
1da177e4
LT
2716/*
2717 * handle_stripe - do things to a stripe.
2718 *
2719 * We lock the stripe and then examine the state of various bits
2720 * to see what needs to be done.
2721 * Possible results:
2722 * return some read request which now have data
2723 * return some write requests which are safely on disc
2724 * schedule a read on some buffers
2725 * schedule a write of some buffers
2726 * return confirmation of parity correctness
2727 *
1da177e4
LT
2728 * buffers are taken off read_list or write_list, and bh_cache buffers
2729 * get BH_Lock set before the stripe lock is released.
2730 *
2731 */
a4456856 2732
df10cfbc 2733static bool handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2734{
2735 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2736 int disks = sh->disks, i;
2737 struct bio *return_bi = NULL;
2738 struct stripe_head_state s;
1da177e4 2739 struct r5dev *dev;
6bfe0b49 2740 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2741 int prexor;
1da177e4 2742
a4456856 2743 memset(&s, 0, sizeof(s));
600aa109
DW
2744 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2745 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2746 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2747 sh->reconstruct_state);
1da177e4
LT
2748
2749 spin_lock(&sh->lock);
2750 clear_bit(STRIPE_HANDLE, &sh->state);
2751 clear_bit(STRIPE_DELAYED, &sh->state);
2752
a4456856
DW
2753 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2754 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2755 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2756
83de75cc 2757 /* Now to look around and see what can be done */
9910f16a 2758 rcu_read_lock();
1da177e4
LT
2759 for (i=disks; i--; ) {
2760 mdk_rdev_t *rdev;
a4456856 2761 struct r5dev *dev = &sh->dev[i];
1da177e4 2762 clear_bit(R5_Insync, &dev->flags);
1da177e4 2763
b5e98d65
DW
2764 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2765 "written %p\n", i, dev->flags, dev->toread, dev->read,
2766 dev->towrite, dev->written);
2767
2768 /* maybe we can request a biofill operation
2769 *
2770 * new wantfill requests are only permitted while
83de75cc 2771 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2772 */
2773 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2774 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2775 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2776
2777 /* now count some things */
a4456856
DW
2778 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2779 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2780 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2781
b5e98d65
DW
2782 if (test_bit(R5_Wantfill, &dev->flags))
2783 s.to_fill++;
2784 else if (dev->toread)
a4456856 2785 s.to_read++;
1da177e4 2786 if (dev->towrite) {
a4456856 2787 s.to_write++;
1da177e4 2788 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2789 s.non_overwrite++;
1da177e4 2790 }
a4456856
DW
2791 if (dev->written)
2792 s.written++;
9910f16a 2793 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
2794 if (blocked_rdev == NULL &&
2795 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
2796 blocked_rdev = rdev;
2797 atomic_inc(&rdev->nr_pending);
6bfe0b49 2798 }
b2d444d7 2799 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2800 /* The ReadError flag will just be confusing now */
4e5314b5
N
2801 clear_bit(R5_ReadError, &dev->flags);
2802 clear_bit(R5_ReWrite, &dev->flags);
2803 }
b2d444d7 2804 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2805 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2806 s.failed++;
2807 s.failed_num = i;
1da177e4
LT
2808 } else
2809 set_bit(R5_Insync, &dev->flags);
2810 }
9910f16a 2811 rcu_read_unlock();
b5e98d65 2812
6bfe0b49 2813 if (unlikely(blocked_rdev)) {
ac4090d2
N
2814 if (s.syncing || s.expanding || s.expanded ||
2815 s.to_write || s.written) {
2816 set_bit(STRIPE_HANDLE, &sh->state);
2817 goto unlock;
2818 }
2819 /* There is nothing for the blocked_rdev to block */
2820 rdev_dec_pending(blocked_rdev, conf->mddev);
2821 blocked_rdev = NULL;
6bfe0b49
DW
2822 }
2823
83de75cc
DW
2824 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2825 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2826 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2827 }
b5e98d65 2828
45b4233c 2829 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2830 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2831 s.locked, s.uptodate, s.to_read, s.to_write,
2832 s.failed, s.failed_num);
1da177e4
LT
2833 /* check if the array has lost two devices and, if so, some requests might
2834 * need to be failed
2835 */
a4456856 2836 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 2837 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 2838 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2839 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2840 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2841 s.syncing = 0;
1da177e4
LT
2842 }
2843
2844 /* might be able to return some write requests if the parity block
2845 * is safe, or on a failed drive
2846 */
2847 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2848 if ( s.written &&
2849 ((test_bit(R5_Insync, &dev->flags) &&
2850 !test_bit(R5_LOCKED, &dev->flags) &&
2851 test_bit(R5_UPTODATE, &dev->flags)) ||
2852 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 2853 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
2854
2855 /* Now we might consider reading some blocks, either to check/generate
2856 * parity, or to satisfy requests
2857 * or to load a block that is being partially written.
2858 */
a4456856 2859 if (s.to_read || s.non_overwrite ||
976ea8d4 2860 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 2861 handle_stripe_fill5(sh, &s, disks);
1da177e4 2862
e33129d8
DW
2863 /* Now we check to see if any write operations have recently
2864 * completed
2865 */
e0a115e5 2866 prexor = 0;
d8ee0728 2867 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 2868 prexor = 1;
d8ee0728
DW
2869 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2870 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 2871 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
2872
2873 /* All the 'written' buffers and the parity block are ready to
2874 * be written back to disk
2875 */
2876 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2877 for (i = disks; i--; ) {
2878 dev = &sh->dev[i];
2879 if (test_bit(R5_LOCKED, &dev->flags) &&
2880 (i == sh->pd_idx || dev->written)) {
2881 pr_debug("Writing block %d\n", i);
2882 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2883 if (prexor)
2884 continue;
e33129d8
DW
2885 if (!test_bit(R5_Insync, &dev->flags) ||
2886 (i == sh->pd_idx && s.failed == 0))
2887 set_bit(STRIPE_INSYNC, &sh->state);
2888 }
2889 }
2890 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2891 atomic_dec(&conf->preread_active_stripes);
2892 if (atomic_read(&conf->preread_active_stripes) <
2893 IO_THRESHOLD)
2894 md_wakeup_thread(conf->mddev->thread);
2895 }
2896 }
2897
2898 /* Now to consider new write requests and what else, if anything
2899 * should be read. We do not handle new writes when:
2900 * 1/ A 'write' operation (copy+xor) is already in flight.
2901 * 2/ A 'check' operation is in flight, as it may clobber the parity
2902 * block.
2903 */
600aa109 2904 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 2905 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
2906
2907 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2908 * Any reads will already have been scheduled, so we just see if enough
2909 * data is available. The parity check is held off while parity
2910 * dependent operations are in flight.
1da177e4 2911 */
ecc65c9b
DW
2912 if (sh->check_state ||
2913 (s.syncing && s.locked == 0 &&
976ea8d4 2914 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2915 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2916 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2917
a4456856 2918 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2919 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2920 clear_bit(STRIPE_SYNCING, &sh->state);
2921 }
4e5314b5
N
2922
2923 /* If the failed drive is just a ReadError, then we might need to progress
2924 * the repair/check process
2925 */
a4456856
DW
2926 if (s.failed == 1 && !conf->mddev->ro &&
2927 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2928 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2929 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2930 ) {
a4456856 2931 dev = &sh->dev[s.failed_num];
4e5314b5
N
2932 if (!test_bit(R5_ReWrite, &dev->flags)) {
2933 set_bit(R5_Wantwrite, &dev->flags);
2934 set_bit(R5_ReWrite, &dev->flags);
2935 set_bit(R5_LOCKED, &dev->flags);
a4456856 2936 s.locked++;
4e5314b5
N
2937 } else {
2938 /* let's read it back */
2939 set_bit(R5_Wantread, &dev->flags);
2940 set_bit(R5_LOCKED, &dev->flags);
a4456856 2941 s.locked++;
4e5314b5
N
2942 }
2943 }
2944
600aa109
DW
2945 /* Finish reconstruct operations initiated by the expansion process */
2946 if (sh->reconstruct_state == reconstruct_state_result) {
2947 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 2948 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 2949 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2950 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 2951 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 2952 s.locked++;
23397883 2953 }
f0a50d37
DW
2954 }
2955
2956 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 2957 !sh->reconstruct_state) {
f0a50d37
DW
2958 /* Need to write out all blocks after computing parity */
2959 sh->disks = conf->raid_disks;
911d4ee8 2960 stripe_set_idx(sh->sector, conf, 0, sh);
1fe797e6 2961 schedule_reconstruction5(sh, &s, 1, 1);
600aa109 2962 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 2963 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2964 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2965 wake_up(&conf->wait_for_overlap);
2966 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2967 }
2968
0f94e87c 2969 if (s.expanding && s.locked == 0 &&
976ea8d4 2970 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2971 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2972
6bfe0b49 2973 unlock:
1da177e4
LT
2974 spin_unlock(&sh->lock);
2975
6bfe0b49
DW
2976 /* wait for this device to become unblocked */
2977 if (unlikely(blocked_rdev))
2978 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2979
600aa109
DW
2980 if (s.ops_request)
2981 raid5_run_ops(sh, s.ops_request);
d84e0f10 2982
c4e5ac0a 2983 ops_run_io(sh, &s);
1da177e4 2984
a4456856 2985 return_io(return_bi);
df10cfbc
DW
2986
2987 return blocked_rdev == NULL;
1da177e4
LT
2988}
2989
df10cfbc 2990static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2991{
bff61975 2992 raid5_conf_t *conf = sh->raid_conf;
f416885e 2993 int disks = sh->disks;
a4456856 2994 struct bio *return_bi = NULL;
34e04e87 2995 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
2996 struct stripe_head_state s;
2997 struct r6_state r6s;
16a53ecc 2998 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 2999 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 3000
45b4233c 3001 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
3002 "pd_idx=%d, qd_idx=%d\n",
3003 (unsigned long long)sh->sector, sh->state,
34e04e87 3004 atomic_read(&sh->count), pd_idx, qd_idx);
a4456856 3005 memset(&s, 0, sizeof(s));
72626685 3006
16a53ecc
N
3007 spin_lock(&sh->lock);
3008 clear_bit(STRIPE_HANDLE, &sh->state);
3009 clear_bit(STRIPE_DELAYED, &sh->state);
3010
a4456856
DW
3011 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3012 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3013 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3014 /* Now to look around and see what can be done */
1da177e4
LT
3015
3016 rcu_read_lock();
16a53ecc
N
3017 for (i=disks; i--; ) {
3018 mdk_rdev_t *rdev;
3019 dev = &sh->dev[i];
3020 clear_bit(R5_Insync, &dev->flags);
1da177e4 3021
45b4233c 3022 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
3023 i, dev->flags, dev->toread, dev->towrite, dev->written);
3024 /* maybe we can reply to a read */
3025 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3026 struct bio *rbi, *rbi2;
45b4233c 3027 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
3028 spin_lock_irq(&conf->device_lock);
3029 rbi = dev->toread;
3030 dev->toread = NULL;
3031 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3032 wake_up(&conf->wait_for_overlap);
3033 spin_unlock_irq(&conf->device_lock);
3034 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3035 copy_data(0, rbi, dev->page, dev->sector);
3036 rbi2 = r5_next_bio(rbi, dev->sector);
3037 spin_lock_irq(&conf->device_lock);
960e739d 3038 if (!raid5_dec_bi_phys_segments(rbi)) {
16a53ecc
N
3039 rbi->bi_next = return_bi;
3040 return_bi = rbi;
3041 }
3042 spin_unlock_irq(&conf->device_lock);
3043 rbi = rbi2;
3044 }
3045 }
1da177e4 3046
16a53ecc 3047 /* now count some things */
a4456856
DW
3048 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3049 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 3050
16a53ecc 3051
a4456856
DW
3052 if (dev->toread)
3053 s.to_read++;
16a53ecc 3054 if (dev->towrite) {
a4456856 3055 s.to_write++;
16a53ecc 3056 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3057 s.non_overwrite++;
16a53ecc 3058 }
a4456856
DW
3059 if (dev->written)
3060 s.written++;
16a53ecc 3061 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3062 if (blocked_rdev == NULL &&
3063 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3064 blocked_rdev = rdev;
3065 atomic_inc(&rdev->nr_pending);
6bfe0b49 3066 }
16a53ecc
N
3067 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3068 /* The ReadError flag will just be confusing now */
3069 clear_bit(R5_ReadError, &dev->flags);
3070 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3071 }
16a53ecc
N
3072 if (!rdev || !test_bit(In_sync, &rdev->flags)
3073 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3074 if (s.failed < 2)
3075 r6s.failed_num[s.failed] = i;
3076 s.failed++;
16a53ecc
N
3077 } else
3078 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3079 }
3080 rcu_read_unlock();
6bfe0b49
DW
3081
3082 if (unlikely(blocked_rdev)) {
ac4090d2
N
3083 if (s.syncing || s.expanding || s.expanded ||
3084 s.to_write || s.written) {
3085 set_bit(STRIPE_HANDLE, &sh->state);
3086 goto unlock;
3087 }
3088 /* There is nothing for the blocked_rdev to block */
3089 rdev_dec_pending(blocked_rdev, conf->mddev);
3090 blocked_rdev = NULL;
6bfe0b49 3091 }
ac4090d2 3092
45b4233c 3093 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3094 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3095 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3096 r6s.failed_num[0], r6s.failed_num[1]);
3097 /* check if the array has lost >2 devices and, if so, some requests
3098 * might need to be failed
16a53ecc 3099 */
a4456856 3100 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3101 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3102 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3103 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3104 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3105 s.syncing = 0;
16a53ecc
N
3106 }
3107
3108 /*
3109 * might be able to return some write requests if the parity blocks
3110 * are safe, or on a failed drive
3111 */
3112 pdev = &sh->dev[pd_idx];
a4456856
DW
3113 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3114 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3115 qdev = &sh->dev[qd_idx];
3116 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3117 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3118
3119 if ( s.written &&
3120 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3121 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3122 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3123 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3124 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3125 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3126 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3127
3128 /* Now we might consider reading some blocks, either to check/generate
3129 * parity, or to satisfy requests
3130 * or to load a block that is being partially written.
3131 */
a4456856
DW
3132 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3133 (s.syncing && (s.uptodate < disks)) || s.expanding)
1fe797e6 3134 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc
N
3135
3136 /* now to consider writing and what else, if anything should be read */
a4456856 3137 if (s.to_write)
1fe797e6 3138 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3139
3140 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3141 * Any reads will already have been scheduled, so we just see if enough
3142 * data is available
16a53ecc 3143 */
a4456856
DW
3144 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3145 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3146
a4456856 3147 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3148 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3149 clear_bit(STRIPE_SYNCING, &sh->state);
3150 }
3151
3152 /* If the failed drives are just a ReadError, then we might need
3153 * to progress the repair/check process
3154 */
a4456856
DW
3155 if (s.failed <= 2 && !conf->mddev->ro)
3156 for (i = 0; i < s.failed; i++) {
3157 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3158 if (test_bit(R5_ReadError, &dev->flags)
3159 && !test_bit(R5_LOCKED, &dev->flags)
3160 && test_bit(R5_UPTODATE, &dev->flags)
3161 ) {
3162 if (!test_bit(R5_ReWrite, &dev->flags)) {
3163 set_bit(R5_Wantwrite, &dev->flags);
3164 set_bit(R5_ReWrite, &dev->flags);
3165 set_bit(R5_LOCKED, &dev->flags);
3166 } else {
3167 /* let's read it back */
3168 set_bit(R5_Wantread, &dev->flags);
3169 set_bit(R5_LOCKED, &dev->flags);
3170 }
3171 }
3172 }
f416885e 3173
a4456856 3174 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3175 /* Need to write out all blocks after computing P&Q */
3176 sh->disks = conf->raid_disks;
911d4ee8 3177 stripe_set_idx(sh->sector, conf, 0, sh);
f416885e
N
3178 compute_parity6(sh, RECONSTRUCT_WRITE);
3179 for (i = conf->raid_disks ; i-- ; ) {
3180 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3181 s.locked++;
f416885e
N
3182 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3183 }
3184 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3185 } else if (s.expanded) {
f416885e
N
3186 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3187 atomic_dec(&conf->reshape_stripes);
3188 wake_up(&conf->wait_for_overlap);
3189 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3190 }
3191
0f94e87c 3192 if (s.expanding && s.locked == 0 &&
976ea8d4 3193 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3194 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3195
6bfe0b49 3196 unlock:
16a53ecc
N
3197 spin_unlock(&sh->lock);
3198
6bfe0b49
DW
3199 /* wait for this device to become unblocked */
3200 if (unlikely(blocked_rdev))
3201 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3202
f0e43bcd 3203 ops_run_io(sh, &s);
16a53ecc 3204
f0e43bcd 3205 return_io(return_bi);
df10cfbc
DW
3206
3207 return blocked_rdev == NULL;
16a53ecc
N
3208}
3209
df10cfbc
DW
3210/* returns true if the stripe was handled */
3211static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
16a53ecc
N
3212{
3213 if (sh->raid_conf->level == 6)
df10cfbc 3214 return handle_stripe6(sh, tmp_page);
16a53ecc 3215 else
df10cfbc 3216 return handle_stripe5(sh);
16a53ecc
N
3217}
3218
3219
3220
3221static void raid5_activate_delayed(raid5_conf_t *conf)
3222{
3223 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3224 while (!list_empty(&conf->delayed_list)) {
3225 struct list_head *l = conf->delayed_list.next;
3226 struct stripe_head *sh;
3227 sh = list_entry(l, struct stripe_head, lru);
3228 list_del_init(l);
3229 clear_bit(STRIPE_DELAYED, &sh->state);
3230 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3231 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3232 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3233 }
6ed3003c
N
3234 } else
3235 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3236}
3237
3238static void activate_bit_delay(raid5_conf_t *conf)
3239{
3240 /* device_lock is held */
3241 struct list_head head;
3242 list_add(&head, &conf->bitmap_list);
3243 list_del_init(&conf->bitmap_list);
3244 while (!list_empty(&head)) {
3245 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3246 list_del_init(&sh->lru);
3247 atomic_inc(&sh->count);
3248 __release_stripe(conf, sh);
3249 }
3250}
3251
3252static void unplug_slaves(mddev_t *mddev)
3253{
3254 raid5_conf_t *conf = mddev_to_conf(mddev);
3255 int i;
3256
3257 rcu_read_lock();
3258 for (i=0; i<mddev->raid_disks; i++) {
3259 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3260 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3261 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3262
3263 atomic_inc(&rdev->nr_pending);
3264 rcu_read_unlock();
3265
2ad8b1ef 3266 blk_unplug(r_queue);
16a53ecc
N
3267
3268 rdev_dec_pending(rdev, mddev);
3269 rcu_read_lock();
3270 }
3271 }
3272 rcu_read_unlock();
3273}
3274
165125e1 3275static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3276{
3277 mddev_t *mddev = q->queuedata;
3278 raid5_conf_t *conf = mddev_to_conf(mddev);
3279 unsigned long flags;
3280
3281 spin_lock_irqsave(&conf->device_lock, flags);
3282
3283 if (blk_remove_plug(q)) {
3284 conf->seq_flush++;
3285 raid5_activate_delayed(conf);
72626685 3286 }
1da177e4
LT
3287 md_wakeup_thread(mddev->thread);
3288
3289 spin_unlock_irqrestore(&conf->device_lock, flags);
3290
3291 unplug_slaves(mddev);
3292}
3293
f022b2fd
N
3294static int raid5_congested(void *data, int bits)
3295{
3296 mddev_t *mddev = data;
3297 raid5_conf_t *conf = mddev_to_conf(mddev);
3298
3299 /* No difference between reads and writes. Just check
3300 * how busy the stripe_cache is
3301 */
3302 if (conf->inactive_blocked)
3303 return 1;
3304 if (conf->quiesce)
3305 return 1;
3306 if (list_empty_careful(&conf->inactive_list))
3307 return 1;
3308
3309 return 0;
3310}
3311
23032a0e
RBJ
3312/* We want read requests to align with chunks where possible,
3313 * but write requests don't need to.
3314 */
cc371e66
AK
3315static int raid5_mergeable_bvec(struct request_queue *q,
3316 struct bvec_merge_data *bvm,
3317 struct bio_vec *biovec)
23032a0e
RBJ
3318{
3319 mddev_t *mddev = q->queuedata;
cc371e66 3320 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e
RBJ
3321 int max;
3322 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 3323 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3324
cc371e66 3325 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3326 return biovec->bv_len; /* always allow writes to be mergeable */
3327
784052ec
N
3328 if (mddev->new_chunk < mddev->chunk_size)
3329 chunk_sectors = mddev->new_chunk >> 9;
23032a0e
RBJ
3330 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3331 if (max < 0) max = 0;
3332 if (max <= biovec->bv_len && bio_sectors == 0)
3333 return biovec->bv_len;
3334 else
3335 return max;
3336}
3337
f679623f
RBJ
3338
3339static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3340{
3341 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3342 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3343 unsigned int bio_sectors = bio->bi_size >> 9;
3344
784052ec
N
3345 if (mddev->new_chunk < mddev->chunk_size)
3346 chunk_sectors = mddev->new_chunk >> 9;
f679623f
RBJ
3347 return chunk_sectors >=
3348 ((sector & (chunk_sectors - 1)) + bio_sectors);
3349}
3350
46031f9a
RBJ
3351/*
3352 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3353 * later sampled by raid5d.
3354 */
3355static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3356{
3357 unsigned long flags;
3358
3359 spin_lock_irqsave(&conf->device_lock, flags);
3360
3361 bi->bi_next = conf->retry_read_aligned_list;
3362 conf->retry_read_aligned_list = bi;
3363
3364 spin_unlock_irqrestore(&conf->device_lock, flags);
3365 md_wakeup_thread(conf->mddev->thread);
3366}
3367
3368
3369static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3370{
3371 struct bio *bi;
3372
3373 bi = conf->retry_read_aligned;
3374 if (bi) {
3375 conf->retry_read_aligned = NULL;
3376 return bi;
3377 }
3378 bi = conf->retry_read_aligned_list;
3379 if(bi) {
387bb173 3380 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3381 bi->bi_next = NULL;
960e739d
JA
3382 /*
3383 * this sets the active strip count to 1 and the processed
3384 * strip count to zero (upper 8 bits)
3385 */
46031f9a 3386 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3387 }
3388
3389 return bi;
3390}
3391
3392
f679623f
RBJ
3393/*
3394 * The "raid5_align_endio" should check if the read succeeded and if it
3395 * did, call bio_endio on the original bio (having bio_put the new bio
3396 * first).
3397 * If the read failed..
3398 */
6712ecf8 3399static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3400{
3401 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3402 mddev_t *mddev;
3403 raid5_conf_t *conf;
3404 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3405 mdk_rdev_t *rdev;
3406
f679623f 3407 bio_put(bi);
46031f9a
RBJ
3408
3409 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3410 conf = mddev_to_conf(mddev);
3411 rdev = (void*)raid_bi->bi_next;
3412 raid_bi->bi_next = NULL;
3413
3414 rdev_dec_pending(rdev, conf->mddev);
3415
3416 if (!error && uptodate) {
6712ecf8 3417 bio_endio(raid_bi, 0);
46031f9a
RBJ
3418 if (atomic_dec_and_test(&conf->active_aligned_reads))
3419 wake_up(&conf->wait_for_stripe);
6712ecf8 3420 return;
46031f9a
RBJ
3421 }
3422
3423
45b4233c 3424 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3425
3426 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3427}
3428
387bb173
NB
3429static int bio_fits_rdev(struct bio *bi)
3430{
165125e1 3431 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3432
3433 if ((bi->bi_size>>9) > q->max_sectors)
3434 return 0;
3435 blk_recount_segments(q, bi);
960e739d 3436 if (bi->bi_phys_segments > q->max_phys_segments)
387bb173
NB
3437 return 0;
3438
3439 if (q->merge_bvec_fn)
3440 /* it's too hard to apply the merge_bvec_fn at this stage,
3441 * just just give up
3442 */
3443 return 0;
3444
3445 return 1;
3446}
3447
3448
165125e1 3449static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3450{
3451 mddev_t *mddev = q->queuedata;
3452 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3453 unsigned int dd_idx;
f679623f
RBJ
3454 struct bio* align_bi;
3455 mdk_rdev_t *rdev;
3456
3457 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3458 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3459 return 0;
3460 }
3461 /*
99c0fb5f 3462 * use bio_clone to make a copy of the bio
f679623f
RBJ
3463 */
3464 align_bi = bio_clone(raid_bio, GFP_NOIO);
3465 if (!align_bi)
3466 return 0;
3467 /*
3468 * set bi_end_io to a new function, and set bi_private to the
3469 * original bio.
3470 */
3471 align_bi->bi_end_io = raid5_align_endio;
3472 align_bi->bi_private = raid_bio;
3473 /*
3474 * compute position
3475 */
112bf897
N
3476 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3477 0,
911d4ee8 3478 &dd_idx, NULL);
f679623f
RBJ
3479
3480 rcu_read_lock();
3481 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3482 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3483 atomic_inc(&rdev->nr_pending);
3484 rcu_read_unlock();
46031f9a
RBJ
3485 raid_bio->bi_next = (void*)rdev;
3486 align_bi->bi_bdev = rdev->bdev;
3487 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3488 align_bi->bi_sector += rdev->data_offset;
3489
387bb173
NB
3490 if (!bio_fits_rdev(align_bi)) {
3491 /* too big in some way */
3492 bio_put(align_bi);
3493 rdev_dec_pending(rdev, mddev);
3494 return 0;
3495 }
3496
46031f9a
RBJ
3497 spin_lock_irq(&conf->device_lock);
3498 wait_event_lock_irq(conf->wait_for_stripe,
3499 conf->quiesce == 0,
3500 conf->device_lock, /* nothing */);
3501 atomic_inc(&conf->active_aligned_reads);
3502 spin_unlock_irq(&conf->device_lock);
3503
f679623f
RBJ
3504 generic_make_request(align_bi);
3505 return 1;
3506 } else {
3507 rcu_read_unlock();
46031f9a 3508 bio_put(align_bi);
f679623f
RBJ
3509 return 0;
3510 }
3511}
3512
8b3e6cdc
DW
3513/* __get_priority_stripe - get the next stripe to process
3514 *
3515 * Full stripe writes are allowed to pass preread active stripes up until
3516 * the bypass_threshold is exceeded. In general the bypass_count
3517 * increments when the handle_list is handled before the hold_list; however, it
3518 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3519 * stripe with in flight i/o. The bypass_count will be reset when the
3520 * head of the hold_list has changed, i.e. the head was promoted to the
3521 * handle_list.
3522 */
3523static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3524{
3525 struct stripe_head *sh;
3526
3527 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3528 __func__,
3529 list_empty(&conf->handle_list) ? "empty" : "busy",
3530 list_empty(&conf->hold_list) ? "empty" : "busy",
3531 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3532
3533 if (!list_empty(&conf->handle_list)) {
3534 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3535
3536 if (list_empty(&conf->hold_list))
3537 conf->bypass_count = 0;
3538 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3539 if (conf->hold_list.next == conf->last_hold)
3540 conf->bypass_count++;
3541 else {
3542 conf->last_hold = conf->hold_list.next;
3543 conf->bypass_count -= conf->bypass_threshold;
3544 if (conf->bypass_count < 0)
3545 conf->bypass_count = 0;
3546 }
3547 }
3548 } else if (!list_empty(&conf->hold_list) &&
3549 ((conf->bypass_threshold &&
3550 conf->bypass_count > conf->bypass_threshold) ||
3551 atomic_read(&conf->pending_full_writes) == 0)) {
3552 sh = list_entry(conf->hold_list.next,
3553 typeof(*sh), lru);
3554 conf->bypass_count -= conf->bypass_threshold;
3555 if (conf->bypass_count < 0)
3556 conf->bypass_count = 0;
3557 } else
3558 return NULL;
3559
3560 list_del_init(&sh->lru);
3561 atomic_inc(&sh->count);
3562 BUG_ON(atomic_read(&sh->count) != 1);
3563 return sh;
3564}
f679623f 3565
165125e1 3566static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3567{
3568 mddev_t *mddev = q->queuedata;
3569 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3570 int dd_idx;
1da177e4
LT
3571 sector_t new_sector;
3572 sector_t logical_sector, last_sector;
3573 struct stripe_head *sh;
a362357b 3574 const int rw = bio_data_dir(bi);
c9959059 3575 int cpu, remaining;
1da177e4 3576
e5dcdd80 3577 if (unlikely(bio_barrier(bi))) {
6712ecf8 3578 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3579 return 0;
3580 }
3581
3d310eb7 3582 md_write_start(mddev, bi);
06d91a5f 3583
074a7aca
TH
3584 cpu = part_stat_lock();
3585 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3586 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3587 bio_sectors(bi));
3588 part_stat_unlock();
1da177e4 3589
802ba064 3590 if (rw == READ &&
52488615
RBJ
3591 mddev->reshape_position == MaxSector &&
3592 chunk_aligned_read(q,bi))
99c0fb5f 3593 return 0;
52488615 3594
1da177e4
LT
3595 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3596 last_sector = bi->bi_sector + (bi->bi_size>>9);
3597 bi->bi_next = NULL;
3598 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3599
1da177e4
LT
3600 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3601 DEFINE_WAIT(w);
16a53ecc 3602 int disks, data_disks;
b5663ba4 3603 int previous;
b578d55f 3604
7ecaa1e6 3605 retry:
b5663ba4 3606 previous = 0;
b578d55f 3607 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
fef9c61f 3608 if (likely(conf->reshape_progress == MaxSector))
7ecaa1e6
N
3609 disks = conf->raid_disks;
3610 else {
fef9c61f 3611 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3612 * 64bit on a 32bit platform, and so it might be
3613 * possible to see a half-updated value
fef9c61f 3614 * Ofcourse reshape_progress could change after
df8e7f76
N
3615 * the lock is dropped, so once we get a reference
3616 * to the stripe that we think it is, we will have
3617 * to check again.
3618 */
7ecaa1e6
N
3619 spin_lock_irq(&conf->device_lock);
3620 disks = conf->raid_disks;
fef9c61f
N
3621 if (mddev->delta_disks < 0
3622 ? logical_sector < conf->reshape_progress
3623 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3624 disks = conf->previous_raid_disks;
b5663ba4
N
3625 previous = 1;
3626 } else {
fef9c61f
N
3627 if (mddev->delta_disks < 0
3628 ? logical_sector < conf->reshape_safe
3629 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3630 spin_unlock_irq(&conf->device_lock);
3631 schedule();
3632 goto retry;
3633 }
3634 }
7ecaa1e6
N
3635 spin_unlock_irq(&conf->device_lock);
3636 }
16a53ecc
N
3637 data_disks = disks - conf->max_degraded;
3638
112bf897
N
3639 new_sector = raid5_compute_sector(conf, logical_sector,
3640 previous,
911d4ee8 3641 &dd_idx, NULL);
45b4233c 3642 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3643 (unsigned long long)new_sector,
3644 (unsigned long long)logical_sector);
3645
b5663ba4
N
3646 sh = get_active_stripe(conf, new_sector, previous,
3647 (bi->bi_rw&RWA_MASK));
1da177e4 3648 if (sh) {
fef9c61f 3649 if (unlikely(conf->reshape_progress != MaxSector)) {
7ecaa1e6 3650 /* expansion might have moved on while waiting for a
df8e7f76
N
3651 * stripe, so we must do the range check again.
3652 * Expansion could still move past after this
3653 * test, but as we are holding a reference to
3654 * 'sh', we know that if that happens,
3655 * STRIPE_EXPANDING will get set and the expansion
3656 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3657 */
3658 int must_retry = 0;
3659 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3660 if ((mddev->delta_disks < 0
3661 ? logical_sector >= conf->reshape_progress
3662 : logical_sector < conf->reshape_progress)
86b42c71 3663 && previous)
7ecaa1e6
N
3664 /* mismatch, need to try again */
3665 must_retry = 1;
3666 spin_unlock_irq(&conf->device_lock);
3667 if (must_retry) {
3668 release_stripe(sh);
3669 goto retry;
3670 }
3671 }
e464eafd
N
3672 /* FIXME what if we get a false positive because these
3673 * are being updated.
3674 */
3675 if (logical_sector >= mddev->suspend_lo &&
3676 logical_sector < mddev->suspend_hi) {
3677 release_stripe(sh);
3678 schedule();
3679 goto retry;
3680 }
7ecaa1e6
N
3681
3682 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3683 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3684 /* Stripe is busy expanding or
3685 * add failed due to overlap. Flush everything
1da177e4
LT
3686 * and wait a while
3687 */
3688 raid5_unplug_device(mddev->queue);
3689 release_stripe(sh);
3690 schedule();
3691 goto retry;
3692 }
3693 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3694 set_bit(STRIPE_HANDLE, &sh->state);
3695 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3696 release_stripe(sh);
1da177e4
LT
3697 } else {
3698 /* cannot get stripe for read-ahead, just give-up */
3699 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3700 finish_wait(&conf->wait_for_overlap, &w);
3701 break;
3702 }
3703
3704 }
3705 spin_lock_irq(&conf->device_lock);
960e739d 3706 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3707 spin_unlock_irq(&conf->device_lock);
3708 if (remaining == 0) {
1da177e4 3709
16a53ecc 3710 if ( rw == WRITE )
1da177e4 3711 md_write_end(mddev);
6712ecf8 3712
0e13fe23 3713 bio_endio(bi, 0);
1da177e4 3714 }
1da177e4
LT
3715 return 0;
3716}
3717
b522adcd
DW
3718static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3719
52c03291 3720static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3721{
52c03291
N
3722 /* reshaping is quite different to recovery/resync so it is
3723 * handled quite separately ... here.
3724 *
3725 * On each call to sync_request, we gather one chunk worth of
3726 * destination stripes and flag them as expanding.
3727 * Then we find all the source stripes and request reads.
3728 * As the reads complete, handle_stripe will copy the data
3729 * into the destination stripe and release that stripe.
3730 */
1da177e4
LT
3731 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3732 struct stripe_head *sh;
ccfcc3c1 3733 sector_t first_sector, last_sector;
f416885e
N
3734 int raid_disks = conf->previous_raid_disks;
3735 int data_disks = raid_disks - conf->max_degraded;
3736 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3737 int i;
3738 int dd_idx;
3739 sector_t writepos, safepos, gap;
ec32a2bd 3740 sector_t stripe_addr;
7a661381 3741 int reshape_sectors;
52c03291 3742
fef9c61f
N
3743 if (sector_nr == 0) {
3744 /* If restarting in the middle, skip the initial sectors */
3745 if (mddev->delta_disks < 0 &&
3746 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3747 sector_nr = raid5_size(mddev, 0, 0)
3748 - conf->reshape_progress;
3749 } else if (mddev->delta_disks > 0 &&
3750 conf->reshape_progress > 0)
3751 sector_nr = conf->reshape_progress;
f416885e 3752 sector_div(sector_nr, new_data_disks);
fef9c61f
N
3753 if (sector_nr) {
3754 *skipped = 1;
3755 return sector_nr;
3756 }
52c03291
N
3757 }
3758
7a661381
N
3759 /* We need to process a full chunk at a time.
3760 * If old and new chunk sizes differ, we need to process the
3761 * largest of these
3762 */
3763 if (mddev->new_chunk > mddev->chunk_size)
3764 reshape_sectors = mddev->new_chunk / 512;
3765 else
3766 reshape_sectors = mddev->chunk_size / 512;
3767
52c03291
N
3768 /* we update the metadata when there is more than 3Meg
3769 * in the block range (that is rather arbitrary, should
3770 * probably be time based) or when the data about to be
3771 * copied would over-write the source of the data at
3772 * the front of the range.
fef9c61f
N
3773 * i.e. one new_stripe along from reshape_progress new_maps
3774 * to after where reshape_safe old_maps to
52c03291 3775 */
fef9c61f 3776 writepos = conf->reshape_progress;
f416885e 3777 sector_div(writepos, new_data_disks);
fef9c61f 3778 safepos = conf->reshape_safe;
f416885e 3779 sector_div(safepos, data_disks);
fef9c61f 3780 if (mddev->delta_disks < 0) {
7a661381
N
3781 writepos -= reshape_sectors;
3782 safepos += reshape_sectors;
fef9c61f
N
3783 gap = conf->reshape_safe - conf->reshape_progress;
3784 } else {
7a661381
N
3785 writepos += reshape_sectors;
3786 safepos -= reshape_sectors;
fef9c61f
N
3787 gap = conf->reshape_progress - conf->reshape_safe;
3788 }
52c03291 3789
fef9c61f
N
3790 if ((mddev->delta_disks < 0
3791 ? writepos < safepos
3792 : writepos > safepos) ||
f416885e 3793 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3794 /* Cannot proceed until we've updated the superblock... */
3795 wait_event(conf->wait_for_overlap,
3796 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3797 mddev->reshape_position = conf->reshape_progress;
850b2b42 3798 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3799 md_wakeup_thread(mddev->thread);
850b2b42 3800 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3801 kthread_should_stop());
3802 spin_lock_irq(&conf->device_lock);
fef9c61f 3803 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3804 spin_unlock_irq(&conf->device_lock);
3805 wake_up(&conf->wait_for_overlap);
3806 }
3807
ec32a2bd
N
3808 if (mddev->delta_disks < 0) {
3809 BUG_ON(conf->reshape_progress == 0);
3810 stripe_addr = writepos;
3811 BUG_ON((mddev->dev_sectors &
7a661381
N
3812 ~((sector_t)reshape_sectors - 1))
3813 - reshape_sectors - stripe_addr
ec32a2bd
N
3814 != sector_nr);
3815 } else {
7a661381 3816 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3817 stripe_addr = sector_nr;
3818 }
7a661381 3819 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291
N
3820 int j;
3821 int skipped = 0;
ec32a2bd 3822 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
52c03291
N
3823 set_bit(STRIPE_EXPANDING, &sh->state);
3824 atomic_inc(&conf->reshape_stripes);
3825 /* If any of this stripe is beyond the end of the old
3826 * array, then we need to zero those blocks
3827 */
3828 for (j=sh->disks; j--;) {
3829 sector_t s;
3830 if (j == sh->pd_idx)
3831 continue;
f416885e 3832 if (conf->level == 6 &&
d0dabf7e 3833 j == sh->qd_idx)
f416885e 3834 continue;
784052ec 3835 s = compute_blocknr(sh, j, 0);
b522adcd 3836 if (s < raid5_size(mddev, 0, 0)) {
52c03291
N
3837 skipped = 1;
3838 continue;
3839 }
3840 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3841 set_bit(R5_Expanded, &sh->dev[j].flags);
3842 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3843 }
3844 if (!skipped) {
3845 set_bit(STRIPE_EXPAND_READY, &sh->state);
3846 set_bit(STRIPE_HANDLE, &sh->state);
3847 }
3848 release_stripe(sh);
3849 }
3850 spin_lock_irq(&conf->device_lock);
fef9c61f 3851 if (mddev->delta_disks < 0)
7a661381 3852 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 3853 else
7a661381 3854 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
3855 spin_unlock_irq(&conf->device_lock);
3856 /* Ok, those stripe are ready. We can start scheduling
3857 * reads on the source stripes.
3858 * The source stripes are determined by mapping the first and last
3859 * block on the destination stripes.
3860 */
52c03291 3861 first_sector =
ec32a2bd 3862 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 3863 1, &dd_idx, NULL);
52c03291 3864 last_sector =
ec32a2bd 3865 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
112bf897 3866 *(new_data_disks) - 1),
911d4ee8 3867 1, &dd_idx, NULL);
58c0fed4
AN
3868 if (last_sector >= mddev->dev_sectors)
3869 last_sector = mddev->dev_sectors - 1;
52c03291 3870 while (first_sector <= last_sector) {
b5663ba4 3871 sh = get_active_stripe(conf, first_sector, 1, 0);
52c03291
N
3872 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3873 set_bit(STRIPE_HANDLE, &sh->state);
3874 release_stripe(sh);
3875 first_sector += STRIPE_SECTORS;
3876 }
c6207277
N
3877 /* If this takes us to the resync_max point where we have to pause,
3878 * then we need to write out the superblock.
3879 */
7a661381 3880 sector_nr += reshape_sectors;
c6207277
N
3881 if (sector_nr >= mddev->resync_max) {
3882 /* Cannot proceed until we've updated the superblock... */
3883 wait_event(conf->wait_for_overlap,
3884 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 3885 mddev->reshape_position = conf->reshape_progress;
c6207277
N
3886 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3887 md_wakeup_thread(mddev->thread);
3888 wait_event(mddev->sb_wait,
3889 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3890 || kthread_should_stop());
3891 spin_lock_irq(&conf->device_lock);
fef9c61f 3892 conf->reshape_safe = mddev->reshape_position;
c6207277
N
3893 spin_unlock_irq(&conf->device_lock);
3894 wake_up(&conf->wait_for_overlap);
3895 }
7a661381 3896 return reshape_sectors;
52c03291
N
3897}
3898
3899/* FIXME go_faster isn't used */
3900static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3901{
3902 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3903 struct stripe_head *sh;
58c0fed4 3904 sector_t max_sector = mddev->dev_sectors;
72626685 3905 int sync_blocks;
16a53ecc
N
3906 int still_degraded = 0;
3907 int i;
1da177e4 3908
72626685 3909 if (sector_nr >= max_sector) {
1da177e4
LT
3910 /* just being told to finish up .. nothing much to do */
3911 unplug_slaves(mddev);
cea9c228 3912
29269553
N
3913 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3914 end_reshape(conf);
3915 return 0;
3916 }
72626685
N
3917
3918 if (mddev->curr_resync < max_sector) /* aborted */
3919 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3920 &sync_blocks, 1);
16a53ecc 3921 else /* completed sync */
72626685
N
3922 conf->fullsync = 0;
3923 bitmap_close_sync(mddev->bitmap);
3924
1da177e4
LT
3925 return 0;
3926 }
ccfcc3c1 3927
52c03291
N
3928 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3929 return reshape_request(mddev, sector_nr, skipped);
f6705578 3930
c6207277
N
3931 /* No need to check resync_max as we never do more than one
3932 * stripe, and as resync_max will always be on a chunk boundary,
3933 * if the check in md_do_sync didn't fire, there is no chance
3934 * of overstepping resync_max here
3935 */
3936
16a53ecc 3937 /* if there is too many failed drives and we are trying
1da177e4
LT
3938 * to resync, then assert that we are finished, because there is
3939 * nothing we can do.
3940 */
3285edf1 3941 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3942 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 3943 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 3944 *skipped = 1;
1da177e4
LT
3945 return rv;
3946 }
72626685 3947 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3948 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3949 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3950 /* we can skip this block, and probably more */
3951 sync_blocks /= STRIPE_SECTORS;
3952 *skipped = 1;
3953 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3954 }
1da177e4 3955
b47490c9
N
3956
3957 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3958
b5663ba4 3959 sh = get_active_stripe(conf, sector_nr, 0, 1);
1da177e4 3960 if (sh == NULL) {
b5663ba4 3961 sh = get_active_stripe(conf, sector_nr, 0, 0);
1da177e4 3962 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3963 * is trying to get access
1da177e4 3964 */
66c006a5 3965 schedule_timeout_uninterruptible(1);
1da177e4 3966 }
16a53ecc
N
3967 /* Need to check if array will still be degraded after recovery/resync
3968 * We don't need to check the 'failed' flag as when that gets set,
3969 * recovery aborts.
3970 */
3971 for (i=0; i<mddev->raid_disks; i++)
3972 if (conf->disks[i].rdev == NULL)
3973 still_degraded = 1;
3974
3975 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3976
3977 spin_lock(&sh->lock);
1da177e4
LT
3978 set_bit(STRIPE_SYNCING, &sh->state);
3979 clear_bit(STRIPE_INSYNC, &sh->state);
3980 spin_unlock(&sh->lock);
3981
df10cfbc
DW
3982 /* wait for any blocked device to be handled */
3983 while(unlikely(!handle_stripe(sh, NULL)))
3984 ;
1da177e4
LT
3985 release_stripe(sh);
3986
3987 return STRIPE_SECTORS;
3988}
3989
46031f9a
RBJ
3990static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3991{
3992 /* We may not be able to submit a whole bio at once as there
3993 * may not be enough stripe_heads available.
3994 * We cannot pre-allocate enough stripe_heads as we may need
3995 * more than exist in the cache (if we allow ever large chunks).
3996 * So we do one stripe head at a time and record in
3997 * ->bi_hw_segments how many have been done.
3998 *
3999 * We *know* that this entire raid_bio is in one chunk, so
4000 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4001 */
4002 struct stripe_head *sh;
911d4ee8 4003 int dd_idx;
46031f9a
RBJ
4004 sector_t sector, logical_sector, last_sector;
4005 int scnt = 0;
4006 int remaining;
4007 int handled = 0;
4008
4009 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4010 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4011 0, &dd_idx, NULL);
46031f9a
RBJ
4012 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4013
4014 for (; logical_sector < last_sector;
387bb173
NB
4015 logical_sector += STRIPE_SECTORS,
4016 sector += STRIPE_SECTORS,
4017 scnt++) {
46031f9a 4018
960e739d 4019 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4020 /* already done this stripe */
4021 continue;
4022
b5663ba4 4023 sh = get_active_stripe(conf, sector, 0, 1);
46031f9a
RBJ
4024
4025 if (!sh) {
4026 /* failed to get a stripe - must wait */
960e739d 4027 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4028 conf->retry_read_aligned = raid_bio;
4029 return handled;
4030 }
4031
4032 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4033 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4034 release_stripe(sh);
960e739d 4035 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4036 conf->retry_read_aligned = raid_bio;
4037 return handled;
4038 }
4039
46031f9a
RBJ
4040 handle_stripe(sh, NULL);
4041 release_stripe(sh);
4042 handled++;
4043 }
4044 spin_lock_irq(&conf->device_lock);
960e739d 4045 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4046 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4047 if (remaining == 0)
4048 bio_endio(raid_bio, 0);
46031f9a
RBJ
4049 if (atomic_dec_and_test(&conf->active_aligned_reads))
4050 wake_up(&conf->wait_for_stripe);
4051 return handled;
4052}
4053
4054
4055
1da177e4
LT
4056/*
4057 * This is our raid5 kernel thread.
4058 *
4059 * We scan the hash table for stripes which can be handled now.
4060 * During the scan, completed stripes are saved for us by the interrupt
4061 * handler, so that they will not have to wait for our next wakeup.
4062 */
6ed3003c 4063static void raid5d(mddev_t *mddev)
1da177e4
LT
4064{
4065 struct stripe_head *sh;
4066 raid5_conf_t *conf = mddev_to_conf(mddev);
4067 int handled;
4068
45b4233c 4069 pr_debug("+++ raid5d active\n");
1da177e4
LT
4070
4071 md_check_recovery(mddev);
1da177e4
LT
4072
4073 handled = 0;
4074 spin_lock_irq(&conf->device_lock);
4075 while (1) {
46031f9a 4076 struct bio *bio;
1da177e4 4077
ae3c20cc 4078 if (conf->seq_flush != conf->seq_write) {
72626685 4079 int seq = conf->seq_flush;
700e432d 4080 spin_unlock_irq(&conf->device_lock);
72626685 4081 bitmap_unplug(mddev->bitmap);
700e432d 4082 spin_lock_irq(&conf->device_lock);
72626685
N
4083 conf->seq_write = seq;
4084 activate_bit_delay(conf);
4085 }
4086
46031f9a
RBJ
4087 while ((bio = remove_bio_from_retry(conf))) {
4088 int ok;
4089 spin_unlock_irq(&conf->device_lock);
4090 ok = retry_aligned_read(conf, bio);
4091 spin_lock_irq(&conf->device_lock);
4092 if (!ok)
4093 break;
4094 handled++;
4095 }
4096
8b3e6cdc
DW
4097 sh = __get_priority_stripe(conf);
4098
c9f21aaf 4099 if (!sh)
1da177e4 4100 break;
1da177e4
LT
4101 spin_unlock_irq(&conf->device_lock);
4102
4103 handled++;
16a53ecc 4104 handle_stripe(sh, conf->spare_page);
1da177e4
LT
4105 release_stripe(sh);
4106
4107 spin_lock_irq(&conf->device_lock);
4108 }
45b4233c 4109 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4110
4111 spin_unlock_irq(&conf->device_lock);
4112
c9f21aaf 4113 async_tx_issue_pending_all();
1da177e4
LT
4114 unplug_slaves(mddev);
4115
45b4233c 4116 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4117}
4118
3f294f4f 4119static ssize_t
007583c9 4120raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4121{
007583c9 4122 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4123 if (conf)
4124 return sprintf(page, "%d\n", conf->max_nr_stripes);
4125 else
4126 return 0;
3f294f4f
N
4127}
4128
4129static ssize_t
007583c9 4130raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4131{
007583c9 4132 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4133 unsigned long new;
b5470dc5
DW
4134 int err;
4135
3f294f4f
N
4136 if (len >= PAGE_SIZE)
4137 return -EINVAL;
96de1e66
N
4138 if (!conf)
4139 return -ENODEV;
3f294f4f 4140
4ef197d8 4141 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4142 return -EINVAL;
4143 if (new <= 16 || new > 32768)
4144 return -EINVAL;
4145 while (new < conf->max_nr_stripes) {
4146 if (drop_one_stripe(conf))
4147 conf->max_nr_stripes--;
4148 else
4149 break;
4150 }
b5470dc5
DW
4151 err = md_allow_write(mddev);
4152 if (err)
4153 return err;
3f294f4f
N
4154 while (new > conf->max_nr_stripes) {
4155 if (grow_one_stripe(conf))
4156 conf->max_nr_stripes++;
4157 else break;
4158 }
4159 return len;
4160}
007583c9 4161
96de1e66
N
4162static struct md_sysfs_entry
4163raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4164 raid5_show_stripe_cache_size,
4165 raid5_store_stripe_cache_size);
3f294f4f 4166
8b3e6cdc
DW
4167static ssize_t
4168raid5_show_preread_threshold(mddev_t *mddev, char *page)
4169{
4170 raid5_conf_t *conf = mddev_to_conf(mddev);
4171 if (conf)
4172 return sprintf(page, "%d\n", conf->bypass_threshold);
4173 else
4174 return 0;
4175}
4176
4177static ssize_t
4178raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4179{
4180 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4181 unsigned long new;
8b3e6cdc
DW
4182 if (len >= PAGE_SIZE)
4183 return -EINVAL;
4184 if (!conf)
4185 return -ENODEV;
4186
4ef197d8 4187 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4188 return -EINVAL;
4ef197d8 4189 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4190 return -EINVAL;
4191 conf->bypass_threshold = new;
4192 return len;
4193}
4194
4195static struct md_sysfs_entry
4196raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4197 S_IRUGO | S_IWUSR,
4198 raid5_show_preread_threshold,
4199 raid5_store_preread_threshold);
4200
3f294f4f 4201static ssize_t
96de1e66 4202stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4203{
007583c9 4204 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4205 if (conf)
4206 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4207 else
4208 return 0;
3f294f4f
N
4209}
4210
96de1e66
N
4211static struct md_sysfs_entry
4212raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4213
007583c9 4214static struct attribute *raid5_attrs[] = {
3f294f4f
N
4215 &raid5_stripecache_size.attr,
4216 &raid5_stripecache_active.attr,
8b3e6cdc 4217 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4218 NULL,
4219};
007583c9
N
4220static struct attribute_group raid5_attrs_group = {
4221 .name = NULL,
4222 .attrs = raid5_attrs,
3f294f4f
N
4223};
4224
80c3a6ce
DW
4225static sector_t
4226raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4227{
4228 raid5_conf_t *conf = mddev_to_conf(mddev);
4229
4230 if (!sectors)
4231 sectors = mddev->dev_sectors;
7ec05478
N
4232 if (!raid_disks) {
4233 /* size is defined by the smallest of previous and new size */
4234 if (conf->raid_disks < conf->previous_raid_disks)
4235 raid_disks = conf->raid_disks;
4236 else
4237 raid_disks = conf->previous_raid_disks;
4238 }
80c3a6ce
DW
4239
4240 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
784052ec 4241 sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
80c3a6ce
DW
4242 return sectors * (raid_disks - conf->max_degraded);
4243}
4244
91adb564 4245static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4246{
4247 raid5_conf_t *conf;
4248 int raid_disk, memory;
4249 mdk_rdev_t *rdev;
4250 struct disk_info *disk;
1da177e4 4251
91adb564
N
4252 if (mddev->new_level != 5
4253 && mddev->new_level != 4
4254 && mddev->new_level != 6) {
16a53ecc 4255 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4256 mdname(mddev), mddev->new_level);
4257 return ERR_PTR(-EIO);
1da177e4 4258 }
91adb564
N
4259 if ((mddev->new_level == 5
4260 && !algorithm_valid_raid5(mddev->new_layout)) ||
4261 (mddev->new_level == 6
4262 && !algorithm_valid_raid6(mddev->new_layout))) {
99c0fb5f 4263 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
91adb564
N
4264 mdname(mddev), mddev->new_layout);
4265 return ERR_PTR(-EIO);
99c0fb5f 4266 }
91adb564
N
4267 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4268 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4269 mdname(mddev), mddev->raid_disks);
4270 return ERR_PTR(-EINVAL);
4bbf3771
N
4271 }
4272
91adb564
N
4273 if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4274 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4275 mddev->new_chunk, mdname(mddev));
4276 return ERR_PTR(-EINVAL);
f6705578
N
4277 }
4278
91adb564
N
4279 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4280 if (conf == NULL)
1da177e4 4281 goto abort;
91adb564
N
4282
4283 conf->raid_disks = mddev->raid_disks;
4284 if (mddev->reshape_position == MaxSector)
4285 conf->previous_raid_disks = mddev->raid_disks;
4286 else
f6705578 4287 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
f6705578
N
4288
4289 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4290 GFP_KERNEL);
4291 if (!conf->disks)
4292 goto abort;
9ffae0cf 4293
1da177e4
LT
4294 conf->mddev = mddev;
4295
fccddba0 4296 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4297 goto abort;
1da177e4 4298
91adb564 4299 if (mddev->new_level == 6) {
16a53ecc
N
4300 conf->spare_page = alloc_page(GFP_KERNEL);
4301 if (!conf->spare_page)
4302 goto abort;
4303 }
1da177e4
LT
4304 spin_lock_init(&conf->device_lock);
4305 init_waitqueue_head(&conf->wait_for_stripe);
4306 init_waitqueue_head(&conf->wait_for_overlap);
4307 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4308 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4309 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4310 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4311 INIT_LIST_HEAD(&conf->inactive_list);
4312 atomic_set(&conf->active_stripes, 0);
4313 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4314 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4315 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4316
45b4233c 4317 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4318
159ec1fc 4319 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4320 raid_disk = rdev->raid_disk;
f6705578 4321 if (raid_disk >= conf->raid_disks
1da177e4
LT
4322 || raid_disk < 0)
4323 continue;
4324 disk = conf->disks + raid_disk;
4325
4326 disk->rdev = rdev;
4327
b2d444d7 4328 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4329 char b[BDEVNAME_SIZE];
4330 printk(KERN_INFO "raid5: device %s operational as raid"
4331 " disk %d\n", bdevname(rdev->bdev,b),
4332 raid_disk);
8c2e870a
NB
4333 } else
4334 /* Cannot rely on bitmap to complete recovery */
4335 conf->fullsync = 1;
1da177e4
LT
4336 }
4337
91adb564
N
4338 conf->chunk_size = mddev->new_chunk;
4339 conf->level = mddev->new_level;
16a53ecc
N
4340 if (conf->level == 6)
4341 conf->max_degraded = 2;
4342 else
4343 conf->max_degraded = 1;
91adb564 4344 conf->algorithm = mddev->new_layout;
1da177e4 4345 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4346 conf->reshape_progress = mddev->reshape_position;
e183eaed 4347 if (conf->reshape_progress != MaxSector) {
784052ec 4348 conf->prev_chunk = mddev->chunk_size;
e183eaed
N
4349 conf->prev_algo = mddev->layout;
4350 }
1da177e4 4351
91adb564
N
4352 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4353 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4354 if (grow_stripes(conf, conf->max_nr_stripes)) {
4355 printk(KERN_ERR
4356 "raid5: couldn't allocate %dkB for buffers\n", memory);
4357 goto abort;
4358 } else
4359 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4360 memory, mdname(mddev));
1da177e4 4361
91adb564
N
4362 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4363 if (!conf->thread) {
4364 printk(KERN_ERR
4365 "raid5: couldn't allocate thread for %s\n",
4366 mdname(mddev));
16a53ecc
N
4367 goto abort;
4368 }
91adb564
N
4369
4370 return conf;
4371
4372 abort:
4373 if (conf) {
4374 shrink_stripes(conf);
4375 safe_put_page(conf->spare_page);
4376 kfree(conf->disks);
4377 kfree(conf->stripe_hashtbl);
4378 kfree(conf);
4379 return ERR_PTR(-EIO);
4380 } else
4381 return ERR_PTR(-ENOMEM);
4382}
4383
4384static int run(mddev_t *mddev)
4385{
4386 raid5_conf_t *conf;
4387 int working_disks = 0;
4388 mdk_rdev_t *rdev;
4389
4390 if (mddev->reshape_position != MaxSector) {
4391 /* Check that we can continue the reshape.
4392 * Currently only disks can change, it must
4393 * increase, and we must be past the point where
4394 * a stripe over-writes itself
4395 */
4396 sector_t here_new, here_old;
4397 int old_disks;
18b00334 4398 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564
N
4399
4400 if (mddev->new_level != mddev->level ||
4401 mddev->new_layout != mddev->layout ||
4402 mddev->new_chunk != mddev->chunk_size) {
4403 printk(KERN_ERR "raid5: %s: unsupported reshape "
4404 "required - aborting.\n",
4405 mdname(mddev));
4406 return -EINVAL;
4407 }
91adb564
N
4408 old_disks = mddev->raid_disks - mddev->delta_disks;
4409 /* reshape_position must be on a new-stripe boundary, and one
4410 * further up in new geometry must map after here in old
4411 * geometry.
4412 */
4413 here_new = mddev->reshape_position;
784052ec 4414 if (sector_div(here_new, (mddev->new_chunk>>9)*
91adb564
N
4415 (mddev->raid_disks - max_degraded))) {
4416 printk(KERN_ERR "raid5: reshape_position not "
4417 "on a stripe boundary\n");
4418 return -EINVAL;
4419 }
4420 /* here_new is the stripe we will write to */
4421 here_old = mddev->reshape_position;
4422 sector_div(here_old, (mddev->chunk_size>>9)*
4423 (old_disks-max_degraded));
4424 /* here_old is the first stripe that we might need to read
4425 * from */
4426 if (here_new >= here_old) {
4427 /* Reading from the same stripe as writing to - bad */
4428 printk(KERN_ERR "raid5: reshape_position too early for "
4429 "auto-recovery - aborting.\n");
4430 return -EINVAL;
4431 }
4432 printk(KERN_INFO "raid5: reshape will continue\n");
4433 /* OK, we should be able to continue; */
4434 } else {
4435 BUG_ON(mddev->level != mddev->new_level);
4436 BUG_ON(mddev->layout != mddev->new_layout);
4437 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4438 BUG_ON(mddev->delta_disks != 0);
1da177e4 4439 }
91adb564 4440
245f46c2
N
4441 if (mddev->private == NULL)
4442 conf = setup_conf(mddev);
4443 else
4444 conf = mddev->private;
4445
91adb564
N
4446 if (IS_ERR(conf))
4447 return PTR_ERR(conf);
4448
4449 mddev->thread = conf->thread;
4450 conf->thread = NULL;
4451 mddev->private = conf;
4452
4453 /*
4454 * 0 for a fully functional array, 1 or 2 for a degraded array.
4455 */
4456 list_for_each_entry(rdev, &mddev->disks, same_set)
4457 if (rdev->raid_disk >= 0 &&
4458 test_bit(In_sync, &rdev->flags))
4459 working_disks++;
4460
4461 mddev->degraded = conf->raid_disks - working_disks;
4462
16a53ecc 4463 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4464 printk(KERN_ERR "raid5: not enough operational devices for %s"
4465 " (%d/%d failed)\n",
02c2de8c 4466 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4467 goto abort;
4468 }
4469
91adb564
N
4470 /* device size must be a multiple of chunk size */
4471 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4472 mddev->resync_max_sectors = mddev->dev_sectors;
4473
16a53ecc 4474 if (mddev->degraded > 0 &&
1da177e4 4475 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4476 if (mddev->ok_start_degraded)
4477 printk(KERN_WARNING
4478 "raid5: starting dirty degraded array: %s"
4479 "- data corruption possible.\n",
4480 mdname(mddev));
4481 else {
4482 printk(KERN_ERR
4483 "raid5: cannot start dirty degraded array for %s\n",
4484 mdname(mddev));
4485 goto abort;
4486 }
1da177e4
LT
4487 }
4488
1da177e4
LT
4489 if (mddev->degraded == 0)
4490 printk("raid5: raid level %d set %s active with %d out of %d"
e183eaed
N
4491 " devices, algorithm %d\n", conf->level, mdname(mddev),
4492 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4493 mddev->new_layout);
1da177e4
LT
4494 else
4495 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4496 " out of %d devices, algorithm %d\n", conf->level,
4497 mdname(mddev), mddev->raid_disks - mddev->degraded,
e183eaed 4498 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4499
4500 print_raid5_conf(conf);
4501
fef9c61f 4502 if (conf->reshape_progress != MaxSector) {
f6705578 4503 printk("...ok start reshape thread\n");
fef9c61f 4504 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4505 atomic_set(&conf->reshape_stripes, 0);
4506 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4507 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4508 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4509 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4510 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4511 "%s_reshape");
f6705578
N
4512 }
4513
1da177e4 4514 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4515 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4516 */
4517 {
16a53ecc
N
4518 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4519 int stripe = data_disks *
8932c2e0 4520 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4521 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4522 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4523 }
4524
4525 /* Ok, everything is just fine now */
5e55e2f5
N
4526 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4527 printk(KERN_WARNING
4528 "raid5: failed to create sysfs attributes for %s\n",
4529 mdname(mddev));
7a5febe9 4530
91adb564
N
4531 mddev->queue->queue_lock = &conf->device_lock;
4532
7a5febe9 4533 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4534 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4535 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4536
1f403624 4537 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4538
23032a0e
RBJ
4539 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4540
1da177e4
LT
4541 return 0;
4542abort:
e0cf8f04 4543 md_unregister_thread(mddev->thread);
91adb564 4544 mddev->thread = NULL;
1da177e4 4545 if (conf) {
91adb564 4546 shrink_stripes(conf);
1da177e4 4547 print_raid5_conf(conf);
16a53ecc 4548 safe_put_page(conf->spare_page);
b55e6bfc 4549 kfree(conf->disks);
fccddba0 4550 kfree(conf->stripe_hashtbl);
1da177e4
LT
4551 kfree(conf);
4552 }
4553 mddev->private = NULL;
4554 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4555 return -EIO;
4556}
4557
4558
4559
3f294f4f 4560static int stop(mddev_t *mddev)
1da177e4
LT
4561{
4562 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4563
4564 md_unregister_thread(mddev->thread);
4565 mddev->thread = NULL;
4566 shrink_stripes(conf);
fccddba0 4567 kfree(conf->stripe_hashtbl);
041ae52e 4568 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4569 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4570 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4571 kfree(conf->disks);
96de1e66 4572 kfree(conf);
1da177e4
LT
4573 mddev->private = NULL;
4574 return 0;
4575}
4576
45b4233c 4577#ifdef DEBUG
d710e138 4578static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4579{
4580 int i;
4581
16a53ecc
N
4582 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4583 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4584 seq_printf(seq, "sh %llu, count %d.\n",
4585 (unsigned long long)sh->sector, atomic_read(&sh->count));
4586 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4587 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4588 seq_printf(seq, "(cache%d: %p %ld) ",
4589 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4590 }
16a53ecc 4591 seq_printf(seq, "\n");
1da177e4
LT
4592}
4593
d710e138 4594static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4595{
4596 struct stripe_head *sh;
fccddba0 4597 struct hlist_node *hn;
1da177e4
LT
4598 int i;
4599
4600 spin_lock_irq(&conf->device_lock);
4601 for (i = 0; i < NR_HASH; i++) {
fccddba0 4602 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4603 if (sh->raid_conf != conf)
4604 continue;
16a53ecc 4605 print_sh(seq, sh);
1da177e4
LT
4606 }
4607 }
4608 spin_unlock_irq(&conf->device_lock);
4609}
4610#endif
4611
d710e138 4612static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
4613{
4614 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4615 int i;
4616
4617 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4618 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4619 for (i = 0; i < conf->raid_disks; i++)
4620 seq_printf (seq, "%s",
4621 conf->disks[i].rdev &&
b2d444d7 4622 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4623 seq_printf (seq, "]");
45b4233c 4624#ifdef DEBUG
16a53ecc
N
4625 seq_printf (seq, "\n");
4626 printall(seq, conf);
1da177e4
LT
4627#endif
4628}
4629
4630static void print_raid5_conf (raid5_conf_t *conf)
4631{
4632 int i;
4633 struct disk_info *tmp;
4634
4635 printk("RAID5 conf printout:\n");
4636 if (!conf) {
4637 printk("(conf==NULL)\n");
4638 return;
4639 }
02c2de8c
N
4640 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4641 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4642
4643 for (i = 0; i < conf->raid_disks; i++) {
4644 char b[BDEVNAME_SIZE];
4645 tmp = conf->disks + i;
4646 if (tmp->rdev)
4647 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4648 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4649 bdevname(tmp->rdev->bdev,b));
4650 }
4651}
4652
4653static int raid5_spare_active(mddev_t *mddev)
4654{
4655 int i;
4656 raid5_conf_t *conf = mddev->private;
4657 struct disk_info *tmp;
4658
4659 for (i = 0; i < conf->raid_disks; i++) {
4660 tmp = conf->disks + i;
4661 if (tmp->rdev
b2d444d7 4662 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4663 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4664 unsigned long flags;
4665 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4666 mddev->degraded--;
c04be0aa 4667 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4668 }
4669 }
4670 print_raid5_conf(conf);
4671 return 0;
4672}
4673
4674static int raid5_remove_disk(mddev_t *mddev, int number)
4675{
4676 raid5_conf_t *conf = mddev->private;
4677 int err = 0;
4678 mdk_rdev_t *rdev;
4679 struct disk_info *p = conf->disks + number;
4680
4681 print_raid5_conf(conf);
4682 rdev = p->rdev;
4683 if (rdev) {
ec32a2bd
N
4684 if (number >= conf->raid_disks &&
4685 conf->reshape_progress == MaxSector)
4686 clear_bit(In_sync, &rdev->flags);
4687
b2d444d7 4688 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4689 atomic_read(&rdev->nr_pending)) {
4690 err = -EBUSY;
4691 goto abort;
4692 }
dfc70645
N
4693 /* Only remove non-faulty devices if recovery
4694 * isn't possible.
4695 */
4696 if (!test_bit(Faulty, &rdev->flags) &&
ec32a2bd
N
4697 mddev->degraded <= conf->max_degraded &&
4698 number < conf->raid_disks) {
dfc70645
N
4699 err = -EBUSY;
4700 goto abort;
4701 }
1da177e4 4702 p->rdev = NULL;
fbd568a3 4703 synchronize_rcu();
1da177e4
LT
4704 if (atomic_read(&rdev->nr_pending)) {
4705 /* lost the race, try later */
4706 err = -EBUSY;
4707 p->rdev = rdev;
4708 }
4709 }
4710abort:
4711
4712 print_raid5_conf(conf);
4713 return err;
4714}
4715
4716static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4717{
4718 raid5_conf_t *conf = mddev->private;
199050ea 4719 int err = -EEXIST;
1da177e4
LT
4720 int disk;
4721 struct disk_info *p;
6c2fce2e
NB
4722 int first = 0;
4723 int last = conf->raid_disks - 1;
1da177e4 4724
16a53ecc 4725 if (mddev->degraded > conf->max_degraded)
1da177e4 4726 /* no point adding a device */
199050ea 4727 return -EINVAL;
1da177e4 4728
6c2fce2e
NB
4729 if (rdev->raid_disk >= 0)
4730 first = last = rdev->raid_disk;
1da177e4
LT
4731
4732 /*
16a53ecc
N
4733 * find the disk ... but prefer rdev->saved_raid_disk
4734 * if possible.
1da177e4 4735 */
16a53ecc 4736 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4737 rdev->saved_raid_disk >= first &&
16a53ecc
N
4738 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4739 disk = rdev->saved_raid_disk;
4740 else
6c2fce2e
NB
4741 disk = first;
4742 for ( ; disk <= last ; disk++)
1da177e4 4743 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4744 clear_bit(In_sync, &rdev->flags);
1da177e4 4745 rdev->raid_disk = disk;
199050ea 4746 err = 0;
72626685
N
4747 if (rdev->saved_raid_disk != disk)
4748 conf->fullsync = 1;
d6065f7b 4749 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4750 break;
4751 }
4752 print_raid5_conf(conf);
199050ea 4753 return err;
1da177e4
LT
4754}
4755
4756static int raid5_resize(mddev_t *mddev, sector_t sectors)
4757{
4758 /* no resync is happening, and there is enough space
4759 * on all devices, so we can resize.
4760 * We need to make sure resync covers any new space.
4761 * If the array is shrinking we should possibly wait until
4762 * any io in the removed space completes, but it hardly seems
4763 * worth it.
4764 */
4765 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
1f403624
DW
4766 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4767 mddev->raid_disks));
b522adcd
DW
4768 if (mddev->array_sectors >
4769 raid5_size(mddev, sectors, mddev->raid_disks))
4770 return -EINVAL;
f233ea5c 4771 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 4772 mddev->changed = 1;
58c0fed4
AN
4773 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4774 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
4775 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4776 }
58c0fed4 4777 mddev->dev_sectors = sectors;
4b5c7ae8 4778 mddev->resync_max_sectors = sectors;
1da177e4
LT
4779 return 0;
4780}
4781
29269553 4782#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4783static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4784{
4785 raid5_conf_t *conf = mddev_to_conf(mddev);
29269553 4786
63c70c4f 4787 if (mddev->delta_disks == 0)
29269553 4788 return 0; /* nothing to do */
dba034ee
N
4789 if (mddev->bitmap)
4790 /* Cannot grow a bitmap yet */
4791 return -EBUSY;
ec32a2bd
N
4792 if (mddev->degraded > conf->max_degraded)
4793 return -EINVAL;
4794 if (mddev->delta_disks < 0) {
4795 /* We might be able to shrink, but the devices must
4796 * be made bigger first.
4797 * For raid6, 4 is the minimum size.
4798 * Otherwise 2 is the minimum
4799 */
4800 int min = 2;
4801 if (mddev->level == 6)
4802 min = 4;
4803 if (mddev->raid_disks + mddev->delta_disks < min)
4804 return -EINVAL;
4805 }
29269553
N
4806
4807 /* Can only proceed if there are plenty of stripe_heads.
4808 * We need a minimum of one full stripe,, and for sensible progress
4809 * it is best to have about 4 times that.
4810 * If we require 4 times, then the default 256 4K stripe_heads will
4811 * allow for chunk sizes up to 256K, which is probably OK.
4812 * If the chunk size is greater, user-space should request more
4813 * stripe_heads first.
4814 */
63c70c4f
N
4815 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4816 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553 4817 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
784052ec
N
4818 (max(mddev->chunk_size, mddev->new_chunk)
4819 / STRIPE_SIZE)*4);
29269553
N
4820 return -ENOSPC;
4821 }
4822
ec32a2bd 4823 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
4824}
4825
4826static int raid5_start_reshape(mddev_t *mddev)
4827{
4828 raid5_conf_t *conf = mddev_to_conf(mddev);
4829 mdk_rdev_t *rdev;
63c70c4f
N
4830 int spares = 0;
4831 int added_devices = 0;
c04be0aa 4832 unsigned long flags;
63c70c4f 4833
f416885e 4834 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4835 return -EBUSY;
4836
159ec1fc 4837 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4838 if (rdev->raid_disk < 0 &&
4839 !test_bit(Faulty, &rdev->flags))
4840 spares++;
63c70c4f 4841
f416885e 4842 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4843 /* Not enough devices even to make a degraded array
4844 * of that size
4845 */
4846 return -EINVAL;
4847
ec32a2bd
N
4848 /* Refuse to reduce size of the array. Any reductions in
4849 * array size must be through explicit setting of array_size
4850 * attribute.
4851 */
4852 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4853 < mddev->array_sectors) {
4854 printk(KERN_ERR "md: %s: array size must be reduced "
4855 "before number of disks\n", mdname(mddev));
4856 return -EINVAL;
4857 }
4858
f6705578 4859 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4860 spin_lock_irq(&conf->device_lock);
4861 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4862 conf->raid_disks += mddev->delta_disks;
fef9c61f
N
4863 if (mddev->delta_disks < 0)
4864 conf->reshape_progress = raid5_size(mddev, 0, 0);
4865 else
4866 conf->reshape_progress = 0;
4867 conf->reshape_safe = conf->reshape_progress;
86b42c71 4868 conf->generation++;
29269553
N
4869 spin_unlock_irq(&conf->device_lock);
4870
4871 /* Add some new drives, as many as will fit.
4872 * We know there are enough to make the newly sized array work.
4873 */
159ec1fc 4874 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4875 if (rdev->raid_disk < 0 &&
4876 !test_bit(Faulty, &rdev->flags)) {
199050ea 4877 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4878 char nm[20];
4879 set_bit(In_sync, &rdev->flags);
29269553 4880 added_devices++;
5fd6c1dc 4881 rdev->recovery_offset = 0;
29269553 4882 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4883 if (sysfs_create_link(&mddev->kobj,
4884 &rdev->kobj, nm))
4885 printk(KERN_WARNING
4886 "raid5: failed to create "
4887 " link %s for %s\n",
4888 nm, mdname(mddev));
29269553
N
4889 } else
4890 break;
4891 }
4892
ec32a2bd
N
4893 if (mddev->delta_disks > 0) {
4894 spin_lock_irqsave(&conf->device_lock, flags);
4895 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4896 - added_devices;
4897 spin_unlock_irqrestore(&conf->device_lock, flags);
4898 }
63c70c4f 4899 mddev->raid_disks = conf->raid_disks;
f6705578 4900 mddev->reshape_position = 0;
850b2b42 4901 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4902
29269553
N
4903 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4904 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4905 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4906 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4907 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4908 "%s_reshape");
4909 if (!mddev->sync_thread) {
4910 mddev->recovery = 0;
4911 spin_lock_irq(&conf->device_lock);
4912 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 4913 conf->reshape_progress = MaxSector;
29269553
N
4914 spin_unlock_irq(&conf->device_lock);
4915 return -EAGAIN;
4916 }
4917 md_wakeup_thread(mddev->sync_thread);
4918 md_new_event(mddev);
4919 return 0;
4920}
4921#endif
4922
ec32a2bd
N
4923/* This is called from the reshape thread and should make any
4924 * changes needed in 'conf'
4925 */
29269553
N
4926static void end_reshape(raid5_conf_t *conf)
4927{
29269553 4928
f6705578 4929 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 4930
f6705578 4931 spin_lock_irq(&conf->device_lock);
cea9c228 4932 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 4933 conf->reshape_progress = MaxSector;
f6705578 4934 spin_unlock_irq(&conf->device_lock);
16a53ecc
N
4935
4936 /* read-ahead size must cover two whole stripes, which is
4937 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4938 */
4939 {
cea9c228
N
4940 int data_disks = conf->raid_disks - conf->max_degraded;
4941 int stripe = data_disks * (conf->chunk_size
4942 / PAGE_SIZE);
16a53ecc
N
4943 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4944 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4945 }
29269553 4946 }
29269553
N
4947}
4948
ec32a2bd
N
4949/* This is called from the raid5d thread with mddev_lock held.
4950 * It makes config changes to the device.
4951 */
cea9c228
N
4952static void raid5_finish_reshape(mddev_t *mddev)
4953{
4954 struct block_device *bdev;
4955
4956 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4957
ec32a2bd
N
4958 if (mddev->delta_disks > 0) {
4959 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4960 set_capacity(mddev->gendisk, mddev->array_sectors);
4961 mddev->changed = 1;
4962
4963 bdev = bdget_disk(mddev->gendisk, 0);
4964 if (bdev) {
4965 mutex_lock(&bdev->bd_inode->i_mutex);
4966 i_size_write(bdev->bd_inode,
4967 (loff_t)mddev->array_sectors << 9);
4968 mutex_unlock(&bdev->bd_inode->i_mutex);
4969 bdput(bdev);
4970 }
4971 } else {
4972 int d;
4973 raid5_conf_t *conf = mddev_to_conf(mddev);
4974 mddev->degraded = conf->raid_disks;
4975 for (d = 0; d < conf->raid_disks ; d++)
4976 if (conf->disks[d].rdev &&
4977 test_bit(In_sync,
4978 &conf->disks[d].rdev->flags))
4979 mddev->degraded--;
4980 for (d = conf->raid_disks ;
4981 d < conf->raid_disks - mddev->delta_disks;
4982 d++)
4983 raid5_remove_disk(mddev, d);
cea9c228 4984 }
ec32a2bd
N
4985 mddev->reshape_position = MaxSector;
4986 mddev->delta_disks = 0;
cea9c228
N
4987 }
4988}
4989
72626685
N
4990static void raid5_quiesce(mddev_t *mddev, int state)
4991{
4992 raid5_conf_t *conf = mddev_to_conf(mddev);
4993
4994 switch(state) {
e464eafd
N
4995 case 2: /* resume for a suspend */
4996 wake_up(&conf->wait_for_overlap);
4997 break;
4998
72626685
N
4999 case 1: /* stop all writes */
5000 spin_lock_irq(&conf->device_lock);
5001 conf->quiesce = 1;
5002 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5003 atomic_read(&conf->active_stripes) == 0 &&
5004 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
5005 conf->device_lock, /* nothing */);
5006 spin_unlock_irq(&conf->device_lock);
5007 break;
5008
5009 case 0: /* re-enable writes */
5010 spin_lock_irq(&conf->device_lock);
5011 conf->quiesce = 0;
5012 wake_up(&conf->wait_for_stripe);
e464eafd 5013 wake_up(&conf->wait_for_overlap);
72626685
N
5014 spin_unlock_irq(&conf->device_lock);
5015 break;
5016 }
72626685 5017}
b15c2e57 5018
d562b0c4
N
5019
5020static void *raid5_takeover_raid1(mddev_t *mddev)
5021{
5022 int chunksect;
5023
5024 if (mddev->raid_disks != 2 ||
5025 mddev->degraded > 1)
5026 return ERR_PTR(-EINVAL);
5027
5028 /* Should check if there are write-behind devices? */
5029
5030 chunksect = 64*2; /* 64K by default */
5031
5032 /* The array must be an exact multiple of chunksize */
5033 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5034 chunksect >>= 1;
5035
5036 if ((chunksect<<9) < STRIPE_SIZE)
5037 /* array size does not allow a suitable chunk size */
5038 return ERR_PTR(-EINVAL);
5039
5040 mddev->new_level = 5;
5041 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5042 mddev->new_chunk = chunksect << 9;
5043
5044 return setup_conf(mddev);
5045}
5046
fc9739c6
N
5047static void *raid5_takeover_raid6(mddev_t *mddev)
5048{
5049 int new_layout;
5050
5051 switch (mddev->layout) {
5052 case ALGORITHM_LEFT_ASYMMETRIC_6:
5053 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5054 break;
5055 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5056 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5057 break;
5058 case ALGORITHM_LEFT_SYMMETRIC_6:
5059 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5060 break;
5061 case ALGORITHM_RIGHT_SYMMETRIC_6:
5062 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5063 break;
5064 case ALGORITHM_PARITY_0_6:
5065 new_layout = ALGORITHM_PARITY_0;
5066 break;
5067 case ALGORITHM_PARITY_N:
5068 new_layout = ALGORITHM_PARITY_N;
5069 break;
5070 default:
5071 return ERR_PTR(-EINVAL);
5072 }
5073 mddev->new_level = 5;
5074 mddev->new_layout = new_layout;
5075 mddev->delta_disks = -1;
5076 mddev->raid_disks -= 1;
5077 return setup_conf(mddev);
5078}
5079
d562b0c4 5080
b3546035
N
5081static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5082{
5083 /* Currently the layout and chunk size can only be changed
5084 * for a 2-drive raid array, as in that case no data shuffling
5085 * is required.
5086 * Later we might validate these and set new_* so a reshape
5087 * can complete the change.
5088 */
5089 raid5_conf_t *conf = mddev_to_conf(mddev);
5090
5091 if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5092 return -EINVAL;
5093 if (new_chunk > 0) {
5094 if (new_chunk & (new_chunk-1))
5095 /* not a power of 2 */
5096 return -EINVAL;
5097 if (new_chunk < PAGE_SIZE)
5098 return -EINVAL;
5099 if (mddev->array_sectors & ((new_chunk>>9)-1))
5100 /* not factor of array size */
5101 return -EINVAL;
5102 }
5103
5104 /* They look valid */
5105
5106 if (mddev->raid_disks != 2)
5107 return -EINVAL;
5108
5109 if (new_layout >= 0) {
5110 conf->algorithm = new_layout;
5111 mddev->layout = mddev->new_layout = new_layout;
5112 }
5113 if (new_chunk > 0) {
5114 conf->chunk_size = new_chunk;
5115 mddev->chunk_size = mddev->new_chunk = new_chunk;
5116 }
5117 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5118 md_wakeup_thread(mddev->thread);
5119 return 0;
5120}
5121
d562b0c4
N
5122static void *raid5_takeover(mddev_t *mddev)
5123{
5124 /* raid5 can take over:
5125 * raid0 - if all devices are the same - make it a raid4 layout
5126 * raid1 - if there are two drives. We need to know the chunk size
5127 * raid4 - trivial - just use a raid4 layout.
5128 * raid6 - Providing it is a *_6 layout
5129 *
5130 * For now, just do raid1
5131 */
5132
5133 if (mddev->level == 1)
5134 return raid5_takeover_raid1(mddev);
e9d4758f
N
5135 if (mddev->level == 4) {
5136 mddev->new_layout = ALGORITHM_PARITY_N;
5137 mddev->new_level = 5;
5138 return setup_conf(mddev);
5139 }
fc9739c6
N
5140 if (mddev->level == 6)
5141 return raid5_takeover_raid6(mddev);
d562b0c4
N
5142
5143 return ERR_PTR(-EINVAL);
5144}
5145
5146
245f46c2
N
5147static struct mdk_personality raid5_personality;
5148
5149static void *raid6_takeover(mddev_t *mddev)
5150{
5151 /* Currently can only take over a raid5. We map the
5152 * personality to an equivalent raid6 personality
5153 * with the Q block at the end.
5154 */
5155 int new_layout;
5156
5157 if (mddev->pers != &raid5_personality)
5158 return ERR_PTR(-EINVAL);
5159 if (mddev->degraded > 1)
5160 return ERR_PTR(-EINVAL);
5161 if (mddev->raid_disks > 253)
5162 return ERR_PTR(-EINVAL);
5163 if (mddev->raid_disks < 3)
5164 return ERR_PTR(-EINVAL);
5165
5166 switch (mddev->layout) {
5167 case ALGORITHM_LEFT_ASYMMETRIC:
5168 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5169 break;
5170 case ALGORITHM_RIGHT_ASYMMETRIC:
5171 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5172 break;
5173 case ALGORITHM_LEFT_SYMMETRIC:
5174 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5175 break;
5176 case ALGORITHM_RIGHT_SYMMETRIC:
5177 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5178 break;
5179 case ALGORITHM_PARITY_0:
5180 new_layout = ALGORITHM_PARITY_0_6;
5181 break;
5182 case ALGORITHM_PARITY_N:
5183 new_layout = ALGORITHM_PARITY_N;
5184 break;
5185 default:
5186 return ERR_PTR(-EINVAL);
5187 }
5188 mddev->new_level = 6;
5189 mddev->new_layout = new_layout;
5190 mddev->delta_disks = 1;
5191 mddev->raid_disks += 1;
5192 return setup_conf(mddev);
5193}
5194
5195
16a53ecc
N
5196static struct mdk_personality raid6_personality =
5197{
5198 .name = "raid6",
5199 .level = 6,
5200 .owner = THIS_MODULE,
5201 .make_request = make_request,
5202 .run = run,
5203 .stop = stop,
5204 .status = status,
5205 .error_handler = error,
5206 .hot_add_disk = raid5_add_disk,
5207 .hot_remove_disk= raid5_remove_disk,
5208 .spare_active = raid5_spare_active,
5209 .sync_request = sync_request,
5210 .resize = raid5_resize,
80c3a6ce 5211 .size = raid5_size,
f416885e
N
5212#ifdef CONFIG_MD_RAID5_RESHAPE
5213 .check_reshape = raid5_check_reshape,
5214 .start_reshape = raid5_start_reshape,
cea9c228 5215 .finish_reshape = raid5_finish_reshape,
f416885e 5216#endif
16a53ecc 5217 .quiesce = raid5_quiesce,
245f46c2 5218 .takeover = raid6_takeover,
16a53ecc 5219};
2604b703 5220static struct mdk_personality raid5_personality =
1da177e4
LT
5221{
5222 .name = "raid5",
2604b703 5223 .level = 5,
1da177e4
LT
5224 .owner = THIS_MODULE,
5225 .make_request = make_request,
5226 .run = run,
5227 .stop = stop,
5228 .status = status,
5229 .error_handler = error,
5230 .hot_add_disk = raid5_add_disk,
5231 .hot_remove_disk= raid5_remove_disk,
5232 .spare_active = raid5_spare_active,
5233 .sync_request = sync_request,
5234 .resize = raid5_resize,
80c3a6ce 5235 .size = raid5_size,
29269553 5236#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
5237 .check_reshape = raid5_check_reshape,
5238 .start_reshape = raid5_start_reshape,
cea9c228 5239 .finish_reshape = raid5_finish_reshape,
29269553 5240#endif
72626685 5241 .quiesce = raid5_quiesce,
d562b0c4 5242 .takeover = raid5_takeover,
b3546035 5243 .reconfig = raid5_reconfig,
1da177e4
LT
5244};
5245
2604b703 5246static struct mdk_personality raid4_personality =
1da177e4 5247{
2604b703
N
5248 .name = "raid4",
5249 .level = 4,
5250 .owner = THIS_MODULE,
5251 .make_request = make_request,
5252 .run = run,
5253 .stop = stop,
5254 .status = status,
5255 .error_handler = error,
5256 .hot_add_disk = raid5_add_disk,
5257 .hot_remove_disk= raid5_remove_disk,
5258 .spare_active = raid5_spare_active,
5259 .sync_request = sync_request,
5260 .resize = raid5_resize,
80c3a6ce 5261 .size = raid5_size,
3d37890b
N
5262#ifdef CONFIG_MD_RAID5_RESHAPE
5263 .check_reshape = raid5_check_reshape,
5264 .start_reshape = raid5_start_reshape,
cea9c228 5265 .finish_reshape = raid5_finish_reshape,
3d37890b 5266#endif
2604b703
N
5267 .quiesce = raid5_quiesce,
5268};
5269
5270static int __init raid5_init(void)
5271{
16a53ecc 5272 register_md_personality(&raid6_personality);
2604b703
N
5273 register_md_personality(&raid5_personality);
5274 register_md_personality(&raid4_personality);
5275 return 0;
1da177e4
LT
5276}
5277
2604b703 5278static void raid5_exit(void)
1da177e4 5279{
16a53ecc 5280 unregister_md_personality(&raid6_personality);
2604b703
N
5281 unregister_md_personality(&raid5_personality);
5282 unregister_md_personality(&raid4_personality);
1da177e4
LT
5283}
5284
5285module_init(raid5_init);
5286module_exit(raid5_exit);
5287MODULE_LICENSE("GPL");
5288MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5289MODULE_ALIAS("md-raid5");
5290MODULE_ALIAS("md-raid4");
2604b703
N
5291MODULE_ALIAS("md-level-5");
5292MODULE_ALIAS("md-level-4");
16a53ecc
N
5293MODULE_ALIAS("md-personality-8"); /* RAID6 */
5294MODULE_ALIAS("md-raid6");
5295MODULE_ALIAS("md-level-6");
5296
5297/* This used to be two separate modules, they were: */
5298MODULE_ALIAS("raid5");
5299MODULE_ALIAS("raid6");