]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid5.c
Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[net-next-2.6.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
43b2e5d8 54#include "md.h"
bff61975 55#include "raid5.h"
54071b38 56#include "raid0.h"
ef740c37 57#include "bitmap.h"
72626685 58
1da177e4
LT
59/*
60 * Stripe cache
61 */
62
63#define NR_STRIPES 256
64#define STRIPE_SIZE PAGE_SIZE
65#define STRIPE_SHIFT (PAGE_SHIFT - 9)
66#define STRIPE_SECTORS (STRIPE_SIZE>>9)
67#define IO_THRESHOLD 1
8b3e6cdc 68#define BYPASS_THRESHOLD 1
fccddba0 69#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
70#define HASH_MASK (NR_HASH - 1)
71
fccddba0 72#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
73
74/* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
82 */
83#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84/*
85 * The following can be used to debug the driver
86 */
1da177e4
LT
87#define RAID5_PARANOIA 1
88#if RAID5_PARANOIA && defined(CONFIG_SMP)
89# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90#else
91# define CHECK_DEVLOCK()
92#endif
93
45b4233c 94#ifdef DEBUG
1da177e4
LT
95#define inline
96#define __inline__
97#endif
98
6be9d494
BS
99#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
960e739d 101/*
5b99c2ff
JA
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
104 */
105static inline int raid5_bi_phys_segments(struct bio *bio)
106{
5b99c2ff 107 return bio->bi_phys_segments & 0xffff;
960e739d
JA
108}
109
110static inline int raid5_bi_hw_segments(struct bio *bio)
111{
5b99c2ff 112 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
113}
114
115static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116{
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
119}
120
121static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122{
123 unsigned short val = raid5_bi_hw_segments(bio);
124
125 --val;
5b99c2ff 126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
127 return val;
128}
129
130static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131{
5b99c2ff 132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
133}
134
d0dabf7e
N
135/* Find first data disk in a raid6 stripe */
136static inline int raid6_d0(struct stripe_head *sh)
137{
67cc2b81
N
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
d0dabf7e
N
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
146}
16a53ecc
N
147static inline int raid6_next_disk(int disk, int raid_disks)
148{
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
151}
a4456856 152
d0dabf7e
N
153/* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
157 */
67cc2b81
N
158static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
d0dabf7e 160{
6629542e 161 int slot = *count;
67cc2b81 162
e4424fee 163 if (sh->ddf_layout)
6629542e 164 (*count)++;
d0dabf7e 165 if (idx == sh->pd_idx)
67cc2b81 166 return syndrome_disks;
d0dabf7e 167 if (idx == sh->qd_idx)
67cc2b81 168 return syndrome_disks + 1;
e4424fee 169 if (!sh->ddf_layout)
6629542e 170 (*count)++;
d0dabf7e
N
171 return slot;
172}
173
a4456856
DW
174static void return_io(struct bio *return_bi)
175{
176 struct bio *bi = return_bi;
177 while (bi) {
a4456856
DW
178
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
0e13fe23 182 bio_endio(bi, 0);
a4456856
DW
183 bi = return_bi;
184 }
185}
186
1da177e4
LT
187static void print_raid5_conf (raid5_conf_t *conf);
188
600aa109
DW
189static int stripe_operations_active(struct stripe_head *sh)
190{
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194}
195
858119e1 196static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
197{
198 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 203 list_add_tail(&sh->lru, &conf->delayed_list);
2ac87401 204 plugger_set_plug(&conf->plug);
7c785b7a 205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 206 sh->bm_seq - conf->seq_write > 0) {
72626685 207 list_add_tail(&sh->lru, &conf->bitmap_list);
2ac87401 208 plugger_set_plug(&conf->plug);
7c785b7a 209 } else {
72626685 210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 211 list_add_tail(&sh->lru, &conf->handle_list);
72626685 212 }
1da177e4
LT
213 md_wakeup_thread(conf->mddev->thread);
214 } else {
600aa109 215 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
220 }
1da177e4 221 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 224 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 227 }
1da177e4
LT
228 }
229 }
230}
d0dabf7e 231
1da177e4
LT
232static void release_stripe(struct stripe_head *sh)
233{
234 raid5_conf_t *conf = sh->raid_conf;
235 unsigned long flags;
16a53ecc 236
1da177e4
LT
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
240}
241
fccddba0 242static inline void remove_hash(struct stripe_head *sh)
1da177e4 243{
45b4233c
DW
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
1da177e4 246
fccddba0 247 hlist_del_init(&sh->hash);
1da177e4
LT
248}
249
16a53ecc 250static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 251{
fccddba0 252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 253
45b4233c
DW
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
1da177e4
LT
256
257 CHECK_DEVLOCK();
fccddba0 258 hlist_add_head(&sh->hash, hp);
1da177e4
LT
259}
260
261
262/* find an idle stripe, make sure it is unhashed, and return it. */
263static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264{
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
267
268 CHECK_DEVLOCK();
269 if (list_empty(&conf->inactive_list))
270 goto out;
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
274 remove_hash(sh);
275 atomic_inc(&conf->active_stripes);
276out:
277 return sh;
278}
279
e4e11e38 280static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
281{
282 struct page *p;
283 int i;
e4e11e38 284 int num = sh->raid_conf->pool_size;
1da177e4 285
e4e11e38 286 for (i = 0; i < num ; i++) {
1da177e4
LT
287 p = sh->dev[i].page;
288 if (!p)
289 continue;
290 sh->dev[i].page = NULL;
2d1f3b5d 291 put_page(p);
1da177e4
LT
292 }
293}
294
e4e11e38 295static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
296{
297 int i;
e4e11e38 298 int num = sh->raid_conf->pool_size;
1da177e4 299
e4e11e38 300 for (i = 0; i < num; i++) {
1da177e4
LT
301 struct page *page;
302
303 if (!(page = alloc_page(GFP_KERNEL))) {
304 return 1;
305 }
306 sh->dev[i].page = page;
307 }
308 return 0;
309}
310
784052ec 311static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
312static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 struct stripe_head *sh);
1da177e4 314
b5663ba4 315static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
316{
317 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 318 int i;
1da177e4 319
78bafebd
ES
320 BUG_ON(atomic_read(&sh->count) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 322 BUG_ON(stripe_operations_active(sh));
d84e0f10 323
1da177e4 324 CHECK_DEVLOCK();
45b4233c 325 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
326 (unsigned long long)sh->sector);
327
328 remove_hash(sh);
16a53ecc 329
86b42c71 330 sh->generation = conf->generation - previous;
b5663ba4 331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 332 sh->sector = sector;
911d4ee8 333 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
334 sh->state = 0;
335
7ecaa1e6
N
336
337 for (i = sh->disks; i--; ) {
1da177e4
LT
338 struct r5dev *dev = &sh->dev[i];
339
d84e0f10 340 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 341 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 343 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 344 dev->read, dev->towrite, dev->written,
1da177e4
LT
345 test_bit(R5_LOCKED, &dev->flags));
346 BUG();
347 }
348 dev->flags = 0;
784052ec 349 raid5_build_block(sh, i, previous);
1da177e4
LT
350 }
351 insert_hash(conf, sh);
352}
353
86b42c71
N
354static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 short generation)
1da177e4
LT
356{
357 struct stripe_head *sh;
fccddba0 358 struct hlist_node *hn;
1da177e4
LT
359
360 CHECK_DEVLOCK();
45b4233c 361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 363 if (sh->sector == sector && sh->generation == generation)
1da177e4 364 return sh;
45b4233c 365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
366 return NULL;
367}
368
674806d6
N
369/*
370 * Need to check if array has failed when deciding whether to:
371 * - start an array
372 * - remove non-faulty devices
373 * - add a spare
374 * - allow a reshape
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
381 */
382static int has_failed(raid5_conf_t *conf)
383{
384 int degraded;
385 int i;
386 if (conf->mddev->reshape_position == MaxSector)
387 return conf->mddev->degraded > conf->max_degraded;
388
389 rcu_read_lock();
390 degraded = 0;
391 for (i = 0; i < conf->previous_raid_disks; i++) {
392 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 if (!rdev || test_bit(Faulty, &rdev->flags))
394 degraded++;
395 else if (test_bit(In_sync, &rdev->flags))
396 ;
397 else
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
405 * be in-sync.
406 */
407 if (conf->raid_disks >= conf->previous_raid_disks)
408 degraded++;
409 }
410 rcu_read_unlock();
411 if (degraded > conf->max_degraded)
412 return 1;
413 rcu_read_lock();
414 degraded = 0;
415 for (i = 0; i < conf->raid_disks; i++) {
416 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 if (!rdev || test_bit(Faulty, &rdev->flags))
418 degraded++;
419 else if (test_bit(In_sync, &rdev->flags))
420 ;
421 else
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
426 */
427 if (conf->raid_disks <= conf->previous_raid_disks)
428 degraded++;
429 }
430 rcu_read_unlock();
431 if (degraded > conf->max_degraded)
432 return 1;
433 return 0;
434}
435
1da177e4 436static void unplug_slaves(mddev_t *mddev);
1da177e4 437
b5663ba4
N
438static struct stripe_head *
439get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 440 int previous, int noblock, int noquiesce)
1da177e4
LT
441{
442 struct stripe_head *sh;
443
45b4233c 444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
445
446 spin_lock_irq(&conf->device_lock);
447
448 do {
72626685 449 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 450 conf->quiesce == 0 || noquiesce,
72626685 451 conf->device_lock, /* nothing */);
86b42c71 452 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
453 if (!sh) {
454 if (!conf->inactive_blocked)
455 sh = get_free_stripe(conf);
456 if (noblock && sh == NULL)
457 break;
458 if (!sh) {
459 conf->inactive_blocked = 1;
460 wait_event_lock_irq(conf->wait_for_stripe,
461 !list_empty(&conf->inactive_list) &&
5036805b
N
462 (atomic_read(&conf->active_stripes)
463 < (conf->max_nr_stripes *3/4)
1da177e4
LT
464 || !conf->inactive_blocked),
465 conf->device_lock,
9f7c2220 466 md_raid5_unplug_device(conf)
1da177e4
LT
467 );
468 conf->inactive_blocked = 0;
469 } else
b5663ba4 470 init_stripe(sh, sector, previous);
1da177e4
LT
471 } else {
472 if (atomic_read(&sh->count)) {
ab69ae12
N
473 BUG_ON(!list_empty(&sh->lru)
474 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
475 } else {
476 if (!test_bit(STRIPE_HANDLE, &sh->state))
477 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
478 if (list_empty(&sh->lru) &&
479 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
480 BUG();
481 list_del_init(&sh->lru);
1da177e4
LT
482 }
483 }
484 } while (sh == NULL);
485
486 if (sh)
487 atomic_inc(&sh->count);
488
489 spin_unlock_irq(&conf->device_lock);
490 return sh;
491}
492
6712ecf8
N
493static void
494raid5_end_read_request(struct bio *bi, int error);
495static void
496raid5_end_write_request(struct bio *bi, int error);
91c00924 497
c4e5ac0a 498static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
499{
500 raid5_conf_t *conf = sh->raid_conf;
501 int i, disks = sh->disks;
502
503 might_sleep();
504
505 for (i = disks; i--; ) {
506 int rw;
507 struct bio *bi;
508 mdk_rdev_t *rdev;
e9c7469b
TH
509 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 rw = WRITE_FUA;
512 else
513 rw = WRITE;
514 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
515 rw = READ;
516 else
517 continue;
518
519 bi = &sh->dev[i].req;
520
521 bi->bi_rw = rw;
522 if (rw == WRITE)
523 bi->bi_end_io = raid5_end_write_request;
524 else
525 bi->bi_end_io = raid5_end_read_request;
526
527 rcu_read_lock();
528 rdev = rcu_dereference(conf->disks[i].rdev);
529 if (rdev && test_bit(Faulty, &rdev->flags))
530 rdev = NULL;
531 if (rdev)
532 atomic_inc(&rdev->nr_pending);
533 rcu_read_unlock();
534
535 if (rdev) {
c4e5ac0a 536 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
537 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
538
2b7497f0
DW
539 set_bit(STRIPE_IO_STARTED, &sh->state);
540
91c00924
DW
541 bi->bi_bdev = rdev->bdev;
542 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 543 __func__, (unsigned long long)sh->sector,
91c00924
DW
544 bi->bi_rw, i);
545 atomic_inc(&sh->count);
546 bi->bi_sector = sh->sector + rdev->data_offset;
547 bi->bi_flags = 1 << BIO_UPTODATE;
548 bi->bi_vcnt = 1;
549 bi->bi_max_vecs = 1;
550 bi->bi_idx = 0;
551 bi->bi_io_vec = &sh->dev[i].vec;
552 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
553 bi->bi_io_vec[0].bv_offset = 0;
554 bi->bi_size = STRIPE_SIZE;
555 bi->bi_next = NULL;
556 if (rw == WRITE &&
557 test_bit(R5_ReWrite, &sh->dev[i].flags))
558 atomic_add(STRIPE_SECTORS,
559 &rdev->corrected_errors);
560 generic_make_request(bi);
561 } else {
562 if (rw == WRITE)
563 set_bit(STRIPE_DEGRADED, &sh->state);
564 pr_debug("skip op %ld on disc %d for sector %llu\n",
565 bi->bi_rw, i, (unsigned long long)sh->sector);
566 clear_bit(R5_LOCKED, &sh->dev[i].flags);
567 set_bit(STRIPE_HANDLE, &sh->state);
568 }
569 }
570}
571
572static struct dma_async_tx_descriptor *
573async_copy_data(int frombio, struct bio *bio, struct page *page,
574 sector_t sector, struct dma_async_tx_descriptor *tx)
575{
576 struct bio_vec *bvl;
577 struct page *bio_page;
578 int i;
579 int page_offset;
a08abd8c 580 struct async_submit_ctl submit;
0403e382 581 enum async_tx_flags flags = 0;
91c00924
DW
582
583 if (bio->bi_sector >= sector)
584 page_offset = (signed)(bio->bi_sector - sector) * 512;
585 else
586 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 587
0403e382
DW
588 if (frombio)
589 flags |= ASYNC_TX_FENCE;
590 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
591
91c00924
DW
592 bio_for_each_segment(bvl, bio, i) {
593 int len = bio_iovec_idx(bio, i)->bv_len;
594 int clen;
595 int b_offset = 0;
596
597 if (page_offset < 0) {
598 b_offset = -page_offset;
599 page_offset += b_offset;
600 len -= b_offset;
601 }
602
603 if (len > 0 && page_offset + len > STRIPE_SIZE)
604 clen = STRIPE_SIZE - page_offset;
605 else
606 clen = len;
607
608 if (clen > 0) {
609 b_offset += bio_iovec_idx(bio, i)->bv_offset;
610 bio_page = bio_iovec_idx(bio, i)->bv_page;
611 if (frombio)
612 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 613 b_offset, clen, &submit);
91c00924
DW
614 else
615 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 616 page_offset, clen, &submit);
91c00924 617 }
a08abd8c
DW
618 /* chain the operations */
619 submit.depend_tx = tx;
620
91c00924
DW
621 if (clen < len) /* hit end of page */
622 break;
623 page_offset += len;
624 }
625
626 return tx;
627}
628
629static void ops_complete_biofill(void *stripe_head_ref)
630{
631 struct stripe_head *sh = stripe_head_ref;
632 struct bio *return_bi = NULL;
633 raid5_conf_t *conf = sh->raid_conf;
e4d84909 634 int i;
91c00924 635
e46b272b 636 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
637 (unsigned long long)sh->sector);
638
639 /* clear completed biofills */
83de75cc 640 spin_lock_irq(&conf->device_lock);
91c00924
DW
641 for (i = sh->disks; i--; ) {
642 struct r5dev *dev = &sh->dev[i];
91c00924
DW
643
644 /* acknowledge completion of a biofill operation */
e4d84909
DW
645 /* and check if we need to reply to a read request,
646 * new R5_Wantfill requests are held off until
83de75cc 647 * !STRIPE_BIOFILL_RUN
e4d84909
DW
648 */
649 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 650 struct bio *rbi, *rbi2;
91c00924 651
91c00924
DW
652 BUG_ON(!dev->read);
653 rbi = dev->read;
654 dev->read = NULL;
655 while (rbi && rbi->bi_sector <
656 dev->sector + STRIPE_SECTORS) {
657 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 658 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
659 rbi->bi_next = return_bi;
660 return_bi = rbi;
661 }
91c00924
DW
662 rbi = rbi2;
663 }
664 }
665 }
83de75cc
DW
666 spin_unlock_irq(&conf->device_lock);
667 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
668
669 return_io(return_bi);
670
e4d84909 671 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
672 release_stripe(sh);
673}
674
675static void ops_run_biofill(struct stripe_head *sh)
676{
677 struct dma_async_tx_descriptor *tx = NULL;
678 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 679 struct async_submit_ctl submit;
91c00924
DW
680 int i;
681
e46b272b 682 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
683 (unsigned long long)sh->sector);
684
685 for (i = sh->disks; i--; ) {
686 struct r5dev *dev = &sh->dev[i];
687 if (test_bit(R5_Wantfill, &dev->flags)) {
688 struct bio *rbi;
689 spin_lock_irq(&conf->device_lock);
690 dev->read = rbi = dev->toread;
691 dev->toread = NULL;
692 spin_unlock_irq(&conf->device_lock);
693 while (rbi && rbi->bi_sector <
694 dev->sector + STRIPE_SECTORS) {
695 tx = async_copy_data(0, rbi, dev->page,
696 dev->sector, tx);
697 rbi = r5_next_bio(rbi, dev->sector);
698 }
699 }
700 }
701
702 atomic_inc(&sh->count);
a08abd8c
DW
703 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
704 async_trigger_callback(&submit);
91c00924
DW
705}
706
4e7d2c0a 707static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 708{
4e7d2c0a 709 struct r5dev *tgt;
91c00924 710
4e7d2c0a
DW
711 if (target < 0)
712 return;
91c00924 713
4e7d2c0a 714 tgt = &sh->dev[target];
91c00924
DW
715 set_bit(R5_UPTODATE, &tgt->flags);
716 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
717 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
718}
719
ac6b53b6 720static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
721{
722 struct stripe_head *sh = stripe_head_ref;
91c00924 723
e46b272b 724 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
725 (unsigned long long)sh->sector);
726
ac6b53b6 727 /* mark the computed target(s) as uptodate */
4e7d2c0a 728 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 729 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 730
ecc65c9b
DW
731 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
732 if (sh->check_state == check_state_compute_run)
733 sh->check_state = check_state_compute_result;
91c00924
DW
734 set_bit(STRIPE_HANDLE, &sh->state);
735 release_stripe(sh);
736}
737
d6f38f31
DW
738/* return a pointer to the address conversion region of the scribble buffer */
739static addr_conv_t *to_addr_conv(struct stripe_head *sh,
740 struct raid5_percpu *percpu)
741{
742 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
743}
744
745static struct dma_async_tx_descriptor *
746ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 747{
91c00924 748 int disks = sh->disks;
d6f38f31 749 struct page **xor_srcs = percpu->scribble;
91c00924
DW
750 int target = sh->ops.target;
751 struct r5dev *tgt = &sh->dev[target];
752 struct page *xor_dest = tgt->page;
753 int count = 0;
754 struct dma_async_tx_descriptor *tx;
a08abd8c 755 struct async_submit_ctl submit;
91c00924
DW
756 int i;
757
758 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 759 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
760 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
761
762 for (i = disks; i--; )
763 if (i != target)
764 xor_srcs[count++] = sh->dev[i].page;
765
766 atomic_inc(&sh->count);
767
0403e382 768 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 769 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 770 if (unlikely(count == 1))
a08abd8c 771 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 772 else
a08abd8c 773 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 774
91c00924
DW
775 return tx;
776}
777
ac6b53b6
DW
778/* set_syndrome_sources - populate source buffers for gen_syndrome
779 * @srcs - (struct page *) array of size sh->disks
780 * @sh - stripe_head to parse
781 *
782 * Populates srcs in proper layout order for the stripe and returns the
783 * 'count' of sources to be used in a call to async_gen_syndrome. The P
784 * destination buffer is recorded in srcs[count] and the Q destination
785 * is recorded in srcs[count+1]].
786 */
787static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
788{
789 int disks = sh->disks;
790 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
791 int d0_idx = raid6_d0(sh);
792 int count;
793 int i;
794
795 for (i = 0; i < disks; i++)
5dd33c9a 796 srcs[i] = NULL;
ac6b53b6
DW
797
798 count = 0;
799 i = d0_idx;
800 do {
801 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
802
803 srcs[slot] = sh->dev[i].page;
804 i = raid6_next_disk(i, disks);
805 } while (i != d0_idx);
ac6b53b6 806
e4424fee 807 return syndrome_disks;
ac6b53b6
DW
808}
809
810static struct dma_async_tx_descriptor *
811ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
812{
813 int disks = sh->disks;
814 struct page **blocks = percpu->scribble;
815 int target;
816 int qd_idx = sh->qd_idx;
817 struct dma_async_tx_descriptor *tx;
818 struct async_submit_ctl submit;
819 struct r5dev *tgt;
820 struct page *dest;
821 int i;
822 int count;
823
824 if (sh->ops.target < 0)
825 target = sh->ops.target2;
826 else if (sh->ops.target2 < 0)
827 target = sh->ops.target;
91c00924 828 else
ac6b53b6
DW
829 /* we should only have one valid target */
830 BUG();
831 BUG_ON(target < 0);
832 pr_debug("%s: stripe %llu block: %d\n",
833 __func__, (unsigned long long)sh->sector, target);
834
835 tgt = &sh->dev[target];
836 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
837 dest = tgt->page;
838
839 atomic_inc(&sh->count);
840
841 if (target == qd_idx) {
842 count = set_syndrome_sources(blocks, sh);
843 blocks[count] = NULL; /* regenerating p is not necessary */
844 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
845 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846 ops_complete_compute, sh,
ac6b53b6
DW
847 to_addr_conv(sh, percpu));
848 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
849 } else {
850 /* Compute any data- or p-drive using XOR */
851 count = 0;
852 for (i = disks; i-- ; ) {
853 if (i == target || i == qd_idx)
854 continue;
855 blocks[count++] = sh->dev[i].page;
856 }
857
0403e382
DW
858 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
859 NULL, ops_complete_compute, sh,
ac6b53b6
DW
860 to_addr_conv(sh, percpu));
861 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
862 }
91c00924 863
91c00924
DW
864 return tx;
865}
866
ac6b53b6
DW
867static struct dma_async_tx_descriptor *
868ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
869{
870 int i, count, disks = sh->disks;
871 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
872 int d0_idx = raid6_d0(sh);
873 int faila = -1, failb = -1;
874 int target = sh->ops.target;
875 int target2 = sh->ops.target2;
876 struct r5dev *tgt = &sh->dev[target];
877 struct r5dev *tgt2 = &sh->dev[target2];
878 struct dma_async_tx_descriptor *tx;
879 struct page **blocks = percpu->scribble;
880 struct async_submit_ctl submit;
881
882 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
883 __func__, (unsigned long long)sh->sector, target, target2);
884 BUG_ON(target < 0 || target2 < 0);
885 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
886 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
887
6c910a78 888 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
889 * slot number conversion for 'faila' and 'failb'
890 */
891 for (i = 0; i < disks ; i++)
5dd33c9a 892 blocks[i] = NULL;
ac6b53b6
DW
893 count = 0;
894 i = d0_idx;
895 do {
896 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
897
898 blocks[slot] = sh->dev[i].page;
899
900 if (i == target)
901 faila = slot;
902 if (i == target2)
903 failb = slot;
904 i = raid6_next_disk(i, disks);
905 } while (i != d0_idx);
ac6b53b6
DW
906
907 BUG_ON(faila == failb);
908 if (failb < faila)
909 swap(faila, failb);
910 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
911 __func__, (unsigned long long)sh->sector, faila, failb);
912
913 atomic_inc(&sh->count);
914
915 if (failb == syndrome_disks+1) {
916 /* Q disk is one of the missing disks */
917 if (faila == syndrome_disks) {
918 /* Missing P+Q, just recompute */
0403e382
DW
919 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
920 ops_complete_compute, sh,
921 to_addr_conv(sh, percpu));
e4424fee 922 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
923 STRIPE_SIZE, &submit);
924 } else {
925 struct page *dest;
926 int data_target;
927 int qd_idx = sh->qd_idx;
928
929 /* Missing D+Q: recompute D from P, then recompute Q */
930 if (target == qd_idx)
931 data_target = target2;
932 else
933 data_target = target;
934
935 count = 0;
936 for (i = disks; i-- ; ) {
937 if (i == data_target || i == qd_idx)
938 continue;
939 blocks[count++] = sh->dev[i].page;
940 }
941 dest = sh->dev[data_target].page;
0403e382
DW
942 init_async_submit(&submit,
943 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
944 NULL, NULL, NULL,
945 to_addr_conv(sh, percpu));
ac6b53b6
DW
946 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
947 &submit);
948
949 count = set_syndrome_sources(blocks, sh);
0403e382
DW
950 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
951 ops_complete_compute, sh,
952 to_addr_conv(sh, percpu));
ac6b53b6
DW
953 return async_gen_syndrome(blocks, 0, count+2,
954 STRIPE_SIZE, &submit);
955 }
ac6b53b6 956 } else {
6c910a78
DW
957 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
958 ops_complete_compute, sh,
959 to_addr_conv(sh, percpu));
960 if (failb == syndrome_disks) {
961 /* We're missing D+P. */
962 return async_raid6_datap_recov(syndrome_disks+2,
963 STRIPE_SIZE, faila,
964 blocks, &submit);
965 } else {
966 /* We're missing D+D. */
967 return async_raid6_2data_recov(syndrome_disks+2,
968 STRIPE_SIZE, faila, failb,
969 blocks, &submit);
970 }
ac6b53b6
DW
971 }
972}
973
974
91c00924
DW
975static void ops_complete_prexor(void *stripe_head_ref)
976{
977 struct stripe_head *sh = stripe_head_ref;
978
e46b272b 979 pr_debug("%s: stripe %llu\n", __func__,
91c00924 980 (unsigned long long)sh->sector);
91c00924
DW
981}
982
983static struct dma_async_tx_descriptor *
d6f38f31
DW
984ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
985 struct dma_async_tx_descriptor *tx)
91c00924 986{
91c00924 987 int disks = sh->disks;
d6f38f31 988 struct page **xor_srcs = percpu->scribble;
91c00924 989 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 990 struct async_submit_ctl submit;
91c00924
DW
991
992 /* existing parity data subtracted */
993 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
994
e46b272b 995 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
996 (unsigned long long)sh->sector);
997
998 for (i = disks; i--; ) {
999 struct r5dev *dev = &sh->dev[i];
1000 /* Only process blocks that are known to be uptodate */
d8ee0728 1001 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1002 xor_srcs[count++] = dev->page;
1003 }
1004
0403e382 1005 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1006 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1007 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1008
1009 return tx;
1010}
1011
1012static struct dma_async_tx_descriptor *
d8ee0728 1013ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1014{
1015 int disks = sh->disks;
d8ee0728 1016 int i;
91c00924 1017
e46b272b 1018 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1019 (unsigned long long)sh->sector);
1020
1021 for (i = disks; i--; ) {
1022 struct r5dev *dev = &sh->dev[i];
1023 struct bio *chosen;
91c00924 1024
d8ee0728 1025 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1026 struct bio *wbi;
1027
1028 spin_lock(&sh->lock);
1029 chosen = dev->towrite;
1030 dev->towrite = NULL;
1031 BUG_ON(dev->written);
1032 wbi = dev->written = chosen;
1033 spin_unlock(&sh->lock);
1034
1035 while (wbi && wbi->bi_sector <
1036 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1037 if (wbi->bi_rw & REQ_FUA)
1038 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1039 tx = async_copy_data(1, wbi, dev->page,
1040 dev->sector, tx);
1041 wbi = r5_next_bio(wbi, dev->sector);
1042 }
1043 }
1044 }
1045
1046 return tx;
1047}
1048
ac6b53b6 1049static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1050{
1051 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1052 int disks = sh->disks;
1053 int pd_idx = sh->pd_idx;
1054 int qd_idx = sh->qd_idx;
1055 int i;
e9c7469b 1056 bool fua = false;
91c00924 1057
e46b272b 1058 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1059 (unsigned long long)sh->sector);
1060
e9c7469b
TH
1061 for (i = disks; i--; )
1062 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1063
91c00924
DW
1064 for (i = disks; i--; ) {
1065 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1066
e9c7469b 1067 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1068 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1069 if (fua)
1070 set_bit(R5_WantFUA, &dev->flags);
1071 }
91c00924
DW
1072 }
1073
d8ee0728
DW
1074 if (sh->reconstruct_state == reconstruct_state_drain_run)
1075 sh->reconstruct_state = reconstruct_state_drain_result;
1076 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1077 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1078 else {
1079 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1080 sh->reconstruct_state = reconstruct_state_result;
1081 }
91c00924
DW
1082
1083 set_bit(STRIPE_HANDLE, &sh->state);
1084 release_stripe(sh);
1085}
1086
1087static void
ac6b53b6
DW
1088ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1089 struct dma_async_tx_descriptor *tx)
91c00924 1090{
91c00924 1091 int disks = sh->disks;
d6f38f31 1092 struct page **xor_srcs = percpu->scribble;
a08abd8c 1093 struct async_submit_ctl submit;
91c00924
DW
1094 int count = 0, pd_idx = sh->pd_idx, i;
1095 struct page *xor_dest;
d8ee0728 1096 int prexor = 0;
91c00924 1097 unsigned long flags;
91c00924 1098
e46b272b 1099 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1100 (unsigned long long)sh->sector);
1101
1102 /* check if prexor is active which means only process blocks
1103 * that are part of a read-modify-write (written)
1104 */
d8ee0728
DW
1105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1106 prexor = 1;
91c00924
DW
1107 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1108 for (i = disks; i--; ) {
1109 struct r5dev *dev = &sh->dev[i];
1110 if (dev->written)
1111 xor_srcs[count++] = dev->page;
1112 }
1113 } else {
1114 xor_dest = sh->dev[pd_idx].page;
1115 for (i = disks; i--; ) {
1116 struct r5dev *dev = &sh->dev[i];
1117 if (i != pd_idx)
1118 xor_srcs[count++] = dev->page;
1119 }
1120 }
1121
91c00924
DW
1122 /* 1/ if we prexor'd then the dest is reused as a source
1123 * 2/ if we did not prexor then we are redoing the parity
1124 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1125 * for the synchronous xor case
1126 */
88ba2aa5 1127 flags = ASYNC_TX_ACK |
91c00924
DW
1128 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1129
1130 atomic_inc(&sh->count);
1131
ac6b53b6 1132 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1133 to_addr_conv(sh, percpu));
a08abd8c
DW
1134 if (unlikely(count == 1))
1135 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1136 else
1137 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1138}
1139
ac6b53b6
DW
1140static void
1141ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1142 struct dma_async_tx_descriptor *tx)
1143{
1144 struct async_submit_ctl submit;
1145 struct page **blocks = percpu->scribble;
1146 int count;
1147
1148 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1149
1150 count = set_syndrome_sources(blocks, sh);
1151
1152 atomic_inc(&sh->count);
1153
1154 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1155 sh, to_addr_conv(sh, percpu));
1156 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1157}
1158
1159static void ops_complete_check(void *stripe_head_ref)
1160{
1161 struct stripe_head *sh = stripe_head_ref;
91c00924 1162
e46b272b 1163 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1164 (unsigned long long)sh->sector);
1165
ecc65c9b 1166 sh->check_state = check_state_check_result;
91c00924
DW
1167 set_bit(STRIPE_HANDLE, &sh->state);
1168 release_stripe(sh);
1169}
1170
ac6b53b6 1171static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1172{
91c00924 1173 int disks = sh->disks;
ac6b53b6
DW
1174 int pd_idx = sh->pd_idx;
1175 int qd_idx = sh->qd_idx;
1176 struct page *xor_dest;
d6f38f31 1177 struct page **xor_srcs = percpu->scribble;
91c00924 1178 struct dma_async_tx_descriptor *tx;
a08abd8c 1179 struct async_submit_ctl submit;
ac6b53b6
DW
1180 int count;
1181 int i;
91c00924 1182
e46b272b 1183 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1184 (unsigned long long)sh->sector);
1185
ac6b53b6
DW
1186 count = 0;
1187 xor_dest = sh->dev[pd_idx].page;
1188 xor_srcs[count++] = xor_dest;
91c00924 1189 for (i = disks; i--; ) {
ac6b53b6
DW
1190 if (i == pd_idx || i == qd_idx)
1191 continue;
1192 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1193 }
1194
d6f38f31
DW
1195 init_async_submit(&submit, 0, NULL, NULL, NULL,
1196 to_addr_conv(sh, percpu));
099f53cb 1197 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1198 &sh->ops.zero_sum_result, &submit);
91c00924 1199
91c00924 1200 atomic_inc(&sh->count);
a08abd8c
DW
1201 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1202 tx = async_trigger_callback(&submit);
91c00924
DW
1203}
1204
ac6b53b6
DW
1205static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1206{
1207 struct page **srcs = percpu->scribble;
1208 struct async_submit_ctl submit;
1209 int count;
1210
1211 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1212 (unsigned long long)sh->sector, checkp);
1213
1214 count = set_syndrome_sources(srcs, sh);
1215 if (!checkp)
1216 srcs[count] = NULL;
91c00924 1217
91c00924 1218 atomic_inc(&sh->count);
ac6b53b6
DW
1219 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1220 sh, to_addr_conv(sh, percpu));
1221 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1222 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1223}
1224
417b8d4a 1225static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1226{
1227 int overlap_clear = 0, i, disks = sh->disks;
1228 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1229 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1230 int level = conf->level;
d6f38f31
DW
1231 struct raid5_percpu *percpu;
1232 unsigned long cpu;
91c00924 1233
d6f38f31
DW
1234 cpu = get_cpu();
1235 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1236 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1237 ops_run_biofill(sh);
1238 overlap_clear++;
1239 }
1240
7b3a871e 1241 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1242 if (level < 6)
1243 tx = ops_run_compute5(sh, percpu);
1244 else {
1245 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1246 tx = ops_run_compute6_1(sh, percpu);
1247 else
1248 tx = ops_run_compute6_2(sh, percpu);
1249 }
1250 /* terminate the chain if reconstruct is not set to be run */
1251 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1252 async_tx_ack(tx);
1253 }
91c00924 1254
600aa109 1255 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1256 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1257
600aa109 1258 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1259 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1260 overlap_clear++;
1261 }
1262
ac6b53b6
DW
1263 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1264 if (level < 6)
1265 ops_run_reconstruct5(sh, percpu, tx);
1266 else
1267 ops_run_reconstruct6(sh, percpu, tx);
1268 }
91c00924 1269
ac6b53b6
DW
1270 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1271 if (sh->check_state == check_state_run)
1272 ops_run_check_p(sh, percpu);
1273 else if (sh->check_state == check_state_run_q)
1274 ops_run_check_pq(sh, percpu, 0);
1275 else if (sh->check_state == check_state_run_pq)
1276 ops_run_check_pq(sh, percpu, 1);
1277 else
1278 BUG();
1279 }
91c00924 1280
91c00924
DW
1281 if (overlap_clear)
1282 for (i = disks; i--; ) {
1283 struct r5dev *dev = &sh->dev[i];
1284 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1285 wake_up(&sh->raid_conf->wait_for_overlap);
1286 }
d6f38f31 1287 put_cpu();
91c00924
DW
1288}
1289
417b8d4a
DW
1290#ifdef CONFIG_MULTICORE_RAID456
1291static void async_run_ops(void *param, async_cookie_t cookie)
1292{
1293 struct stripe_head *sh = param;
1294 unsigned long ops_request = sh->ops.request;
1295
1296 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1297 wake_up(&sh->ops.wait_for_ops);
1298
1299 __raid_run_ops(sh, ops_request);
1300 release_stripe(sh);
1301}
1302
1303static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304{
1305 /* since handle_stripe can be called outside of raid5d context
1306 * we need to ensure sh->ops.request is de-staged before another
1307 * request arrives
1308 */
1309 wait_event(sh->ops.wait_for_ops,
1310 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1311 sh->ops.request = ops_request;
1312
1313 atomic_inc(&sh->count);
1314 async_schedule(async_run_ops, sh);
1315}
1316#else
1317#define raid_run_ops __raid_run_ops
1318#endif
1319
3f294f4f 1320static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1321{
1322 struct stripe_head *sh;
3f294f4f
N
1323 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1324 if (!sh)
1325 return 0;
e4e11e38 1326 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
3f294f4f
N
1327 sh->raid_conf = conf;
1328 spin_lock_init(&sh->lock);
417b8d4a
DW
1329 #ifdef CONFIG_MULTICORE_RAID456
1330 init_waitqueue_head(&sh->ops.wait_for_ops);
1331 #endif
3f294f4f 1332
e4e11e38
N
1333 if (grow_buffers(sh)) {
1334 shrink_buffers(sh);
3f294f4f
N
1335 kmem_cache_free(conf->slab_cache, sh);
1336 return 0;
1337 }
1338 /* we just created an active stripe so... */
1339 atomic_set(&sh->count, 1);
1340 atomic_inc(&conf->active_stripes);
1341 INIT_LIST_HEAD(&sh->lru);
1342 release_stripe(sh);
1343 return 1;
1344}
1345
1346static int grow_stripes(raid5_conf_t *conf, int num)
1347{
e18b890b 1348 struct kmem_cache *sc;
5e5e3e78 1349 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1350
f4be6b43
N
1351 if (conf->mddev->gendisk)
1352 sprintf(conf->cache_name[0],
1353 "raid%d-%s", conf->level, mdname(conf->mddev));
1354 else
1355 sprintf(conf->cache_name[0],
1356 "raid%d-%p", conf->level, conf->mddev);
1357 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1358
ad01c9e3
N
1359 conf->active_name = 0;
1360 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1361 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1362 0, 0, NULL);
1da177e4
LT
1363 if (!sc)
1364 return 1;
1365 conf->slab_cache = sc;
ad01c9e3 1366 conf->pool_size = devs;
16a53ecc 1367 while (num--)
3f294f4f 1368 if (!grow_one_stripe(conf))
1da177e4 1369 return 1;
1da177e4
LT
1370 return 0;
1371}
29269553 1372
d6f38f31
DW
1373/**
1374 * scribble_len - return the required size of the scribble region
1375 * @num - total number of disks in the array
1376 *
1377 * The size must be enough to contain:
1378 * 1/ a struct page pointer for each device in the array +2
1379 * 2/ room to convert each entry in (1) to its corresponding dma
1380 * (dma_map_page()) or page (page_address()) address.
1381 *
1382 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1383 * calculate over all devices (not just the data blocks), using zeros in place
1384 * of the P and Q blocks.
1385 */
1386static size_t scribble_len(int num)
1387{
1388 size_t len;
1389
1390 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1391
1392 return len;
1393}
1394
ad01c9e3
N
1395static int resize_stripes(raid5_conf_t *conf, int newsize)
1396{
1397 /* Make all the stripes able to hold 'newsize' devices.
1398 * New slots in each stripe get 'page' set to a new page.
1399 *
1400 * This happens in stages:
1401 * 1/ create a new kmem_cache and allocate the required number of
1402 * stripe_heads.
1403 * 2/ gather all the old stripe_heads and tranfer the pages across
1404 * to the new stripe_heads. This will have the side effect of
1405 * freezing the array as once all stripe_heads have been collected,
1406 * no IO will be possible. Old stripe heads are freed once their
1407 * pages have been transferred over, and the old kmem_cache is
1408 * freed when all stripes are done.
1409 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1410 * we simple return a failre status - no need to clean anything up.
1411 * 4/ allocate new pages for the new slots in the new stripe_heads.
1412 * If this fails, we don't bother trying the shrink the
1413 * stripe_heads down again, we just leave them as they are.
1414 * As each stripe_head is processed the new one is released into
1415 * active service.
1416 *
1417 * Once step2 is started, we cannot afford to wait for a write,
1418 * so we use GFP_NOIO allocations.
1419 */
1420 struct stripe_head *osh, *nsh;
1421 LIST_HEAD(newstripes);
1422 struct disk_info *ndisks;
d6f38f31 1423 unsigned long cpu;
b5470dc5 1424 int err;
e18b890b 1425 struct kmem_cache *sc;
ad01c9e3
N
1426 int i;
1427
1428 if (newsize <= conf->pool_size)
1429 return 0; /* never bother to shrink */
1430
b5470dc5
DW
1431 err = md_allow_write(conf->mddev);
1432 if (err)
1433 return err;
2a2275d6 1434
ad01c9e3
N
1435 /* Step 1 */
1436 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1437 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1438 0, 0, NULL);
ad01c9e3
N
1439 if (!sc)
1440 return -ENOMEM;
1441
1442 for (i = conf->max_nr_stripes; i; i--) {
1443 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1444 if (!nsh)
1445 break;
1446
1447 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1448
1449 nsh->raid_conf = conf;
1450 spin_lock_init(&nsh->lock);
417b8d4a
DW
1451 #ifdef CONFIG_MULTICORE_RAID456
1452 init_waitqueue_head(&nsh->ops.wait_for_ops);
1453 #endif
ad01c9e3
N
1454
1455 list_add(&nsh->lru, &newstripes);
1456 }
1457 if (i) {
1458 /* didn't get enough, give up */
1459 while (!list_empty(&newstripes)) {
1460 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1461 list_del(&nsh->lru);
1462 kmem_cache_free(sc, nsh);
1463 }
1464 kmem_cache_destroy(sc);
1465 return -ENOMEM;
1466 }
1467 /* Step 2 - Must use GFP_NOIO now.
1468 * OK, we have enough stripes, start collecting inactive
1469 * stripes and copying them over
1470 */
1471 list_for_each_entry(nsh, &newstripes, lru) {
1472 spin_lock_irq(&conf->device_lock);
1473 wait_event_lock_irq(conf->wait_for_stripe,
1474 !list_empty(&conf->inactive_list),
1475 conf->device_lock,
b3b46be3 1476 unplug_slaves(conf->mddev)
ad01c9e3
N
1477 );
1478 osh = get_free_stripe(conf);
1479 spin_unlock_irq(&conf->device_lock);
1480 atomic_set(&nsh->count, 1);
1481 for(i=0; i<conf->pool_size; i++)
1482 nsh->dev[i].page = osh->dev[i].page;
1483 for( ; i<newsize; i++)
1484 nsh->dev[i].page = NULL;
1485 kmem_cache_free(conf->slab_cache, osh);
1486 }
1487 kmem_cache_destroy(conf->slab_cache);
1488
1489 /* Step 3.
1490 * At this point, we are holding all the stripes so the array
1491 * is completely stalled, so now is a good time to resize
d6f38f31 1492 * conf->disks and the scribble region
ad01c9e3
N
1493 */
1494 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1495 if (ndisks) {
1496 for (i=0; i<conf->raid_disks; i++)
1497 ndisks[i] = conf->disks[i];
1498 kfree(conf->disks);
1499 conf->disks = ndisks;
1500 } else
1501 err = -ENOMEM;
1502
d6f38f31
DW
1503 get_online_cpus();
1504 conf->scribble_len = scribble_len(newsize);
1505 for_each_present_cpu(cpu) {
1506 struct raid5_percpu *percpu;
1507 void *scribble;
1508
1509 percpu = per_cpu_ptr(conf->percpu, cpu);
1510 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1511
1512 if (scribble) {
1513 kfree(percpu->scribble);
1514 percpu->scribble = scribble;
1515 } else {
1516 err = -ENOMEM;
1517 break;
1518 }
1519 }
1520 put_online_cpus();
1521
ad01c9e3
N
1522 /* Step 4, return new stripes to service */
1523 while(!list_empty(&newstripes)) {
1524 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1525 list_del_init(&nsh->lru);
d6f38f31 1526
ad01c9e3
N
1527 for (i=conf->raid_disks; i < newsize; i++)
1528 if (nsh->dev[i].page == NULL) {
1529 struct page *p = alloc_page(GFP_NOIO);
1530 nsh->dev[i].page = p;
1531 if (!p)
1532 err = -ENOMEM;
1533 }
1534 release_stripe(nsh);
1535 }
1536 /* critical section pass, GFP_NOIO no longer needed */
1537
1538 conf->slab_cache = sc;
1539 conf->active_name = 1-conf->active_name;
1540 conf->pool_size = newsize;
1541 return err;
1542}
1da177e4 1543
3f294f4f 1544static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1545{
1546 struct stripe_head *sh;
1547
3f294f4f
N
1548 spin_lock_irq(&conf->device_lock);
1549 sh = get_free_stripe(conf);
1550 spin_unlock_irq(&conf->device_lock);
1551 if (!sh)
1552 return 0;
78bafebd 1553 BUG_ON(atomic_read(&sh->count));
e4e11e38 1554 shrink_buffers(sh);
3f294f4f
N
1555 kmem_cache_free(conf->slab_cache, sh);
1556 atomic_dec(&conf->active_stripes);
1557 return 1;
1558}
1559
1560static void shrink_stripes(raid5_conf_t *conf)
1561{
1562 while (drop_one_stripe(conf))
1563 ;
1564
29fc7e3e
N
1565 if (conf->slab_cache)
1566 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1567 conf->slab_cache = NULL;
1568}
1569
6712ecf8 1570static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1571{
99c0fb5f 1572 struct stripe_head *sh = bi->bi_private;
1da177e4 1573 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1574 int disks = sh->disks, i;
1da177e4 1575 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1576 char b[BDEVNAME_SIZE];
1577 mdk_rdev_t *rdev;
1da177e4 1578
1da177e4
LT
1579
1580 for (i=0 ; i<disks; i++)
1581 if (bi == &sh->dev[i].req)
1582 break;
1583
45b4233c
DW
1584 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1585 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1586 uptodate);
1587 if (i == disks) {
1588 BUG();
6712ecf8 1589 return;
1da177e4
LT
1590 }
1591
1592 if (uptodate) {
1da177e4 1593 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1594 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1595 rdev = conf->disks[i].rdev;
0c55e022 1596 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
6be9d494
BS
1597 " (%lu sectors at %llu on %s)\n",
1598 mdname(conf->mddev), STRIPE_SECTORS,
1599 (unsigned long long)(sh->sector
1600 + rdev->data_offset),
1601 bdevname(rdev->bdev, b));
4e5314b5
N
1602 clear_bit(R5_ReadError, &sh->dev[i].flags);
1603 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1604 }
ba22dcbf
N
1605 if (atomic_read(&conf->disks[i].rdev->read_errors))
1606 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1607 } else {
d6950432 1608 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1609 int retry = 0;
d6950432
N
1610 rdev = conf->disks[i].rdev;
1611
1da177e4 1612 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1613 atomic_inc(&rdev->read_errors);
7b0bb536 1614 if (conf->mddev->degraded >= conf->max_degraded)
6be9d494 1615 printk_rl(KERN_WARNING
0c55e022 1616 "md/raid:%s: read error not correctable "
6be9d494
BS
1617 "(sector %llu on %s).\n",
1618 mdname(conf->mddev),
1619 (unsigned long long)(sh->sector
1620 + rdev->data_offset),
1621 bdn);
ba22dcbf 1622 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1623 /* Oh, no!!! */
6be9d494 1624 printk_rl(KERN_WARNING
0c55e022 1625 "md/raid:%s: read error NOT corrected!! "
6be9d494
BS
1626 "(sector %llu on %s).\n",
1627 mdname(conf->mddev),
1628 (unsigned long long)(sh->sector
1629 + rdev->data_offset),
1630 bdn);
d6950432 1631 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1632 > conf->max_nr_stripes)
14f8d26b 1633 printk(KERN_WARNING
0c55e022 1634 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1635 mdname(conf->mddev), bdn);
ba22dcbf
N
1636 else
1637 retry = 1;
1638 if (retry)
1639 set_bit(R5_ReadError, &sh->dev[i].flags);
1640 else {
4e5314b5
N
1641 clear_bit(R5_ReadError, &sh->dev[i].flags);
1642 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1643 md_error(conf->mddev, rdev);
ba22dcbf 1644 }
1da177e4
LT
1645 }
1646 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1647 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1648 set_bit(STRIPE_HANDLE, &sh->state);
1649 release_stripe(sh);
1da177e4
LT
1650}
1651
d710e138 1652static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1653{
99c0fb5f 1654 struct stripe_head *sh = bi->bi_private;
1da177e4 1655 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1656 int disks = sh->disks, i;
1da177e4
LT
1657 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1658
1da177e4
LT
1659 for (i=0 ; i<disks; i++)
1660 if (bi == &sh->dev[i].req)
1661 break;
1662
45b4233c 1663 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1664 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1665 uptodate);
1666 if (i == disks) {
1667 BUG();
6712ecf8 1668 return;
1da177e4
LT
1669 }
1670
1da177e4
LT
1671 if (!uptodate)
1672 md_error(conf->mddev, conf->disks[i].rdev);
1673
1674 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1675
1676 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1677 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1678 release_stripe(sh);
1da177e4
LT
1679}
1680
1681
784052ec 1682static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1683
784052ec 1684static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1685{
1686 struct r5dev *dev = &sh->dev[i];
1687
1688 bio_init(&dev->req);
1689 dev->req.bi_io_vec = &dev->vec;
1690 dev->req.bi_vcnt++;
1691 dev->req.bi_max_vecs++;
1692 dev->vec.bv_page = dev->page;
1693 dev->vec.bv_len = STRIPE_SIZE;
1694 dev->vec.bv_offset = 0;
1695
1696 dev->req.bi_sector = sh->sector;
1697 dev->req.bi_private = sh;
1698
1699 dev->flags = 0;
784052ec 1700 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1701}
1702
1703static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1704{
1705 char b[BDEVNAME_SIZE];
7b92813c 1706 raid5_conf_t *conf = mddev->private;
0c55e022 1707 pr_debug("raid456: error called\n");
1da177e4 1708
b2d444d7 1709 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1711 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1712 unsigned long flags;
1713 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1714 mddev->degraded++;
c04be0aa 1715 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1716 /*
1717 * if recovery was running, make sure it aborts.
1718 */
dfc70645 1719 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1720 }
b2d444d7 1721 set_bit(Faulty, &rdev->flags);
d710e138 1722 printk(KERN_ALERT
0c55e022
N
1723 "md/raid:%s: Disk failure on %s, disabling device.\n"
1724 KERN_ALERT
1725 "md/raid:%s: Operation continuing on %d devices.\n",
1726 mdname(mddev),
1727 bdevname(rdev->bdev, b),
1728 mdname(mddev),
1729 conf->raid_disks - mddev->degraded);
1da177e4 1730 }
16a53ecc 1731}
1da177e4
LT
1732
1733/*
1734 * Input: a 'big' sector number,
1735 * Output: index of the data and parity disk, and the sector # in them.
1736 */
112bf897 1737static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1738 int previous, int *dd_idx,
1739 struct stripe_head *sh)
1da177e4 1740{
6e3b96ed 1741 sector_t stripe, stripe2;
35f2a591 1742 sector_t chunk_number;
1da177e4 1743 unsigned int chunk_offset;
911d4ee8 1744 int pd_idx, qd_idx;
67cc2b81 1745 int ddf_layout = 0;
1da177e4 1746 sector_t new_sector;
e183eaed
N
1747 int algorithm = previous ? conf->prev_algo
1748 : conf->algorithm;
09c9e5fa
AN
1749 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1750 : conf->chunk_sectors;
112bf897
N
1751 int raid_disks = previous ? conf->previous_raid_disks
1752 : conf->raid_disks;
1753 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1754
1755 /* First compute the information on this sector */
1756
1757 /*
1758 * Compute the chunk number and the sector offset inside the chunk
1759 */
1760 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1761 chunk_number = r_sector;
1da177e4
LT
1762
1763 /*
1764 * Compute the stripe number
1765 */
35f2a591
N
1766 stripe = chunk_number;
1767 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1768 stripe2 = stripe;
1da177e4
LT
1769 /*
1770 * Select the parity disk based on the user selected algorithm.
1771 */
911d4ee8 1772 pd_idx = qd_idx = ~0;
16a53ecc
N
1773 switch(conf->level) {
1774 case 4:
911d4ee8 1775 pd_idx = data_disks;
16a53ecc
N
1776 break;
1777 case 5:
e183eaed 1778 switch (algorithm) {
1da177e4 1779 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1780 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1781 if (*dd_idx >= pd_idx)
1da177e4
LT
1782 (*dd_idx)++;
1783 break;
1784 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1785 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1786 if (*dd_idx >= pd_idx)
1da177e4
LT
1787 (*dd_idx)++;
1788 break;
1789 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1790 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1791 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1792 break;
1793 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1794 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1795 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1796 break;
99c0fb5f
N
1797 case ALGORITHM_PARITY_0:
1798 pd_idx = 0;
1799 (*dd_idx)++;
1800 break;
1801 case ALGORITHM_PARITY_N:
1802 pd_idx = data_disks;
1803 break;
1da177e4 1804 default:
99c0fb5f 1805 BUG();
16a53ecc
N
1806 }
1807 break;
1808 case 6:
1809
e183eaed 1810 switch (algorithm) {
16a53ecc 1811 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1812 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1813 qd_idx = pd_idx + 1;
1814 if (pd_idx == raid_disks-1) {
99c0fb5f 1815 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1816 qd_idx = 0;
1817 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1818 (*dd_idx) += 2; /* D D P Q D */
1819 break;
1820 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1821 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1822 qd_idx = pd_idx + 1;
1823 if (pd_idx == raid_disks-1) {
99c0fb5f 1824 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1825 qd_idx = 0;
1826 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1827 (*dd_idx) += 2; /* D D P Q D */
1828 break;
1829 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1830 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1831 qd_idx = (pd_idx + 1) % raid_disks;
1832 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1833 break;
1834 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1835 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1836 qd_idx = (pd_idx + 1) % raid_disks;
1837 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1838 break;
99c0fb5f
N
1839
1840 case ALGORITHM_PARITY_0:
1841 pd_idx = 0;
1842 qd_idx = 1;
1843 (*dd_idx) += 2;
1844 break;
1845 case ALGORITHM_PARITY_N:
1846 pd_idx = data_disks;
1847 qd_idx = data_disks + 1;
1848 break;
1849
1850 case ALGORITHM_ROTATING_ZERO_RESTART:
1851 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1852 * of blocks for computing Q is different.
1853 */
6e3b96ed 1854 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1855 qd_idx = pd_idx + 1;
1856 if (pd_idx == raid_disks-1) {
1857 (*dd_idx)++; /* Q D D D P */
1858 qd_idx = 0;
1859 } else if (*dd_idx >= pd_idx)
1860 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1861 ddf_layout = 1;
99c0fb5f
N
1862 break;
1863
1864 case ALGORITHM_ROTATING_N_RESTART:
1865 /* Same a left_asymmetric, by first stripe is
1866 * D D D P Q rather than
1867 * Q D D D P
1868 */
6e3b96ed
N
1869 stripe2 += 1;
1870 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1871 qd_idx = pd_idx + 1;
1872 if (pd_idx == raid_disks-1) {
1873 (*dd_idx)++; /* Q D D D P */
1874 qd_idx = 0;
1875 } else if (*dd_idx >= pd_idx)
1876 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1877 ddf_layout = 1;
99c0fb5f
N
1878 break;
1879
1880 case ALGORITHM_ROTATING_N_CONTINUE:
1881 /* Same as left_symmetric but Q is before P */
6e3b96ed 1882 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1883 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1884 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1885 ddf_layout = 1;
99c0fb5f
N
1886 break;
1887
1888 case ALGORITHM_LEFT_ASYMMETRIC_6:
1889 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1890 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1891 if (*dd_idx >= pd_idx)
1892 (*dd_idx)++;
1893 qd_idx = raid_disks - 1;
1894 break;
1895
1896 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1897 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1898 if (*dd_idx >= pd_idx)
1899 (*dd_idx)++;
1900 qd_idx = raid_disks - 1;
1901 break;
1902
1903 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1904 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1905 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1906 qd_idx = raid_disks - 1;
1907 break;
1908
1909 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1910 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1911 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1912 qd_idx = raid_disks - 1;
1913 break;
1914
1915 case ALGORITHM_PARITY_0_6:
1916 pd_idx = 0;
1917 (*dd_idx)++;
1918 qd_idx = raid_disks - 1;
1919 break;
1920
16a53ecc 1921 default:
99c0fb5f 1922 BUG();
16a53ecc
N
1923 }
1924 break;
1da177e4
LT
1925 }
1926
911d4ee8
N
1927 if (sh) {
1928 sh->pd_idx = pd_idx;
1929 sh->qd_idx = qd_idx;
67cc2b81 1930 sh->ddf_layout = ddf_layout;
911d4ee8 1931 }
1da177e4
LT
1932 /*
1933 * Finally, compute the new sector number
1934 */
1935 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1936 return new_sector;
1937}
1938
1939
784052ec 1940static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1941{
1942 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1943 int raid_disks = sh->disks;
1944 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1945 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1946 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1947 : conf->chunk_sectors;
e183eaed
N
1948 int algorithm = previous ? conf->prev_algo
1949 : conf->algorithm;
1da177e4
LT
1950 sector_t stripe;
1951 int chunk_offset;
35f2a591
N
1952 sector_t chunk_number;
1953 int dummy1, dd_idx = i;
1da177e4 1954 sector_t r_sector;
911d4ee8 1955 struct stripe_head sh2;
1da177e4 1956
16a53ecc 1957
1da177e4
LT
1958 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1959 stripe = new_sector;
1da177e4 1960
16a53ecc
N
1961 if (i == sh->pd_idx)
1962 return 0;
1963 switch(conf->level) {
1964 case 4: break;
1965 case 5:
e183eaed 1966 switch (algorithm) {
1da177e4
LT
1967 case ALGORITHM_LEFT_ASYMMETRIC:
1968 case ALGORITHM_RIGHT_ASYMMETRIC:
1969 if (i > sh->pd_idx)
1970 i--;
1971 break;
1972 case ALGORITHM_LEFT_SYMMETRIC:
1973 case ALGORITHM_RIGHT_SYMMETRIC:
1974 if (i < sh->pd_idx)
1975 i += raid_disks;
1976 i -= (sh->pd_idx + 1);
1977 break;
99c0fb5f
N
1978 case ALGORITHM_PARITY_0:
1979 i -= 1;
1980 break;
1981 case ALGORITHM_PARITY_N:
1982 break;
1da177e4 1983 default:
99c0fb5f 1984 BUG();
16a53ecc
N
1985 }
1986 break;
1987 case 6:
d0dabf7e 1988 if (i == sh->qd_idx)
16a53ecc 1989 return 0; /* It is the Q disk */
e183eaed 1990 switch (algorithm) {
16a53ecc
N
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1993 case ALGORITHM_ROTATING_ZERO_RESTART:
1994 case ALGORITHM_ROTATING_N_RESTART:
1995 if (sh->pd_idx == raid_disks-1)
1996 i--; /* Q D D D P */
16a53ecc
N
1997 else if (i > sh->pd_idx)
1998 i -= 2; /* D D P Q D */
1999 break;
2000 case ALGORITHM_LEFT_SYMMETRIC:
2001 case ALGORITHM_RIGHT_SYMMETRIC:
2002 if (sh->pd_idx == raid_disks-1)
2003 i--; /* Q D D D P */
2004 else {
2005 /* D D P Q D */
2006 if (i < sh->pd_idx)
2007 i += raid_disks;
2008 i -= (sh->pd_idx + 2);
2009 }
2010 break;
99c0fb5f
N
2011 case ALGORITHM_PARITY_0:
2012 i -= 2;
2013 break;
2014 case ALGORITHM_PARITY_N:
2015 break;
2016 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2017 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2018 if (sh->pd_idx == 0)
2019 i--; /* P D D D Q */
e4424fee
N
2020 else {
2021 /* D D Q P D */
2022 if (i < sh->pd_idx)
2023 i += raid_disks;
2024 i -= (sh->pd_idx + 1);
2025 }
99c0fb5f
N
2026 break;
2027 case ALGORITHM_LEFT_ASYMMETRIC_6:
2028 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2029 if (i > sh->pd_idx)
2030 i--;
2031 break;
2032 case ALGORITHM_LEFT_SYMMETRIC_6:
2033 case ALGORITHM_RIGHT_SYMMETRIC_6:
2034 if (i < sh->pd_idx)
2035 i += data_disks + 1;
2036 i -= (sh->pd_idx + 1);
2037 break;
2038 case ALGORITHM_PARITY_0_6:
2039 i -= 1;
2040 break;
16a53ecc 2041 default:
99c0fb5f 2042 BUG();
16a53ecc
N
2043 }
2044 break;
1da177e4
LT
2045 }
2046
2047 chunk_number = stripe * data_disks + i;
35f2a591 2048 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2049
112bf897 2050 check = raid5_compute_sector(conf, r_sector,
784052ec 2051 previous, &dummy1, &sh2);
911d4ee8
N
2052 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2053 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2054 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2055 mdname(conf->mddev));
1da177e4
LT
2056 return 0;
2057 }
2058 return r_sector;
2059}
2060
2061
600aa109 2062static void
c0f7bddb 2063schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2064 int rcw, int expand)
e33129d8
DW
2065{
2066 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
2067 raid5_conf_t *conf = sh->raid_conf;
2068 int level = conf->level;
e33129d8
DW
2069
2070 if (rcw) {
2071 /* if we are not expanding this is a proper write request, and
2072 * there will be bios with new data to be drained into the
2073 * stripe cache
2074 */
2075 if (!expand) {
600aa109
DW
2076 sh->reconstruct_state = reconstruct_state_drain_run;
2077 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2078 } else
2079 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2080
ac6b53b6 2081 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2082
2083 for (i = disks; i--; ) {
2084 struct r5dev *dev = &sh->dev[i];
2085
2086 if (dev->towrite) {
2087 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2088 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2089 if (!expand)
2090 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2091 s->locked++;
e33129d8
DW
2092 }
2093 }
c0f7bddb 2094 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2095 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2096 atomic_inc(&conf->pending_full_writes);
e33129d8 2097 } else {
c0f7bddb 2098 BUG_ON(level == 6);
e33129d8
DW
2099 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2100 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2101
d8ee0728 2102 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2103 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2104 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2106
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2109 if (i == pd_idx)
2110 continue;
2111
e33129d8
DW
2112 if (dev->towrite &&
2113 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2114 test_bit(R5_Wantcompute, &dev->flags))) {
2115 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2116 set_bit(R5_LOCKED, &dev->flags);
2117 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2118 s->locked++;
e33129d8
DW
2119 }
2120 }
2121 }
2122
c0f7bddb 2123 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2124 * are in flight
2125 */
2126 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2127 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2128 s->locked++;
e33129d8 2129
c0f7bddb
YT
2130 if (level == 6) {
2131 int qd_idx = sh->qd_idx;
2132 struct r5dev *dev = &sh->dev[qd_idx];
2133
2134 set_bit(R5_LOCKED, &dev->flags);
2135 clear_bit(R5_UPTODATE, &dev->flags);
2136 s->locked++;
2137 }
2138
600aa109 2139 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2140 __func__, (unsigned long long)sh->sector,
600aa109 2141 s->locked, s->ops_request);
e33129d8 2142}
16a53ecc 2143
1da177e4
LT
2144/*
2145 * Each stripe/dev can have one or more bion attached.
16a53ecc 2146 * toread/towrite point to the first in a chain.
1da177e4
LT
2147 * The bi_next chain must be in order.
2148 */
2149static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2150{
2151 struct bio **bip;
2152 raid5_conf_t *conf = sh->raid_conf;
72626685 2153 int firstwrite=0;
1da177e4 2154
45b4233c 2155 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
2156 (unsigned long long)bi->bi_sector,
2157 (unsigned long long)sh->sector);
2158
2159
2160 spin_lock(&sh->lock);
2161 spin_lock_irq(&conf->device_lock);
72626685 2162 if (forwrite) {
1da177e4 2163 bip = &sh->dev[dd_idx].towrite;
72626685
N
2164 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2165 firstwrite = 1;
2166 } else
1da177e4
LT
2167 bip = &sh->dev[dd_idx].toread;
2168 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2169 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2170 goto overlap;
2171 bip = & (*bip)->bi_next;
2172 }
2173 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2174 goto overlap;
2175
78bafebd 2176 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2177 if (*bip)
2178 bi->bi_next = *bip;
2179 *bip = bi;
960e739d 2180 bi->bi_phys_segments++;
1da177e4
LT
2181 spin_unlock_irq(&conf->device_lock);
2182 spin_unlock(&sh->lock);
2183
45b4233c 2184 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
2185 (unsigned long long)bi->bi_sector,
2186 (unsigned long long)sh->sector, dd_idx);
2187
72626685 2188 if (conf->mddev->bitmap && firstwrite) {
72626685
N
2189 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2190 STRIPE_SECTORS, 0);
ae3c20cc 2191 sh->bm_seq = conf->seq_flush+1;
72626685
N
2192 set_bit(STRIPE_BIT_DELAY, &sh->state);
2193 }
2194
1da177e4
LT
2195 if (forwrite) {
2196 /* check if page is covered */
2197 sector_t sector = sh->dev[dd_idx].sector;
2198 for (bi=sh->dev[dd_idx].towrite;
2199 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2200 bi && bi->bi_sector <= sector;
2201 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2202 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2203 sector = bi->bi_sector + (bi->bi_size>>9);
2204 }
2205 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2206 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2207 }
2208 return 1;
2209
2210 overlap:
2211 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2212 spin_unlock_irq(&conf->device_lock);
2213 spin_unlock(&sh->lock);
2214 return 0;
2215}
2216
29269553
N
2217static void end_reshape(raid5_conf_t *conf);
2218
911d4ee8
N
2219static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2220 struct stripe_head *sh)
ccfcc3c1 2221{
784052ec 2222 int sectors_per_chunk =
09c9e5fa 2223 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2224 int dd_idx;
2d2063ce 2225 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2226 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2227
112bf897
N
2228 raid5_compute_sector(conf,
2229 stripe * (disks - conf->max_degraded)
b875e531 2230 *sectors_per_chunk + chunk_offset,
112bf897 2231 previous,
911d4ee8 2232 &dd_idx, sh);
ccfcc3c1
N
2233}
2234
a4456856 2235static void
1fe797e6 2236handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2237 struct stripe_head_state *s, int disks,
2238 struct bio **return_bi)
2239{
2240 int i;
2241 for (i = disks; i--; ) {
2242 struct bio *bi;
2243 int bitmap_end = 0;
2244
2245 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2246 mdk_rdev_t *rdev;
2247 rcu_read_lock();
2248 rdev = rcu_dereference(conf->disks[i].rdev);
2249 if (rdev && test_bit(In_sync, &rdev->flags))
2250 /* multiple read failures in one stripe */
2251 md_error(conf->mddev, rdev);
2252 rcu_read_unlock();
2253 }
2254 spin_lock_irq(&conf->device_lock);
2255 /* fail all writes first */
2256 bi = sh->dev[i].towrite;
2257 sh->dev[i].towrite = NULL;
2258 if (bi) {
2259 s->to_write--;
2260 bitmap_end = 1;
2261 }
2262
2263 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2264 wake_up(&conf->wait_for_overlap);
2265
2266 while (bi && bi->bi_sector <
2267 sh->dev[i].sector + STRIPE_SECTORS) {
2268 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2269 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2270 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2271 md_write_end(conf->mddev);
2272 bi->bi_next = *return_bi;
2273 *return_bi = bi;
2274 }
2275 bi = nextbi;
2276 }
2277 /* and fail all 'written' */
2278 bi = sh->dev[i].written;
2279 sh->dev[i].written = NULL;
2280 if (bi) bitmap_end = 1;
2281 while (bi && bi->bi_sector <
2282 sh->dev[i].sector + STRIPE_SECTORS) {
2283 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2284 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2285 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2286 md_write_end(conf->mddev);
2287 bi->bi_next = *return_bi;
2288 *return_bi = bi;
2289 }
2290 bi = bi2;
2291 }
2292
b5e98d65
DW
2293 /* fail any reads if this device is non-operational and
2294 * the data has not reached the cache yet.
2295 */
2296 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2297 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2298 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2299 bi = sh->dev[i].toread;
2300 sh->dev[i].toread = NULL;
2301 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2302 wake_up(&conf->wait_for_overlap);
2303 if (bi) s->to_read--;
2304 while (bi && bi->bi_sector <
2305 sh->dev[i].sector + STRIPE_SECTORS) {
2306 struct bio *nextbi =
2307 r5_next_bio(bi, sh->dev[i].sector);
2308 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2309 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2310 bi->bi_next = *return_bi;
2311 *return_bi = bi;
2312 }
2313 bi = nextbi;
2314 }
2315 }
2316 spin_unlock_irq(&conf->device_lock);
2317 if (bitmap_end)
2318 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2319 STRIPE_SECTORS, 0, 0);
2320 }
2321
8b3e6cdc
DW
2322 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2323 if (atomic_dec_and_test(&conf->pending_full_writes))
2324 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2325}
2326
1fe797e6
DW
2327/* fetch_block5 - checks the given member device to see if its data needs
2328 * to be read or computed to satisfy a request.
2329 *
2330 * Returns 1 when no more member devices need to be checked, otherwise returns
2331 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2332 */
1fe797e6
DW
2333static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2334 int disk_idx, int disks)
f38e1219
DW
2335{
2336 struct r5dev *dev = &sh->dev[disk_idx];
2337 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2338
f38e1219
DW
2339 /* is the data in this block needed, and can we get it? */
2340 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2341 !test_bit(R5_UPTODATE, &dev->flags) &&
2342 (dev->toread ||
2343 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2344 s->syncing || s->expanding ||
2345 (s->failed &&
2346 (failed_dev->toread ||
2347 (failed_dev->towrite &&
2348 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2349 /* We would like to get this block, possibly by computing it,
2350 * otherwise read it if the backing disk is insync
f38e1219
DW
2351 */
2352 if ((s->uptodate == disks - 1) &&
ecc65c9b 2353 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2354 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2356 set_bit(R5_Wantcompute, &dev->flags);
2357 sh->ops.target = disk_idx;
ac6b53b6 2358 sh->ops.target2 = -1;
f38e1219 2359 s->req_compute = 1;
f38e1219 2360 /* Careful: from this point on 'uptodate' is in the eye
ac6b53b6 2361 * of raid_run_ops which services 'compute' operations
f38e1219
DW
2362 * before writes. R5_Wantcompute flags a block that will
2363 * be R5_UPTODATE by the time it is needed for a
2364 * subsequent operation.
2365 */
2366 s->uptodate++;
1fe797e6 2367 return 1; /* uptodate + compute == disks */
7a1fc53c 2368 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2369 set_bit(R5_LOCKED, &dev->flags);
2370 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2371 s->locked++;
2372 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2373 s->syncing);
2374 }
2375 }
2376
1fe797e6 2377 return 0;
f38e1219
DW
2378}
2379
1fe797e6
DW
2380/**
2381 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2382 */
2383static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2384 struct stripe_head_state *s, int disks)
2385{
2386 int i;
f38e1219 2387
f38e1219
DW
2388 /* look for blocks to read/compute, skip this if a compute
2389 * is already in flight, or if the stripe contents are in the
2390 * midst of changing due to a write
2391 */
976ea8d4 2392 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2393 !sh->reconstruct_state)
f38e1219 2394 for (i = disks; i--; )
1fe797e6 2395 if (fetch_block5(sh, s, i, disks))
f38e1219 2396 break;
a4456856
DW
2397 set_bit(STRIPE_HANDLE, &sh->state);
2398}
2399
5599becc
YT
2400/* fetch_block6 - checks the given member device to see if its data needs
2401 * to be read or computed to satisfy a request.
2402 *
2403 * Returns 1 when no more member devices need to be checked, otherwise returns
2404 * 0 to tell the loop in handle_stripe_fill6 to continue
2405 */
2406static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2407 struct r6_state *r6s, int disk_idx, int disks)
a4456856 2408{
5599becc
YT
2409 struct r5dev *dev = &sh->dev[disk_idx];
2410 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2411 &sh->dev[r6s->failed_num[1]] };
2412
2413 if (!test_bit(R5_LOCKED, &dev->flags) &&
2414 !test_bit(R5_UPTODATE, &dev->flags) &&
2415 (dev->toread ||
2416 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2417 s->syncing || s->expanding ||
2418 (s->failed >= 1 &&
2419 (fdev[0]->toread || s->to_write)) ||
2420 (s->failed >= 2 &&
2421 (fdev[1]->toread || s->to_write)))) {
2422 /* we would like to get this block, possibly by computing it,
2423 * otherwise read it if the backing disk is insync
2424 */
2425 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2426 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2427 if ((s->uptodate == disks - 1) &&
2428 (s->failed && (disk_idx == r6s->failed_num[0] ||
2429 disk_idx == r6s->failed_num[1]))) {
2430 /* have disk failed, and we're requested to fetch it;
2431 * do compute it
a4456856 2432 */
5599becc
YT
2433 pr_debug("Computing stripe %llu block %d\n",
2434 (unsigned long long)sh->sector, disk_idx);
2435 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2436 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2437 set_bit(R5_Wantcompute, &dev->flags);
2438 sh->ops.target = disk_idx;
2439 sh->ops.target2 = -1; /* no 2nd target */
2440 s->req_compute = 1;
2441 s->uptodate++;
2442 return 1;
2443 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2444 /* Computing 2-failure is *very* expensive; only
2445 * do it if failed >= 2
2446 */
2447 int other;
2448 for (other = disks; other--; ) {
2449 if (other == disk_idx)
2450 continue;
2451 if (!test_bit(R5_UPTODATE,
2452 &sh->dev[other].flags))
2453 break;
a4456856 2454 }
5599becc
YT
2455 BUG_ON(other < 0);
2456 pr_debug("Computing stripe %llu blocks %d,%d\n",
2457 (unsigned long long)sh->sector,
2458 disk_idx, other);
2459 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2460 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2461 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2462 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2463 sh->ops.target = disk_idx;
2464 sh->ops.target2 = other;
2465 s->uptodate += 2;
2466 s->req_compute = 1;
2467 return 1;
2468 } else if (test_bit(R5_Insync, &dev->flags)) {
2469 set_bit(R5_LOCKED, &dev->flags);
2470 set_bit(R5_Wantread, &dev->flags);
2471 s->locked++;
2472 pr_debug("Reading block %d (sync=%d)\n",
2473 disk_idx, s->syncing);
a4456856
DW
2474 }
2475 }
5599becc
YT
2476
2477 return 0;
2478}
2479
2480/**
2481 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2482 */
2483static void handle_stripe_fill6(struct stripe_head *sh,
2484 struct stripe_head_state *s, struct r6_state *r6s,
2485 int disks)
2486{
2487 int i;
2488
2489 /* look for blocks to read/compute, skip this if a compute
2490 * is already in flight, or if the stripe contents are in the
2491 * midst of changing due to a write
2492 */
2493 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2494 !sh->reconstruct_state)
2495 for (i = disks; i--; )
2496 if (fetch_block6(sh, s, r6s, i, disks))
2497 break;
a4456856
DW
2498 set_bit(STRIPE_HANDLE, &sh->state);
2499}
2500
2501
1fe797e6 2502/* handle_stripe_clean_event
a4456856
DW
2503 * any written block on an uptodate or failed drive can be returned.
2504 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2505 * never LOCKED, so we don't need to test 'failed' directly.
2506 */
1fe797e6 2507static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2508 struct stripe_head *sh, int disks, struct bio **return_bi)
2509{
2510 int i;
2511 struct r5dev *dev;
2512
2513 for (i = disks; i--; )
2514 if (sh->dev[i].written) {
2515 dev = &sh->dev[i];
2516 if (!test_bit(R5_LOCKED, &dev->flags) &&
2517 test_bit(R5_UPTODATE, &dev->flags)) {
2518 /* We can return any write requests */
2519 struct bio *wbi, *wbi2;
2520 int bitmap_end = 0;
45b4233c 2521 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2522 spin_lock_irq(&conf->device_lock);
2523 wbi = dev->written;
2524 dev->written = NULL;
2525 while (wbi && wbi->bi_sector <
2526 dev->sector + STRIPE_SECTORS) {
2527 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2528 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2529 md_write_end(conf->mddev);
2530 wbi->bi_next = *return_bi;
2531 *return_bi = wbi;
2532 }
2533 wbi = wbi2;
2534 }
2535 if (dev->towrite == NULL)
2536 bitmap_end = 1;
2537 spin_unlock_irq(&conf->device_lock);
2538 if (bitmap_end)
2539 bitmap_endwrite(conf->mddev->bitmap,
2540 sh->sector,
2541 STRIPE_SECTORS,
2542 !test_bit(STRIPE_DEGRADED, &sh->state),
2543 0);
2544 }
2545 }
8b3e6cdc
DW
2546
2547 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2548 if (atomic_dec_and_test(&conf->pending_full_writes))
2549 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2550}
2551
1fe797e6 2552static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2553 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2554{
2555 int rmw = 0, rcw = 0, i;
2556 for (i = disks; i--; ) {
2557 /* would I have to read this buffer for read_modify_write */
2558 struct r5dev *dev = &sh->dev[i];
2559 if ((dev->towrite || i == sh->pd_idx) &&
2560 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2561 !(test_bit(R5_UPTODATE, &dev->flags) ||
2562 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2563 if (test_bit(R5_Insync, &dev->flags))
2564 rmw++;
2565 else
2566 rmw += 2*disks; /* cannot read it */
2567 }
2568 /* Would I have to read this buffer for reconstruct_write */
2569 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2570 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2571 !(test_bit(R5_UPTODATE, &dev->flags) ||
2572 test_bit(R5_Wantcompute, &dev->flags))) {
2573 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2574 else
2575 rcw += 2*disks;
2576 }
2577 }
45b4233c 2578 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2579 (unsigned long long)sh->sector, rmw, rcw);
2580 set_bit(STRIPE_HANDLE, &sh->state);
2581 if (rmw < rcw && rmw > 0)
2582 /* prefer read-modify-write, but need to get some data */
2583 for (i = disks; i--; ) {
2584 struct r5dev *dev = &sh->dev[i];
2585 if ((dev->towrite || i == sh->pd_idx) &&
2586 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2587 !(test_bit(R5_UPTODATE, &dev->flags) ||
2588 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2589 test_bit(R5_Insync, &dev->flags)) {
2590 if (
2591 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2592 pr_debug("Read_old block "
a4456856
DW
2593 "%d for r-m-w\n", i);
2594 set_bit(R5_LOCKED, &dev->flags);
2595 set_bit(R5_Wantread, &dev->flags);
2596 s->locked++;
2597 } else {
2598 set_bit(STRIPE_DELAYED, &sh->state);
2599 set_bit(STRIPE_HANDLE, &sh->state);
2600 }
2601 }
2602 }
2603 if (rcw <= rmw && rcw > 0)
2604 /* want reconstruct write, but need to get some data */
2605 for (i = disks; i--; ) {
2606 struct r5dev *dev = &sh->dev[i];
2607 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2608 i != sh->pd_idx &&
2609 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2610 !(test_bit(R5_UPTODATE, &dev->flags) ||
2611 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2612 test_bit(R5_Insync, &dev->flags)) {
2613 if (
2614 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2615 pr_debug("Read_old block "
a4456856
DW
2616 "%d for Reconstruct\n", i);
2617 set_bit(R5_LOCKED, &dev->flags);
2618 set_bit(R5_Wantread, &dev->flags);
2619 s->locked++;
2620 } else {
2621 set_bit(STRIPE_DELAYED, &sh->state);
2622 set_bit(STRIPE_HANDLE, &sh->state);
2623 }
2624 }
2625 }
2626 /* now if nothing is locked, and if we have enough data,
2627 * we can start a write request
2628 */
f38e1219
DW
2629 /* since handle_stripe can be called at any time we need to handle the
2630 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2631 * subsequent call wants to start a write request. raid_run_ops only
2632 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2633 * simultaneously. If this is not the case then new writes need to be
2634 * held off until the compute completes.
2635 */
976ea8d4
DW
2636 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2637 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2638 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2639 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2640}
2641
1fe797e6 2642static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2643 struct stripe_head *sh, struct stripe_head_state *s,
2644 struct r6_state *r6s, int disks)
2645{
a9b39a74 2646 int rcw = 0, pd_idx = sh->pd_idx, i;
34e04e87 2647 int qd_idx = sh->qd_idx;
a9b39a74
YT
2648
2649 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2650 for (i = disks; i--; ) {
2651 struct r5dev *dev = &sh->dev[i];
a9b39a74
YT
2652 /* check if we haven't enough data */
2653 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2654 i != pd_idx && i != qd_idx &&
2655 !test_bit(R5_LOCKED, &dev->flags) &&
2656 !(test_bit(R5_UPTODATE, &dev->flags) ||
2657 test_bit(R5_Wantcompute, &dev->flags))) {
2658 rcw++;
2659 if (!test_bit(R5_Insync, &dev->flags))
2660 continue; /* it's a failed drive */
2661
2662 if (
2663 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2664 pr_debug("Read_old stripe %llu "
2665 "block %d for Reconstruct\n",
2666 (unsigned long long)sh->sector, i);
2667 set_bit(R5_LOCKED, &dev->flags);
2668 set_bit(R5_Wantread, &dev->flags);
2669 s->locked++;
2670 } else {
2671 pr_debug("Request delayed stripe %llu "
2672 "block %d for Reconstruct\n",
2673 (unsigned long long)sh->sector, i);
2674 set_bit(STRIPE_DELAYED, &sh->state);
2675 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2676 }
2677 }
2678 }
a4456856
DW
2679 /* now if nothing is locked, and if we have enough data, we can start a
2680 * write request
2681 */
a9b39a74
YT
2682 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2683 s->locked == 0 && rcw == 0 &&
a4456856 2684 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
a9b39a74 2685 schedule_reconstruction(sh, s, 1, 0);
a4456856
DW
2686 }
2687}
2688
2689static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2690 struct stripe_head_state *s, int disks)
2691{
ecc65c9b 2692 struct r5dev *dev = NULL;
bd2ab670 2693
a4456856 2694 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2695
ecc65c9b
DW
2696 switch (sh->check_state) {
2697 case check_state_idle:
2698 /* start a new check operation if there are no failures */
bd2ab670 2699 if (s->failed == 0) {
bd2ab670 2700 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2701 sh->check_state = check_state_run;
2702 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2703 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2704 s->uptodate--;
ecc65c9b 2705 break;
bd2ab670 2706 }
ecc65c9b
DW
2707 dev = &sh->dev[s->failed_num];
2708 /* fall through */
2709 case check_state_compute_result:
2710 sh->check_state = check_state_idle;
2711 if (!dev)
2712 dev = &sh->dev[sh->pd_idx];
2713
2714 /* check that a write has not made the stripe insync */
2715 if (test_bit(STRIPE_INSYNC, &sh->state))
2716 break;
c8894419 2717
a4456856 2718 /* either failed parity check, or recovery is happening */
a4456856
DW
2719 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2720 BUG_ON(s->uptodate != disks);
2721
2722 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2723 s->locked++;
a4456856 2724 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2725
a4456856 2726 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2727 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2728 break;
2729 case check_state_run:
2730 break; /* we will be called again upon completion */
2731 case check_state_check_result:
2732 sh->check_state = check_state_idle;
2733
2734 /* if a failure occurred during the check operation, leave
2735 * STRIPE_INSYNC not set and let the stripe be handled again
2736 */
2737 if (s->failed)
2738 break;
2739
2740 /* handle a successful check operation, if parity is correct
2741 * we are done. Otherwise update the mismatch count and repair
2742 * parity if !MD_RECOVERY_CHECK
2743 */
ad283ea4 2744 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2745 /* parity is correct (on disc,
2746 * not in buffer any more)
2747 */
2748 set_bit(STRIPE_INSYNC, &sh->state);
2749 else {
2750 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2751 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2752 /* don't try to repair!! */
2753 set_bit(STRIPE_INSYNC, &sh->state);
2754 else {
2755 sh->check_state = check_state_compute_run;
976ea8d4 2756 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2757 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2758 set_bit(R5_Wantcompute,
2759 &sh->dev[sh->pd_idx].flags);
2760 sh->ops.target = sh->pd_idx;
ac6b53b6 2761 sh->ops.target2 = -1;
ecc65c9b
DW
2762 s->uptodate++;
2763 }
2764 }
2765 break;
2766 case check_state_compute_run:
2767 break;
2768 default:
2769 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2770 __func__, sh->check_state,
2771 (unsigned long long) sh->sector);
2772 BUG();
a4456856
DW
2773 }
2774}
2775
2776
2777static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647
DW
2778 struct stripe_head_state *s,
2779 struct r6_state *r6s, int disks)
a4456856 2780{
a4456856 2781 int pd_idx = sh->pd_idx;
34e04e87 2782 int qd_idx = sh->qd_idx;
d82dfee0 2783 struct r5dev *dev;
a4456856
DW
2784
2785 set_bit(STRIPE_HANDLE, &sh->state);
2786
2787 BUG_ON(s->failed > 2);
d82dfee0 2788
a4456856
DW
2789 /* Want to check and possibly repair P and Q.
2790 * However there could be one 'failed' device, in which
2791 * case we can only check one of them, possibly using the
2792 * other to generate missing data
2793 */
2794
d82dfee0
DW
2795 switch (sh->check_state) {
2796 case check_state_idle:
2797 /* start a new check operation if there are < 2 failures */
a4456856 2798 if (s->failed == r6s->q_failed) {
d82dfee0 2799 /* The only possible failed device holds Q, so it
a4456856
DW
2800 * makes sense to check P (If anything else were failed,
2801 * we would have used P to recreate it).
2802 */
d82dfee0 2803 sh->check_state = check_state_run;
a4456856
DW
2804 }
2805 if (!r6s->q_failed && s->failed < 2) {
d82dfee0 2806 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2807 * anything, so it makes sense to check it
2808 */
d82dfee0
DW
2809 if (sh->check_state == check_state_run)
2810 sh->check_state = check_state_run_pq;
2811 else
2812 sh->check_state = check_state_run_q;
a4456856 2813 }
a4456856 2814
d82dfee0
DW
2815 /* discard potentially stale zero_sum_result */
2816 sh->ops.zero_sum_result = 0;
a4456856 2817
d82dfee0
DW
2818 if (sh->check_state == check_state_run) {
2819 /* async_xor_zero_sum destroys the contents of P */
2820 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2821 s->uptodate--;
a4456856 2822 }
d82dfee0
DW
2823 if (sh->check_state >= check_state_run &&
2824 sh->check_state <= check_state_run_pq) {
2825 /* async_syndrome_zero_sum preserves P and Q, so
2826 * no need to mark them !uptodate here
2827 */
2828 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2829 break;
a4456856
DW
2830 }
2831
d82dfee0
DW
2832 /* we have 2-disk failure */
2833 BUG_ON(s->failed != 2);
2834 /* fall through */
2835 case check_state_compute_result:
2836 sh->check_state = check_state_idle;
a4456856 2837
d82dfee0
DW
2838 /* check that a write has not made the stripe insync */
2839 if (test_bit(STRIPE_INSYNC, &sh->state))
2840 break;
a4456856
DW
2841
2842 /* now write out any block on a failed drive,
d82dfee0 2843 * or P or Q if they were recomputed
a4456856 2844 */
d82dfee0 2845 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856
DW
2846 if (s->failed == 2) {
2847 dev = &sh->dev[r6s->failed_num[1]];
2848 s->locked++;
2849 set_bit(R5_LOCKED, &dev->flags);
2850 set_bit(R5_Wantwrite, &dev->flags);
2851 }
2852 if (s->failed >= 1) {
2853 dev = &sh->dev[r6s->failed_num[0]];
2854 s->locked++;
2855 set_bit(R5_LOCKED, &dev->flags);
2856 set_bit(R5_Wantwrite, &dev->flags);
2857 }
d82dfee0 2858 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2859 dev = &sh->dev[pd_idx];
2860 s->locked++;
2861 set_bit(R5_LOCKED, &dev->flags);
2862 set_bit(R5_Wantwrite, &dev->flags);
2863 }
d82dfee0 2864 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2865 dev = &sh->dev[qd_idx];
2866 s->locked++;
2867 set_bit(R5_LOCKED, &dev->flags);
2868 set_bit(R5_Wantwrite, &dev->flags);
2869 }
2870 clear_bit(STRIPE_DEGRADED, &sh->state);
2871
2872 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2873 break;
2874 case check_state_run:
2875 case check_state_run_q:
2876 case check_state_run_pq:
2877 break; /* we will be called again upon completion */
2878 case check_state_check_result:
2879 sh->check_state = check_state_idle;
2880
2881 /* handle a successful check operation, if parity is correct
2882 * we are done. Otherwise update the mismatch count and repair
2883 * parity if !MD_RECOVERY_CHECK
2884 */
2885 if (sh->ops.zero_sum_result == 0) {
2886 /* both parities are correct */
2887 if (!s->failed)
2888 set_bit(STRIPE_INSYNC, &sh->state);
2889 else {
2890 /* in contrast to the raid5 case we can validate
2891 * parity, but still have a failure to write
2892 * back
2893 */
2894 sh->check_state = check_state_compute_result;
2895 /* Returning at this point means that we may go
2896 * off and bring p and/or q uptodate again so
2897 * we make sure to check zero_sum_result again
2898 * to verify if p or q need writeback
2899 */
2900 }
2901 } else {
2902 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2903 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2904 /* don't try to repair!! */
2905 set_bit(STRIPE_INSYNC, &sh->state);
2906 else {
2907 int *target = &sh->ops.target;
2908
2909 sh->ops.target = -1;
2910 sh->ops.target2 = -1;
2911 sh->check_state = check_state_compute_run;
2912 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2913 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2914 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2915 set_bit(R5_Wantcompute,
2916 &sh->dev[pd_idx].flags);
2917 *target = pd_idx;
2918 target = &sh->ops.target2;
2919 s->uptodate++;
2920 }
2921 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2922 set_bit(R5_Wantcompute,
2923 &sh->dev[qd_idx].flags);
2924 *target = qd_idx;
2925 s->uptodate++;
2926 }
2927 }
2928 }
2929 break;
2930 case check_state_compute_run:
2931 break;
2932 default:
2933 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2934 __func__, sh->check_state,
2935 (unsigned long long) sh->sector);
2936 BUG();
a4456856
DW
2937 }
2938}
2939
2940static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2941 struct r6_state *r6s)
2942{
2943 int i;
2944
2945 /* We have read all the blocks in this stripe and now we need to
2946 * copy some of them into a target stripe for expand.
2947 */
f0a50d37 2948 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2949 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2950 for (i = 0; i < sh->disks; i++)
34e04e87 2951 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2952 int dd_idx, j;
a4456856 2953 struct stripe_head *sh2;
a08abd8c 2954 struct async_submit_ctl submit;
a4456856 2955
784052ec 2956 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2957 sector_t s = raid5_compute_sector(conf, bn, 0,
2958 &dd_idx, NULL);
a8c906ca 2959 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2960 if (sh2 == NULL)
2961 /* so far only the early blocks of this stripe
2962 * have been requested. When later blocks
2963 * get requested, we will try again
2964 */
2965 continue;
2966 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2967 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2968 /* must have already done this block */
2969 release_stripe(sh2);
2970 continue;
2971 }
f0a50d37
DW
2972
2973 /* place all the copies on one channel */
a08abd8c 2974 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2975 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2976 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2977 &submit);
f0a50d37 2978
a4456856
DW
2979 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2980 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2981 for (j = 0; j < conf->raid_disks; j++)
2982 if (j != sh2->pd_idx &&
d0dabf7e 2983 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2984 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2985 break;
2986 if (j == conf->raid_disks) {
2987 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2988 set_bit(STRIPE_HANDLE, &sh2->state);
2989 }
2990 release_stripe(sh2);
f0a50d37 2991
a4456856 2992 }
a2e08551
N
2993 /* done submitting copies, wait for them to complete */
2994 if (tx) {
2995 async_tx_ack(tx);
2996 dma_wait_for_async_tx(tx);
2997 }
a4456856 2998}
1da177e4 2999
6bfe0b49 3000
1da177e4
LT
3001/*
3002 * handle_stripe - do things to a stripe.
3003 *
3004 * We lock the stripe and then examine the state of various bits
3005 * to see what needs to be done.
3006 * Possible results:
3007 * return some read request which now have data
3008 * return some write requests which are safely on disc
3009 * schedule a read on some buffers
3010 * schedule a write of some buffers
3011 * return confirmation of parity correctness
3012 *
1da177e4
LT
3013 * buffers are taken off read_list or write_list, and bh_cache buffers
3014 * get BH_Lock set before the stripe lock is released.
3015 *
3016 */
a4456856 3017
1442577b 3018static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
3019{
3020 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
3021 int disks = sh->disks, i;
3022 struct bio *return_bi = NULL;
3023 struct stripe_head_state s;
1da177e4 3024 struct r5dev *dev;
6bfe0b49 3025 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 3026 int prexor;
729a1866 3027 int dec_preread_active = 0;
1da177e4 3028
a4456856 3029 memset(&s, 0, sizeof(s));
600aa109
DW
3030 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3031 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3032 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3033 sh->reconstruct_state);
1da177e4
LT
3034
3035 spin_lock(&sh->lock);
3036 clear_bit(STRIPE_HANDLE, &sh->state);
3037 clear_bit(STRIPE_DELAYED, &sh->state);
3038
a4456856
DW
3039 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3040 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3041 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 3042
83de75cc 3043 /* Now to look around and see what can be done */
9910f16a 3044 rcu_read_lock();
1da177e4
LT
3045 for (i=disks; i--; ) {
3046 mdk_rdev_t *rdev;
a9f326eb
N
3047
3048 dev = &sh->dev[i];
1da177e4 3049
b5e98d65
DW
3050 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3051 "written %p\n", i, dev->flags, dev->toread, dev->read,
3052 dev->towrite, dev->written);
3053
3054 /* maybe we can request a biofill operation
3055 *
3056 * new wantfill requests are only permitted while
83de75cc 3057 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
3058 */
3059 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 3060 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 3061 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
3062
3063 /* now count some things */
a4456856
DW
3064 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3065 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 3066 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 3067
b5e98d65
DW
3068 if (test_bit(R5_Wantfill, &dev->flags))
3069 s.to_fill++;
3070 else if (dev->toread)
a4456856 3071 s.to_read++;
1da177e4 3072 if (dev->towrite) {
a4456856 3073 s.to_write++;
1da177e4 3074 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3075 s.non_overwrite++;
1da177e4 3076 }
a4456856
DW
3077 if (dev->written)
3078 s.written++;
9910f16a 3079 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3080 if (blocked_rdev == NULL &&
3081 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3082 blocked_rdev = rdev;
3083 atomic_inc(&rdev->nr_pending);
6bfe0b49 3084 }
415e72d0
N
3085 clear_bit(R5_Insync, &dev->flags);
3086 if (!rdev)
3087 /* Not in-sync */;
3088 else if (test_bit(In_sync, &rdev->flags))
3089 set_bit(R5_Insync, &dev->flags);
3090 else {
3091 /* could be in-sync depending on recovery/reshape status */
3092 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3093 set_bit(R5_Insync, &dev->flags);
3094 }
3095 if (!test_bit(R5_Insync, &dev->flags)) {
14f8d26b 3096 /* The ReadError flag will just be confusing now */
4e5314b5
N
3097 clear_bit(R5_ReadError, &dev->flags);
3098 clear_bit(R5_ReWrite, &dev->flags);
3099 }
415e72d0
N
3100 if (test_bit(R5_ReadError, &dev->flags))
3101 clear_bit(R5_Insync, &dev->flags);
3102 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3103 s.failed++;
3104 s.failed_num = i;
415e72d0 3105 }
1da177e4 3106 }
9910f16a 3107 rcu_read_unlock();
b5e98d65 3108
6bfe0b49 3109 if (unlikely(blocked_rdev)) {
ac4090d2
N
3110 if (s.syncing || s.expanding || s.expanded ||
3111 s.to_write || s.written) {
3112 set_bit(STRIPE_HANDLE, &sh->state);
3113 goto unlock;
3114 }
3115 /* There is nothing for the blocked_rdev to block */
3116 rdev_dec_pending(blocked_rdev, conf->mddev);
3117 blocked_rdev = NULL;
6bfe0b49
DW
3118 }
3119
83de75cc
DW
3120 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3121 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3122 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3123 }
b5e98d65 3124
45b4233c 3125 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 3126 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
3127 s.locked, s.uptodate, s.to_read, s.to_write,
3128 s.failed, s.failed_num);
1da177e4
LT
3129 /* check if the array has lost two devices and, if so, some requests might
3130 * need to be failed
3131 */
a4456856 3132 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 3133 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3134 if (s.failed > 1 && s.syncing) {
1da177e4
LT
3135 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3136 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3137 s.syncing = 0;
1da177e4
LT
3138 }
3139
3140 /* might be able to return some write requests if the parity block
3141 * is safe, or on a failed drive
3142 */
3143 dev = &sh->dev[sh->pd_idx];
a4456856
DW
3144 if ( s.written &&
3145 ((test_bit(R5_Insync, &dev->flags) &&
3146 !test_bit(R5_LOCKED, &dev->flags) &&
3147 test_bit(R5_UPTODATE, &dev->flags)) ||
3148 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 3149 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
3150
3151 /* Now we might consider reading some blocks, either to check/generate
3152 * parity, or to satisfy requests
3153 * or to load a block that is being partially written.
3154 */
a4456856 3155 if (s.to_read || s.non_overwrite ||
976ea8d4 3156 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3157 handle_stripe_fill5(sh, &s, disks);
1da177e4 3158
e33129d8
DW
3159 /* Now we check to see if any write operations have recently
3160 * completed
3161 */
e0a115e5 3162 prexor = 0;
d8ee0728 3163 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 3164 prexor = 1;
d8ee0728
DW
3165 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3166 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 3167 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
3168
3169 /* All the 'written' buffers and the parity block are ready to
3170 * be written back to disk
3171 */
3172 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3173 for (i = disks; i--; ) {
3174 dev = &sh->dev[i];
3175 if (test_bit(R5_LOCKED, &dev->flags) &&
3176 (i == sh->pd_idx || dev->written)) {
3177 pr_debug("Writing block %d\n", i);
3178 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
3179 if (prexor)
3180 continue;
e33129d8
DW
3181 if (!test_bit(R5_Insync, &dev->flags) ||
3182 (i == sh->pd_idx && s.failed == 0))
3183 set_bit(STRIPE_INSYNC, &sh->state);
3184 }
3185 }
729a1866
N
3186 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3187 dec_preread_active = 1;
e33129d8
DW
3188 }
3189
3190 /* Now to consider new write requests and what else, if anything
3191 * should be read. We do not handle new writes when:
3192 * 1/ A 'write' operation (copy+xor) is already in flight.
3193 * 2/ A 'check' operation is in flight, as it may clobber the parity
3194 * block.
3195 */
600aa109 3196 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3197 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
3198
3199 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
3200 * Any reads will already have been scheduled, so we just see if enough
3201 * data is available. The parity check is held off while parity
3202 * dependent operations are in flight.
1da177e4 3203 */
ecc65c9b
DW
3204 if (sh->check_state ||
3205 (s.syncing && s.locked == 0 &&
976ea8d4 3206 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 3207 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 3208 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 3209
a4456856 3210 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
3211 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3212 clear_bit(STRIPE_SYNCING, &sh->state);
3213 }
4e5314b5
N
3214
3215 /* If the failed drive is just a ReadError, then we might need to progress
3216 * the repair/check process
3217 */
a4456856
DW
3218 if (s.failed == 1 && !conf->mddev->ro &&
3219 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3220 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3221 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 3222 ) {
a4456856 3223 dev = &sh->dev[s.failed_num];
4e5314b5
N
3224 if (!test_bit(R5_ReWrite, &dev->flags)) {
3225 set_bit(R5_Wantwrite, &dev->flags);
3226 set_bit(R5_ReWrite, &dev->flags);
3227 set_bit(R5_LOCKED, &dev->flags);
a4456856 3228 s.locked++;
4e5314b5
N
3229 } else {
3230 /* let's read it back */
3231 set_bit(R5_Wantread, &dev->flags);
3232 set_bit(R5_LOCKED, &dev->flags);
a4456856 3233 s.locked++;
4e5314b5
N
3234 }
3235 }
3236
600aa109
DW
3237 /* Finish reconstruct operations initiated by the expansion process */
3238 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12 3239 struct stripe_head *sh2
a8c906ca 3240 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3241 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3242 /* sh cannot be written until sh2 has been read.
3243 * so arrange for sh to be delayed a little
3244 */
3245 set_bit(STRIPE_DELAYED, &sh->state);
3246 set_bit(STRIPE_HANDLE, &sh->state);
3247 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3248 &sh2->state))
3249 atomic_inc(&conf->preread_active_stripes);
3250 release_stripe(sh2);
3251 goto unlock;
3252 }
3253 if (sh2)
3254 release_stripe(sh2);
3255
600aa109 3256 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 3257 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 3258 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 3259 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 3260 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 3261 s.locked++;
23397883 3262 }
f0a50d37
DW
3263 }
3264
3265 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 3266 !sh->reconstruct_state) {
f0a50d37
DW
3267 /* Need to write out all blocks after computing parity */
3268 sh->disks = conf->raid_disks;
911d4ee8 3269 stripe_set_idx(sh->sector, conf, 0, sh);
c0f7bddb 3270 schedule_reconstruction(sh, &s, 1, 1);
600aa109 3271 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 3272 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 3273 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
3274 wake_up(&conf->wait_for_overlap);
3275 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3276 }
3277
0f94e87c 3278 if (s.expanding && s.locked == 0 &&
976ea8d4 3279 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3280 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 3281
6bfe0b49 3282 unlock:
1da177e4
LT
3283 spin_unlock(&sh->lock);
3284
6bfe0b49
DW
3285 /* wait for this device to become unblocked */
3286 if (unlikely(blocked_rdev))
3287 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3288
600aa109 3289 if (s.ops_request)
ac6b53b6 3290 raid_run_ops(sh, s.ops_request);
d84e0f10 3291
c4e5ac0a 3292 ops_run_io(sh, &s);
1da177e4 3293
729a1866
N
3294 if (dec_preread_active) {
3295 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3296 * is waiting on a flush, it won't continue until the writes
729a1866
N
3297 * have actually been submitted.
3298 */
3299 atomic_dec(&conf->preread_active_stripes);
3300 if (atomic_read(&conf->preread_active_stripes) <
3301 IO_THRESHOLD)
3302 md_wakeup_thread(conf->mddev->thread);
3303 }
a4456856 3304 return_io(return_bi);
1da177e4
LT
3305}
3306
1442577b 3307static void handle_stripe6(struct stripe_head *sh)
1da177e4 3308{
bff61975 3309 raid5_conf_t *conf = sh->raid_conf;
f416885e 3310 int disks = sh->disks;
a4456856 3311 struct bio *return_bi = NULL;
34e04e87 3312 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3313 struct stripe_head_state s;
3314 struct r6_state r6s;
16a53ecc 3315 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3316 mdk_rdev_t *blocked_rdev = NULL;
729a1866 3317 int dec_preread_active = 0;
1da177e4 3318
45b4233c 3319 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
6c0069c0 3320 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
a4456856 3321 (unsigned long long)sh->sector, sh->state,
6c0069c0
YT
3322 atomic_read(&sh->count), pd_idx, qd_idx,
3323 sh->check_state, sh->reconstruct_state);
a4456856 3324 memset(&s, 0, sizeof(s));
72626685 3325
16a53ecc
N
3326 spin_lock(&sh->lock);
3327 clear_bit(STRIPE_HANDLE, &sh->state);
3328 clear_bit(STRIPE_DELAYED, &sh->state);
3329
a4456856
DW
3330 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3331 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3332 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3333 /* Now to look around and see what can be done */
1da177e4
LT
3334
3335 rcu_read_lock();
16a53ecc
N
3336 for (i=disks; i--; ) {
3337 mdk_rdev_t *rdev;
3338 dev = &sh->dev[i];
1da177e4 3339
45b4233c 3340 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3341 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3342 /* maybe we can reply to a read
3343 *
3344 * new wantfill requests are only permitted while
3345 * ops_complete_biofill is guaranteed to be inactive
3346 */
3347 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3348 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3349 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3350
16a53ecc 3351 /* now count some things */
a4456856
DW
3352 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3353 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2d6e4ecc
DW
3354 if (test_bit(R5_Wantcompute, &dev->flags)) {
3355 s.compute++;
3356 BUG_ON(s.compute > 2);
3357 }
1da177e4 3358
6c0069c0
YT
3359 if (test_bit(R5_Wantfill, &dev->flags)) {
3360 s.to_fill++;
3361 } else if (dev->toread)
a4456856 3362 s.to_read++;
16a53ecc 3363 if (dev->towrite) {
a4456856 3364 s.to_write++;
16a53ecc 3365 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3366 s.non_overwrite++;
16a53ecc 3367 }
a4456856
DW
3368 if (dev->written)
3369 s.written++;
16a53ecc 3370 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3371 if (blocked_rdev == NULL &&
3372 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3373 blocked_rdev = rdev;
3374 atomic_inc(&rdev->nr_pending);
6bfe0b49 3375 }
415e72d0
N
3376 clear_bit(R5_Insync, &dev->flags);
3377 if (!rdev)
3378 /* Not in-sync */;
3379 else if (test_bit(In_sync, &rdev->flags))
3380 set_bit(R5_Insync, &dev->flags);
3381 else {
3382 /* in sync if before recovery_offset */
3383 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3384 set_bit(R5_Insync, &dev->flags);
3385 }
3386 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3387 /* The ReadError flag will just be confusing now */
3388 clear_bit(R5_ReadError, &dev->flags);
3389 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3390 }
415e72d0
N
3391 if (test_bit(R5_ReadError, &dev->flags))
3392 clear_bit(R5_Insync, &dev->flags);
3393 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3394 if (s.failed < 2)
3395 r6s.failed_num[s.failed] = i;
3396 s.failed++;
415e72d0 3397 }
1da177e4
LT
3398 }
3399 rcu_read_unlock();
6bfe0b49
DW
3400
3401 if (unlikely(blocked_rdev)) {
ac4090d2
N
3402 if (s.syncing || s.expanding || s.expanded ||
3403 s.to_write || s.written) {
3404 set_bit(STRIPE_HANDLE, &sh->state);
3405 goto unlock;
3406 }
3407 /* There is nothing for the blocked_rdev to block */
3408 rdev_dec_pending(blocked_rdev, conf->mddev);
3409 blocked_rdev = NULL;
6bfe0b49 3410 }
ac4090d2 3411
6c0069c0
YT
3412 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3413 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3414 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3415 }
3416
45b4233c 3417 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3418 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3419 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3420 r6s.failed_num[0], r6s.failed_num[1]);
3421 /* check if the array has lost >2 devices and, if so, some requests
3422 * might need to be failed
16a53ecc 3423 */
a4456856 3424 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3425 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3426 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3427 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3428 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3429 s.syncing = 0;
16a53ecc
N
3430 }
3431
3432 /*
3433 * might be able to return some write requests if the parity blocks
3434 * are safe, or on a failed drive
3435 */
3436 pdev = &sh->dev[pd_idx];
a4456856
DW
3437 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3438 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3439 qdev = &sh->dev[qd_idx];
3440 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3441 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3442
3443 if ( s.written &&
3444 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3445 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3446 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3447 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3448 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3449 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3450 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3451
3452 /* Now we might consider reading some blocks, either to check/generate
3453 * parity, or to satisfy requests
3454 * or to load a block that is being partially written.
3455 */
a4456856 3456 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
6c0069c0 3457 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3458 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc 3459
6c0069c0
YT
3460 /* Now we check to see if any write operations have recently
3461 * completed
3462 */
3463 if (sh->reconstruct_state == reconstruct_state_drain_result) {
6c0069c0
YT
3464
3465 sh->reconstruct_state = reconstruct_state_idle;
3466 /* All the 'written' buffers and the parity blocks are ready to
3467 * be written back to disk
3468 */
3469 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3470 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3471 for (i = disks; i--; ) {
3472 dev = &sh->dev[i];
3473 if (test_bit(R5_LOCKED, &dev->flags) &&
3474 (i == sh->pd_idx || i == qd_idx ||
3475 dev->written)) {
3476 pr_debug("Writing block %d\n", i);
3477 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3478 set_bit(R5_Wantwrite, &dev->flags);
3479 if (!test_bit(R5_Insync, &dev->flags) ||
3480 ((i == sh->pd_idx || i == qd_idx) &&
3481 s.failed == 0))
3482 set_bit(STRIPE_INSYNC, &sh->state);
3483 }
3484 }
729a1866
N
3485 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3486 dec_preread_active = 1;
6c0069c0
YT
3487 }
3488
a9b39a74
YT
3489 /* Now to consider new write requests and what else, if anything
3490 * should be read. We do not handle new writes when:
3491 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3492 * 2/ A 'check' operation is in flight, as it may clobber the parity
3493 * block.
3494 */
3495 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3496 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3497
3498 /* maybe we need to check and possibly fix the parity for this stripe
a4456856 3499 * Any reads will already have been scheduled, so we just see if enough
6c0069c0
YT
3500 * data is available. The parity check is held off while parity
3501 * dependent operations are in flight.
16a53ecc 3502 */
6c0069c0
YT
3503 if (sh->check_state ||
3504 (s.syncing && s.locked == 0 &&
3505 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3506 !test_bit(STRIPE_INSYNC, &sh->state)))
36d1c647 3507 handle_parity_checks6(conf, sh, &s, &r6s, disks);
16a53ecc 3508
a4456856 3509 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3510 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3511 clear_bit(STRIPE_SYNCING, &sh->state);
3512 }
3513
3514 /* If the failed drives are just a ReadError, then we might need
3515 * to progress the repair/check process
3516 */
a4456856
DW
3517 if (s.failed <= 2 && !conf->mddev->ro)
3518 for (i = 0; i < s.failed; i++) {
3519 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3520 if (test_bit(R5_ReadError, &dev->flags)
3521 && !test_bit(R5_LOCKED, &dev->flags)
3522 && test_bit(R5_UPTODATE, &dev->flags)
3523 ) {
3524 if (!test_bit(R5_ReWrite, &dev->flags)) {
3525 set_bit(R5_Wantwrite, &dev->flags);
3526 set_bit(R5_ReWrite, &dev->flags);
3527 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3528 s.locked++;
16a53ecc
N
3529 } else {
3530 /* let's read it back */
3531 set_bit(R5_Wantread, &dev->flags);
3532 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3533 s.locked++;
16a53ecc
N
3534 }
3535 }
3536 }
f416885e 3537
6c0069c0
YT
3538 /* Finish reconstruct operations initiated by the expansion process */
3539 if (sh->reconstruct_state == reconstruct_state_result) {
3540 sh->reconstruct_state = reconstruct_state_idle;
3541 clear_bit(STRIPE_EXPANDING, &sh->state);
3542 for (i = conf->raid_disks; i--; ) {
3543 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3544 set_bit(R5_LOCKED, &sh->dev[i].flags);
3545 s.locked++;
3546 }
3547 }
3548
3549 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3550 !sh->reconstruct_state) {
ab69ae12 3551 struct stripe_head *sh2
a8c906ca 3552 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3553 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3554 /* sh cannot be written until sh2 has been read.
3555 * so arrange for sh to be delayed a little
3556 */
3557 set_bit(STRIPE_DELAYED, &sh->state);
3558 set_bit(STRIPE_HANDLE, &sh->state);
3559 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3560 &sh2->state))
3561 atomic_inc(&conf->preread_active_stripes);
3562 release_stripe(sh2);
3563 goto unlock;
3564 }
3565 if (sh2)
3566 release_stripe(sh2);
3567
f416885e
N
3568 /* Need to write out all blocks after computing P&Q */
3569 sh->disks = conf->raid_disks;
911d4ee8 3570 stripe_set_idx(sh->sector, conf, 0, sh);
6c0069c0
YT
3571 schedule_reconstruction(sh, &s, 1, 1);
3572 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
f416885e
N
3573 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3574 atomic_dec(&conf->reshape_stripes);
3575 wake_up(&conf->wait_for_overlap);
3576 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3577 }
3578
0f94e87c 3579 if (s.expanding && s.locked == 0 &&
976ea8d4 3580 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3581 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3582
6bfe0b49 3583 unlock:
16a53ecc
N
3584 spin_unlock(&sh->lock);
3585
6bfe0b49
DW
3586 /* wait for this device to become unblocked */
3587 if (unlikely(blocked_rdev))
3588 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3589
6c0069c0
YT
3590 if (s.ops_request)
3591 raid_run_ops(sh, s.ops_request);
3592
f0e43bcd 3593 ops_run_io(sh, &s);
16a53ecc 3594
729a1866
N
3595
3596 if (dec_preread_active) {
3597 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3598 * is waiting on a flush, it won't continue until the writes
729a1866
N
3599 * have actually been submitted.
3600 */
3601 atomic_dec(&conf->preread_active_stripes);
3602 if (atomic_read(&conf->preread_active_stripes) <
3603 IO_THRESHOLD)
3604 md_wakeup_thread(conf->mddev->thread);
3605 }
3606
f0e43bcd 3607 return_io(return_bi);
16a53ecc
N
3608}
3609
1442577b 3610static void handle_stripe(struct stripe_head *sh)
16a53ecc
N
3611{
3612 if (sh->raid_conf->level == 6)
1442577b 3613 handle_stripe6(sh);
16a53ecc 3614 else
1442577b 3615 handle_stripe5(sh);
16a53ecc
N
3616}
3617
16a53ecc
N
3618static void raid5_activate_delayed(raid5_conf_t *conf)
3619{
3620 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3621 while (!list_empty(&conf->delayed_list)) {
3622 struct list_head *l = conf->delayed_list.next;
3623 struct stripe_head *sh;
3624 sh = list_entry(l, struct stripe_head, lru);
3625 list_del_init(l);
3626 clear_bit(STRIPE_DELAYED, &sh->state);
3627 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3628 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3629 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3630 }
6ed3003c 3631 } else
2ac87401 3632 plugger_set_plug(&conf->plug);
16a53ecc
N
3633}
3634
3635static void activate_bit_delay(raid5_conf_t *conf)
3636{
3637 /* device_lock is held */
3638 struct list_head head;
3639 list_add(&head, &conf->bitmap_list);
3640 list_del_init(&conf->bitmap_list);
3641 while (!list_empty(&head)) {
3642 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3643 list_del_init(&sh->lru);
3644 atomic_inc(&sh->count);
3645 __release_stripe(conf, sh);
3646 }
3647}
3648
3649static void unplug_slaves(mddev_t *mddev)
3650{
070ec55d 3651 raid5_conf_t *conf = mddev->private;
16a53ecc 3652 int i;
5e5e3e78 3653 int devs = max(conf->raid_disks, conf->previous_raid_disks);
16a53ecc
N
3654
3655 rcu_read_lock();
5e5e3e78 3656 for (i = 0; i < devs; i++) {
16a53ecc
N
3657 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3658 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3659 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3660
3661 atomic_inc(&rdev->nr_pending);
3662 rcu_read_unlock();
3663
2ad8b1ef 3664 blk_unplug(r_queue);
16a53ecc
N
3665
3666 rdev_dec_pending(rdev, mddev);
3667 rcu_read_lock();
3668 }
3669 }
3670 rcu_read_unlock();
3671}
3672
9f7c2220 3673void md_raid5_unplug_device(raid5_conf_t *conf)
16a53ecc 3674{
16a53ecc
N
3675 unsigned long flags;
3676
3677 spin_lock_irqsave(&conf->device_lock, flags);
3678
2ac87401 3679 if (plugger_remove_plug(&conf->plug)) {
16a53ecc
N
3680 conf->seq_flush++;
3681 raid5_activate_delayed(conf);
72626685 3682 }
2ac87401 3683 md_wakeup_thread(conf->mddev->thread);
1da177e4
LT
3684
3685 spin_unlock_irqrestore(&conf->device_lock, flags);
3686
2ac87401 3687 unplug_slaves(conf->mddev);
1da177e4 3688}
9f7c2220 3689EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
1da177e4 3690
2ac87401
N
3691static void raid5_unplug(struct plug_handle *plug)
3692{
3693 raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
9f7c2220 3694 md_raid5_unplug_device(conf);
2ac87401
N
3695}
3696
3697static void raid5_unplug_queue(struct request_queue *q)
3698{
3699 mddev_t *mddev = q->queuedata;
9f7c2220 3700 md_raid5_unplug_device(mddev->private);
1da177e4
LT
3701}
3702
11d8a6e3 3703int md_raid5_congested(mddev_t *mddev, int bits)
f022b2fd 3704{
070ec55d 3705 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3706
3707 /* No difference between reads and writes. Just check
3708 * how busy the stripe_cache is
3709 */
3fa841d7 3710
f022b2fd
N
3711 if (conf->inactive_blocked)
3712 return 1;
3713 if (conf->quiesce)
3714 return 1;
3715 if (list_empty_careful(&conf->inactive_list))
3716 return 1;
3717
3718 return 0;
3719}
11d8a6e3
N
3720EXPORT_SYMBOL_GPL(md_raid5_congested);
3721
3722static int raid5_congested(void *data, int bits)
3723{
3724 mddev_t *mddev = data;
3725
3726 return mddev_congested(mddev, bits) ||
3727 md_raid5_congested(mddev, bits);
3728}
f022b2fd 3729
23032a0e
RBJ
3730/* We want read requests to align with chunks where possible,
3731 * but write requests don't need to.
3732 */
cc371e66
AK
3733static int raid5_mergeable_bvec(struct request_queue *q,
3734 struct bvec_merge_data *bvm,
3735 struct bio_vec *biovec)
23032a0e
RBJ
3736{
3737 mddev_t *mddev = q->queuedata;
cc371e66 3738 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3739 int max;
9d8f0363 3740 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3741 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3742
cc371e66 3743 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3744 return biovec->bv_len; /* always allow writes to be mergeable */
3745
664e7c41
AN
3746 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3747 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3748 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3749 if (max < 0) max = 0;
3750 if (max <= biovec->bv_len && bio_sectors == 0)
3751 return biovec->bv_len;
3752 else
3753 return max;
3754}
3755
f679623f
RBJ
3756
3757static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3758{
3759 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3760 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3761 unsigned int bio_sectors = bio->bi_size >> 9;
3762
664e7c41
AN
3763 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3764 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3765 return chunk_sectors >=
3766 ((sector & (chunk_sectors - 1)) + bio_sectors);
3767}
3768
46031f9a
RBJ
3769/*
3770 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3771 * later sampled by raid5d.
3772 */
3773static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3774{
3775 unsigned long flags;
3776
3777 spin_lock_irqsave(&conf->device_lock, flags);
3778
3779 bi->bi_next = conf->retry_read_aligned_list;
3780 conf->retry_read_aligned_list = bi;
3781
3782 spin_unlock_irqrestore(&conf->device_lock, flags);
3783 md_wakeup_thread(conf->mddev->thread);
3784}
3785
3786
3787static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3788{
3789 struct bio *bi;
3790
3791 bi = conf->retry_read_aligned;
3792 if (bi) {
3793 conf->retry_read_aligned = NULL;
3794 return bi;
3795 }
3796 bi = conf->retry_read_aligned_list;
3797 if(bi) {
387bb173 3798 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3799 bi->bi_next = NULL;
960e739d
JA
3800 /*
3801 * this sets the active strip count to 1 and the processed
3802 * strip count to zero (upper 8 bits)
3803 */
46031f9a 3804 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3805 }
3806
3807 return bi;
3808}
3809
3810
f679623f
RBJ
3811/*
3812 * The "raid5_align_endio" should check if the read succeeded and if it
3813 * did, call bio_endio on the original bio (having bio_put the new bio
3814 * first).
3815 * If the read failed..
3816 */
6712ecf8 3817static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3818{
3819 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3820 mddev_t *mddev;
3821 raid5_conf_t *conf;
3822 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3823 mdk_rdev_t *rdev;
3824
f679623f 3825 bio_put(bi);
46031f9a 3826
46031f9a
RBJ
3827 rdev = (void*)raid_bi->bi_next;
3828 raid_bi->bi_next = NULL;
2b7f2228
N
3829 mddev = rdev->mddev;
3830 conf = mddev->private;
46031f9a
RBJ
3831
3832 rdev_dec_pending(rdev, conf->mddev);
3833
3834 if (!error && uptodate) {
6712ecf8 3835 bio_endio(raid_bi, 0);
46031f9a
RBJ
3836 if (atomic_dec_and_test(&conf->active_aligned_reads))
3837 wake_up(&conf->wait_for_stripe);
6712ecf8 3838 return;
46031f9a
RBJ
3839 }
3840
3841
45b4233c 3842 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3843
3844 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3845}
3846
387bb173
NB
3847static int bio_fits_rdev(struct bio *bi)
3848{
165125e1 3849 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3850
ae03bf63 3851 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3852 return 0;
3853 blk_recount_segments(q, bi);
8a78362c 3854 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3855 return 0;
3856
3857 if (q->merge_bvec_fn)
3858 /* it's too hard to apply the merge_bvec_fn at this stage,
3859 * just just give up
3860 */
3861 return 0;
3862
3863 return 1;
3864}
3865
3866
21a52c6d 3867static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
f679623f 3868{
070ec55d 3869 raid5_conf_t *conf = mddev->private;
8553fe7e 3870 int dd_idx;
f679623f
RBJ
3871 struct bio* align_bi;
3872 mdk_rdev_t *rdev;
3873
3874 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3875 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3876 return 0;
3877 }
3878 /*
a167f663 3879 * use bio_clone_mddev to make a copy of the bio
f679623f 3880 */
a167f663 3881 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3882 if (!align_bi)
3883 return 0;
3884 /*
3885 * set bi_end_io to a new function, and set bi_private to the
3886 * original bio.
3887 */
3888 align_bi->bi_end_io = raid5_align_endio;
3889 align_bi->bi_private = raid_bio;
3890 /*
3891 * compute position
3892 */
112bf897
N
3893 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3894 0,
911d4ee8 3895 &dd_idx, NULL);
f679623f
RBJ
3896
3897 rcu_read_lock();
3898 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3899 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3900 atomic_inc(&rdev->nr_pending);
3901 rcu_read_unlock();
46031f9a
RBJ
3902 raid_bio->bi_next = (void*)rdev;
3903 align_bi->bi_bdev = rdev->bdev;
3904 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3905 align_bi->bi_sector += rdev->data_offset;
3906
387bb173
NB
3907 if (!bio_fits_rdev(align_bi)) {
3908 /* too big in some way */
3909 bio_put(align_bi);
3910 rdev_dec_pending(rdev, mddev);
3911 return 0;
3912 }
3913
46031f9a
RBJ
3914 spin_lock_irq(&conf->device_lock);
3915 wait_event_lock_irq(conf->wait_for_stripe,
3916 conf->quiesce == 0,
3917 conf->device_lock, /* nothing */);
3918 atomic_inc(&conf->active_aligned_reads);
3919 spin_unlock_irq(&conf->device_lock);
3920
f679623f
RBJ
3921 generic_make_request(align_bi);
3922 return 1;
3923 } else {
3924 rcu_read_unlock();
46031f9a 3925 bio_put(align_bi);
f679623f
RBJ
3926 return 0;
3927 }
3928}
3929
8b3e6cdc
DW
3930/* __get_priority_stripe - get the next stripe to process
3931 *
3932 * Full stripe writes are allowed to pass preread active stripes up until
3933 * the bypass_threshold is exceeded. In general the bypass_count
3934 * increments when the handle_list is handled before the hold_list; however, it
3935 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3936 * stripe with in flight i/o. The bypass_count will be reset when the
3937 * head of the hold_list has changed, i.e. the head was promoted to the
3938 * handle_list.
3939 */
3940static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3941{
3942 struct stripe_head *sh;
3943
3944 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3945 __func__,
3946 list_empty(&conf->handle_list) ? "empty" : "busy",
3947 list_empty(&conf->hold_list) ? "empty" : "busy",
3948 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3949
3950 if (!list_empty(&conf->handle_list)) {
3951 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3952
3953 if (list_empty(&conf->hold_list))
3954 conf->bypass_count = 0;
3955 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3956 if (conf->hold_list.next == conf->last_hold)
3957 conf->bypass_count++;
3958 else {
3959 conf->last_hold = conf->hold_list.next;
3960 conf->bypass_count -= conf->bypass_threshold;
3961 if (conf->bypass_count < 0)
3962 conf->bypass_count = 0;
3963 }
3964 }
3965 } else if (!list_empty(&conf->hold_list) &&
3966 ((conf->bypass_threshold &&
3967 conf->bypass_count > conf->bypass_threshold) ||
3968 atomic_read(&conf->pending_full_writes) == 0)) {
3969 sh = list_entry(conf->hold_list.next,
3970 typeof(*sh), lru);
3971 conf->bypass_count -= conf->bypass_threshold;
3972 if (conf->bypass_count < 0)
3973 conf->bypass_count = 0;
3974 } else
3975 return NULL;
3976
3977 list_del_init(&sh->lru);
3978 atomic_inc(&sh->count);
3979 BUG_ON(atomic_read(&sh->count) != 1);
3980 return sh;
3981}
f679623f 3982
21a52c6d 3983static int make_request(mddev_t *mddev, struct bio * bi)
1da177e4 3984{
070ec55d 3985 raid5_conf_t *conf = mddev->private;
911d4ee8 3986 int dd_idx;
1da177e4
LT
3987 sector_t new_sector;
3988 sector_t logical_sector, last_sector;
3989 struct stripe_head *sh;
a362357b 3990 const int rw = bio_data_dir(bi);
49077326 3991 int remaining;
1da177e4 3992
e9c7469b
TH
3993 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3994 md_flush_request(mddev, bi);
e5dcdd80
N
3995 return 0;
3996 }
3997
3d310eb7 3998 md_write_start(mddev, bi);
06d91a5f 3999
802ba064 4000 if (rw == READ &&
52488615 4001 mddev->reshape_position == MaxSector &&
21a52c6d 4002 chunk_aligned_read(mddev,bi))
99c0fb5f 4003 return 0;
52488615 4004
1da177e4
LT
4005 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4006 last_sector = bi->bi_sector + (bi->bi_size>>9);
4007 bi->bi_next = NULL;
4008 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4009
1da177e4
LT
4010 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4011 DEFINE_WAIT(w);
16a53ecc 4012 int disks, data_disks;
b5663ba4 4013 int previous;
b578d55f 4014
7ecaa1e6 4015 retry:
b5663ba4 4016 previous = 0;
b0f9ec04 4017 disks = conf->raid_disks;
b578d55f 4018 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 4019 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4020 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4021 * 64bit on a 32bit platform, and so it might be
4022 * possible to see a half-updated value
fef9c61f 4023 * Ofcourse reshape_progress could change after
df8e7f76
N
4024 * the lock is dropped, so once we get a reference
4025 * to the stripe that we think it is, we will have
4026 * to check again.
4027 */
7ecaa1e6 4028 spin_lock_irq(&conf->device_lock);
fef9c61f
N
4029 if (mddev->delta_disks < 0
4030 ? logical_sector < conf->reshape_progress
4031 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 4032 disks = conf->previous_raid_disks;
b5663ba4
N
4033 previous = 1;
4034 } else {
fef9c61f
N
4035 if (mddev->delta_disks < 0
4036 ? logical_sector < conf->reshape_safe
4037 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4038 spin_unlock_irq(&conf->device_lock);
4039 schedule();
4040 goto retry;
4041 }
4042 }
7ecaa1e6
N
4043 spin_unlock_irq(&conf->device_lock);
4044 }
16a53ecc
N
4045 data_disks = disks - conf->max_degraded;
4046
112bf897
N
4047 new_sector = raid5_compute_sector(conf, logical_sector,
4048 previous,
911d4ee8 4049 &dd_idx, NULL);
0c55e022 4050 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
4051 (unsigned long long)new_sector,
4052 (unsigned long long)logical_sector);
4053
b5663ba4 4054 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4055 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4056 if (sh) {
b0f9ec04 4057 if (unlikely(previous)) {
7ecaa1e6 4058 /* expansion might have moved on while waiting for a
df8e7f76
N
4059 * stripe, so we must do the range check again.
4060 * Expansion could still move past after this
4061 * test, but as we are holding a reference to
4062 * 'sh', we know that if that happens,
4063 * STRIPE_EXPANDING will get set and the expansion
4064 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4065 */
4066 int must_retry = 0;
4067 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
4068 if (mddev->delta_disks < 0
4069 ? logical_sector >= conf->reshape_progress
4070 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4071 /* mismatch, need to try again */
4072 must_retry = 1;
4073 spin_unlock_irq(&conf->device_lock);
4074 if (must_retry) {
4075 release_stripe(sh);
7a3ab908 4076 schedule();
7ecaa1e6
N
4077 goto retry;
4078 }
4079 }
e62e58a5 4080
a5c308d4
N
4081 if (bio_data_dir(bi) == WRITE &&
4082 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4083 logical_sector < mddev->suspend_hi) {
4084 release_stripe(sh);
e62e58a5
N
4085 /* As the suspend_* range is controlled by
4086 * userspace, we want an interruptible
4087 * wait.
4088 */
4089 flush_signals(current);
4090 prepare_to_wait(&conf->wait_for_overlap,
4091 &w, TASK_INTERRUPTIBLE);
4092 if (logical_sector >= mddev->suspend_lo &&
4093 logical_sector < mddev->suspend_hi)
4094 schedule();
e464eafd
N
4095 goto retry;
4096 }
7ecaa1e6
N
4097
4098 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4099 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4100 /* Stripe is busy expanding or
4101 * add failed due to overlap. Flush everything
1da177e4
LT
4102 * and wait a while
4103 */
9f7c2220 4104 md_raid5_unplug_device(conf);
1da177e4
LT
4105 release_stripe(sh);
4106 schedule();
4107 goto retry;
4108 }
4109 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4110 set_bit(STRIPE_HANDLE, &sh->state);
4111 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 4112 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4113 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4114 atomic_inc(&conf->preread_active_stripes);
1da177e4 4115 release_stripe(sh);
1da177e4
LT
4116 } else {
4117 /* cannot get stripe for read-ahead, just give-up */
4118 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4119 finish_wait(&conf->wait_for_overlap, &w);
4120 break;
4121 }
4122
4123 }
4124 spin_lock_irq(&conf->device_lock);
960e739d 4125 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4126 spin_unlock_irq(&conf->device_lock);
4127 if (remaining == 0) {
1da177e4 4128
16a53ecc 4129 if ( rw == WRITE )
1da177e4 4130 md_write_end(mddev);
6712ecf8 4131
0e13fe23 4132 bio_endio(bi, 0);
1da177e4 4133 }
729a1866 4134
1da177e4
LT
4135 return 0;
4136}
4137
b522adcd
DW
4138static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4139
52c03291 4140static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 4141{
52c03291
N
4142 /* reshaping is quite different to recovery/resync so it is
4143 * handled quite separately ... here.
4144 *
4145 * On each call to sync_request, we gather one chunk worth of
4146 * destination stripes and flag them as expanding.
4147 * Then we find all the source stripes and request reads.
4148 * As the reads complete, handle_stripe will copy the data
4149 * into the destination stripe and release that stripe.
4150 */
7b92813c 4151 raid5_conf_t *conf = mddev->private;
1da177e4 4152 struct stripe_head *sh;
ccfcc3c1 4153 sector_t first_sector, last_sector;
f416885e
N
4154 int raid_disks = conf->previous_raid_disks;
4155 int data_disks = raid_disks - conf->max_degraded;
4156 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4157 int i;
4158 int dd_idx;
c8f517c4 4159 sector_t writepos, readpos, safepos;
ec32a2bd 4160 sector_t stripe_addr;
7a661381 4161 int reshape_sectors;
ab69ae12 4162 struct list_head stripes;
52c03291 4163
fef9c61f
N
4164 if (sector_nr == 0) {
4165 /* If restarting in the middle, skip the initial sectors */
4166 if (mddev->delta_disks < 0 &&
4167 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4168 sector_nr = raid5_size(mddev, 0, 0)
4169 - conf->reshape_progress;
a639755c 4170 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
4171 conf->reshape_progress > 0)
4172 sector_nr = conf->reshape_progress;
f416885e 4173 sector_div(sector_nr, new_data_disks);
fef9c61f 4174 if (sector_nr) {
8dee7211
N
4175 mddev->curr_resync_completed = sector_nr;
4176 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4177 *skipped = 1;
4178 return sector_nr;
4179 }
52c03291
N
4180 }
4181
7a661381
N
4182 /* We need to process a full chunk at a time.
4183 * If old and new chunk sizes differ, we need to process the
4184 * largest of these
4185 */
664e7c41
AN
4186 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4187 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4188 else
9d8f0363 4189 reshape_sectors = mddev->chunk_sectors;
7a661381 4190
52c03291
N
4191 /* we update the metadata when there is more than 3Meg
4192 * in the block range (that is rather arbitrary, should
4193 * probably be time based) or when the data about to be
4194 * copied would over-write the source of the data at
4195 * the front of the range.
fef9c61f
N
4196 * i.e. one new_stripe along from reshape_progress new_maps
4197 * to after where reshape_safe old_maps to
52c03291 4198 */
fef9c61f 4199 writepos = conf->reshape_progress;
f416885e 4200 sector_div(writepos, new_data_disks);
c8f517c4
N
4201 readpos = conf->reshape_progress;
4202 sector_div(readpos, data_disks);
fef9c61f 4203 safepos = conf->reshape_safe;
f416885e 4204 sector_div(safepos, data_disks);
fef9c61f 4205 if (mddev->delta_disks < 0) {
ed37d83e 4206 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4207 readpos += reshape_sectors;
7a661381 4208 safepos += reshape_sectors;
fef9c61f 4209 } else {
7a661381 4210 writepos += reshape_sectors;
ed37d83e
N
4211 readpos -= min_t(sector_t, reshape_sectors, readpos);
4212 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4213 }
52c03291 4214
c8f517c4
N
4215 /* 'writepos' is the most advanced device address we might write.
4216 * 'readpos' is the least advanced device address we might read.
4217 * 'safepos' is the least address recorded in the metadata as having
4218 * been reshaped.
4219 * If 'readpos' is behind 'writepos', then there is no way that we can
4220 * ensure safety in the face of a crash - that must be done by userspace
4221 * making a backup of the data. So in that case there is no particular
4222 * rush to update metadata.
4223 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4224 * update the metadata to advance 'safepos' to match 'readpos' so that
4225 * we can be safe in the event of a crash.
4226 * So we insist on updating metadata if safepos is behind writepos and
4227 * readpos is beyond writepos.
4228 * In any case, update the metadata every 10 seconds.
4229 * Maybe that number should be configurable, but I'm not sure it is
4230 * worth it.... maybe it could be a multiple of safemode_delay???
4231 */
fef9c61f 4232 if ((mddev->delta_disks < 0
c8f517c4
N
4233 ? (safepos > writepos && readpos < writepos)
4234 : (safepos < writepos && readpos > writepos)) ||
4235 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4236 /* Cannot proceed until we've updated the superblock... */
4237 wait_event(conf->wait_for_overlap,
4238 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4239 mddev->reshape_position = conf->reshape_progress;
acb180b0 4240 mddev->curr_resync_completed = mddev->curr_resync;
c8f517c4 4241 conf->reshape_checkpoint = jiffies;
850b2b42 4242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4243 md_wakeup_thread(mddev->thread);
850b2b42 4244 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4245 kthread_should_stop());
4246 spin_lock_irq(&conf->device_lock);
fef9c61f 4247 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4248 spin_unlock_irq(&conf->device_lock);
4249 wake_up(&conf->wait_for_overlap);
acb180b0 4250 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4251 }
4252
ec32a2bd
N
4253 if (mddev->delta_disks < 0) {
4254 BUG_ON(conf->reshape_progress == 0);
4255 stripe_addr = writepos;
4256 BUG_ON((mddev->dev_sectors &
7a661381
N
4257 ~((sector_t)reshape_sectors - 1))
4258 - reshape_sectors - stripe_addr
ec32a2bd
N
4259 != sector_nr);
4260 } else {
7a661381 4261 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4262 stripe_addr = sector_nr;
4263 }
ab69ae12 4264 INIT_LIST_HEAD(&stripes);
7a661381 4265 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4266 int j;
a9f326eb 4267 int skipped_disk = 0;
a8c906ca 4268 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4269 set_bit(STRIPE_EXPANDING, &sh->state);
4270 atomic_inc(&conf->reshape_stripes);
4271 /* If any of this stripe is beyond the end of the old
4272 * array, then we need to zero those blocks
4273 */
4274 for (j=sh->disks; j--;) {
4275 sector_t s;
4276 if (j == sh->pd_idx)
4277 continue;
f416885e 4278 if (conf->level == 6 &&
d0dabf7e 4279 j == sh->qd_idx)
f416885e 4280 continue;
784052ec 4281 s = compute_blocknr(sh, j, 0);
b522adcd 4282 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4283 skipped_disk = 1;
52c03291
N
4284 continue;
4285 }
4286 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4287 set_bit(R5_Expanded, &sh->dev[j].flags);
4288 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4289 }
a9f326eb 4290 if (!skipped_disk) {
52c03291
N
4291 set_bit(STRIPE_EXPAND_READY, &sh->state);
4292 set_bit(STRIPE_HANDLE, &sh->state);
4293 }
ab69ae12 4294 list_add(&sh->lru, &stripes);
52c03291
N
4295 }
4296 spin_lock_irq(&conf->device_lock);
fef9c61f 4297 if (mddev->delta_disks < 0)
7a661381 4298 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4299 else
7a661381 4300 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4301 spin_unlock_irq(&conf->device_lock);
4302 /* Ok, those stripe are ready. We can start scheduling
4303 * reads on the source stripes.
4304 * The source stripes are determined by mapping the first and last
4305 * block on the destination stripes.
4306 */
52c03291 4307 first_sector =
ec32a2bd 4308 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4309 1, &dd_idx, NULL);
52c03291 4310 last_sector =
0e6e0271 4311 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4312 * new_data_disks - 1),
911d4ee8 4313 1, &dd_idx, NULL);
58c0fed4
AN
4314 if (last_sector >= mddev->dev_sectors)
4315 last_sector = mddev->dev_sectors - 1;
52c03291 4316 while (first_sector <= last_sector) {
a8c906ca 4317 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4318 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4319 set_bit(STRIPE_HANDLE, &sh->state);
4320 release_stripe(sh);
4321 first_sector += STRIPE_SECTORS;
4322 }
ab69ae12
N
4323 /* Now that the sources are clearly marked, we can release
4324 * the destination stripes
4325 */
4326 while (!list_empty(&stripes)) {
4327 sh = list_entry(stripes.next, struct stripe_head, lru);
4328 list_del_init(&sh->lru);
4329 release_stripe(sh);
4330 }
c6207277
N
4331 /* If this takes us to the resync_max point where we have to pause,
4332 * then we need to write out the superblock.
4333 */
7a661381 4334 sector_nr += reshape_sectors;
c03f6a19
N
4335 if ((sector_nr - mddev->curr_resync_completed) * 2
4336 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4337 /* Cannot proceed until we've updated the superblock... */
4338 wait_event(conf->wait_for_overlap,
4339 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4340 mddev->reshape_position = conf->reshape_progress;
48606a9f 4341 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
c8f517c4 4342 conf->reshape_checkpoint = jiffies;
c6207277
N
4343 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4344 md_wakeup_thread(mddev->thread);
4345 wait_event(mddev->sb_wait,
4346 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4347 || kthread_should_stop());
4348 spin_lock_irq(&conf->device_lock);
fef9c61f 4349 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4350 spin_unlock_irq(&conf->device_lock);
4351 wake_up(&conf->wait_for_overlap);
acb180b0 4352 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4353 }
7a661381 4354 return reshape_sectors;
52c03291
N
4355}
4356
4357/* FIXME go_faster isn't used */
4358static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4359{
7b92813c 4360 raid5_conf_t *conf = mddev->private;
52c03291 4361 struct stripe_head *sh;
58c0fed4 4362 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4363 sector_t sync_blocks;
16a53ecc
N
4364 int still_degraded = 0;
4365 int i;
1da177e4 4366
72626685 4367 if (sector_nr >= max_sector) {
1da177e4
LT
4368 /* just being told to finish up .. nothing much to do */
4369 unplug_slaves(mddev);
cea9c228 4370
29269553
N
4371 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4372 end_reshape(conf);
4373 return 0;
4374 }
72626685
N
4375
4376 if (mddev->curr_resync < max_sector) /* aborted */
4377 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4378 &sync_blocks, 1);
16a53ecc 4379 else /* completed sync */
72626685
N
4380 conf->fullsync = 0;
4381 bitmap_close_sync(mddev->bitmap);
4382
1da177e4
LT
4383 return 0;
4384 }
ccfcc3c1 4385
64bd660b
N
4386 /* Allow raid5_quiesce to complete */
4387 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4388
52c03291
N
4389 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4390 return reshape_request(mddev, sector_nr, skipped);
f6705578 4391
c6207277
N
4392 /* No need to check resync_max as we never do more than one
4393 * stripe, and as resync_max will always be on a chunk boundary,
4394 * if the check in md_do_sync didn't fire, there is no chance
4395 * of overstepping resync_max here
4396 */
4397
16a53ecc 4398 /* if there is too many failed drives and we are trying
1da177e4
LT
4399 * to resync, then assert that we are finished, because there is
4400 * nothing we can do.
4401 */
3285edf1 4402 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4403 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4404 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4405 *skipped = 1;
1da177e4
LT
4406 return rv;
4407 }
72626685 4408 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4409 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4410 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4411 /* we can skip this block, and probably more */
4412 sync_blocks /= STRIPE_SECTORS;
4413 *skipped = 1;
4414 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4415 }
1da177e4 4416
b47490c9
N
4417
4418 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4419
a8c906ca 4420 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4421 if (sh == NULL) {
a8c906ca 4422 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4423 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4424 * is trying to get access
1da177e4 4425 */
66c006a5 4426 schedule_timeout_uninterruptible(1);
1da177e4 4427 }
16a53ecc
N
4428 /* Need to check if array will still be degraded after recovery/resync
4429 * We don't need to check the 'failed' flag as when that gets set,
4430 * recovery aborts.
4431 */
f001a70c 4432 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4433 if (conf->disks[i].rdev == NULL)
4434 still_degraded = 1;
4435
4436 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4437
4438 spin_lock(&sh->lock);
1da177e4
LT
4439 set_bit(STRIPE_SYNCING, &sh->state);
4440 clear_bit(STRIPE_INSYNC, &sh->state);
4441 spin_unlock(&sh->lock);
4442
1442577b 4443 handle_stripe(sh);
1da177e4
LT
4444 release_stripe(sh);
4445
4446 return STRIPE_SECTORS;
4447}
4448
46031f9a
RBJ
4449static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4450{
4451 /* We may not be able to submit a whole bio at once as there
4452 * may not be enough stripe_heads available.
4453 * We cannot pre-allocate enough stripe_heads as we may need
4454 * more than exist in the cache (if we allow ever large chunks).
4455 * So we do one stripe head at a time and record in
4456 * ->bi_hw_segments how many have been done.
4457 *
4458 * We *know* that this entire raid_bio is in one chunk, so
4459 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4460 */
4461 struct stripe_head *sh;
911d4ee8 4462 int dd_idx;
46031f9a
RBJ
4463 sector_t sector, logical_sector, last_sector;
4464 int scnt = 0;
4465 int remaining;
4466 int handled = 0;
4467
4468 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4469 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4470 0, &dd_idx, NULL);
46031f9a
RBJ
4471 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4472
4473 for (; logical_sector < last_sector;
387bb173
NB
4474 logical_sector += STRIPE_SECTORS,
4475 sector += STRIPE_SECTORS,
4476 scnt++) {
46031f9a 4477
960e739d 4478 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4479 /* already done this stripe */
4480 continue;
4481
a8c906ca 4482 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4483
4484 if (!sh) {
4485 /* failed to get a stripe - must wait */
960e739d 4486 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4487 conf->retry_read_aligned = raid_bio;
4488 return handled;
4489 }
4490
4491 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4492 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4493 release_stripe(sh);
960e739d 4494 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4495 conf->retry_read_aligned = raid_bio;
4496 return handled;
4497 }
4498
36d1c647 4499 handle_stripe(sh);
46031f9a
RBJ
4500 release_stripe(sh);
4501 handled++;
4502 }
4503 spin_lock_irq(&conf->device_lock);
960e739d 4504 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4505 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4506 if (remaining == 0)
4507 bio_endio(raid_bio, 0);
46031f9a
RBJ
4508 if (atomic_dec_and_test(&conf->active_aligned_reads))
4509 wake_up(&conf->wait_for_stripe);
4510 return handled;
4511}
4512
46031f9a 4513
1da177e4
LT
4514/*
4515 * This is our raid5 kernel thread.
4516 *
4517 * We scan the hash table for stripes which can be handled now.
4518 * During the scan, completed stripes are saved for us by the interrupt
4519 * handler, so that they will not have to wait for our next wakeup.
4520 */
6ed3003c 4521static void raid5d(mddev_t *mddev)
1da177e4
LT
4522{
4523 struct stripe_head *sh;
070ec55d 4524 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4525 int handled;
4526
45b4233c 4527 pr_debug("+++ raid5d active\n");
1da177e4
LT
4528
4529 md_check_recovery(mddev);
1da177e4
LT
4530
4531 handled = 0;
4532 spin_lock_irq(&conf->device_lock);
4533 while (1) {
46031f9a 4534 struct bio *bio;
1da177e4 4535
ae3c20cc 4536 if (conf->seq_flush != conf->seq_write) {
72626685 4537 int seq = conf->seq_flush;
700e432d 4538 spin_unlock_irq(&conf->device_lock);
72626685 4539 bitmap_unplug(mddev->bitmap);
700e432d 4540 spin_lock_irq(&conf->device_lock);
72626685
N
4541 conf->seq_write = seq;
4542 activate_bit_delay(conf);
4543 }
4544
46031f9a
RBJ
4545 while ((bio = remove_bio_from_retry(conf))) {
4546 int ok;
4547 spin_unlock_irq(&conf->device_lock);
4548 ok = retry_aligned_read(conf, bio);
4549 spin_lock_irq(&conf->device_lock);
4550 if (!ok)
4551 break;
4552 handled++;
4553 }
4554
8b3e6cdc
DW
4555 sh = __get_priority_stripe(conf);
4556
c9f21aaf 4557 if (!sh)
1da177e4 4558 break;
1da177e4
LT
4559 spin_unlock_irq(&conf->device_lock);
4560
4561 handled++;
417b8d4a
DW
4562 handle_stripe(sh);
4563 release_stripe(sh);
4564 cond_resched();
1da177e4
LT
4565
4566 spin_lock_irq(&conf->device_lock);
4567 }
45b4233c 4568 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4569
4570 spin_unlock_irq(&conf->device_lock);
4571
c9f21aaf 4572 async_tx_issue_pending_all();
1da177e4
LT
4573 unplug_slaves(mddev);
4574
45b4233c 4575 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4576}
4577
3f294f4f 4578static ssize_t
007583c9 4579raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4580{
070ec55d 4581 raid5_conf_t *conf = mddev->private;
96de1e66
N
4582 if (conf)
4583 return sprintf(page, "%d\n", conf->max_nr_stripes);
4584 else
4585 return 0;
3f294f4f
N
4586}
4587
c41d4ac4
N
4588int
4589raid5_set_cache_size(mddev_t *mddev, int size)
3f294f4f 4590{
070ec55d 4591 raid5_conf_t *conf = mddev->private;
b5470dc5
DW
4592 int err;
4593
c41d4ac4 4594 if (size <= 16 || size > 32768)
3f294f4f 4595 return -EINVAL;
c41d4ac4 4596 while (size < conf->max_nr_stripes) {
3f294f4f
N
4597 if (drop_one_stripe(conf))
4598 conf->max_nr_stripes--;
4599 else
4600 break;
4601 }
b5470dc5
DW
4602 err = md_allow_write(mddev);
4603 if (err)
4604 return err;
c41d4ac4 4605 while (size > conf->max_nr_stripes) {
3f294f4f
N
4606 if (grow_one_stripe(conf))
4607 conf->max_nr_stripes++;
4608 else break;
4609 }
c41d4ac4
N
4610 return 0;
4611}
4612EXPORT_SYMBOL(raid5_set_cache_size);
4613
4614static ssize_t
4615raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4616{
4617 raid5_conf_t *conf = mddev->private;
4618 unsigned long new;
4619 int err;
4620
4621 if (len >= PAGE_SIZE)
4622 return -EINVAL;
4623 if (!conf)
4624 return -ENODEV;
4625
4626 if (strict_strtoul(page, 10, &new))
4627 return -EINVAL;
4628 err = raid5_set_cache_size(mddev, new);
4629 if (err)
4630 return err;
3f294f4f
N
4631 return len;
4632}
007583c9 4633
96de1e66
N
4634static struct md_sysfs_entry
4635raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4636 raid5_show_stripe_cache_size,
4637 raid5_store_stripe_cache_size);
3f294f4f 4638
8b3e6cdc
DW
4639static ssize_t
4640raid5_show_preread_threshold(mddev_t *mddev, char *page)
4641{
070ec55d 4642 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4643 if (conf)
4644 return sprintf(page, "%d\n", conf->bypass_threshold);
4645 else
4646 return 0;
4647}
4648
4649static ssize_t
4650raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4651{
070ec55d 4652 raid5_conf_t *conf = mddev->private;
4ef197d8 4653 unsigned long new;
8b3e6cdc
DW
4654 if (len >= PAGE_SIZE)
4655 return -EINVAL;
4656 if (!conf)
4657 return -ENODEV;
4658
4ef197d8 4659 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4660 return -EINVAL;
4ef197d8 4661 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4662 return -EINVAL;
4663 conf->bypass_threshold = new;
4664 return len;
4665}
4666
4667static struct md_sysfs_entry
4668raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4669 S_IRUGO | S_IWUSR,
4670 raid5_show_preread_threshold,
4671 raid5_store_preread_threshold);
4672
3f294f4f 4673static ssize_t
96de1e66 4674stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4675{
070ec55d 4676 raid5_conf_t *conf = mddev->private;
96de1e66
N
4677 if (conf)
4678 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4679 else
4680 return 0;
3f294f4f
N
4681}
4682
96de1e66
N
4683static struct md_sysfs_entry
4684raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4685
007583c9 4686static struct attribute *raid5_attrs[] = {
3f294f4f
N
4687 &raid5_stripecache_size.attr,
4688 &raid5_stripecache_active.attr,
8b3e6cdc 4689 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4690 NULL,
4691};
007583c9
N
4692static struct attribute_group raid5_attrs_group = {
4693 .name = NULL,
4694 .attrs = raid5_attrs,
3f294f4f
N
4695};
4696
80c3a6ce
DW
4697static sector_t
4698raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4699{
070ec55d 4700 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4701
4702 if (!sectors)
4703 sectors = mddev->dev_sectors;
5e5e3e78 4704 if (!raid_disks)
7ec05478 4705 /* size is defined by the smallest of previous and new size */
5e5e3e78 4706 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4707
9d8f0363 4708 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4709 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4710 return sectors * (raid_disks - conf->max_degraded);
4711}
4712
36d1c647
DW
4713static void raid5_free_percpu(raid5_conf_t *conf)
4714{
4715 struct raid5_percpu *percpu;
4716 unsigned long cpu;
4717
4718 if (!conf->percpu)
4719 return;
4720
4721 get_online_cpus();
4722 for_each_possible_cpu(cpu) {
4723 percpu = per_cpu_ptr(conf->percpu, cpu);
4724 safe_put_page(percpu->spare_page);
d6f38f31 4725 kfree(percpu->scribble);
36d1c647
DW
4726 }
4727#ifdef CONFIG_HOTPLUG_CPU
4728 unregister_cpu_notifier(&conf->cpu_notify);
4729#endif
4730 put_online_cpus();
4731
4732 free_percpu(conf->percpu);
4733}
4734
95fc17aa
DW
4735static void free_conf(raid5_conf_t *conf)
4736{
4737 shrink_stripes(conf);
36d1c647 4738 raid5_free_percpu(conf);
95fc17aa
DW
4739 kfree(conf->disks);
4740 kfree(conf->stripe_hashtbl);
4741 kfree(conf);
4742}
4743
36d1c647
DW
4744#ifdef CONFIG_HOTPLUG_CPU
4745static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4746 void *hcpu)
4747{
4748 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4749 long cpu = (long)hcpu;
4750 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4751
4752 switch (action) {
4753 case CPU_UP_PREPARE:
4754 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4755 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4756 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4757 if (!percpu->scribble)
4758 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4759
4760 if (!percpu->scribble ||
4761 (conf->level == 6 && !percpu->spare_page)) {
4762 safe_put_page(percpu->spare_page);
4763 kfree(percpu->scribble);
36d1c647
DW
4764 pr_err("%s: failed memory allocation for cpu%ld\n",
4765 __func__, cpu);
55af6bb5 4766 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4767 }
4768 break;
4769 case CPU_DEAD:
4770 case CPU_DEAD_FROZEN:
4771 safe_put_page(percpu->spare_page);
d6f38f31 4772 kfree(percpu->scribble);
36d1c647 4773 percpu->spare_page = NULL;
d6f38f31 4774 percpu->scribble = NULL;
36d1c647
DW
4775 break;
4776 default:
4777 break;
4778 }
4779 return NOTIFY_OK;
4780}
4781#endif
4782
4783static int raid5_alloc_percpu(raid5_conf_t *conf)
4784{
4785 unsigned long cpu;
4786 struct page *spare_page;
a29d8b8e 4787 struct raid5_percpu __percpu *allcpus;
d6f38f31 4788 void *scribble;
36d1c647
DW
4789 int err;
4790
36d1c647
DW
4791 allcpus = alloc_percpu(struct raid5_percpu);
4792 if (!allcpus)
4793 return -ENOMEM;
4794 conf->percpu = allcpus;
4795
4796 get_online_cpus();
4797 err = 0;
4798 for_each_present_cpu(cpu) {
d6f38f31
DW
4799 if (conf->level == 6) {
4800 spare_page = alloc_page(GFP_KERNEL);
4801 if (!spare_page) {
4802 err = -ENOMEM;
4803 break;
4804 }
4805 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4806 }
5e5e3e78 4807 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4808 if (!scribble) {
36d1c647
DW
4809 err = -ENOMEM;
4810 break;
4811 }
d6f38f31 4812 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4813 }
4814#ifdef CONFIG_HOTPLUG_CPU
4815 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4816 conf->cpu_notify.priority = 0;
4817 if (err == 0)
4818 err = register_cpu_notifier(&conf->cpu_notify);
4819#endif
4820 put_online_cpus();
4821
4822 return err;
4823}
4824
91adb564 4825static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4826{
4827 raid5_conf_t *conf;
5e5e3e78 4828 int raid_disk, memory, max_disks;
1da177e4
LT
4829 mdk_rdev_t *rdev;
4830 struct disk_info *disk;
1da177e4 4831
91adb564
N
4832 if (mddev->new_level != 5
4833 && mddev->new_level != 4
4834 && mddev->new_level != 6) {
0c55e022 4835 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4836 mdname(mddev), mddev->new_level);
4837 return ERR_PTR(-EIO);
1da177e4 4838 }
91adb564
N
4839 if ((mddev->new_level == 5
4840 && !algorithm_valid_raid5(mddev->new_layout)) ||
4841 (mddev->new_level == 6
4842 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4843 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4844 mdname(mddev), mddev->new_layout);
4845 return ERR_PTR(-EIO);
99c0fb5f 4846 }
91adb564 4847 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4848 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4849 mdname(mddev), mddev->raid_disks);
4850 return ERR_PTR(-EINVAL);
4bbf3771
N
4851 }
4852
664e7c41
AN
4853 if (!mddev->new_chunk_sectors ||
4854 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4855 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4856 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4857 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4858 return ERR_PTR(-EINVAL);
f6705578
N
4859 }
4860
91adb564
N
4861 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4862 if (conf == NULL)
1da177e4 4863 goto abort;
f5efd45a
DW
4864 spin_lock_init(&conf->device_lock);
4865 init_waitqueue_head(&conf->wait_for_stripe);
4866 init_waitqueue_head(&conf->wait_for_overlap);
4867 INIT_LIST_HEAD(&conf->handle_list);
4868 INIT_LIST_HEAD(&conf->hold_list);
4869 INIT_LIST_HEAD(&conf->delayed_list);
4870 INIT_LIST_HEAD(&conf->bitmap_list);
4871 INIT_LIST_HEAD(&conf->inactive_list);
4872 atomic_set(&conf->active_stripes, 0);
4873 atomic_set(&conf->preread_active_stripes, 0);
4874 atomic_set(&conf->active_aligned_reads, 0);
4875 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4876
4877 conf->raid_disks = mddev->raid_disks;
4878 if (mddev->reshape_position == MaxSector)
4879 conf->previous_raid_disks = mddev->raid_disks;
4880 else
f6705578 4881 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4882 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4883 conf->scribble_len = scribble_len(max_disks);
f6705578 4884
5e5e3e78 4885 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4886 GFP_KERNEL);
4887 if (!conf->disks)
4888 goto abort;
9ffae0cf 4889
1da177e4
LT
4890 conf->mddev = mddev;
4891
fccddba0 4892 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4893 goto abort;
1da177e4 4894
36d1c647
DW
4895 conf->level = mddev->new_level;
4896 if (raid5_alloc_percpu(conf) != 0)
4897 goto abort;
4898
0c55e022 4899 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4900
159ec1fc 4901 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4902 raid_disk = rdev->raid_disk;
5e5e3e78 4903 if (raid_disk >= max_disks
1da177e4
LT
4904 || raid_disk < 0)
4905 continue;
4906 disk = conf->disks + raid_disk;
4907
4908 disk->rdev = rdev;
4909
b2d444d7 4910 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4911 char b[BDEVNAME_SIZE];
0c55e022
N
4912 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4913 " disk %d\n",
4914 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
8c2e870a
NB
4915 } else
4916 /* Cannot rely on bitmap to complete recovery */
4917 conf->fullsync = 1;
1da177e4
LT
4918 }
4919
09c9e5fa 4920 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4921 conf->level = mddev->new_level;
16a53ecc
N
4922 if (conf->level == 6)
4923 conf->max_degraded = 2;
4924 else
4925 conf->max_degraded = 1;
91adb564 4926 conf->algorithm = mddev->new_layout;
1da177e4 4927 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4928 conf->reshape_progress = mddev->reshape_position;
e183eaed 4929 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4930 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4931 conf->prev_algo = mddev->layout;
4932 }
1da177e4 4933
91adb564 4934 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4935 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4936 if (grow_stripes(conf, conf->max_nr_stripes)) {
4937 printk(KERN_ERR
0c55e022
N
4938 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4939 mdname(mddev), memory);
91adb564
N
4940 goto abort;
4941 } else
0c55e022
N
4942 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4943 mdname(mddev), memory);
1da177e4 4944
0da3c619 4945 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4946 if (!conf->thread) {
4947 printk(KERN_ERR
0c55e022 4948 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4949 mdname(mddev));
16a53ecc
N
4950 goto abort;
4951 }
91adb564
N
4952
4953 return conf;
4954
4955 abort:
4956 if (conf) {
95fc17aa 4957 free_conf(conf);
91adb564
N
4958 return ERR_PTR(-EIO);
4959 } else
4960 return ERR_PTR(-ENOMEM);
4961}
4962
c148ffdc
N
4963
4964static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4965{
4966 switch (algo) {
4967 case ALGORITHM_PARITY_0:
4968 if (raid_disk < max_degraded)
4969 return 1;
4970 break;
4971 case ALGORITHM_PARITY_N:
4972 if (raid_disk >= raid_disks - max_degraded)
4973 return 1;
4974 break;
4975 case ALGORITHM_PARITY_0_6:
4976 if (raid_disk == 0 ||
4977 raid_disk == raid_disks - 1)
4978 return 1;
4979 break;
4980 case ALGORITHM_LEFT_ASYMMETRIC_6:
4981 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4982 case ALGORITHM_LEFT_SYMMETRIC_6:
4983 case ALGORITHM_RIGHT_SYMMETRIC_6:
4984 if (raid_disk == raid_disks - 1)
4985 return 1;
4986 }
4987 return 0;
4988}
4989
91adb564
N
4990static int run(mddev_t *mddev)
4991{
4992 raid5_conf_t *conf;
9f7c2220 4993 int working_disks = 0;
c148ffdc 4994 int dirty_parity_disks = 0;
91adb564 4995 mdk_rdev_t *rdev;
c148ffdc 4996 sector_t reshape_offset = 0;
91adb564 4997
8c6ac868 4998 if (mddev->recovery_cp != MaxSector)
0c55e022 4999 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5000 " -- starting background reconstruction\n",
5001 mdname(mddev));
91adb564
N
5002 if (mddev->reshape_position != MaxSector) {
5003 /* Check that we can continue the reshape.
5004 * Currently only disks can change, it must
5005 * increase, and we must be past the point where
5006 * a stripe over-writes itself
5007 */
5008 sector_t here_new, here_old;
5009 int old_disks;
18b00334 5010 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5011
88ce4930 5012 if (mddev->new_level != mddev->level) {
0c55e022 5013 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5014 "required - aborting.\n",
5015 mdname(mddev));
5016 return -EINVAL;
5017 }
91adb564
N
5018 old_disks = mddev->raid_disks - mddev->delta_disks;
5019 /* reshape_position must be on a new-stripe boundary, and one
5020 * further up in new geometry must map after here in old
5021 * geometry.
5022 */
5023 here_new = mddev->reshape_position;
664e7c41 5024 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5025 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5026 printk(KERN_ERR "md/raid:%s: reshape_position not "
5027 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5028 return -EINVAL;
5029 }
c148ffdc 5030 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5031 /* here_new is the stripe we will write to */
5032 here_old = mddev->reshape_position;
9d8f0363 5033 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5034 (old_disks-max_degraded));
5035 /* here_old is the first stripe that we might need to read
5036 * from */
67ac6011
N
5037 if (mddev->delta_disks == 0) {
5038 /* We cannot be sure it is safe to start an in-place
5039 * reshape. It is only safe if user-space if monitoring
5040 * and taking constant backups.
5041 * mdadm always starts a situation like this in
5042 * readonly mode so it can take control before
5043 * allowing any writes. So just check for that.
5044 */
5045 if ((here_new * mddev->new_chunk_sectors !=
5046 here_old * mddev->chunk_sectors) ||
5047 mddev->ro == 0) {
0c55e022
N
5048 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5049 " in read-only mode - aborting\n",
5050 mdname(mddev));
67ac6011
N
5051 return -EINVAL;
5052 }
5053 } else if (mddev->delta_disks < 0
5054 ? (here_new * mddev->new_chunk_sectors <=
5055 here_old * mddev->chunk_sectors)
5056 : (here_new * mddev->new_chunk_sectors >=
5057 here_old * mddev->chunk_sectors)) {
91adb564 5058 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5059 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5060 "auto-recovery - aborting.\n",
5061 mdname(mddev));
91adb564
N
5062 return -EINVAL;
5063 }
0c55e022
N
5064 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5065 mdname(mddev));
91adb564
N
5066 /* OK, we should be able to continue; */
5067 } else {
5068 BUG_ON(mddev->level != mddev->new_level);
5069 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5070 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5071 BUG_ON(mddev->delta_disks != 0);
1da177e4 5072 }
91adb564 5073
245f46c2
N
5074 if (mddev->private == NULL)
5075 conf = setup_conf(mddev);
5076 else
5077 conf = mddev->private;
5078
91adb564
N
5079 if (IS_ERR(conf))
5080 return PTR_ERR(conf);
5081
5082 mddev->thread = conf->thread;
5083 conf->thread = NULL;
5084 mddev->private = conf;
5085
5086 /*
5087 * 0 for a fully functional array, 1 or 2 for a degraded array.
5088 */
c148ffdc
N
5089 list_for_each_entry(rdev, &mddev->disks, same_set) {
5090 if (rdev->raid_disk < 0)
5091 continue;
2f115882 5092 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5093 working_disks++;
2f115882
N
5094 continue;
5095 }
c148ffdc
N
5096 /* This disc is not fully in-sync. However if it
5097 * just stored parity (beyond the recovery_offset),
5098 * when we don't need to be concerned about the
5099 * array being dirty.
5100 * When reshape goes 'backwards', we never have
5101 * partially completed devices, so we only need
5102 * to worry about reshape going forwards.
5103 */
5104 /* Hack because v0.91 doesn't store recovery_offset properly. */
5105 if (mddev->major_version == 0 &&
5106 mddev->minor_version > 90)
5107 rdev->recovery_offset = reshape_offset;
5108
c148ffdc
N
5109 if (rdev->recovery_offset < reshape_offset) {
5110 /* We need to check old and new layout */
5111 if (!only_parity(rdev->raid_disk,
5112 conf->algorithm,
5113 conf->raid_disks,
5114 conf->max_degraded))
5115 continue;
5116 }
5117 if (!only_parity(rdev->raid_disk,
5118 conf->prev_algo,
5119 conf->previous_raid_disks,
5120 conf->max_degraded))
5121 continue;
5122 dirty_parity_disks++;
5123 }
91adb564 5124
5e5e3e78
N
5125 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5126 - working_disks);
91adb564 5127
674806d6 5128 if (has_failed(conf)) {
0c55e022 5129 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5130 " (%d/%d failed)\n",
02c2de8c 5131 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5132 goto abort;
5133 }
5134
91adb564 5135 /* device size must be a multiple of chunk size */
9d8f0363 5136 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5137 mddev->resync_max_sectors = mddev->dev_sectors;
5138
c148ffdc 5139 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5140 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5141 if (mddev->ok_start_degraded)
5142 printk(KERN_WARNING
0c55e022
N
5143 "md/raid:%s: starting dirty degraded array"
5144 " - data corruption possible.\n",
6ff8d8ec
N
5145 mdname(mddev));
5146 else {
5147 printk(KERN_ERR
0c55e022 5148 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5149 mdname(mddev));
5150 goto abort;
5151 }
1da177e4
LT
5152 }
5153
1da177e4 5154 if (mddev->degraded == 0)
0c55e022
N
5155 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5156 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5157 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5158 mddev->new_layout);
1da177e4 5159 else
0c55e022
N
5160 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5161 " out of %d devices, algorithm %d\n",
5162 mdname(mddev), conf->level,
5163 mddev->raid_disks - mddev->degraded,
5164 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5165
5166 print_raid5_conf(conf);
5167
fef9c61f 5168 if (conf->reshape_progress != MaxSector) {
fef9c61f 5169 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5170 atomic_set(&conf->reshape_stripes, 0);
5171 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5172 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5173 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5174 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5175 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5176 "reshape");
f6705578
N
5177 }
5178
1da177e4
LT
5179
5180 /* Ok, everything is just fine now */
a64c876f
N
5181 if (mddev->to_remove == &raid5_attrs_group)
5182 mddev->to_remove = NULL;
00bcb4ac
N
5183 else if (mddev->kobj.sd &&
5184 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5185 printk(KERN_WARNING
4a5add49 5186 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5187 mdname(mddev));
4a5add49 5188 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5189
2ac87401 5190 plugger_init(&conf->plug, raid5_unplug);
252ac522 5191 mddev->plug = &conf->plug;
4a5add49 5192 if (mddev->queue) {
9f7c2220 5193 int chunk_size;
4a5add49
N
5194 /* read-ahead size must cover two whole stripes, which
5195 * is 2 * (datadisks) * chunksize where 'n' is the
5196 * number of raid devices
5197 */
5198 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5199 int stripe = data_disks *
5200 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5201 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5202 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5203
4a5add49 5204 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5205
11d8a6e3
N
5206 mddev->queue->backing_dev_info.congested_data = mddev;
5207 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
9f7c2220
N
5208 mddev->queue->queue_lock = &conf->device_lock;
5209 mddev->queue->unplug_fn = raid5_unplug_queue;
7a5febe9 5210
9f7c2220
N
5211 chunk_size = mddev->chunk_sectors << 9;
5212 blk_queue_io_min(mddev->queue, chunk_size);
5213 blk_queue_io_opt(mddev->queue, chunk_size *
5214 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 5215
9f7c2220
N
5216 list_for_each_entry(rdev, &mddev->disks, same_set)
5217 disk_stack_limits(mddev->gendisk, rdev->bdev,
5218 rdev->data_offset << 9);
5219 }
23032a0e 5220
1da177e4
LT
5221 return 0;
5222abort:
e0cf8f04 5223 md_unregister_thread(mddev->thread);
91adb564 5224 mddev->thread = NULL;
1da177e4
LT
5225 if (conf) {
5226 print_raid5_conf(conf);
95fc17aa 5227 free_conf(conf);
1da177e4
LT
5228 }
5229 mddev->private = NULL;
0c55e022 5230 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5231 return -EIO;
5232}
5233
3f294f4f 5234static int stop(mddev_t *mddev)
1da177e4 5235{
7b92813c 5236 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5237
5238 md_unregister_thread(mddev->thread);
5239 mddev->thread = NULL;
11d8a6e3
N
5240 if (mddev->queue)
5241 mddev->queue->backing_dev_info.congested_fn = NULL;
2ac87401 5242 plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
95fc17aa 5243 free_conf(conf);
a64c876f
N
5244 mddev->private = NULL;
5245 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5246 return 0;
5247}
5248
45b4233c 5249#ifdef DEBUG
d710e138 5250static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
5251{
5252 int i;
5253
16a53ecc
N
5254 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5255 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5256 seq_printf(seq, "sh %llu, count %d.\n",
5257 (unsigned long long)sh->sector, atomic_read(&sh->count));
5258 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 5259 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
5260 seq_printf(seq, "(cache%d: %p %ld) ",
5261 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 5262 }
16a53ecc 5263 seq_printf(seq, "\n");
1da177e4
LT
5264}
5265
d710e138 5266static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
5267{
5268 struct stripe_head *sh;
fccddba0 5269 struct hlist_node *hn;
1da177e4
LT
5270 int i;
5271
5272 spin_lock_irq(&conf->device_lock);
5273 for (i = 0; i < NR_HASH; i++) {
fccddba0 5274 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
5275 if (sh->raid_conf != conf)
5276 continue;
16a53ecc 5277 print_sh(seq, sh);
1da177e4
LT
5278 }
5279 }
5280 spin_unlock_irq(&conf->device_lock);
5281}
5282#endif
5283
d710e138 5284static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4 5285{
7b92813c 5286 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5287 int i;
5288
9d8f0363
AN
5289 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5290 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5291 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5292 for (i = 0; i < conf->raid_disks; i++)
5293 seq_printf (seq, "%s",
5294 conf->disks[i].rdev &&
b2d444d7 5295 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5296 seq_printf (seq, "]");
45b4233c 5297#ifdef DEBUG
16a53ecc
N
5298 seq_printf (seq, "\n");
5299 printall(seq, conf);
1da177e4
LT
5300#endif
5301}
5302
5303static void print_raid5_conf (raid5_conf_t *conf)
5304{
5305 int i;
5306 struct disk_info *tmp;
5307
0c55e022 5308 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5309 if (!conf) {
5310 printk("(conf==NULL)\n");
5311 return;
5312 }
0c55e022
N
5313 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5314 conf->raid_disks,
5315 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5316
5317 for (i = 0; i < conf->raid_disks; i++) {
5318 char b[BDEVNAME_SIZE];
5319 tmp = conf->disks + i;
5320 if (tmp->rdev)
0c55e022
N
5321 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5322 i, !test_bit(Faulty, &tmp->rdev->flags),
5323 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5324 }
5325}
5326
5327static int raid5_spare_active(mddev_t *mddev)
5328{
5329 int i;
5330 raid5_conf_t *conf = mddev->private;
5331 struct disk_info *tmp;
6b965620
N
5332 int count = 0;
5333 unsigned long flags;
1da177e4
LT
5334
5335 for (i = 0; i < conf->raid_disks; i++) {
5336 tmp = conf->disks + i;
5337 if (tmp->rdev
70fffd0b 5338 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5339 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5340 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5341 count++;
e6ffbcb6 5342 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
5343 }
5344 }
6b965620
N
5345 spin_lock_irqsave(&conf->device_lock, flags);
5346 mddev->degraded -= count;
5347 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5348 print_raid5_conf(conf);
6b965620 5349 return count;
1da177e4
LT
5350}
5351
5352static int raid5_remove_disk(mddev_t *mddev, int number)
5353{
5354 raid5_conf_t *conf = mddev->private;
5355 int err = 0;
5356 mdk_rdev_t *rdev;
5357 struct disk_info *p = conf->disks + number;
5358
5359 print_raid5_conf(conf);
5360 rdev = p->rdev;
5361 if (rdev) {
ec32a2bd
N
5362 if (number >= conf->raid_disks &&
5363 conf->reshape_progress == MaxSector)
5364 clear_bit(In_sync, &rdev->flags);
5365
b2d444d7 5366 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5367 atomic_read(&rdev->nr_pending)) {
5368 err = -EBUSY;
5369 goto abort;
5370 }
dfc70645
N
5371 /* Only remove non-faulty devices if recovery
5372 * isn't possible.
5373 */
5374 if (!test_bit(Faulty, &rdev->flags) &&
674806d6 5375 !has_failed(conf) &&
ec32a2bd 5376 number < conf->raid_disks) {
dfc70645
N
5377 err = -EBUSY;
5378 goto abort;
5379 }
1da177e4 5380 p->rdev = NULL;
fbd568a3 5381 synchronize_rcu();
1da177e4
LT
5382 if (atomic_read(&rdev->nr_pending)) {
5383 /* lost the race, try later */
5384 err = -EBUSY;
5385 p->rdev = rdev;
5386 }
5387 }
5388abort:
5389
5390 print_raid5_conf(conf);
5391 return err;
5392}
5393
5394static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5395{
5396 raid5_conf_t *conf = mddev->private;
199050ea 5397 int err = -EEXIST;
1da177e4
LT
5398 int disk;
5399 struct disk_info *p;
6c2fce2e
NB
5400 int first = 0;
5401 int last = conf->raid_disks - 1;
1da177e4 5402
674806d6 5403 if (has_failed(conf))
1da177e4 5404 /* no point adding a device */
199050ea 5405 return -EINVAL;
1da177e4 5406
6c2fce2e
NB
5407 if (rdev->raid_disk >= 0)
5408 first = last = rdev->raid_disk;
1da177e4
LT
5409
5410 /*
16a53ecc
N
5411 * find the disk ... but prefer rdev->saved_raid_disk
5412 * if possible.
1da177e4 5413 */
16a53ecc 5414 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5415 rdev->saved_raid_disk >= first &&
16a53ecc
N
5416 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5417 disk = rdev->saved_raid_disk;
5418 else
6c2fce2e
NB
5419 disk = first;
5420 for ( ; disk <= last ; disk++)
1da177e4 5421 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5422 clear_bit(In_sync, &rdev->flags);
1da177e4 5423 rdev->raid_disk = disk;
199050ea 5424 err = 0;
72626685
N
5425 if (rdev->saved_raid_disk != disk)
5426 conf->fullsync = 1;
d6065f7b 5427 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5428 break;
5429 }
5430 print_raid5_conf(conf);
199050ea 5431 return err;
1da177e4
LT
5432}
5433
5434static int raid5_resize(mddev_t *mddev, sector_t sectors)
5435{
5436 /* no resync is happening, and there is enough space
5437 * on all devices, so we can resize.
5438 * We need to make sure resync covers any new space.
5439 * If the array is shrinking we should possibly wait until
5440 * any io in the removed space completes, but it hardly seems
5441 * worth it.
5442 */
9d8f0363 5443 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5444 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5445 mddev->raid_disks));
b522adcd
DW
5446 if (mddev->array_sectors >
5447 raid5_size(mddev, sectors, mddev->raid_disks))
5448 return -EINVAL;
f233ea5c 5449 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5450 revalidate_disk(mddev->gendisk);
58c0fed4
AN
5451 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5452 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5453 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5454 }
58c0fed4 5455 mddev->dev_sectors = sectors;
4b5c7ae8 5456 mddev->resync_max_sectors = sectors;
1da177e4
LT
5457 return 0;
5458}
5459
01ee22b4
N
5460static int check_stripe_cache(mddev_t *mddev)
5461{
5462 /* Can only proceed if there are plenty of stripe_heads.
5463 * We need a minimum of one full stripe,, and for sensible progress
5464 * it is best to have about 4 times that.
5465 * If we require 4 times, then the default 256 4K stripe_heads will
5466 * allow for chunk sizes up to 256K, which is probably OK.
5467 * If the chunk size is greater, user-space should request more
5468 * stripe_heads first.
5469 */
5470 raid5_conf_t *conf = mddev->private;
5471 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5472 > conf->max_nr_stripes ||
5473 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5474 > conf->max_nr_stripes) {
0c55e022
N
5475 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5476 mdname(mddev),
01ee22b4
N
5477 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5478 / STRIPE_SIZE)*4);
5479 return 0;
5480 }
5481 return 1;
5482}
5483
50ac168a 5484static int check_reshape(mddev_t *mddev)
29269553 5485{
070ec55d 5486 raid5_conf_t *conf = mddev->private;
29269553 5487
88ce4930
N
5488 if (mddev->delta_disks == 0 &&
5489 mddev->new_layout == mddev->layout &&
664e7c41 5490 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5491 return 0; /* nothing to do */
dba034ee
N
5492 if (mddev->bitmap)
5493 /* Cannot grow a bitmap yet */
5494 return -EBUSY;
674806d6 5495 if (has_failed(conf))
ec32a2bd
N
5496 return -EINVAL;
5497 if (mddev->delta_disks < 0) {
5498 /* We might be able to shrink, but the devices must
5499 * be made bigger first.
5500 * For raid6, 4 is the minimum size.
5501 * Otherwise 2 is the minimum
5502 */
5503 int min = 2;
5504 if (mddev->level == 6)
5505 min = 4;
5506 if (mddev->raid_disks + mddev->delta_disks < min)
5507 return -EINVAL;
5508 }
29269553 5509
01ee22b4 5510 if (!check_stripe_cache(mddev))
29269553 5511 return -ENOSPC;
29269553 5512
ec32a2bd 5513 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5514}
5515
5516static int raid5_start_reshape(mddev_t *mddev)
5517{
070ec55d 5518 raid5_conf_t *conf = mddev->private;
63c70c4f 5519 mdk_rdev_t *rdev;
63c70c4f
N
5520 int spares = 0;
5521 int added_devices = 0;
c04be0aa 5522 unsigned long flags;
63c70c4f 5523
f416885e 5524 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5525 return -EBUSY;
5526
01ee22b4
N
5527 if (!check_stripe_cache(mddev))
5528 return -ENOSPC;
5529
159ec1fc 5530 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5531 if (rdev->raid_disk < 0 &&
5532 !test_bit(Faulty, &rdev->flags))
5533 spares++;
63c70c4f 5534
f416885e 5535 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5536 /* Not enough devices even to make a degraded array
5537 * of that size
5538 */
5539 return -EINVAL;
5540
ec32a2bd
N
5541 /* Refuse to reduce size of the array. Any reductions in
5542 * array size must be through explicit setting of array_size
5543 * attribute.
5544 */
5545 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5546 < mddev->array_sectors) {
0c55e022 5547 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5548 "before number of disks\n", mdname(mddev));
5549 return -EINVAL;
5550 }
5551
f6705578 5552 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5553 spin_lock_irq(&conf->device_lock);
5554 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5555 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5556 conf->prev_chunk_sectors = conf->chunk_sectors;
5557 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5558 conf->prev_algo = conf->algorithm;
5559 conf->algorithm = mddev->new_layout;
fef9c61f
N
5560 if (mddev->delta_disks < 0)
5561 conf->reshape_progress = raid5_size(mddev, 0, 0);
5562 else
5563 conf->reshape_progress = 0;
5564 conf->reshape_safe = conf->reshape_progress;
86b42c71 5565 conf->generation++;
29269553
N
5566 spin_unlock_irq(&conf->device_lock);
5567
5568 /* Add some new drives, as many as will fit.
5569 * We know there are enough to make the newly sized array work.
3424bf6a
N
5570 * Don't add devices if we are reducing the number of
5571 * devices in the array. This is because it is not possible
5572 * to correctly record the "partially reconstructed" state of
5573 * such devices during the reshape and confusion could result.
29269553 5574 */
3424bf6a
N
5575 if (mddev->delta_disks >= 0)
5576 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5577 if (rdev->raid_disk < 0 &&
5578 !test_bit(Faulty, &rdev->flags)) {
199050ea 5579 if (raid5_add_disk(mddev, rdev) == 0) {
29269553 5580 char nm[20];
9eb07c25 5581 if (rdev->raid_disk >= conf->previous_raid_disks) {
7ef90146 5582 set_bit(In_sync, &rdev->flags);
9eb07c25
N
5583 added_devices++;
5584 } else
7ef90146 5585 rdev->recovery_offset = 0;
29269553 5586 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
5587 if (sysfs_create_link(&mddev->kobj,
5588 &rdev->kobj, nm))
00bcb4ac 5589 /* Failure here is OK */;
29269553
N
5590 } else
5591 break;
5592 }
5593
9eb07c25 5594 /* When a reshape changes the number of devices, ->degraded
3424bf6a 5595 * is measured against the larger of the pre and post number of
9eb07c25 5596 * devices.*/
ec32a2bd
N
5597 if (mddev->delta_disks > 0) {
5598 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5599 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5600 - added_devices;
5601 spin_unlock_irqrestore(&conf->device_lock, flags);
5602 }
63c70c4f 5603 mddev->raid_disks = conf->raid_disks;
e516402c 5604 mddev->reshape_position = conf->reshape_progress;
850b2b42 5605 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5606
29269553
N
5607 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5608 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5609 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5610 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5611 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5612 "reshape");
29269553
N
5613 if (!mddev->sync_thread) {
5614 mddev->recovery = 0;
5615 spin_lock_irq(&conf->device_lock);
5616 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5617 conf->reshape_progress = MaxSector;
29269553
N
5618 spin_unlock_irq(&conf->device_lock);
5619 return -EAGAIN;
5620 }
c8f517c4 5621 conf->reshape_checkpoint = jiffies;
29269553
N
5622 md_wakeup_thread(mddev->sync_thread);
5623 md_new_event(mddev);
5624 return 0;
5625}
29269553 5626
ec32a2bd
N
5627/* This is called from the reshape thread and should make any
5628 * changes needed in 'conf'
5629 */
29269553
N
5630static void end_reshape(raid5_conf_t *conf)
5631{
29269553 5632
f6705578 5633 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5634
f6705578 5635 spin_lock_irq(&conf->device_lock);
cea9c228 5636 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5637 conf->reshape_progress = MaxSector;
f6705578 5638 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5639 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5640
5641 /* read-ahead size must cover two whole stripes, which is
5642 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5643 */
4a5add49 5644 if (conf->mddev->queue) {
cea9c228 5645 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5646 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5647 / PAGE_SIZE);
16a53ecc
N
5648 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5649 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5650 }
29269553 5651 }
29269553
N
5652}
5653
ec32a2bd
N
5654/* This is called from the raid5d thread with mddev_lock held.
5655 * It makes config changes to the device.
5656 */
cea9c228
N
5657static void raid5_finish_reshape(mddev_t *mddev)
5658{
070ec55d 5659 raid5_conf_t *conf = mddev->private;
cea9c228
N
5660
5661 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5662
ec32a2bd
N
5663 if (mddev->delta_disks > 0) {
5664 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5665 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5666 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5667 } else {
5668 int d;
ec32a2bd
N
5669 mddev->degraded = conf->raid_disks;
5670 for (d = 0; d < conf->raid_disks ; d++)
5671 if (conf->disks[d].rdev &&
5672 test_bit(In_sync,
5673 &conf->disks[d].rdev->flags))
5674 mddev->degraded--;
5675 for (d = conf->raid_disks ;
5676 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5677 d++) {
5678 mdk_rdev_t *rdev = conf->disks[d].rdev;
5679 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5680 char nm[20];
5681 sprintf(nm, "rd%d", rdev->raid_disk);
5682 sysfs_remove_link(&mddev->kobj, nm);
5683 rdev->raid_disk = -1;
5684 }
5685 }
cea9c228 5686 }
88ce4930 5687 mddev->layout = conf->algorithm;
09c9e5fa 5688 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5689 mddev->reshape_position = MaxSector;
5690 mddev->delta_disks = 0;
cea9c228
N
5691 }
5692}
5693
72626685
N
5694static void raid5_quiesce(mddev_t *mddev, int state)
5695{
070ec55d 5696 raid5_conf_t *conf = mddev->private;
72626685
N
5697
5698 switch(state) {
e464eafd
N
5699 case 2: /* resume for a suspend */
5700 wake_up(&conf->wait_for_overlap);
5701 break;
5702
72626685
N
5703 case 1: /* stop all writes */
5704 spin_lock_irq(&conf->device_lock);
64bd660b
N
5705 /* '2' tells resync/reshape to pause so that all
5706 * active stripes can drain
5707 */
5708 conf->quiesce = 2;
72626685 5709 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5710 atomic_read(&conf->active_stripes) == 0 &&
5711 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5712 conf->device_lock, /* nothing */);
64bd660b 5713 conf->quiesce = 1;
72626685 5714 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5715 /* allow reshape to continue */
5716 wake_up(&conf->wait_for_overlap);
72626685
N
5717 break;
5718
5719 case 0: /* re-enable writes */
5720 spin_lock_irq(&conf->device_lock);
5721 conf->quiesce = 0;
5722 wake_up(&conf->wait_for_stripe);
e464eafd 5723 wake_up(&conf->wait_for_overlap);
72626685
N
5724 spin_unlock_irq(&conf->device_lock);
5725 break;
5726 }
72626685 5727}
b15c2e57 5728
d562b0c4 5729
f1b29bca 5730static void *raid45_takeover_raid0(mddev_t *mddev, int level)
54071b38 5731{
f1b29bca 5732 struct raid0_private_data *raid0_priv = mddev->private;
54071b38 5733
f1b29bca
DW
5734 /* for raid0 takeover only one zone is supported */
5735 if (raid0_priv->nr_strip_zones > 1) {
0c55e022
N
5736 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5737 mdname(mddev));
f1b29bca
DW
5738 return ERR_PTR(-EINVAL);
5739 }
5740
5741 mddev->new_level = level;
54071b38
TM
5742 mddev->new_layout = ALGORITHM_PARITY_N;
5743 mddev->new_chunk_sectors = mddev->chunk_sectors;
5744 mddev->raid_disks += 1;
5745 mddev->delta_disks = 1;
5746 /* make sure it will be not marked as dirty */
5747 mddev->recovery_cp = MaxSector;
5748
5749 return setup_conf(mddev);
5750}
5751
5752
d562b0c4
N
5753static void *raid5_takeover_raid1(mddev_t *mddev)
5754{
5755 int chunksect;
5756
5757 if (mddev->raid_disks != 2 ||
5758 mddev->degraded > 1)
5759 return ERR_PTR(-EINVAL);
5760
5761 /* Should check if there are write-behind devices? */
5762
5763 chunksect = 64*2; /* 64K by default */
5764
5765 /* The array must be an exact multiple of chunksize */
5766 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5767 chunksect >>= 1;
5768
5769 if ((chunksect<<9) < STRIPE_SIZE)
5770 /* array size does not allow a suitable chunk size */
5771 return ERR_PTR(-EINVAL);
5772
5773 mddev->new_level = 5;
5774 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5775 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5776
5777 return setup_conf(mddev);
5778}
5779
fc9739c6
N
5780static void *raid5_takeover_raid6(mddev_t *mddev)
5781{
5782 int new_layout;
5783
5784 switch (mddev->layout) {
5785 case ALGORITHM_LEFT_ASYMMETRIC_6:
5786 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5787 break;
5788 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5789 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5790 break;
5791 case ALGORITHM_LEFT_SYMMETRIC_6:
5792 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5793 break;
5794 case ALGORITHM_RIGHT_SYMMETRIC_6:
5795 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5796 break;
5797 case ALGORITHM_PARITY_0_6:
5798 new_layout = ALGORITHM_PARITY_0;
5799 break;
5800 case ALGORITHM_PARITY_N:
5801 new_layout = ALGORITHM_PARITY_N;
5802 break;
5803 default:
5804 return ERR_PTR(-EINVAL);
5805 }
5806 mddev->new_level = 5;
5807 mddev->new_layout = new_layout;
5808 mddev->delta_disks = -1;
5809 mddev->raid_disks -= 1;
5810 return setup_conf(mddev);
5811}
5812
d562b0c4 5813
50ac168a 5814static int raid5_check_reshape(mddev_t *mddev)
b3546035 5815{
88ce4930
N
5816 /* For a 2-drive array, the layout and chunk size can be changed
5817 * immediately as not restriping is needed.
5818 * For larger arrays we record the new value - after validation
5819 * to be used by a reshape pass.
b3546035 5820 */
070ec55d 5821 raid5_conf_t *conf = mddev->private;
597a711b 5822 int new_chunk = mddev->new_chunk_sectors;
b3546035 5823
597a711b 5824 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5825 return -EINVAL;
5826 if (new_chunk > 0) {
0ba459d2 5827 if (!is_power_of_2(new_chunk))
b3546035 5828 return -EINVAL;
597a711b 5829 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5830 return -EINVAL;
597a711b 5831 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5832 /* not factor of array size */
5833 return -EINVAL;
5834 }
5835
5836 /* They look valid */
5837
88ce4930 5838 if (mddev->raid_disks == 2) {
597a711b
N
5839 /* can make the change immediately */
5840 if (mddev->new_layout >= 0) {
5841 conf->algorithm = mddev->new_layout;
5842 mddev->layout = mddev->new_layout;
88ce4930
N
5843 }
5844 if (new_chunk > 0) {
597a711b
N
5845 conf->chunk_sectors = new_chunk ;
5846 mddev->chunk_sectors = new_chunk;
88ce4930
N
5847 }
5848 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5849 md_wakeup_thread(mddev->thread);
b3546035 5850 }
50ac168a 5851 return check_reshape(mddev);
88ce4930
N
5852}
5853
50ac168a 5854static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5855{
597a711b 5856 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5857
597a711b 5858 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5859 return -EINVAL;
b3546035 5860 if (new_chunk > 0) {
0ba459d2 5861 if (!is_power_of_2(new_chunk))
88ce4930 5862 return -EINVAL;
597a711b 5863 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5864 return -EINVAL;
597a711b 5865 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5866 /* not factor of array size */
5867 return -EINVAL;
b3546035 5868 }
88ce4930
N
5869
5870 /* They look valid */
50ac168a 5871 return check_reshape(mddev);
b3546035
N
5872}
5873
d562b0c4
N
5874static void *raid5_takeover(mddev_t *mddev)
5875{
5876 /* raid5 can take over:
f1b29bca 5877 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5878 * raid1 - if there are two drives. We need to know the chunk size
5879 * raid4 - trivial - just use a raid4 layout.
5880 * raid6 - Providing it is a *_6 layout
d562b0c4 5881 */
f1b29bca
DW
5882 if (mddev->level == 0)
5883 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5884 if (mddev->level == 1)
5885 return raid5_takeover_raid1(mddev);
e9d4758f
N
5886 if (mddev->level == 4) {
5887 mddev->new_layout = ALGORITHM_PARITY_N;
5888 mddev->new_level = 5;
5889 return setup_conf(mddev);
5890 }
fc9739c6
N
5891 if (mddev->level == 6)
5892 return raid5_takeover_raid6(mddev);
d562b0c4
N
5893
5894 return ERR_PTR(-EINVAL);
5895}
5896
a78d38a1
N
5897static void *raid4_takeover(mddev_t *mddev)
5898{
f1b29bca
DW
5899 /* raid4 can take over:
5900 * raid0 - if there is only one strip zone
5901 * raid5 - if layout is right
a78d38a1 5902 */
f1b29bca
DW
5903 if (mddev->level == 0)
5904 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5905 if (mddev->level == 5 &&
5906 mddev->layout == ALGORITHM_PARITY_N) {
5907 mddev->new_layout = 0;
5908 mddev->new_level = 4;
5909 return setup_conf(mddev);
5910 }
5911 return ERR_PTR(-EINVAL);
5912}
d562b0c4 5913
245f46c2
N
5914static struct mdk_personality raid5_personality;
5915
5916static void *raid6_takeover(mddev_t *mddev)
5917{
5918 /* Currently can only take over a raid5. We map the
5919 * personality to an equivalent raid6 personality
5920 * with the Q block at the end.
5921 */
5922 int new_layout;
5923
5924 if (mddev->pers != &raid5_personality)
5925 return ERR_PTR(-EINVAL);
5926 if (mddev->degraded > 1)
5927 return ERR_PTR(-EINVAL);
5928 if (mddev->raid_disks > 253)
5929 return ERR_PTR(-EINVAL);
5930 if (mddev->raid_disks < 3)
5931 return ERR_PTR(-EINVAL);
5932
5933 switch (mddev->layout) {
5934 case ALGORITHM_LEFT_ASYMMETRIC:
5935 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5936 break;
5937 case ALGORITHM_RIGHT_ASYMMETRIC:
5938 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5939 break;
5940 case ALGORITHM_LEFT_SYMMETRIC:
5941 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5942 break;
5943 case ALGORITHM_RIGHT_SYMMETRIC:
5944 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5945 break;
5946 case ALGORITHM_PARITY_0:
5947 new_layout = ALGORITHM_PARITY_0_6;
5948 break;
5949 case ALGORITHM_PARITY_N:
5950 new_layout = ALGORITHM_PARITY_N;
5951 break;
5952 default:
5953 return ERR_PTR(-EINVAL);
5954 }
5955 mddev->new_level = 6;
5956 mddev->new_layout = new_layout;
5957 mddev->delta_disks = 1;
5958 mddev->raid_disks += 1;
5959 return setup_conf(mddev);
5960}
5961
5962
16a53ecc
N
5963static struct mdk_personality raid6_personality =
5964{
5965 .name = "raid6",
5966 .level = 6,
5967 .owner = THIS_MODULE,
5968 .make_request = make_request,
5969 .run = run,
5970 .stop = stop,
5971 .status = status,
5972 .error_handler = error,
5973 .hot_add_disk = raid5_add_disk,
5974 .hot_remove_disk= raid5_remove_disk,
5975 .spare_active = raid5_spare_active,
5976 .sync_request = sync_request,
5977 .resize = raid5_resize,
80c3a6ce 5978 .size = raid5_size,
50ac168a 5979 .check_reshape = raid6_check_reshape,
f416885e 5980 .start_reshape = raid5_start_reshape,
cea9c228 5981 .finish_reshape = raid5_finish_reshape,
16a53ecc 5982 .quiesce = raid5_quiesce,
245f46c2 5983 .takeover = raid6_takeover,
16a53ecc 5984};
2604b703 5985static struct mdk_personality raid5_personality =
1da177e4
LT
5986{
5987 .name = "raid5",
2604b703 5988 .level = 5,
1da177e4
LT
5989 .owner = THIS_MODULE,
5990 .make_request = make_request,
5991 .run = run,
5992 .stop = stop,
5993 .status = status,
5994 .error_handler = error,
5995 .hot_add_disk = raid5_add_disk,
5996 .hot_remove_disk= raid5_remove_disk,
5997 .spare_active = raid5_spare_active,
5998 .sync_request = sync_request,
5999 .resize = raid5_resize,
80c3a6ce 6000 .size = raid5_size,
63c70c4f
N
6001 .check_reshape = raid5_check_reshape,
6002 .start_reshape = raid5_start_reshape,
cea9c228 6003 .finish_reshape = raid5_finish_reshape,
72626685 6004 .quiesce = raid5_quiesce,
d562b0c4 6005 .takeover = raid5_takeover,
1da177e4
LT
6006};
6007
2604b703 6008static struct mdk_personality raid4_personality =
1da177e4 6009{
2604b703
N
6010 .name = "raid4",
6011 .level = 4,
6012 .owner = THIS_MODULE,
6013 .make_request = make_request,
6014 .run = run,
6015 .stop = stop,
6016 .status = status,
6017 .error_handler = error,
6018 .hot_add_disk = raid5_add_disk,
6019 .hot_remove_disk= raid5_remove_disk,
6020 .spare_active = raid5_spare_active,
6021 .sync_request = sync_request,
6022 .resize = raid5_resize,
80c3a6ce 6023 .size = raid5_size,
3d37890b
N
6024 .check_reshape = raid5_check_reshape,
6025 .start_reshape = raid5_start_reshape,
cea9c228 6026 .finish_reshape = raid5_finish_reshape,
2604b703 6027 .quiesce = raid5_quiesce,
a78d38a1 6028 .takeover = raid4_takeover,
2604b703
N
6029};
6030
6031static int __init raid5_init(void)
6032{
16a53ecc 6033 register_md_personality(&raid6_personality);
2604b703
N
6034 register_md_personality(&raid5_personality);
6035 register_md_personality(&raid4_personality);
6036 return 0;
1da177e4
LT
6037}
6038
2604b703 6039static void raid5_exit(void)
1da177e4 6040{
16a53ecc 6041 unregister_md_personality(&raid6_personality);
2604b703
N
6042 unregister_md_personality(&raid5_personality);
6043 unregister_md_personality(&raid4_personality);
1da177e4
LT
6044}
6045
6046module_init(raid5_init);
6047module_exit(raid5_exit);
6048MODULE_LICENSE("GPL");
0efb9e61 6049MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6050MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6051MODULE_ALIAS("md-raid5");
6052MODULE_ALIAS("md-raid4");
2604b703
N
6053MODULE_ALIAS("md-level-5");
6054MODULE_ALIAS("md-level-4");
16a53ecc
N
6055MODULE_ALIAS("md-personality-8"); /* RAID6 */
6056MODULE_ALIAS("md-raid6");
6057MODULE_ALIAS("md-level-6");
6058
6059/* This used to be two separate modules, they were: */
6060MODULE_ALIAS("raid5");
6061MODULE_ALIAS("raid6");