]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/lguest/core.c
iwlwifi: don't include iwl-dev.h from iwl-devtrace.h
[net-next-2.6.git] / drivers / lguest / core.c
CommitLineData
2e04ef76
RR
1/*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
f938d2c8 3 * Switcher and analyzes the return, such as determining if the Guest wants the
2e04ef76
RR
4 * Host to do something. This file also contains useful helper routines.
5:*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
d7e28ffe 15#include <asm/paravirt.h>
d7e28ffe
RR
16#include <asm/pgtable.h>
17#include <asm/uaccess.h>
18#include <asm/poll.h>
d7e28ffe 19#include <asm/asm-offsets.h>
d7e28ffe
RR
20#include "lg.h"
21
d7e28ffe
RR
22
23static struct vm_struct *switcher_vma;
24static struct page **switcher_page;
25
d7e28ffe
RR
26/* This One Big lock protects all inter-guest data structures. */
27DEFINE_MUTEX(lguest_lock);
d7e28ffe 28
2e04ef76
RR
29/*H:010
30 * We need to set up the Switcher at a high virtual address. Remember the
bff672e6
RR
31 * Switcher is a few hundred bytes of assembler code which actually changes the
32 * CPU to run the Guest, and then changes back to the Host when a trap or
33 * interrupt happens.
34 *
35 * The Switcher code must be at the same virtual address in the Guest as the
36 * Host since it will be running as the switchover occurs.
37 *
38 * Trying to map memory at a particular address is an unusual thing to do, so
2e04ef76
RR
39 * it's not a simple one-liner.
40 */
d7e28ffe
RR
41static __init int map_switcher(void)
42{
43 int i, err;
44 struct page **pagep;
45
bff672e6
RR
46 /*
47 * Map the Switcher in to high memory.
48 *
49 * It turns out that if we choose the address 0xFFC00000 (4MB under the
50 * top virtual address), it makes setting up the page tables really
51 * easy.
52 */
53
2e04ef76
RR
54 /*
55 * We allocate an array of struct page pointers. map_vm_area() wants
56 * this, rather than just an array of pages.
57 */
d7e28ffe
RR
58 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
59 GFP_KERNEL);
60 if (!switcher_page) {
61 err = -ENOMEM;
62 goto out;
63 }
64
2e04ef76
RR
65 /*
66 * Now we actually allocate the pages. The Guest will see these pages,
67 * so we make sure they're zeroed.
68 */
d7e28ffe 69 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
6c189d83
XG
70 switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
71 if (!switcher_page[i]) {
d7e28ffe
RR
72 err = -ENOMEM;
73 goto free_some_pages;
74 }
d7e28ffe
RR
75 }
76
2e04ef76
RR
77 /*
78 * First we check that the Switcher won't overlap the fixmap area at
f14ae652 79 * the top of memory. It's currently nowhere near, but it could have
2e04ef76
RR
80 * very strange effects if it ever happened.
81 */
f14ae652
RR
82 if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
83 err = -ENOMEM;
84 printk("lguest: mapping switcher would thwack fixmap\n");
85 goto free_pages;
86 }
87
2e04ef76
RR
88 /*
89 * Now we reserve the "virtual memory area" we want: 0xFFC00000
bff672e6 90 * (SWITCHER_ADDR). We might not get it in theory, but in practice
f14ae652 91 * it's worked so far. The end address needs +1 because __get_vm_area
2e04ef76
RR
92 * allocates an extra guard page, so we need space for that.
93 */
d7e28ffe 94 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
f14ae652
RR
95 VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
96 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
d7e28ffe
RR
97 if (!switcher_vma) {
98 err = -ENOMEM;
99 printk("lguest: could not map switcher pages high\n");
100 goto free_pages;
101 }
102
2e04ef76
RR
103 /*
104 * This code actually sets up the pages we've allocated to appear at
bff672e6
RR
105 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
106 * kind of pages we're mapping (kernel pages), and a pointer to our
107 * array of struct pages. It increments that pointer, but we don't
2e04ef76
RR
108 * care.
109 */
d7e28ffe 110 pagep = switcher_page;
ed1dc778 111 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
d7e28ffe
RR
112 if (err) {
113 printk("lguest: map_vm_area failed: %i\n", err);
114 goto free_vma;
115 }
bff672e6 116
2e04ef76
RR
117 /*
118 * Now the Switcher is mapped at the right address, we can't fail!
119 * Copy in the compiled-in Switcher code (from <arch>_switcher.S).
120 */
d7e28ffe
RR
121 memcpy(switcher_vma->addr, start_switcher_text,
122 end_switcher_text - start_switcher_text);
123
d7e28ffe
RR
124 printk(KERN_INFO "lguest: mapped switcher at %p\n",
125 switcher_vma->addr);
bff672e6 126 /* And we succeeded... */
d7e28ffe
RR
127 return 0;
128
129free_vma:
130 vunmap(switcher_vma->addr);
131free_pages:
132 i = TOTAL_SWITCHER_PAGES;
133free_some_pages:
134 for (--i; i >= 0; i--)
135 __free_pages(switcher_page[i], 0);
136 kfree(switcher_page);
137out:
138 return err;
139}
bff672e6 140/*:*/
d7e28ffe 141
2e04ef76 142/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
d7e28ffe
RR
143static void unmap_switcher(void)
144{
145 unsigned int i;
146
bff672e6 147 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 148 vunmap(switcher_vma->addr);
bff672e6 149 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe
RR
150 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
151 __free_pages(switcher_page[i], 0);
0a707210 152 kfree(switcher_page);
d7e28ffe
RR
153}
154
e1e72965 155/*H:032
dde79789
RR
156 * Dealing With Guest Memory.
157 *
e1e72965
RR
158 * Before we go too much further into the Host, we need to grok the routines
159 * we use to deal with Guest memory.
160 *
dde79789 161 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
162 * the normal copy_from_user() & copy_to_user() on the corresponding place in
163 * the memory region allocated by the Launcher.
dde79789
RR
164 *
165 * But we can't trust the Guest: it might be trying to access the Launcher
166 * code. We have to check that the range is below the pfn_limit the Launcher
167 * gave us. We have to make sure that addr + len doesn't give us a false
2e04ef76
RR
168 * positive by overflowing, too.
169 */
df1693ab
MZ
170bool lguest_address_ok(const struct lguest *lg,
171 unsigned long addr, unsigned long len)
d7e28ffe
RR
172{
173 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
174}
175
2e04ef76
RR
176/*
177 * This routine copies memory from the Guest. Here we can see how useful the
2d37f94a 178 * kill_lguest() routine we met in the Launcher can be: we return a random
2e04ef76
RR
179 * value (all zeroes) instead of needing to return an error.
180 */
382ac6b3 181void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 182{
382ac6b3
GOC
183 if (!lguest_address_ok(cpu->lg, addr, bytes)
184 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
185 /* copy_from_user should do this, but as we rely on it... */
186 memset(b, 0, bytes);
382ac6b3 187 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
188 }
189}
190
a6bd8e13 191/* This is the write (copy into Guest) version. */
382ac6b3 192void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 193 unsigned bytes)
d7e28ffe 194{
382ac6b3
GOC
195 if (!lguest_address_ok(cpu->lg, addr, bytes)
196 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
197 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 198}
2d37f94a 199/*:*/
d7e28ffe 200
2e04ef76
RR
201/*H:030
202 * Let's jump straight to the the main loop which runs the Guest.
bff672e6 203 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
2e04ef76
RR
204 * going around and around until something interesting happens.
205 */
d0953d42 206int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 207{
bff672e6 208 /* We stop running once the Guest is dead. */
382ac6b3 209 while (!cpu->lg->dead) {
abd41f03 210 unsigned int irq;
a32a8813 211 bool more;
abd41f03 212
cc6d4fbc 213 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
214 if (cpu->hcall)
215 do_hypercalls(cpu);
cc6d4fbc 216
2e04ef76
RR
217 /*
218 * It's possible the Guest did a NOTIFY hypercall to the
a91d74a3 219 * Launcher.
2e04ef76 220 */
5e232f4f 221 if (cpu->pending_notify) {
a91d74a3
RR
222 /*
223 * Does it just needs to write to a registered
224 * eventfd (ie. the appropriate virtqueue thread)?
225 */
df60aeef 226 if (!send_notify_to_eventfd(cpu)) {
a91d74a3 227 /* OK, we tell the main Laucher. */
df60aeef
RR
228 if (put_user(cpu->pending_notify, user))
229 return -EFAULT;
230 return sizeof(cpu->pending_notify);
231 }
d7e28ffe
RR
232 }
233
bff672e6 234 /* Check for signals */
d7e28ffe
RR
235 if (signal_pending(current))
236 return -ERESTARTSYS;
237
2e04ef76
RR
238 /*
239 * Check if there are any interrupts which can be delivered now:
a6bd8e13 240 * if so, this sets up the hander to be executed when we next
2e04ef76
RR
241 * run the Guest.
242 */
a32a8813 243 irq = interrupt_pending(cpu, &more);
abd41f03 244 if (irq < LGUEST_IRQS)
a32a8813 245 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 246
2e04ef76
RR
247 /*
248 * All long-lived kernel loops need to check with this horrible
bff672e6 249 * thing called the freezer. If the Host is trying to suspend,
2e04ef76
RR
250 * it stops us.
251 */
d7e28ffe
RR
252 try_to_freeze();
253
2e04ef76
RR
254 /*
255 * Just make absolutely sure the Guest is still alive. One of
256 * those hypercalls could have been fatal, for example.
257 */
382ac6b3 258 if (cpu->lg->dead)
d7e28ffe
RR
259 break;
260
2e04ef76
RR
261 /*
262 * If the Guest asked to be stopped, we sleep. The Guest's
263 * clock timer will wake us.
264 */
66686c2a 265 if (cpu->halted) {
d7e28ffe 266 set_current_state(TASK_INTERRUPTIBLE);
2e04ef76
RR
267 /*
268 * Just before we sleep, make sure no interrupt snuck in
269 * which we should be doing.
270 */
5dac051b 271 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
abd41f03
RR
272 set_current_state(TASK_RUNNING);
273 else
274 schedule();
d7e28ffe
RR
275 continue;
276 }
277
2e04ef76
RR
278 /*
279 * OK, now we're ready to jump into the Guest. First we put up
280 * the "Do Not Disturb" sign:
281 */
d7e28ffe
RR
282 local_irq_disable();
283
625efab1 284 /* Actually run the Guest until something happens. */
d0953d42 285 lguest_arch_run_guest(cpu);
bff672e6
RR
286
287 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
288 local_irq_enable();
289
625efab1 290 /* Now we deal with whatever happened to the Guest. */
73044f05 291 lguest_arch_handle_trap(cpu);
d7e28ffe 292 }
625efab1 293
a6bd8e13 294 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 295 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 296 return -ERESTART;
a6bd8e13 297
bff672e6 298 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
299 return -ENOENT;
300}
301
bff672e6
RR
302/*H:000
303 * Welcome to the Host!
304 *
305 * By this point your brain has been tickled by the Guest code and numbed by
306 * the Launcher code; prepare for it to be stretched by the Host code. This is
307 * the heart. Let's begin at the initialization routine for the Host's lg
308 * module.
309 */
d7e28ffe
RR
310static int __init init(void)
311{
312 int err;
313
bff672e6 314 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
d7e28ffe 315 if (paravirt_enabled()) {
5c55841d 316 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
317 return -EPERM;
318 }
319
bff672e6 320 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
321 err = map_switcher();
322 if (err)
c18acd73 323 goto out;
d7e28ffe 324
bff672e6 325 /* Now we set up the pagetable implementation for the Guests. */
d7e28ffe 326 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
c18acd73
RR
327 if (err)
328 goto unmap;
bff672e6 329
c18acd73
RR
330 /* We might need to reserve an interrupt vector. */
331 err = init_interrupts();
332 if (err)
333 goto free_pgtables;
334
bff672e6 335 /* /dev/lguest needs to be registered. */
d7e28ffe 336 err = lguest_device_init();
c18acd73
RR
337 if (err)
338 goto free_interrupts;
bff672e6 339
625efab1
JS
340 /* Finally we do some architecture-specific setup. */
341 lguest_arch_host_init();
bff672e6
RR
342
343 /* All good! */
d7e28ffe 344 return 0;
c18acd73
RR
345
346free_interrupts:
347 free_interrupts();
348free_pgtables:
349 free_pagetables();
350unmap:
351 unmap_switcher();
352out:
353 return err;
d7e28ffe
RR
354}
355
bff672e6 356/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
357static void __exit fini(void)
358{
359 lguest_device_remove();
c18acd73 360 free_interrupts();
d7e28ffe
RR
361 free_pagetables();
362 unmap_switcher();
bff672e6 363
625efab1 364 lguest_arch_host_fini();
d7e28ffe 365}
625efab1 366/*:*/
d7e28ffe 367
2e04ef76
RR
368/*
369 * The Host side of lguest can be a module. This is a nice way for people to
370 * play with it.
371 */
d7e28ffe
RR
372module_init(init);
373module_exit(fini);
374MODULE_LICENSE("GPL");
375MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");