]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/kvm/mmu.c
[PATCH] KVM: MMU: Free pages on kvm destruction
[net-next-2.6.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
cea0f0e7
AK
29#define pgprintk(x...) do { printk(x); } while (0)
30#define rmap_printk(x...) do { printk(x); } while (0)
6aa8b732
AK
31
32#define ASSERT(x) \
33 if (!(x)) { \
34 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
35 __FILE__, __LINE__, #x); \
36 }
37
cea0f0e7
AK
38#define PT64_PT_BITS 9
39#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40#define PT32_PT_BITS 10
41#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
6aa8b732
AK
42
43#define PT_WRITABLE_SHIFT 1
44
45#define PT_PRESENT_MASK (1ULL << 0)
46#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47#define PT_USER_MASK (1ULL << 2)
48#define PT_PWT_MASK (1ULL << 3)
49#define PT_PCD_MASK (1ULL << 4)
50#define PT_ACCESSED_MASK (1ULL << 5)
51#define PT_DIRTY_MASK (1ULL << 6)
52#define PT_PAGE_SIZE_MASK (1ULL << 7)
53#define PT_PAT_MASK (1ULL << 7)
54#define PT_GLOBAL_MASK (1ULL << 8)
55#define PT64_NX_MASK (1ULL << 63)
56
57#define PT_PAT_SHIFT 7
58#define PT_DIR_PAT_SHIFT 12
59#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61#define PT32_DIR_PSE36_SIZE 4
62#define PT32_DIR_PSE36_SHIFT 13
63#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66#define PT32_PTE_COPY_MASK \
8c7bb723 67 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
6aa8b732 68
8c7bb723 69#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
6aa8b732
AK
70
71#define PT_FIRST_AVAIL_BITS_SHIFT 9
72#define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85#define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87#define PT64_LEVEL_BITS 9
88
89#define PT64_LEVEL_SHIFT(level) \
90 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92#define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
102 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104#define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107#define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112#define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120#define PFERR_PRESENT_MASK (1U << 0)
121#define PFERR_WRITE_MASK (1U << 1)
122#define PFERR_USER_MASK (1U << 2)
123
124#define PT64_ROOT_LEVEL 4
125#define PT32_ROOT_LEVEL 2
126#define PT32E_ROOT_LEVEL 3
127
128#define PT_DIRECTORY_LEVEL 2
129#define PT_PAGE_TABLE_LEVEL 1
130
cd4a4e53
AK
131#define RMAP_EXT 4
132
133struct kvm_rmap_desc {
134 u64 *shadow_ptes[RMAP_EXT];
135 struct kvm_rmap_desc *more;
136};
137
6aa8b732
AK
138static int is_write_protection(struct kvm_vcpu *vcpu)
139{
140 return vcpu->cr0 & CR0_WP_MASK;
141}
142
143static int is_cpuid_PSE36(void)
144{
145 return 1;
146}
147
148static int is_present_pte(unsigned long pte)
149{
150 return pte & PT_PRESENT_MASK;
151}
152
153static int is_writeble_pte(unsigned long pte)
154{
155 return pte & PT_WRITABLE_MASK;
156}
157
158static int is_io_pte(unsigned long pte)
159{
160 return pte & PT_SHADOW_IO_MARK;
161}
162
cd4a4e53
AK
163static int is_rmap_pte(u64 pte)
164{
165 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167}
168
169/*
170 * Reverse mapping data structures:
171 *
172 * If page->private bit zero is zero, then page->private points to the
173 * shadow page table entry that points to page_address(page).
174 *
175 * If page->private bit zero is one, (then page->private & ~1) points
176 * to a struct kvm_rmap_desc containing more mappings.
177 */
178static void rmap_add(struct kvm *kvm, u64 *spte)
179{
180 struct page *page;
181 struct kvm_rmap_desc *desc;
182 int i;
183
184 if (!is_rmap_pte(*spte))
185 return;
186 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
187 if (!page->private) {
188 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
189 page->private = (unsigned long)spte;
190 } else if (!(page->private & 1)) {
191 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
192 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
193 if (!desc)
194 BUG(); /* FIXME: return error */
195 desc->shadow_ptes[0] = (u64 *)page->private;
196 desc->shadow_ptes[1] = spte;
197 page->private = (unsigned long)desc | 1;
198 } else {
199 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
200 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
201 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
202 desc = desc->more;
203 if (desc->shadow_ptes[RMAP_EXT-1]) {
204 desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
205 if (!desc->more)
206 BUG(); /* FIXME: return error */
207 desc = desc->more;
208 }
209 for (i = 0; desc->shadow_ptes[i]; ++i)
210 ;
211 desc->shadow_ptes[i] = spte;
212 }
213}
214
215static void rmap_desc_remove_entry(struct page *page,
216 struct kvm_rmap_desc *desc,
217 int i,
218 struct kvm_rmap_desc *prev_desc)
219{
220 int j;
221
222 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
223 ;
224 desc->shadow_ptes[i] = desc->shadow_ptes[j];
225 desc->shadow_ptes[j] = 0;
226 if (j != 0)
227 return;
228 if (!prev_desc && !desc->more)
229 page->private = (unsigned long)desc->shadow_ptes[0];
230 else
231 if (prev_desc)
232 prev_desc->more = desc->more;
233 else
234 page->private = (unsigned long)desc->more | 1;
235 kfree(desc);
236}
237
238static void rmap_remove(struct kvm *kvm, u64 *spte)
239{
240 struct page *page;
241 struct kvm_rmap_desc *desc;
242 struct kvm_rmap_desc *prev_desc;
243 int i;
244
245 if (!is_rmap_pte(*spte))
246 return;
247 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
248 if (!page->private) {
249 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
250 BUG();
251 } else if (!(page->private & 1)) {
252 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
253 if ((u64 *)page->private != spte) {
254 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
255 spte, *spte);
256 BUG();
257 }
258 page->private = 0;
259 } else {
260 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
261 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
262 prev_desc = NULL;
263 while (desc) {
264 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
265 if (desc->shadow_ptes[i] == spte) {
266 rmap_desc_remove_entry(page, desc, i,
267 prev_desc);
268 return;
269 }
270 prev_desc = desc;
271 desc = desc->more;
272 }
273 BUG();
274 }
275}
276
374cbac0
AK
277static void rmap_write_protect(struct kvm *kvm, u64 gfn)
278{
279 struct page *page;
280 struct kvm_memory_slot *slot;
281 struct kvm_rmap_desc *desc;
282 u64 *spte;
283
284 slot = gfn_to_memslot(kvm, gfn);
285 BUG_ON(!slot);
286 page = gfn_to_page(slot, gfn);
287
288 while (page->private) {
289 if (!(page->private & 1))
290 spte = (u64 *)page->private;
291 else {
292 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
293 spte = desc->shadow_ptes[0];
294 }
295 BUG_ON(!spte);
296 BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
297 page_to_pfn(page) << PAGE_SHIFT);
298 BUG_ON(!(*spte & PT_PRESENT_MASK));
299 BUG_ON(!(*spte & PT_WRITABLE_MASK));
300 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
301 rmap_remove(kvm, spte);
302 *spte &= ~(u64)PT_WRITABLE_MASK;
303 }
304}
305
6aa8b732
AK
306static int is_empty_shadow_page(hpa_t page_hpa)
307{
139bdb2d
AK
308 u64 *pos;
309 u64 *end;
310
311 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
6aa8b732 312 pos != end; pos++)
139bdb2d
AK
313 if (*pos != 0) {
314 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
315 pos, *pos);
6aa8b732 316 return 0;
139bdb2d 317 }
6aa8b732
AK
318 return 1;
319}
320
260746c0
AK
321static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
322{
323 struct kvm_mmu_page *page_head = page_header(page_hpa);
324
5f1e0b6a 325 ASSERT(is_empty_shadow_page(page_hpa));
260746c0
AK
326 list_del(&page_head->link);
327 page_head->page_hpa = page_hpa;
328 list_add(&page_head->link, &vcpu->free_pages);
329 ++vcpu->kvm->n_free_mmu_pages;
330}
331
cea0f0e7
AK
332static unsigned kvm_page_table_hashfn(gfn_t gfn)
333{
334 return gfn;
335}
336
25c0de2c
AK
337static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
338 u64 *parent_pte)
6aa8b732
AK
339{
340 struct kvm_mmu_page *page;
341
342 if (list_empty(&vcpu->free_pages))
25c0de2c 343 return NULL;
6aa8b732
AK
344
345 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
346 list_del(&page->link);
347 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
348 ASSERT(is_empty_shadow_page(page->page_hpa));
349 page->slot_bitmap = 0;
350 page->global = 1;
cea0f0e7 351 page->multimapped = 0;
6aa8b732 352 page->parent_pte = parent_pte;
ebeace86 353 --vcpu->kvm->n_free_mmu_pages;
25c0de2c 354 return page;
6aa8b732
AK
355}
356
cea0f0e7
AK
357static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
358{
359 struct kvm_pte_chain *pte_chain;
360 struct hlist_node *node;
361 int i;
362
363 if (!parent_pte)
364 return;
365 if (!page->multimapped) {
366 u64 *old = page->parent_pte;
367
368 if (!old) {
369 page->parent_pte = parent_pte;
370 return;
371 }
372 page->multimapped = 1;
373 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
374 BUG_ON(!pte_chain);
375 INIT_HLIST_HEAD(&page->parent_ptes);
376 hlist_add_head(&pte_chain->link, &page->parent_ptes);
377 pte_chain->parent_ptes[0] = old;
378 }
379 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
380 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
381 continue;
382 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
383 if (!pte_chain->parent_ptes[i]) {
384 pte_chain->parent_ptes[i] = parent_pte;
385 return;
386 }
387 }
388 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
389 BUG_ON(!pte_chain);
390 hlist_add_head(&pte_chain->link, &page->parent_ptes);
391 pte_chain->parent_ptes[0] = parent_pte;
392}
393
394static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
395 u64 *parent_pte)
396{
397 struct kvm_pte_chain *pte_chain;
398 struct hlist_node *node;
399 int i;
400
401 if (!page->multimapped) {
402 BUG_ON(page->parent_pte != parent_pte);
403 page->parent_pte = NULL;
404 return;
405 }
406 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
407 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
408 if (!pte_chain->parent_ptes[i])
409 break;
410 if (pte_chain->parent_ptes[i] != parent_pte)
411 continue;
697fe2e2
AK
412 while (i + 1 < NR_PTE_CHAIN_ENTRIES
413 && pte_chain->parent_ptes[i + 1]) {
cea0f0e7
AK
414 pte_chain->parent_ptes[i]
415 = pte_chain->parent_ptes[i + 1];
416 ++i;
417 }
418 pte_chain->parent_ptes[i] = NULL;
697fe2e2
AK
419 if (i == 0) {
420 hlist_del(&pte_chain->link);
421 kfree(pte_chain);
422 if (hlist_empty(&page->parent_ptes)) {
423 page->multimapped = 0;
424 page->parent_pte = NULL;
425 }
426 }
cea0f0e7
AK
427 return;
428 }
429 BUG();
430}
431
432static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
433 gfn_t gfn)
434{
435 unsigned index;
436 struct hlist_head *bucket;
437 struct kvm_mmu_page *page;
438 struct hlist_node *node;
439
440 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
441 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
442 bucket = &vcpu->kvm->mmu_page_hash[index];
443 hlist_for_each_entry(page, node, bucket, hash_link)
444 if (page->gfn == gfn && !page->role.metaphysical) {
445 pgprintk("%s: found role %x\n",
446 __FUNCTION__, page->role.word);
447 return page;
448 }
449 return NULL;
450}
451
452static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
453 gfn_t gfn,
454 gva_t gaddr,
455 unsigned level,
456 int metaphysical,
457 u64 *parent_pte)
458{
459 union kvm_mmu_page_role role;
460 unsigned index;
461 unsigned quadrant;
462 struct hlist_head *bucket;
463 struct kvm_mmu_page *page;
464 struct hlist_node *node;
465
466 role.word = 0;
467 role.glevels = vcpu->mmu.root_level;
468 role.level = level;
469 role.metaphysical = metaphysical;
470 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
471 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
472 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
473 role.quadrant = quadrant;
474 }
475 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
476 gfn, role.word);
477 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
478 bucket = &vcpu->kvm->mmu_page_hash[index];
479 hlist_for_each_entry(page, node, bucket, hash_link)
480 if (page->gfn == gfn && page->role.word == role.word) {
481 mmu_page_add_parent_pte(page, parent_pte);
482 pgprintk("%s: found\n", __FUNCTION__);
483 return page;
484 }
485 page = kvm_mmu_alloc_page(vcpu, parent_pte);
486 if (!page)
487 return page;
488 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
489 page->gfn = gfn;
490 page->role = role;
491 hlist_add_head(&page->hash_link, bucket);
374cbac0
AK
492 if (!metaphysical)
493 rmap_write_protect(vcpu->kvm, gfn);
cea0f0e7
AK
494 return page;
495}
496
a436036b
AK
497static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
498 struct kvm_mmu_page *page)
499{
697fe2e2
AK
500 unsigned i;
501 u64 *pt;
502 u64 ent;
503
504 pt = __va(page->page_hpa);
505
506 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
507 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
508 if (pt[i] & PT_PRESENT_MASK)
509 rmap_remove(vcpu->kvm, &pt[i]);
510 pt[i] = 0;
511 }
512 return;
513 }
514
515 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
516 ent = pt[i];
517
518 pt[i] = 0;
519 if (!(ent & PT_PRESENT_MASK))
520 continue;
521 ent &= PT64_BASE_ADDR_MASK;
522 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
523 }
a436036b
AK
524}
525
cea0f0e7
AK
526static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
527 struct kvm_mmu_page *page,
528 u64 *parent_pte)
529{
530 mmu_page_remove_parent_pte(page, parent_pte);
a436036b
AK
531}
532
533static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
534 struct kvm_mmu_page *page)
535{
536 u64 *parent_pte;
537
538 while (page->multimapped || page->parent_pte) {
539 if (!page->multimapped)
540 parent_pte = page->parent_pte;
541 else {
542 struct kvm_pte_chain *chain;
543
544 chain = container_of(page->parent_ptes.first,
545 struct kvm_pte_chain, link);
546 parent_pte = chain->parent_ptes[0];
547 }
697fe2e2 548 BUG_ON(!parent_pte);
a436036b
AK
549 kvm_mmu_put_page(vcpu, page, parent_pte);
550 *parent_pte = 0;
551 }
cc4529ef 552 kvm_mmu_page_unlink_children(vcpu, page);
3bb65a22
AK
553 if (!page->root_count) {
554 hlist_del(&page->hash_link);
555 kvm_mmu_free_page(vcpu, page->page_hpa);
556 } else {
557 list_del(&page->link);
558 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
559 }
a436036b
AK
560}
561
562static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
563{
564 unsigned index;
565 struct hlist_head *bucket;
566 struct kvm_mmu_page *page;
567 struct hlist_node *node, *n;
568 int r;
569
570 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
571 r = 0;
572 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
573 bucket = &vcpu->kvm->mmu_page_hash[index];
574 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
575 if (page->gfn == gfn && !page->role.metaphysical) {
697fe2e2
AK
576 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
577 page->role.word);
a436036b
AK
578 kvm_mmu_zap_page(vcpu, page);
579 r = 1;
580 }
581 return r;
cea0f0e7
AK
582}
583
6aa8b732
AK
584static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
585{
586 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
587 struct kvm_mmu_page *page_head = page_header(__pa(pte));
588
589 __set_bit(slot, &page_head->slot_bitmap);
590}
591
592hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
593{
594 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
595
596 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
597}
598
599hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
600{
601 struct kvm_memory_slot *slot;
602 struct page *page;
603
604 ASSERT((gpa & HPA_ERR_MASK) == 0);
605 slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
606 if (!slot)
607 return gpa | HPA_ERR_MASK;
608 page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
609 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
610 | (gpa & (PAGE_SIZE-1));
611}
612
613hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
614{
615 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
616
617 if (gpa == UNMAPPED_GVA)
618 return UNMAPPED_GVA;
619 return gpa_to_hpa(vcpu, gpa);
620}
621
6aa8b732
AK
622static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
623{
624}
625
626static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
627{
628 int level = PT32E_ROOT_LEVEL;
629 hpa_t table_addr = vcpu->mmu.root_hpa;
630
631 for (; ; level--) {
632 u32 index = PT64_INDEX(v, level);
633 u64 *table;
cea0f0e7 634 u64 pte;
6aa8b732
AK
635
636 ASSERT(VALID_PAGE(table_addr));
637 table = __va(table_addr);
638
639 if (level == 1) {
cea0f0e7
AK
640 pte = table[index];
641 if (is_present_pte(pte) && is_writeble_pte(pte))
642 return 0;
6aa8b732
AK
643 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
644 page_header_update_slot(vcpu->kvm, table, v);
645 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
646 PT_USER_MASK;
cd4a4e53 647 rmap_add(vcpu->kvm, &table[index]);
6aa8b732
AK
648 return 0;
649 }
650
651 if (table[index] == 0) {
25c0de2c 652 struct kvm_mmu_page *new_table;
cea0f0e7 653 gfn_t pseudo_gfn;
6aa8b732 654
cea0f0e7
AK
655 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
656 >> PAGE_SHIFT;
657 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
658 v, level - 1,
659 1, &table[index]);
25c0de2c 660 if (!new_table) {
6aa8b732
AK
661 pgprintk("nonpaging_map: ENOMEM\n");
662 return -ENOMEM;
663 }
664
25c0de2c
AK
665 table[index] = new_table->page_hpa | PT_PRESENT_MASK
666 | PT_WRITABLE_MASK | PT_USER_MASK;
6aa8b732
AK
667 }
668 table_addr = table[index] & PT64_BASE_ADDR_MASK;
669 }
670}
671
17ac10ad
AK
672static void mmu_free_roots(struct kvm_vcpu *vcpu)
673{
674 int i;
3bb65a22 675 struct kvm_mmu_page *page;
17ac10ad
AK
676
677#ifdef CONFIG_X86_64
678 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
679 hpa_t root = vcpu->mmu.root_hpa;
680
681 ASSERT(VALID_PAGE(root));
3bb65a22
AK
682 page = page_header(root);
683 --page->root_count;
17ac10ad
AK
684 vcpu->mmu.root_hpa = INVALID_PAGE;
685 return;
686 }
687#endif
688 for (i = 0; i < 4; ++i) {
689 hpa_t root = vcpu->mmu.pae_root[i];
690
691 ASSERT(VALID_PAGE(root));
692 root &= PT64_BASE_ADDR_MASK;
3bb65a22
AK
693 page = page_header(root);
694 --page->root_count;
17ac10ad
AK
695 vcpu->mmu.pae_root[i] = INVALID_PAGE;
696 }
697 vcpu->mmu.root_hpa = INVALID_PAGE;
698}
699
700static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
701{
702 int i;
cea0f0e7 703 gfn_t root_gfn;
3bb65a22
AK
704 struct kvm_mmu_page *page;
705
cea0f0e7 706 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
17ac10ad
AK
707
708#ifdef CONFIG_X86_64
709 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
710 hpa_t root = vcpu->mmu.root_hpa;
711
712 ASSERT(!VALID_PAGE(root));
cea0f0e7
AK
713 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
714 PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
3bb65a22
AK
715 page = page_header(root);
716 ++page->root_count;
17ac10ad
AK
717 vcpu->mmu.root_hpa = root;
718 return;
719 }
720#endif
721 for (i = 0; i < 4; ++i) {
722 hpa_t root = vcpu->mmu.pae_root[i];
723
724 ASSERT(!VALID_PAGE(root));
cea0f0e7
AK
725 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
726 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
727 else if (vcpu->mmu.root_level == 0)
728 root_gfn = 0;
729 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
730 PT32_ROOT_LEVEL, !is_paging(vcpu),
731 NULL)->page_hpa;
3bb65a22
AK
732 page = page_header(root);
733 ++page->root_count;
17ac10ad
AK
734 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
735 }
736 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
737}
738
6aa8b732
AK
739static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
740{
741 return vaddr;
742}
743
744static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
745 u32 error_code)
746{
6aa8b732 747 gpa_t addr = gva;
ebeace86 748 hpa_t paddr;
6aa8b732
AK
749
750 ASSERT(vcpu);
751 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
752
6aa8b732 753
ebeace86 754 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
6aa8b732 755
ebeace86
AK
756 if (is_error_hpa(paddr))
757 return 1;
6aa8b732 758
ebeace86 759 return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
6aa8b732
AK
760}
761
6aa8b732
AK
762static void nonpaging_free(struct kvm_vcpu *vcpu)
763{
17ac10ad 764 mmu_free_roots(vcpu);
6aa8b732
AK
765}
766
767static int nonpaging_init_context(struct kvm_vcpu *vcpu)
768{
769 struct kvm_mmu *context = &vcpu->mmu;
770
771 context->new_cr3 = nonpaging_new_cr3;
772 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
773 context->gva_to_gpa = nonpaging_gva_to_gpa;
774 context->free = nonpaging_free;
cea0f0e7 775 context->root_level = 0;
6aa8b732 776 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 777 mmu_alloc_roots(vcpu);
6aa8b732
AK
778 ASSERT(VALID_PAGE(context->root_hpa));
779 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
780 return 0;
781}
782
6aa8b732
AK
783static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
784{
6aa8b732
AK
785 ++kvm_stat.tlb_flush;
786 kvm_arch_ops->tlb_flush(vcpu);
787}
788
789static void paging_new_cr3(struct kvm_vcpu *vcpu)
790{
374cbac0 791 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
cea0f0e7
AK
792 mmu_free_roots(vcpu);
793 mmu_alloc_roots(vcpu);
6aa8b732 794 kvm_mmu_flush_tlb(vcpu);
cea0f0e7 795 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
6aa8b732
AK
796}
797
798static void mark_pagetable_nonglobal(void *shadow_pte)
799{
800 page_header(__pa(shadow_pte))->global = 0;
801}
802
803static inline void set_pte_common(struct kvm_vcpu *vcpu,
804 u64 *shadow_pte,
805 gpa_t gaddr,
806 int dirty,
815af8d4
AK
807 u64 access_bits,
808 gfn_t gfn)
6aa8b732
AK
809{
810 hpa_t paddr;
811
812 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
813 if (!dirty)
814 access_bits &= ~PT_WRITABLE_MASK;
cea0f0e7 815
374cbac0 816 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
6aa8b732
AK
817
818 *shadow_pte |= access_bits;
819
6aa8b732
AK
820 if (!(*shadow_pte & PT_GLOBAL_MASK))
821 mark_pagetable_nonglobal(shadow_pte);
822
823 if (is_error_hpa(paddr)) {
824 *shadow_pte |= gaddr;
825 *shadow_pte |= PT_SHADOW_IO_MARK;
826 *shadow_pte &= ~PT_PRESENT_MASK;
374cbac0 827 return;
6aa8b732 828 }
374cbac0
AK
829
830 *shadow_pte |= paddr;
831
832 if (access_bits & PT_WRITABLE_MASK) {
833 struct kvm_mmu_page *shadow;
834
815af8d4 835 shadow = kvm_mmu_lookup_page(vcpu, gfn);
374cbac0
AK
836 if (shadow) {
837 pgprintk("%s: found shadow page for %lx, marking ro\n",
815af8d4 838 __FUNCTION__, gfn);
374cbac0
AK
839 access_bits &= ~PT_WRITABLE_MASK;
840 *shadow_pte &= ~PT_WRITABLE_MASK;
841 }
842 }
843
844 if (access_bits & PT_WRITABLE_MASK)
845 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
846
847 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
848 rmap_add(vcpu->kvm, shadow_pte);
6aa8b732
AK
849}
850
851static void inject_page_fault(struct kvm_vcpu *vcpu,
852 u64 addr,
853 u32 err_code)
854{
855 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
856}
857
858static inline int fix_read_pf(u64 *shadow_ent)
859{
860 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
861 !(*shadow_ent & PT_USER_MASK)) {
862 /*
863 * If supervisor write protect is disabled, we shadow kernel
864 * pages as user pages so we can trap the write access.
865 */
866 *shadow_ent |= PT_USER_MASK;
867 *shadow_ent &= ~PT_WRITABLE_MASK;
868
869 return 1;
870
871 }
872 return 0;
873}
874
875static int may_access(u64 pte, int write, int user)
876{
877
878 if (user && !(pte & PT_USER_MASK))
879 return 0;
880 if (write && !(pte & PT_WRITABLE_MASK))
881 return 0;
882 return 1;
883}
884
6aa8b732
AK
885static void paging_free(struct kvm_vcpu *vcpu)
886{
887 nonpaging_free(vcpu);
888}
889
890#define PTTYPE 64
891#include "paging_tmpl.h"
892#undef PTTYPE
893
894#define PTTYPE 32
895#include "paging_tmpl.h"
896#undef PTTYPE
897
17ac10ad 898static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
899{
900 struct kvm_mmu *context = &vcpu->mmu;
901
902 ASSERT(is_pae(vcpu));
903 context->new_cr3 = paging_new_cr3;
904 context->page_fault = paging64_page_fault;
6aa8b732
AK
905 context->gva_to_gpa = paging64_gva_to_gpa;
906 context->free = paging_free;
17ac10ad
AK
907 context->root_level = level;
908 context->shadow_root_level = level;
909 mmu_alloc_roots(vcpu);
6aa8b732
AK
910 ASSERT(VALID_PAGE(context->root_hpa));
911 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
912 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
913 return 0;
914}
915
17ac10ad
AK
916static int paging64_init_context(struct kvm_vcpu *vcpu)
917{
918 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
919}
920
6aa8b732
AK
921static int paging32_init_context(struct kvm_vcpu *vcpu)
922{
923 struct kvm_mmu *context = &vcpu->mmu;
924
925 context->new_cr3 = paging_new_cr3;
926 context->page_fault = paging32_page_fault;
6aa8b732
AK
927 context->gva_to_gpa = paging32_gva_to_gpa;
928 context->free = paging_free;
929 context->root_level = PT32_ROOT_LEVEL;
930 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 931 mmu_alloc_roots(vcpu);
6aa8b732
AK
932 ASSERT(VALID_PAGE(context->root_hpa));
933 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
934 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
935 return 0;
936}
937
938static int paging32E_init_context(struct kvm_vcpu *vcpu)
939{
17ac10ad 940 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
941}
942
943static int init_kvm_mmu(struct kvm_vcpu *vcpu)
944{
945 ASSERT(vcpu);
946 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
947
948 if (!is_paging(vcpu))
949 return nonpaging_init_context(vcpu);
a9058ecd 950 else if (is_long_mode(vcpu))
6aa8b732
AK
951 return paging64_init_context(vcpu);
952 else if (is_pae(vcpu))
953 return paging32E_init_context(vcpu);
954 else
955 return paging32_init_context(vcpu);
956}
957
958static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
959{
960 ASSERT(vcpu);
961 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
962 vcpu->mmu.free(vcpu);
963 vcpu->mmu.root_hpa = INVALID_PAGE;
964 }
965}
966
967int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
968{
969 destroy_kvm_mmu(vcpu);
970 return init_kvm_mmu(vcpu);
971}
972
da4a00f0
AK
973void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
974{
9b7a0325
AK
975 gfn_t gfn = gpa >> PAGE_SHIFT;
976 struct kvm_mmu_page *page;
977 struct kvm_mmu_page *child;
0e7bc4b9 978 struct hlist_node *node, *n;
9b7a0325
AK
979 struct hlist_head *bucket;
980 unsigned index;
981 u64 *spte;
982 u64 pte;
983 unsigned offset = offset_in_page(gpa);
0e7bc4b9 984 unsigned pte_size;
9b7a0325 985 unsigned page_offset;
0e7bc4b9 986 unsigned misaligned;
9b7a0325 987 int level;
86a5ba02 988 int flooded = 0;
9b7a0325 989
da4a00f0 990 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
86a5ba02
AK
991 if (gfn == vcpu->last_pt_write_gfn) {
992 ++vcpu->last_pt_write_count;
993 if (vcpu->last_pt_write_count >= 3)
994 flooded = 1;
995 } else {
996 vcpu->last_pt_write_gfn = gfn;
997 vcpu->last_pt_write_count = 1;
998 }
9b7a0325
AK
999 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1000 bucket = &vcpu->kvm->mmu_page_hash[index];
0e7bc4b9 1001 hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
9b7a0325
AK
1002 if (page->gfn != gfn || page->role.metaphysical)
1003 continue;
0e7bc4b9
AK
1004 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1005 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
86a5ba02 1006 if (misaligned || flooded) {
0e7bc4b9
AK
1007 /*
1008 * Misaligned accesses are too much trouble to fix
1009 * up; also, they usually indicate a page is not used
1010 * as a page table.
86a5ba02
AK
1011 *
1012 * If we're seeing too many writes to a page,
1013 * it may no longer be a page table, or we may be
1014 * forking, in which case it is better to unmap the
1015 * page.
0e7bc4b9
AK
1016 */
1017 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1018 gpa, bytes, page->role.word);
1019 kvm_mmu_zap_page(vcpu, page);
1020 continue;
1021 }
9b7a0325
AK
1022 page_offset = offset;
1023 level = page->role.level;
1024 if (page->role.glevels == PT32_ROOT_LEVEL) {
1025 page_offset <<= 1; /* 32->64 */
1026 page_offset &= ~PAGE_MASK;
1027 }
1028 spte = __va(page->page_hpa);
1029 spte += page_offset / sizeof(*spte);
1030 pte = *spte;
1031 if (is_present_pte(pte)) {
1032 if (level == PT_PAGE_TABLE_LEVEL)
1033 rmap_remove(vcpu->kvm, spte);
1034 else {
1035 child = page_header(pte & PT64_BASE_ADDR_MASK);
1036 mmu_page_remove_parent_pte(child, spte);
1037 }
1038 }
1039 *spte = 0;
1040 }
da4a00f0
AK
1041}
1042
1043void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1044{
1045}
1046
a436036b
AK
1047int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1048{
1049 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1050
1051 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1052}
1053
ebeace86
AK
1054void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1055{
1056 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1057 struct kvm_mmu_page *page;
1058
1059 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1060 struct kvm_mmu_page, link);
1061 kvm_mmu_zap_page(vcpu, page);
1062 }
1063}
1064EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1065
6aa8b732
AK
1066static void free_mmu_pages(struct kvm_vcpu *vcpu)
1067{
f51234c2 1068 struct kvm_mmu_page *page;
6aa8b732 1069
f51234c2
AK
1070 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1071 page = container_of(vcpu->kvm->active_mmu_pages.next,
1072 struct kvm_mmu_page, link);
1073 kvm_mmu_zap_page(vcpu, page);
1074 }
1075 while (!list_empty(&vcpu->free_pages)) {
6aa8b732
AK
1076 page = list_entry(vcpu->free_pages.next,
1077 struct kvm_mmu_page, link);
1078 list_del(&page->link);
1079 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1080 page->page_hpa = INVALID_PAGE;
1081 }
17ac10ad 1082 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
1083}
1084
1085static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1086{
17ac10ad 1087 struct page *page;
6aa8b732
AK
1088 int i;
1089
1090 ASSERT(vcpu);
1091
1092 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
6aa8b732
AK
1093 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1094
1095 INIT_LIST_HEAD(&page_header->link);
17ac10ad 1096 if ((page = alloc_page(GFP_KERNEL)) == NULL)
6aa8b732
AK
1097 goto error_1;
1098 page->private = (unsigned long)page_header;
1099 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1100 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1101 list_add(&page_header->link, &vcpu->free_pages);
ebeace86 1102 ++vcpu->kvm->n_free_mmu_pages;
6aa8b732 1103 }
17ac10ad
AK
1104
1105 /*
1106 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1107 * Therefore we need to allocate shadow page tables in the first
1108 * 4GB of memory, which happens to fit the DMA32 zone.
1109 */
1110 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1111 if (!page)
1112 goto error_1;
1113 vcpu->mmu.pae_root = page_address(page);
1114 for (i = 0; i < 4; ++i)
1115 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1116
6aa8b732
AK
1117 return 0;
1118
1119error_1:
1120 free_mmu_pages(vcpu);
1121 return -ENOMEM;
1122}
1123
8018c27b 1124int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 1125{
6aa8b732
AK
1126 ASSERT(vcpu);
1127 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1128 ASSERT(list_empty(&vcpu->free_pages));
1129
8018c27b
IM
1130 return alloc_mmu_pages(vcpu);
1131}
6aa8b732 1132
8018c27b
IM
1133int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1134{
1135 ASSERT(vcpu);
1136 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1137 ASSERT(!list_empty(&vcpu->free_pages));
2c264957 1138
8018c27b 1139 return init_kvm_mmu(vcpu);
6aa8b732
AK
1140}
1141
1142void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1143{
1144 ASSERT(vcpu);
1145
1146 destroy_kvm_mmu(vcpu);
1147 free_mmu_pages(vcpu);
1148}
1149
1150void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1151{
1152 struct kvm_mmu_page *page;
1153
1154 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1155 int i;
1156 u64 *pt;
1157
1158 if (!test_bit(slot, &page->slot_bitmap))
1159 continue;
1160
1161 pt = __va(page->page_hpa);
1162 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1163 /* avoid RMW */
cd4a4e53
AK
1164 if (pt[i] & PT_WRITABLE_MASK) {
1165 rmap_remove(kvm, &pt[i]);
6aa8b732 1166 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 1167 }
6aa8b732
AK
1168 }
1169}