]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/kvm/mmu.c
KVM: Unify kvm_mmu_pre_write() and kvm_mmu_post_write()
[net-next-2.6.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
37a7d8b0
AK
29#undef MMU_DEBUG
30
31#undef AUDIT
32
33#ifdef AUDIT
34static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35#else
36static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37#endif
38
39#ifdef MMU_DEBUG
40
41#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44#else
45
46#define pgprintk(x...) do { } while (0)
47#define rmap_printk(x...) do { } while (0)
48
49#endif
50
51#if defined(MMU_DEBUG) || defined(AUDIT)
52static int dbg = 1;
53#endif
6aa8b732 54
d6c69ee9
YD
55#ifndef MMU_DEBUG
56#define ASSERT(x) do { } while (0)
57#else
6aa8b732
AK
58#define ASSERT(x) \
59 if (!(x)) { \
60 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
61 __FILE__, __LINE__, #x); \
62 }
d6c69ee9 63#endif
6aa8b732 64
cea0f0e7
AK
65#define PT64_PT_BITS 9
66#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
67#define PT32_PT_BITS 10
68#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
6aa8b732
AK
69
70#define PT_WRITABLE_SHIFT 1
71
72#define PT_PRESENT_MASK (1ULL << 0)
73#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
74#define PT_USER_MASK (1ULL << 2)
75#define PT_PWT_MASK (1ULL << 3)
76#define PT_PCD_MASK (1ULL << 4)
77#define PT_ACCESSED_MASK (1ULL << 5)
78#define PT_DIRTY_MASK (1ULL << 6)
79#define PT_PAGE_SIZE_MASK (1ULL << 7)
80#define PT_PAT_MASK (1ULL << 7)
81#define PT_GLOBAL_MASK (1ULL << 8)
82#define PT64_NX_MASK (1ULL << 63)
83
84#define PT_PAT_SHIFT 7
85#define PT_DIR_PAT_SHIFT 12
86#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
87
88#define PT32_DIR_PSE36_SIZE 4
89#define PT32_DIR_PSE36_SHIFT 13
90#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
91
92
93#define PT32_PTE_COPY_MASK \
8c7bb723 94 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
6aa8b732 95
8c7bb723 96#define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
6aa8b732
AK
97
98#define PT_FIRST_AVAIL_BITS_SHIFT 9
99#define PT64_SECOND_AVAIL_BITS_SHIFT 52
100
101#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
103
104#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
105#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
106
107#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
108#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
109
110#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
111
112#define VALID_PAGE(x) ((x) != INVALID_PAGE)
113
114#define PT64_LEVEL_BITS 9
115
116#define PT64_LEVEL_SHIFT(level) \
117 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
118
119#define PT64_LEVEL_MASK(level) \
120 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
121
122#define PT64_INDEX(address, level)\
123 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
124
125
126#define PT32_LEVEL_BITS 10
127
128#define PT32_LEVEL_SHIFT(level) \
129 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
130
131#define PT32_LEVEL_MASK(level) \
132 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
133
134#define PT32_INDEX(address, level)\
135 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
136
137
27aba766 138#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
139#define PT64_DIR_BASE_ADDR_MASK \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
141
142#define PT32_BASE_ADDR_MASK PAGE_MASK
143#define PT32_DIR_BASE_ADDR_MASK \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
145
146
147#define PFERR_PRESENT_MASK (1U << 0)
148#define PFERR_WRITE_MASK (1U << 1)
149#define PFERR_USER_MASK (1U << 2)
73b1087e 150#define PFERR_FETCH_MASK (1U << 4)
6aa8b732
AK
151
152#define PT64_ROOT_LEVEL 4
153#define PT32_ROOT_LEVEL 2
154#define PT32E_ROOT_LEVEL 3
155
156#define PT_DIRECTORY_LEVEL 2
157#define PT_PAGE_TABLE_LEVEL 1
158
cd4a4e53
AK
159#define RMAP_EXT 4
160
161struct kvm_rmap_desc {
162 u64 *shadow_ptes[RMAP_EXT];
163 struct kvm_rmap_desc *more;
164};
165
b5a33a75
AK
166static struct kmem_cache *pte_chain_cache;
167static struct kmem_cache *rmap_desc_cache;
168
6aa8b732
AK
169static int is_write_protection(struct kvm_vcpu *vcpu)
170{
171 return vcpu->cr0 & CR0_WP_MASK;
172}
173
174static int is_cpuid_PSE36(void)
175{
176 return 1;
177}
178
73b1087e
AK
179static int is_nx(struct kvm_vcpu *vcpu)
180{
181 return vcpu->shadow_efer & EFER_NX;
182}
183
6aa8b732
AK
184static int is_present_pte(unsigned long pte)
185{
186 return pte & PT_PRESENT_MASK;
187}
188
189static int is_writeble_pte(unsigned long pte)
190{
191 return pte & PT_WRITABLE_MASK;
192}
193
194static int is_io_pte(unsigned long pte)
195{
196 return pte & PT_SHADOW_IO_MARK;
197}
198
cd4a4e53
AK
199static int is_rmap_pte(u64 pte)
200{
201 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
202 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
203}
204
e2dec939 205static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
8c438502
AK
206 struct kmem_cache *base_cache, int min,
207 gfp_t gfp_flags)
714b93da
AK
208{
209 void *obj;
210
211 if (cache->nobjs >= min)
e2dec939 212 return 0;
714b93da 213 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
8c438502 214 obj = kmem_cache_zalloc(base_cache, gfp_flags);
714b93da 215 if (!obj)
e2dec939 216 return -ENOMEM;
714b93da
AK
217 cache->objects[cache->nobjs++] = obj;
218 }
e2dec939 219 return 0;
714b93da
AK
220}
221
222static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
223{
224 while (mc->nobjs)
225 kfree(mc->objects[--mc->nobjs]);
226}
227
8c438502 228static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
714b93da 229{
e2dec939
AK
230 int r;
231
232 r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
8c438502 233 pte_chain_cache, 4, gfp_flags);
e2dec939
AK
234 if (r)
235 goto out;
236 r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
8c438502 237 rmap_desc_cache, 1, gfp_flags);
e2dec939
AK
238out:
239 return r;
714b93da
AK
240}
241
8c438502
AK
242static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
243{
244 int r;
245
246 r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
247 if (r < 0) {
248 spin_unlock(&vcpu->kvm->lock);
249 kvm_arch_ops->vcpu_put(vcpu);
250 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
251 kvm_arch_ops->vcpu_load(vcpu);
252 spin_lock(&vcpu->kvm->lock);
253 }
254 return r;
255}
256
714b93da
AK
257static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
258{
259 mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
260 mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
261}
262
263static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
264 size_t size)
265{
266 void *p;
267
268 BUG_ON(!mc->nobjs);
269 p = mc->objects[--mc->nobjs];
270 memset(p, 0, size);
271 return p;
272}
273
274static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
275{
276 if (mc->nobjs < KVM_NR_MEM_OBJS)
277 mc->objects[mc->nobjs++] = obj;
278 else
279 kfree(obj);
280}
281
282static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
283{
284 return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
285 sizeof(struct kvm_pte_chain));
286}
287
288static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
289 struct kvm_pte_chain *pc)
290{
291 mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
292}
293
294static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
295{
296 return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
297 sizeof(struct kvm_rmap_desc));
298}
299
300static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
301 struct kvm_rmap_desc *rd)
302{
303 mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
304}
305
cd4a4e53
AK
306/*
307 * Reverse mapping data structures:
308 *
309 * If page->private bit zero is zero, then page->private points to the
310 * shadow page table entry that points to page_address(page).
311 *
312 * If page->private bit zero is one, (then page->private & ~1) points
313 * to a struct kvm_rmap_desc containing more mappings.
314 */
714b93da 315static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
cd4a4e53
AK
316{
317 struct page *page;
318 struct kvm_rmap_desc *desc;
319 int i;
320
321 if (!is_rmap_pte(*spte))
322 return;
323 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
5972e953 324 if (!page_private(page)) {
cd4a4e53 325 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
5972e953
MR
326 set_page_private(page,(unsigned long)spte);
327 } else if (!(page_private(page) & 1)) {
cd4a4e53 328 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
714b93da 329 desc = mmu_alloc_rmap_desc(vcpu);
5972e953 330 desc->shadow_ptes[0] = (u64 *)page_private(page);
cd4a4e53 331 desc->shadow_ptes[1] = spte;
5972e953 332 set_page_private(page,(unsigned long)desc | 1);
cd4a4e53
AK
333 } else {
334 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
5972e953 335 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
cd4a4e53
AK
336 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
337 desc = desc->more;
338 if (desc->shadow_ptes[RMAP_EXT-1]) {
714b93da 339 desc->more = mmu_alloc_rmap_desc(vcpu);
cd4a4e53
AK
340 desc = desc->more;
341 }
342 for (i = 0; desc->shadow_ptes[i]; ++i)
343 ;
344 desc->shadow_ptes[i] = spte;
345 }
346}
347
714b93da
AK
348static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
349 struct page *page,
cd4a4e53
AK
350 struct kvm_rmap_desc *desc,
351 int i,
352 struct kvm_rmap_desc *prev_desc)
353{
354 int j;
355
356 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
357 ;
358 desc->shadow_ptes[i] = desc->shadow_ptes[j];
11718b4d 359 desc->shadow_ptes[j] = NULL;
cd4a4e53
AK
360 if (j != 0)
361 return;
362 if (!prev_desc && !desc->more)
5972e953 363 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
cd4a4e53
AK
364 else
365 if (prev_desc)
366 prev_desc->more = desc->more;
367 else
5972e953 368 set_page_private(page,(unsigned long)desc->more | 1);
714b93da 369 mmu_free_rmap_desc(vcpu, desc);
cd4a4e53
AK
370}
371
714b93da 372static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
cd4a4e53
AK
373{
374 struct page *page;
375 struct kvm_rmap_desc *desc;
376 struct kvm_rmap_desc *prev_desc;
377 int i;
378
379 if (!is_rmap_pte(*spte))
380 return;
381 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
5972e953 382 if (!page_private(page)) {
cd4a4e53
AK
383 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
384 BUG();
5972e953 385 } else if (!(page_private(page) & 1)) {
cd4a4e53 386 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
5972e953 387 if ((u64 *)page_private(page) != spte) {
cd4a4e53
AK
388 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
389 spte, *spte);
390 BUG();
391 }
5972e953 392 set_page_private(page,0);
cd4a4e53
AK
393 } else {
394 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
5972e953 395 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
cd4a4e53
AK
396 prev_desc = NULL;
397 while (desc) {
398 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
399 if (desc->shadow_ptes[i] == spte) {
714b93da
AK
400 rmap_desc_remove_entry(vcpu, page,
401 desc, i,
cd4a4e53
AK
402 prev_desc);
403 return;
404 }
405 prev_desc = desc;
406 desc = desc->more;
407 }
408 BUG();
409 }
410}
411
714b93da 412static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
374cbac0 413{
714b93da 414 struct kvm *kvm = vcpu->kvm;
374cbac0 415 struct page *page;
374cbac0
AK
416 struct kvm_rmap_desc *desc;
417 u64 *spte;
418
954bbbc2
AK
419 page = gfn_to_page(kvm, gfn);
420 BUG_ON(!page);
374cbac0 421
5972e953
MR
422 while (page_private(page)) {
423 if (!(page_private(page) & 1))
424 spte = (u64 *)page_private(page);
374cbac0 425 else {
5972e953 426 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
374cbac0
AK
427 spte = desc->shadow_ptes[0];
428 }
429 BUG_ON(!spte);
27aba766
AK
430 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
431 != page_to_pfn(page));
374cbac0
AK
432 BUG_ON(!(*spte & PT_PRESENT_MASK));
433 BUG_ON(!(*spte & PT_WRITABLE_MASK));
434 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
714b93da 435 rmap_remove(vcpu, spte);
40907d57 436 kvm_arch_ops->tlb_flush(vcpu);
374cbac0
AK
437 *spte &= ~(u64)PT_WRITABLE_MASK;
438 }
439}
440
d6c69ee9 441#ifdef MMU_DEBUG
6aa8b732
AK
442static int is_empty_shadow_page(hpa_t page_hpa)
443{
139bdb2d
AK
444 u64 *pos;
445 u64 *end;
446
447 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
6aa8b732 448 pos != end; pos++)
139bdb2d
AK
449 if (*pos != 0) {
450 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
451 pos, *pos);
6aa8b732 452 return 0;
139bdb2d 453 }
6aa8b732
AK
454 return 1;
455}
d6c69ee9 456#endif
6aa8b732 457
260746c0
AK
458static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
459{
460 struct kvm_mmu_page *page_head = page_header(page_hpa);
461
5f1e0b6a 462 ASSERT(is_empty_shadow_page(page_hpa));
260746c0 463 page_head->page_hpa = page_hpa;
36868f7b 464 list_move(&page_head->link, &vcpu->free_pages);
260746c0
AK
465 ++vcpu->kvm->n_free_mmu_pages;
466}
467
cea0f0e7
AK
468static unsigned kvm_page_table_hashfn(gfn_t gfn)
469{
470 return gfn;
471}
472
25c0de2c
AK
473static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
474 u64 *parent_pte)
6aa8b732
AK
475{
476 struct kvm_mmu_page *page;
477
478 if (list_empty(&vcpu->free_pages))
25c0de2c 479 return NULL;
6aa8b732
AK
480
481 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
36868f7b 482 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
6aa8b732
AK
483 ASSERT(is_empty_shadow_page(page->page_hpa));
484 page->slot_bitmap = 0;
cea0f0e7 485 page->multimapped = 0;
6aa8b732 486 page->parent_pte = parent_pte;
ebeace86 487 --vcpu->kvm->n_free_mmu_pages;
25c0de2c 488 return page;
6aa8b732
AK
489}
490
714b93da
AK
491static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
492 struct kvm_mmu_page *page, u64 *parent_pte)
cea0f0e7
AK
493{
494 struct kvm_pte_chain *pte_chain;
495 struct hlist_node *node;
496 int i;
497
498 if (!parent_pte)
499 return;
500 if (!page->multimapped) {
501 u64 *old = page->parent_pte;
502
503 if (!old) {
504 page->parent_pte = parent_pte;
505 return;
506 }
507 page->multimapped = 1;
714b93da 508 pte_chain = mmu_alloc_pte_chain(vcpu);
cea0f0e7
AK
509 INIT_HLIST_HEAD(&page->parent_ptes);
510 hlist_add_head(&pte_chain->link, &page->parent_ptes);
511 pte_chain->parent_ptes[0] = old;
512 }
513 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
514 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
515 continue;
516 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
517 if (!pte_chain->parent_ptes[i]) {
518 pte_chain->parent_ptes[i] = parent_pte;
519 return;
520 }
521 }
714b93da 522 pte_chain = mmu_alloc_pte_chain(vcpu);
cea0f0e7
AK
523 BUG_ON(!pte_chain);
524 hlist_add_head(&pte_chain->link, &page->parent_ptes);
525 pte_chain->parent_ptes[0] = parent_pte;
526}
527
714b93da
AK
528static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
529 struct kvm_mmu_page *page,
cea0f0e7
AK
530 u64 *parent_pte)
531{
532 struct kvm_pte_chain *pte_chain;
533 struct hlist_node *node;
534 int i;
535
536 if (!page->multimapped) {
537 BUG_ON(page->parent_pte != parent_pte);
538 page->parent_pte = NULL;
539 return;
540 }
541 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
542 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
543 if (!pte_chain->parent_ptes[i])
544 break;
545 if (pte_chain->parent_ptes[i] != parent_pte)
546 continue;
697fe2e2
AK
547 while (i + 1 < NR_PTE_CHAIN_ENTRIES
548 && pte_chain->parent_ptes[i + 1]) {
cea0f0e7
AK
549 pte_chain->parent_ptes[i]
550 = pte_chain->parent_ptes[i + 1];
551 ++i;
552 }
553 pte_chain->parent_ptes[i] = NULL;
697fe2e2
AK
554 if (i == 0) {
555 hlist_del(&pte_chain->link);
714b93da 556 mmu_free_pte_chain(vcpu, pte_chain);
697fe2e2
AK
557 if (hlist_empty(&page->parent_ptes)) {
558 page->multimapped = 0;
559 page->parent_pte = NULL;
560 }
561 }
cea0f0e7
AK
562 return;
563 }
564 BUG();
565}
566
567static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
568 gfn_t gfn)
569{
570 unsigned index;
571 struct hlist_head *bucket;
572 struct kvm_mmu_page *page;
573 struct hlist_node *node;
574
575 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
576 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
577 bucket = &vcpu->kvm->mmu_page_hash[index];
578 hlist_for_each_entry(page, node, bucket, hash_link)
579 if (page->gfn == gfn && !page->role.metaphysical) {
580 pgprintk("%s: found role %x\n",
581 __FUNCTION__, page->role.word);
582 return page;
583 }
584 return NULL;
585}
586
587static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
588 gfn_t gfn,
589 gva_t gaddr,
590 unsigned level,
591 int metaphysical,
d28c6cfb 592 unsigned hugepage_access,
cea0f0e7
AK
593 u64 *parent_pte)
594{
595 union kvm_mmu_page_role role;
596 unsigned index;
597 unsigned quadrant;
598 struct hlist_head *bucket;
599 struct kvm_mmu_page *page;
600 struct hlist_node *node;
601
602 role.word = 0;
603 role.glevels = vcpu->mmu.root_level;
604 role.level = level;
605 role.metaphysical = metaphysical;
d28c6cfb 606 role.hugepage_access = hugepage_access;
cea0f0e7
AK
607 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
608 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
609 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
610 role.quadrant = quadrant;
611 }
612 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
613 gfn, role.word);
614 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
615 bucket = &vcpu->kvm->mmu_page_hash[index];
616 hlist_for_each_entry(page, node, bucket, hash_link)
617 if (page->gfn == gfn && page->role.word == role.word) {
714b93da 618 mmu_page_add_parent_pte(vcpu, page, parent_pte);
cea0f0e7
AK
619 pgprintk("%s: found\n", __FUNCTION__);
620 return page;
621 }
622 page = kvm_mmu_alloc_page(vcpu, parent_pte);
623 if (!page)
624 return page;
625 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
626 page->gfn = gfn;
627 page->role = role;
628 hlist_add_head(&page->hash_link, bucket);
374cbac0 629 if (!metaphysical)
714b93da 630 rmap_write_protect(vcpu, gfn);
cea0f0e7
AK
631 return page;
632}
633
a436036b
AK
634static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
635 struct kvm_mmu_page *page)
636{
697fe2e2
AK
637 unsigned i;
638 u64 *pt;
639 u64 ent;
640
641 pt = __va(page->page_hpa);
642
643 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
644 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
645 if (pt[i] & PT_PRESENT_MASK)
714b93da 646 rmap_remove(vcpu, &pt[i]);
697fe2e2
AK
647 pt[i] = 0;
648 }
40907d57 649 kvm_arch_ops->tlb_flush(vcpu);
697fe2e2
AK
650 return;
651 }
652
653 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
654 ent = pt[i];
655
656 pt[i] = 0;
657 if (!(ent & PT_PRESENT_MASK))
658 continue;
659 ent &= PT64_BASE_ADDR_MASK;
714b93da 660 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
697fe2e2 661 }
a436036b
AK
662}
663
cea0f0e7
AK
664static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
665 struct kvm_mmu_page *page,
666 u64 *parent_pte)
667{
714b93da 668 mmu_page_remove_parent_pte(vcpu, page, parent_pte);
a436036b
AK
669}
670
671static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
672 struct kvm_mmu_page *page)
673{
674 u64 *parent_pte;
675
676 while (page->multimapped || page->parent_pte) {
677 if (!page->multimapped)
678 parent_pte = page->parent_pte;
679 else {
680 struct kvm_pte_chain *chain;
681
682 chain = container_of(page->parent_ptes.first,
683 struct kvm_pte_chain, link);
684 parent_pte = chain->parent_ptes[0];
685 }
697fe2e2 686 BUG_ON(!parent_pte);
a436036b
AK
687 kvm_mmu_put_page(vcpu, page, parent_pte);
688 *parent_pte = 0;
689 }
cc4529ef 690 kvm_mmu_page_unlink_children(vcpu, page);
3bb65a22
AK
691 if (!page->root_count) {
692 hlist_del(&page->hash_link);
693 kvm_mmu_free_page(vcpu, page->page_hpa);
36868f7b
AK
694 } else
695 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
a436036b
AK
696}
697
698static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
699{
700 unsigned index;
701 struct hlist_head *bucket;
702 struct kvm_mmu_page *page;
703 struct hlist_node *node, *n;
704 int r;
705
706 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
707 r = 0;
708 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
709 bucket = &vcpu->kvm->mmu_page_hash[index];
710 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
711 if (page->gfn == gfn && !page->role.metaphysical) {
697fe2e2
AK
712 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
713 page->role.word);
a436036b
AK
714 kvm_mmu_zap_page(vcpu, page);
715 r = 1;
716 }
717 return r;
cea0f0e7
AK
718}
719
6aa8b732
AK
720static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
721{
722 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
723 struct kvm_mmu_page *page_head = page_header(__pa(pte));
724
725 __set_bit(slot, &page_head->slot_bitmap);
726}
727
728hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
729{
730 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
731
732 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
733}
734
735hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
736{
6aa8b732
AK
737 struct page *page;
738
739 ASSERT((gpa & HPA_ERR_MASK) == 0);
954bbbc2
AK
740 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
741 if (!page)
6aa8b732 742 return gpa | HPA_ERR_MASK;
6aa8b732
AK
743 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
744 | (gpa & (PAGE_SIZE-1));
745}
746
747hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
748{
749 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
750
751 if (gpa == UNMAPPED_GVA)
752 return UNMAPPED_GVA;
753 return gpa_to_hpa(vcpu, gpa);
754}
755
039576c0
AK
756struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
757{
758 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
759
760 if (gpa == UNMAPPED_GVA)
761 return NULL;
762 return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
763}
764
6aa8b732
AK
765static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
766{
767}
768
769static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
770{
771 int level = PT32E_ROOT_LEVEL;
772 hpa_t table_addr = vcpu->mmu.root_hpa;
773
774 for (; ; level--) {
775 u32 index = PT64_INDEX(v, level);
776 u64 *table;
cea0f0e7 777 u64 pte;
6aa8b732
AK
778
779 ASSERT(VALID_PAGE(table_addr));
780 table = __va(table_addr);
781
782 if (level == 1) {
cea0f0e7
AK
783 pte = table[index];
784 if (is_present_pte(pte) && is_writeble_pte(pte))
785 return 0;
6aa8b732
AK
786 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
787 page_header_update_slot(vcpu->kvm, table, v);
788 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
789 PT_USER_MASK;
714b93da 790 rmap_add(vcpu, &table[index]);
6aa8b732
AK
791 return 0;
792 }
793
794 if (table[index] == 0) {
25c0de2c 795 struct kvm_mmu_page *new_table;
cea0f0e7 796 gfn_t pseudo_gfn;
6aa8b732 797
cea0f0e7
AK
798 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
799 >> PAGE_SHIFT;
800 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
801 v, level - 1,
d28c6cfb 802 1, 0, &table[index]);
25c0de2c 803 if (!new_table) {
6aa8b732
AK
804 pgprintk("nonpaging_map: ENOMEM\n");
805 return -ENOMEM;
806 }
807
25c0de2c
AK
808 table[index] = new_table->page_hpa | PT_PRESENT_MASK
809 | PT_WRITABLE_MASK | PT_USER_MASK;
6aa8b732
AK
810 }
811 table_addr = table[index] & PT64_BASE_ADDR_MASK;
812 }
813}
814
17ac10ad
AK
815static void mmu_free_roots(struct kvm_vcpu *vcpu)
816{
817 int i;
3bb65a22 818 struct kvm_mmu_page *page;
17ac10ad
AK
819
820#ifdef CONFIG_X86_64
821 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
822 hpa_t root = vcpu->mmu.root_hpa;
823
824 ASSERT(VALID_PAGE(root));
3bb65a22
AK
825 page = page_header(root);
826 --page->root_count;
17ac10ad
AK
827 vcpu->mmu.root_hpa = INVALID_PAGE;
828 return;
829 }
830#endif
831 for (i = 0; i < 4; ++i) {
832 hpa_t root = vcpu->mmu.pae_root[i];
833
417726a3
AK
834 if (root) {
835 ASSERT(VALID_PAGE(root));
836 root &= PT64_BASE_ADDR_MASK;
837 page = page_header(root);
838 --page->root_count;
839 }
17ac10ad
AK
840 vcpu->mmu.pae_root[i] = INVALID_PAGE;
841 }
842 vcpu->mmu.root_hpa = INVALID_PAGE;
843}
844
845static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
846{
847 int i;
cea0f0e7 848 gfn_t root_gfn;
3bb65a22
AK
849 struct kvm_mmu_page *page;
850
cea0f0e7 851 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
17ac10ad
AK
852
853#ifdef CONFIG_X86_64
854 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
855 hpa_t root = vcpu->mmu.root_hpa;
856
857 ASSERT(!VALID_PAGE(root));
68a99f6d 858 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
d28c6cfb 859 PT64_ROOT_LEVEL, 0, 0, NULL);
68a99f6d 860 root = page->page_hpa;
3bb65a22 861 ++page->root_count;
17ac10ad
AK
862 vcpu->mmu.root_hpa = root;
863 return;
864 }
865#endif
866 for (i = 0; i < 4; ++i) {
867 hpa_t root = vcpu->mmu.pae_root[i];
868
869 ASSERT(!VALID_PAGE(root));
417726a3
AK
870 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
871 if (!is_present_pte(vcpu->pdptrs[i])) {
872 vcpu->mmu.pae_root[i] = 0;
873 continue;
874 }
cea0f0e7 875 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
417726a3 876 } else if (vcpu->mmu.root_level == 0)
cea0f0e7 877 root_gfn = 0;
68a99f6d 878 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
cea0f0e7 879 PT32_ROOT_LEVEL, !is_paging(vcpu),
d28c6cfb 880 0, NULL);
68a99f6d 881 root = page->page_hpa;
3bb65a22 882 ++page->root_count;
17ac10ad
AK
883 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
884 }
885 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
886}
887
6aa8b732
AK
888static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
889{
890 return vaddr;
891}
892
893static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
894 u32 error_code)
895{
6aa8b732 896 gpa_t addr = gva;
ebeace86 897 hpa_t paddr;
e2dec939 898 int r;
6aa8b732 899
e2dec939
AK
900 r = mmu_topup_memory_caches(vcpu);
901 if (r)
902 return r;
714b93da 903
6aa8b732
AK
904 ASSERT(vcpu);
905 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
906
6aa8b732 907
ebeace86 908 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
6aa8b732 909
ebeace86
AK
910 if (is_error_hpa(paddr))
911 return 1;
6aa8b732 912
ebeace86 913 return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
6aa8b732
AK
914}
915
6aa8b732
AK
916static void nonpaging_free(struct kvm_vcpu *vcpu)
917{
17ac10ad 918 mmu_free_roots(vcpu);
6aa8b732
AK
919}
920
921static int nonpaging_init_context(struct kvm_vcpu *vcpu)
922{
923 struct kvm_mmu *context = &vcpu->mmu;
924
925 context->new_cr3 = nonpaging_new_cr3;
926 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
927 context->gva_to_gpa = nonpaging_gva_to_gpa;
928 context->free = nonpaging_free;
cea0f0e7 929 context->root_level = 0;
6aa8b732 930 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 931 mmu_alloc_roots(vcpu);
6aa8b732
AK
932 ASSERT(VALID_PAGE(context->root_hpa));
933 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
934 return 0;
935}
936
6aa8b732
AK
937static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
938{
1165f5fe 939 ++vcpu->stat.tlb_flush;
6aa8b732
AK
940 kvm_arch_ops->tlb_flush(vcpu);
941}
942
943static void paging_new_cr3(struct kvm_vcpu *vcpu)
944{
374cbac0 945 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
cea0f0e7 946 mmu_free_roots(vcpu);
7f7417d6
IM
947 if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
948 kvm_mmu_free_some_pages(vcpu);
cea0f0e7 949 mmu_alloc_roots(vcpu);
6aa8b732 950 kvm_mmu_flush_tlb(vcpu);
cea0f0e7 951 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
6aa8b732
AK
952}
953
6aa8b732
AK
954static inline void set_pte_common(struct kvm_vcpu *vcpu,
955 u64 *shadow_pte,
956 gpa_t gaddr,
957 int dirty,
815af8d4
AK
958 u64 access_bits,
959 gfn_t gfn)
6aa8b732
AK
960{
961 hpa_t paddr;
962
963 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
964 if (!dirty)
965 access_bits &= ~PT_WRITABLE_MASK;
cea0f0e7 966
374cbac0 967 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
6aa8b732
AK
968
969 *shadow_pte |= access_bits;
970
6aa8b732
AK
971 if (is_error_hpa(paddr)) {
972 *shadow_pte |= gaddr;
973 *shadow_pte |= PT_SHADOW_IO_MARK;
974 *shadow_pte &= ~PT_PRESENT_MASK;
374cbac0 975 return;
6aa8b732 976 }
374cbac0
AK
977
978 *shadow_pte |= paddr;
979
980 if (access_bits & PT_WRITABLE_MASK) {
981 struct kvm_mmu_page *shadow;
982
815af8d4 983 shadow = kvm_mmu_lookup_page(vcpu, gfn);
374cbac0
AK
984 if (shadow) {
985 pgprintk("%s: found shadow page for %lx, marking ro\n",
815af8d4 986 __FUNCTION__, gfn);
374cbac0 987 access_bits &= ~PT_WRITABLE_MASK;
40907d57
AK
988 if (is_writeble_pte(*shadow_pte)) {
989 *shadow_pte &= ~PT_WRITABLE_MASK;
990 kvm_arch_ops->tlb_flush(vcpu);
991 }
374cbac0
AK
992 }
993 }
994
995 if (access_bits & PT_WRITABLE_MASK)
996 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
997
998 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
714b93da 999 rmap_add(vcpu, shadow_pte);
6aa8b732
AK
1000}
1001
1002static void inject_page_fault(struct kvm_vcpu *vcpu,
1003 u64 addr,
1004 u32 err_code)
1005{
1006 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
1007}
1008
1009static inline int fix_read_pf(u64 *shadow_ent)
1010{
1011 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
1012 !(*shadow_ent & PT_USER_MASK)) {
1013 /*
1014 * If supervisor write protect is disabled, we shadow kernel
1015 * pages as user pages so we can trap the write access.
1016 */
1017 *shadow_ent |= PT_USER_MASK;
1018 *shadow_ent &= ~PT_WRITABLE_MASK;
1019
1020 return 1;
1021
1022 }
1023 return 0;
1024}
1025
6aa8b732
AK
1026static void paging_free(struct kvm_vcpu *vcpu)
1027{
1028 nonpaging_free(vcpu);
1029}
1030
1031#define PTTYPE 64
1032#include "paging_tmpl.h"
1033#undef PTTYPE
1034
1035#define PTTYPE 32
1036#include "paging_tmpl.h"
1037#undef PTTYPE
1038
17ac10ad 1039static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
1040{
1041 struct kvm_mmu *context = &vcpu->mmu;
1042
1043 ASSERT(is_pae(vcpu));
1044 context->new_cr3 = paging_new_cr3;
1045 context->page_fault = paging64_page_fault;
6aa8b732
AK
1046 context->gva_to_gpa = paging64_gva_to_gpa;
1047 context->free = paging_free;
17ac10ad
AK
1048 context->root_level = level;
1049 context->shadow_root_level = level;
1050 mmu_alloc_roots(vcpu);
6aa8b732
AK
1051 ASSERT(VALID_PAGE(context->root_hpa));
1052 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1053 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1054 return 0;
1055}
1056
17ac10ad
AK
1057static int paging64_init_context(struct kvm_vcpu *vcpu)
1058{
1059 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1060}
1061
6aa8b732
AK
1062static int paging32_init_context(struct kvm_vcpu *vcpu)
1063{
1064 struct kvm_mmu *context = &vcpu->mmu;
1065
1066 context->new_cr3 = paging_new_cr3;
1067 context->page_fault = paging32_page_fault;
6aa8b732
AK
1068 context->gva_to_gpa = paging32_gva_to_gpa;
1069 context->free = paging_free;
1070 context->root_level = PT32_ROOT_LEVEL;
1071 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 1072 mmu_alloc_roots(vcpu);
6aa8b732
AK
1073 ASSERT(VALID_PAGE(context->root_hpa));
1074 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1075 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1076 return 0;
1077}
1078
1079static int paging32E_init_context(struct kvm_vcpu *vcpu)
1080{
17ac10ad 1081 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
1082}
1083
1084static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1085{
1086 ASSERT(vcpu);
1087 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1088
1089 if (!is_paging(vcpu))
1090 return nonpaging_init_context(vcpu);
a9058ecd 1091 else if (is_long_mode(vcpu))
6aa8b732
AK
1092 return paging64_init_context(vcpu);
1093 else if (is_pae(vcpu))
1094 return paging32E_init_context(vcpu);
1095 else
1096 return paging32_init_context(vcpu);
1097}
1098
1099static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1100{
1101 ASSERT(vcpu);
1102 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1103 vcpu->mmu.free(vcpu);
1104 vcpu->mmu.root_hpa = INVALID_PAGE;
1105 }
1106}
1107
1108int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1109{
714b93da
AK
1110 int r;
1111
6aa8b732 1112 destroy_kvm_mmu(vcpu);
714b93da
AK
1113 r = init_kvm_mmu(vcpu);
1114 if (r < 0)
1115 goto out;
e2dec939 1116 r = mmu_topup_memory_caches(vcpu);
714b93da
AK
1117out:
1118 return r;
6aa8b732
AK
1119}
1120
09072daf 1121static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
ac1b714e
AK
1122 struct kvm_mmu_page *page,
1123 u64 *spte)
1124{
1125 u64 pte;
1126 struct kvm_mmu_page *child;
1127
1128 pte = *spte;
1129 if (is_present_pte(pte)) {
1130 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1131 rmap_remove(vcpu, spte);
1132 else {
1133 child = page_header(pte & PT64_BASE_ADDR_MASK);
1134 mmu_page_remove_parent_pte(vcpu, child, spte);
1135 }
1136 }
1137 *spte = 0;
1138}
1139
09072daf
AK
1140void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1141 const u8 *old, const u8 *new, int bytes)
da4a00f0 1142{
9b7a0325
AK
1143 gfn_t gfn = gpa >> PAGE_SHIFT;
1144 struct kvm_mmu_page *page;
0e7bc4b9 1145 struct hlist_node *node, *n;
9b7a0325
AK
1146 struct hlist_head *bucket;
1147 unsigned index;
1148 u64 *spte;
9b7a0325 1149 unsigned offset = offset_in_page(gpa);
0e7bc4b9 1150 unsigned pte_size;
9b7a0325 1151 unsigned page_offset;
0e7bc4b9 1152 unsigned misaligned;
9b7a0325 1153 int level;
86a5ba02 1154 int flooded = 0;
ac1b714e 1155 int npte;
9b7a0325 1156
da4a00f0 1157 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
86a5ba02
AK
1158 if (gfn == vcpu->last_pt_write_gfn) {
1159 ++vcpu->last_pt_write_count;
1160 if (vcpu->last_pt_write_count >= 3)
1161 flooded = 1;
1162 } else {
1163 vcpu->last_pt_write_gfn = gfn;
1164 vcpu->last_pt_write_count = 1;
1165 }
9b7a0325
AK
1166 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1167 bucket = &vcpu->kvm->mmu_page_hash[index];
0e7bc4b9 1168 hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
9b7a0325
AK
1169 if (page->gfn != gfn || page->role.metaphysical)
1170 continue;
0e7bc4b9
AK
1171 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1172 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
e925c5ba 1173 misaligned |= bytes < 4;
86a5ba02 1174 if (misaligned || flooded) {
0e7bc4b9
AK
1175 /*
1176 * Misaligned accesses are too much trouble to fix
1177 * up; also, they usually indicate a page is not used
1178 * as a page table.
86a5ba02
AK
1179 *
1180 * If we're seeing too many writes to a page,
1181 * it may no longer be a page table, or we may be
1182 * forking, in which case it is better to unmap the
1183 * page.
0e7bc4b9
AK
1184 */
1185 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1186 gpa, bytes, page->role.word);
1187 kvm_mmu_zap_page(vcpu, page);
1188 continue;
1189 }
9b7a0325
AK
1190 page_offset = offset;
1191 level = page->role.level;
ac1b714e 1192 npte = 1;
9b7a0325 1193 if (page->role.glevels == PT32_ROOT_LEVEL) {
ac1b714e
AK
1194 page_offset <<= 1; /* 32->64 */
1195 /*
1196 * A 32-bit pde maps 4MB while the shadow pdes map
1197 * only 2MB. So we need to double the offset again
1198 * and zap two pdes instead of one.
1199 */
1200 if (level == PT32_ROOT_LEVEL) {
6b8d0f9b 1201 page_offset &= ~7; /* kill rounding error */
ac1b714e
AK
1202 page_offset <<= 1;
1203 npte = 2;
1204 }
9b7a0325
AK
1205 page_offset &= ~PAGE_MASK;
1206 }
1207 spte = __va(page->page_hpa);
1208 spte += page_offset / sizeof(*spte);
ac1b714e 1209 while (npte--) {
09072daf 1210 mmu_pte_write_zap_pte(vcpu, page, spte);
ac1b714e 1211 ++spte;
9b7a0325 1212 }
9b7a0325 1213 }
da4a00f0
AK
1214}
1215
a436036b
AK
1216int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1217{
1218 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1219
1220 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1221}
1222
ebeace86
AK
1223void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1224{
1225 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1226 struct kvm_mmu_page *page;
1227
1228 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1229 struct kvm_mmu_page, link);
1230 kvm_mmu_zap_page(vcpu, page);
1231 }
1232}
1233EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1234
6aa8b732
AK
1235static void free_mmu_pages(struct kvm_vcpu *vcpu)
1236{
f51234c2 1237 struct kvm_mmu_page *page;
6aa8b732 1238
f51234c2
AK
1239 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1240 page = container_of(vcpu->kvm->active_mmu_pages.next,
1241 struct kvm_mmu_page, link);
1242 kvm_mmu_zap_page(vcpu, page);
1243 }
1244 while (!list_empty(&vcpu->free_pages)) {
6aa8b732
AK
1245 page = list_entry(vcpu->free_pages.next,
1246 struct kvm_mmu_page, link);
1247 list_del(&page->link);
1248 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1249 page->page_hpa = INVALID_PAGE;
1250 }
17ac10ad 1251 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
1252}
1253
1254static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1255{
17ac10ad 1256 struct page *page;
6aa8b732
AK
1257 int i;
1258
1259 ASSERT(vcpu);
1260
1261 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
6aa8b732
AK
1262 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1263
1264 INIT_LIST_HEAD(&page_header->link);
17ac10ad 1265 if ((page = alloc_page(GFP_KERNEL)) == NULL)
6aa8b732 1266 goto error_1;
5972e953 1267 set_page_private(page, (unsigned long)page_header);
6aa8b732
AK
1268 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1269 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1270 list_add(&page_header->link, &vcpu->free_pages);
ebeace86 1271 ++vcpu->kvm->n_free_mmu_pages;
6aa8b732 1272 }
17ac10ad
AK
1273
1274 /*
1275 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1276 * Therefore we need to allocate shadow page tables in the first
1277 * 4GB of memory, which happens to fit the DMA32 zone.
1278 */
1279 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1280 if (!page)
1281 goto error_1;
1282 vcpu->mmu.pae_root = page_address(page);
1283 for (i = 0; i < 4; ++i)
1284 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1285
6aa8b732
AK
1286 return 0;
1287
1288error_1:
1289 free_mmu_pages(vcpu);
1290 return -ENOMEM;
1291}
1292
8018c27b 1293int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 1294{
6aa8b732
AK
1295 ASSERT(vcpu);
1296 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1297 ASSERT(list_empty(&vcpu->free_pages));
1298
8018c27b
IM
1299 return alloc_mmu_pages(vcpu);
1300}
6aa8b732 1301
8018c27b
IM
1302int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1303{
1304 ASSERT(vcpu);
1305 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1306 ASSERT(!list_empty(&vcpu->free_pages));
2c264957 1307
8018c27b 1308 return init_kvm_mmu(vcpu);
6aa8b732
AK
1309}
1310
1311void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1312{
1313 ASSERT(vcpu);
1314
1315 destroy_kvm_mmu(vcpu);
1316 free_mmu_pages(vcpu);
714b93da 1317 mmu_free_memory_caches(vcpu);
6aa8b732
AK
1318}
1319
714b93da 1320void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
6aa8b732 1321{
714b93da 1322 struct kvm *kvm = vcpu->kvm;
6aa8b732
AK
1323 struct kvm_mmu_page *page;
1324
1325 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1326 int i;
1327 u64 *pt;
1328
1329 if (!test_bit(slot, &page->slot_bitmap))
1330 continue;
1331
1332 pt = __va(page->page_hpa);
1333 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1334 /* avoid RMW */
cd4a4e53 1335 if (pt[i] & PT_WRITABLE_MASK) {
714b93da 1336 rmap_remove(vcpu, &pt[i]);
6aa8b732 1337 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 1338 }
6aa8b732
AK
1339 }
1340}
37a7d8b0 1341
e0fa826f
DL
1342void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1343{
1344 destroy_kvm_mmu(vcpu);
1345
1346 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1347 struct kvm_mmu_page *page;
1348
1349 page = container_of(vcpu->kvm->active_mmu_pages.next,
1350 struct kvm_mmu_page, link);
1351 kvm_mmu_zap_page(vcpu, page);
1352 }
1353
1354 mmu_free_memory_caches(vcpu);
1355 kvm_arch_ops->tlb_flush(vcpu);
1356 init_kvm_mmu(vcpu);
1357}
1358
b5a33a75
AK
1359void kvm_mmu_module_exit(void)
1360{
1361 if (pte_chain_cache)
1362 kmem_cache_destroy(pte_chain_cache);
1363 if (rmap_desc_cache)
1364 kmem_cache_destroy(rmap_desc_cache);
1365}
1366
1367int kvm_mmu_module_init(void)
1368{
1369 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1370 sizeof(struct kvm_pte_chain),
1371 0, 0, NULL, NULL);
1372 if (!pte_chain_cache)
1373 goto nomem;
1374 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1375 sizeof(struct kvm_rmap_desc),
1376 0, 0, NULL, NULL);
1377 if (!rmap_desc_cache)
1378 goto nomem;
1379
1380 return 0;
1381
1382nomem:
1383 kvm_mmu_module_exit();
1384 return -ENOMEM;
1385}
1386
37a7d8b0
AK
1387#ifdef AUDIT
1388
1389static const char *audit_msg;
1390
1391static gva_t canonicalize(gva_t gva)
1392{
1393#ifdef CONFIG_X86_64
1394 gva = (long long)(gva << 16) >> 16;
1395#endif
1396 return gva;
1397}
1398
1399static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1400 gva_t va, int level)
1401{
1402 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1403 int i;
1404 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1405
1406 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1407 u64 ent = pt[i];
1408
2807696c 1409 if (!(ent & PT_PRESENT_MASK))
37a7d8b0
AK
1410 continue;
1411
1412 va = canonicalize(va);
1413 if (level > 1)
1414 audit_mappings_page(vcpu, ent, va, level - 1);
1415 else {
1416 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1417 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1418
1419 if ((ent & PT_PRESENT_MASK)
1420 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1421 printk(KERN_ERR "audit error: (%s) levels %d"
1422 " gva %lx gpa %llx hpa %llx ent %llx\n",
1423 audit_msg, vcpu->mmu.root_level,
1424 va, gpa, hpa, ent);
1425 }
1426 }
1427}
1428
1429static void audit_mappings(struct kvm_vcpu *vcpu)
1430{
1ea252af 1431 unsigned i;
37a7d8b0
AK
1432
1433 if (vcpu->mmu.root_level == 4)
1434 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1435 else
1436 for (i = 0; i < 4; ++i)
1437 if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1438 audit_mappings_page(vcpu,
1439 vcpu->mmu.pae_root[i],
1440 i << 30,
1441 2);
1442}
1443
1444static int count_rmaps(struct kvm_vcpu *vcpu)
1445{
1446 int nmaps = 0;
1447 int i, j, k;
1448
1449 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1450 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1451 struct kvm_rmap_desc *d;
1452
1453 for (j = 0; j < m->npages; ++j) {
1454 struct page *page = m->phys_mem[j];
1455
1456 if (!page->private)
1457 continue;
1458 if (!(page->private & 1)) {
1459 ++nmaps;
1460 continue;
1461 }
1462 d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1463 while (d) {
1464 for (k = 0; k < RMAP_EXT; ++k)
1465 if (d->shadow_ptes[k])
1466 ++nmaps;
1467 else
1468 break;
1469 d = d->more;
1470 }
1471 }
1472 }
1473 return nmaps;
1474}
1475
1476static int count_writable_mappings(struct kvm_vcpu *vcpu)
1477{
1478 int nmaps = 0;
1479 struct kvm_mmu_page *page;
1480 int i;
1481
1482 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1483 u64 *pt = __va(page->page_hpa);
1484
1485 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1486 continue;
1487
1488 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1489 u64 ent = pt[i];
1490
1491 if (!(ent & PT_PRESENT_MASK))
1492 continue;
1493 if (!(ent & PT_WRITABLE_MASK))
1494 continue;
1495 ++nmaps;
1496 }
1497 }
1498 return nmaps;
1499}
1500
1501static void audit_rmap(struct kvm_vcpu *vcpu)
1502{
1503 int n_rmap = count_rmaps(vcpu);
1504 int n_actual = count_writable_mappings(vcpu);
1505
1506 if (n_rmap != n_actual)
1507 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1508 __FUNCTION__, audit_msg, n_rmap, n_actual);
1509}
1510
1511static void audit_write_protection(struct kvm_vcpu *vcpu)
1512{
1513 struct kvm_mmu_page *page;
1514
1515 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1516 hfn_t hfn;
1517 struct page *pg;
1518
1519 if (page->role.metaphysical)
1520 continue;
1521
1522 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1523 >> PAGE_SHIFT;
1524 pg = pfn_to_page(hfn);
1525 if (pg->private)
1526 printk(KERN_ERR "%s: (%s) shadow page has writable"
1527 " mappings: gfn %lx role %x\n",
1528 __FUNCTION__, audit_msg, page->gfn,
1529 page->role.word);
1530 }
1531}
1532
1533static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1534{
1535 int olddbg = dbg;
1536
1537 dbg = 0;
1538 audit_msg = msg;
1539 audit_rmap(vcpu);
1540 audit_write_protection(vcpu);
1541 audit_mappings(vcpu);
1542 dbg = olddbg;
1543}
1544
1545#endif