]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/input/misc/hp_sdc_rtc.c
Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[net-next-2.6.git] / drivers / input / misc / hp_sdc_rtc.c
CommitLineData
1da177e4
LT
1/*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
3 *
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 *
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
33 *
34 */
35
36#include <linux/hp_sdc.h>
37#include <linux/errno.h>
38#include <linux/types.h>
39#include <linux/init.h>
40#include <linux/module.h>
41#include <linux/time.h>
42#include <linux/miscdevice.h>
43#include <linux/proc_fs.h>
44#include <linux/poll.h>
45#include <linux/rtc.h>
55929332 46#include <linux/smp_lock.h>
0f17e4c7 47#include <linux/semaphore.h>
1da177e4
LT
48
49MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
50MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
51MODULE_LICENSE("Dual BSD/GPL");
52
53#define RTC_VERSION "1.10d"
54
55static unsigned long epoch = 2000;
56
57static struct semaphore i8042tregs;
58
59static hp_sdc_irqhook hp_sdc_rtc_isr;
60
61static struct fasync_struct *hp_sdc_rtc_async_queue;
62
63static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
64
6ce6b3ae 65static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
1da177e4
LT
66 size_t count, loff_t *ppos);
67
55929332
AB
68static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
69 unsigned int cmd, unsigned long arg);
1da177e4
LT
70
71static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
72
73static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
1da177e4
LT
74static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
75
76static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
77 int count, int *eof, void *data);
78
79static void hp_sdc_rtc_isr (int irq, void *dev_id,
80 uint8_t status, uint8_t data)
81{
82 return;
83}
84
85static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
86{
87 struct semaphore tsem;
88 hp_sdc_transaction t;
89 uint8_t tseq[91];
90 int i;
91
92 i = 0;
93 while (i < 91) {
94 tseq[i++] = HP_SDC_ACT_DATAREG |
95 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
96 tseq[i++] = 0x01; /* write i8042[0x70] */
97 tseq[i] = i / 7; /* BBRTC reg address */
98 i++;
99 tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
100 tseq[i++] = 2; /* expect 1 stat/dat pair back. */
101 i++; i++; /* buffer for stat/dat pair */
102 }
103 tseq[84] |= HP_SDC_ACT_SEMAPHORE;
104 t.endidx = 91;
105 t.seq = tseq;
106 t.act.semaphore = &tsem;
107 init_MUTEX_LOCKED(&tsem);
108
109 if (hp_sdc_enqueue_transaction(&t)) return -1;
110
111 down_interruptible(&tsem); /* Put ourselves to sleep for results. */
112
113 /* Check for nonpresence of BBRTC */
114 if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
115 tseq[55] | tseq[62] | tseq[34] | tseq[41] |
116 tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
117 return -1;
118
119 memset(rtctm, 0, sizeof(struct rtc_time));
120 rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
121 rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
122 rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
123 rtctm->tm_wday = (tseq[48] & 0x0f);
124 rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
125 rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
126 rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
127
128 return 0;
129}
130
131static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
132{
133 struct rtc_time tm, tm_last;
134 int i = 0;
135
136 /* MSM-58321 has no read latch, so must read twice and compare. */
137
138 if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
139 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
140
141 while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
142 if (i++ > 4) return -1;
143 memcpy(&tm_last, &tm, sizeof(struct rtc_time));
144 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
145 }
146
147 memcpy(rtctm, &tm, sizeof(struct rtc_time));
148
149 return 0;
150}
151
152
153static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
154{
155 hp_sdc_transaction t;
156 uint8_t tseq[26] = {
157 HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
158 0,
159 HP_SDC_CMD_READ_T1, 2, 0, 0,
160 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
161 HP_SDC_CMD_READ_T2, 2, 0, 0,
162 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
163 HP_SDC_CMD_READ_T3, 2, 0, 0,
164 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
165 HP_SDC_CMD_READ_T4, 2, 0, 0,
166 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
167 HP_SDC_CMD_READ_T5, 2, 0, 0
168 };
169
170 t.endidx = numreg * 5;
171
172 tseq[1] = loadcmd;
173 tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
174
175 t.seq = tseq;
176 t.act.semaphore = &i8042tregs;
177
178 down_interruptible(&i8042tregs); /* Sleep if output regs in use. */
179
180 if (hp_sdc_enqueue_transaction(&t)) return -1;
181
182 down_interruptible(&i8042tregs); /* Sleep until results come back. */
183 up(&i8042tregs);
184
185 return (tseq[5] |
186 ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
187 ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
188}
189
190
191/* Read the i8042 real-time clock */
192static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
193 int64_t raw;
194 uint32_t tenms;
195 unsigned int days;
196
197 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
198 if (raw < 0) return -1;
199
200 tenms = (uint32_t)raw & 0xffffff;
201 days = (unsigned int)(raw >> 24) & 0xffff;
202
203 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
204 res->tv_sec = (time_t)(tenms / 100) + days * 86400;
205
206 return 0;
207}
208
209
210/* Read the i8042 fast handshake timer */
211static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
3776989d 212 int64_t raw;
1da177e4
LT
213 unsigned int tenms;
214
215 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
216 if (raw < 0) return -1;
217
218 tenms = (unsigned int)raw & 0xffff;
219
220 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
221 res->tv_sec = (time_t)(tenms / 100);
222
223 return 0;
224}
225
226
227/* Read the i8042 match timer (a.k.a. alarm) */
228static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
229 int64_t raw;
230 uint32_t tenms;
231
232 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
233 if (raw < 0) return -1;
234
235 tenms = (uint32_t)raw & 0xffffff;
236
237 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
238 res->tv_sec = (time_t)(tenms / 100);
239
240 return 0;
241}
242
243
244/* Read the i8042 delay timer */
245static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
246 int64_t raw;
247 uint32_t tenms;
248
249 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
250 if (raw < 0) return -1;
251
252 tenms = (uint32_t)raw & 0xffffff;
253
254 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
255 res->tv_sec = (time_t)(tenms / 100);
256
257 return 0;
258}
259
260
261/* Read the i8042 cycle timer (a.k.a. periodic) */
262static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
263 int64_t raw;
264 uint32_t tenms;
265
266 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
267 if (raw < 0) return -1;
268
269 tenms = (uint32_t)raw & 0xffffff;
270
271 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
272 res->tv_sec = (time_t)(tenms / 100);
273
274 return 0;
275}
276
277
278/* Set the i8042 real-time clock */
279static int hp_sdc_rtc_set_rt (struct timeval *setto)
280{
281 uint32_t tenms;
282 unsigned int days;
283 hp_sdc_transaction t;
284 uint8_t tseq[11] = {
285 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
286 HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
287 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
288 HP_SDC_CMD_SET_RTD, 2, 0, 0
289 };
290
291 t.endidx = 10;
292
293 if (0xffff < setto->tv_sec / 86400) return -1;
294 days = setto->tv_sec / 86400;
295 if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
296 days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
297 if (days > 0xffff) return -1;
298
299 if (0xffffff < setto->tv_sec) return -1;
300 tenms = setto->tv_sec * 100;
301 if (0xffffff < setto->tv_usec / 10000) return -1;
302 tenms += setto->tv_usec / 10000;
303 if (tenms > 0xffffff) return -1;
304
305 tseq[3] = (uint8_t)(tenms & 0xff);
306 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
307 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
308
309 tseq[9] = (uint8_t)(days & 0xff);
310 tseq[10] = (uint8_t)((days >> 8) & 0xff);
311
312 t.seq = tseq;
313
314 if (hp_sdc_enqueue_transaction(&t)) return -1;
315 return 0;
316}
317
318/* Set the i8042 fast handshake timer */
319static int hp_sdc_rtc_set_fhs (struct timeval *setto)
320{
321 uint32_t tenms;
322 hp_sdc_transaction t;
323 uint8_t tseq[5] = {
324 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
325 HP_SDC_CMD_SET_FHS, 2, 0, 0
326 };
327
328 t.endidx = 4;
329
330 if (0xffff < setto->tv_sec) return -1;
331 tenms = setto->tv_sec * 100;
332 if (0xffff < setto->tv_usec / 10000) return -1;
333 tenms += setto->tv_usec / 10000;
334 if (tenms > 0xffff) return -1;
335
336 tseq[3] = (uint8_t)(tenms & 0xff);
337 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
338
339 t.seq = tseq;
340
341 if (hp_sdc_enqueue_transaction(&t)) return -1;
342 return 0;
343}
344
345
346/* Set the i8042 match timer (a.k.a. alarm) */
347#define hp_sdc_rtc_set_mt (setto) \
348 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
349
350/* Set the i8042 delay timer */
351#define hp_sdc_rtc_set_dt (setto) \
352 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
353
354/* Set the i8042 cycle timer (a.k.a. periodic) */
355#define hp_sdc_rtc_set_ct (setto) \
356 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
357
358/* Set one of the i8042 3-byte wide timers */
359static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
360{
361 uint32_t tenms;
362 hp_sdc_transaction t;
363 uint8_t tseq[6] = {
364 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
365 0, 3, 0, 0, 0
366 };
367
368 t.endidx = 6;
369
370 if (0xffffff < setto->tv_sec) return -1;
371 tenms = setto->tv_sec * 100;
372 if (0xffffff < setto->tv_usec / 10000) return -1;
373 tenms += setto->tv_usec / 10000;
374 if (tenms > 0xffffff) return -1;
375
376 tseq[1] = setcmd;
377 tseq[3] = (uint8_t)(tenms & 0xff);
378 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
379 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
380
381 t.seq = tseq;
382
383 if (hp_sdc_enqueue_transaction(&t)) {
384 return -1;
385 }
386 return 0;
387}
388
6ce6b3ae 389static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
1da177e4
LT
390 size_t count, loff_t *ppos) {
391 ssize_t retval;
392
393 if (count < sizeof(unsigned long))
394 return -EINVAL;
395
6ce6b3ae 396 retval = put_user(68, (unsigned long __user *)buf);
1da177e4
LT
397 return retval;
398}
399
400static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
401{
402 unsigned long l;
403
404 l = 0;
405 if (l != 0)
406 return POLLIN | POLLRDNORM;
407 return 0;
408}
409
410static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
411{
412 return 0;
413}
414
1da177e4
LT
415static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
416{
417 return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
418}
419
420static int hp_sdc_rtc_proc_output (char *buf)
421{
422#define YN(bit) ("no")
423#define NY(bit) ("yes")
424 char *p;
425 struct rtc_time tm;
426 struct timeval tv;
427
428 memset(&tm, 0, sizeof(struct rtc_time));
429
430 p = buf;
431
432 if (hp_sdc_rtc_read_bbrtc(&tm)) {
433 p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
434 } else {
435 p += sprintf(p,
436 "rtc_time\t: %02d:%02d:%02d\n"
437 "rtc_date\t: %04d-%02d-%02d\n"
438 "rtc_epoch\t: %04lu\n",
439 tm.tm_hour, tm.tm_min, tm.tm_sec,
440 tm.tm_year + 1900, tm.tm_mon + 1,
441 tm.tm_mday, epoch);
442 }
443
444 if (hp_sdc_rtc_read_rt(&tv)) {
445 p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
446 } else {
447 p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
7477fb6f 448 tv.tv_sec, (int)tv.tv_usec/1000);
1da177e4
LT
449 }
450
451 if (hp_sdc_rtc_read_fhs(&tv)) {
452 p += sprintf(p, "handshake\t: READ FAILED!\n");
453 } else {
454 p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
7477fb6f 455 tv.tv_sec, (int)tv.tv_usec/1000);
1da177e4
LT
456 }
457
458 if (hp_sdc_rtc_read_mt(&tv)) {
459 p += sprintf(p, "alarm\t\t: READ FAILED!\n");
460 } else {
461 p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
7477fb6f 462 tv.tv_sec, (int)tv.tv_usec/1000);
1da177e4
LT
463 }
464
465 if (hp_sdc_rtc_read_dt(&tv)) {
466 p += sprintf(p, "delay\t\t: READ FAILED!\n");
467 } else {
468 p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
7477fb6f 469 tv.tv_sec, (int)tv.tv_usec/1000);
1da177e4
LT
470 }
471
472 if (hp_sdc_rtc_read_ct(&tv)) {
473 p += sprintf(p, "periodic\t: READ FAILED!\n");
474 } else {
475 p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
7477fb6f 476 tv.tv_sec, (int)tv.tv_usec/1000);
1da177e4
LT
477 }
478
479 p += sprintf(p,
480 "DST_enable\t: %s\n"
481 "BCD\t\t: %s\n"
482 "24hr\t\t: %s\n"
483 "square_wave\t: %s\n"
484 "alarm_IRQ\t: %s\n"
485 "update_IRQ\t: %s\n"
486 "periodic_IRQ\t: %s\n"
487 "periodic_freq\t: %ld\n"
488 "batt_status\t: %s\n",
489 YN(RTC_DST_EN),
490 NY(RTC_DM_BINARY),
491 YN(RTC_24H),
492 YN(RTC_SQWE),
493 YN(RTC_AIE),
494 YN(RTC_UIE),
495 YN(RTC_PIE),
496 1UL,
497 1 ? "okay" : "dead");
498
499 return p - buf;
500#undef YN
501#undef NY
502}
503
504static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
505 int count, int *eof, void *data)
506{
507 int len = hp_sdc_rtc_proc_output (page);
508 if (len <= off+count) *eof = 1;
509 *start = page + off;
510 len -= off;
511 if (len>count) len = count;
512 if (len<0) len = 0;
513 return len;
514}
515
55929332 516static int hp_sdc_rtc_ioctl(struct file *file,
1da177e4
LT
517 unsigned int cmd, unsigned long arg)
518{
519#if 1
520 return -EINVAL;
521#else
522
523 struct rtc_time wtime;
524 struct timeval ttime;
525 int use_wtime = 0;
526
527 /* This needs major work. */
528
529 switch (cmd) {
530
531 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
532 case RTC_AIE_ON: /* Allow alarm interrupts. */
533 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
534 case RTC_PIE_ON: /* Allow periodic ints */
535 case RTC_UIE_ON: /* Allow ints for RTC updates. */
536 case RTC_UIE_OFF: /* Allow ints for RTC updates. */
537 {
538 /* We cannot mask individual user timers and we
539 cannot tell them apart when they occur, so it
540 would be disingenuous to succeed these IOCTLs */
541 return -EINVAL;
542 }
543 case RTC_ALM_READ: /* Read the present alarm time */
544 {
545 if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
546 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
547
548 wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
549 wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
550 wtime.tm_sec = ttime.tv_sec;
551
552 break;
553 }
554 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
555 {
556 return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
557 }
558 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
559 {
560 /*
561 * The max we can do is 100Hz.
562 */
563
564 if ((arg < 1) || (arg > 100)) return -EINVAL;
565 ttime.tv_sec = 0;
566 ttime.tv_usec = 1000000 / arg;
567 if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
568 hp_sdc_rtc_freq = arg;
569 return 0;
570 }
571 case RTC_ALM_SET: /* Store a time into the alarm */
572 {
573 /*
574 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
575 * "don't care" or "match all" for PC timers. The HP SDC
576 * does not support that perk, but it could be emulated fairly
577 * easily. Only the tm_hour, tm_min and tm_sec are used.
578 * We could do it with 10ms accuracy with the HP SDC, if the
579 * rtc interface left us a way to do that.
580 */
581 struct hp_sdc_rtc_time alm_tm;
582
583 if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
584 sizeof(struct hp_sdc_rtc_time)))
585 return -EFAULT;
586
587 if (alm_tm.tm_hour > 23) return -EINVAL;
588 if (alm_tm.tm_min > 59) return -EINVAL;
589 if (alm_tm.tm_sec > 59) return -EINVAL;
590
591 ttime.sec = alm_tm.tm_hour * 3600 +
592 alm_tm.tm_min * 60 + alm_tm.tm_sec;
593 ttime.usec = 0;
594 if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
595 return 0;
596 }
597 case RTC_RD_TIME: /* Read the time/date from RTC */
598 {
599 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
600 break;
601 }
602 case RTC_SET_TIME: /* Set the RTC */
603 {
604 struct rtc_time hp_sdc_rtc_tm;
605 unsigned char mon, day, hrs, min, sec, leap_yr;
606 unsigned int yrs;
607
608 if (!capable(CAP_SYS_TIME))
609 return -EACCES;
610 if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
611 sizeof(struct rtc_time)))
612 return -EFAULT;
613
614 yrs = hp_sdc_rtc_tm.tm_year + 1900;
615 mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
616 day = hp_sdc_rtc_tm.tm_mday;
617 hrs = hp_sdc_rtc_tm.tm_hour;
618 min = hp_sdc_rtc_tm.tm_min;
619 sec = hp_sdc_rtc_tm.tm_sec;
620
621 if (yrs < 1970)
622 return -EINVAL;
623
624 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
625
626 if ((mon > 12) || (day == 0))
627 return -EINVAL;
628 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
629 return -EINVAL;
630 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
631 return -EINVAL;
632
633 if ((yrs -= eH) > 255) /* They are unsigned */
634 return -EINVAL;
635
636
637 return 0;
638 }
639 case RTC_EPOCH_READ: /* Read the epoch. */
640 {
641 return put_user (epoch, (unsigned long *)arg);
642 }
643 case RTC_EPOCH_SET: /* Set the epoch. */
644 {
645 /*
646 * There were no RTC clocks before 1900.
647 */
648 if (arg < 1900)
649 return -EINVAL;
650 if (!capable(CAP_SYS_TIME))
651 return -EACCES;
652
653 epoch = arg;
654 return 0;
655 }
656 default:
657 return -EINVAL;
658 }
659 return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
660#endif
661}
662
55929332
AB
663static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
664 unsigned int cmd, unsigned long arg)
665{
666 int ret;
667
668 lock_kernel();
669 ret = hp_sdc_rtc_ioctl(file, cmd, arg);
670 unlock_kernel();
671
672 return ret;
673}
674
675
2b8693c0 676static const struct file_operations hp_sdc_rtc_fops = {
55929332
AB
677 .owner = THIS_MODULE,
678 .llseek = no_llseek,
679 .read = hp_sdc_rtc_read,
680 .poll = hp_sdc_rtc_poll,
af0d5cb9 681 .unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl,
55929332
AB
682 .open = hp_sdc_rtc_open,
683 .fasync = hp_sdc_rtc_fasync,
1da177e4
LT
684};
685
686static struct miscdevice hp_sdc_rtc_dev = {
687 .minor = RTC_MINOR,
688 .name = "rtc_HIL",
689 .fops = &hp_sdc_rtc_fops
690};
691
692static int __init hp_sdc_rtc_init(void)
693{
694 int ret;
695
eb98630b
GU
696#ifdef __mc68000__
697 if (!MACH_IS_HP300)
698 return -ENODEV;
699#endif
700
1da177e4
LT
701 init_MUTEX(&i8042tregs);
702
703 if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
704 return ret;
5d469ec0
NH
705 if (misc_register(&hp_sdc_rtc_dev) != 0)
706 printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
707
6ce6b3ae 708 create_proc_read_entry ("driver/rtc", 0, NULL,
1da177e4
LT
709 hp_sdc_rtc_read_proc, NULL);
710
711 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
712 "(RTC v " RTC_VERSION ")\n");
713
714 return 0;
715}
716
717static void __exit hp_sdc_rtc_exit(void)
718{
719 remove_proc_entry ("driver/rtc", NULL);
720 misc_deregister(&hp_sdc_rtc_dev);
721 hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
722 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
723}
724
725module_init(hp_sdc_rtc_init);
726module_exit(hp_sdc_rtc_exit);