]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/hwmon/abituguru.c
[PATCH] severing module.h->sched.h
[net-next-2.6.git] / drivers / hwmon / abituguru.c
CommitLineData
f2b84bbc
HG
1/*
2 abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17*/
18/*
19 This driver supports the sensor part of the custom Abit uGuru chip found
20 on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM /
21 etc voltage & frequency control is not supported!
22*/
23#include <linux/module.h>
f6a57033 24#include <linux/sched.h>
f2b84bbc
HG
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/mutex.h>
29#include <linux/err.h>
faf9b616 30#include <linux/delay.h>
f2b84bbc
HG
31#include <linux/platform_device.h>
32#include <linux/hwmon.h>
33#include <linux/hwmon-sysfs.h>
34#include <asm/io.h>
35
36/* Banks */
37#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
38#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
39#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
40#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
a2392e0b
HG
41/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
42#define ABIT_UGURU_MAX_BANK1_SENSORS 16
43/* Warning if you increase one of the 2 MAX defines below to 10 or higher you
44 should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
f2b84bbc
HG
45/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
46#define ABIT_UGURU_MAX_BANK2_SENSORS 6
47/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
48#define ABIT_UGURU_MAX_PWMS 5
49/* uGuru sensor bank 1 flags */ /* Alarm if: */
50#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
51#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
52#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
53#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
54#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
55#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
56/* uGuru sensor bank 2 flags */ /* Alarm if: */
57#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
58/* uGuru sensor bank common flags */
59#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
60#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
61/* uGuru fan PWM (speed control) flags */
62#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
63/* Values used for conversion */
64#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
65/* Bank1 sensor types */
66#define ABIT_UGURU_IN_SENSOR 0
67#define ABIT_UGURU_TEMP_SENSOR 1
68#define ABIT_UGURU_NC 2
faf9b616
HG
69/* In many cases we need to wait for the uGuru to reach a certain status, most
70 of the time it will reach this status within 30 - 90 ISA reads, and thus we
71 can best busy wait. This define gives the total amount of reads to try. */
72#define ABIT_UGURU_WAIT_TIMEOUT 125
73/* However sometimes older versions of the uGuru seem to be distracted and they
74 do not respond for a long time. To handle this we sleep before each of the
75 last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */
76#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
f2b84bbc 77/* Normally all expected status in abituguru_ready, are reported after the
faf9b616
HG
78 first read, but sometimes not and we need to poll. */
79#define ABIT_UGURU_READY_TIMEOUT 5
f2b84bbc
HG
80/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
81#define ABIT_UGURU_MAX_RETRIES 3
82#define ABIT_UGURU_RETRY_DELAY (HZ/5)
a2392e0b 83/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
f2b84bbc 84#define ABIT_UGURU_MAX_TIMEOUTS 2
a2392e0b
HG
85/* utility macros */
86#define ABIT_UGURU_NAME "abituguru"
87#define ABIT_UGURU_DEBUG(level, format, arg...) \
88 if (level <= verbose) \
89 printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg)
90/* Macros to help calculate the sysfs_names array length */
91/* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
92 in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
93#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
94/* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
95 temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
96#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
97/* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
98 fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
99#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
100/* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
101 pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
102#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
103/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
104#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
105 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
106 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
107 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
108
109/* All the macros below are named identical to the oguru and oguru2 programs
f2b84bbc
HG
110 reverse engineered by Olle Sandberg, hence the names might not be 100%
111 logical. I could come up with better names, but I prefer keeping the names
112 identical so that this driver can be compared with his work more easily. */
113/* Two i/o-ports are used by uGuru */
114#define ABIT_UGURU_BASE 0x00E0
115/* Used to tell uGuru what to read and to read the actual data */
116#define ABIT_UGURU_CMD 0x00
117/* Mostly used to check if uGuru is busy */
118#define ABIT_UGURU_DATA 0x04
119#define ABIT_UGURU_REGION_LENGTH 5
120/* uGuru status' */
121#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
122#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
123#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
124#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
f2b84bbc
HG
125
126/* Constants */
127/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
128static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
129/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
130 correspond to 300-3000 RPM */
131static const u8 abituguru_bank2_min_threshold = 5;
132static const u8 abituguru_bank2_max_threshold = 50;
133/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
134 are temperature trip points. */
135static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
136/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
137 special case the minium allowed pwm% setting for this is 30% (77) on
138 some MB's this special case is handled in the code! */
139static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
140static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
141
142
143/* Insmod parameters */
144static int force;
145module_param(force, bool, 0);
146MODULE_PARM_DESC(force, "Set to one to force detection.");
9b2ad129
HG
147static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
148 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
149module_param_array(bank1_types, int, NULL, 0);
150MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
151 " -1 autodetect\n"
152 " 0 volt sensor\n"
153 " 1 temp sensor\n"
154 " 2 not connected");
f2b84bbc
HG
155static int fan_sensors;
156module_param(fan_sensors, int, 0);
157MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
158 "(0 = autodetect)");
159static int pwms;
160module_param(pwms, int, 0);
161MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
162 "(0 = autodetect)");
163
164/* Default verbose is 2, since this driver is still in the testing phase */
165static int verbose = 2;
166module_param(verbose, int, 0644);
167MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
168 " 0 normal output\n"
169 " 1 + verbose error reporting\n"
170 " 2 + sensors type probing info\n"
171 " 3 + retryable error reporting");
172
173
174/* For the Abit uGuru, we need to keep some data in memory.
175 The structure is dynamically allocated, at the same time when a new
176 abituguru device is allocated. */
177struct abituguru_data {
178 struct class_device *class_dev; /* hwmon registered device */
179 struct mutex update_lock; /* protect access to data and uGuru */
180 unsigned long last_updated; /* In jiffies */
181 unsigned short addr; /* uguru base address */
182 char uguru_ready; /* is the uguru in ready state? */
183 unsigned char update_timeouts; /* number of update timeouts since last
184 successful update */
185
186 /* The sysfs attr and their names are generated automatically, for bank1
187 we cannot use a predefined array because we don't know beforehand
188 of a sensor is a volt or a temp sensor, for bank2 and the pwms its
189 easier todo things the same way. For in sensors we have 9 (temp 7)
190 sysfs entries per sensor, for bank2 and pwms 6. */
a2392e0b
HG
191 struct sensor_device_attribute_2 sysfs_attr[
192 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
f2b84bbc 193 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
a2392e0b
HG
194 /* Buffer to store the dynamically generated sysfs names */
195 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
f2b84bbc
HG
196
197 /* Bank 1 data */
a2392e0b
HG
198 /* number of and addresses of [0] in, [1] temp sensors */
199 u8 bank1_sensors[2];
200 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
201 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
202 /* This array holds 3 entries per sensor for the bank 1 sensor settings
f2b84bbc 203 (flags, min, max for voltage / flags, warn, shutdown for temp). */
a2392e0b 204 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
f2b84bbc
HG
205 /* Maximum value for each sensor used for scaling in mV/millidegrees
206 Celsius. */
a2392e0b 207 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
f2b84bbc
HG
208
209 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
210 u8 bank2_sensors; /* actual number of bank2 sensors found */
211 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
212 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
213
214 /* Alarms 2 bytes for bank1, 1 byte for bank2 */
215 u8 alarms[3];
216
217 /* Fan PWM (speed control) 5 bytes per PWM */
218 u8 pwms; /* actual number of pwms found */
219 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
220};
221
222/* wait till the uguru is in the specified state */
223static int abituguru_wait(struct abituguru_data *data, u8 state)
224{
225 int timeout = ABIT_UGURU_WAIT_TIMEOUT;
226
227 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
228 timeout--;
229 if (timeout == 0)
230 return -EBUSY;
faf9b616
HG
231 /* sleep a bit before our last few tries, see the comment on
232 this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */
233 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
234 msleep(0);
f2b84bbc
HG
235 }
236 return 0;
237}
238
239/* Put the uguru in ready for input state */
240static int abituguru_ready(struct abituguru_data *data)
241{
242 int timeout = ABIT_UGURU_READY_TIMEOUT;
243
244 if (data->uguru_ready)
245 return 0;
246
247 /* Reset? / Prepare for next read/write cycle */
248 outb(0x00, data->addr + ABIT_UGURU_DATA);
249
250 /* Wait till the uguru is ready */
251 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
252 ABIT_UGURU_DEBUG(1,
253 "timeout exceeded waiting for ready state\n");
254 return -EIO;
255 }
256
257 /* Cmd port MUST be read now and should contain 0xAC */
258 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
259 timeout--;
260 if (timeout == 0) {
261 ABIT_UGURU_DEBUG(1,
262 "CMD reg does not hold 0xAC after ready command\n");
263 return -EIO;
264 }
faf9b616 265 msleep(0);
f2b84bbc
HG
266 }
267
268 /* After this the ABIT_UGURU_DATA port should contain
269 ABIT_UGURU_STATUS_INPUT */
270 timeout = ABIT_UGURU_READY_TIMEOUT;
271 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
272 timeout--;
273 if (timeout == 0) {
274 ABIT_UGURU_DEBUG(1,
275 "state != more input after ready command\n");
276 return -EIO;
277 }
faf9b616 278 msleep(0);
f2b84bbc
HG
279 }
280
281 data->uguru_ready = 1;
282 return 0;
283}
284
285/* Send the bank and then sensor address to the uGuru for the next read/write
286 cycle. This function gets called as the first part of a read/write by
287 abituguru_read and abituguru_write. This function should never be
288 called by any other function. */
289static int abituguru_send_address(struct abituguru_data *data,
290 u8 bank_addr, u8 sensor_addr, int retries)
291{
292 /* assume the caller does error handling itself if it has not requested
293 any retries, and thus be quiet. */
294 int report_errors = retries;
295
296 for (;;) {
297 /* Make sure the uguru is ready and then send the bank address,
298 after this the uguru is no longer "ready". */
299 if (abituguru_ready(data) != 0)
300 return -EIO;
301 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
302 data->uguru_ready = 0;
303
304 /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
305 and send the sensor addr */
306 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
307 if (retries) {
308 ABIT_UGURU_DEBUG(3, "timeout exceeded "
309 "waiting for more input state, %d "
310 "tries remaining\n", retries);
311 set_current_state(TASK_UNINTERRUPTIBLE);
312 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
313 retries--;
314 continue;
315 }
316 if (report_errors)
317 ABIT_UGURU_DEBUG(1, "timeout exceeded "
318 "waiting for more input state "
319 "(bank: %d)\n", (int)bank_addr);
320 return -EBUSY;
321 }
322 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
323 return 0;
324 }
325}
326
327/* Read count bytes from sensor sensor_addr in bank bank_addr and store the
328 result in buf, retry the send address part of the read retries times. */
329static int abituguru_read(struct abituguru_data *data,
330 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
331{
332 int i;
333
334 /* Send the address */
335 i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
336 if (i)
337 return i;
338
339 /* And read the data */
340 for (i = 0; i < count; i++) {
341 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
faf9b616
HG
342 ABIT_UGURU_DEBUG(retries ? 1 : 3,
343 "timeout exceeded waiting for "
f2b84bbc
HG
344 "read state (bank: %d, sensor: %d)\n",
345 (int)bank_addr, (int)sensor_addr);
346 break;
347 }
348 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
349 }
350
351 /* Last put the chip back in ready state */
352 abituguru_ready(data);
353
354 return i;
355}
356
357/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
358 address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
359static int abituguru_write(struct abituguru_data *data,
360 u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
361{
faf9b616
HG
362 /* We use the ready timeout as we have to wait for 0xAC just like the
363 ready function */
364 int i, timeout = ABIT_UGURU_READY_TIMEOUT;
f2b84bbc
HG
365
366 /* Send the address */
367 i = abituguru_send_address(data, bank_addr, sensor_addr,
368 ABIT_UGURU_MAX_RETRIES);
369 if (i)
370 return i;
371
372 /* And write the data */
373 for (i = 0; i < count; i++) {
374 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
375 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
376 "write state (bank: %d, sensor: %d)\n",
377 (int)bank_addr, (int)sensor_addr);
378 break;
379 }
380 outb(buf[i], data->addr + ABIT_UGURU_CMD);
381 }
382
383 /* Now we need to wait till the chip is ready to be read again,
faf9b616
HG
384 so that we can read 0xAC as confirmation that our write has
385 succeeded. */
f2b84bbc
HG
386 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
387 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
388 "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
389 (int)sensor_addr);
390 return -EIO;
391 }
392
393 /* Cmd port MUST be read now and should contain 0xAC */
faf9b616
HG
394 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
395 timeout--;
396 if (timeout == 0) {
397 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
398 "write (bank: %d, sensor: %d)\n",
399 (int)bank_addr, (int)sensor_addr);
400 return -EIO;
401 }
402 msleep(0);
f2b84bbc
HG
403 }
404
405 /* Last put the chip back in ready state */
406 abituguru_ready(data);
407
408 return i;
409}
410
411/* Detect sensor type. Temp and Volt sensors are enabled with
412 different masks and will ignore enable masks not meant for them.
413 This enables us to test what kind of sensor we're dealing with.
414 By setting the alarm thresholds so that we will always get an
415 alarm for sensor type X and then enabling the sensor as sensor type
416 X, if we then get an alarm it is a sensor of type X. */
417static int __devinit
418abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
419 u8 sensor_addr)
420{
421 u8 val, buf[3];
faf9b616 422 int i, ret = -ENODEV; /* error is the most common used retval :| */
f2b84bbc 423
9b2ad129
HG
424 /* If overriden by the user return the user selected type */
425 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
426 bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
427 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
428 "%d because of \"bank1_types\" module param\n",
429 bank1_types[sensor_addr], (int)sensor_addr);
430 return bank1_types[sensor_addr];
431 }
432
f2b84bbc
HG
433 /* First read the sensor and the current settings */
434 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
435 1, ABIT_UGURU_MAX_RETRIES) != 1)
a2392e0b 436 return -ENODEV;
f2b84bbc
HG
437
438 /* Test val is sane / usable for sensor type detection. */
439 if ((val < 10u) || (val > 240u)) {
440 printk(KERN_WARNING ABIT_UGURU_NAME
441 ": bank1-sensor: %d reading (%d) too close to limits, "
442 "unable to determine sensor type, skipping sensor\n",
443 (int)sensor_addr, (int)val);
444 /* assume no sensor is there for sensors for which we can't
445 determine the sensor type because their reading is too close
446 to their limits, this usually means no sensor is there. */
447 return ABIT_UGURU_NC;
448 }
449
450 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
451 /* Volt sensor test, enable volt low alarm, set min value ridicously
452 high. If its a volt sensor this should always give us an alarm. */
453 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
454 buf[1] = 245;
455 buf[2] = 250;
456 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
457 buf, 3) != 3)
faf9b616 458 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc
HG
459 /* Now we need 20 ms to give the uguru time to read the sensors
460 and raise a voltage alarm */
461 set_current_state(TASK_UNINTERRUPTIBLE);
462 schedule_timeout(HZ/50);
463 /* Check for alarm and check the alarm is a volt low alarm. */
464 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
465 ABIT_UGURU_MAX_RETRIES) != 3)
faf9b616 466 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc
HG
467 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
468 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
469 sensor_addr, buf, 3,
470 ABIT_UGURU_MAX_RETRIES) != 3)
faf9b616 471 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc 472 if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) {
f2b84bbc 473 ABIT_UGURU_DEBUG(2, " found volt sensor\n");
faf9b616
HG
474 ret = ABIT_UGURU_IN_SENSOR;
475 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc
HG
476 } else
477 ABIT_UGURU_DEBUG(2, " alarm raised during volt "
478 "sensor test, but volt low flag not set\n");
479 } else
480 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
481 "test\n");
482
483 /* Temp sensor test, enable sensor as a temp sensor, set beep value
484 ridicously low (but not too low, otherwise uguru ignores it).
485 If its a temp sensor this should always give us an alarm. */
486 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
487 buf[1] = 5;
488 buf[2] = 10;
489 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
490 buf, 3) != 3)
faf9b616 491 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc
HG
492 /* Now we need 50 ms to give the uguru time to read the sensors
493 and raise a temp alarm */
494 set_current_state(TASK_UNINTERRUPTIBLE);
495 schedule_timeout(HZ/20);
496 /* Check for alarm and check the alarm is a temp high alarm. */
497 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
498 ABIT_UGURU_MAX_RETRIES) != 3)
faf9b616 499 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc
HG
500 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
501 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
502 sensor_addr, buf, 3,
503 ABIT_UGURU_MAX_RETRIES) != 3)
faf9b616 504 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc 505 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
f2b84bbc 506 ABIT_UGURU_DEBUG(2, " found temp sensor\n");
faf9b616
HG
507 ret = ABIT_UGURU_TEMP_SENSOR;
508 goto abituguru_detect_bank1_sensor_type_exit;
f2b84bbc
HG
509 } else
510 ABIT_UGURU_DEBUG(2, " alarm raised during temp "
511 "sensor test, but temp high flag not set\n");
512 } else
513 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
514 "test\n");
515
faf9b616
HG
516 ret = ABIT_UGURU_NC;
517abituguru_detect_bank1_sensor_type_exit:
518 /* Restore original settings, failing here is really BAD, it has been
519 reported that some BIOS-es hang when entering the uGuru menu with
520 invalid settings present in the uGuru, so we try this 3 times. */
521 for (i = 0; i < 3; i++)
522 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
523 sensor_addr, data->bank1_settings[sensor_addr],
524 3) == 3)
525 break;
526 if (i == 3) {
527 printk(KERN_ERR ABIT_UGURU_NAME
528 ": Fatal error could not restore original settings. "
529 "This should never happen please report this to the "
530 "abituguru maintainer (see MAINTAINERS)\n");
a2392e0b 531 return -ENODEV;
faf9b616 532 }
f2b84bbc
HG
533 return ret;
534}
535
536/* These functions try to find out how many sensors there are in bank2 and how
537 many pwms there are. The purpose of this is to make sure that we don't give
538 the user the possibility to change settings for non-existent sensors / pwm.
539 The uGuru will happily read / write whatever memory happens to be after the
540 memory storing the PWM settings when reading/writing to a PWM which is not
541 there. Notice even if we detect a PWM which doesn't exist we normally won't
542 write to it, unless the user tries to change the settings.
543
544 Although the uGuru allows reading (settings) from non existing bank2
545 sensors, my version of the uGuru does seem to stop writing to them, the
546 write function above aborts in this case with:
547 "CMD reg does not hold 0xAC after write"
548
549 Notice these 2 tests are non destructive iow read-only tests, otherwise
550 they would defeat their purpose. Although for the bank2_sensors detection a
551 read/write test would be feasible because of the reaction above, I've
552 however opted to stay on the safe side. */
553static void __devinit
554abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
555{
556 int i;
557
9b2ad129 558 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
f2b84bbc
HG
559 data->bank2_sensors = fan_sensors;
560 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
561 "\"fan_sensors\" module param\n",
562 (int)data->bank2_sensors);
563 return;
564 }
565
566 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
567 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
568 /* 0x89 are the known used bits:
569 -0x80 enable shutdown
570 -0x08 enable beep
571 -0x01 enable alarm
572 All other bits should be 0, but on some motherboards
b7c06604
HG
573 0x40 (bit 6) is also high for some of the fans?? */
574 if (data->bank2_settings[i][0] & ~0xC9) {
f2b84bbc
HG
575 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
576 "to be a fan sensor: settings[0] = %02X\n",
577 i, (unsigned int)data->bank2_settings[i][0]);
578 break;
579 }
580
581 /* check if the threshold is within the allowed range */
582 if (data->bank2_settings[i][1] <
583 abituguru_bank2_min_threshold) {
584 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
585 "to be a fan sensor: the threshold (%d) is "
586 "below the minimum (%d)\n", i,
587 (int)data->bank2_settings[i][1],
588 (int)abituguru_bank2_min_threshold);
589 break;
590 }
591 if (data->bank2_settings[i][1] >
592 abituguru_bank2_max_threshold) {
593 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
594 "to be a fan sensor: the threshold (%d) is "
595 "above the maximum (%d)\n", i,
596 (int)data->bank2_settings[i][1],
597 (int)abituguru_bank2_max_threshold);
598 break;
599 }
600 }
601
602 data->bank2_sensors = i;
603 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
604 (int)data->bank2_sensors);
605}
606
607static void __devinit
608abituguru_detect_no_pwms(struct abituguru_data *data)
609{
610 int i, j;
611
9b2ad129 612 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
f2b84bbc
HG
613 data->pwms = pwms;
614 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
615 "\"pwms\" module param\n", (int)data->pwms);
616 return;
617 }
618
619 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
620 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
621 /* 0x80 is the enable bit and the low
622 nibble is which temp sensor to use,
623 the other bits should be 0 */
624 if (data->pwm_settings[i][0] & ~0x8F) {
625 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
626 "to be a pwm channel: settings[0] = %02X\n",
627 i, (unsigned int)data->pwm_settings[i][0]);
628 break;
629 }
630
631 /* the low nibble must correspond to one of the temp sensors
632 we've found */
633 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
634 j++) {
635 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
636 (data->pwm_settings[i][0] & 0x0F))
637 break;
638 }
639 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
640 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
641 "to be a pwm channel: %d is not a valid temp "
642 "sensor address\n", i,
643 data->pwm_settings[i][0] & 0x0F);
644 break;
645 }
646
647 /* check if all other settings are within the allowed range */
648 for (j = 1; j < 5; j++) {
649 u8 min;
650 /* special case pwm1 min pwm% */
651 if ((i == 0) && ((j == 1) || (j == 2)))
652 min = 77;
653 else
654 min = abituguru_pwm_min[j];
655 if (data->pwm_settings[i][j] < min) {
656 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
657 "not seem to be a pwm channel: "
658 "setting %d (%d) is below the minimum "
659 "value (%d)\n", i, j,
660 (int)data->pwm_settings[i][j],
661 (int)min);
662 goto abituguru_detect_no_pwms_exit;
663 }
664 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
665 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
666 "not seem to be a pwm channel: "
667 "setting %d (%d) is above the maximum "
668 "value (%d)\n", i, j,
669 (int)data->pwm_settings[i][j],
670 (int)abituguru_pwm_max[j]);
671 goto abituguru_detect_no_pwms_exit;
672 }
673 }
674
675 /* check that min temp < max temp and min pwm < max pwm */
676 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
677 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
678 "to be a pwm channel: min pwm (%d) >= "
679 "max pwm (%d)\n", i,
680 (int)data->pwm_settings[i][1],
681 (int)data->pwm_settings[i][2]);
682 break;
683 }
684 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
685 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
686 "to be a pwm channel: min temp (%d) >= "
687 "max temp (%d)\n", i,
688 (int)data->pwm_settings[i][3],
689 (int)data->pwm_settings[i][4]);
690 break;
691 }
692 }
693
694abituguru_detect_no_pwms_exit:
695 data->pwms = i;
696 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
697}
698
699/* Following are the sysfs callback functions. These functions expect:
700 sensor_device_attribute_2->index: sensor address/offset in the bank
701 sensor_device_attribute_2->nr: register offset, bitmask or NA. */
702static struct abituguru_data *abituguru_update_device(struct device *dev);
703
704static ssize_t show_bank1_value(struct device *dev,
705 struct device_attribute *devattr, char *buf)
706{
707 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
708 struct abituguru_data *data = abituguru_update_device(dev);
709 if (!data)
710 return -EIO;
711 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
712 data->bank1_max_value[attr->index] + 128) / 255);
713}
714
715static ssize_t show_bank1_setting(struct device *dev,
716 struct device_attribute *devattr, char *buf)
717{
718 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
719 struct abituguru_data *data = dev_get_drvdata(dev);
720 return sprintf(buf, "%d\n",
721 (data->bank1_settings[attr->index][attr->nr] *
722 data->bank1_max_value[attr->index] + 128) / 255);
723}
724
725static ssize_t show_bank2_value(struct device *dev,
726 struct device_attribute *devattr, char *buf)
727{
728 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
729 struct abituguru_data *data = abituguru_update_device(dev);
730 if (!data)
731 return -EIO;
732 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
733 ABIT_UGURU_FAN_MAX + 128) / 255);
734}
735
736static ssize_t show_bank2_setting(struct device *dev,
737 struct device_attribute *devattr, char *buf)
738{
739 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
740 struct abituguru_data *data = dev_get_drvdata(dev);
741 return sprintf(buf, "%d\n",
742 (data->bank2_settings[attr->index][attr->nr] *
743 ABIT_UGURU_FAN_MAX + 128) / 255);
744}
745
746static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
747 *devattr, const char *buf, size_t count)
748{
749 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
750 struct abituguru_data *data = dev_get_drvdata(dev);
751 u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
752 data->bank1_max_value[attr->index]/2) /
753 data->bank1_max_value[attr->index];
754 ssize_t ret = count;
755
756 mutex_lock(&data->update_lock);
757 if (data->bank1_settings[attr->index][attr->nr] != val) {
758 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
759 data->bank1_settings[attr->index][attr->nr] = val;
760 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
761 attr->index, data->bank1_settings[attr->index],
762 3) <= attr->nr) {
763 data->bank1_settings[attr->index][attr->nr] = orig_val;
764 ret = -EIO;
765 }
766 }
767 mutex_unlock(&data->update_lock);
768 return ret;
769}
770
771static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
772 *devattr, const char *buf, size_t count)
773{
774 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
775 struct abituguru_data *data = dev_get_drvdata(dev);
776 u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
777 ABIT_UGURU_FAN_MAX;
778 ssize_t ret = count;
779
780 /* this check can be done before taking the lock */
781 if ((val < abituguru_bank2_min_threshold) ||
782 (val > abituguru_bank2_max_threshold))
783 return -EINVAL;
784
785 mutex_lock(&data->update_lock);
786 if (data->bank2_settings[attr->index][attr->nr] != val) {
787 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
788 data->bank2_settings[attr->index][attr->nr] = val;
789 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
790 attr->index, data->bank2_settings[attr->index],
791 2) <= attr->nr) {
792 data->bank2_settings[attr->index][attr->nr] = orig_val;
793 ret = -EIO;
794 }
795 }
796 mutex_unlock(&data->update_lock);
797 return ret;
798}
799
800static ssize_t show_bank1_alarm(struct device *dev,
801 struct device_attribute *devattr, char *buf)
802{
803 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
804 struct abituguru_data *data = abituguru_update_device(dev);
805 if (!data)
806 return -EIO;
807 /* See if the alarm bit for this sensor is set, and if the
808 alarm matches the type of alarm we're looking for (for volt
809 it can be either low or high). The type is stored in a few
810 readonly bits in the settings part of the relevant sensor.
811 The bitmask of the type is passed to us in attr->nr. */
812 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
813 (data->bank1_settings[attr->index][0] & attr->nr))
814 return sprintf(buf, "1\n");
815 else
816 return sprintf(buf, "0\n");
817}
818
819static ssize_t show_bank2_alarm(struct device *dev,
820 struct device_attribute *devattr, char *buf)
821{
822 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
823 struct abituguru_data *data = abituguru_update_device(dev);
824 if (!data)
825 return -EIO;
826 if (data->alarms[2] & (0x01 << attr->index))
827 return sprintf(buf, "1\n");
828 else
829 return sprintf(buf, "0\n");
830}
831
832static ssize_t show_bank1_mask(struct device *dev,
833 struct device_attribute *devattr, char *buf)
834{
835 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
836 struct abituguru_data *data = dev_get_drvdata(dev);
837 if (data->bank1_settings[attr->index][0] & attr->nr)
838 return sprintf(buf, "1\n");
839 else
840 return sprintf(buf, "0\n");
841}
842
843static ssize_t show_bank2_mask(struct device *dev,
844 struct device_attribute *devattr, char *buf)
845{
846 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
847 struct abituguru_data *data = dev_get_drvdata(dev);
848 if (data->bank2_settings[attr->index][0] & attr->nr)
849 return sprintf(buf, "1\n");
850 else
851 return sprintf(buf, "0\n");
852}
853
854static ssize_t store_bank1_mask(struct device *dev,
855 struct device_attribute *devattr, const char *buf, size_t count)
856{
857 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
858 struct abituguru_data *data = dev_get_drvdata(dev);
859 int mask = simple_strtoul(buf, NULL, 10);
860 ssize_t ret = count;
861 u8 orig_val;
862
863 mutex_lock(&data->update_lock);
864 orig_val = data->bank1_settings[attr->index][0];
865
866 if (mask)
867 data->bank1_settings[attr->index][0] |= attr->nr;
868 else
869 data->bank1_settings[attr->index][0] &= ~attr->nr;
870
871 if ((data->bank1_settings[attr->index][0] != orig_val) &&
872 (abituguru_write(data,
873 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
874 data->bank1_settings[attr->index], 3) < 1)) {
875 data->bank1_settings[attr->index][0] = orig_val;
876 ret = -EIO;
877 }
878 mutex_unlock(&data->update_lock);
879 return ret;
880}
881
882static ssize_t store_bank2_mask(struct device *dev,
883 struct device_attribute *devattr, const char *buf, size_t count)
884{
885 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
886 struct abituguru_data *data = dev_get_drvdata(dev);
887 int mask = simple_strtoul(buf, NULL, 10);
888 ssize_t ret = count;
889 u8 orig_val;
890
891 mutex_lock(&data->update_lock);
892 orig_val = data->bank2_settings[attr->index][0];
893
894 if (mask)
895 data->bank2_settings[attr->index][0] |= attr->nr;
896 else
897 data->bank2_settings[attr->index][0] &= ~attr->nr;
898
899 if ((data->bank2_settings[attr->index][0] != orig_val) &&
900 (abituguru_write(data,
901 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
902 data->bank2_settings[attr->index], 2) < 1)) {
903 data->bank2_settings[attr->index][0] = orig_val;
904 ret = -EIO;
905 }
906 mutex_unlock(&data->update_lock);
907 return ret;
908}
909
910/* Fan PWM (speed control) */
911static ssize_t show_pwm_setting(struct device *dev,
912 struct device_attribute *devattr, char *buf)
913{
914 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
915 struct abituguru_data *data = dev_get_drvdata(dev);
916 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
917 abituguru_pwm_settings_multiplier[attr->nr]);
918}
919
920static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
921 *devattr, const char *buf, size_t count)
922{
923 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
924 struct abituguru_data *data = dev_get_drvdata(dev);
925 u8 min, val = (simple_strtoul(buf, NULL, 10) +
926 abituguru_pwm_settings_multiplier[attr->nr]/2) /
927 abituguru_pwm_settings_multiplier[attr->nr];
928 ssize_t ret = count;
929
930 /* special case pwm1 min pwm% */
931 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
932 min = 77;
933 else
934 min = abituguru_pwm_min[attr->nr];
935
936 /* this check can be done before taking the lock */
937 if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
938 return -EINVAL;
939
940 mutex_lock(&data->update_lock);
941 /* this check needs to be done after taking the lock */
942 if ((attr->nr & 1) &&
943 (val >= data->pwm_settings[attr->index][attr->nr + 1]))
944 ret = -EINVAL;
945 else if (!(attr->nr & 1) &&
946 (val <= data->pwm_settings[attr->index][attr->nr - 1]))
947 ret = -EINVAL;
948 else if (data->pwm_settings[attr->index][attr->nr] != val) {
949 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
950 data->pwm_settings[attr->index][attr->nr] = val;
951 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
952 attr->index, data->pwm_settings[attr->index],
953 5) <= attr->nr) {
954 data->pwm_settings[attr->index][attr->nr] =
955 orig_val;
956 ret = -EIO;
957 }
958 }
959 mutex_unlock(&data->update_lock);
960 return ret;
961}
962
963static ssize_t show_pwm_sensor(struct device *dev,
964 struct device_attribute *devattr, char *buf)
965{
966 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
967 struct abituguru_data *data = dev_get_drvdata(dev);
968 int i;
969 /* We need to walk to the temp sensor addresses to find what
970 the userspace id of the configured temp sensor is. */
971 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
972 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
973 (data->pwm_settings[attr->index][0] & 0x0F))
974 return sprintf(buf, "%d\n", i+1);
975
976 return -ENXIO;
977}
978
979static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
980 *devattr, const char *buf, size_t count)
981{
982 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
983 struct abituguru_data *data = dev_get_drvdata(dev);
984 unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
985 ssize_t ret = count;
986
987 mutex_lock(&data->update_lock);
988 if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
989 u8 orig_val = data->pwm_settings[attr->index][0];
990 u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
991 data->pwm_settings[attr->index][0] &= 0xF0;
992 data->pwm_settings[attr->index][0] |= address;
993 if (data->pwm_settings[attr->index][0] != orig_val) {
994 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
995 attr->index,
996 data->pwm_settings[attr->index],
997 5) < 1) {
998 data->pwm_settings[attr->index][0] = orig_val;
999 ret = -EIO;
1000 }
1001 }
1002 }
1003 else
1004 ret = -EINVAL;
1005 mutex_unlock(&data->update_lock);
1006 return ret;
1007}
1008
1009static ssize_t show_pwm_enable(struct device *dev,
1010 struct device_attribute *devattr, char *buf)
1011{
1012 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1013 struct abituguru_data *data = dev_get_drvdata(dev);
1014 int res = 0;
1015 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1016 res = 2;
1017 return sprintf(buf, "%d\n", res);
1018}
1019
1020static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1021 *devattr, const char *buf, size_t count)
1022{
1023 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024 struct abituguru_data *data = dev_get_drvdata(dev);
1025 u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
1026 ssize_t ret = count;
1027
1028 mutex_lock(&data->update_lock);
1029 orig_val = data->pwm_settings[attr->index][0];
1030 switch (user_val) {
1031 case 0:
1032 data->pwm_settings[attr->index][0] &=
1033 ~ABIT_UGURU_FAN_PWM_ENABLE;
1034 break;
1035 case 2:
1036 data->pwm_settings[attr->index][0] |=
1037 ABIT_UGURU_FAN_PWM_ENABLE;
1038 break;
1039 default:
1040 ret = -EINVAL;
1041 }
1042 if ((data->pwm_settings[attr->index][0] != orig_val) &&
1043 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1044 attr->index, data->pwm_settings[attr->index],
1045 5) < 1)) {
1046 data->pwm_settings[attr->index][0] = orig_val;
1047 ret = -EIO;
1048 }
1049 mutex_unlock(&data->update_lock);
1050 return ret;
1051}
1052
1053static ssize_t show_name(struct device *dev,
1054 struct device_attribute *devattr, char *buf)
1055{
1056 return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1057}
1058
1059/* Sysfs attr templates, the real entries are generated automatically. */
1060static const
1061struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1062 {
1063 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1064 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1065 store_bank1_setting, 1, 0),
1066 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1067 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1068 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1069 store_bank1_setting, 2, 0),
1070 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1071 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1072 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1073 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1074 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1075 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1076 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1077 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1078 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1079 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1080 }, {
1081 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1082 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1083 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1084 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1085 store_bank1_setting, 1, 0),
1086 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1087 store_bank1_setting, 2, 0),
1088 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1089 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1090 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1091 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1092 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1093 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1094 }
1095};
1096
1097static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1098 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1099 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1100 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1101 store_bank2_setting, 1, 0),
1102 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1103 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1104 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1105 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1106 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1107 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1108};
1109
1110static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1111 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1112 store_pwm_enable, 0, 0),
1113 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1114 store_pwm_sensor, 0, 0),
1115 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1116 store_pwm_setting, 1, 0),
1117 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1118 store_pwm_setting, 2, 0),
1119 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1120 store_pwm_setting, 3, 0),
1121 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1122 store_pwm_setting, 4, 0),
1123};
1124
a2392e0b 1125static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
f2b84bbc
HG
1126 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1127};
1128
1129static int __devinit abituguru_probe(struct platform_device *pdev)
1130{
1131 struct abituguru_data *data;
a2392e0b 1132 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
f2b84bbc 1133 char *sysfs_filename;
f2b84bbc
HG
1134
1135 /* El weirdo probe order, to keep the sysfs order identical to the
1136 BIOS and window-appliction listing order. */
a2392e0b
HG
1137 const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1138 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1139 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
f2b84bbc
HG
1140
1141 if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
1142 return -ENOMEM;
1143
1144 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1145 mutex_init(&data->update_lock);
1146 platform_set_drvdata(pdev, data);
1147
1148 /* See if the uGuru is ready */
1149 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1150 data->uguru_ready = 1;
1151
1152 /* Completely read the uGuru this has 2 purposes:
1153 - testread / see if one really is there.
1154 - make an in memory copy of all the uguru settings for future use. */
1155 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
a2392e0b
HG
1156 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1157 goto abituguru_probe_error;
f2b84bbc 1158
a2392e0b 1159 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
f2b84bbc
HG
1160 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1161 &data->bank1_value[i], 1,
a2392e0b
HG
1162 ABIT_UGURU_MAX_RETRIES) != 1)
1163 goto abituguru_probe_error;
f2b84bbc
HG
1164 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1165 data->bank1_settings[i], 3,
a2392e0b
HG
1166 ABIT_UGURU_MAX_RETRIES) != 3)
1167 goto abituguru_probe_error;
f2b84bbc
HG
1168 }
1169 /* Note: We don't know how many bank2 sensors / pwms there really are,
1170 but in order to "detect" this we need to read the maximum amount
1171 anyways. If we read sensors/pwms not there we'll just read crap
1172 this can't hurt. We need the detection because we don't want
1173 unwanted writes, which will hurt! */
1174 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1175 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1176 &data->bank2_value[i], 1,
a2392e0b
HG
1177 ABIT_UGURU_MAX_RETRIES) != 1)
1178 goto abituguru_probe_error;
f2b84bbc
HG
1179 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1180 data->bank2_settings[i], 2,
a2392e0b
HG
1181 ABIT_UGURU_MAX_RETRIES) != 2)
1182 goto abituguru_probe_error;
f2b84bbc
HG
1183 }
1184 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1185 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1186 data->pwm_settings[i], 5,
a2392e0b
HG
1187 ABIT_UGURU_MAX_RETRIES) != 5)
1188 goto abituguru_probe_error;
f2b84bbc
HG
1189 }
1190 data->last_updated = jiffies;
1191
1192 /* Detect sensor types and fill the sysfs attr for bank1 */
a2392e0b
HG
1193 sysfs_attr_i = 0;
1194 sysfs_filename = data->sysfs_names;
1195 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1196 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
f2b84bbc 1197 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
a2392e0b
HG
1198 if (res < 0)
1199 goto abituguru_probe_error;
f2b84bbc
HG
1200 if (res == ABIT_UGURU_NC)
1201 continue;
1202
a2392e0b 1203 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
f2b84bbc 1204 for (j = 0; j < (res ? 7 : 9); j++) {
a2392e0b
HG
1205 used = snprintf(sysfs_filename, sysfs_names_free,
1206 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1207 attr.name, data->bank1_sensors[res] + res)
1208 + 1;
f2b84bbc
HG
1209 data->sysfs_attr[sysfs_attr_i] =
1210 abituguru_sysfs_bank1_templ[res][j];
1211 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1212 sysfs_filename;
f2b84bbc 1213 data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
a2392e0b
HG
1214 sysfs_filename += used;
1215 sysfs_names_free -= used;
f2b84bbc
HG
1216 sysfs_attr_i++;
1217 }
1218 data->bank1_max_value[probe_order[i]] =
1219 abituguru_bank1_max_value[res];
1220 data->bank1_address[res][data->bank1_sensors[res]] =
1221 probe_order[i];
1222 data->bank1_sensors[res]++;
1223 }
1224 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1225 abituguru_detect_no_bank2_sensors(data);
1226 for (i = 0; i < data->bank2_sensors; i++) {
a2392e0b
HG
1227 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1228 used = snprintf(sysfs_filename, sysfs_names_free,
1229 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1230 i + 1) + 1;
f2b84bbc
HG
1231 data->sysfs_attr[sysfs_attr_i] =
1232 abituguru_sysfs_fan_templ[j];
1233 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1234 sysfs_filename;
f2b84bbc 1235 data->sysfs_attr[sysfs_attr_i].index = i;
a2392e0b
HG
1236 sysfs_filename += used;
1237 sysfs_names_free -= used;
f2b84bbc
HG
1238 sysfs_attr_i++;
1239 }
1240 }
1241 /* Detect number of sensors and fill the sysfs attr for pwms */
1242 abituguru_detect_no_pwms(data);
1243 for (i = 0; i < data->pwms; i++) {
a2392e0b
HG
1244 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1245 used = snprintf(sysfs_filename, sysfs_names_free,
1246 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1247 i + 1) + 1;
f2b84bbc
HG
1248 data->sysfs_attr[sysfs_attr_i] =
1249 abituguru_sysfs_pwm_templ[j];
1250 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1251 sysfs_filename;
f2b84bbc 1252 data->sysfs_attr[sysfs_attr_i].index = i;
a2392e0b
HG
1253 sysfs_filename += used;
1254 sysfs_names_free -= used;
f2b84bbc
HG
1255 sysfs_attr_i++;
1256 }
1257 }
a2392e0b
HG
1258 /* Fail safe check, this should never happen! */
1259 if (sysfs_names_free < 0) {
1260 printk(KERN_ERR ABIT_UGURU_NAME ": Fatal error ran out of "
1261 "space for sysfs attr names. This should never "
1262 "happen please report to the abituguru maintainer "
1263 "(see MAINTAINERS)\n");
1264 res = -ENAMETOOLONG;
1265 goto abituguru_probe_error;
f2b84bbc
HG
1266 }
1267 printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n");
1268
1269 /* Register sysfs hooks */
1270 data->class_dev = hwmon_device_register(&pdev->dev);
1271 if (IS_ERR(data->class_dev)) {
a2392e0b
HG
1272 res = PTR_ERR(data->class_dev);
1273 goto abituguru_probe_error;
f2b84bbc
HG
1274 }
1275 for (i = 0; i < sysfs_attr_i; i++)
1276 device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
a2392e0b
HG
1277 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1278 device_create_file(&pdev->dev,
1279 &abituguru_sysfs_attr[i].dev_attr);
f2b84bbc
HG
1280
1281 return 0;
a2392e0b
HG
1282
1283abituguru_probe_error:
1284 kfree(data);
1285 return res;
f2b84bbc
HG
1286}
1287
1288static int __devexit abituguru_remove(struct platform_device *pdev)
1289{
1290 struct abituguru_data *data = platform_get_drvdata(pdev);
1291
1292 platform_set_drvdata(pdev, NULL);
1293 hwmon_device_unregister(data->class_dev);
1294 kfree(data);
1295
1296 return 0;
1297}
1298
1299static struct abituguru_data *abituguru_update_device(struct device *dev)
1300{
1301 int i, err;
1302 struct abituguru_data *data = dev_get_drvdata(dev);
1303 /* fake a complete successful read if no update necessary. */
1304 char success = 1;
1305
1306 mutex_lock(&data->update_lock);
1307 if (time_after(jiffies, data->last_updated + HZ)) {
1308 success = 0;
1309 if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1310 data->alarms, 3, 0)) != 3)
1311 goto LEAVE_UPDATE;
a2392e0b 1312 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
f2b84bbc
HG
1313 if ((err = abituguru_read(data,
1314 ABIT_UGURU_SENSOR_BANK1, i,
1315 &data->bank1_value[i], 1, 0)) != 1)
1316 goto LEAVE_UPDATE;
1317 if ((err = abituguru_read(data,
1318 ABIT_UGURU_SENSOR_BANK1 + 1, i,
1319 data->bank1_settings[i], 3, 0)) != 3)
1320 goto LEAVE_UPDATE;
1321 }
1322 for (i = 0; i < data->bank2_sensors; i++)
1323 if ((err = abituguru_read(data,
1324 ABIT_UGURU_SENSOR_BANK2, i,
1325 &data->bank2_value[i], 1, 0)) != 1)
1326 goto LEAVE_UPDATE;
1327 /* success! */
1328 success = 1;
1329 data->update_timeouts = 0;
1330LEAVE_UPDATE:
1331 /* handle timeout condition */
faf9b616 1332 if (!success && (err == -EBUSY || err >= 0)) {
f2b84bbc
HG
1333 /* No overflow please */
1334 if (data->update_timeouts < 255u)
1335 data->update_timeouts++;
1336 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1337 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1338 "try again next update\n");
1339 /* Just a timeout, fake a successful read */
1340 success = 1;
1341 } else
1342 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1343 "times waiting for more input state\n",
1344 (int)data->update_timeouts);
1345 }
1346 /* On success set last_updated */
1347 if (success)
1348 data->last_updated = jiffies;
1349 }
1350 mutex_unlock(&data->update_lock);
1351
1352 if (success)
1353 return data;
1354 else
1355 return NULL;
1356}
1357
360b9ab2
HG
1358#ifdef CONFIG_PM
1359static int abituguru_suspend(struct platform_device *pdev, pm_message_t state)
1360{
1361 struct abituguru_data *data = platform_get_drvdata(pdev);
1362 /* make sure all communications with the uguru are done and no new
1363 ones are started */
1364 mutex_lock(&data->update_lock);
1365 return 0;
1366}
1367
1368static int abituguru_resume(struct platform_device *pdev)
1369{
1370 struct abituguru_data *data = platform_get_drvdata(pdev);
1371 /* See if the uGuru is still ready */
1372 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1373 data->uguru_ready = 0;
1374 mutex_unlock(&data->update_lock);
1375 return 0;
1376}
1377#else
1378#define abituguru_suspend NULL
1379#define abituguru_resume NULL
1380#endif /* CONFIG_PM */
1381
f2b84bbc
HG
1382static struct platform_driver abituguru_driver = {
1383 .driver = {
1384 .owner = THIS_MODULE,
1385 .name = ABIT_UGURU_NAME,
1386 },
360b9ab2
HG
1387 .probe = abituguru_probe,
1388 .remove = __devexit_p(abituguru_remove),
1389 .suspend = abituguru_suspend,
1390 .resume = abituguru_resume,
f2b84bbc
HG
1391};
1392
1393static int __init abituguru_detect(void)
1394{
1395 /* See if there is an uguru there. After a reboot uGuru will hold 0x00
1396 at DATA and 0xAC, when this driver has already been loaded once
1397 DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1398 scenario but some will hold 0x00.
1399 Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
1400 after reading CMD first, so CMD must be read first! */
1401 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1402 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1403 if (((data_val == 0x00) || (data_val == 0x08)) &&
1404 ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1405 return ABIT_UGURU_BASE;
1406
1407 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1408 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1409
1410 if (force) {
1411 printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is "
1412 "present because of \"force\" parameter\n");
1413 return ABIT_UGURU_BASE;
1414 }
1415
1416 /* No uGuru found */
1417 return -ENODEV;
1418}
1419
1420static struct platform_device *abituguru_pdev;
1421
1422static int __init abituguru_init(void)
1423{
1424 int address, err;
1425 struct resource res = { .flags = IORESOURCE_IO };
1426
1427 address = abituguru_detect();
1428 if (address < 0)
1429 return address;
1430
1431 err = platform_driver_register(&abituguru_driver);
1432 if (err)
1433 goto exit;
1434
1435 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1436 if (!abituguru_pdev) {
1437 printk(KERN_ERR ABIT_UGURU_NAME
1438 ": Device allocation failed\n");
1439 err = -ENOMEM;
1440 goto exit_driver_unregister;
1441 }
1442
1443 res.start = address;
1444 res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1445 res.name = ABIT_UGURU_NAME;
1446
1447 err = platform_device_add_resources(abituguru_pdev, &res, 1);
1448 if (err) {
1449 printk(KERN_ERR ABIT_UGURU_NAME
1450 ": Device resource addition failed (%d)\n", err);
1451 goto exit_device_put;
1452 }
1453
1454 err = platform_device_add(abituguru_pdev);
1455 if (err) {
1456 printk(KERN_ERR ABIT_UGURU_NAME
1457 ": Device addition failed (%d)\n", err);
1458 goto exit_device_put;
1459 }
1460
1461 return 0;
1462
1463exit_device_put:
1464 platform_device_put(abituguru_pdev);
1465exit_driver_unregister:
1466 platform_driver_unregister(&abituguru_driver);
1467exit:
1468 return err;
1469}
1470
1471static void __exit abituguru_exit(void)
1472{
1473 platform_device_unregister(abituguru_pdev);
1474 platform_driver_unregister(&abituguru_driver);
1475}
1476
1477MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
1478MODULE_DESCRIPTION("Abit uGuru Sensor device");
1479MODULE_LICENSE("GPL");
1480
1481module_init(abituguru_init);
1482module_exit(abituguru_exit);