]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/intel_dp.c
drm/i915: enable DP/eDP for Sandybridge/Cougarpoint
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_dp.c
CommitLineData
a4fc5ed6
KP
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include "drmP.h"
30#include "drm.h"
31#include "drm_crtc.h"
32#include "drm_crtc_helper.h"
33#include "intel_drv.h"
34#include "i915_drm.h"
35#include "i915_drv.h"
ab2c0672 36#include "drm_dp_helper.h"
a4fc5ed6 37
ae266c98 38
a4fc5ed6
KP
39#define DP_LINK_STATUS_SIZE 6
40#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
41
42#define DP_LINK_CONFIGURATION_SIZE 9
43
32f9d658
ZW
44#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
45
a4fc5ed6
KP
46struct intel_dp_priv {
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
a4fc5ed6 50 bool has_audio;
c8110e52 51 int dpms_mode;
a4fc5ed6
KP
52 uint8_t link_bw;
53 uint8_t lane_count;
54 uint8_t dpcd[4];
21d40d37 55 struct intel_encoder *intel_encoder;
a4fc5ed6
KP
56 struct i2c_adapter adapter;
57 struct i2c_algo_dp_aux_data algo;
58};
59
60static void
21d40d37 61intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
a4fc5ed6
KP
62 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
63
64static void
21d40d37 65intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
a4fc5ed6 66
32f9d658 67void
21d40d37 68intel_edp_link_config (struct intel_encoder *intel_encoder,
32f9d658
ZW
69 int *lane_num, int *link_bw)
70{
21d40d37 71 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
32f9d658
ZW
72
73 *lane_num = dp_priv->lane_count;
74 if (dp_priv->link_bw == DP_LINK_BW_1_62)
75 *link_bw = 162000;
76 else if (dp_priv->link_bw == DP_LINK_BW_2_7)
77 *link_bw = 270000;
78}
79
a4fc5ed6 80static int
21d40d37 81intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
a4fc5ed6 82{
21d40d37 83 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
84 int max_lane_count = 4;
85
86 if (dp_priv->dpcd[0] >= 0x11) {
87 max_lane_count = dp_priv->dpcd[2] & 0x1f;
88 switch (max_lane_count) {
89 case 1: case 2: case 4:
90 break;
91 default:
92 max_lane_count = 4;
93 }
94 }
95 return max_lane_count;
96}
97
98static int
21d40d37 99intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
a4fc5ed6 100{
21d40d37 101 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
102 int max_link_bw = dp_priv->dpcd[1];
103
104 switch (max_link_bw) {
105 case DP_LINK_BW_1_62:
106 case DP_LINK_BW_2_7:
107 break;
108 default:
109 max_link_bw = DP_LINK_BW_1_62;
110 break;
111 }
112 return max_link_bw;
113}
114
115static int
116intel_dp_link_clock(uint8_t link_bw)
117{
118 if (link_bw == DP_LINK_BW_2_7)
119 return 270000;
120 else
121 return 162000;
122}
123
124/* I think this is a fiction */
125static int
885a5fb5 126intel_dp_link_required(struct drm_device *dev,
21d40d37 127 struct intel_encoder *intel_encoder, int pixel_clock)
a4fc5ed6 128{
885a5fb5
ZW
129 struct drm_i915_private *dev_priv = dev->dev_private;
130
21d40d37 131 if (IS_eDP(intel_encoder))
885a5fb5
ZW
132 return (pixel_clock * dev_priv->edp_bpp) / 8;
133 else
134 return pixel_clock * 3;
a4fc5ed6
KP
135}
136
137static int
138intel_dp_mode_valid(struct drm_connector *connector,
139 struct drm_display_mode *mode)
140{
21d40d37
EA
141 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
142 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
143 int max_lanes = intel_dp_max_lane_count(intel_encoder);
a4fc5ed6 144
21d40d37 145 if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
885a5fb5 146 > max_link_clock * max_lanes)
a4fc5ed6
KP
147 return MODE_CLOCK_HIGH;
148
149 if (mode->clock < 10000)
150 return MODE_CLOCK_LOW;
151
152 return MODE_OK;
153}
154
155static uint32_t
156pack_aux(uint8_t *src, int src_bytes)
157{
158 int i;
159 uint32_t v = 0;
160
161 if (src_bytes > 4)
162 src_bytes = 4;
163 for (i = 0; i < src_bytes; i++)
164 v |= ((uint32_t) src[i]) << ((3-i) * 8);
165 return v;
166}
167
168static void
169unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
170{
171 int i;
172 if (dst_bytes > 4)
173 dst_bytes = 4;
174 for (i = 0; i < dst_bytes; i++)
175 dst[i] = src >> ((3-i) * 8);
176}
177
fb0f8fbf
KP
178/* hrawclock is 1/4 the FSB frequency */
179static int
180intel_hrawclk(struct drm_device *dev)
181{
182 struct drm_i915_private *dev_priv = dev->dev_private;
183 uint32_t clkcfg;
184
185 clkcfg = I915_READ(CLKCFG);
186 switch (clkcfg & CLKCFG_FSB_MASK) {
187 case CLKCFG_FSB_400:
188 return 100;
189 case CLKCFG_FSB_533:
190 return 133;
191 case CLKCFG_FSB_667:
192 return 166;
193 case CLKCFG_FSB_800:
194 return 200;
195 case CLKCFG_FSB_1067:
196 return 266;
197 case CLKCFG_FSB_1333:
198 return 333;
199 /* these two are just a guess; one of them might be right */
200 case CLKCFG_FSB_1600:
201 case CLKCFG_FSB_1600_ALT:
202 return 400;
203 default:
204 return 133;
205 }
206}
207
a4fc5ed6 208static int
21d40d37 209intel_dp_aux_ch(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
210 uint8_t *send, int send_bytes,
211 uint8_t *recv, int recv_size)
212{
21d40d37 213 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 214 uint32_t output_reg = dp_priv->output_reg;
21d40d37 215 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6
KP
216 struct drm_i915_private *dev_priv = dev->dev_private;
217 uint32_t ch_ctl = output_reg + 0x10;
218 uint32_t ch_data = ch_ctl + 4;
219 int i;
220 int recv_bytes;
221 uint32_t ctl;
222 uint32_t status;
fb0f8fbf 223 uint32_t aux_clock_divider;
e3421a18 224 int try, precharge;
a4fc5ed6
KP
225
226 /* The clock divider is based off the hrawclk,
fb0f8fbf
KP
227 * and would like to run at 2MHz. So, take the
228 * hrawclk value and divide by 2 and use that
a4fc5ed6 229 */
e3421a18
ZW
230 if (IS_eDP(intel_encoder)) {
231 if (IS_GEN6(dev))
232 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
233 else
234 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
235 } else if (HAS_PCH_SPLIT(dev))
f2b115e6 236 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
5eb08b69
ZW
237 else
238 aux_clock_divider = intel_hrawclk(dev) / 2;
239
e3421a18
ZW
240 if (IS_GEN6(dev))
241 precharge = 3;
242 else
243 precharge = 5;
244
fb0f8fbf
KP
245 /* Must try at least 3 times according to DP spec */
246 for (try = 0; try < 5; try++) {
247 /* Load the send data into the aux channel data registers */
248 for (i = 0; i < send_bytes; i += 4) {
a419aef8 249 uint32_t d = pack_aux(send + i, send_bytes - i);
fb0f8fbf
KP
250
251 I915_WRITE(ch_data + i, d);
252 }
253
254 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
255 DP_AUX_CH_CTL_TIME_OUT_400us |
256 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
e3421a18 257 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
fb0f8fbf
KP
258 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
259 DP_AUX_CH_CTL_DONE |
260 DP_AUX_CH_CTL_TIME_OUT_ERROR |
261 DP_AUX_CH_CTL_RECEIVE_ERROR);
262
263 /* Send the command and wait for it to complete */
264 I915_WRITE(ch_ctl, ctl);
265 (void) I915_READ(ch_ctl);
266 for (;;) {
267 udelay(100);
268 status = I915_READ(ch_ctl);
269 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
270 break;
271 }
272
273 /* Clear done status and any errors */
eebc863e 274 I915_WRITE(ch_ctl, (status |
fb0f8fbf
KP
275 DP_AUX_CH_CTL_DONE |
276 DP_AUX_CH_CTL_TIME_OUT_ERROR |
277 DP_AUX_CH_CTL_RECEIVE_ERROR));
278 (void) I915_READ(ch_ctl);
279 if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
a4fc5ed6
KP
280 break;
281 }
282
a4fc5ed6 283 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1ae8c0a5 284 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
a5b3da54 285 return -EBUSY;
a4fc5ed6
KP
286 }
287
288 /* Check for timeout or receive error.
289 * Timeouts occur when the sink is not connected
290 */
a5b3da54 291 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1ae8c0a5 292 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
a5b3da54
KP
293 return -EIO;
294 }
1ae8c0a5
KP
295
296 /* Timeouts occur when the device isn't connected, so they're
297 * "normal" -- don't fill the kernel log with these */
a5b3da54 298 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
28c97730 299 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
a5b3da54 300 return -ETIMEDOUT;
a4fc5ed6
KP
301 }
302
303 /* Unload any bytes sent back from the other side */
304 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
305 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
306
307 if (recv_bytes > recv_size)
308 recv_bytes = recv_size;
309
310 for (i = 0; i < recv_bytes; i += 4) {
311 uint32_t d = I915_READ(ch_data + i);
312
313 unpack_aux(d, recv + i, recv_bytes - i);
314 }
315
316 return recv_bytes;
317}
318
319/* Write data to the aux channel in native mode */
320static int
21d40d37 321intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
322 uint16_t address, uint8_t *send, int send_bytes)
323{
324 int ret;
325 uint8_t msg[20];
326 int msg_bytes;
327 uint8_t ack;
328
329 if (send_bytes > 16)
330 return -1;
331 msg[0] = AUX_NATIVE_WRITE << 4;
332 msg[1] = address >> 8;
eebc863e 333 msg[2] = address & 0xff;
a4fc5ed6
KP
334 msg[3] = send_bytes - 1;
335 memcpy(&msg[4], send, send_bytes);
336 msg_bytes = send_bytes + 4;
337 for (;;) {
21d40d37 338 ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
a4fc5ed6
KP
339 if (ret < 0)
340 return ret;
341 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
342 break;
343 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
344 udelay(100);
345 else
a5b3da54 346 return -EIO;
a4fc5ed6
KP
347 }
348 return send_bytes;
349}
350
351/* Write a single byte to the aux channel in native mode */
352static int
21d40d37 353intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
354 uint16_t address, uint8_t byte)
355{
21d40d37 356 return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
a4fc5ed6
KP
357}
358
359/* read bytes from a native aux channel */
360static int
21d40d37 361intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
362 uint16_t address, uint8_t *recv, int recv_bytes)
363{
364 uint8_t msg[4];
365 int msg_bytes;
366 uint8_t reply[20];
367 int reply_bytes;
368 uint8_t ack;
369 int ret;
370
371 msg[0] = AUX_NATIVE_READ << 4;
372 msg[1] = address >> 8;
373 msg[2] = address & 0xff;
374 msg[3] = recv_bytes - 1;
375
376 msg_bytes = 4;
377 reply_bytes = recv_bytes + 1;
378
379 for (;;) {
21d40d37 380 ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
a4fc5ed6 381 reply, reply_bytes);
a5b3da54
KP
382 if (ret == 0)
383 return -EPROTO;
384 if (ret < 0)
a4fc5ed6
KP
385 return ret;
386 ack = reply[0];
387 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
388 memcpy(recv, reply + 1, ret - 1);
389 return ret - 1;
390 }
391 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
392 udelay(100);
393 else
a5b3da54 394 return -EIO;
a4fc5ed6
KP
395 }
396}
397
398static int
ab2c0672
DA
399intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
400 uint8_t write_byte, uint8_t *read_byte)
a4fc5ed6 401{
ab2c0672 402 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
a4fc5ed6
KP
403 struct intel_dp_priv *dp_priv = container_of(adapter,
404 struct intel_dp_priv,
405 adapter);
21d40d37 406 struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
ab2c0672
DA
407 uint16_t address = algo_data->address;
408 uint8_t msg[5];
409 uint8_t reply[2];
410 int msg_bytes;
411 int reply_bytes;
412 int ret;
413
414 /* Set up the command byte */
415 if (mode & MODE_I2C_READ)
416 msg[0] = AUX_I2C_READ << 4;
417 else
418 msg[0] = AUX_I2C_WRITE << 4;
419
420 if (!(mode & MODE_I2C_STOP))
421 msg[0] |= AUX_I2C_MOT << 4;
a4fc5ed6 422
ab2c0672
DA
423 msg[1] = address >> 8;
424 msg[2] = address;
425
426 switch (mode) {
427 case MODE_I2C_WRITE:
428 msg[3] = 0;
429 msg[4] = write_byte;
430 msg_bytes = 5;
431 reply_bytes = 1;
432 break;
433 case MODE_I2C_READ:
434 msg[3] = 0;
435 msg_bytes = 4;
436 reply_bytes = 2;
437 break;
438 default:
439 msg_bytes = 3;
440 reply_bytes = 1;
441 break;
442 }
443
444 for (;;) {
21d40d37 445 ret = intel_dp_aux_ch(intel_encoder,
ab2c0672
DA
446 msg, msg_bytes,
447 reply, reply_bytes);
448 if (ret < 0) {
3ff99164 449 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
ab2c0672
DA
450 return ret;
451 }
452 switch (reply[0] & AUX_I2C_REPLY_MASK) {
453 case AUX_I2C_REPLY_ACK:
454 if (mode == MODE_I2C_READ) {
455 *read_byte = reply[1];
456 }
457 return reply_bytes - 1;
458 case AUX_I2C_REPLY_NACK:
3ff99164 459 DRM_DEBUG_KMS("aux_ch nack\n");
ab2c0672
DA
460 return -EREMOTEIO;
461 case AUX_I2C_REPLY_DEFER:
3ff99164 462 DRM_DEBUG_KMS("aux_ch defer\n");
ab2c0672
DA
463 udelay(100);
464 break;
465 default:
466 DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
467 return -EREMOTEIO;
468 }
469 }
a4fc5ed6
KP
470}
471
472static int
21d40d37 473intel_dp_i2c_init(struct intel_encoder *intel_encoder, const char *name)
a4fc5ed6 474{
21d40d37 475 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 476
d54e9d28 477 DRM_DEBUG_KMS("i2c_init %s\n", name);
a4fc5ed6
KP
478 dp_priv->algo.running = false;
479 dp_priv->algo.address = 0;
480 dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
481
482 memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
483 dp_priv->adapter.owner = THIS_MODULE;
484 dp_priv->adapter.class = I2C_CLASS_DDC;
eebc863e
ZW
485 strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
486 dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
a4fc5ed6 487 dp_priv->adapter.algo_data = &dp_priv->algo;
21d40d37 488 dp_priv->adapter.dev.parent = &intel_encoder->base.kdev;
a4fc5ed6
KP
489
490 return i2c_dp_aux_add_bus(&dp_priv->adapter);
491}
492
493static bool
494intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
495 struct drm_display_mode *adjusted_mode)
496{
21d40d37
EA
497 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
498 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 499 int lane_count, clock;
21d40d37
EA
500 int max_lane_count = intel_dp_max_lane_count(intel_encoder);
501 int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
a4fc5ed6
KP
502 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
503
504 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
505 for (clock = 0; clock <= max_clock; clock++) {
506 int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
507
21d40d37 508 if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
885a5fb5 509 <= link_avail) {
a4fc5ed6
KP
510 dp_priv->link_bw = bws[clock];
511 dp_priv->lane_count = lane_count;
512 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
28c97730
ZY
513 DRM_DEBUG_KMS("Display port link bw %02x lane "
514 "count %d clock %d\n",
a4fc5ed6
KP
515 dp_priv->link_bw, dp_priv->lane_count,
516 adjusted_mode->clock);
517 return true;
518 }
519 }
520 }
521 return false;
522}
523
524struct intel_dp_m_n {
525 uint32_t tu;
526 uint32_t gmch_m;
527 uint32_t gmch_n;
528 uint32_t link_m;
529 uint32_t link_n;
530};
531
532static void
533intel_reduce_ratio(uint32_t *num, uint32_t *den)
534{
535 while (*num > 0xffffff || *den > 0xffffff) {
536 *num >>= 1;
537 *den >>= 1;
538 }
539}
540
541static void
542intel_dp_compute_m_n(int bytes_per_pixel,
543 int nlanes,
544 int pixel_clock,
545 int link_clock,
546 struct intel_dp_m_n *m_n)
547{
548 m_n->tu = 64;
549 m_n->gmch_m = pixel_clock * bytes_per_pixel;
550 m_n->gmch_n = link_clock * nlanes;
551 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
552 m_n->link_m = pixel_clock;
553 m_n->link_n = link_clock;
554 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
555}
556
557void
558intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
559 struct drm_display_mode *adjusted_mode)
560{
561 struct drm_device *dev = crtc->dev;
562 struct drm_mode_config *mode_config = &dev->mode_config;
563 struct drm_connector *connector;
564 struct drm_i915_private *dev_priv = dev->dev_private;
565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
566 int lane_count = 4;
567 struct intel_dp_m_n m_n;
568
569 /*
21d40d37 570 * Find the lane count in the intel_encoder private
a4fc5ed6
KP
571 */
572 list_for_each_entry(connector, &mode_config->connector_list, head) {
21d40d37
EA
573 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
574 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
575
576 if (!connector->encoder || connector->encoder->crtc != crtc)
577 continue;
578
21d40d37 579 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
a4fc5ed6
KP
580 lane_count = dp_priv->lane_count;
581 break;
582 }
583 }
584
585 /*
586 * Compute the GMCH and Link ratios. The '3' here is
587 * the number of bytes_per_pixel post-LUT, which we always
588 * set up for 8-bits of R/G/B, or 3 bytes total.
589 */
590 intel_dp_compute_m_n(3, lane_count,
591 mode->clock, adjusted_mode->clock, &m_n);
592
c619eed4 593 if (HAS_PCH_SPLIT(dev)) {
5eb08b69
ZW
594 if (intel_crtc->pipe == 0) {
595 I915_WRITE(TRANSA_DATA_M1,
596 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
597 m_n.gmch_m);
598 I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
599 I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
600 I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
601 } else {
602 I915_WRITE(TRANSB_DATA_M1,
603 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
604 m_n.gmch_m);
605 I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
606 I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
607 I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
608 }
a4fc5ed6 609 } else {
5eb08b69
ZW
610 if (intel_crtc->pipe == 0) {
611 I915_WRITE(PIPEA_GMCH_DATA_M,
612 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
613 m_n.gmch_m);
614 I915_WRITE(PIPEA_GMCH_DATA_N,
615 m_n.gmch_n);
616 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
617 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
618 } else {
619 I915_WRITE(PIPEB_GMCH_DATA_M,
620 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
621 m_n.gmch_m);
622 I915_WRITE(PIPEB_GMCH_DATA_N,
623 m_n.gmch_n);
624 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
625 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
626 }
a4fc5ed6
KP
627 }
628}
629
630static void
631intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
632 struct drm_display_mode *adjusted_mode)
633{
e3421a18 634 struct drm_device *dev = encoder->dev;
21d40d37
EA
635 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
636 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
637 struct drm_crtc *crtc = intel_encoder->enc.crtc;
a4fc5ed6
KP
638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
639
e3421a18 640 dp_priv->DP = (DP_VOLTAGE_0_4 |
a4fc5ed6
KP
641 DP_PRE_EMPHASIS_0 |
642 DP_SYNC_VS_HIGH |
643 DP_SYNC_HS_HIGH);
644
e3421a18
ZW
645 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
646 dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
647 else
648 dp_priv->DP |= DP_LINK_TRAIN_OFF;
649
a4fc5ed6
KP
650 switch (dp_priv->lane_count) {
651 case 1:
652 dp_priv->DP |= DP_PORT_WIDTH_1;
653 break;
654 case 2:
655 dp_priv->DP |= DP_PORT_WIDTH_2;
656 break;
657 case 4:
658 dp_priv->DP |= DP_PORT_WIDTH_4;
659 break;
660 }
661 if (dp_priv->has_audio)
662 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
663
664 memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
665 dp_priv->link_configuration[0] = dp_priv->link_bw;
666 dp_priv->link_configuration[1] = dp_priv->lane_count;
667
668 /*
669 * Check for DPCD version > 1.1,
670 * enable enahanced frame stuff in that case
671 */
672 if (dp_priv->dpcd[0] >= 0x11) {
673 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
674 dp_priv->DP |= DP_ENHANCED_FRAMING;
675 }
676
e3421a18
ZW
677 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
678 if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
a4fc5ed6 679 dp_priv->DP |= DP_PIPEB_SELECT;
32f9d658 680
21d40d37 681 if (IS_eDP(intel_encoder)) {
32f9d658
ZW
682 /* don't miss out required setting for eDP */
683 dp_priv->DP |= DP_PLL_ENABLE;
684 if (adjusted_mode->clock < 200000)
685 dp_priv->DP |= DP_PLL_FREQ_160MHZ;
686 else
687 dp_priv->DP |= DP_PLL_FREQ_270MHZ;
688 }
a4fc5ed6
KP
689}
690
f2b115e6 691static void ironlake_edp_backlight_on (struct drm_device *dev)
32f9d658
ZW
692{
693 struct drm_i915_private *dev_priv = dev->dev_private;
694 u32 pp;
695
28c97730 696 DRM_DEBUG_KMS("\n");
32f9d658
ZW
697 pp = I915_READ(PCH_PP_CONTROL);
698 pp |= EDP_BLC_ENABLE;
699 I915_WRITE(PCH_PP_CONTROL, pp);
700}
701
f2b115e6 702static void ironlake_edp_backlight_off (struct drm_device *dev)
32f9d658
ZW
703{
704 struct drm_i915_private *dev_priv = dev->dev_private;
705 u32 pp;
706
28c97730 707 DRM_DEBUG_KMS("\n");
32f9d658
ZW
708 pp = I915_READ(PCH_PP_CONTROL);
709 pp &= ~EDP_BLC_ENABLE;
710 I915_WRITE(PCH_PP_CONTROL, pp);
711}
a4fc5ed6
KP
712
713static void
714intel_dp_dpms(struct drm_encoder *encoder, int mode)
715{
21d40d37
EA
716 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
717 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
718 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6
KP
719 struct drm_i915_private *dev_priv = dev->dev_private;
720 uint32_t dp_reg = I915_READ(dp_priv->output_reg);
721
722 if (mode != DRM_MODE_DPMS_ON) {
32f9d658 723 if (dp_reg & DP_PORT_EN) {
21d40d37
EA
724 intel_dp_link_down(intel_encoder, dp_priv->DP);
725 if (IS_eDP(intel_encoder))
f2b115e6 726 ironlake_edp_backlight_off(dev);
32f9d658 727 }
a4fc5ed6 728 } else {
32f9d658 729 if (!(dp_reg & DP_PORT_EN)) {
21d40d37
EA
730 intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
731 if (IS_eDP(intel_encoder))
f2b115e6 732 ironlake_edp_backlight_on(dev);
32f9d658 733 }
a4fc5ed6 734 }
c8110e52 735 dp_priv->dpms_mode = mode;
a4fc5ed6
KP
736}
737
738/*
739 * Fetch AUX CH registers 0x202 - 0x207 which contain
740 * link status information
741 */
742static bool
21d40d37 743intel_dp_get_link_status(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
744 uint8_t link_status[DP_LINK_STATUS_SIZE])
745{
746 int ret;
747
21d40d37 748 ret = intel_dp_aux_native_read(intel_encoder,
a4fc5ed6
KP
749 DP_LANE0_1_STATUS,
750 link_status, DP_LINK_STATUS_SIZE);
751 if (ret != DP_LINK_STATUS_SIZE)
752 return false;
753 return true;
754}
755
756static uint8_t
757intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
758 int r)
759{
760 return link_status[r - DP_LANE0_1_STATUS];
761}
762
a4fc5ed6
KP
763static uint8_t
764intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
765 int lane)
766{
767 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
768 int s = ((lane & 1) ?
769 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
770 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
771 uint8_t l = intel_dp_link_status(link_status, i);
772
773 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
774}
775
776static uint8_t
777intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
778 int lane)
779{
780 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
781 int s = ((lane & 1) ?
782 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
783 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
784 uint8_t l = intel_dp_link_status(link_status, i);
785
786 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
787}
788
789
790#if 0
791static char *voltage_names[] = {
792 "0.4V", "0.6V", "0.8V", "1.2V"
793};
794static char *pre_emph_names[] = {
795 "0dB", "3.5dB", "6dB", "9.5dB"
796};
797static char *link_train_names[] = {
798 "pattern 1", "pattern 2", "idle", "off"
799};
800#endif
801
802/*
803 * These are source-specific values; current Intel hardware supports
804 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
805 */
806#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
807
808static uint8_t
809intel_dp_pre_emphasis_max(uint8_t voltage_swing)
810{
811 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
812 case DP_TRAIN_VOLTAGE_SWING_400:
813 return DP_TRAIN_PRE_EMPHASIS_6;
814 case DP_TRAIN_VOLTAGE_SWING_600:
815 return DP_TRAIN_PRE_EMPHASIS_6;
816 case DP_TRAIN_VOLTAGE_SWING_800:
817 return DP_TRAIN_PRE_EMPHASIS_3_5;
818 case DP_TRAIN_VOLTAGE_SWING_1200:
819 default:
820 return DP_TRAIN_PRE_EMPHASIS_0;
821 }
822}
823
824static void
21d40d37 825intel_get_adjust_train(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
826 uint8_t link_status[DP_LINK_STATUS_SIZE],
827 int lane_count,
828 uint8_t train_set[4])
829{
830 uint8_t v = 0;
831 uint8_t p = 0;
832 int lane;
833
834 for (lane = 0; lane < lane_count; lane++) {
835 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
836 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
837
838 if (this_v > v)
839 v = this_v;
840 if (this_p > p)
841 p = this_p;
842 }
843
844 if (v >= I830_DP_VOLTAGE_MAX)
845 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
846
847 if (p >= intel_dp_pre_emphasis_max(v))
848 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
849
850 for (lane = 0; lane < 4; lane++)
851 train_set[lane] = v | p;
852}
853
854static uint32_t
855intel_dp_signal_levels(uint8_t train_set, int lane_count)
856{
857 uint32_t signal_levels = 0;
858
859 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
860 case DP_TRAIN_VOLTAGE_SWING_400:
861 default:
862 signal_levels |= DP_VOLTAGE_0_4;
863 break;
864 case DP_TRAIN_VOLTAGE_SWING_600:
865 signal_levels |= DP_VOLTAGE_0_6;
866 break;
867 case DP_TRAIN_VOLTAGE_SWING_800:
868 signal_levels |= DP_VOLTAGE_0_8;
869 break;
870 case DP_TRAIN_VOLTAGE_SWING_1200:
871 signal_levels |= DP_VOLTAGE_1_2;
872 break;
873 }
874 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
875 case DP_TRAIN_PRE_EMPHASIS_0:
876 default:
877 signal_levels |= DP_PRE_EMPHASIS_0;
878 break;
879 case DP_TRAIN_PRE_EMPHASIS_3_5:
880 signal_levels |= DP_PRE_EMPHASIS_3_5;
881 break;
882 case DP_TRAIN_PRE_EMPHASIS_6:
883 signal_levels |= DP_PRE_EMPHASIS_6;
884 break;
885 case DP_TRAIN_PRE_EMPHASIS_9_5:
886 signal_levels |= DP_PRE_EMPHASIS_9_5;
887 break;
888 }
889 return signal_levels;
890}
891
e3421a18
ZW
892/* Gen6's DP voltage swing and pre-emphasis control */
893static uint32_t
894intel_gen6_edp_signal_levels(uint8_t train_set)
895{
896 switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
897 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
898 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
899 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
900 return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
901 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
902 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
903 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
904 return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
905 default:
906 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
907 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
908 }
909}
910
a4fc5ed6
KP
911static uint8_t
912intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
913 int lane)
914{
915 int i = DP_LANE0_1_STATUS + (lane >> 1);
916 int s = (lane & 1) * 4;
917 uint8_t l = intel_dp_link_status(link_status, i);
918
919 return (l >> s) & 0xf;
920}
921
922/* Check for clock recovery is done on all channels */
923static bool
924intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
925{
926 int lane;
927 uint8_t lane_status;
928
929 for (lane = 0; lane < lane_count; lane++) {
930 lane_status = intel_get_lane_status(link_status, lane);
931 if ((lane_status & DP_LANE_CR_DONE) == 0)
932 return false;
933 }
934 return true;
935}
936
937/* Check to see if channel eq is done on all channels */
938#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
939 DP_LANE_CHANNEL_EQ_DONE|\
940 DP_LANE_SYMBOL_LOCKED)
941static bool
942intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
943{
944 uint8_t lane_align;
945 uint8_t lane_status;
946 int lane;
947
948 lane_align = intel_dp_link_status(link_status,
949 DP_LANE_ALIGN_STATUS_UPDATED);
950 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
951 return false;
952 for (lane = 0; lane < lane_count; lane++) {
953 lane_status = intel_get_lane_status(link_status, lane);
954 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
955 return false;
956 }
957 return true;
958}
959
960static bool
21d40d37 961intel_dp_set_link_train(struct intel_encoder *intel_encoder,
a4fc5ed6
KP
962 uint32_t dp_reg_value,
963 uint8_t dp_train_pat,
964 uint8_t train_set[4],
965 bool first)
966{
21d40d37 967 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 968 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 969 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
970 int ret;
971
972 I915_WRITE(dp_priv->output_reg, dp_reg_value);
973 POSTING_READ(dp_priv->output_reg);
974 if (first)
975 intel_wait_for_vblank(dev);
976
21d40d37 977 intel_dp_aux_native_write_1(intel_encoder,
a4fc5ed6
KP
978 DP_TRAINING_PATTERN_SET,
979 dp_train_pat);
980
21d40d37 981 ret = intel_dp_aux_native_write(intel_encoder,
a4fc5ed6
KP
982 DP_TRAINING_LANE0_SET, train_set, 4);
983 if (ret != 4)
984 return false;
985
986 return true;
987}
988
989static void
21d40d37 990intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
a4fc5ed6
KP
991 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
992{
21d40d37 993 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 994 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 995 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
996 uint8_t train_set[4];
997 uint8_t link_status[DP_LINK_STATUS_SIZE];
998 int i;
999 uint8_t voltage;
1000 bool clock_recovery = false;
1001 bool channel_eq = false;
1002 bool first = true;
1003 int tries;
e3421a18 1004 u32 reg;
a4fc5ed6
KP
1005
1006 /* Write the link configuration data */
21d40d37 1007 intel_dp_aux_native_write(intel_encoder, 0x100,
a4fc5ed6
KP
1008 link_configuration, DP_LINK_CONFIGURATION_SIZE);
1009
1010 DP |= DP_PORT_EN;
e3421a18
ZW
1011 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1012 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1013 else
1014 DP &= ~DP_LINK_TRAIN_MASK;
a4fc5ed6
KP
1015 memset(train_set, 0, 4);
1016 voltage = 0xff;
1017 tries = 0;
1018 clock_recovery = false;
1019 for (;;) {
1020 /* Use train_set[0] to set the voltage and pre emphasis values */
e3421a18
ZW
1021 uint32_t signal_levels;
1022 if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
1023 signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1024 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1025 } else {
1026 signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1027 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1028 }
a4fc5ed6 1029
e3421a18
ZW
1030 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1031 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1032 else
1033 reg = DP | DP_LINK_TRAIN_PAT_1;
1034
1035 if (!intel_dp_set_link_train(intel_encoder, reg,
a4fc5ed6
KP
1036 DP_TRAINING_PATTERN_1, train_set, first))
1037 break;
1038 first = false;
1039 /* Set training pattern 1 */
1040
1041 udelay(100);
21d40d37 1042 if (!intel_dp_get_link_status(intel_encoder, link_status))
a4fc5ed6
KP
1043 break;
1044
1045 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
1046 clock_recovery = true;
1047 break;
1048 }
1049
1050 /* Check to see if we've tried the max voltage */
1051 for (i = 0; i < dp_priv->lane_count; i++)
1052 if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1053 break;
1054 if (i == dp_priv->lane_count)
1055 break;
1056
1057 /* Check to see if we've tried the same voltage 5 times */
1058 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1059 ++tries;
1060 if (tries == 5)
1061 break;
1062 } else
1063 tries = 0;
1064 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1065
1066 /* Compute new train_set as requested by target */
21d40d37 1067 intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
a4fc5ed6
KP
1068 }
1069
1070 /* channel equalization */
1071 tries = 0;
1072 channel_eq = false;
1073 for (;;) {
1074 /* Use train_set[0] to set the voltage and pre emphasis values */
e3421a18
ZW
1075 uint32_t signal_levels;
1076
1077 if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
1078 signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1079 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1080 } else {
1081 signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1082 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1083 }
1084
1085 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1086 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1087 else
1088 reg = DP | DP_LINK_TRAIN_PAT_2;
a4fc5ed6
KP
1089
1090 /* channel eq pattern */
e3421a18 1091 if (!intel_dp_set_link_train(intel_encoder, reg,
a4fc5ed6
KP
1092 DP_TRAINING_PATTERN_2, train_set,
1093 false))
1094 break;
1095
1096 udelay(400);
21d40d37 1097 if (!intel_dp_get_link_status(intel_encoder, link_status))
a4fc5ed6
KP
1098 break;
1099
1100 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
1101 channel_eq = true;
1102 break;
1103 }
1104
1105 /* Try 5 times */
1106 if (tries > 5)
1107 break;
1108
1109 /* Compute new train_set as requested by target */
21d40d37 1110 intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
a4fc5ed6
KP
1111 ++tries;
1112 }
1113
e3421a18
ZW
1114 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1115 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1116 else
1117 reg = DP | DP_LINK_TRAIN_OFF;
1118
1119 I915_WRITE(dp_priv->output_reg, reg);
a4fc5ed6 1120 POSTING_READ(dp_priv->output_reg);
21d40d37 1121 intel_dp_aux_native_write_1(intel_encoder,
a4fc5ed6
KP
1122 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1123}
1124
1125static void
21d40d37 1126intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
a4fc5ed6 1127{
21d40d37 1128 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 1129 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 1130 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6 1131
28c97730 1132 DRM_DEBUG_KMS("\n");
32f9d658 1133
21d40d37 1134 if (IS_eDP(intel_encoder)) {
32f9d658
ZW
1135 DP &= ~DP_PLL_ENABLE;
1136 I915_WRITE(dp_priv->output_reg, DP);
1137 POSTING_READ(dp_priv->output_reg);
1138 udelay(100);
1139 }
1140
e3421a18
ZW
1141 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
1142 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1143 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1144 POSTING_READ(dp_priv->output_reg);
1145 } else {
1146 DP &= ~DP_LINK_TRAIN_MASK;
1147 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1148 POSTING_READ(dp_priv->output_reg);
1149 }
5eb08b69
ZW
1150
1151 udelay(17000);
1152
21d40d37 1153 if (IS_eDP(intel_encoder))
32f9d658 1154 DP |= DP_LINK_TRAIN_OFF;
a4fc5ed6
KP
1155 I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
1156 POSTING_READ(dp_priv->output_reg);
1157}
1158
a4fc5ed6
KP
1159/*
1160 * According to DP spec
1161 * 5.1.2:
1162 * 1. Read DPCD
1163 * 2. Configure link according to Receiver Capabilities
1164 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1165 * 4. Check link status on receipt of hot-plug interrupt
1166 */
1167
1168static void
21d40d37 1169intel_dp_check_link_status(struct intel_encoder *intel_encoder)
a4fc5ed6 1170{
21d40d37 1171 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
1172 uint8_t link_status[DP_LINK_STATUS_SIZE];
1173
21d40d37 1174 if (!intel_encoder->enc.crtc)
a4fc5ed6
KP
1175 return;
1176
21d40d37
EA
1177 if (!intel_dp_get_link_status(intel_encoder, link_status)) {
1178 intel_dp_link_down(intel_encoder, dp_priv->DP);
a4fc5ed6
KP
1179 return;
1180 }
1181
1182 if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
21d40d37 1183 intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
a4fc5ed6 1184}
a4fc5ed6 1185
5eb08b69 1186static enum drm_connector_status
f2b115e6 1187ironlake_dp_detect(struct drm_connector *connector)
5eb08b69 1188{
21d40d37
EA
1189 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1190 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
5eb08b69
ZW
1191 enum drm_connector_status status;
1192
1193 status = connector_status_disconnected;
21d40d37 1194 if (intel_dp_aux_native_read(intel_encoder,
5eb08b69
ZW
1195 0x000, dp_priv->dpcd,
1196 sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1197 {
1198 if (dp_priv->dpcd[0] != 0)
1199 status = connector_status_connected;
1200 }
1201 return status;
1202}
1203
a4fc5ed6
KP
1204/**
1205 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1206 *
1207 * \return true if DP port is connected.
1208 * \return false if DP port is disconnected.
1209 */
1210static enum drm_connector_status
1211intel_dp_detect(struct drm_connector *connector)
1212{
21d40d37
EA
1213 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1214 struct drm_device *dev = intel_encoder->base.dev;
a4fc5ed6 1215 struct drm_i915_private *dev_priv = dev->dev_private;
21d40d37 1216 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
a4fc5ed6
KP
1217 uint32_t temp, bit;
1218 enum drm_connector_status status;
1219
1220 dp_priv->has_audio = false;
1221
c619eed4 1222 if (HAS_PCH_SPLIT(dev))
f2b115e6 1223 return ironlake_dp_detect(connector);
5eb08b69 1224
a4fc5ed6
KP
1225 temp = I915_READ(PORT_HOTPLUG_EN);
1226
1227 I915_WRITE(PORT_HOTPLUG_EN,
1228 temp |
1229 DPB_HOTPLUG_INT_EN |
1230 DPC_HOTPLUG_INT_EN |
1231 DPD_HOTPLUG_INT_EN);
1232
1233 POSTING_READ(PORT_HOTPLUG_EN);
1234
1235 switch (dp_priv->output_reg) {
1236 case DP_B:
1237 bit = DPB_HOTPLUG_INT_STATUS;
1238 break;
1239 case DP_C:
1240 bit = DPC_HOTPLUG_INT_STATUS;
1241 break;
1242 case DP_D:
1243 bit = DPD_HOTPLUG_INT_STATUS;
1244 break;
1245 default:
1246 return connector_status_unknown;
1247 }
1248
1249 temp = I915_READ(PORT_HOTPLUG_STAT);
1250
1251 if ((temp & bit) == 0)
1252 return connector_status_disconnected;
1253
1254 status = connector_status_disconnected;
21d40d37 1255 if (intel_dp_aux_native_read(intel_encoder,
a4fc5ed6
KP
1256 0x000, dp_priv->dpcd,
1257 sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1258 {
1259 if (dp_priv->dpcd[0] != 0)
1260 status = connector_status_connected;
1261 }
1262 return status;
1263}
1264
1265static int intel_dp_get_modes(struct drm_connector *connector)
1266{
21d40d37
EA
1267 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1268 struct drm_device *dev = intel_encoder->base.dev;
32f9d658
ZW
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 int ret;
a4fc5ed6
KP
1271
1272 /* We should parse the EDID data and find out if it has an audio sink
1273 */
1274
335af9a2 1275 ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
32f9d658
ZW
1276 if (ret)
1277 return ret;
1278
1279 /* if eDP has no EDID, try to use fixed panel mode from VBT */
21d40d37 1280 if (IS_eDP(intel_encoder)) {
32f9d658
ZW
1281 if (dev_priv->panel_fixed_mode != NULL) {
1282 struct drm_display_mode *mode;
1283 mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1284 drm_mode_probed_add(connector, mode);
1285 return 1;
1286 }
1287 }
1288 return 0;
a4fc5ed6
KP
1289}
1290
1291static void
1292intel_dp_destroy (struct drm_connector *connector)
1293{
21d40d37 1294 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
a4fc5ed6 1295
21d40d37
EA
1296 if (intel_encoder->i2c_bus)
1297 intel_i2c_destroy(intel_encoder->i2c_bus);
a4fc5ed6
KP
1298 drm_sysfs_connector_remove(connector);
1299 drm_connector_cleanup(connector);
21d40d37 1300 kfree(intel_encoder);
a4fc5ed6
KP
1301}
1302
1303static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1304 .dpms = intel_dp_dpms,
1305 .mode_fixup = intel_dp_mode_fixup,
1306 .prepare = intel_encoder_prepare,
1307 .mode_set = intel_dp_mode_set,
1308 .commit = intel_encoder_commit,
1309};
1310
1311static const struct drm_connector_funcs intel_dp_connector_funcs = {
1312 .dpms = drm_helper_connector_dpms,
a4fc5ed6
KP
1313 .detect = intel_dp_detect,
1314 .fill_modes = drm_helper_probe_single_connector_modes,
1315 .destroy = intel_dp_destroy,
1316};
1317
1318static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1319 .get_modes = intel_dp_get_modes,
1320 .mode_valid = intel_dp_mode_valid,
1321 .best_encoder = intel_best_encoder,
1322};
1323
1324static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1325{
1326 drm_encoder_cleanup(encoder);
1327}
1328
1329static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1330 .destroy = intel_dp_enc_destroy,
1331};
1332
c8110e52 1333void
21d40d37 1334intel_dp_hot_plug(struct intel_encoder *intel_encoder)
c8110e52 1335{
21d40d37 1336 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
c8110e52
KP
1337
1338 if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
21d40d37 1339 intel_dp_check_link_status(intel_encoder);
c8110e52 1340}
6207937d 1341
e3421a18
ZW
1342/* Return which DP Port should be selected for Transcoder DP control */
1343int
1344intel_trans_dp_port_sel (struct drm_crtc *crtc)
1345{
1346 struct drm_device *dev = crtc->dev;
1347 struct drm_mode_config *mode_config = &dev->mode_config;
1348 struct drm_encoder *encoder;
1349 struct intel_encoder *intel_encoder = NULL;
1350
1351 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1352 if (!encoder || encoder->crtc != crtc)
1353 continue;
1354
1355 intel_encoder = enc_to_intel_encoder(encoder);
1356 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1357 struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1358 return dp_priv->output_reg;
1359 }
1360 }
1361 return -1;
1362}
1363
a4fc5ed6
KP
1364void
1365intel_dp_init(struct drm_device *dev, int output_reg)
1366{
1367 struct drm_i915_private *dev_priv = dev->dev_private;
1368 struct drm_connector *connector;
21d40d37 1369 struct intel_encoder *intel_encoder;
a4fc5ed6 1370 struct intel_dp_priv *dp_priv;
5eb08b69 1371 const char *name = NULL;
a4fc5ed6 1372
21d40d37 1373 intel_encoder = kcalloc(sizeof(struct intel_encoder) +
a4fc5ed6 1374 sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
21d40d37 1375 if (!intel_encoder)
a4fc5ed6
KP
1376 return;
1377
21d40d37 1378 dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
a4fc5ed6 1379
21d40d37 1380 connector = &intel_encoder->base;
a4fc5ed6
KP
1381 drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1382 DRM_MODE_CONNECTOR_DisplayPort);
1383 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1384
32f9d658 1385 if (output_reg == DP_A)
21d40d37 1386 intel_encoder->type = INTEL_OUTPUT_EDP;
32f9d658 1387 else
21d40d37 1388 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
a4fc5ed6 1389
652af9d7 1390 if (output_reg == DP_B || output_reg == PCH_DP_B)
21d40d37 1391 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
652af9d7 1392 else if (output_reg == DP_C || output_reg == PCH_DP_C)
21d40d37 1393 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
652af9d7 1394 else if (output_reg == DP_D || output_reg == PCH_DP_D)
21d40d37 1395 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
f8aed700 1396
21d40d37
EA
1397 if (IS_eDP(intel_encoder))
1398 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
6251ec0a 1399
21d40d37 1400 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
a4fc5ed6
KP
1401 connector->interlace_allowed = true;
1402 connector->doublescan_allowed = 0;
1403
21d40d37 1404 dp_priv->intel_encoder = intel_encoder;
a4fc5ed6
KP
1405 dp_priv->output_reg = output_reg;
1406 dp_priv->has_audio = false;
c8110e52 1407 dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
21d40d37 1408 intel_encoder->dev_priv = dp_priv;
a4fc5ed6 1409
21d40d37 1410 drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
a4fc5ed6 1411 DRM_MODE_ENCODER_TMDS);
21d40d37 1412 drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
a4fc5ed6 1413
21d40d37
EA
1414 drm_mode_connector_attach_encoder(&intel_encoder->base,
1415 &intel_encoder->enc);
a4fc5ed6
KP
1416 drm_sysfs_connector_add(connector);
1417
1418 /* Set up the DDC bus. */
5eb08b69 1419 switch (output_reg) {
32f9d658
ZW
1420 case DP_A:
1421 name = "DPDDC-A";
1422 break;
5eb08b69
ZW
1423 case DP_B:
1424 case PCH_DP_B:
b01f2c3a
JB
1425 dev_priv->hotplug_supported_mask |=
1426 HDMIB_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1427 name = "DPDDC-B";
1428 break;
1429 case DP_C:
1430 case PCH_DP_C:
b01f2c3a
JB
1431 dev_priv->hotplug_supported_mask |=
1432 HDMIC_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1433 name = "DPDDC-C";
1434 break;
1435 case DP_D:
1436 case PCH_DP_D:
b01f2c3a
JB
1437 dev_priv->hotplug_supported_mask |=
1438 HDMID_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1439 name = "DPDDC-D";
1440 break;
1441 }
1442
21d40d37 1443 intel_dp_i2c_init(intel_encoder, name);
32f9d658 1444
21d40d37
EA
1445 intel_encoder->ddc_bus = &dp_priv->adapter;
1446 intel_encoder->hot_plug = intel_dp_hot_plug;
a4fc5ed6 1447
32f9d658
ZW
1448 if (output_reg == DP_A) {
1449 /* initialize panel mode from VBT if available for eDP */
1450 if (dev_priv->lfp_lvds_vbt_mode) {
1451 dev_priv->panel_fixed_mode =
1452 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1453 if (dev_priv->panel_fixed_mode) {
1454 dev_priv->panel_fixed_mode->type |=
1455 DRM_MODE_TYPE_PREFERRED;
1456 }
1457 }
1458 }
1459
a4fc5ed6
KP
1460 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1461 * 0xd. Failure to do so will result in spurious interrupts being
1462 * generated on the port when a cable is not attached.
1463 */
1464 if (IS_G4X(dev) && !IS_GM45(dev)) {
1465 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1466 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1467 }
1468}