]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: un-EXPORT and make 'intelfb_panic' static
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/i2c.h>
28#include "drmP.h"
29#include "intel_drv.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32
33#include "drm_crtc_helper.h"
34
35bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
36
37typedef struct {
38 /* given values */
39 int n;
40 int m1, m2;
41 int p1, p2;
42 /* derived values */
43 int dot;
44 int vco;
45 int m;
46 int p;
47} intel_clock_t;
48
49typedef struct {
50 int min, max;
51} intel_range_t;
52
53typedef struct {
54 int dot_limit;
55 int p2_slow, p2_fast;
56} intel_p2_t;
57
58#define INTEL_P2_NUM 2
59
60typedef struct {
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
62 intel_p2_t p2;
63} intel_limit_t;
64
65#define I8XX_DOT_MIN 25000
66#define I8XX_DOT_MAX 350000
67#define I8XX_VCO_MIN 930000
68#define I8XX_VCO_MAX 1400000
69#define I8XX_N_MIN 3
70#define I8XX_N_MAX 16
71#define I8XX_M_MIN 96
72#define I8XX_M_MAX 140
73#define I8XX_M1_MIN 18
74#define I8XX_M1_MAX 26
75#define I8XX_M2_MIN 6
76#define I8XX_M2_MAX 16
77#define I8XX_P_MIN 4
78#define I8XX_P_MAX 128
79#define I8XX_P1_MIN 2
80#define I8XX_P1_MAX 33
81#define I8XX_P1_LVDS_MIN 1
82#define I8XX_P1_LVDS_MAX 6
83#define I8XX_P2_SLOW 4
84#define I8XX_P2_FAST 2
85#define I8XX_P2_LVDS_SLOW 14
86#define I8XX_P2_LVDS_FAST 14 /* No fast option */
87#define I8XX_P2_SLOW_LIMIT 165000
88
89#define I9XX_DOT_MIN 20000
90#define I9XX_DOT_MAX 400000
91#define I9XX_VCO_MIN 1400000
92#define I9XX_VCO_MAX 2800000
93#define I9XX_N_MIN 3
94#define I9XX_N_MAX 8
95#define I9XX_M_MIN 70
96#define I9XX_M_MAX 120
97#define I9XX_M1_MIN 10
98#define I9XX_M1_MAX 20
99#define I9XX_M2_MIN 5
100#define I9XX_M2_MAX 9
101#define I9XX_P_SDVO_DAC_MIN 5
102#define I9XX_P_SDVO_DAC_MAX 80
103#define I9XX_P_LVDS_MIN 7
104#define I9XX_P_LVDS_MAX 98
105#define I9XX_P1_MIN 1
106#define I9XX_P1_MAX 8
107#define I9XX_P2_SDVO_DAC_SLOW 10
108#define I9XX_P2_SDVO_DAC_FAST 5
109#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
110#define I9XX_P2_LVDS_SLOW 14
111#define I9XX_P2_LVDS_FAST 7
112#define I9XX_P2_LVDS_SLOW_LIMIT 112000
113
114#define INTEL_LIMIT_I8XX_DVO_DAC 0
115#define INTEL_LIMIT_I8XX_LVDS 1
116#define INTEL_LIMIT_I9XX_SDVO_DAC 2
117#define INTEL_LIMIT_I9XX_LVDS 3
118
119static const intel_limit_t intel_limits[] = {
120 { /* INTEL_LIMIT_I8XX_DVO_DAC */
121 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
122 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
123 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
124 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
125 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
126 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
127 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
128 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
129 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
130 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
131 },
132 { /* INTEL_LIMIT_I8XX_LVDS */
133 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
134 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
135 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
136 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
137 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
138 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
139 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
140 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
141 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
142 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
143 },
144 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
145 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
146 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
147 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
148 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
149 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
150 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
151 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
152 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
153 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
154 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
155 },
156 { /* INTEL_LIMIT_I9XX_LVDS */
157 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
158 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
159 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
160 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
161 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
162 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
163 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
164 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
165 /* The single-channel range is 25-112Mhz, and dual-channel
166 * is 80-224Mhz. Prefer single channel as much as possible.
167 */
168 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
169 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
170 },
171};
172
173static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
174{
175 struct drm_device *dev = crtc->dev;
176 const intel_limit_t *limit;
177
178 if (IS_I9XX(dev)) {
179 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
180 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
181 else
182 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
183 } else {
184 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
185 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
186 else
187 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
188 }
189 return limit;
190}
191
192/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
193
194static void i8xx_clock(int refclk, intel_clock_t *clock)
195{
196 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
197 clock->p = clock->p1 * clock->p2;
198 clock->vco = refclk * clock->m / (clock->n + 2);
199 clock->dot = clock->vco / clock->p;
200}
201
202/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
203
204static void i9xx_clock(int refclk, intel_clock_t *clock)
205{
206 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
207 clock->p = clock->p1 * clock->p2;
208 clock->vco = refclk * clock->m / (clock->n + 2);
209 clock->dot = clock->vco / clock->p;
210}
211
212static void intel_clock(struct drm_device *dev, int refclk,
213 intel_clock_t *clock)
214{
215 if (IS_I9XX(dev))
d4da3af6 216 i9xx_clock (refclk, clock);
79e53945 217 else
d4da3af6 218 i8xx_clock (refclk, clock);
79e53945
JB
219}
220
221/**
222 * Returns whether any output on the specified pipe is of the specified type
223 */
224bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
225{
226 struct drm_device *dev = crtc->dev;
227 struct drm_mode_config *mode_config = &dev->mode_config;
228 struct drm_connector *l_entry;
229
230 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
231 if (l_entry->encoder &&
232 l_entry->encoder->crtc == crtc) {
233 struct intel_output *intel_output = to_intel_output(l_entry);
234 if (intel_output->type == type)
235 return true;
236 }
237 }
238 return false;
239}
240
241#define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
242/**
243 * Returns whether the given set of divisors are valid for a given refclk with
244 * the given connectors.
245 */
246
247static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
248{
249 const intel_limit_t *limit = intel_limit (crtc);
250
251 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
252 INTELPllInvalid ("p1 out of range\n");
253 if (clock->p < limit->p.min || limit->p.max < clock->p)
254 INTELPllInvalid ("p out of range\n");
255 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
256 INTELPllInvalid ("m2 out of range\n");
257 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
258 INTELPllInvalid ("m1 out of range\n");
259 if (clock->m1 <= clock->m2)
260 INTELPllInvalid ("m1 <= m2\n");
261 if (clock->m < limit->m.min || limit->m.max < clock->m)
262 INTELPllInvalid ("m out of range\n");
263 if (clock->n < limit->n.min || limit->n.max < clock->n)
264 INTELPllInvalid ("n out of range\n");
265 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
266 INTELPllInvalid ("vco out of range\n");
267 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
268 * connector, etc., rather than just a single range.
269 */
270 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
271 INTELPllInvalid ("dot out of range\n");
272
273 return true;
274}
275
276/**
277 * Returns a set of divisors for the desired target clock with the given
278 * refclk, or FALSE. The returned values represent the clock equation:
279 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
280 */
281static bool intel_find_best_PLL(struct drm_crtc *crtc, int target,
282 int refclk, intel_clock_t *best_clock)
283{
284 struct drm_device *dev = crtc->dev;
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 intel_clock_t clock;
287 const intel_limit_t *limit = intel_limit(crtc);
288 int err = target;
289
290 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
291 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
292 /*
293 * For LVDS, if the panel is on, just rely on its current
294 * settings for dual-channel. We haven't figured out how to
295 * reliably set up different single/dual channel state, if we
296 * even can.
297 */
298 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
299 LVDS_CLKB_POWER_UP)
300 clock.p2 = limit->p2.p2_fast;
301 else
302 clock.p2 = limit->p2.p2_slow;
303 } else {
304 if (target < limit->p2.dot_limit)
305 clock.p2 = limit->p2.p2_slow;
306 else
307 clock.p2 = limit->p2.p2_fast;
308 }
309
310 memset (best_clock, 0, sizeof (*best_clock));
311
312 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
313 for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 &&
314 clock.m2 <= limit->m2.max; clock.m2++) {
315 for (clock.n = limit->n.min; clock.n <= limit->n.max;
316 clock.n++) {
317 for (clock.p1 = limit->p1.min;
318 clock.p1 <= limit->p1.max; clock.p1++) {
319 int this_err;
320
321 intel_clock(dev, refclk, &clock);
322
323 if (!intel_PLL_is_valid(crtc, &clock))
324 continue;
325
326 this_err = abs(clock.dot - target);
327 if (this_err < err) {
328 *best_clock = clock;
329 err = this_err;
330 }
331 }
332 }
333 }
334 }
335
336 return (err != target);
337}
338
339void
340intel_wait_for_vblank(struct drm_device *dev)
341{
342 /* Wait for 20ms, i.e. one cycle at 50hz. */
343 udelay(20000);
344}
345
b358d0a6 346static void
79e53945
JB
347intel_pipe_set_base(struct drm_crtc *crtc, int x, int y)
348{
349 struct drm_device *dev = crtc->dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 struct drm_i915_master_private *master_priv;
352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
353 struct intel_framebuffer *intel_fb;
354 struct drm_i915_gem_object *obj_priv;
355 struct drm_gem_object *obj;
356 int pipe = intel_crtc->pipe;
357 unsigned long Start, Offset;
358 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
359 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
360 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
361 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
362 u32 dspcntr;
363
364 /* no fb bound */
365 if (!crtc->fb) {
366 DRM_DEBUG("No FB bound\n");
367 return;
368 }
369
370 intel_fb = to_intel_framebuffer(crtc->fb);
371
372 obj = intel_fb->obj;
373 obj_priv = obj->driver_private;
374
375 Start = obj_priv->gtt_offset;
376 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
377
378 I915_WRITE(dspstride, crtc->fb->pitch);
379
380 dspcntr = I915_READ(dspcntr_reg);
381 switch (crtc->fb->bits_per_pixel) {
382 case 8:
383 dspcntr |= DISPPLANE_8BPP;
384 break;
385 case 16:
386 if (crtc->fb->depth == 15)
387 dspcntr |= DISPPLANE_15_16BPP;
388 else
389 dspcntr |= DISPPLANE_16BPP;
390 break;
391 case 24:
392 case 32:
393 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
394 break;
395 default:
396 DRM_ERROR("Unknown color depth\n");
397 return;
398 }
399 I915_WRITE(dspcntr_reg, dspcntr);
400
401 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
402 if (IS_I965G(dev)) {
403 I915_WRITE(dspbase, Offset);
404 I915_READ(dspbase);
405 I915_WRITE(dspsurf, Start);
406 I915_READ(dspsurf);
407 } else {
408 I915_WRITE(dspbase, Start + Offset);
409 I915_READ(dspbase);
410 }
411
412
413 if (!dev->primary->master)
414 return;
415
416 master_priv = dev->primary->master->driver_priv;
417 if (!master_priv->sarea_priv)
418 return;
419
420 switch (pipe) {
421 case 0:
422 master_priv->sarea_priv->pipeA_x = x;
423 master_priv->sarea_priv->pipeA_y = y;
424 break;
425 case 1:
426 master_priv->sarea_priv->pipeB_x = x;
427 master_priv->sarea_priv->pipeB_y = y;
428 break;
429 default:
430 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
431 break;
432 }
433}
434
435
436
437/**
438 * Sets the power management mode of the pipe and plane.
439 *
440 * This code should probably grow support for turning the cursor off and back
441 * on appropriately at the same time as we're turning the pipe off/on.
442 */
443static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
444{
445 struct drm_device *dev = crtc->dev;
446 struct drm_i915_master_private *master_priv;
447 struct drm_i915_private *dev_priv = dev->dev_private;
448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
449 int pipe = intel_crtc->pipe;
450 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
451 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
452 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
453 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
454 u32 temp;
455 bool enabled;
456
457 /* XXX: When our outputs are all unaware of DPMS modes other than off
458 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
459 */
460 switch (mode) {
461 case DRM_MODE_DPMS_ON:
462 case DRM_MODE_DPMS_STANDBY:
463 case DRM_MODE_DPMS_SUSPEND:
464 /* Enable the DPLL */
465 temp = I915_READ(dpll_reg);
466 if ((temp & DPLL_VCO_ENABLE) == 0) {
467 I915_WRITE(dpll_reg, temp);
468 I915_READ(dpll_reg);
469 /* Wait for the clocks to stabilize. */
470 udelay(150);
471 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
472 I915_READ(dpll_reg);
473 /* Wait for the clocks to stabilize. */
474 udelay(150);
475 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
476 I915_READ(dpll_reg);
477 /* Wait for the clocks to stabilize. */
478 udelay(150);
479 }
480
481 /* Enable the pipe */
482 temp = I915_READ(pipeconf_reg);
483 if ((temp & PIPEACONF_ENABLE) == 0)
484 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
485
486 /* Enable the plane */
487 temp = I915_READ(dspcntr_reg);
488 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
489 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
490 /* Flush the plane changes */
491 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
492 }
493
494 intel_crtc_load_lut(crtc);
495
496 /* Give the overlay scaler a chance to enable if it's on this pipe */
497 //intel_crtc_dpms_video(crtc, true); TODO
498 break;
499 case DRM_MODE_DPMS_OFF:
500 /* Give the overlay scaler a chance to disable if it's on this pipe */
501 //intel_crtc_dpms_video(crtc, FALSE); TODO
502
503 /* Disable the VGA plane that we never use */
504 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
505
506 /* Disable display plane */
507 temp = I915_READ(dspcntr_reg);
508 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
509 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
510 /* Flush the plane changes */
511 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
512 I915_READ(dspbase_reg);
513 }
514
515 if (!IS_I9XX(dev)) {
516 /* Wait for vblank for the disable to take effect */
517 intel_wait_for_vblank(dev);
518 }
519
520 /* Next, disable display pipes */
521 temp = I915_READ(pipeconf_reg);
522 if ((temp & PIPEACONF_ENABLE) != 0) {
523 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
524 I915_READ(pipeconf_reg);
525 }
526
527 /* Wait for vblank for the disable to take effect. */
528 intel_wait_for_vblank(dev);
529
530 temp = I915_READ(dpll_reg);
531 if ((temp & DPLL_VCO_ENABLE) != 0) {
532 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
533 I915_READ(dpll_reg);
534 }
535
536 /* Wait for the clocks to turn off. */
537 udelay(150);
538 break;
539 }
540
541 if (!dev->primary->master)
542 return;
543
544 master_priv = dev->primary->master->driver_priv;
545 if (!master_priv->sarea_priv)
546 return;
547
548 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
549
550 switch (pipe) {
551 case 0:
552 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
553 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
554 break;
555 case 1:
556 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
557 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
558 break;
559 default:
560 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
561 break;
562 }
563
564 intel_crtc->dpms_mode = mode;
565}
566
567static void intel_crtc_prepare (struct drm_crtc *crtc)
568{
569 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
570 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
571}
572
573static void intel_crtc_commit (struct drm_crtc *crtc)
574{
575 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
576 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
577}
578
579void intel_encoder_prepare (struct drm_encoder *encoder)
580{
581 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
582 /* lvds has its own version of prepare see intel_lvds_prepare */
583 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
584}
585
586void intel_encoder_commit (struct drm_encoder *encoder)
587{
588 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
589 /* lvds has its own version of commit see intel_lvds_commit */
590 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
591}
592
593static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
594 struct drm_display_mode *mode,
595 struct drm_display_mode *adjusted_mode)
596{
597 return true;
598}
599
600
601/** Returns the core display clock speed for i830 - i945 */
602static int intel_get_core_clock_speed(struct drm_device *dev)
603{
604
605 /* Core clock values taken from the published datasheets.
606 * The 830 may go up to 166 Mhz, which we should check.
607 */
608 if (IS_I945G(dev))
609 return 400000;
610 else if (IS_I915G(dev))
611 return 333000;
612 else if (IS_I945GM(dev) || IS_845G(dev))
613 return 200000;
614 else if (IS_I915GM(dev)) {
615 u16 gcfgc = 0;
616
617 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
618
619 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
620 return 133000;
621 else {
622 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
623 case GC_DISPLAY_CLOCK_333_MHZ:
624 return 333000;
625 default:
626 case GC_DISPLAY_CLOCK_190_200_MHZ:
627 return 190000;
628 }
629 }
630 } else if (IS_I865G(dev))
631 return 266000;
632 else if (IS_I855(dev)) {
633 u16 hpllcc = 0;
634 /* Assume that the hardware is in the high speed state. This
635 * should be the default.
636 */
637 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
638 case GC_CLOCK_133_200:
639 case GC_CLOCK_100_200:
640 return 200000;
641 case GC_CLOCK_166_250:
642 return 250000;
643 case GC_CLOCK_100_133:
644 return 133000;
645 }
646 } else /* 852, 830 */
647 return 133000;
648
649 return 0; /* Silence gcc warning */
650}
651
652
653/**
654 * Return the pipe currently connected to the panel fitter,
655 * or -1 if the panel fitter is not present or not in use
656 */
657static int intel_panel_fitter_pipe (struct drm_device *dev)
658{
659 struct drm_i915_private *dev_priv = dev->dev_private;
660 u32 pfit_control;
661
662 /* i830 doesn't have a panel fitter */
663 if (IS_I830(dev))
664 return -1;
665
666 pfit_control = I915_READ(PFIT_CONTROL);
667
668 /* See if the panel fitter is in use */
669 if ((pfit_control & PFIT_ENABLE) == 0)
670 return -1;
671
672 /* 965 can place panel fitter on either pipe */
673 if (IS_I965G(dev))
674 return (pfit_control >> 29) & 0x3;
675
676 /* older chips can only use pipe 1 */
677 return 1;
678}
679
680static void intel_crtc_mode_set(struct drm_crtc *crtc,
681 struct drm_display_mode *mode,
682 struct drm_display_mode *adjusted_mode,
683 int x, int y)
684{
685 struct drm_device *dev = crtc->dev;
686 struct drm_i915_private *dev_priv = dev->dev_private;
687 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
688 int pipe = intel_crtc->pipe;
689 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
690 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
691 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
692 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
693 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
694 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
695 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
696 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
697 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
698 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
699 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
700 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
701 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
702 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
703 int refclk;
704 intel_clock_t clock;
705 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
706 bool ok, is_sdvo = false, is_dvo = false;
707 bool is_crt = false, is_lvds = false, is_tv = false;
708 struct drm_mode_config *mode_config = &dev->mode_config;
709 struct drm_connector *connector;
710
711 drm_vblank_pre_modeset(dev, pipe);
712
713 list_for_each_entry(connector, &mode_config->connector_list, head) {
714 struct intel_output *intel_output = to_intel_output(connector);
715
716 if (!connector->encoder || connector->encoder->crtc != crtc)
717 continue;
718
719 switch (intel_output->type) {
720 case INTEL_OUTPUT_LVDS:
721 is_lvds = true;
722 break;
723 case INTEL_OUTPUT_SDVO:
724 is_sdvo = true;
725 break;
726 case INTEL_OUTPUT_DVO:
727 is_dvo = true;
728 break;
729 case INTEL_OUTPUT_TVOUT:
730 is_tv = true;
731 break;
732 case INTEL_OUTPUT_ANALOG:
733 is_crt = true;
734 break;
735 }
736 }
737
738 if (IS_I9XX(dev)) {
739 refclk = 96000;
740 } else {
741 refclk = 48000;
742 }
743
744 ok = intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock);
745 if (!ok) {
746 DRM_ERROR("Couldn't find PLL settings for mode!\n");
747 return;
748 }
749
750 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
751
752 dpll = DPLL_VGA_MODE_DIS;
753 if (IS_I9XX(dev)) {
754 if (is_lvds)
755 dpll |= DPLLB_MODE_LVDS;
756 else
757 dpll |= DPLLB_MODE_DAC_SERIAL;
758 if (is_sdvo) {
759 dpll |= DPLL_DVO_HIGH_SPEED;
760 if (IS_I945G(dev) || IS_I945GM(dev)) {
761 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
762 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
763 }
764 }
765
766 /* compute bitmask from p1 value */
767 dpll |= (1 << (clock.p1 - 1)) << 16;
768 switch (clock.p2) {
769 case 5:
770 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
771 break;
772 case 7:
773 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
774 break;
775 case 10:
776 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
777 break;
778 case 14:
779 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
780 break;
781 }
782 if (IS_I965G(dev))
783 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
784 } else {
785 if (is_lvds) {
786 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
787 } else {
788 if (clock.p1 == 2)
789 dpll |= PLL_P1_DIVIDE_BY_TWO;
790 else
791 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
792 if (clock.p2 == 4)
793 dpll |= PLL_P2_DIVIDE_BY_4;
794 }
795 }
796
797 if (is_tv) {
798 /* XXX: just matching BIOS for now */
799/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
800 dpll |= 3;
801 }
802 else
803 dpll |= PLL_REF_INPUT_DREFCLK;
804
805 /* setup pipeconf */
806 pipeconf = I915_READ(pipeconf_reg);
807
808 /* Set up the display plane register */
809 dspcntr = DISPPLANE_GAMMA_ENABLE;
810
811 if (pipe == 0)
812 dspcntr |= DISPPLANE_SEL_PIPE_A;
813 else
814 dspcntr |= DISPPLANE_SEL_PIPE_B;
815
816 if (pipe == 0 && !IS_I965G(dev)) {
817 /* Enable pixel doubling when the dot clock is > 90% of the (display)
818 * core speed.
819 *
820 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
821 * pipe == 0 check?
822 */
823 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
824 pipeconf |= PIPEACONF_DOUBLE_WIDE;
825 else
826 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
827 }
828
829 dspcntr |= DISPLAY_PLANE_ENABLE;
830 pipeconf |= PIPEACONF_ENABLE;
831 dpll |= DPLL_VCO_ENABLE;
832
833
834 /* Disable the panel fitter if it was on our pipe */
835 if (intel_panel_fitter_pipe(dev) == pipe)
836 I915_WRITE(PFIT_CONTROL, 0);
837
838 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
839 drm_mode_debug_printmodeline(mode);
840
841
842 if (dpll & DPLL_VCO_ENABLE) {
843 I915_WRITE(fp_reg, fp);
844 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
845 I915_READ(dpll_reg);
846 udelay(150);
847 }
848
849 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
850 * This is an exception to the general rule that mode_set doesn't turn
851 * things on.
852 */
853 if (is_lvds) {
854 u32 lvds = I915_READ(LVDS);
855
856 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
857 /* Set the B0-B3 data pairs corresponding to whether we're going to
858 * set the DPLLs for dual-channel mode or not.
859 */
860 if (clock.p2 == 7)
861 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
862 else
863 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
864
865 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
866 * appropriately here, but we need to look more thoroughly into how
867 * panels behave in the two modes.
868 */
869
870 I915_WRITE(LVDS, lvds);
871 I915_READ(LVDS);
872 }
873
874 I915_WRITE(fp_reg, fp);
875 I915_WRITE(dpll_reg, dpll);
876 I915_READ(dpll_reg);
877 /* Wait for the clocks to stabilize. */
878 udelay(150);
879
880 if (IS_I965G(dev)) {
881 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
882 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
883 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
884 } else {
885 /* write it again -- the BIOS does, after all */
886 I915_WRITE(dpll_reg, dpll);
887 }
888 I915_READ(dpll_reg);
889 /* Wait for the clocks to stabilize. */
890 udelay(150);
891
892 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
893 ((adjusted_mode->crtc_htotal - 1) << 16));
894 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
895 ((adjusted_mode->crtc_hblank_end - 1) << 16));
896 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
897 ((adjusted_mode->crtc_hsync_end - 1) << 16));
898 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
899 ((adjusted_mode->crtc_vtotal - 1) << 16));
900 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
901 ((adjusted_mode->crtc_vblank_end - 1) << 16));
902 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
903 ((adjusted_mode->crtc_vsync_end - 1) << 16));
904 /* pipesrc and dspsize control the size that is scaled from, which should
905 * always be the user's requested size.
906 */
907 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
908 I915_WRITE(dsppos_reg, 0);
909 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
910 I915_WRITE(pipeconf_reg, pipeconf);
911 I915_READ(pipeconf_reg);
912
913 intel_wait_for_vblank(dev);
914
915 I915_WRITE(dspcntr_reg, dspcntr);
916
917 /* Flush the plane changes */
918 intel_pipe_set_base(crtc, x, y);
919
920 intel_wait_for_vblank(dev);
921
922 drm_vblank_post_modeset(dev, pipe);
923}
924
925/** Loads the palette/gamma unit for the CRTC with the prepared values */
926void intel_crtc_load_lut(struct drm_crtc *crtc)
927{
928 struct drm_device *dev = crtc->dev;
929 struct drm_i915_private *dev_priv = dev->dev_private;
930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
931 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
932 int i;
933
934 /* The clocks have to be on to load the palette. */
935 if (!crtc->enabled)
936 return;
937
938 for (i = 0; i < 256; i++) {
939 I915_WRITE(palreg + 4 * i,
940 (intel_crtc->lut_r[i] << 16) |
941 (intel_crtc->lut_g[i] << 8) |
942 intel_crtc->lut_b[i]);
943 }
944}
945
946static int intel_crtc_cursor_set(struct drm_crtc *crtc,
947 struct drm_file *file_priv,
948 uint32_t handle,
949 uint32_t width, uint32_t height)
950{
951 struct drm_device *dev = crtc->dev;
952 struct drm_i915_private *dev_priv = dev->dev_private;
953 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
954 struct drm_gem_object *bo;
955 struct drm_i915_gem_object *obj_priv;
956 int pipe = intel_crtc->pipe;
957 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
958 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
959 uint32_t temp;
960 size_t addr;
961
962 DRM_DEBUG("\n");
963
964 /* if we want to turn off the cursor ignore width and height */
965 if (!handle) {
966 DRM_DEBUG("cursor off\n");
967 /* turn of the cursor */
968 temp = 0;
969 temp |= CURSOR_MODE_DISABLE;
970
971 I915_WRITE(control, temp);
972 I915_WRITE(base, 0);
973 return 0;
974 }
975
976 /* Currently we only support 64x64 cursors */
977 if (width != 64 || height != 64) {
978 DRM_ERROR("we currently only support 64x64 cursors\n");
979 return -EINVAL;
980 }
981
982 bo = drm_gem_object_lookup(dev, file_priv, handle);
983 if (!bo)
984 return -ENOENT;
985
986 obj_priv = bo->driver_private;
987
988 if (bo->size < width * height * 4) {
989 DRM_ERROR("buffer is to small\n");
990 drm_gem_object_unreference(bo);
991 return -ENOMEM;
992 }
993
994 if (dev_priv->cursor_needs_physical) {
995 addr = dev->agp->base + obj_priv->gtt_offset;
996 } else {
997 addr = obj_priv->gtt_offset;
998 }
999
1000 intel_crtc->cursor_addr = addr;
1001 temp = 0;
1002 /* set the pipe for the cursor */
1003 temp |= (pipe << 28);
1004 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1005
1006 I915_WRITE(control, temp);
1007 I915_WRITE(base, addr);
1008
1009 return 0;
1010}
1011
1012static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1013{
1014 struct drm_device *dev = crtc->dev;
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1017 int pipe = intel_crtc->pipe;
1018 uint32_t temp = 0;
1019 uint32_t adder;
1020
1021 if (x < 0) {
1022 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1023 x = -x;
1024 }
1025 if (y < 0) {
1026 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1027 y = -y;
1028 }
1029
1030 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1031 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1032
1033 adder = intel_crtc->cursor_addr;
1034 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1035 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1036
1037 return 0;
1038}
1039
1040/** Sets the color ramps on behalf of RandR */
1041void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1042 u16 blue, int regno)
1043{
1044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1045
1046 intel_crtc->lut_r[regno] = red >> 8;
1047 intel_crtc->lut_g[regno] = green >> 8;
1048 intel_crtc->lut_b[regno] = blue >> 8;
1049}
1050
1051static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1052 u16 *blue, uint32_t size)
1053{
1054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1055 int i;
1056
1057 if (size != 256)
1058 return;
1059
1060 for (i = 0; i < 256; i++) {
1061 intel_crtc->lut_r[i] = red[i] >> 8;
1062 intel_crtc->lut_g[i] = green[i] >> 8;
1063 intel_crtc->lut_b[i] = blue[i] >> 8;
1064 }
1065
1066 intel_crtc_load_lut(crtc);
1067}
1068
1069/**
1070 * Get a pipe with a simple mode set on it for doing load-based monitor
1071 * detection.
1072 *
1073 * It will be up to the load-detect code to adjust the pipe as appropriate for
1074 * its requirements. The pipe will be connected to no other outputs.
1075 *
1076 * Currently this code will only succeed if there is a pipe with no outputs
1077 * configured for it. In the future, it could choose to temporarily disable
1078 * some outputs to free up a pipe for its use.
1079 *
1080 * \return crtc, or NULL if no pipes are available.
1081 */
1082
1083/* VESA 640x480x72Hz mode to set on the pipe */
1084static struct drm_display_mode load_detect_mode = {
1085 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
1086 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1087};
1088
1089struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
1090 struct drm_display_mode *mode,
1091 int *dpms_mode)
1092{
1093 struct intel_crtc *intel_crtc;
1094 struct drm_crtc *possible_crtc;
1095 struct drm_crtc *supported_crtc =NULL;
1096 struct drm_encoder *encoder = &intel_output->enc;
1097 struct drm_crtc *crtc = NULL;
1098 struct drm_device *dev = encoder->dev;
1099 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1100 struct drm_crtc_helper_funcs *crtc_funcs;
1101 int i = -1;
1102
1103 /*
1104 * Algorithm gets a little messy:
1105 * - if the connector already has an assigned crtc, use it (but make
1106 * sure it's on first)
1107 * - try to find the first unused crtc that can drive this connector,
1108 * and use that if we find one
1109 * - if there are no unused crtcs available, try to use the first
1110 * one we found that supports the connector
1111 */
1112
1113 /* See if we already have a CRTC for this connector */
1114 if (encoder->crtc) {
1115 crtc = encoder->crtc;
1116 /* Make sure the crtc and connector are running */
1117 intel_crtc = to_intel_crtc(crtc);
1118 *dpms_mode = intel_crtc->dpms_mode;
1119 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1120 crtc_funcs = crtc->helper_private;
1121 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1122 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1123 }
1124 return crtc;
1125 }
1126
1127 /* Find an unused one (if possible) */
1128 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
1129 i++;
1130 if (!(encoder->possible_crtcs & (1 << i)))
1131 continue;
1132 if (!possible_crtc->enabled) {
1133 crtc = possible_crtc;
1134 break;
1135 }
1136 if (!supported_crtc)
1137 supported_crtc = possible_crtc;
1138 }
1139
1140 /*
1141 * If we didn't find an unused CRTC, don't use any.
1142 */
1143 if (!crtc) {
1144 return NULL;
1145 }
1146
1147 encoder->crtc = crtc;
1148 intel_output->load_detect_temp = true;
1149
1150 intel_crtc = to_intel_crtc(crtc);
1151 *dpms_mode = intel_crtc->dpms_mode;
1152
1153 if (!crtc->enabled) {
1154 if (!mode)
1155 mode = &load_detect_mode;
1156 drm_crtc_helper_set_mode(crtc, mode, 0, 0);
1157 } else {
1158 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1159 crtc_funcs = crtc->helper_private;
1160 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1161 }
1162
1163 /* Add this connector to the crtc */
1164 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
1165 encoder_funcs->commit(encoder);
1166 }
1167 /* let the connector get through one full cycle before testing */
1168 intel_wait_for_vblank(dev);
1169
1170 return crtc;
1171}
1172
1173void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
1174{
1175 struct drm_encoder *encoder = &intel_output->enc;
1176 struct drm_device *dev = encoder->dev;
1177 struct drm_crtc *crtc = encoder->crtc;
1178 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1179 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1180
1181 if (intel_output->load_detect_temp) {
1182 encoder->crtc = NULL;
1183 intel_output->load_detect_temp = false;
1184 crtc->enabled = drm_helper_crtc_in_use(crtc);
1185 drm_helper_disable_unused_functions(dev);
1186 }
1187
1188 /* Switch crtc and output back off if necessary */
1189 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
1190 if (encoder->crtc == crtc)
1191 encoder_funcs->dpms(encoder, dpms_mode);
1192 crtc_funcs->dpms(crtc, dpms_mode);
1193 }
1194}
1195
1196/* Returns the clock of the currently programmed mode of the given pipe. */
1197static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
1198{
1199 struct drm_i915_private *dev_priv = dev->dev_private;
1200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1201 int pipe = intel_crtc->pipe;
1202 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
1203 u32 fp;
1204 intel_clock_t clock;
1205
1206 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1207 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
1208 else
1209 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
1210
1211 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1212 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1213 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1214 if (IS_I9XX(dev)) {
1215 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
1216 DPLL_FPA01_P1_POST_DIV_SHIFT);
1217
1218 switch (dpll & DPLL_MODE_MASK) {
1219 case DPLLB_MODE_DAC_SERIAL:
1220 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
1221 5 : 10;
1222 break;
1223 case DPLLB_MODE_LVDS:
1224 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
1225 7 : 14;
1226 break;
1227 default:
1228 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
1229 "mode\n", (int)(dpll & DPLL_MODE_MASK));
1230 return 0;
1231 }
1232
1233 /* XXX: Handle the 100Mhz refclk */
1234 i9xx_clock(96000, &clock);
1235 } else {
1236 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
1237
1238 if (is_lvds) {
1239 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1240 DPLL_FPA01_P1_POST_DIV_SHIFT);
1241 clock.p2 = 14;
1242
1243 if ((dpll & PLL_REF_INPUT_MASK) ==
1244 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1245 /* XXX: might not be 66MHz */
1246 i8xx_clock(66000, &clock);
1247 } else
1248 i8xx_clock(48000, &clock);
1249 } else {
1250 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1251 clock.p1 = 2;
1252 else {
1253 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1254 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1255 }
1256 if (dpll & PLL_P2_DIVIDE_BY_4)
1257 clock.p2 = 4;
1258 else
1259 clock.p2 = 2;
1260
1261 i8xx_clock(48000, &clock);
1262 }
1263 }
1264
1265 /* XXX: It would be nice to validate the clocks, but we can't reuse
1266 * i830PllIsValid() because it relies on the xf86_config connector
1267 * configuration being accurate, which it isn't necessarily.
1268 */
1269
1270 return clock.dot;
1271}
1272
1273/** Returns the currently programmed mode of the given pipe. */
1274struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
1275 struct drm_crtc *crtc)
1276{
1277 struct drm_i915_private *dev_priv = dev->dev_private;
1278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1279 int pipe = intel_crtc->pipe;
1280 struct drm_display_mode *mode;
1281 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1282 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1283 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1284 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1285
1286 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1287 if (!mode)
1288 return NULL;
1289
1290 mode->clock = intel_crtc_clock_get(dev, crtc);
1291 mode->hdisplay = (htot & 0xffff) + 1;
1292 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1293 mode->hsync_start = (hsync & 0xffff) + 1;
1294 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1295 mode->vdisplay = (vtot & 0xffff) + 1;
1296 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1297 mode->vsync_start = (vsync & 0xffff) + 1;
1298 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1299
1300 drm_mode_set_name(mode);
1301 drm_mode_set_crtcinfo(mode, 0);
1302
1303 return mode;
1304}
1305
1306static void intel_crtc_destroy(struct drm_crtc *crtc)
1307{
1308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1309
1310 drm_crtc_cleanup(crtc);
1311 kfree(intel_crtc);
1312}
1313
1314static const struct drm_crtc_helper_funcs intel_helper_funcs = {
1315 .dpms = intel_crtc_dpms,
1316 .mode_fixup = intel_crtc_mode_fixup,
1317 .mode_set = intel_crtc_mode_set,
1318 .mode_set_base = intel_pipe_set_base,
1319 .prepare = intel_crtc_prepare,
1320 .commit = intel_crtc_commit,
1321};
1322
1323static const struct drm_crtc_funcs intel_crtc_funcs = {
1324 .cursor_set = intel_crtc_cursor_set,
1325 .cursor_move = intel_crtc_cursor_move,
1326 .gamma_set = intel_crtc_gamma_set,
1327 .set_config = drm_crtc_helper_set_config,
1328 .destroy = intel_crtc_destroy,
1329};
1330
1331
b358d0a6 1332static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945
JB
1333{
1334 struct intel_crtc *intel_crtc;
1335 int i;
1336
1337 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
1338 if (intel_crtc == NULL)
1339 return;
1340
1341 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
1342
1343 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
1344 intel_crtc->pipe = pipe;
1345 for (i = 0; i < 256; i++) {
1346 intel_crtc->lut_r[i] = i;
1347 intel_crtc->lut_g[i] = i;
1348 intel_crtc->lut_b[i] = i;
1349 }
1350
1351 intel_crtc->cursor_addr = 0;
1352 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
1353 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
1354
1355 intel_crtc->mode_set.crtc = &intel_crtc->base;
1356 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
1357 intel_crtc->mode_set.num_connectors = 0;
1358
1359 if (i915_fbpercrtc) {
1360
1361
1362
1363 }
1364}
1365
1366struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1367{
1368 struct drm_crtc *crtc = NULL;
1369
1370 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1372 if (intel_crtc->pipe == pipe)
1373 break;
1374 }
1375 return crtc;
1376}
1377
b358d0a6 1378static int intel_connector_clones(struct drm_device *dev, int type_mask)
79e53945
JB
1379{
1380 int index_mask = 0;
1381 struct drm_connector *connector;
1382 int entry = 0;
1383
1384 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1385 struct intel_output *intel_output = to_intel_output(connector);
1386 if (type_mask & (1 << intel_output->type))
1387 index_mask |= (1 << entry);
1388 entry++;
1389 }
1390 return index_mask;
1391}
1392
1393
1394static void intel_setup_outputs(struct drm_device *dev)
1395{
1396 struct drm_connector *connector;
1397
1398 intel_crt_init(dev);
1399
1400 /* Set up integrated LVDS */
1401 if (IS_MOBILE(dev) && !IS_I830(dev))
1402 intel_lvds_init(dev);
1403
1404 if (IS_I9XX(dev)) {
1405 intel_sdvo_init(dev, SDVOB);
1406 intel_sdvo_init(dev, SDVOC);
1407 } else
1408 intel_dvo_init(dev);
1409
1410 if (IS_I9XX(dev) && !IS_I915G(dev))
1411 intel_tv_init(dev);
1412
1413 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1414 struct intel_output *intel_output = to_intel_output(connector);
1415 struct drm_encoder *encoder = &intel_output->enc;
1416 int crtc_mask = 0, clone_mask = 0;
1417
1418 /* valid crtcs */
1419 switch(intel_output->type) {
1420 case INTEL_OUTPUT_DVO:
1421 case INTEL_OUTPUT_SDVO:
1422 crtc_mask = ((1 << 0)|
1423 (1 << 1));
1424 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1425 (1 << INTEL_OUTPUT_DVO) |
1426 (1 << INTEL_OUTPUT_SDVO));
1427 break;
1428 case INTEL_OUTPUT_ANALOG:
1429 crtc_mask = ((1 << 0)|
1430 (1 << 1));
1431 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1432 (1 << INTEL_OUTPUT_DVO) |
1433 (1 << INTEL_OUTPUT_SDVO));
1434 break;
1435 case INTEL_OUTPUT_LVDS:
1436 crtc_mask = (1 << 1);
1437 clone_mask = (1 << INTEL_OUTPUT_LVDS);
1438 break;
1439 case INTEL_OUTPUT_TVOUT:
1440 crtc_mask = ((1 << 0) |
1441 (1 << 1));
1442 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
1443 break;
1444 }
1445 encoder->possible_crtcs = crtc_mask;
1446 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
1447 }
1448}
1449
1450static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
1451{
1452 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1453 struct drm_device *dev = fb->dev;
1454
1455 if (fb->fbdev)
1456 intelfb_remove(dev, fb);
1457
1458 drm_framebuffer_cleanup(fb);
1459 mutex_lock(&dev->struct_mutex);
1460 drm_gem_object_unreference(intel_fb->obj);
1461 mutex_unlock(&dev->struct_mutex);
1462
1463 kfree(intel_fb);
1464}
1465
1466static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
1467 struct drm_file *file_priv,
1468 unsigned int *handle)
1469{
1470 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1471 struct drm_gem_object *object = intel_fb->obj;
1472
1473 return drm_gem_handle_create(file_priv, object, handle);
1474}
1475
1476static const struct drm_framebuffer_funcs intel_fb_funcs = {
1477 .destroy = intel_user_framebuffer_destroy,
1478 .create_handle = intel_user_framebuffer_create_handle,
1479};
1480
1481int intel_framebuffer_create(struct drm_device *dev,
1482 struct drm_mode_fb_cmd *mode_cmd,
1483 struct drm_framebuffer **fb,
1484 struct drm_gem_object *obj)
1485{
1486 struct intel_framebuffer *intel_fb;
1487 int ret;
1488
1489 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1490 if (!intel_fb)
1491 return -ENOMEM;
1492
1493 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
1494 if (ret) {
1495 DRM_ERROR("framebuffer init failed %d\n", ret);
1496 return ret;
1497 }
1498
1499 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
1500
1501 intel_fb->obj = obj;
1502
1503 *fb = &intel_fb->base;
1504
1505 return 0;
1506}
1507
1508
1509static struct drm_framebuffer *
1510intel_user_framebuffer_create(struct drm_device *dev,
1511 struct drm_file *filp,
1512 struct drm_mode_fb_cmd *mode_cmd)
1513{
1514 struct drm_gem_object *obj;
1515 struct drm_framebuffer *fb;
1516 int ret;
1517
1518 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
1519 if (!obj)
1520 return NULL;
1521
1522 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
1523 if (ret) {
1524 drm_gem_object_unreference(obj);
1525 return NULL;
1526 }
1527
1528 return fb;
1529}
1530
79e53945 1531static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945
JB
1532 .fb_create = intel_user_framebuffer_create,
1533 .fb_changed = intelfb_probe,
1534};
1535
1536void intel_modeset_init(struct drm_device *dev)
1537{
1538 int num_pipe;
1539 int i;
1540
1541 drm_mode_config_init(dev);
1542
1543 dev->mode_config.min_width = 0;
1544 dev->mode_config.min_height = 0;
1545
1546 dev->mode_config.funcs = (void *)&intel_mode_funcs;
1547
1548 if (IS_I965G(dev)) {
1549 dev->mode_config.max_width = 8192;
1550 dev->mode_config.max_height = 8192;
1551 } else {
1552 dev->mode_config.max_width = 2048;
1553 dev->mode_config.max_height = 2048;
1554 }
1555
1556 /* set memory base */
1557 if (IS_I9XX(dev))
1558 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
1559 else
1560 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
1561
1562 if (IS_MOBILE(dev) || IS_I9XX(dev))
1563 num_pipe = 2;
1564 else
1565 num_pipe = 1;
1566 DRM_DEBUG("%d display pipe%s available.\n",
1567 num_pipe, num_pipe > 1 ? "s" : "");
1568
1569 for (i = 0; i < num_pipe; i++) {
1570 intel_crtc_init(dev, i);
1571 }
1572
1573 intel_setup_outputs(dev);
1574}
1575
1576void intel_modeset_cleanup(struct drm_device *dev)
1577{
1578 drm_mode_config_cleanup(dev);
1579}
1580
1581
1582/* current intel driver doesn't take advantage of encoders
1583 always give back the encoder for the connector
1584*/
1585struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
1586{
1587 struct intel_output *intel_output = to_intel_output(connector);
1588
1589 return &intel_output->enc;
1590}