]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: disable VGA plane reliably
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/i2c.h>
7662c8bd 28#include <linux/kernel.h>
79e53945
JB
29#include "drmP.h"
30#include "intel_drv.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
a4fc5ed6 33#include "intel_dp.h"
79e53945
JB
34
35#include "drm_crtc_helper.h"
36
37bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
7662c8bd 38static void intel_update_watermarks(struct drm_device *dev);
79e53945
JB
39
40typedef struct {
41 /* given values */
42 int n;
43 int m1, m2;
44 int p1, p2;
45 /* derived values */
46 int dot;
47 int vco;
48 int m;
49 int p;
50} intel_clock_t;
51
52typedef struct {
53 int min, max;
54} intel_range_t;
55
56typedef struct {
57 int dot_limit;
58 int p2_slow, p2_fast;
59} intel_p2_t;
60
61#define INTEL_P2_NUM 2
d4906093
ML
62typedef struct intel_limit intel_limit_t;
63struct intel_limit {
79e53945
JB
64 intel_range_t dot, vco, n, m, m1, m2, p, p1;
65 intel_p2_t p2;
d4906093
ML
66 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
67 int, int, intel_clock_t *);
68};
79e53945
JB
69
70#define I8XX_DOT_MIN 25000
71#define I8XX_DOT_MAX 350000
72#define I8XX_VCO_MIN 930000
73#define I8XX_VCO_MAX 1400000
74#define I8XX_N_MIN 3
75#define I8XX_N_MAX 16
76#define I8XX_M_MIN 96
77#define I8XX_M_MAX 140
78#define I8XX_M1_MIN 18
79#define I8XX_M1_MAX 26
80#define I8XX_M2_MIN 6
81#define I8XX_M2_MAX 16
82#define I8XX_P_MIN 4
83#define I8XX_P_MAX 128
84#define I8XX_P1_MIN 2
85#define I8XX_P1_MAX 33
86#define I8XX_P1_LVDS_MIN 1
87#define I8XX_P1_LVDS_MAX 6
88#define I8XX_P2_SLOW 4
89#define I8XX_P2_FAST 2
90#define I8XX_P2_LVDS_SLOW 14
91#define I8XX_P2_LVDS_FAST 14 /* No fast option */
92#define I8XX_P2_SLOW_LIMIT 165000
93
94#define I9XX_DOT_MIN 20000
95#define I9XX_DOT_MAX 400000
96#define I9XX_VCO_MIN 1400000
97#define I9XX_VCO_MAX 2800000
2177832f
SL
98#define IGD_VCO_MIN 1700000
99#define IGD_VCO_MAX 3500000
f3cade5c
KH
100#define I9XX_N_MIN 1
101#define I9XX_N_MAX 6
2177832f
SL
102/* IGD's Ncounter is a ring counter */
103#define IGD_N_MIN 3
104#define IGD_N_MAX 6
79e53945
JB
105#define I9XX_M_MIN 70
106#define I9XX_M_MAX 120
2177832f
SL
107#define IGD_M_MIN 2
108#define IGD_M_MAX 256
79e53945 109#define I9XX_M1_MIN 10
f3cade5c 110#define I9XX_M1_MAX 22
79e53945
JB
111#define I9XX_M2_MIN 5
112#define I9XX_M2_MAX 9
2177832f
SL
113/* IGD M1 is reserved, and must be 0 */
114#define IGD_M1_MIN 0
115#define IGD_M1_MAX 0
116#define IGD_M2_MIN 0
117#define IGD_M2_MAX 254
79e53945
JB
118#define I9XX_P_SDVO_DAC_MIN 5
119#define I9XX_P_SDVO_DAC_MAX 80
120#define I9XX_P_LVDS_MIN 7
121#define I9XX_P_LVDS_MAX 98
2177832f
SL
122#define IGD_P_LVDS_MIN 7
123#define IGD_P_LVDS_MAX 112
79e53945
JB
124#define I9XX_P1_MIN 1
125#define I9XX_P1_MAX 8
126#define I9XX_P2_SDVO_DAC_SLOW 10
127#define I9XX_P2_SDVO_DAC_FAST 5
128#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
129#define I9XX_P2_LVDS_SLOW 14
130#define I9XX_P2_LVDS_FAST 7
131#define I9XX_P2_LVDS_SLOW_LIMIT 112000
132
044c7c41
ML
133/*The parameter is for SDVO on G4x platform*/
134#define G4X_DOT_SDVO_MIN 25000
135#define G4X_DOT_SDVO_MAX 270000
136#define G4X_VCO_MIN 1750000
137#define G4X_VCO_MAX 3500000
138#define G4X_N_SDVO_MIN 1
139#define G4X_N_SDVO_MAX 4
140#define G4X_M_SDVO_MIN 104
141#define G4X_M_SDVO_MAX 138
142#define G4X_M1_SDVO_MIN 17
143#define G4X_M1_SDVO_MAX 23
144#define G4X_M2_SDVO_MIN 5
145#define G4X_M2_SDVO_MAX 11
146#define G4X_P_SDVO_MIN 10
147#define G4X_P_SDVO_MAX 30
148#define G4X_P1_SDVO_MIN 1
149#define G4X_P1_SDVO_MAX 3
150#define G4X_P2_SDVO_SLOW 10
151#define G4X_P2_SDVO_FAST 10
152#define G4X_P2_SDVO_LIMIT 270000
153
154/*The parameter is for HDMI_DAC on G4x platform*/
155#define G4X_DOT_HDMI_DAC_MIN 22000
156#define G4X_DOT_HDMI_DAC_MAX 400000
157#define G4X_N_HDMI_DAC_MIN 1
158#define G4X_N_HDMI_DAC_MAX 4
159#define G4X_M_HDMI_DAC_MIN 104
160#define G4X_M_HDMI_DAC_MAX 138
161#define G4X_M1_HDMI_DAC_MIN 16
162#define G4X_M1_HDMI_DAC_MAX 23
163#define G4X_M2_HDMI_DAC_MIN 5
164#define G4X_M2_HDMI_DAC_MAX 11
165#define G4X_P_HDMI_DAC_MIN 5
166#define G4X_P_HDMI_DAC_MAX 80
167#define G4X_P1_HDMI_DAC_MIN 1
168#define G4X_P1_HDMI_DAC_MAX 8
169#define G4X_P2_HDMI_DAC_SLOW 10
170#define G4X_P2_HDMI_DAC_FAST 5
171#define G4X_P2_HDMI_DAC_LIMIT 165000
172
173/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
174#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
175#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
176#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
177#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
178#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
179#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
180#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
181#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
182#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
183#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
184#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
185#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
186#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
187#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
188#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
189#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
190#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
191
192/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
193#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
194#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
195#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
196#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
197#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
198#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
199#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
200#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
201#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
202#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
203#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
204#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
205#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
206#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
207#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
208#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
209#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
210
a4fc5ed6
KP
211/*The parameter is for DISPLAY PORT on G4x platform*/
212#define G4X_DOT_DISPLAY_PORT_MIN 161670
213#define G4X_DOT_DISPLAY_PORT_MAX 227000
214#define G4X_N_DISPLAY_PORT_MIN 1
215#define G4X_N_DISPLAY_PORT_MAX 2
216#define G4X_M_DISPLAY_PORT_MIN 97
217#define G4X_M_DISPLAY_PORT_MAX 108
218#define G4X_M1_DISPLAY_PORT_MIN 0x10
219#define G4X_M1_DISPLAY_PORT_MAX 0x12
220#define G4X_M2_DISPLAY_PORT_MIN 0x05
221#define G4X_M2_DISPLAY_PORT_MAX 0x06
222#define G4X_P_DISPLAY_PORT_MIN 10
223#define G4X_P_DISPLAY_PORT_MAX 20
224#define G4X_P1_DISPLAY_PORT_MIN 1
225#define G4X_P1_DISPLAY_PORT_MAX 2
226#define G4X_P2_DISPLAY_PORT_SLOW 10
227#define G4X_P2_DISPLAY_PORT_FAST 10
228#define G4X_P2_DISPLAY_PORT_LIMIT 0
229
2c07245f
ZW
230/* IGDNG */
231/* as we calculate clock using (register_value + 2) for
232 N/M1/M2, so here the range value for them is (actual_value-2).
233 */
234#define IGDNG_DOT_MIN 25000
235#define IGDNG_DOT_MAX 350000
236#define IGDNG_VCO_MIN 1760000
237#define IGDNG_VCO_MAX 3510000
238#define IGDNG_N_MIN 1
239#define IGDNG_N_MAX 5
240#define IGDNG_M_MIN 79
241#define IGDNG_M_MAX 118
242#define IGDNG_M1_MIN 12
243#define IGDNG_M1_MAX 23
244#define IGDNG_M2_MIN 5
245#define IGDNG_M2_MAX 9
246#define IGDNG_P_SDVO_DAC_MIN 5
247#define IGDNG_P_SDVO_DAC_MAX 80
248#define IGDNG_P_LVDS_MIN 28
249#define IGDNG_P_LVDS_MAX 112
250#define IGDNG_P1_MIN 1
251#define IGDNG_P1_MAX 8
252#define IGDNG_P2_SDVO_DAC_SLOW 10
253#define IGDNG_P2_SDVO_DAC_FAST 5
254#define IGDNG_P2_LVDS_SLOW 14 /* single channel */
255#define IGDNG_P2_LVDS_FAST 7 /* double channel */
256#define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
257
d4906093
ML
258static bool
259intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
260 int target, int refclk, intel_clock_t *best_clock);
261static bool
262intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
263 int target, int refclk, intel_clock_t *best_clock);
2c07245f
ZW
264static bool
265intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
266 int target, int refclk, intel_clock_t *best_clock);
79e53945 267
a4fc5ed6
KP
268static bool
269intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
270 int target, int refclk, intel_clock_t *best_clock);
271
e4b36699 272static const intel_limit_t intel_limits_i8xx_dvo = {
79e53945
JB
273 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
274 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
275 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
276 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
277 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
278 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
279 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
280 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
281 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
282 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
d4906093 283 .find_pll = intel_find_best_PLL,
e4b36699
KP
284};
285
286static const intel_limit_t intel_limits_i8xx_lvds = {
79e53945
JB
287 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
288 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
289 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
290 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
291 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
292 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
293 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
294 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
295 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
296 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
d4906093 297 .find_pll = intel_find_best_PLL,
e4b36699
KP
298};
299
300static const intel_limit_t intel_limits_i9xx_sdvo = {
79e53945
JB
301 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
302 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
303 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
304 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
305 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
306 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
307 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
308 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
309 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
310 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
d4906093 311 .find_pll = intel_find_best_PLL,
e4b36699
KP
312};
313
314static const intel_limit_t intel_limits_i9xx_lvds = {
79e53945
JB
315 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
316 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
317 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
318 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
319 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
320 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
321 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
322 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
323 /* The single-channel range is 25-112Mhz, and dual-channel
324 * is 80-224Mhz. Prefer single channel as much as possible.
325 */
326 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
327 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
d4906093 328 .find_pll = intel_find_best_PLL,
e4b36699
KP
329};
330
044c7c41 331 /* below parameter and function is for G4X Chipset Family*/
e4b36699 332static const intel_limit_t intel_limits_g4x_sdvo = {
044c7c41
ML
333 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
334 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
335 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
336 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
337 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
338 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
339 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
340 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
341 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
342 .p2_slow = G4X_P2_SDVO_SLOW,
343 .p2_fast = G4X_P2_SDVO_FAST
344 },
d4906093 345 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
346};
347
348static const intel_limit_t intel_limits_g4x_hdmi = {
044c7c41
ML
349 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
350 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
351 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
352 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
353 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
354 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
355 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
356 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
357 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
358 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
359 .p2_fast = G4X_P2_HDMI_DAC_FAST
360 },
d4906093 361 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
362};
363
364static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
044c7c41
ML
365 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
366 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
367 .vco = { .min = G4X_VCO_MIN,
368 .max = G4X_VCO_MAX },
369 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
370 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
371 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
372 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
373 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
374 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
375 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
376 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
377 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
378 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
379 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
380 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
381 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
382 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
383 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
384 },
d4906093 385 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
386};
387
388static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
044c7c41
ML
389 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
390 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
391 .vco = { .min = G4X_VCO_MIN,
392 .max = G4X_VCO_MAX },
393 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
394 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
395 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
396 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
397 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
398 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
399 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
400 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
401 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
402 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
403 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
404 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
405 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
406 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
407 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
408 },
d4906093 409 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
410};
411
412static const intel_limit_t intel_limits_g4x_display_port = {
a4fc5ed6
KP
413 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
414 .max = G4X_DOT_DISPLAY_PORT_MAX },
415 .vco = { .min = G4X_VCO_MIN,
416 .max = G4X_VCO_MAX},
417 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
418 .max = G4X_N_DISPLAY_PORT_MAX },
419 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
420 .max = G4X_M_DISPLAY_PORT_MAX },
421 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
422 .max = G4X_M1_DISPLAY_PORT_MAX },
423 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
424 .max = G4X_M2_DISPLAY_PORT_MAX },
425 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
426 .max = G4X_P_DISPLAY_PORT_MAX },
427 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
428 .max = G4X_P1_DISPLAY_PORT_MAX},
429 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
430 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
431 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
432 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
433};
434
435static const intel_limit_t intel_limits_igd_sdvo = {
2177832f
SL
436 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
437 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
438 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
439 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
440 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
441 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
442 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
443 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
444 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
445 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
6115707b 446 .find_pll = intel_find_best_PLL,
e4b36699
KP
447};
448
449static const intel_limit_t intel_limits_igd_lvds = {
2177832f
SL
450 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
451 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
452 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
453 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
454 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
455 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
456 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
457 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
458 /* IGD only supports single-channel mode. */
459 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
460 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
6115707b 461 .find_pll = intel_find_best_PLL,
e4b36699
KP
462};
463
464static const intel_limit_t intel_limits_igdng_sdvo = {
2c07245f
ZW
465 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
466 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
467 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
468 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
469 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
470 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
471 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
472 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
473 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
474 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
475 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
476 .find_pll = intel_igdng_find_best_PLL,
e4b36699
KP
477};
478
479static const intel_limit_t intel_limits_igdng_lvds = {
2c07245f
ZW
480 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
481 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
482 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
483 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
484 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
485 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
486 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
487 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
488 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
489 .p2_slow = IGDNG_P2_LVDS_SLOW,
490 .p2_fast = IGDNG_P2_LVDS_FAST },
491 .find_pll = intel_igdng_find_best_PLL,
79e53945
JB
492};
493
2c07245f
ZW
494static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
495{
496 const intel_limit_t *limit;
497 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 498 limit = &intel_limits_igdng_lvds;
2c07245f 499 else
e4b36699 500 limit = &intel_limits_igdng_sdvo;
2c07245f
ZW
501
502 return limit;
503}
504
044c7c41
ML
505static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
506{
507 struct drm_device *dev = crtc->dev;
508 struct drm_i915_private *dev_priv = dev->dev_private;
509 const intel_limit_t *limit;
510
511 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
512 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
513 LVDS_CLKB_POWER_UP)
514 /* LVDS with dual channel */
e4b36699 515 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
516 else
517 /* LVDS with dual channel */
e4b36699 518 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
519 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 521 limit = &intel_limits_g4x_hdmi;
044c7c41 522 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 523 limit = &intel_limits_g4x_sdvo;
a4fc5ed6 524 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 525 limit = &intel_limits_g4x_display_port;
044c7c41 526 } else /* The option is for other outputs */
e4b36699 527 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
528
529 return limit;
530}
531
79e53945
JB
532static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
533{
534 struct drm_device *dev = crtc->dev;
535 const intel_limit_t *limit;
536
2c07245f
ZW
537 if (IS_IGDNG(dev))
538 limit = intel_igdng_limit(crtc);
539 else if (IS_G4X(dev)) {
044c7c41 540 limit = intel_g4x_limit(crtc);
2177832f 541 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
79e53945 542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 543 limit = &intel_limits_i9xx_lvds;
79e53945 544 else
e4b36699 545 limit = &intel_limits_i9xx_sdvo;
2177832f
SL
546 } else if (IS_IGD(dev)) {
547 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 548 limit = &intel_limits_igd_lvds;
2177832f 549 else
e4b36699 550 limit = &intel_limits_igd_sdvo;
79e53945
JB
551 } else {
552 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 553 limit = &intel_limits_i8xx_lvds;
79e53945 554 else
e4b36699 555 limit = &intel_limits_i8xx_dvo;
79e53945
JB
556 }
557 return limit;
558}
559
2177832f
SL
560/* m1 is reserved as 0 in IGD, n is a ring counter */
561static void igd_clock(int refclk, intel_clock_t *clock)
79e53945 562{
2177832f
SL
563 clock->m = clock->m2 + 2;
564 clock->p = clock->p1 * clock->p2;
565 clock->vco = refclk * clock->m / clock->n;
566 clock->dot = clock->vco / clock->p;
567}
568
569static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
570{
571 if (IS_IGD(dev)) {
572 igd_clock(refclk, clock);
573 return;
574 }
79e53945
JB
575 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
576 clock->p = clock->p1 * clock->p2;
577 clock->vco = refclk * clock->m / (clock->n + 2);
578 clock->dot = clock->vco / clock->p;
579}
580
79e53945
JB
581/**
582 * Returns whether any output on the specified pipe is of the specified type
583 */
584bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
585{
586 struct drm_device *dev = crtc->dev;
587 struct drm_mode_config *mode_config = &dev->mode_config;
588 struct drm_connector *l_entry;
589
590 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
591 if (l_entry->encoder &&
592 l_entry->encoder->crtc == crtc) {
593 struct intel_output *intel_output = to_intel_output(l_entry);
594 if (intel_output->type == type)
595 return true;
596 }
597 }
598 return false;
599}
600
7c04d1d9 601#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
602/**
603 * Returns whether the given set of divisors are valid for a given refclk with
604 * the given connectors.
605 */
606
607static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
608{
609 const intel_limit_t *limit = intel_limit (crtc);
2177832f 610 struct drm_device *dev = crtc->dev;
79e53945
JB
611
612 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
613 INTELPllInvalid ("p1 out of range\n");
614 if (clock->p < limit->p.min || limit->p.max < clock->p)
615 INTELPllInvalid ("p out of range\n");
616 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
617 INTELPllInvalid ("m2 out of range\n");
618 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
619 INTELPllInvalid ("m1 out of range\n");
2177832f 620 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
79e53945
JB
621 INTELPllInvalid ("m1 <= m2\n");
622 if (clock->m < limit->m.min || limit->m.max < clock->m)
623 INTELPllInvalid ("m out of range\n");
624 if (clock->n < limit->n.min || limit->n.max < clock->n)
625 INTELPllInvalid ("n out of range\n");
626 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
627 INTELPllInvalid ("vco out of range\n");
628 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
629 * connector, etc., rather than just a single range.
630 */
631 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
632 INTELPllInvalid ("dot out of range\n");
633
634 return true;
635}
636
d4906093
ML
637static bool
638intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
639 int target, int refclk, intel_clock_t *best_clock)
640
79e53945
JB
641{
642 struct drm_device *dev = crtc->dev;
643 struct drm_i915_private *dev_priv = dev->dev_private;
644 intel_clock_t clock;
79e53945
JB
645 int err = target;
646
647 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 648 (I915_READ(LVDS)) != 0) {
79e53945
JB
649 /*
650 * For LVDS, if the panel is on, just rely on its current
651 * settings for dual-channel. We haven't figured out how to
652 * reliably set up different single/dual channel state, if we
653 * even can.
654 */
655 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
656 LVDS_CLKB_POWER_UP)
657 clock.p2 = limit->p2.p2_fast;
658 else
659 clock.p2 = limit->p2.p2_slow;
660 } else {
661 if (target < limit->p2.dot_limit)
662 clock.p2 = limit->p2.p2_slow;
663 else
664 clock.p2 = limit->p2.p2_fast;
665 }
666
667 memset (best_clock, 0, sizeof (*best_clock));
668
669 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
2177832f
SL
670 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
671 /* m1 is always 0 in IGD */
672 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
673 break;
79e53945
JB
674 for (clock.n = limit->n.min; clock.n <= limit->n.max;
675 clock.n++) {
676 for (clock.p1 = limit->p1.min;
677 clock.p1 <= limit->p1.max; clock.p1++) {
678 int this_err;
679
2177832f 680 intel_clock(dev, refclk, &clock);
79e53945
JB
681
682 if (!intel_PLL_is_valid(crtc, &clock))
683 continue;
684
685 this_err = abs(clock.dot - target);
686 if (this_err < err) {
687 *best_clock = clock;
688 err = this_err;
689 }
690 }
691 }
692 }
693 }
694
695 return (err != target);
696}
697
d4906093
ML
698static bool
699intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
700 int target, int refclk, intel_clock_t *best_clock)
701{
702 struct drm_device *dev = crtc->dev;
703 struct drm_i915_private *dev_priv = dev->dev_private;
704 intel_clock_t clock;
705 int max_n;
706 bool found;
707 /* approximately equals target * 0.00488 */
708 int err_most = (target >> 8) + (target >> 10);
709 found = false;
710
711 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
712 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
713 LVDS_CLKB_POWER_UP)
714 clock.p2 = limit->p2.p2_fast;
715 else
716 clock.p2 = limit->p2.p2_slow;
717 } else {
718 if (target < limit->p2.dot_limit)
719 clock.p2 = limit->p2.p2_slow;
720 else
721 clock.p2 = limit->p2.p2_fast;
722 }
723
724 memset(best_clock, 0, sizeof(*best_clock));
725 max_n = limit->n.max;
726 /* based on hardware requriment prefer smaller n to precision */
727 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
728 /* based on hardware requirment prefere larger m1,m2, p1 */
729 for (clock.m1 = limit->m1.max;
730 clock.m1 >= limit->m1.min; clock.m1--) {
731 for (clock.m2 = limit->m2.max;
732 clock.m2 >= limit->m2.min; clock.m2--) {
733 for (clock.p1 = limit->p1.max;
734 clock.p1 >= limit->p1.min; clock.p1--) {
735 int this_err;
736
2177832f 737 intel_clock(dev, refclk, &clock);
d4906093
ML
738 if (!intel_PLL_is_valid(crtc, &clock))
739 continue;
740 this_err = abs(clock.dot - target) ;
741 if (this_err < err_most) {
742 *best_clock = clock;
743 err_most = this_err;
744 max_n = clock.n;
745 found = true;
746 }
747 }
748 }
749 }
750 }
2c07245f
ZW
751 return found;
752}
753
754static bool
755intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
756 int target, int refclk, intel_clock_t *best_clock)
757{
758 struct drm_device *dev = crtc->dev;
759 struct drm_i915_private *dev_priv = dev->dev_private;
760 intel_clock_t clock;
761 int max_n;
762 bool found;
763 int err_most = 47;
764 found = false;
765
766 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
767 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
768 LVDS_CLKB_POWER_UP)
769 clock.p2 = limit->p2.p2_fast;
770 else
771 clock.p2 = limit->p2.p2_slow;
772 } else {
773 if (target < limit->p2.dot_limit)
774 clock.p2 = limit->p2.p2_slow;
775 else
776 clock.p2 = limit->p2.p2_fast;
777 }
778
779 memset(best_clock, 0, sizeof(*best_clock));
780 max_n = limit->n.max;
781 /* based on hardware requriment prefer smaller n to precision */
782 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
783 /* based on hardware requirment prefere larger m1,m2, p1 */
784 for (clock.m1 = limit->m1.max;
785 clock.m1 >= limit->m1.min; clock.m1--) {
786 for (clock.m2 = limit->m2.max;
787 clock.m2 >= limit->m2.min; clock.m2--) {
788 for (clock.p1 = limit->p1.max;
789 clock.p1 >= limit->p1.min; clock.p1--) {
790 int this_err;
d4906093 791
2c07245f
ZW
792 intel_clock(dev, refclk, &clock);
793 if (!intel_PLL_is_valid(crtc, &clock))
794 continue;
795 this_err = abs((10000 - (target*10000/clock.dot)));
796 if (this_err < err_most) {
797 *best_clock = clock;
798 err_most = this_err;
799 max_n = clock.n;
800 found = true;
801 /* found on first matching */
802 goto out;
803 }
804 }
805 }
806 }
807 }
808out:
d4906093
ML
809 return found;
810}
811
a4fc5ed6
KP
812/* DisplayPort has only two frequencies, 162MHz and 270MHz */
813static bool
814intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
815 int target, int refclk, intel_clock_t *best_clock)
816{
817 intel_clock_t clock;
818 if (target < 200000) {
a4fc5ed6
KP
819 clock.p1 = 2;
820 clock.p2 = 10;
b3d25495
KP
821 clock.n = 2;
822 clock.m1 = 23;
823 clock.m2 = 8;
a4fc5ed6 824 } else {
a4fc5ed6
KP
825 clock.p1 = 1;
826 clock.p2 = 10;
b3d25495
KP
827 clock.n = 1;
828 clock.m1 = 14;
829 clock.m2 = 2;
a4fc5ed6 830 }
b3d25495
KP
831 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
832 clock.p = (clock.p1 * clock.p2);
833 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
a4fc5ed6
KP
834 memcpy(best_clock, &clock, sizeof(intel_clock_t));
835 return true;
836}
837
79e53945
JB
838void
839intel_wait_for_vblank(struct drm_device *dev)
840{
841 /* Wait for 20ms, i.e. one cycle at 50hz. */
580982d3 842 mdelay(20);
79e53945
JB
843}
844
5c3b82e2 845static int
3c4fdcfb
KH
846intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
847 struct drm_framebuffer *old_fb)
79e53945
JB
848{
849 struct drm_device *dev = crtc->dev;
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct drm_i915_master_private *master_priv;
852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
853 struct intel_framebuffer *intel_fb;
854 struct drm_i915_gem_object *obj_priv;
855 struct drm_gem_object *obj;
856 int pipe = intel_crtc->pipe;
857 unsigned long Start, Offset;
858 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
859 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
860 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
f544847f 861 int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
79e53945 862 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
3c4fdcfb 863 u32 dspcntr, alignment;
5c3b82e2 864 int ret;
79e53945
JB
865
866 /* no fb bound */
867 if (!crtc->fb) {
868 DRM_DEBUG("No FB bound\n");
5c3b82e2
CW
869 return 0;
870 }
871
872 switch (pipe) {
873 case 0:
874 case 1:
875 break;
876 default:
877 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
878 return -EINVAL;
79e53945
JB
879 }
880
881 intel_fb = to_intel_framebuffer(crtc->fb);
79e53945
JB
882 obj = intel_fb->obj;
883 obj_priv = obj->driver_private;
884
3c4fdcfb
KH
885 switch (obj_priv->tiling_mode) {
886 case I915_TILING_NONE:
887 alignment = 64 * 1024;
888 break;
889 case I915_TILING_X:
2ebed176
CW
890 /* pin() will align the object as required by fence */
891 alignment = 0;
3c4fdcfb
KH
892 break;
893 case I915_TILING_Y:
894 /* FIXME: Is this true? */
895 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
5c3b82e2 896 return -EINVAL;
3c4fdcfb
KH
897 default:
898 BUG();
899 }
900
5c3b82e2 901 mutex_lock(&dev->struct_mutex);
8c4b8c3f 902 ret = i915_gem_object_pin(obj, alignment);
5c3b82e2
CW
903 if (ret != 0) {
904 mutex_unlock(&dev->struct_mutex);
905 return ret;
906 }
79e53945 907
8c4b8c3f 908 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
5c3b82e2 909 if (ret != 0) {
8c4b8c3f 910 i915_gem_object_unpin(obj);
5c3b82e2
CW
911 mutex_unlock(&dev->struct_mutex);
912 return ret;
913 }
79e53945 914
8c4b8c3f
CW
915 /* Pre-i965 needs to install a fence for tiled scan-out */
916 if (!IS_I965G(dev) &&
917 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
918 obj_priv->tiling_mode != I915_TILING_NONE) {
919 ret = i915_gem_object_get_fence_reg(obj);
920 if (ret != 0) {
921 i915_gem_object_unpin(obj);
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925 }
926
79e53945 927 dspcntr = I915_READ(dspcntr_reg);
712531bf
JB
928 /* Mask out pixel format bits in case we change it */
929 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
79e53945
JB
930 switch (crtc->fb->bits_per_pixel) {
931 case 8:
932 dspcntr |= DISPPLANE_8BPP;
933 break;
934 case 16:
935 if (crtc->fb->depth == 15)
936 dspcntr |= DISPPLANE_15_16BPP;
937 else
938 dspcntr |= DISPPLANE_16BPP;
939 break;
940 case 24:
941 case 32:
942 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
943 break;
944 default:
945 DRM_ERROR("Unknown color depth\n");
8c4b8c3f 946 i915_gem_object_unpin(obj);
5c3b82e2
CW
947 mutex_unlock(&dev->struct_mutex);
948 return -EINVAL;
79e53945 949 }
f544847f
JB
950 if (IS_I965G(dev)) {
951 if (obj_priv->tiling_mode != I915_TILING_NONE)
952 dspcntr |= DISPPLANE_TILED;
953 else
954 dspcntr &= ~DISPPLANE_TILED;
955 }
956
79e53945
JB
957 I915_WRITE(dspcntr_reg, dspcntr);
958
5c3b82e2
CW
959 Start = obj_priv->gtt_offset;
960 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
961
79e53945 962 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
5c3b82e2 963 I915_WRITE(dspstride, crtc->fb->pitch);
79e53945
JB
964 if (IS_I965G(dev)) {
965 I915_WRITE(dspbase, Offset);
966 I915_READ(dspbase);
967 I915_WRITE(dspsurf, Start);
968 I915_READ(dspsurf);
f544847f 969 I915_WRITE(dsptileoff, (y << 16) | x);
79e53945
JB
970 } else {
971 I915_WRITE(dspbase, Start + Offset);
972 I915_READ(dspbase);
973 }
974
3c4fdcfb
KH
975 intel_wait_for_vblank(dev);
976
977 if (old_fb) {
978 intel_fb = to_intel_framebuffer(old_fb);
979 i915_gem_object_unpin(intel_fb->obj);
980 }
5c3b82e2 981 mutex_unlock(&dev->struct_mutex);
79e53945
JB
982
983 if (!dev->primary->master)
5c3b82e2 984 return 0;
79e53945
JB
985
986 master_priv = dev->primary->master->driver_priv;
987 if (!master_priv->sarea_priv)
5c3b82e2 988 return 0;
79e53945 989
5c3b82e2 990 if (pipe) {
79e53945
JB
991 master_priv->sarea_priv->pipeB_x = x;
992 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
993 } else {
994 master_priv->sarea_priv->pipeA_x = x;
995 master_priv->sarea_priv->pipeA_y = y;
79e53945 996 }
5c3b82e2
CW
997
998 return 0;
79e53945
JB
999}
1000
24f119c7
ZW
1001/* Disable the VGA plane that we never use */
1002static void i915_disable_vga (struct drm_device *dev)
1003{
1004 struct drm_i915_private *dev_priv = dev->dev_private;
1005 u8 sr1;
1006 u32 vga_reg;
1007
1008 if (IS_IGDNG(dev))
1009 vga_reg = CPU_VGACNTRL;
1010 else
1011 vga_reg = VGACNTRL;
1012
1013 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1014 return;
1015
1016 I915_WRITE8(VGA_SR_INDEX, 1);
1017 sr1 = I915_READ8(VGA_SR_DATA);
1018 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1019 udelay(100);
1020
1021 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1022}
1023
2c07245f
ZW
1024static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1025{
1026 struct drm_device *dev = crtc->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1029 int pipe = intel_crtc->pipe;
7662c8bd 1030 int plane = intel_crtc->plane;
2c07245f
ZW
1031 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1032 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1033 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1034 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1035 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1036 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1037 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1038 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1039 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1040 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1041 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1042 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1043 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1044 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1045 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1046 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1047 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1048 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1049 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1050 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1051 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1052 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1053 u32 temp;
1054 int tries = 5, j;
79e53945 1055
2c07245f
ZW
1056 /* XXX: When our outputs are all unaware of DPMS modes other than off
1057 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1058 */
1059 switch (mode) {
1060 case DRM_MODE_DPMS_ON:
1061 case DRM_MODE_DPMS_STANDBY:
1062 case DRM_MODE_DPMS_SUSPEND:
1063 DRM_DEBUG("crtc %d dpms on\n", pipe);
1064 /* enable PCH DPLL */
1065 temp = I915_READ(pch_dpll_reg);
1066 if ((temp & DPLL_VCO_ENABLE) == 0) {
1067 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1068 I915_READ(pch_dpll_reg);
1069 }
79e53945 1070
2c07245f
ZW
1071 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1072 temp = I915_READ(fdi_rx_reg);
1073 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1074 FDI_SEL_PCDCLK |
1075 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1076 I915_READ(fdi_rx_reg);
1077 udelay(200);
1078
1079 /* Enable CPU FDI TX PLL, always on for IGDNG */
1080 temp = I915_READ(fdi_tx_reg);
1081 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1082 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1083 I915_READ(fdi_tx_reg);
1084 udelay(100);
1085 }
1086
1087 /* Enable CPU pipe */
1088 temp = I915_READ(pipeconf_reg);
1089 if ((temp & PIPEACONF_ENABLE) == 0) {
1090 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1091 I915_READ(pipeconf_reg);
1092 udelay(100);
1093 }
1094
1095 /* configure and enable CPU plane */
1096 temp = I915_READ(dspcntr_reg);
1097 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1098 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1099 /* Flush the plane changes */
1100 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1101 }
1102
1103 /* enable CPU FDI TX and PCH FDI RX */
1104 temp = I915_READ(fdi_tx_reg);
1105 temp |= FDI_TX_ENABLE;
1106 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1107 temp &= ~FDI_LINK_TRAIN_NONE;
1108 temp |= FDI_LINK_TRAIN_PATTERN_1;
1109 I915_WRITE(fdi_tx_reg, temp);
1110 I915_READ(fdi_tx_reg);
1111
1112 temp = I915_READ(fdi_rx_reg);
1113 temp &= ~FDI_LINK_TRAIN_NONE;
1114 temp |= FDI_LINK_TRAIN_PATTERN_1;
1115 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1116 I915_READ(fdi_rx_reg);
1117
1118 udelay(150);
1119
1120 /* Train FDI. */
1121 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1122 for train result */
1123 temp = I915_READ(fdi_rx_imr_reg);
1124 temp &= ~FDI_RX_SYMBOL_LOCK;
1125 temp &= ~FDI_RX_BIT_LOCK;
1126 I915_WRITE(fdi_rx_imr_reg, temp);
1127 I915_READ(fdi_rx_imr_reg);
1128 udelay(150);
1129
1130 temp = I915_READ(fdi_rx_iir_reg);
1131 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1132
1133 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1134 for (j = 0; j < tries; j++) {
1135 temp = I915_READ(fdi_rx_iir_reg);
1136 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1137 if (temp & FDI_RX_BIT_LOCK)
1138 break;
1139 udelay(200);
1140 }
1141 if (j != tries)
1142 I915_WRITE(fdi_rx_iir_reg,
1143 temp | FDI_RX_BIT_LOCK);
1144 else
1145 DRM_DEBUG("train 1 fail\n");
1146 } else {
1147 I915_WRITE(fdi_rx_iir_reg,
1148 temp | FDI_RX_BIT_LOCK);
1149 DRM_DEBUG("train 1 ok 2!\n");
1150 }
1151 temp = I915_READ(fdi_tx_reg);
1152 temp &= ~FDI_LINK_TRAIN_NONE;
1153 temp |= FDI_LINK_TRAIN_PATTERN_2;
1154 I915_WRITE(fdi_tx_reg, temp);
1155
1156 temp = I915_READ(fdi_rx_reg);
1157 temp &= ~FDI_LINK_TRAIN_NONE;
1158 temp |= FDI_LINK_TRAIN_PATTERN_2;
1159 I915_WRITE(fdi_rx_reg, temp);
1160
1161 udelay(150);
1162
1163 temp = I915_READ(fdi_rx_iir_reg);
1164 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1165
1166 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1167 for (j = 0; j < tries; j++) {
1168 temp = I915_READ(fdi_rx_iir_reg);
1169 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1170 if (temp & FDI_RX_SYMBOL_LOCK)
1171 break;
1172 udelay(200);
1173 }
1174 if (j != tries) {
1175 I915_WRITE(fdi_rx_iir_reg,
1176 temp | FDI_RX_SYMBOL_LOCK);
1177 DRM_DEBUG("train 2 ok 1!\n");
1178 } else
1179 DRM_DEBUG("train 2 fail\n");
1180 } else {
1181 I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
1182 DRM_DEBUG("train 2 ok 2!\n");
1183 }
1184 DRM_DEBUG("train done\n");
1185
1186 /* set transcoder timing */
1187 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1188 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1189 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1190
1191 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1192 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1193 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1194
1195 /* enable PCH transcoder */
1196 temp = I915_READ(transconf_reg);
1197 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1198 I915_READ(transconf_reg);
1199
1200 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1201 ;
1202
1203 /* enable normal */
1204
1205 temp = I915_READ(fdi_tx_reg);
1206 temp &= ~FDI_LINK_TRAIN_NONE;
1207 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1208 FDI_TX_ENHANCE_FRAME_ENABLE);
1209 I915_READ(fdi_tx_reg);
1210
1211 temp = I915_READ(fdi_rx_reg);
1212 temp &= ~FDI_LINK_TRAIN_NONE;
1213 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1214 FDI_RX_ENHANCE_FRAME_ENABLE);
1215 I915_READ(fdi_rx_reg);
1216
1217 /* wait one idle pattern time */
1218 udelay(100);
1219
1220 intel_crtc_load_lut(crtc);
1221
1222 break;
1223 case DRM_MODE_DPMS_OFF:
1224 DRM_DEBUG("crtc %d dpms off\n", pipe);
1225
24f119c7 1226 i915_disable_vga(dev);
2c07245f
ZW
1227
1228 /* Disable display plane */
1229 temp = I915_READ(dspcntr_reg);
1230 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1231 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1232 /* Flush the plane changes */
1233 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1234 I915_READ(dspbase_reg);
1235 }
1236
1237 /* disable cpu pipe, disable after all planes disabled */
1238 temp = I915_READ(pipeconf_reg);
1239 if ((temp & PIPEACONF_ENABLE) != 0) {
1240 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1241 I915_READ(pipeconf_reg);
1242 /* wait for cpu pipe off, pipe state */
1243 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0)
1244 ;
1245 } else
1246 DRM_DEBUG("crtc %d is disabled\n", pipe);
1247
1248 /* IGDNG-A : disable cpu panel fitter ? */
1249 temp = I915_READ(pf_ctl_reg);
1250 if ((temp & PF_ENABLE) != 0) {
1251 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1252 I915_READ(pf_ctl_reg);
1253 }
1254
1255 /* disable CPU FDI tx and PCH FDI rx */
1256 temp = I915_READ(fdi_tx_reg);
1257 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1258 I915_READ(fdi_tx_reg);
1259
1260 temp = I915_READ(fdi_rx_reg);
1261 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1262 I915_READ(fdi_rx_reg);
1263
1264 /* still set train pattern 1 */
1265 temp = I915_READ(fdi_tx_reg);
1266 temp &= ~FDI_LINK_TRAIN_NONE;
1267 temp |= FDI_LINK_TRAIN_PATTERN_1;
1268 I915_WRITE(fdi_tx_reg, temp);
1269
1270 temp = I915_READ(fdi_rx_reg);
1271 temp &= ~FDI_LINK_TRAIN_NONE;
1272 temp |= FDI_LINK_TRAIN_PATTERN_1;
1273 I915_WRITE(fdi_rx_reg, temp);
1274
1275 /* disable PCH transcoder */
1276 temp = I915_READ(transconf_reg);
1277 if ((temp & TRANS_ENABLE) != 0) {
1278 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1279 I915_READ(transconf_reg);
1280 /* wait for PCH transcoder off, transcoder state */
1281 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0)
1282 ;
1283 }
1284
1285 /* disable PCH DPLL */
1286 temp = I915_READ(pch_dpll_reg);
1287 if ((temp & DPLL_VCO_ENABLE) != 0) {
1288 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1289 I915_READ(pch_dpll_reg);
1290 }
1291
1292 temp = I915_READ(fdi_rx_reg);
1293 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1294 temp &= ~FDI_SEL_PCDCLK;
1295 temp &= ~FDI_RX_PLL_ENABLE;
1296 I915_WRITE(fdi_rx_reg, temp);
1297 I915_READ(fdi_rx_reg);
1298 }
1299
1300 /* Wait for the clocks to turn off. */
1301 udelay(150);
1302 break;
1303 }
1304}
1305
1306static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
79e53945
JB
1307{
1308 struct drm_device *dev = crtc->dev;
79e53945
JB
1309 struct drm_i915_private *dev_priv = dev->dev_private;
1310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1311 int pipe = intel_crtc->pipe;
1312 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1313 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1314 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1315 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1316 u32 temp;
79e53945
JB
1317
1318 /* XXX: When our outputs are all unaware of DPMS modes other than off
1319 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1320 */
1321 switch (mode) {
1322 case DRM_MODE_DPMS_ON:
1323 case DRM_MODE_DPMS_STANDBY:
1324 case DRM_MODE_DPMS_SUSPEND:
1325 /* Enable the DPLL */
1326 temp = I915_READ(dpll_reg);
1327 if ((temp & DPLL_VCO_ENABLE) == 0) {
1328 I915_WRITE(dpll_reg, temp);
1329 I915_READ(dpll_reg);
1330 /* Wait for the clocks to stabilize. */
1331 udelay(150);
1332 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1333 I915_READ(dpll_reg);
1334 /* Wait for the clocks to stabilize. */
1335 udelay(150);
1336 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1337 I915_READ(dpll_reg);
1338 /* Wait for the clocks to stabilize. */
1339 udelay(150);
1340 }
1341
1342 /* Enable the pipe */
1343 temp = I915_READ(pipeconf_reg);
1344 if ((temp & PIPEACONF_ENABLE) == 0)
1345 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1346
1347 /* Enable the plane */
1348 temp = I915_READ(dspcntr_reg);
1349 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1350 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1351 /* Flush the plane changes */
1352 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1353 }
1354
1355 intel_crtc_load_lut(crtc);
1356
1357 /* Give the overlay scaler a chance to enable if it's on this pipe */
1358 //intel_crtc_dpms_video(crtc, true); TODO
7662c8bd 1359 intel_update_watermarks(dev);
79e53945
JB
1360 break;
1361 case DRM_MODE_DPMS_OFF:
7662c8bd 1362 intel_update_watermarks(dev);
79e53945
JB
1363 /* Give the overlay scaler a chance to disable if it's on this pipe */
1364 //intel_crtc_dpms_video(crtc, FALSE); TODO
1365
1366 /* Disable the VGA plane that we never use */
24f119c7 1367 i915_disable_vga(dev);
79e53945
JB
1368
1369 /* Disable display plane */
1370 temp = I915_READ(dspcntr_reg);
1371 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1372 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1373 /* Flush the plane changes */
1374 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1375 I915_READ(dspbase_reg);
1376 }
1377
1378 if (!IS_I9XX(dev)) {
1379 /* Wait for vblank for the disable to take effect */
1380 intel_wait_for_vblank(dev);
1381 }
1382
1383 /* Next, disable display pipes */
1384 temp = I915_READ(pipeconf_reg);
1385 if ((temp & PIPEACONF_ENABLE) != 0) {
1386 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1387 I915_READ(pipeconf_reg);
1388 }
1389
1390 /* Wait for vblank for the disable to take effect. */
1391 intel_wait_for_vblank(dev);
1392
1393 temp = I915_READ(dpll_reg);
1394 if ((temp & DPLL_VCO_ENABLE) != 0) {
1395 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1396 I915_READ(dpll_reg);
1397 }
1398
1399 /* Wait for the clocks to turn off. */
1400 udelay(150);
1401 break;
1402 }
2c07245f
ZW
1403}
1404
1405/**
1406 * Sets the power management mode of the pipe and plane.
1407 *
1408 * This code should probably grow support for turning the cursor off and back
1409 * on appropriately at the same time as we're turning the pipe off/on.
1410 */
1411static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1412{
1413 struct drm_device *dev = crtc->dev;
1414 struct drm_i915_master_private *master_priv;
1415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1416 int pipe = intel_crtc->pipe;
1417 bool enabled;
1418
1419 if (IS_IGDNG(dev))
1420 igdng_crtc_dpms(crtc, mode);
1421 else
1422 i9xx_crtc_dpms(crtc, mode);
79e53945
JB
1423
1424 if (!dev->primary->master)
1425 return;
1426
1427 master_priv = dev->primary->master->driver_priv;
1428 if (!master_priv->sarea_priv)
1429 return;
1430
1431 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1432
1433 switch (pipe) {
1434 case 0:
1435 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1436 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1437 break;
1438 case 1:
1439 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1440 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1441 break;
1442 default:
1443 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1444 break;
1445 }
1446
1447 intel_crtc->dpms_mode = mode;
1448}
1449
1450static void intel_crtc_prepare (struct drm_crtc *crtc)
1451{
1452 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1453 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1454}
1455
1456static void intel_crtc_commit (struct drm_crtc *crtc)
1457{
1458 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1459 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1460}
1461
1462void intel_encoder_prepare (struct drm_encoder *encoder)
1463{
1464 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1465 /* lvds has its own version of prepare see intel_lvds_prepare */
1466 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1467}
1468
1469void intel_encoder_commit (struct drm_encoder *encoder)
1470{
1471 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1472 /* lvds has its own version of commit see intel_lvds_commit */
1473 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1474}
1475
1476static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1477 struct drm_display_mode *mode,
1478 struct drm_display_mode *adjusted_mode)
1479{
2c07245f
ZW
1480 struct drm_device *dev = crtc->dev;
1481 if (IS_IGDNG(dev)) {
1482 /* FDI link clock is fixed at 2.7G */
1483 if (mode->clock * 3 > 27000 * 4)
1484 return MODE_CLOCK_HIGH;
1485 }
79e53945
JB
1486 return true;
1487}
1488
1489
1490/** Returns the core display clock speed for i830 - i945 */
1491static int intel_get_core_clock_speed(struct drm_device *dev)
1492{
1493
1494 /* Core clock values taken from the published datasheets.
1495 * The 830 may go up to 166 Mhz, which we should check.
1496 */
1497 if (IS_I945G(dev))
1498 return 400000;
1499 else if (IS_I915G(dev))
1500 return 333000;
2177832f 1501 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
79e53945
JB
1502 return 200000;
1503 else if (IS_I915GM(dev)) {
1504 u16 gcfgc = 0;
1505
1506 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1507
1508 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1509 return 133000;
1510 else {
1511 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1512 case GC_DISPLAY_CLOCK_333_MHZ:
1513 return 333000;
1514 default:
1515 case GC_DISPLAY_CLOCK_190_200_MHZ:
1516 return 190000;
1517 }
1518 }
1519 } else if (IS_I865G(dev))
1520 return 266000;
1521 else if (IS_I855(dev)) {
1522 u16 hpllcc = 0;
1523 /* Assume that the hardware is in the high speed state. This
1524 * should be the default.
1525 */
1526 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1527 case GC_CLOCK_133_200:
1528 case GC_CLOCK_100_200:
1529 return 200000;
1530 case GC_CLOCK_166_250:
1531 return 250000;
1532 case GC_CLOCK_100_133:
1533 return 133000;
1534 }
1535 } else /* 852, 830 */
1536 return 133000;
1537
1538 return 0; /* Silence gcc warning */
1539}
1540
79e53945
JB
1541/**
1542 * Return the pipe currently connected to the panel fitter,
1543 * or -1 if the panel fitter is not present or not in use
1544 */
1545static int intel_panel_fitter_pipe (struct drm_device *dev)
1546{
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 u32 pfit_control;
1549
1550 /* i830 doesn't have a panel fitter */
1551 if (IS_I830(dev))
1552 return -1;
1553
1554 pfit_control = I915_READ(PFIT_CONTROL);
1555
1556 /* See if the panel fitter is in use */
1557 if ((pfit_control & PFIT_ENABLE) == 0)
1558 return -1;
1559
1560 /* 965 can place panel fitter on either pipe */
1561 if (IS_I965G(dev))
1562 return (pfit_control >> 29) & 0x3;
1563
1564 /* older chips can only use pipe 1 */
1565 return 1;
1566}
1567
2c07245f
ZW
1568struct fdi_m_n {
1569 u32 tu;
1570 u32 gmch_m;
1571 u32 gmch_n;
1572 u32 link_m;
1573 u32 link_n;
1574};
1575
1576static void
1577fdi_reduce_ratio(u32 *num, u32 *den)
1578{
1579 while (*num > 0xffffff || *den > 0xffffff) {
1580 *num >>= 1;
1581 *den >>= 1;
1582 }
1583}
1584
1585#define DATA_N 0x800000
1586#define LINK_N 0x80000
1587
1588static void
1589igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1590 int pixel_clock, int link_clock,
1591 struct fdi_m_n *m_n)
1592{
1593 u64 temp;
1594
1595 m_n->tu = 64; /* default size */
1596
1597 temp = (u64) DATA_N * pixel_clock;
1598 temp = div_u64(temp, link_clock);
956dba3c 1599 m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
2c07245f
ZW
1600 m_n->gmch_n = DATA_N;
1601 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1602
1603 temp = (u64) LINK_N * pixel_clock;
1604 m_n->link_m = div_u64(temp, link_clock);
1605 m_n->link_n = LINK_N;
1606 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1607}
1608
1609
7662c8bd
SL
1610struct intel_watermark_params {
1611 unsigned long fifo_size;
1612 unsigned long max_wm;
1613 unsigned long default_wm;
1614 unsigned long guard_size;
1615 unsigned long cacheline_size;
1616};
1617
1618/* IGD has different values for various configs */
1619static struct intel_watermark_params igd_display_wm = {
1620 IGD_DISPLAY_FIFO,
1621 IGD_MAX_WM,
1622 IGD_DFT_WM,
1623 IGD_GUARD_WM,
1624 IGD_FIFO_LINE_SIZE
1625};
1626static struct intel_watermark_params igd_display_hplloff_wm = {
1627 IGD_DISPLAY_FIFO,
1628 IGD_MAX_WM,
1629 IGD_DFT_HPLLOFF_WM,
1630 IGD_GUARD_WM,
1631 IGD_FIFO_LINE_SIZE
1632};
1633static struct intel_watermark_params igd_cursor_wm = {
1634 IGD_CURSOR_FIFO,
1635 IGD_CURSOR_MAX_WM,
1636 IGD_CURSOR_DFT_WM,
1637 IGD_CURSOR_GUARD_WM,
1638 IGD_FIFO_LINE_SIZE,
1639};
1640static struct intel_watermark_params igd_cursor_hplloff_wm = {
1641 IGD_CURSOR_FIFO,
1642 IGD_CURSOR_MAX_WM,
1643 IGD_CURSOR_DFT_WM,
1644 IGD_CURSOR_GUARD_WM,
1645 IGD_FIFO_LINE_SIZE
1646};
1647static struct intel_watermark_params i945_wm_info = {
dff33cfc 1648 I945_FIFO_SIZE,
7662c8bd
SL
1649 I915_MAX_WM,
1650 1,
dff33cfc
JB
1651 2,
1652 I915_FIFO_LINE_SIZE
7662c8bd
SL
1653};
1654static struct intel_watermark_params i915_wm_info = {
dff33cfc 1655 I915_FIFO_SIZE,
7662c8bd
SL
1656 I915_MAX_WM,
1657 1,
dff33cfc 1658 2,
7662c8bd
SL
1659 I915_FIFO_LINE_SIZE
1660};
1661static struct intel_watermark_params i855_wm_info = {
1662 I855GM_FIFO_SIZE,
1663 I915_MAX_WM,
1664 1,
dff33cfc 1665 2,
7662c8bd
SL
1666 I830_FIFO_LINE_SIZE
1667};
1668static struct intel_watermark_params i830_wm_info = {
1669 I830_FIFO_SIZE,
1670 I915_MAX_WM,
1671 1,
dff33cfc 1672 2,
7662c8bd
SL
1673 I830_FIFO_LINE_SIZE
1674};
1675
dff33cfc
JB
1676/**
1677 * intel_calculate_wm - calculate watermark level
1678 * @clock_in_khz: pixel clock
1679 * @wm: chip FIFO params
1680 * @pixel_size: display pixel size
1681 * @latency_ns: memory latency for the platform
1682 *
1683 * Calculate the watermark level (the level at which the display plane will
1684 * start fetching from memory again). Each chip has a different display
1685 * FIFO size and allocation, so the caller needs to figure that out and pass
1686 * in the correct intel_watermark_params structure.
1687 *
1688 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1689 * on the pixel size. When it reaches the watermark level, it'll start
1690 * fetching FIFO line sized based chunks from memory until the FIFO fills
1691 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1692 * will occur, and a display engine hang could result.
1693 */
7662c8bd
SL
1694static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1695 struct intel_watermark_params *wm,
1696 int pixel_size,
1697 unsigned long latency_ns)
1698{
390c4dd4 1699 long entries_required, wm_size;
dff33cfc
JB
1700
1701 entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
1702 entries_required /= wm->cacheline_size;
7662c8bd 1703
dff33cfc
JB
1704 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
1705
1706 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
1707
1708 DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
7662c8bd 1709
390c4dd4
JB
1710 /* Don't promote wm_size to unsigned... */
1711 if (wm_size > (long)wm->max_wm)
7662c8bd 1712 wm_size = wm->max_wm;
390c4dd4 1713 if (wm_size <= 0)
7662c8bd
SL
1714 wm_size = wm->default_wm;
1715 return wm_size;
1716}
1717
1718struct cxsr_latency {
1719 int is_desktop;
1720 unsigned long fsb_freq;
1721 unsigned long mem_freq;
1722 unsigned long display_sr;
1723 unsigned long display_hpll_disable;
1724 unsigned long cursor_sr;
1725 unsigned long cursor_hpll_disable;
1726};
1727
1728static struct cxsr_latency cxsr_latency_table[] = {
1729 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
1730 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
1731 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
1732
1733 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
1734 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
1735 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
1736
1737 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
1738 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
1739 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
1740
1741 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
1742 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
1743 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
1744
1745 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
1746 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
1747 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
1748
1749 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
1750 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
1751 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
1752};
1753
1754static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
1755 int mem)
1756{
1757 int i;
1758 struct cxsr_latency *latency;
1759
1760 if (fsb == 0 || mem == 0)
1761 return NULL;
1762
1763 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
1764 latency = &cxsr_latency_table[i];
1765 if (is_desktop == latency->is_desktop &&
1766 fsb == latency->fsb_freq && mem == latency->mem_freq)
1767 break;
1768 }
1769 if (i >= ARRAY_SIZE(cxsr_latency_table)) {
1770 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1771 return NULL;
1772 }
1773 return latency;
1774}
1775
1776static void igd_disable_cxsr(struct drm_device *dev)
1777{
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 u32 reg;
1780
1781 /* deactivate cxsr */
1782 reg = I915_READ(DSPFW3);
1783 reg &= ~(IGD_SELF_REFRESH_EN);
1784 I915_WRITE(DSPFW3, reg);
1785 DRM_INFO("Big FIFO is disabled\n");
1786}
1787
1788static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
1789 int pixel_size)
1790{
1791 struct drm_i915_private *dev_priv = dev->dev_private;
1792 u32 reg;
1793 unsigned long wm;
1794 struct cxsr_latency *latency;
1795
1796 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
1797 dev_priv->mem_freq);
1798 if (!latency) {
1799 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1800 igd_disable_cxsr(dev);
1801 return;
1802 }
1803
1804 /* Display SR */
1805 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
1806 latency->display_sr);
1807 reg = I915_READ(DSPFW1);
1808 reg &= 0x7fffff;
1809 reg |= wm << 23;
1810 I915_WRITE(DSPFW1, reg);
1811 DRM_DEBUG("DSPFW1 register is %x\n", reg);
1812
1813 /* cursor SR */
1814 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
1815 latency->cursor_sr);
1816 reg = I915_READ(DSPFW3);
1817 reg &= ~(0x3f << 24);
1818 reg |= (wm & 0x3f) << 24;
1819 I915_WRITE(DSPFW3, reg);
1820
1821 /* Display HPLL off SR */
1822 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
1823 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
1824 reg = I915_READ(DSPFW3);
1825 reg &= 0xfffffe00;
1826 reg |= wm & 0x1ff;
1827 I915_WRITE(DSPFW3, reg);
1828
1829 /* cursor HPLL off SR */
1830 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
1831 latency->cursor_hpll_disable);
1832 reg = I915_READ(DSPFW3);
1833 reg &= ~(0x3f << 16);
1834 reg |= (wm & 0x3f) << 16;
1835 I915_WRITE(DSPFW3, reg);
1836 DRM_DEBUG("DSPFW3 register is %x\n", reg);
1837
1838 /* activate cxsr */
1839 reg = I915_READ(DSPFW3);
1840 reg |= IGD_SELF_REFRESH_EN;
1841 I915_WRITE(DSPFW3, reg);
1842
1843 DRM_INFO("Big FIFO is enabled\n");
1844
1845 return;
1846}
1847
dff33cfc 1848const static int latency_ns = 3000; /* default for non-igd platforms */
7662c8bd 1849
dff33cfc
JB
1850static int intel_get_fifo_size(struct drm_device *dev, int plane)
1851{
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 uint32_t dsparb = I915_READ(DSPARB);
1854 int size;
1855
1856 if (IS_I9XX(dev)) {
1857 if (plane == 0)
1858 size = dsparb & 0x7f;
1859 else
1860 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
1861 (dsparb & 0x7f);
1862 } else if (IS_I85X(dev)) {
1863 if (plane == 0)
1864 size = dsparb & 0x1ff;
1865 else
1866 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
1867 (dsparb & 0x1ff);
1868 size >>= 1; /* Convert to cachelines */
1869 } else {
1870 size = dsparb & 0x7f;
1871 size >>= 1; /* Convert to cachelines */
1872 }
1873
1874 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
1875 size);
1876
1877 return size;
1878}
7662c8bd
SL
1879
1880static void i965_update_wm(struct drm_device *dev)
1881{
1882 struct drm_i915_private *dev_priv = dev->dev_private;
1883
1884 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
1885
1886 /* 965 has limitations... */
1887 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
1888 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1889}
1890
1891static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
1892 int planeb_clock, int sr_hdisplay, int pixel_size)
1893{
1894 struct drm_i915_private *dev_priv = dev->dev_private;
dff33cfc
JB
1895 uint32_t fwater_lo;
1896 uint32_t fwater_hi;
1897 int total_size, cacheline_size, cwm, srwm = 1;
1898 int planea_wm, planeb_wm;
1899 struct intel_watermark_params planea_params, planeb_params;
7662c8bd
SL
1900 unsigned long line_time_us;
1901 int sr_clock, sr_entries = 0;
1902
dff33cfc 1903 /* Create copies of the base settings for each pipe */
7662c8bd 1904 if (IS_I965GM(dev) || IS_I945GM(dev))
dff33cfc 1905 planea_params = planeb_params = i945_wm_info;
7662c8bd 1906 else if (IS_I9XX(dev))
dff33cfc 1907 planea_params = planeb_params = i915_wm_info;
7662c8bd 1908 else
dff33cfc 1909 planea_params = planeb_params = i855_wm_info;
7662c8bd 1910
dff33cfc
JB
1911 /* Grab a couple of global values before we overwrite them */
1912 total_size = planea_params.fifo_size;
1913 cacheline_size = planea_params.cacheline_size;
7662c8bd 1914
dff33cfc
JB
1915 /* Update per-plane FIFO sizes */
1916 planea_params.fifo_size = intel_get_fifo_size(dev, 0);
1917 planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
7662c8bd 1918
dff33cfc
JB
1919 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
1920 pixel_size, latency_ns);
1921 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
1922 pixel_size, latency_ns);
1923 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
1924
1925 /*
1926 * Overlay gets an aggressive default since video jitter is bad.
1927 */
1928 cwm = 2;
1929
dff33cfc 1930 /* Calc sr entries for one plane configs */
2a2430f4 1931 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
dff33cfc
JB
1932 /* self-refresh has much higher latency */
1933 const static int sr_latency_ns = 6000;
1934
7662c8bd 1935 sr_clock = planea_clock ? planea_clock : planeb_clock;
dff33cfc
JB
1936 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
1937
1938 /* Use ns/us then divide to preserve precision */
1939 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
1940 pixel_size * sr_hdisplay) / 1000;
1941 sr_entries = roundup(sr_entries / cacheline_size, 1);
1942 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
1943 srwm = total_size - sr_entries;
1944 if (srwm < 0)
1945 srwm = 1;
2a2430f4
JB
1946 if (IS_I9XX(dev))
1947 I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
7662c8bd
SL
1948 }
1949
1950 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
dff33cfc 1951 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 1952
dff33cfc
JB
1953 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1954 fwater_hi = (cwm & 0x1f);
1955
1956 /* Set request length to 8 cachelines per fetch */
1957 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1958 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
1959
1960 I915_WRITE(FW_BLC, fwater_lo);
1961 I915_WRITE(FW_BLC2, fwater_hi);
7662c8bd
SL
1962}
1963
1964static void i830_update_wm(struct drm_device *dev, int planea_clock,
1965 int pixel_size)
1966{
1967 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 1968 uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
dff33cfc 1969 int planea_wm;
7662c8bd 1970
dff33cfc 1971 i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
7662c8bd 1972
dff33cfc
JB
1973 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
1974 pixel_size, latency_ns);
1975 fwater_lo = fwater_lo | planea_wm;
7662c8bd
SL
1976
1977 I915_WRITE(FW_BLC, fwater_lo);
1978}
1979
1980/**
1981 * intel_update_watermarks - update FIFO watermark values based on current modes
1982 *
1983 * Calculate watermark values for the various WM regs based on current mode
1984 * and plane configuration.
1985 *
1986 * There are several cases to deal with here:
1987 * - normal (i.e. non-self-refresh)
1988 * - self-refresh (SR) mode
1989 * - lines are large relative to FIFO size (buffer can hold up to 2)
1990 * - lines are small relative to FIFO size (buffer can hold more than 2
1991 * lines), so need to account for TLB latency
1992 *
1993 * The normal calculation is:
1994 * watermark = dotclock * bytes per pixel * latency
1995 * where latency is platform & configuration dependent (we assume pessimal
1996 * values here).
1997 *
1998 * The SR calculation is:
1999 * watermark = (trunc(latency/line time)+1) * surface width *
2000 * bytes per pixel
2001 * where
2002 * line time = htotal / dotclock
2003 * and latency is assumed to be high, as above.
2004 *
2005 * The final value programmed to the register should always be rounded up,
2006 * and include an extra 2 entries to account for clock crossings.
2007 *
2008 * We don't use the sprite, so we can ignore that. And on Crestline we have
2009 * to set the non-SR watermarks to 8.
2010 */
2011static void intel_update_watermarks(struct drm_device *dev)
2012{
2013 struct drm_crtc *crtc;
2014 struct intel_crtc *intel_crtc;
2015 int sr_hdisplay = 0;
2016 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2017 int enabled = 0, pixel_size = 0;
2018
2019 if (DSPARB_HWCONTROL(dev))
2020 return;
2021
2022 /* Get the clock config from both planes */
2023 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2024 intel_crtc = to_intel_crtc(crtc);
2025 if (crtc->enabled) {
2026 enabled++;
2027 if (intel_crtc->plane == 0) {
2028 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2029 intel_crtc->pipe, crtc->mode.clock);
2030 planea_clock = crtc->mode.clock;
2031 } else {
2032 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2033 intel_crtc->pipe, crtc->mode.clock);
2034 planeb_clock = crtc->mode.clock;
2035 }
2036 sr_hdisplay = crtc->mode.hdisplay;
2037 sr_clock = crtc->mode.clock;
2038 if (crtc->fb)
2039 pixel_size = crtc->fb->bits_per_pixel / 8;
2040 else
2041 pixel_size = 4; /* by default */
2042 }
2043 }
2044
2045 if (enabled <= 0)
2046 return;
2047
dff33cfc 2048 /* Single plane configs can enable self refresh */
7662c8bd
SL
2049 if (enabled == 1 && IS_IGD(dev))
2050 igd_enable_cxsr(dev, sr_clock, pixel_size);
2051 else if (IS_IGD(dev))
2052 igd_disable_cxsr(dev);
2053
2054 if (IS_I965G(dev))
2055 i965_update_wm(dev);
2056 else if (IS_I9XX(dev) || IS_MOBILE(dev))
2057 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2058 pixel_size);
2059 else
2060 i830_update_wm(dev, planea_clock, pixel_size);
2061}
2062
5c3b82e2
CW
2063static int intel_crtc_mode_set(struct drm_crtc *crtc,
2064 struct drm_display_mode *mode,
2065 struct drm_display_mode *adjusted_mode,
2066 int x, int y,
2067 struct drm_framebuffer *old_fb)
79e53945
JB
2068{
2069 struct drm_device *dev = crtc->dev;
2070 struct drm_i915_private *dev_priv = dev->dev_private;
2071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2072 int pipe = intel_crtc->pipe;
2073 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2074 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2075 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2076 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
2077 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2078 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2079 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2080 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2081 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2082 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2083 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2084 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
2085 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
2086 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
43565a06 2087 int refclk, num_outputs = 0;
79e53945
JB
2088 intel_clock_t clock;
2089 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
2090 bool ok, is_sdvo = false, is_dvo = false;
a4fc5ed6 2091 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
79e53945
JB
2092 struct drm_mode_config *mode_config = &dev->mode_config;
2093 struct drm_connector *connector;
d4906093 2094 const intel_limit_t *limit;
5c3b82e2 2095 int ret;
2c07245f
ZW
2096 struct fdi_m_n m_n = {0};
2097 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2098 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2099 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2100 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2101 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2102 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2103 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
541998a1 2104 int lvds_reg = LVDS;
2c07245f
ZW
2105 u32 temp;
2106 int sdvo_pixel_multiply;
79e53945
JB
2107
2108 drm_vblank_pre_modeset(dev, pipe);
2109
2110 list_for_each_entry(connector, &mode_config->connector_list, head) {
2111 struct intel_output *intel_output = to_intel_output(connector);
2112
2113 if (!connector->encoder || connector->encoder->crtc != crtc)
2114 continue;
2115
2116 switch (intel_output->type) {
2117 case INTEL_OUTPUT_LVDS:
2118 is_lvds = true;
2119 break;
2120 case INTEL_OUTPUT_SDVO:
7d57382e 2121 case INTEL_OUTPUT_HDMI:
79e53945 2122 is_sdvo = true;
e2f0ba97
JB
2123 if (intel_output->needs_tv_clock)
2124 is_tv = true;
79e53945
JB
2125 break;
2126 case INTEL_OUTPUT_DVO:
2127 is_dvo = true;
2128 break;
2129 case INTEL_OUTPUT_TVOUT:
2130 is_tv = true;
2131 break;
2132 case INTEL_OUTPUT_ANALOG:
2133 is_crt = true;
2134 break;
a4fc5ed6
KP
2135 case INTEL_OUTPUT_DISPLAYPORT:
2136 is_dp = true;
2137 break;
79e53945 2138 }
43565a06
KH
2139
2140 num_outputs++;
79e53945
JB
2141 }
2142
43565a06
KH
2143 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2144 refclk = dev_priv->lvds_ssc_freq * 1000;
2145 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2146 } else if (IS_I9XX(dev)) {
79e53945 2147 refclk = 96000;
2c07245f
ZW
2148 if (IS_IGDNG(dev))
2149 refclk = 120000; /* 120Mhz refclk */
79e53945
JB
2150 } else {
2151 refclk = 48000;
2152 }
a4fc5ed6 2153
79e53945 2154
d4906093
ML
2155 /*
2156 * Returns a set of divisors for the desired target clock with the given
2157 * refclk, or FALSE. The returned values represent the clock equation:
2158 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2159 */
2160 limit = intel_limit(crtc);
2161 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
2162 if (!ok) {
2163 DRM_ERROR("Couldn't find PLL settings for mode!\n");
1f803ee5 2164 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 2165 return -EINVAL;
79e53945
JB
2166 }
2167
7026d4ac
ZW
2168 /* SDVO TV has fixed PLL values depend on its clock range,
2169 this mirrors vbios setting. */
2170 if (is_sdvo && is_tv) {
2171 if (adjusted_mode->clock >= 100000
2172 && adjusted_mode->clock < 140500) {
2173 clock.p1 = 2;
2174 clock.p2 = 10;
2175 clock.n = 3;
2176 clock.m1 = 16;
2177 clock.m2 = 8;
2178 } else if (adjusted_mode->clock >= 140500
2179 && adjusted_mode->clock <= 200000) {
2180 clock.p1 = 1;
2181 clock.p2 = 10;
2182 clock.n = 6;
2183 clock.m1 = 12;
2184 clock.m2 = 8;
2185 }
2186 }
2187
2c07245f
ZW
2188 /* FDI link */
2189 if (IS_IGDNG(dev))
2190 igdng_compute_m_n(3, 4, /* lane num 4 */
2191 adjusted_mode->clock,
2192 270000, /* lane clock */
2193 &m_n);
2194
2177832f
SL
2195 if (IS_IGD(dev))
2196 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2197 else
2198 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
79e53945 2199
2c07245f
ZW
2200 if (!IS_IGDNG(dev))
2201 dpll = DPLL_VGA_MODE_DIS;
2202
79e53945
JB
2203 if (IS_I9XX(dev)) {
2204 if (is_lvds)
2205 dpll |= DPLLB_MODE_LVDS;
2206 else
2207 dpll |= DPLLB_MODE_DAC_SERIAL;
2208 if (is_sdvo) {
2209 dpll |= DPLL_DVO_HIGH_SPEED;
2c07245f
ZW
2210 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2211 if (IS_I945G(dev) || IS_I945GM(dev))
79e53945 2212 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2c07245f
ZW
2213 else if (IS_IGDNG(dev))
2214 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 2215 }
a4fc5ed6
KP
2216 if (is_dp)
2217 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
2218
2219 /* compute bitmask from p1 value */
2177832f
SL
2220 if (IS_IGD(dev))
2221 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2c07245f 2222 else {
2177832f 2223 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2c07245f
ZW
2224 /* also FPA1 */
2225 if (IS_IGDNG(dev))
2226 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2227 }
79e53945
JB
2228 switch (clock.p2) {
2229 case 5:
2230 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2231 break;
2232 case 7:
2233 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2234 break;
2235 case 10:
2236 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2237 break;
2238 case 14:
2239 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2240 break;
2241 }
2c07245f 2242 if (IS_I965G(dev) && !IS_IGDNG(dev))
79e53945
JB
2243 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2244 } else {
2245 if (is_lvds) {
2246 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2247 } else {
2248 if (clock.p1 == 2)
2249 dpll |= PLL_P1_DIVIDE_BY_TWO;
2250 else
2251 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2252 if (clock.p2 == 4)
2253 dpll |= PLL_P2_DIVIDE_BY_4;
2254 }
2255 }
2256
43565a06
KH
2257 if (is_sdvo && is_tv)
2258 dpll |= PLL_REF_INPUT_TVCLKINBC;
2259 else if (is_tv)
79e53945 2260 /* XXX: just matching BIOS for now */
43565a06 2261 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 2262 dpll |= 3;
43565a06
KH
2263 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2264 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
2265 else
2266 dpll |= PLL_REF_INPUT_DREFCLK;
2267
2268 /* setup pipeconf */
2269 pipeconf = I915_READ(pipeconf_reg);
2270
2271 /* Set up the display plane register */
2272 dspcntr = DISPPLANE_GAMMA_ENABLE;
2273
2c07245f
ZW
2274 /* IGDNG's plane is forced to pipe, bit 24 is to
2275 enable color space conversion */
2276 if (!IS_IGDNG(dev)) {
2277 if (pipe == 0)
2278 dspcntr |= DISPPLANE_SEL_PIPE_A;
2279 else
2280 dspcntr |= DISPPLANE_SEL_PIPE_B;
2281 }
79e53945
JB
2282
2283 if (pipe == 0 && !IS_I965G(dev)) {
2284 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2285 * core speed.
2286 *
2287 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2288 * pipe == 0 check?
2289 */
2290 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2291 pipeconf |= PIPEACONF_DOUBLE_WIDE;
2292 else
2293 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2294 }
2295
2296 dspcntr |= DISPLAY_PLANE_ENABLE;
2297 pipeconf |= PIPEACONF_ENABLE;
2298 dpll |= DPLL_VCO_ENABLE;
2299
2300
2301 /* Disable the panel fitter if it was on our pipe */
2c07245f 2302 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
79e53945
JB
2303 I915_WRITE(PFIT_CONTROL, 0);
2304
2305 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2306 drm_mode_debug_printmodeline(mode);
2307
2c07245f
ZW
2308 /* assign to IGDNG registers */
2309 if (IS_IGDNG(dev)) {
2310 fp_reg = pch_fp_reg;
2311 dpll_reg = pch_dpll_reg;
2312 }
79e53945
JB
2313
2314 if (dpll & DPLL_VCO_ENABLE) {
2315 I915_WRITE(fp_reg, fp);
2316 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2317 I915_READ(dpll_reg);
2318 udelay(150);
2319 }
2320
2c07245f
ZW
2321 if (IS_IGDNG(dev)) {
2322 /* enable PCH clock reference source */
2323 /* XXX need to change the setting for other outputs */
2324 u32 temp;
2325 temp = I915_READ(PCH_DREF_CONTROL);
2326 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2327 temp |= DREF_NONSPREAD_CK505_ENABLE;
2328 temp &= ~DREF_SSC_SOURCE_MASK;
2329 temp |= DREF_SSC_SOURCE_ENABLE;
2330 temp &= ~DREF_SSC1_ENABLE;
2331 /* if no eDP, disable source output to CPU */
2332 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2333 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2334 I915_WRITE(PCH_DREF_CONTROL, temp);
2335 }
2336
79e53945
JB
2337 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2338 * This is an exception to the general rule that mode_set doesn't turn
2339 * things on.
2340 */
2341 if (is_lvds) {
541998a1 2342 u32 lvds;
79e53945 2343
541998a1
ZW
2344 if (IS_IGDNG(dev))
2345 lvds_reg = PCH_LVDS;
2346
2347 lvds = I915_READ(lvds_reg);
79e53945
JB
2348 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2349 /* Set the B0-B3 data pairs corresponding to whether we're going to
2350 * set the DPLLs for dual-channel mode or not.
2351 */
2352 if (clock.p2 == 7)
2353 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2354 else
2355 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2356
2357 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2358 * appropriately here, but we need to look more thoroughly into how
2359 * panels behave in the two modes.
2360 */
2361
541998a1
ZW
2362 I915_WRITE(lvds_reg, lvds);
2363 I915_READ(lvds_reg);
79e53945 2364 }
a4fc5ed6
KP
2365 if (is_dp)
2366 intel_dp_set_m_n(crtc, mode, adjusted_mode);
79e53945
JB
2367
2368 I915_WRITE(fp_reg, fp);
2369 I915_WRITE(dpll_reg, dpll);
2370 I915_READ(dpll_reg);
2371 /* Wait for the clocks to stabilize. */
2372 udelay(150);
2373
2c07245f
ZW
2374 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2375 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
79e53945
JB
2376 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2377 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2378 } else {
2379 /* write it again -- the BIOS does, after all */
2380 I915_WRITE(dpll_reg, dpll);
2381 }
2382 I915_READ(dpll_reg);
2383 /* Wait for the clocks to stabilize. */
2384 udelay(150);
2385
2386 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2387 ((adjusted_mode->crtc_htotal - 1) << 16));
2388 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2389 ((adjusted_mode->crtc_hblank_end - 1) << 16));
2390 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2391 ((adjusted_mode->crtc_hsync_end - 1) << 16));
2392 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2393 ((adjusted_mode->crtc_vtotal - 1) << 16));
2394 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2395 ((adjusted_mode->crtc_vblank_end - 1) << 16));
2396 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2397 ((adjusted_mode->crtc_vsync_end - 1) << 16));
2398 /* pipesrc and dspsize control the size that is scaled from, which should
2399 * always be the user's requested size.
2400 */
2c07245f
ZW
2401 if (!IS_IGDNG(dev)) {
2402 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2403 (mode->hdisplay - 1));
2404 I915_WRITE(dsppos_reg, 0);
2405 }
79e53945 2406 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f
ZW
2407
2408 if (IS_IGDNG(dev)) {
2409 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2410 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2411 I915_WRITE(link_m1_reg, m_n.link_m);
2412 I915_WRITE(link_n1_reg, m_n.link_n);
2413
2414 /* enable FDI RX PLL too */
2415 temp = I915_READ(fdi_rx_reg);
2416 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2417 udelay(200);
2418 }
2419
79e53945
JB
2420 I915_WRITE(pipeconf_reg, pipeconf);
2421 I915_READ(pipeconf_reg);
2422
2423 intel_wait_for_vblank(dev);
2424
2425 I915_WRITE(dspcntr_reg, dspcntr);
2426
2427 /* Flush the plane changes */
5c3b82e2 2428 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
2429
2430 intel_update_watermarks(dev);
2431
79e53945 2432 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 2433
1f803ee5 2434 return ret;
79e53945
JB
2435}
2436
2437/** Loads the palette/gamma unit for the CRTC with the prepared values */
2438void intel_crtc_load_lut(struct drm_crtc *crtc)
2439{
2440 struct drm_device *dev = crtc->dev;
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2443 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2444 int i;
2445
2446 /* The clocks have to be on to load the palette. */
2447 if (!crtc->enabled)
2448 return;
2449
2c07245f
ZW
2450 /* use legacy palette for IGDNG */
2451 if (IS_IGDNG(dev))
2452 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2453 LGC_PALETTE_B;
2454
79e53945
JB
2455 for (i = 0; i < 256; i++) {
2456 I915_WRITE(palreg + 4 * i,
2457 (intel_crtc->lut_r[i] << 16) |
2458 (intel_crtc->lut_g[i] << 8) |
2459 intel_crtc->lut_b[i]);
2460 }
2461}
2462
2463static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2464 struct drm_file *file_priv,
2465 uint32_t handle,
2466 uint32_t width, uint32_t height)
2467{
2468 struct drm_device *dev = crtc->dev;
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2471 struct drm_gem_object *bo;
2472 struct drm_i915_gem_object *obj_priv;
2473 int pipe = intel_crtc->pipe;
2474 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2475 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
14b60391 2476 uint32_t temp = I915_READ(control);
79e53945 2477 size_t addr;
3f8bc370 2478 int ret;
79e53945
JB
2479
2480 DRM_DEBUG("\n");
2481
2482 /* if we want to turn off the cursor ignore width and height */
2483 if (!handle) {
2484 DRM_DEBUG("cursor off\n");
14b60391
JB
2485 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2486 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2487 temp |= CURSOR_MODE_DISABLE;
2488 } else {
2489 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2490 }
3f8bc370
KH
2491 addr = 0;
2492 bo = NULL;
5004417d 2493 mutex_lock(&dev->struct_mutex);
3f8bc370 2494 goto finish;
79e53945
JB
2495 }
2496
2497 /* Currently we only support 64x64 cursors */
2498 if (width != 64 || height != 64) {
2499 DRM_ERROR("we currently only support 64x64 cursors\n");
2500 return -EINVAL;
2501 }
2502
2503 bo = drm_gem_object_lookup(dev, file_priv, handle);
2504 if (!bo)
2505 return -ENOENT;
2506
2507 obj_priv = bo->driver_private;
2508
2509 if (bo->size < width * height * 4) {
2510 DRM_ERROR("buffer is to small\n");
34b8686e
DA
2511 ret = -ENOMEM;
2512 goto fail;
79e53945
JB
2513 }
2514
71acb5eb 2515 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 2516 mutex_lock(&dev->struct_mutex);
71acb5eb
DA
2517 if (!dev_priv->cursor_needs_physical) {
2518 ret = i915_gem_object_pin(bo, PAGE_SIZE);
2519 if (ret) {
2520 DRM_ERROR("failed to pin cursor bo\n");
7f9872e0 2521 goto fail_locked;
71acb5eb 2522 }
79e53945 2523 addr = obj_priv->gtt_offset;
71acb5eb
DA
2524 } else {
2525 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
2526 if (ret) {
2527 DRM_ERROR("failed to attach phys object\n");
7f9872e0 2528 goto fail_locked;
71acb5eb
DA
2529 }
2530 addr = obj_priv->phys_obj->handle->busaddr;
3f8bc370
KH
2531 }
2532
14b60391
JB
2533 if (!IS_I9XX(dev))
2534 I915_WRITE(CURSIZE, (height << 12) | width);
2535
2536 /* Hooray for CUR*CNTR differences */
2537 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2538 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
2539 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
2540 temp |= (pipe << 28); /* Connect to correct pipe */
2541 } else {
2542 temp &= ~(CURSOR_FORMAT_MASK);
2543 temp |= CURSOR_ENABLE;
2544 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
2545 }
79e53945 2546
3f8bc370 2547 finish:
79e53945
JB
2548 I915_WRITE(control, temp);
2549 I915_WRITE(base, addr);
2550
3f8bc370 2551 if (intel_crtc->cursor_bo) {
71acb5eb
DA
2552 if (dev_priv->cursor_needs_physical) {
2553 if (intel_crtc->cursor_bo != bo)
2554 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
2555 } else
2556 i915_gem_object_unpin(intel_crtc->cursor_bo);
3f8bc370
KH
2557 drm_gem_object_unreference(intel_crtc->cursor_bo);
2558 }
7f9872e0 2559 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
2560
2561 intel_crtc->cursor_addr = addr;
2562 intel_crtc->cursor_bo = bo;
2563
79e53945 2564 return 0;
34b8686e
DA
2565fail:
2566 mutex_lock(&dev->struct_mutex);
7f9872e0 2567fail_locked:
34b8686e
DA
2568 drm_gem_object_unreference(bo);
2569 mutex_unlock(&dev->struct_mutex);
2570 return ret;
79e53945
JB
2571}
2572
2573static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2574{
2575 struct drm_device *dev = crtc->dev;
2576 struct drm_i915_private *dev_priv = dev->dev_private;
2577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2578 int pipe = intel_crtc->pipe;
2579 uint32_t temp = 0;
2580 uint32_t adder;
2581
2582 if (x < 0) {
2245fda8 2583 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
79e53945
JB
2584 x = -x;
2585 }
2586 if (y < 0) {
2245fda8 2587 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
79e53945
JB
2588 y = -y;
2589 }
2590
2245fda8
KP
2591 temp |= x << CURSOR_X_SHIFT;
2592 temp |= y << CURSOR_Y_SHIFT;
79e53945
JB
2593
2594 adder = intel_crtc->cursor_addr;
2595 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2596 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2597
2598 return 0;
2599}
2600
2601/** Sets the color ramps on behalf of RandR */
2602void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2603 u16 blue, int regno)
2604{
2605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2606
2607 intel_crtc->lut_r[regno] = red >> 8;
2608 intel_crtc->lut_g[regno] = green >> 8;
2609 intel_crtc->lut_b[regno] = blue >> 8;
2610}
2611
2612static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2613 u16 *blue, uint32_t size)
2614{
2615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2616 int i;
2617
2618 if (size != 256)
2619 return;
2620
2621 for (i = 0; i < 256; i++) {
2622 intel_crtc->lut_r[i] = red[i] >> 8;
2623 intel_crtc->lut_g[i] = green[i] >> 8;
2624 intel_crtc->lut_b[i] = blue[i] >> 8;
2625 }
2626
2627 intel_crtc_load_lut(crtc);
2628}
2629
2630/**
2631 * Get a pipe with a simple mode set on it for doing load-based monitor
2632 * detection.
2633 *
2634 * It will be up to the load-detect code to adjust the pipe as appropriate for
2635 * its requirements. The pipe will be connected to no other outputs.
2636 *
2637 * Currently this code will only succeed if there is a pipe with no outputs
2638 * configured for it. In the future, it could choose to temporarily disable
2639 * some outputs to free up a pipe for its use.
2640 *
2641 * \return crtc, or NULL if no pipes are available.
2642 */
2643
2644/* VESA 640x480x72Hz mode to set on the pipe */
2645static struct drm_display_mode load_detect_mode = {
2646 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2647 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2648};
2649
2650struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2651 struct drm_display_mode *mode,
2652 int *dpms_mode)
2653{
2654 struct intel_crtc *intel_crtc;
2655 struct drm_crtc *possible_crtc;
2656 struct drm_crtc *supported_crtc =NULL;
2657 struct drm_encoder *encoder = &intel_output->enc;
2658 struct drm_crtc *crtc = NULL;
2659 struct drm_device *dev = encoder->dev;
2660 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2661 struct drm_crtc_helper_funcs *crtc_funcs;
2662 int i = -1;
2663
2664 /*
2665 * Algorithm gets a little messy:
2666 * - if the connector already has an assigned crtc, use it (but make
2667 * sure it's on first)
2668 * - try to find the first unused crtc that can drive this connector,
2669 * and use that if we find one
2670 * - if there are no unused crtcs available, try to use the first
2671 * one we found that supports the connector
2672 */
2673
2674 /* See if we already have a CRTC for this connector */
2675 if (encoder->crtc) {
2676 crtc = encoder->crtc;
2677 /* Make sure the crtc and connector are running */
2678 intel_crtc = to_intel_crtc(crtc);
2679 *dpms_mode = intel_crtc->dpms_mode;
2680 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2681 crtc_funcs = crtc->helper_private;
2682 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2683 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2684 }
2685 return crtc;
2686 }
2687
2688 /* Find an unused one (if possible) */
2689 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2690 i++;
2691 if (!(encoder->possible_crtcs & (1 << i)))
2692 continue;
2693 if (!possible_crtc->enabled) {
2694 crtc = possible_crtc;
2695 break;
2696 }
2697 if (!supported_crtc)
2698 supported_crtc = possible_crtc;
2699 }
2700
2701 /*
2702 * If we didn't find an unused CRTC, don't use any.
2703 */
2704 if (!crtc) {
2705 return NULL;
2706 }
2707
2708 encoder->crtc = crtc;
03d60699 2709 intel_output->base.encoder = encoder;
79e53945
JB
2710 intel_output->load_detect_temp = true;
2711
2712 intel_crtc = to_intel_crtc(crtc);
2713 *dpms_mode = intel_crtc->dpms_mode;
2714
2715 if (!crtc->enabled) {
2716 if (!mode)
2717 mode = &load_detect_mode;
3c4fdcfb 2718 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
79e53945
JB
2719 } else {
2720 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2721 crtc_funcs = crtc->helper_private;
2722 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2723 }
2724
2725 /* Add this connector to the crtc */
2726 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2727 encoder_funcs->commit(encoder);
2728 }
2729 /* let the connector get through one full cycle before testing */
2730 intel_wait_for_vblank(dev);
2731
2732 return crtc;
2733}
2734
2735void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2736{
2737 struct drm_encoder *encoder = &intel_output->enc;
2738 struct drm_device *dev = encoder->dev;
2739 struct drm_crtc *crtc = encoder->crtc;
2740 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2741 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2742
2743 if (intel_output->load_detect_temp) {
2744 encoder->crtc = NULL;
03d60699 2745 intel_output->base.encoder = NULL;
79e53945
JB
2746 intel_output->load_detect_temp = false;
2747 crtc->enabled = drm_helper_crtc_in_use(crtc);
2748 drm_helper_disable_unused_functions(dev);
2749 }
2750
2751 /* Switch crtc and output back off if necessary */
2752 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2753 if (encoder->crtc == crtc)
2754 encoder_funcs->dpms(encoder, dpms_mode);
2755 crtc_funcs->dpms(crtc, dpms_mode);
2756 }
2757}
2758
2759/* Returns the clock of the currently programmed mode of the given pipe. */
2760static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2761{
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2764 int pipe = intel_crtc->pipe;
2765 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2766 u32 fp;
2767 intel_clock_t clock;
2768
2769 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2770 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2771 else
2772 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2773
2774 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2177832f
SL
2775 if (IS_IGD(dev)) {
2776 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2777 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2778 } else {
2779 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2780 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2781 }
2782
79e53945 2783 if (IS_I9XX(dev)) {
2177832f
SL
2784 if (IS_IGD(dev))
2785 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2786 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2787 else
2788 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
2789 DPLL_FPA01_P1_POST_DIV_SHIFT);
2790
2791 switch (dpll & DPLL_MODE_MASK) {
2792 case DPLLB_MODE_DAC_SERIAL:
2793 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2794 5 : 10;
2795 break;
2796 case DPLLB_MODE_LVDS:
2797 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2798 7 : 14;
2799 break;
2800 default:
2801 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2802 "mode\n", (int)(dpll & DPLL_MODE_MASK));
2803 return 0;
2804 }
2805
2806 /* XXX: Handle the 100Mhz refclk */
2177832f 2807 intel_clock(dev, 96000, &clock);
79e53945
JB
2808 } else {
2809 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2810
2811 if (is_lvds) {
2812 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2813 DPLL_FPA01_P1_POST_DIV_SHIFT);
2814 clock.p2 = 14;
2815
2816 if ((dpll & PLL_REF_INPUT_MASK) ==
2817 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2818 /* XXX: might not be 66MHz */
2177832f 2819 intel_clock(dev, 66000, &clock);
79e53945 2820 } else
2177832f 2821 intel_clock(dev, 48000, &clock);
79e53945
JB
2822 } else {
2823 if (dpll & PLL_P1_DIVIDE_BY_TWO)
2824 clock.p1 = 2;
2825 else {
2826 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
2827 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
2828 }
2829 if (dpll & PLL_P2_DIVIDE_BY_4)
2830 clock.p2 = 4;
2831 else
2832 clock.p2 = 2;
2833
2177832f 2834 intel_clock(dev, 48000, &clock);
79e53945
JB
2835 }
2836 }
2837
2838 /* XXX: It would be nice to validate the clocks, but we can't reuse
2839 * i830PllIsValid() because it relies on the xf86_config connector
2840 * configuration being accurate, which it isn't necessarily.
2841 */
2842
2843 return clock.dot;
2844}
2845
2846/** Returns the currently programmed mode of the given pipe. */
2847struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
2848 struct drm_crtc *crtc)
2849{
2850 struct drm_i915_private *dev_priv = dev->dev_private;
2851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2852 int pipe = intel_crtc->pipe;
2853 struct drm_display_mode *mode;
2854 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
2855 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
2856 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
2857 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
2858
2859 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
2860 if (!mode)
2861 return NULL;
2862
2863 mode->clock = intel_crtc_clock_get(dev, crtc);
2864 mode->hdisplay = (htot & 0xffff) + 1;
2865 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
2866 mode->hsync_start = (hsync & 0xffff) + 1;
2867 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
2868 mode->vdisplay = (vtot & 0xffff) + 1;
2869 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
2870 mode->vsync_start = (vsync & 0xffff) + 1;
2871 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
2872
2873 drm_mode_set_name(mode);
2874 drm_mode_set_crtcinfo(mode, 0);
2875
2876 return mode;
2877}
2878
2879static void intel_crtc_destroy(struct drm_crtc *crtc)
2880{
2881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2882
7ff14559
DA
2883 if (intel_crtc->mode_set.mode)
2884 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
79e53945
JB
2885 drm_crtc_cleanup(crtc);
2886 kfree(intel_crtc);
2887}
2888
2889static const struct drm_crtc_helper_funcs intel_helper_funcs = {
2890 .dpms = intel_crtc_dpms,
2891 .mode_fixup = intel_crtc_mode_fixup,
2892 .mode_set = intel_crtc_mode_set,
2893 .mode_set_base = intel_pipe_set_base,
2894 .prepare = intel_crtc_prepare,
2895 .commit = intel_crtc_commit,
2896};
2897
2898static const struct drm_crtc_funcs intel_crtc_funcs = {
2899 .cursor_set = intel_crtc_cursor_set,
2900 .cursor_move = intel_crtc_cursor_move,
2901 .gamma_set = intel_crtc_gamma_set,
2902 .set_config = drm_crtc_helper_set_config,
2903 .destroy = intel_crtc_destroy,
2904};
2905
2906
b358d0a6 2907static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945
JB
2908{
2909 struct intel_crtc *intel_crtc;
2910 int i;
2911
2912 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2913 if (intel_crtc == NULL)
2914 return;
2915
2916 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2917
2918 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
2919 intel_crtc->pipe = pipe;
7662c8bd 2920 intel_crtc->plane = pipe;
79e53945
JB
2921 for (i = 0; i < 256; i++) {
2922 intel_crtc->lut_r[i] = i;
2923 intel_crtc->lut_g[i] = i;
2924 intel_crtc->lut_b[i] = i;
2925 }
2926
2927 intel_crtc->cursor_addr = 0;
2928 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
2929 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
2930
2931 intel_crtc->mode_set.crtc = &intel_crtc->base;
2932 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
2933 intel_crtc->mode_set.num_connectors = 0;
2934
2935 if (i915_fbpercrtc) {
2936
2937
2938
2939 }
2940}
2941
08d7b3d1
CW
2942int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
2943 struct drm_file *file_priv)
2944{
2945 drm_i915_private_t *dev_priv = dev->dev_private;
2946 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
2947 struct drm_crtc *crtc = NULL;
2948 int pipe = -1;
2949
2950 if (!dev_priv) {
2951 DRM_ERROR("called with no initialization\n");
2952 return -EINVAL;
2953 }
2954
2955 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2957 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
2958 pipe = intel_crtc->pipe;
2959 break;
2960 }
2961 }
2962
2963 if (pipe == -1) {
2964 DRM_ERROR("no such CRTC id\n");
2965 return -EINVAL;
2966 }
2967
2968 pipe_from_crtc_id->pipe = pipe;
2969
2970 return 0;
2971}
2972
79e53945
JB
2973struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
2974{
2975 struct drm_crtc *crtc = NULL;
2976
2977 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2979 if (intel_crtc->pipe == pipe)
2980 break;
2981 }
2982 return crtc;
2983}
2984
b358d0a6 2985static int intel_connector_clones(struct drm_device *dev, int type_mask)
79e53945
JB
2986{
2987 int index_mask = 0;
2988 struct drm_connector *connector;
2989 int entry = 0;
2990
2991 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2992 struct intel_output *intel_output = to_intel_output(connector);
2993 if (type_mask & (1 << intel_output->type))
2994 index_mask |= (1 << entry);
2995 entry++;
2996 }
2997 return index_mask;
2998}
2999
3000
3001static void intel_setup_outputs(struct drm_device *dev)
3002{
725e30ad 3003 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
3004 struct drm_connector *connector;
3005
3006 intel_crt_init(dev);
3007
3008 /* Set up integrated LVDS */
541998a1 3009 if (IS_MOBILE(dev) && !IS_I830(dev))
79e53945
JB
3010 intel_lvds_init(dev);
3011
2c07245f 3012 if (IS_IGDNG(dev)) {
30ad48b7
ZW
3013 int found;
3014
3015 if (I915_READ(HDMIB) & PORT_DETECTED) {
3016 /* check SDVOB */
3017 /* found = intel_sdvo_init(dev, HDMIB); */
3018 found = 0;
3019 if (!found)
3020 intel_hdmi_init(dev, HDMIB);
3021 }
3022
3023 if (I915_READ(HDMIC) & PORT_DETECTED)
3024 intel_hdmi_init(dev, HDMIC);
3025
3026 if (I915_READ(HDMID) & PORT_DETECTED)
3027 intel_hdmi_init(dev, HDMID);
3028
2c07245f 3029 } else if (IS_I9XX(dev)) {
7d57382e 3030 int found;
13520b05 3031 u32 reg;
7d57382e 3032
725e30ad
EA
3033 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3034 found = intel_sdvo_init(dev, SDVOB);
3035 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3036 intel_hdmi_init(dev, SDVOB);
a4fc5ed6
KP
3037 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3038 intel_dp_init(dev, DP_B);
725e30ad 3039 }
13520b05
KH
3040
3041 /* Before G4X SDVOC doesn't have its own detect register */
3042 if (IS_G4X(dev))
3043 reg = SDVOC;
3044 else
3045 reg = SDVOB;
3046
3047 if (I915_READ(reg) & SDVO_DETECTED) {
725e30ad
EA
3048 found = intel_sdvo_init(dev, SDVOC);
3049 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3050 intel_hdmi_init(dev, SDVOC);
a4fc5ed6
KP
3051 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3052 intel_dp_init(dev, DP_C);
725e30ad 3053 }
a4fc5ed6
KP
3054 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3055 intel_dp_init(dev, DP_D);
79e53945
JB
3056 } else
3057 intel_dvo_init(dev);
3058
2c07245f 3059 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
79e53945
JB
3060 intel_tv_init(dev);
3061
3062 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3063 struct intel_output *intel_output = to_intel_output(connector);
3064 struct drm_encoder *encoder = &intel_output->enc;
3065 int crtc_mask = 0, clone_mask = 0;
3066
3067 /* valid crtcs */
3068 switch(intel_output->type) {
7d57382e
EA
3069 case INTEL_OUTPUT_HDMI:
3070 crtc_mask = ((1 << 0)|
3071 (1 << 1));
3072 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
3073 break;
79e53945
JB
3074 case INTEL_OUTPUT_DVO:
3075 case INTEL_OUTPUT_SDVO:
3076 crtc_mask = ((1 << 0)|
3077 (1 << 1));
3078 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3079 (1 << INTEL_OUTPUT_DVO) |
3080 (1 << INTEL_OUTPUT_SDVO));
3081 break;
3082 case INTEL_OUTPUT_ANALOG:
3083 crtc_mask = ((1 << 0)|
3084 (1 << 1));
3085 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3086 (1 << INTEL_OUTPUT_DVO) |
3087 (1 << INTEL_OUTPUT_SDVO));
3088 break;
3089 case INTEL_OUTPUT_LVDS:
3090 crtc_mask = (1 << 1);
3091 clone_mask = (1 << INTEL_OUTPUT_LVDS);
3092 break;
3093 case INTEL_OUTPUT_TVOUT:
3094 crtc_mask = ((1 << 0) |
3095 (1 << 1));
3096 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
3097 break;
a4fc5ed6
KP
3098 case INTEL_OUTPUT_DISPLAYPORT:
3099 crtc_mask = ((1 << 0) |
3100 (1 << 1));
3101 clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
3102 break;
79e53945
JB
3103 }
3104 encoder->possible_crtcs = crtc_mask;
3105 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
3106 }
3107}
3108
3109static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3110{
3111 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3112 struct drm_device *dev = fb->dev;
3113
3114 if (fb->fbdev)
3115 intelfb_remove(dev, fb);
3116
3117 drm_framebuffer_cleanup(fb);
3118 mutex_lock(&dev->struct_mutex);
3119 drm_gem_object_unreference(intel_fb->obj);
3120 mutex_unlock(&dev->struct_mutex);
3121
3122 kfree(intel_fb);
3123}
3124
3125static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3126 struct drm_file *file_priv,
3127 unsigned int *handle)
3128{
3129 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3130 struct drm_gem_object *object = intel_fb->obj;
3131
3132 return drm_gem_handle_create(file_priv, object, handle);
3133}
3134
3135static const struct drm_framebuffer_funcs intel_fb_funcs = {
3136 .destroy = intel_user_framebuffer_destroy,
3137 .create_handle = intel_user_framebuffer_create_handle,
3138};
3139
3140int intel_framebuffer_create(struct drm_device *dev,
3141 struct drm_mode_fb_cmd *mode_cmd,
3142 struct drm_framebuffer **fb,
3143 struct drm_gem_object *obj)
3144{
3145 struct intel_framebuffer *intel_fb;
3146 int ret;
3147
3148 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3149 if (!intel_fb)
3150 return -ENOMEM;
3151
3152 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3153 if (ret) {
3154 DRM_ERROR("framebuffer init failed %d\n", ret);
3155 return ret;
3156 }
3157
3158 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3159
3160 intel_fb->obj = obj;
3161
3162 *fb = &intel_fb->base;
3163
3164 return 0;
3165}
3166
3167
3168static struct drm_framebuffer *
3169intel_user_framebuffer_create(struct drm_device *dev,
3170 struct drm_file *filp,
3171 struct drm_mode_fb_cmd *mode_cmd)
3172{
3173 struct drm_gem_object *obj;
3174 struct drm_framebuffer *fb;
3175 int ret;
3176
3177 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3178 if (!obj)
3179 return NULL;
3180
3181 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3182 if (ret) {
496818f0 3183 mutex_lock(&dev->struct_mutex);
79e53945 3184 drm_gem_object_unreference(obj);
496818f0 3185 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3186 return NULL;
3187 }
3188
3189 return fb;
3190}
3191
79e53945 3192static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945
JB
3193 .fb_create = intel_user_framebuffer_create,
3194 .fb_changed = intelfb_probe,
3195};
3196
3197void intel_modeset_init(struct drm_device *dev)
3198{
3199 int num_pipe;
3200 int i;
3201
3202 drm_mode_config_init(dev);
3203
3204 dev->mode_config.min_width = 0;
3205 dev->mode_config.min_height = 0;
3206
3207 dev->mode_config.funcs = (void *)&intel_mode_funcs;
3208
3209 if (IS_I965G(dev)) {
3210 dev->mode_config.max_width = 8192;
3211 dev->mode_config.max_height = 8192;
5e4d6fa7
KP
3212 } else if (IS_I9XX(dev)) {
3213 dev->mode_config.max_width = 4096;
3214 dev->mode_config.max_height = 4096;
79e53945
JB
3215 } else {
3216 dev->mode_config.max_width = 2048;
3217 dev->mode_config.max_height = 2048;
3218 }
3219
3220 /* set memory base */
3221 if (IS_I9XX(dev))
3222 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
3223 else
3224 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
3225
3226 if (IS_MOBILE(dev) || IS_I9XX(dev))
3227 num_pipe = 2;
3228 else
3229 num_pipe = 1;
3230 DRM_DEBUG("%d display pipe%s available.\n",
3231 num_pipe, num_pipe > 1 ? "s" : "");
3232
3233 for (i = 0; i < num_pipe; i++) {
3234 intel_crtc_init(dev, i);
3235 }
3236
3237 intel_setup_outputs(dev);
3238}
3239
3240void intel_modeset_cleanup(struct drm_device *dev)
3241{
3242 drm_mode_config_cleanup(dev);
3243}
3244
3245
3246/* current intel driver doesn't take advantage of encoders
3247 always give back the encoder for the connector
3248*/
3249struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
3250{
3251 struct intel_output *intel_output = to_intel_output(connector);
3252
3253 return &intel_output->enc;
3254}