]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fix lock order reversal in shmem pread path.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
e47c68e9
EA
37static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
856fa198
EA
46static int i915_gem_object_get_pages(struct drm_gem_object *obj);
47static void i915_gem_object_put_pages(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
0f973f27 51static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
de151cf6
JB
52static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
673a394b 57
79e53945
JB
58int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 unsigned long end)
673a394b
EA
60{
61 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 62
79e53945
JB
63 if (start >= end ||
64 (start & (PAGE_SIZE - 1)) != 0 ||
65 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
66 return -EINVAL;
67 }
68
79e53945
JB
69 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 end - start);
673a394b 71
79e53945
JB
72 dev->gtt_total = (uint32_t) (end - start);
73
74 return 0;
75}
673a394b 76
79e53945
JB
77int
78i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 struct drm_file *file_priv)
80{
81 struct drm_i915_gem_init *args = data;
82 int ret;
83
84 mutex_lock(&dev->struct_mutex);
85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
86 mutex_unlock(&dev->struct_mutex);
87
79e53945 88 return ret;
673a394b
EA
89}
90
5a125c3c
EA
91int
92i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
5a125c3c 95 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
96
97 if (!(dev->driver->driver_features & DRIVER_GEM))
98 return -ENODEV;
99
100 args->aper_size = dev->gtt_total;
2678d9d6
KP
101 args->aper_available_size = (args->aper_size -
102 atomic_read(&dev->pin_memory));
5a125c3c
EA
103
104 return 0;
105}
106
673a394b
EA
107
108/**
109 * Creates a new mm object and returns a handle to it.
110 */
111int
112i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
114{
115 struct drm_i915_gem_create *args = data;
116 struct drm_gem_object *obj;
117 int handle, ret;
118
119 args->size = roundup(args->size, PAGE_SIZE);
120
121 /* Allocate the new object */
122 obj = drm_gem_object_alloc(dev, args->size);
123 if (obj == NULL)
124 return -ENOMEM;
125
126 ret = drm_gem_handle_create(file_priv, obj, &handle);
127 mutex_lock(&dev->struct_mutex);
128 drm_gem_object_handle_unreference(obj);
129 mutex_unlock(&dev->struct_mutex);
130
131 if (ret)
132 return ret;
133
134 args->handle = handle;
135
136 return 0;
137}
138
eb01459f
EA
139static inline int
140fast_shmem_read(struct page **pages,
141 loff_t page_base, int page_offset,
142 char __user *data,
143 int length)
144{
145 char __iomem *vaddr;
146 int ret;
147
148 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
149 if (vaddr == NULL)
150 return -ENOMEM;
151 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
152 kunmap_atomic(vaddr, KM_USER0);
153
154 return ret;
155}
156
40123c1f
EA
157static inline int
158slow_shmem_copy(struct page *dst_page,
159 int dst_offset,
160 struct page *src_page,
161 int src_offset,
162 int length)
163{
164 char *dst_vaddr, *src_vaddr;
165
166 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
167 if (dst_vaddr == NULL)
168 return -ENOMEM;
169
170 src_vaddr = kmap_atomic(src_page, KM_USER1);
171 if (src_vaddr == NULL) {
172 kunmap_atomic(dst_vaddr, KM_USER0);
173 return -ENOMEM;
174 }
175
176 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
177
178 kunmap_atomic(src_vaddr, KM_USER1);
179 kunmap_atomic(dst_vaddr, KM_USER0);
180
181 return 0;
182}
183
eb01459f
EA
184/**
185 * This is the fast shmem pread path, which attempts to copy_from_user directly
186 * from the backing pages of the object to the user's address space. On a
187 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
188 */
189static int
190i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
191 struct drm_i915_gem_pread *args,
192 struct drm_file *file_priv)
193{
194 struct drm_i915_gem_object *obj_priv = obj->driver_private;
195 ssize_t remain;
196 loff_t offset, page_base;
197 char __user *user_data;
198 int page_offset, page_length;
199 int ret;
200
201 user_data = (char __user *) (uintptr_t) args->data_ptr;
202 remain = args->size;
203
204 mutex_lock(&dev->struct_mutex);
205
206 ret = i915_gem_object_get_pages(obj);
207 if (ret != 0)
208 goto fail_unlock;
209
210 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
211 args->size);
212 if (ret != 0)
213 goto fail_put_pages;
214
215 obj_priv = obj->driver_private;
216 offset = args->offset;
217
218 while (remain > 0) {
219 /* Operation in this page
220 *
221 * page_base = page offset within aperture
222 * page_offset = offset within page
223 * page_length = bytes to copy for this page
224 */
225 page_base = (offset & ~(PAGE_SIZE-1));
226 page_offset = offset & (PAGE_SIZE-1);
227 page_length = remain;
228 if ((page_offset + remain) > PAGE_SIZE)
229 page_length = PAGE_SIZE - page_offset;
230
231 ret = fast_shmem_read(obj_priv->pages,
232 page_base, page_offset,
233 user_data, page_length);
234 if (ret)
235 goto fail_put_pages;
236
237 remain -= page_length;
238 user_data += page_length;
239 offset += page_length;
240 }
241
242fail_put_pages:
243 i915_gem_object_put_pages(obj);
244fail_unlock:
245 mutex_unlock(&dev->struct_mutex);
246
247 return ret;
248}
249
250/**
251 * This is the fallback shmem pread path, which allocates temporary storage
252 * in kernel space to copy_to_user into outside of the struct_mutex, so we
253 * can copy out of the object's backing pages while holding the struct mutex
254 * and not take page faults.
255 */
256static int
257i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 struct mm_struct *mm = current->mm;
263 struct page **user_pages;
264 ssize_t remain;
265 loff_t offset, pinned_pages, i;
266 loff_t first_data_page, last_data_page, num_pages;
267 int shmem_page_index, shmem_page_offset;
268 int data_page_index, data_page_offset;
269 int page_length;
270 int ret;
271 uint64_t data_ptr = args->data_ptr;
272
273 remain = args->size;
274
275 /* Pin the user pages containing the data. We can't fault while
276 * holding the struct mutex, yet we want to hold it while
277 * dereferencing the user data.
278 */
279 first_data_page = data_ptr / PAGE_SIZE;
280 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
281 num_pages = last_data_page - first_data_page + 1;
282
283 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
284 if (user_pages == NULL)
285 return -ENOMEM;
286
287 down_read(&mm->mmap_sem);
288 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
289 num_pages, 0, 0, user_pages, NULL);
290 up_read(&mm->mmap_sem);
291 if (pinned_pages < num_pages) {
292 ret = -EFAULT;
293 goto fail_put_user_pages;
294 }
295
296 mutex_lock(&dev->struct_mutex);
297
298 ret = i915_gem_object_get_pages(obj);
299 if (ret != 0)
300 goto fail_unlock;
301
302 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
303 args->size);
304 if (ret != 0)
305 goto fail_put_pages;
306
307 obj_priv = obj->driver_private;
308 offset = args->offset;
309
310 while (remain > 0) {
311 /* Operation in this page
312 *
313 * shmem_page_index = page number within shmem file
314 * shmem_page_offset = offset within page in shmem file
315 * data_page_index = page number in get_user_pages return
316 * data_page_offset = offset with data_page_index page.
317 * page_length = bytes to copy for this page
318 */
319 shmem_page_index = offset / PAGE_SIZE;
320 shmem_page_offset = offset & ~PAGE_MASK;
321 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
322 data_page_offset = data_ptr & ~PAGE_MASK;
323
324 page_length = remain;
325 if ((shmem_page_offset + page_length) > PAGE_SIZE)
326 page_length = PAGE_SIZE - shmem_page_offset;
327 if ((data_page_offset + page_length) > PAGE_SIZE)
328 page_length = PAGE_SIZE - data_page_offset;
329
330 ret = slow_shmem_copy(user_pages[data_page_index],
331 data_page_offset,
332 obj_priv->pages[shmem_page_index],
333 shmem_page_offset,
334 page_length);
335 if (ret)
336 goto fail_put_pages;
337
338 remain -= page_length;
339 data_ptr += page_length;
340 offset += page_length;
341 }
342
343fail_put_pages:
344 i915_gem_object_put_pages(obj);
345fail_unlock:
346 mutex_unlock(&dev->struct_mutex);
347fail_put_user_pages:
348 for (i = 0; i < pinned_pages; i++) {
349 SetPageDirty(user_pages[i]);
350 page_cache_release(user_pages[i]);
351 }
352 kfree(user_pages);
353
354 return ret;
355}
356
673a394b
EA
357/**
358 * Reads data from the object referenced by handle.
359 *
360 * On error, the contents of *data are undefined.
361 */
362int
363i915_gem_pread_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
365{
366 struct drm_i915_gem_pread *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
673a394b
EA
369 int ret;
370
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 if (obj == NULL)
373 return -EBADF;
374 obj_priv = obj->driver_private;
375
376 /* Bounds check source.
377 *
378 * XXX: This could use review for overflow issues...
379 */
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
383 return -EINVAL;
384 }
385
eb01459f
EA
386 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
387 if (ret != 0)
388 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b
EA
389
390 drm_gem_object_unreference(obj);
673a394b 391
eb01459f 392 return ret;
673a394b
EA
393}
394
0839ccb8
KP
395/* This is the fast write path which cannot handle
396 * page faults in the source data
9b7530cc 397 */
0839ccb8
KP
398
399static inline int
400fast_user_write(struct io_mapping *mapping,
401 loff_t page_base, int page_offset,
402 char __user *user_data,
403 int length)
9b7530cc 404{
9b7530cc 405 char *vaddr_atomic;
0839ccb8 406 unsigned long unwritten;
9b7530cc 407
0839ccb8
KP
408 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
409 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
410 user_data, length);
411 io_mapping_unmap_atomic(vaddr_atomic);
412 if (unwritten)
413 return -EFAULT;
414 return 0;
415}
416
417/* Here's the write path which can sleep for
418 * page faults
419 */
420
421static inline int
3de09aa3
EA
422slow_kernel_write(struct io_mapping *mapping,
423 loff_t gtt_base, int gtt_offset,
424 struct page *user_page, int user_offset,
425 int length)
0839ccb8 426{
3de09aa3 427 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
428 unsigned long unwritten;
429
3de09aa3
EA
430 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
431 src_vaddr = kmap_atomic(user_page, KM_USER1);
432 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
433 src_vaddr + user_offset,
434 length);
435 kunmap_atomic(src_vaddr, KM_USER1);
436 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
437 if (unwritten)
438 return -EFAULT;
9b7530cc 439 return 0;
9b7530cc
LT
440}
441
40123c1f
EA
442static inline int
443fast_shmem_write(struct page **pages,
444 loff_t page_base, int page_offset,
445 char __user *data,
446 int length)
447{
448 char __iomem *vaddr;
449
450 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
451 if (vaddr == NULL)
452 return -ENOMEM;
453 __copy_from_user_inatomic(vaddr + page_offset, data, length);
454 kunmap_atomic(vaddr, KM_USER0);
455
456 return 0;
457}
458
3de09aa3
EA
459/**
460 * This is the fast pwrite path, where we copy the data directly from the
461 * user into the GTT, uncached.
462 */
673a394b 463static int
3de09aa3
EA
464i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
465 struct drm_i915_gem_pwrite *args,
466 struct drm_file *file_priv)
673a394b
EA
467{
468 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 469 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 470 ssize_t remain;
0839ccb8 471 loff_t offset, page_base;
673a394b 472 char __user *user_data;
0839ccb8
KP
473 int page_offset, page_length;
474 int ret;
673a394b
EA
475
476 user_data = (char __user *) (uintptr_t) args->data_ptr;
477 remain = args->size;
478 if (!access_ok(VERIFY_READ, user_data, remain))
479 return -EFAULT;
480
481
482 mutex_lock(&dev->struct_mutex);
483 ret = i915_gem_object_pin(obj, 0);
484 if (ret) {
485 mutex_unlock(&dev->struct_mutex);
486 return ret;
487 }
2ef7eeaa 488 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
489 if (ret)
490 goto fail;
491
492 obj_priv = obj->driver_private;
493 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
494
495 while (remain > 0) {
496 /* Operation in this page
497 *
0839ccb8
KP
498 * page_base = page offset within aperture
499 * page_offset = offset within page
500 * page_length = bytes to copy for this page
673a394b 501 */
0839ccb8
KP
502 page_base = (offset & ~(PAGE_SIZE-1));
503 page_offset = offset & (PAGE_SIZE-1);
504 page_length = remain;
505 if ((page_offset + remain) > PAGE_SIZE)
506 page_length = PAGE_SIZE - page_offset;
507
508 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
509 page_offset, user_data, page_length);
510
511 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
512 * source page isn't available. Return the error and we'll
513 * retry in the slow path.
0839ccb8 514 */
3de09aa3
EA
515 if (ret)
516 goto fail;
673a394b 517
0839ccb8
KP
518 remain -= page_length;
519 user_data += page_length;
520 offset += page_length;
673a394b 521 }
673a394b
EA
522
523fail:
524 i915_gem_object_unpin(obj);
525 mutex_unlock(&dev->struct_mutex);
526
527 return ret;
528}
529
3de09aa3
EA
530/**
531 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
532 * the memory and maps it using kmap_atomic for copying.
533 *
534 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
535 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
536 */
537static int
538i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
539 struct drm_i915_gem_pwrite *args,
540 struct drm_file *file_priv)
541{
542 struct drm_i915_gem_object *obj_priv = obj->driver_private;
543 drm_i915_private_t *dev_priv = dev->dev_private;
544 ssize_t remain;
545 loff_t gtt_page_base, offset;
546 loff_t first_data_page, last_data_page, num_pages;
547 loff_t pinned_pages, i;
548 struct page **user_pages;
549 struct mm_struct *mm = current->mm;
550 int gtt_page_offset, data_page_offset, data_page_index, page_length;
551 int ret;
552 uint64_t data_ptr = args->data_ptr;
553
554 remain = args->size;
555
556 /* Pin the user pages containing the data. We can't fault while
557 * holding the struct mutex, and all of the pwrite implementations
558 * want to hold it while dereferencing the user data.
559 */
560 first_data_page = data_ptr / PAGE_SIZE;
561 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
562 num_pages = last_data_page - first_data_page + 1;
563
564 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
565 if (user_pages == NULL)
566 return -ENOMEM;
567
568 down_read(&mm->mmap_sem);
569 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
570 num_pages, 0, 0, user_pages, NULL);
571 up_read(&mm->mmap_sem);
572 if (pinned_pages < num_pages) {
573 ret = -EFAULT;
574 goto out_unpin_pages;
575 }
576
577 mutex_lock(&dev->struct_mutex);
578 ret = i915_gem_object_pin(obj, 0);
579 if (ret)
580 goto out_unlock;
581
582 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
583 if (ret)
584 goto out_unpin_object;
585
586 obj_priv = obj->driver_private;
587 offset = obj_priv->gtt_offset + args->offset;
588
589 while (remain > 0) {
590 /* Operation in this page
591 *
592 * gtt_page_base = page offset within aperture
593 * gtt_page_offset = offset within page in aperture
594 * data_page_index = page number in get_user_pages return
595 * data_page_offset = offset with data_page_index page.
596 * page_length = bytes to copy for this page
597 */
598 gtt_page_base = offset & PAGE_MASK;
599 gtt_page_offset = offset & ~PAGE_MASK;
600 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
601 data_page_offset = data_ptr & ~PAGE_MASK;
602
603 page_length = remain;
604 if ((gtt_page_offset + page_length) > PAGE_SIZE)
605 page_length = PAGE_SIZE - gtt_page_offset;
606 if ((data_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - data_page_offset;
608
609 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
610 gtt_page_base, gtt_page_offset,
611 user_pages[data_page_index],
612 data_page_offset,
613 page_length);
614
615 /* If we get a fault while copying data, then (presumably) our
616 * source page isn't available. Return the error and we'll
617 * retry in the slow path.
618 */
619 if (ret)
620 goto out_unpin_object;
621
622 remain -= page_length;
623 offset += page_length;
624 data_ptr += page_length;
625 }
626
627out_unpin_object:
628 i915_gem_object_unpin(obj);
629out_unlock:
630 mutex_unlock(&dev->struct_mutex);
631out_unpin_pages:
632 for (i = 0; i < pinned_pages; i++)
633 page_cache_release(user_pages[i]);
634 kfree(user_pages);
635
636 return ret;
637}
638
40123c1f
EA
639/**
640 * This is the fast shmem pwrite path, which attempts to directly
641 * copy_from_user into the kmapped pages backing the object.
642 */
3043c60c 643static int
40123c1f
EA
644i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
645 struct drm_i915_gem_pwrite *args,
646 struct drm_file *file_priv)
673a394b 647{
40123c1f
EA
648 struct drm_i915_gem_object *obj_priv = obj->driver_private;
649 ssize_t remain;
650 loff_t offset, page_base;
651 char __user *user_data;
652 int page_offset, page_length;
673a394b 653 int ret;
40123c1f
EA
654
655 user_data = (char __user *) (uintptr_t) args->data_ptr;
656 remain = args->size;
673a394b
EA
657
658 mutex_lock(&dev->struct_mutex);
659
40123c1f
EA
660 ret = i915_gem_object_get_pages(obj);
661 if (ret != 0)
662 goto fail_unlock;
663
e47c68e9 664 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
665 if (ret != 0)
666 goto fail_put_pages;
667
668 obj_priv = obj->driver_private;
669 offset = args->offset;
670 obj_priv->dirty = 1;
671
672 while (remain > 0) {
673 /* Operation in this page
674 *
675 * page_base = page offset within aperture
676 * page_offset = offset within page
677 * page_length = bytes to copy for this page
678 */
679 page_base = (offset & ~(PAGE_SIZE-1));
680 page_offset = offset & (PAGE_SIZE-1);
681 page_length = remain;
682 if ((page_offset + remain) > PAGE_SIZE)
683 page_length = PAGE_SIZE - page_offset;
684
685 ret = fast_shmem_write(obj_priv->pages,
686 page_base, page_offset,
687 user_data, page_length);
688 if (ret)
689 goto fail_put_pages;
690
691 remain -= page_length;
692 user_data += page_length;
693 offset += page_length;
694 }
695
696fail_put_pages:
697 i915_gem_object_put_pages(obj);
698fail_unlock:
699 mutex_unlock(&dev->struct_mutex);
700
701 return ret;
702}
703
704/**
705 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
706 * the memory and maps it using kmap_atomic for copying.
707 *
708 * This avoids taking mmap_sem for faulting on the user's address while the
709 * struct_mutex is held.
710 */
711static int
712i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
713 struct drm_i915_gem_pwrite *args,
714 struct drm_file *file_priv)
715{
716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
717 struct mm_struct *mm = current->mm;
718 struct page **user_pages;
719 ssize_t remain;
720 loff_t offset, pinned_pages, i;
721 loff_t first_data_page, last_data_page, num_pages;
722 int shmem_page_index, shmem_page_offset;
723 int data_page_index, data_page_offset;
724 int page_length;
725 int ret;
726 uint64_t data_ptr = args->data_ptr;
727
728 remain = args->size;
729
730 /* Pin the user pages containing the data. We can't fault while
731 * holding the struct mutex, and all of the pwrite implementations
732 * want to hold it while dereferencing the user data.
733 */
734 first_data_page = data_ptr / PAGE_SIZE;
735 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
736 num_pages = last_data_page - first_data_page + 1;
737
738 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
739 if (user_pages == NULL)
740 return -ENOMEM;
741
742 down_read(&mm->mmap_sem);
743 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
744 num_pages, 0, 0, user_pages, NULL);
745 up_read(&mm->mmap_sem);
746 if (pinned_pages < num_pages) {
747 ret = -EFAULT;
748 goto fail_put_user_pages;
673a394b
EA
749 }
750
40123c1f
EA
751 mutex_lock(&dev->struct_mutex);
752
753 ret = i915_gem_object_get_pages(obj);
754 if (ret != 0)
755 goto fail_unlock;
756
757 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
758 if (ret != 0)
759 goto fail_put_pages;
760
761 obj_priv = obj->driver_private;
673a394b 762 offset = args->offset;
40123c1f 763 obj_priv->dirty = 1;
673a394b 764
40123c1f
EA
765 while (remain > 0) {
766 /* Operation in this page
767 *
768 * shmem_page_index = page number within shmem file
769 * shmem_page_offset = offset within page in shmem file
770 * data_page_index = page number in get_user_pages return
771 * data_page_offset = offset with data_page_index page.
772 * page_length = bytes to copy for this page
773 */
774 shmem_page_index = offset / PAGE_SIZE;
775 shmem_page_offset = offset & ~PAGE_MASK;
776 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
777 data_page_offset = data_ptr & ~PAGE_MASK;
778
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
782 if ((data_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - data_page_offset;
784
785 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
786 shmem_page_offset,
787 user_pages[data_page_index],
788 data_page_offset,
789 page_length);
790 if (ret)
791 goto fail_put_pages;
792
793 remain -= page_length;
794 data_ptr += page_length;
795 offset += page_length;
673a394b
EA
796 }
797
40123c1f
EA
798fail_put_pages:
799 i915_gem_object_put_pages(obj);
800fail_unlock:
673a394b 801 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
802fail_put_user_pages:
803 for (i = 0; i < pinned_pages; i++)
804 page_cache_release(user_pages[i]);
805 kfree(user_pages);
673a394b 806
40123c1f 807 return ret;
673a394b
EA
808}
809
810/**
811 * Writes data to the object referenced by handle.
812 *
813 * On error, the contents of the buffer that were to be modified are undefined.
814 */
815int
816i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
817 struct drm_file *file_priv)
818{
819 struct drm_i915_gem_pwrite *args = data;
820 struct drm_gem_object *obj;
821 struct drm_i915_gem_object *obj_priv;
822 int ret = 0;
823
824 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
825 if (obj == NULL)
826 return -EBADF;
827 obj_priv = obj->driver_private;
828
829 /* Bounds check destination.
830 *
831 * XXX: This could use review for overflow issues...
832 */
833 if (args->offset > obj->size || args->size > obj->size ||
834 args->offset + args->size > obj->size) {
835 drm_gem_object_unreference(obj);
836 return -EINVAL;
837 }
838
839 /* We can only do the GTT pwrite on untiled buffers, as otherwise
840 * it would end up going through the fenced access, and we'll get
841 * different detiling behavior between reading and writing.
842 * pread/pwrite currently are reading and writing from the CPU
843 * perspective, requiring manual detiling by the client.
844 */
71acb5eb
DA
845 if (obj_priv->phys_obj)
846 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
847 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
848 dev->gtt_total != 0) {
849 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
850 if (ret == -EFAULT) {
851 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
852 file_priv);
853 }
40123c1f
EA
854 } else {
855 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
856 if (ret == -EFAULT) {
857 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
858 file_priv);
859 }
860 }
673a394b
EA
861
862#if WATCH_PWRITE
863 if (ret)
864 DRM_INFO("pwrite failed %d\n", ret);
865#endif
866
867 drm_gem_object_unreference(obj);
868
869 return ret;
870}
871
872/**
2ef7eeaa
EA
873 * Called when user space prepares to use an object with the CPU, either
874 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
875 */
876int
877i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
878 struct drm_file *file_priv)
879{
880 struct drm_i915_gem_set_domain *args = data;
881 struct drm_gem_object *obj;
2ef7eeaa
EA
882 uint32_t read_domains = args->read_domains;
883 uint32_t write_domain = args->write_domain;
673a394b
EA
884 int ret;
885
886 if (!(dev->driver->driver_features & DRIVER_GEM))
887 return -ENODEV;
888
2ef7eeaa
EA
889 /* Only handle setting domains to types used by the CPU. */
890 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
891 return -EINVAL;
892
893 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
894 return -EINVAL;
895
896 /* Having something in the write domain implies it's in the read
897 * domain, and only that read domain. Enforce that in the request.
898 */
899 if (write_domain != 0 && read_domains != write_domain)
900 return -EINVAL;
901
673a394b
EA
902 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
903 if (obj == NULL)
904 return -EBADF;
905
906 mutex_lock(&dev->struct_mutex);
907#if WATCH_BUF
908 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 909 obj, obj->size, read_domains, write_domain);
673a394b 910#endif
2ef7eeaa
EA
911 if (read_domains & I915_GEM_DOMAIN_GTT) {
912 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
913
914 /* Silently promote "you're not bound, there was nothing to do"
915 * to success, since the client was just asking us to
916 * make sure everything was done.
917 */
918 if (ret == -EINVAL)
919 ret = 0;
2ef7eeaa 920 } else {
e47c68e9 921 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
922 }
923
673a394b
EA
924 drm_gem_object_unreference(obj);
925 mutex_unlock(&dev->struct_mutex);
926 return ret;
927}
928
929/**
930 * Called when user space has done writes to this buffer
931 */
932int
933i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
934 struct drm_file *file_priv)
935{
936 struct drm_i915_gem_sw_finish *args = data;
937 struct drm_gem_object *obj;
938 struct drm_i915_gem_object *obj_priv;
939 int ret = 0;
940
941 if (!(dev->driver->driver_features & DRIVER_GEM))
942 return -ENODEV;
943
944 mutex_lock(&dev->struct_mutex);
945 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
946 if (obj == NULL) {
947 mutex_unlock(&dev->struct_mutex);
948 return -EBADF;
949 }
950
951#if WATCH_BUF
952 DRM_INFO("%s: sw_finish %d (%p %d)\n",
953 __func__, args->handle, obj, obj->size);
954#endif
955 obj_priv = obj->driver_private;
956
957 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
958 if (obj_priv->pin_count)
959 i915_gem_object_flush_cpu_write_domain(obj);
960
673a394b
EA
961 drm_gem_object_unreference(obj);
962 mutex_unlock(&dev->struct_mutex);
963 return ret;
964}
965
966/**
967 * Maps the contents of an object, returning the address it is mapped
968 * into.
969 *
970 * While the mapping holds a reference on the contents of the object, it doesn't
971 * imply a ref on the object itself.
972 */
973int
974i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
975 struct drm_file *file_priv)
976{
977 struct drm_i915_gem_mmap *args = data;
978 struct drm_gem_object *obj;
979 loff_t offset;
980 unsigned long addr;
981
982 if (!(dev->driver->driver_features & DRIVER_GEM))
983 return -ENODEV;
984
985 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
986 if (obj == NULL)
987 return -EBADF;
988
989 offset = args->offset;
990
991 down_write(&current->mm->mmap_sem);
992 addr = do_mmap(obj->filp, 0, args->size,
993 PROT_READ | PROT_WRITE, MAP_SHARED,
994 args->offset);
995 up_write(&current->mm->mmap_sem);
996 mutex_lock(&dev->struct_mutex);
997 drm_gem_object_unreference(obj);
998 mutex_unlock(&dev->struct_mutex);
999 if (IS_ERR((void *)addr))
1000 return addr;
1001
1002 args->addr_ptr = (uint64_t) addr;
1003
1004 return 0;
1005}
1006
de151cf6
JB
1007/**
1008 * i915_gem_fault - fault a page into the GTT
1009 * vma: VMA in question
1010 * vmf: fault info
1011 *
1012 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1013 * from userspace. The fault handler takes care of binding the object to
1014 * the GTT (if needed), allocating and programming a fence register (again,
1015 * only if needed based on whether the old reg is still valid or the object
1016 * is tiled) and inserting a new PTE into the faulting process.
1017 *
1018 * Note that the faulting process may involve evicting existing objects
1019 * from the GTT and/or fence registers to make room. So performance may
1020 * suffer if the GTT working set is large or there are few fence registers
1021 * left.
1022 */
1023int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1024{
1025 struct drm_gem_object *obj = vma->vm_private_data;
1026 struct drm_device *dev = obj->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1029 pgoff_t page_offset;
1030 unsigned long pfn;
1031 int ret = 0;
0f973f27 1032 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1033
1034 /* We don't use vmf->pgoff since that has the fake offset */
1035 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1036 PAGE_SHIFT;
1037
1038 /* Now bind it into the GTT if needed */
1039 mutex_lock(&dev->struct_mutex);
1040 if (!obj_priv->gtt_space) {
1041 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1042 if (ret) {
1043 mutex_unlock(&dev->struct_mutex);
1044 return VM_FAULT_SIGBUS;
1045 }
1046 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1047 }
1048
1049 /* Need a new fence register? */
1050 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96 1051 obj_priv->tiling_mode != I915_TILING_NONE) {
0f973f27 1052 ret = i915_gem_object_get_fence_reg(obj, write);
7d8d58b2
CW
1053 if (ret) {
1054 mutex_unlock(&dev->struct_mutex);
d9ddcb96 1055 return VM_FAULT_SIGBUS;
7d8d58b2 1056 }
d9ddcb96 1057 }
de151cf6
JB
1058
1059 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1060 page_offset;
1061
1062 /* Finally, remap it using the new GTT offset */
1063 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1064
1065 mutex_unlock(&dev->struct_mutex);
1066
1067 switch (ret) {
1068 case -ENOMEM:
1069 case -EAGAIN:
1070 return VM_FAULT_OOM;
1071 case -EFAULT:
de151cf6
JB
1072 return VM_FAULT_SIGBUS;
1073 default:
1074 return VM_FAULT_NOPAGE;
1075 }
1076}
1077
1078/**
1079 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1080 * @obj: obj in question
1081 *
1082 * GEM memory mapping works by handing back to userspace a fake mmap offset
1083 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1084 * up the object based on the offset and sets up the various memory mapping
1085 * structures.
1086 *
1087 * This routine allocates and attaches a fake offset for @obj.
1088 */
1089static int
1090i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1091{
1092 struct drm_device *dev = obj->dev;
1093 struct drm_gem_mm *mm = dev->mm_private;
1094 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1095 struct drm_map_list *list;
1096 struct drm_map *map;
1097 int ret = 0;
1098
1099 /* Set the object up for mmap'ing */
1100 list = &obj->map_list;
1101 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1102 DRM_MEM_DRIVER);
1103 if (!list->map)
1104 return -ENOMEM;
1105
1106 map = list->map;
1107 map->type = _DRM_GEM;
1108 map->size = obj->size;
1109 map->handle = obj;
1110
1111 /* Get a DRM GEM mmap offset allocated... */
1112 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1113 obj->size / PAGE_SIZE, 0, 0);
1114 if (!list->file_offset_node) {
1115 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1116 ret = -ENOMEM;
1117 goto out_free_list;
1118 }
1119
1120 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1121 obj->size / PAGE_SIZE, 0);
1122 if (!list->file_offset_node) {
1123 ret = -ENOMEM;
1124 goto out_free_list;
1125 }
1126
1127 list->hash.key = list->file_offset_node->start;
1128 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1129 DRM_ERROR("failed to add to map hash\n");
1130 goto out_free_mm;
1131 }
1132
1133 /* By now we should be all set, any drm_mmap request on the offset
1134 * below will get to our mmap & fault handler */
1135 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1136
1137 return 0;
1138
1139out_free_mm:
1140 drm_mm_put_block(list->file_offset_node);
1141out_free_list:
1142 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1143
1144 return ret;
1145}
1146
ab00b3e5
JB
1147static void
1148i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1149{
1150 struct drm_device *dev = obj->dev;
1151 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1152 struct drm_gem_mm *mm = dev->mm_private;
1153 struct drm_map_list *list;
1154
1155 list = &obj->map_list;
1156 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1157
1158 if (list->file_offset_node) {
1159 drm_mm_put_block(list->file_offset_node);
1160 list->file_offset_node = NULL;
1161 }
1162
1163 if (list->map) {
1164 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1165 list->map = NULL;
1166 }
1167
1168 obj_priv->mmap_offset = 0;
1169}
1170
de151cf6
JB
1171/**
1172 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1173 * @obj: object to check
1174 *
1175 * Return the required GTT alignment for an object, taking into account
1176 * potential fence register mapping if needed.
1177 */
1178static uint32_t
1179i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1180{
1181 struct drm_device *dev = obj->dev;
1182 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1183 int start, i;
1184
1185 /*
1186 * Minimum alignment is 4k (GTT page size), but might be greater
1187 * if a fence register is needed for the object.
1188 */
1189 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1190 return 4096;
1191
1192 /*
1193 * Previous chips need to be aligned to the size of the smallest
1194 * fence register that can contain the object.
1195 */
1196 if (IS_I9XX(dev))
1197 start = 1024*1024;
1198 else
1199 start = 512*1024;
1200
1201 for (i = start; i < obj->size; i <<= 1)
1202 ;
1203
1204 return i;
1205}
1206
1207/**
1208 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1209 * @dev: DRM device
1210 * @data: GTT mapping ioctl data
1211 * @file_priv: GEM object info
1212 *
1213 * Simply returns the fake offset to userspace so it can mmap it.
1214 * The mmap call will end up in drm_gem_mmap(), which will set things
1215 * up so we can get faults in the handler above.
1216 *
1217 * The fault handler will take care of binding the object into the GTT
1218 * (since it may have been evicted to make room for something), allocating
1219 * a fence register, and mapping the appropriate aperture address into
1220 * userspace.
1221 */
1222int
1223i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1224 struct drm_file *file_priv)
1225{
1226 struct drm_i915_gem_mmap_gtt *args = data;
1227 struct drm_i915_private *dev_priv = dev->dev_private;
1228 struct drm_gem_object *obj;
1229 struct drm_i915_gem_object *obj_priv;
1230 int ret;
1231
1232 if (!(dev->driver->driver_features & DRIVER_GEM))
1233 return -ENODEV;
1234
1235 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1236 if (obj == NULL)
1237 return -EBADF;
1238
1239 mutex_lock(&dev->struct_mutex);
1240
1241 obj_priv = obj->driver_private;
1242
1243 if (!obj_priv->mmap_offset) {
1244 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1245 if (ret) {
1246 drm_gem_object_unreference(obj);
1247 mutex_unlock(&dev->struct_mutex);
de151cf6 1248 return ret;
13af1062 1249 }
de151cf6
JB
1250 }
1251
1252 args->offset = obj_priv->mmap_offset;
1253
1254 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1255
1256 /* Make sure the alignment is correct for fence regs etc */
1257 if (obj_priv->agp_mem &&
1258 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1259 drm_gem_object_unreference(obj);
1260 mutex_unlock(&dev->struct_mutex);
1261 return -EINVAL;
1262 }
1263
1264 /*
1265 * Pull it into the GTT so that we have a page list (makes the
1266 * initial fault faster and any subsequent flushing possible).
1267 */
1268 if (!obj_priv->agp_mem) {
1269 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1270 if (ret) {
1271 drm_gem_object_unreference(obj);
1272 mutex_unlock(&dev->struct_mutex);
1273 return ret;
1274 }
1275 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1276 }
1277
1278 drm_gem_object_unreference(obj);
1279 mutex_unlock(&dev->struct_mutex);
1280
1281 return 0;
1282}
1283
673a394b 1284static void
856fa198 1285i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1286{
1287 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1288 int page_count = obj->size / PAGE_SIZE;
1289 int i;
1290
856fa198 1291 BUG_ON(obj_priv->pages_refcount == 0);
673a394b 1292
856fa198
EA
1293 if (--obj_priv->pages_refcount != 0)
1294 return;
673a394b
EA
1295
1296 for (i = 0; i < page_count; i++)
856fa198 1297 if (obj_priv->pages[i] != NULL) {
673a394b 1298 if (obj_priv->dirty)
856fa198
EA
1299 set_page_dirty(obj_priv->pages[i]);
1300 mark_page_accessed(obj_priv->pages[i]);
1301 page_cache_release(obj_priv->pages[i]);
673a394b
EA
1302 }
1303 obj_priv->dirty = 0;
1304
856fa198 1305 drm_free(obj_priv->pages,
673a394b
EA
1306 page_count * sizeof(struct page *),
1307 DRM_MEM_DRIVER);
856fa198 1308 obj_priv->pages = NULL;
673a394b
EA
1309}
1310
1311static void
ce44b0ea 1312i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1313{
1314 struct drm_device *dev = obj->dev;
1315 drm_i915_private_t *dev_priv = dev->dev_private;
1316 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1317
1318 /* Add a reference if we're newly entering the active list. */
1319 if (!obj_priv->active) {
1320 drm_gem_object_reference(obj);
1321 obj_priv->active = 1;
1322 }
1323 /* Move from whatever list we were on to the tail of execution. */
1324 list_move_tail(&obj_priv->list,
1325 &dev_priv->mm.active_list);
ce44b0ea 1326 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1327}
1328
ce44b0ea
EA
1329static void
1330i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1331{
1332 struct drm_device *dev = obj->dev;
1333 drm_i915_private_t *dev_priv = dev->dev_private;
1334 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1335
1336 BUG_ON(!obj_priv->active);
1337 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1338 obj_priv->last_rendering_seqno = 0;
1339}
673a394b
EA
1340
1341static void
1342i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1343{
1344 struct drm_device *dev = obj->dev;
1345 drm_i915_private_t *dev_priv = dev->dev_private;
1346 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1347
1348 i915_verify_inactive(dev, __FILE__, __LINE__);
1349 if (obj_priv->pin_count != 0)
1350 list_del_init(&obj_priv->list);
1351 else
1352 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1353
ce44b0ea 1354 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1355 if (obj_priv->active) {
1356 obj_priv->active = 0;
1357 drm_gem_object_unreference(obj);
1358 }
1359 i915_verify_inactive(dev, __FILE__, __LINE__);
1360}
1361
1362/**
1363 * Creates a new sequence number, emitting a write of it to the status page
1364 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1365 *
1366 * Must be called with struct_lock held.
1367 *
1368 * Returned sequence numbers are nonzero on success.
1369 */
1370static uint32_t
1371i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1372{
1373 drm_i915_private_t *dev_priv = dev->dev_private;
1374 struct drm_i915_gem_request *request;
1375 uint32_t seqno;
1376 int was_empty;
1377 RING_LOCALS;
1378
1379 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1380 if (request == NULL)
1381 return 0;
1382
1383 /* Grab the seqno we're going to make this request be, and bump the
1384 * next (skipping 0 so it can be the reserved no-seqno value).
1385 */
1386 seqno = dev_priv->mm.next_gem_seqno;
1387 dev_priv->mm.next_gem_seqno++;
1388 if (dev_priv->mm.next_gem_seqno == 0)
1389 dev_priv->mm.next_gem_seqno++;
1390
1391 BEGIN_LP_RING(4);
1392 OUT_RING(MI_STORE_DWORD_INDEX);
1393 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1394 OUT_RING(seqno);
1395
1396 OUT_RING(MI_USER_INTERRUPT);
1397 ADVANCE_LP_RING();
1398
1399 DRM_DEBUG("%d\n", seqno);
1400
1401 request->seqno = seqno;
1402 request->emitted_jiffies = jiffies;
673a394b
EA
1403 was_empty = list_empty(&dev_priv->mm.request_list);
1404 list_add_tail(&request->list, &dev_priv->mm.request_list);
1405
ce44b0ea
EA
1406 /* Associate any objects on the flushing list matching the write
1407 * domain we're flushing with our flush.
1408 */
1409 if (flush_domains != 0) {
1410 struct drm_i915_gem_object *obj_priv, *next;
1411
1412 list_for_each_entry_safe(obj_priv, next,
1413 &dev_priv->mm.flushing_list, list) {
1414 struct drm_gem_object *obj = obj_priv->obj;
1415
1416 if ((obj->write_domain & flush_domains) ==
1417 obj->write_domain) {
1418 obj->write_domain = 0;
1419 i915_gem_object_move_to_active(obj, seqno);
1420 }
1421 }
1422
1423 }
1424
6dbe2772 1425 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
1426 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1427 return seqno;
1428}
1429
1430/**
1431 * Command execution barrier
1432 *
1433 * Ensures that all commands in the ring are finished
1434 * before signalling the CPU
1435 */
3043c60c 1436static uint32_t
673a394b
EA
1437i915_retire_commands(struct drm_device *dev)
1438{
1439 drm_i915_private_t *dev_priv = dev->dev_private;
1440 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1441 uint32_t flush_domains = 0;
1442 RING_LOCALS;
1443
1444 /* The sampler always gets flushed on i965 (sigh) */
1445 if (IS_I965G(dev))
1446 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1447 BEGIN_LP_RING(2);
1448 OUT_RING(cmd);
1449 OUT_RING(0); /* noop */
1450 ADVANCE_LP_RING();
1451 return flush_domains;
1452}
1453
1454/**
1455 * Moves buffers associated only with the given active seqno from the active
1456 * to inactive list, potentially freeing them.
1457 */
1458static void
1459i915_gem_retire_request(struct drm_device *dev,
1460 struct drm_i915_gem_request *request)
1461{
1462 drm_i915_private_t *dev_priv = dev->dev_private;
1463
1464 /* Move any buffers on the active list that are no longer referenced
1465 * by the ringbuffer to the flushing/inactive lists as appropriate.
1466 */
1467 while (!list_empty(&dev_priv->mm.active_list)) {
1468 struct drm_gem_object *obj;
1469 struct drm_i915_gem_object *obj_priv;
1470
1471 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1472 struct drm_i915_gem_object,
1473 list);
1474 obj = obj_priv->obj;
1475
1476 /* If the seqno being retired doesn't match the oldest in the
1477 * list, then the oldest in the list must still be newer than
1478 * this seqno.
1479 */
1480 if (obj_priv->last_rendering_seqno != request->seqno)
1481 return;
de151cf6 1482
673a394b
EA
1483#if WATCH_LRU
1484 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1485 __func__, request->seqno, obj);
1486#endif
1487
ce44b0ea
EA
1488 if (obj->write_domain != 0)
1489 i915_gem_object_move_to_flushing(obj);
1490 else
673a394b 1491 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1492 }
1493}
1494
1495/**
1496 * Returns true if seq1 is later than seq2.
1497 */
1498static int
1499i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1500{
1501 return (int32_t)(seq1 - seq2) >= 0;
1502}
1503
1504uint32_t
1505i915_get_gem_seqno(struct drm_device *dev)
1506{
1507 drm_i915_private_t *dev_priv = dev->dev_private;
1508
1509 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1510}
1511
1512/**
1513 * This function clears the request list as sequence numbers are passed.
1514 */
1515void
1516i915_gem_retire_requests(struct drm_device *dev)
1517{
1518 drm_i915_private_t *dev_priv = dev->dev_private;
1519 uint32_t seqno;
1520
6c0594a3
KW
1521 if (!dev_priv->hw_status_page)
1522 return;
1523
673a394b
EA
1524 seqno = i915_get_gem_seqno(dev);
1525
1526 while (!list_empty(&dev_priv->mm.request_list)) {
1527 struct drm_i915_gem_request *request;
1528 uint32_t retiring_seqno;
1529
1530 request = list_first_entry(&dev_priv->mm.request_list,
1531 struct drm_i915_gem_request,
1532 list);
1533 retiring_seqno = request->seqno;
1534
1535 if (i915_seqno_passed(seqno, retiring_seqno) ||
1536 dev_priv->mm.wedged) {
1537 i915_gem_retire_request(dev, request);
1538
1539 list_del(&request->list);
1540 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1541 } else
1542 break;
1543 }
1544}
1545
1546void
1547i915_gem_retire_work_handler(struct work_struct *work)
1548{
1549 drm_i915_private_t *dev_priv;
1550 struct drm_device *dev;
1551
1552 dev_priv = container_of(work, drm_i915_private_t,
1553 mm.retire_work.work);
1554 dev = dev_priv->dev;
1555
1556 mutex_lock(&dev->struct_mutex);
1557 i915_gem_retire_requests(dev);
6dbe2772
KP
1558 if (!dev_priv->mm.suspended &&
1559 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1560 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1561 mutex_unlock(&dev->struct_mutex);
1562}
1563
1564/**
1565 * Waits for a sequence number to be signaled, and cleans up the
1566 * request and object lists appropriately for that event.
1567 */
3043c60c 1568static int
673a394b
EA
1569i915_wait_request(struct drm_device *dev, uint32_t seqno)
1570{
1571 drm_i915_private_t *dev_priv = dev->dev_private;
1572 int ret = 0;
1573
1574 BUG_ON(seqno == 0);
1575
1576 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1577 dev_priv->mm.waiting_gem_seqno = seqno;
1578 i915_user_irq_get(dev);
1579 ret = wait_event_interruptible(dev_priv->irq_queue,
1580 i915_seqno_passed(i915_get_gem_seqno(dev),
1581 seqno) ||
1582 dev_priv->mm.wedged);
1583 i915_user_irq_put(dev);
1584 dev_priv->mm.waiting_gem_seqno = 0;
1585 }
1586 if (dev_priv->mm.wedged)
1587 ret = -EIO;
1588
1589 if (ret && ret != -ERESTARTSYS)
1590 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1591 __func__, ret, seqno, i915_get_gem_seqno(dev));
1592
1593 /* Directly dispatch request retiring. While we have the work queue
1594 * to handle this, the waiter on a request often wants an associated
1595 * buffer to have made it to the inactive list, and we would need
1596 * a separate wait queue to handle that.
1597 */
1598 if (ret == 0)
1599 i915_gem_retire_requests(dev);
1600
1601 return ret;
1602}
1603
1604static void
1605i915_gem_flush(struct drm_device *dev,
1606 uint32_t invalidate_domains,
1607 uint32_t flush_domains)
1608{
1609 drm_i915_private_t *dev_priv = dev->dev_private;
1610 uint32_t cmd;
1611 RING_LOCALS;
1612
1613#if WATCH_EXEC
1614 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1615 invalidate_domains, flush_domains);
1616#endif
1617
1618 if (flush_domains & I915_GEM_DOMAIN_CPU)
1619 drm_agp_chipset_flush(dev);
1620
1621 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1622 I915_GEM_DOMAIN_GTT)) {
1623 /*
1624 * read/write caches:
1625 *
1626 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1627 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1628 * also flushed at 2d versus 3d pipeline switches.
1629 *
1630 * read-only caches:
1631 *
1632 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1633 * MI_READ_FLUSH is set, and is always flushed on 965.
1634 *
1635 * I915_GEM_DOMAIN_COMMAND may not exist?
1636 *
1637 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1638 * invalidated when MI_EXE_FLUSH is set.
1639 *
1640 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1641 * invalidated with every MI_FLUSH.
1642 *
1643 * TLBs:
1644 *
1645 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1646 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1647 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1648 * are flushed at any MI_FLUSH.
1649 */
1650
1651 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1652 if ((invalidate_domains|flush_domains) &
1653 I915_GEM_DOMAIN_RENDER)
1654 cmd &= ~MI_NO_WRITE_FLUSH;
1655 if (!IS_I965G(dev)) {
1656 /*
1657 * On the 965, the sampler cache always gets flushed
1658 * and this bit is reserved.
1659 */
1660 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1661 cmd |= MI_READ_FLUSH;
1662 }
1663 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1664 cmd |= MI_EXE_FLUSH;
1665
1666#if WATCH_EXEC
1667 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1668#endif
1669 BEGIN_LP_RING(2);
1670 OUT_RING(cmd);
1671 OUT_RING(0); /* noop */
1672 ADVANCE_LP_RING();
1673 }
1674}
1675
1676/**
1677 * Ensures that all rendering to the object has completed and the object is
1678 * safe to unbind from the GTT or access from the CPU.
1679 */
1680static int
1681i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1682{
1683 struct drm_device *dev = obj->dev;
1684 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1685 int ret;
1686
e47c68e9
EA
1687 /* This function only exists to support waiting for existing rendering,
1688 * not for emitting required flushes.
673a394b 1689 */
e47c68e9 1690 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1691
1692 /* If there is rendering queued on the buffer being evicted, wait for
1693 * it.
1694 */
1695 if (obj_priv->active) {
1696#if WATCH_BUF
1697 DRM_INFO("%s: object %p wait for seqno %08x\n",
1698 __func__, obj, obj_priv->last_rendering_seqno);
1699#endif
1700 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1701 if (ret != 0)
1702 return ret;
1703 }
1704
1705 return 0;
1706}
1707
1708/**
1709 * Unbinds an object from the GTT aperture.
1710 */
0f973f27 1711int
673a394b
EA
1712i915_gem_object_unbind(struct drm_gem_object *obj)
1713{
1714 struct drm_device *dev = obj->dev;
1715 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1716 loff_t offset;
673a394b
EA
1717 int ret = 0;
1718
1719#if WATCH_BUF
1720 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1721 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1722#endif
1723 if (obj_priv->gtt_space == NULL)
1724 return 0;
1725
1726 if (obj_priv->pin_count != 0) {
1727 DRM_ERROR("Attempting to unbind pinned buffer\n");
1728 return -EINVAL;
1729 }
1730
673a394b
EA
1731 /* Move the object to the CPU domain to ensure that
1732 * any possible CPU writes while it's not in the GTT
1733 * are flushed when we go to remap it. This will
1734 * also ensure that all pending GPU writes are finished
1735 * before we unbind.
1736 */
e47c68e9 1737 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1738 if (ret) {
e47c68e9
EA
1739 if (ret != -ERESTARTSYS)
1740 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1741 return ret;
1742 }
1743
1744 if (obj_priv->agp_mem != NULL) {
1745 drm_unbind_agp(obj_priv->agp_mem);
1746 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1747 obj_priv->agp_mem = NULL;
1748 }
1749
1750 BUG_ON(obj_priv->active);
1751
de151cf6
JB
1752 /* blow away mappings if mapped through GTT */
1753 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1754 if (dev->dev_mapping)
1755 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1756
1757 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1758 i915_gem_clear_fence_reg(obj);
1759
856fa198 1760 i915_gem_object_put_pages(obj);
673a394b
EA
1761
1762 if (obj_priv->gtt_space) {
1763 atomic_dec(&dev->gtt_count);
1764 atomic_sub(obj->size, &dev->gtt_memory);
1765
1766 drm_mm_put_block(obj_priv->gtt_space);
1767 obj_priv->gtt_space = NULL;
1768 }
1769
1770 /* Remove ourselves from the LRU list if present. */
1771 if (!list_empty(&obj_priv->list))
1772 list_del_init(&obj_priv->list);
1773
1774 return 0;
1775}
1776
1777static int
1778i915_gem_evict_something(struct drm_device *dev)
1779{
1780 drm_i915_private_t *dev_priv = dev->dev_private;
1781 struct drm_gem_object *obj;
1782 struct drm_i915_gem_object *obj_priv;
1783 int ret = 0;
1784
1785 for (;;) {
1786 /* If there's an inactive buffer available now, grab it
1787 * and be done.
1788 */
1789 if (!list_empty(&dev_priv->mm.inactive_list)) {
1790 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1791 struct drm_i915_gem_object,
1792 list);
1793 obj = obj_priv->obj;
1794 BUG_ON(obj_priv->pin_count != 0);
1795#if WATCH_LRU
1796 DRM_INFO("%s: evicting %p\n", __func__, obj);
1797#endif
1798 BUG_ON(obj_priv->active);
1799
1800 /* Wait on the rendering and unbind the buffer. */
1801 ret = i915_gem_object_unbind(obj);
1802 break;
1803 }
1804
1805 /* If we didn't get anything, but the ring is still processing
1806 * things, wait for one of those things to finish and hopefully
1807 * leave us a buffer to evict.
1808 */
1809 if (!list_empty(&dev_priv->mm.request_list)) {
1810 struct drm_i915_gem_request *request;
1811
1812 request = list_first_entry(&dev_priv->mm.request_list,
1813 struct drm_i915_gem_request,
1814 list);
1815
1816 ret = i915_wait_request(dev, request->seqno);
1817 if (ret)
1818 break;
1819
1820 /* if waiting caused an object to become inactive,
1821 * then loop around and wait for it. Otherwise, we
1822 * assume that waiting freed and unbound something,
1823 * so there should now be some space in the GTT
1824 */
1825 if (!list_empty(&dev_priv->mm.inactive_list))
1826 continue;
1827 break;
1828 }
1829
1830 /* If we didn't have anything on the request list but there
1831 * are buffers awaiting a flush, emit one and try again.
1832 * When we wait on it, those buffers waiting for that flush
1833 * will get moved to inactive.
1834 */
1835 if (!list_empty(&dev_priv->mm.flushing_list)) {
1836 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1837 struct drm_i915_gem_object,
1838 list);
1839 obj = obj_priv->obj;
1840
1841 i915_gem_flush(dev,
1842 obj->write_domain,
1843 obj->write_domain);
1844 i915_add_request(dev, obj->write_domain);
1845
1846 obj = NULL;
1847 continue;
1848 }
1849
1850 DRM_ERROR("inactive empty %d request empty %d "
1851 "flushing empty %d\n",
1852 list_empty(&dev_priv->mm.inactive_list),
1853 list_empty(&dev_priv->mm.request_list),
1854 list_empty(&dev_priv->mm.flushing_list));
1855 /* If we didn't do any of the above, there's nothing to be done
1856 * and we just can't fit it in.
1857 */
1858 return -ENOMEM;
1859 }
1860 return ret;
1861}
1862
ac94a962
KP
1863static int
1864i915_gem_evict_everything(struct drm_device *dev)
1865{
1866 int ret;
1867
1868 for (;;) {
1869 ret = i915_gem_evict_something(dev);
1870 if (ret != 0)
1871 break;
1872 }
15c35334
OA
1873 if (ret == -ENOMEM)
1874 return 0;
ac94a962
KP
1875 return ret;
1876}
1877
673a394b 1878static int
856fa198 1879i915_gem_object_get_pages(struct drm_gem_object *obj)
673a394b
EA
1880{
1881 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1882 int page_count, i;
1883 struct address_space *mapping;
1884 struct inode *inode;
1885 struct page *page;
1886 int ret;
1887
856fa198 1888 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
1889 return 0;
1890
1891 /* Get the list of pages out of our struct file. They'll be pinned
1892 * at this point until we release them.
1893 */
1894 page_count = obj->size / PAGE_SIZE;
856fa198
EA
1895 BUG_ON(obj_priv->pages != NULL);
1896 obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
1897 DRM_MEM_DRIVER);
1898 if (obj_priv->pages == NULL) {
673a394b 1899 DRM_ERROR("Faled to allocate page list\n");
856fa198 1900 obj_priv->pages_refcount--;
673a394b
EA
1901 return -ENOMEM;
1902 }
1903
1904 inode = obj->filp->f_path.dentry->d_inode;
1905 mapping = inode->i_mapping;
1906 for (i = 0; i < page_count; i++) {
1907 page = read_mapping_page(mapping, i, NULL);
1908 if (IS_ERR(page)) {
1909 ret = PTR_ERR(page);
1910 DRM_ERROR("read_mapping_page failed: %d\n", ret);
856fa198 1911 i915_gem_object_put_pages(obj);
673a394b
EA
1912 return ret;
1913 }
856fa198 1914 obj_priv->pages[i] = page;
673a394b
EA
1915 }
1916 return 0;
1917}
1918
de151cf6
JB
1919static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1920{
1921 struct drm_gem_object *obj = reg->obj;
1922 struct drm_device *dev = obj->dev;
1923 drm_i915_private_t *dev_priv = dev->dev_private;
1924 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1925 int regnum = obj_priv->fence_reg;
1926 uint64_t val;
1927
1928 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1929 0xfffff000) << 32;
1930 val |= obj_priv->gtt_offset & 0xfffff000;
1931 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1932 if (obj_priv->tiling_mode == I915_TILING_Y)
1933 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1934 val |= I965_FENCE_REG_VALID;
1935
1936 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1937}
1938
1939static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1940{
1941 struct drm_gem_object *obj = reg->obj;
1942 struct drm_device *dev = obj->dev;
1943 drm_i915_private_t *dev_priv = dev->dev_private;
1944 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1945 int regnum = obj_priv->fence_reg;
0f973f27 1946 int tile_width;
dc529a4f 1947 uint32_t fence_reg, val;
de151cf6
JB
1948 uint32_t pitch_val;
1949
1950 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1951 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 1952 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 1953 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
1954 return;
1955 }
1956
0f973f27
JB
1957 if (obj_priv->tiling_mode == I915_TILING_Y &&
1958 HAS_128_BYTE_Y_TILING(dev))
1959 tile_width = 128;
de151cf6 1960 else
0f973f27
JB
1961 tile_width = 512;
1962
1963 /* Note: pitch better be a power of two tile widths */
1964 pitch_val = obj_priv->stride / tile_width;
1965 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
1966
1967 val = obj_priv->gtt_offset;
1968 if (obj_priv->tiling_mode == I915_TILING_Y)
1969 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1970 val |= I915_FENCE_SIZE_BITS(obj->size);
1971 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1972 val |= I830_FENCE_REG_VALID;
1973
dc529a4f
EA
1974 if (regnum < 8)
1975 fence_reg = FENCE_REG_830_0 + (regnum * 4);
1976 else
1977 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
1978 I915_WRITE(fence_reg, val);
de151cf6
JB
1979}
1980
1981static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1982{
1983 struct drm_gem_object *obj = reg->obj;
1984 struct drm_device *dev = obj->dev;
1985 drm_i915_private_t *dev_priv = dev->dev_private;
1986 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1987 int regnum = obj_priv->fence_reg;
1988 uint32_t val;
1989 uint32_t pitch_val;
1990
1991 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1992 (obj_priv->gtt_offset & (obj->size - 1))) {
0f973f27
JB
1993 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1994 __func__, obj_priv->gtt_offset);
de151cf6
JB
1995 return;
1996 }
1997
1998 pitch_val = (obj_priv->stride / 128) - 1;
1999
2000 val = obj_priv->gtt_offset;
2001 if (obj_priv->tiling_mode == I915_TILING_Y)
2002 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2003 val |= I830_FENCE_SIZE_BITS(obj->size);
2004 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2005 val |= I830_FENCE_REG_VALID;
2006
2007 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2008
2009}
2010
2011/**
2012 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2013 * @obj: object to map through a fence reg
0f973f27 2014 * @write: object is about to be written
de151cf6
JB
2015 *
2016 * When mapping objects through the GTT, userspace wants to be able to write
2017 * to them without having to worry about swizzling if the object is tiled.
2018 *
2019 * This function walks the fence regs looking for a free one for @obj,
2020 * stealing one if it can't find any.
2021 *
2022 * It then sets up the reg based on the object's properties: address, pitch
2023 * and tiling format.
2024 */
d9ddcb96 2025static int
0f973f27 2026i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
de151cf6
JB
2027{
2028 struct drm_device *dev = obj->dev;
79e53945 2029 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2030 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2031 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2032 struct drm_i915_gem_object *old_obj_priv = NULL;
2033 int i, ret, avail;
de151cf6
JB
2034
2035 switch (obj_priv->tiling_mode) {
2036 case I915_TILING_NONE:
2037 WARN(1, "allocating a fence for non-tiled object?\n");
2038 break;
2039 case I915_TILING_X:
0f973f27
JB
2040 if (!obj_priv->stride)
2041 return -EINVAL;
2042 WARN((obj_priv->stride & (512 - 1)),
2043 "object 0x%08x is X tiled but has non-512B pitch\n",
2044 obj_priv->gtt_offset);
de151cf6
JB
2045 break;
2046 case I915_TILING_Y:
0f973f27
JB
2047 if (!obj_priv->stride)
2048 return -EINVAL;
2049 WARN((obj_priv->stride & (128 - 1)),
2050 "object 0x%08x is Y tiled but has non-128B pitch\n",
2051 obj_priv->gtt_offset);
de151cf6
JB
2052 break;
2053 }
2054
2055 /* First try to find a free reg */
9b2412f9 2056try_again:
fc7170ba 2057 avail = 0;
de151cf6
JB
2058 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2059 reg = &dev_priv->fence_regs[i];
2060 if (!reg->obj)
2061 break;
fc7170ba
CW
2062
2063 old_obj_priv = reg->obj->driver_private;
2064 if (!old_obj_priv->pin_count)
2065 avail++;
de151cf6
JB
2066 }
2067
2068 /* None available, try to steal one or wait for a user to finish */
2069 if (i == dev_priv->num_fence_regs) {
d7619c4b 2070 uint32_t seqno = dev_priv->mm.next_gem_seqno;
de151cf6
JB
2071 loff_t offset;
2072
fc7170ba
CW
2073 if (avail == 0)
2074 return -ENOMEM;
2075
de151cf6
JB
2076 for (i = dev_priv->fence_reg_start;
2077 i < dev_priv->num_fence_regs; i++) {
d7619c4b
CW
2078 uint32_t this_seqno;
2079
de151cf6
JB
2080 reg = &dev_priv->fence_regs[i];
2081 old_obj_priv = reg->obj->driver_private;
d7619c4b
CW
2082
2083 if (old_obj_priv->pin_count)
2084 continue;
2085
2086 /* i915 uses fences for GPU access to tiled buffers */
2087 if (IS_I965G(dev) || !old_obj_priv->active)
de151cf6 2088 break;
d7619c4b
CW
2089
2090 /* find the seqno of the first available fence */
2091 this_seqno = old_obj_priv->last_rendering_seqno;
2092 if (this_seqno != 0 &&
2093 reg->obj->write_domain == 0 &&
2094 i915_seqno_passed(seqno, this_seqno))
2095 seqno = this_seqno;
de151cf6
JB
2096 }
2097
2098 /*
2099 * Now things get ugly... we have to wait for one of the
2100 * objects to finish before trying again.
2101 */
2102 if (i == dev_priv->num_fence_regs) {
d7619c4b
CW
2103 if (seqno == dev_priv->mm.next_gem_seqno) {
2104 i915_gem_flush(dev,
2105 I915_GEM_GPU_DOMAINS,
2106 I915_GEM_GPU_DOMAINS);
2107 seqno = i915_add_request(dev,
2108 I915_GEM_GPU_DOMAINS);
2109 if (seqno == 0)
2110 return -ENOMEM;
de151cf6 2111 }
d7619c4b
CW
2112
2113 ret = i915_wait_request(dev, seqno);
2114 if (ret)
2115 return ret;
de151cf6
JB
2116 goto try_again;
2117 }
2118
d7619c4b
CW
2119 BUG_ON(old_obj_priv->active ||
2120 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2121
de151cf6
JB
2122 /*
2123 * Zap this virtual mapping so we can set up a fence again
2124 * for this object next time we need it.
2125 */
2126 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
2127 if (dev->dev_mapping)
2128 unmap_mapping_range(dev->dev_mapping, offset,
2129 reg->obj->size, 1);
de151cf6
JB
2130 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2131 }
2132
2133 obj_priv->fence_reg = i;
2134 reg->obj = obj;
2135
2136 if (IS_I965G(dev))
2137 i965_write_fence_reg(reg);
2138 else if (IS_I9XX(dev))
2139 i915_write_fence_reg(reg);
2140 else
2141 i830_write_fence_reg(reg);
d9ddcb96
EA
2142
2143 return 0;
de151cf6
JB
2144}
2145
2146/**
2147 * i915_gem_clear_fence_reg - clear out fence register info
2148 * @obj: object to clear
2149 *
2150 * Zeroes out the fence register itself and clears out the associated
2151 * data structures in dev_priv and obj_priv.
2152 */
2153static void
2154i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2155{
2156 struct drm_device *dev = obj->dev;
79e53945 2157 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2158 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2159
2160 if (IS_I965G(dev))
2161 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
dc529a4f
EA
2162 else {
2163 uint32_t fence_reg;
2164
2165 if (obj_priv->fence_reg < 8)
2166 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2167 else
2168 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2169 8) * 4;
2170
2171 I915_WRITE(fence_reg, 0);
2172 }
de151cf6
JB
2173
2174 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2175 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2176}
2177
673a394b
EA
2178/**
2179 * Finds free space in the GTT aperture and binds the object there.
2180 */
2181static int
2182i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2183{
2184 struct drm_device *dev = obj->dev;
2185 drm_i915_private_t *dev_priv = dev->dev_private;
2186 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2187 struct drm_mm_node *free_space;
2188 int page_count, ret;
2189
9bb2d6f9
EA
2190 if (dev_priv->mm.suspended)
2191 return -EBUSY;
673a394b 2192 if (alignment == 0)
0f973f27 2193 alignment = i915_gem_get_gtt_alignment(obj);
673a394b
EA
2194 if (alignment & (PAGE_SIZE - 1)) {
2195 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2196 return -EINVAL;
2197 }
2198
2199 search_free:
2200 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2201 obj->size, alignment, 0);
2202 if (free_space != NULL) {
2203 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2204 alignment);
2205 if (obj_priv->gtt_space != NULL) {
2206 obj_priv->gtt_space->private = obj;
2207 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2208 }
2209 }
2210 if (obj_priv->gtt_space == NULL) {
2211 /* If the gtt is empty and we're still having trouble
2212 * fitting our object in, we're out of memory.
2213 */
2214#if WATCH_LRU
2215 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2216#endif
2217 if (list_empty(&dev_priv->mm.inactive_list) &&
2218 list_empty(&dev_priv->mm.flushing_list) &&
2219 list_empty(&dev_priv->mm.active_list)) {
2220 DRM_ERROR("GTT full, but LRU list empty\n");
2221 return -ENOMEM;
2222 }
2223
2224 ret = i915_gem_evict_something(dev);
2225 if (ret != 0) {
ac94a962
KP
2226 if (ret != -ERESTARTSYS)
2227 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
2228 return ret;
2229 }
2230 goto search_free;
2231 }
2232
2233#if WATCH_BUF
2234 DRM_INFO("Binding object of size %d at 0x%08x\n",
2235 obj->size, obj_priv->gtt_offset);
2236#endif
856fa198 2237 ret = i915_gem_object_get_pages(obj);
673a394b
EA
2238 if (ret) {
2239 drm_mm_put_block(obj_priv->gtt_space);
2240 obj_priv->gtt_space = NULL;
2241 return ret;
2242 }
2243
2244 page_count = obj->size / PAGE_SIZE;
2245 /* Create an AGP memory structure pointing at our pages, and bind it
2246 * into the GTT.
2247 */
2248 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2249 obj_priv->pages,
673a394b 2250 page_count,
ba1eb1d8
KP
2251 obj_priv->gtt_offset,
2252 obj_priv->agp_type);
673a394b 2253 if (obj_priv->agp_mem == NULL) {
856fa198 2254 i915_gem_object_put_pages(obj);
673a394b
EA
2255 drm_mm_put_block(obj_priv->gtt_space);
2256 obj_priv->gtt_space = NULL;
2257 return -ENOMEM;
2258 }
2259 atomic_inc(&dev->gtt_count);
2260 atomic_add(obj->size, &dev->gtt_memory);
2261
2262 /* Assert that the object is not currently in any GPU domain. As it
2263 * wasn't in the GTT, there shouldn't be any way it could have been in
2264 * a GPU cache
2265 */
2266 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2267 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2268
2269 return 0;
2270}
2271
2272void
2273i915_gem_clflush_object(struct drm_gem_object *obj)
2274{
2275 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2276
2277 /* If we don't have a page list set up, then we're not pinned
2278 * to GPU, and we can ignore the cache flush because it'll happen
2279 * again at bind time.
2280 */
856fa198 2281 if (obj_priv->pages == NULL)
673a394b
EA
2282 return;
2283
856fa198 2284 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2285}
2286
e47c68e9
EA
2287/** Flushes any GPU write domain for the object if it's dirty. */
2288static void
2289i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2290{
2291 struct drm_device *dev = obj->dev;
2292 uint32_t seqno;
2293
2294 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2295 return;
2296
2297 /* Queue the GPU write cache flushing we need. */
2298 i915_gem_flush(dev, 0, obj->write_domain);
2299 seqno = i915_add_request(dev, obj->write_domain);
2300 obj->write_domain = 0;
2301 i915_gem_object_move_to_active(obj, seqno);
2302}
2303
2304/** Flushes the GTT write domain for the object if it's dirty. */
2305static void
2306i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2307{
2308 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2309 return;
2310
2311 /* No actual flushing is required for the GTT write domain. Writes
2312 * to it immediately go to main memory as far as we know, so there's
2313 * no chipset flush. It also doesn't land in render cache.
2314 */
2315 obj->write_domain = 0;
2316}
2317
2318/** Flushes the CPU write domain for the object if it's dirty. */
2319static void
2320i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2321{
2322 struct drm_device *dev = obj->dev;
2323
2324 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2325 return;
2326
2327 i915_gem_clflush_object(obj);
2328 drm_agp_chipset_flush(dev);
2329 obj->write_domain = 0;
2330}
2331
2ef7eeaa
EA
2332/**
2333 * Moves a single object to the GTT read, and possibly write domain.
2334 *
2335 * This function returns when the move is complete, including waiting on
2336 * flushes to occur.
2337 */
79e53945 2338int
2ef7eeaa
EA
2339i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2340{
2ef7eeaa 2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 2342 int ret;
2ef7eeaa 2343
02354392
EA
2344 /* Not valid to be called on unbound objects. */
2345 if (obj_priv->gtt_space == NULL)
2346 return -EINVAL;
2347
e47c68e9
EA
2348 i915_gem_object_flush_gpu_write_domain(obj);
2349 /* Wait on any GPU rendering and flushing to occur. */
2350 ret = i915_gem_object_wait_rendering(obj);
2351 if (ret != 0)
2352 return ret;
2353
2354 /* If we're writing through the GTT domain, then CPU and GPU caches
2355 * will need to be invalidated at next use.
2ef7eeaa 2356 */
e47c68e9
EA
2357 if (write)
2358 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2359
e47c68e9 2360 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2361
e47c68e9
EA
2362 /* It should now be out of any other write domains, and we can update
2363 * the domain values for our changes.
2364 */
2365 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2366 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2367 if (write) {
2368 obj->write_domain = I915_GEM_DOMAIN_GTT;
2369 obj_priv->dirty = 1;
2ef7eeaa
EA
2370 }
2371
e47c68e9
EA
2372 return 0;
2373}
2374
2375/**
2376 * Moves a single object to the CPU read, and possibly write domain.
2377 *
2378 * This function returns when the move is complete, including waiting on
2379 * flushes to occur.
2380 */
2381static int
2382i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2383{
2384 struct drm_device *dev = obj->dev;
2385 int ret;
2386
2387 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2388 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2389 ret = i915_gem_object_wait_rendering(obj);
2390 if (ret != 0)
2391 return ret;
2ef7eeaa 2392
e47c68e9 2393 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2394
e47c68e9
EA
2395 /* If we have a partially-valid cache of the object in the CPU,
2396 * finish invalidating it and free the per-page flags.
2ef7eeaa 2397 */
e47c68e9 2398 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2399
e47c68e9
EA
2400 /* Flush the CPU cache if it's still invalid. */
2401 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa
EA
2402 i915_gem_clflush_object(obj);
2403 drm_agp_chipset_flush(dev);
2404
e47c68e9 2405 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2406 }
2407
2408 /* It should now be out of any other write domains, and we can update
2409 * the domain values for our changes.
2410 */
e47c68e9
EA
2411 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2412
2413 /* If we're writing through the CPU, then the GPU read domains will
2414 * need to be invalidated at next use.
2415 */
2416 if (write) {
2417 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2418 obj->write_domain = I915_GEM_DOMAIN_CPU;
2419 }
2ef7eeaa
EA
2420
2421 return 0;
2422}
2423
673a394b
EA
2424/*
2425 * Set the next domain for the specified object. This
2426 * may not actually perform the necessary flushing/invaliding though,
2427 * as that may want to be batched with other set_domain operations
2428 *
2429 * This is (we hope) the only really tricky part of gem. The goal
2430 * is fairly simple -- track which caches hold bits of the object
2431 * and make sure they remain coherent. A few concrete examples may
2432 * help to explain how it works. For shorthand, we use the notation
2433 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2434 * a pair of read and write domain masks.
2435 *
2436 * Case 1: the batch buffer
2437 *
2438 * 1. Allocated
2439 * 2. Written by CPU
2440 * 3. Mapped to GTT
2441 * 4. Read by GPU
2442 * 5. Unmapped from GTT
2443 * 6. Freed
2444 *
2445 * Let's take these a step at a time
2446 *
2447 * 1. Allocated
2448 * Pages allocated from the kernel may still have
2449 * cache contents, so we set them to (CPU, CPU) always.
2450 * 2. Written by CPU (using pwrite)
2451 * The pwrite function calls set_domain (CPU, CPU) and
2452 * this function does nothing (as nothing changes)
2453 * 3. Mapped by GTT
2454 * This function asserts that the object is not
2455 * currently in any GPU-based read or write domains
2456 * 4. Read by GPU
2457 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2458 * As write_domain is zero, this function adds in the
2459 * current read domains (CPU+COMMAND, 0).
2460 * flush_domains is set to CPU.
2461 * invalidate_domains is set to COMMAND
2462 * clflush is run to get data out of the CPU caches
2463 * then i915_dev_set_domain calls i915_gem_flush to
2464 * emit an MI_FLUSH and drm_agp_chipset_flush
2465 * 5. Unmapped from GTT
2466 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2467 * flush_domains and invalidate_domains end up both zero
2468 * so no flushing/invalidating happens
2469 * 6. Freed
2470 * yay, done
2471 *
2472 * Case 2: The shared render buffer
2473 *
2474 * 1. Allocated
2475 * 2. Mapped to GTT
2476 * 3. Read/written by GPU
2477 * 4. set_domain to (CPU,CPU)
2478 * 5. Read/written by CPU
2479 * 6. Read/written by GPU
2480 *
2481 * 1. Allocated
2482 * Same as last example, (CPU, CPU)
2483 * 2. Mapped to GTT
2484 * Nothing changes (assertions find that it is not in the GPU)
2485 * 3. Read/written by GPU
2486 * execbuffer calls set_domain (RENDER, RENDER)
2487 * flush_domains gets CPU
2488 * invalidate_domains gets GPU
2489 * clflush (obj)
2490 * MI_FLUSH and drm_agp_chipset_flush
2491 * 4. set_domain (CPU, CPU)
2492 * flush_domains gets GPU
2493 * invalidate_domains gets CPU
2494 * wait_rendering (obj) to make sure all drawing is complete.
2495 * This will include an MI_FLUSH to get the data from GPU
2496 * to memory
2497 * clflush (obj) to invalidate the CPU cache
2498 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2499 * 5. Read/written by CPU
2500 * cache lines are loaded and dirtied
2501 * 6. Read written by GPU
2502 * Same as last GPU access
2503 *
2504 * Case 3: The constant buffer
2505 *
2506 * 1. Allocated
2507 * 2. Written by CPU
2508 * 3. Read by GPU
2509 * 4. Updated (written) by CPU again
2510 * 5. Read by GPU
2511 *
2512 * 1. Allocated
2513 * (CPU, CPU)
2514 * 2. Written by CPU
2515 * (CPU, CPU)
2516 * 3. Read by GPU
2517 * (CPU+RENDER, 0)
2518 * flush_domains = CPU
2519 * invalidate_domains = RENDER
2520 * clflush (obj)
2521 * MI_FLUSH
2522 * drm_agp_chipset_flush
2523 * 4. Updated (written) by CPU again
2524 * (CPU, CPU)
2525 * flush_domains = 0 (no previous write domain)
2526 * invalidate_domains = 0 (no new read domains)
2527 * 5. Read by GPU
2528 * (CPU+RENDER, 0)
2529 * flush_domains = CPU
2530 * invalidate_domains = RENDER
2531 * clflush (obj)
2532 * MI_FLUSH
2533 * drm_agp_chipset_flush
2534 */
c0d90829 2535static void
8b0e378a 2536i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2537{
2538 struct drm_device *dev = obj->dev;
2539 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2540 uint32_t invalidate_domains = 0;
2541 uint32_t flush_domains = 0;
e47c68e9 2542
8b0e378a
EA
2543 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2544 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2545
2546#if WATCH_BUF
2547 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2548 __func__, obj,
8b0e378a
EA
2549 obj->read_domains, obj->pending_read_domains,
2550 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2551#endif
2552 /*
2553 * If the object isn't moving to a new write domain,
2554 * let the object stay in multiple read domains
2555 */
8b0e378a
EA
2556 if (obj->pending_write_domain == 0)
2557 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2558 else
2559 obj_priv->dirty = 1;
2560
2561 /*
2562 * Flush the current write domain if
2563 * the new read domains don't match. Invalidate
2564 * any read domains which differ from the old
2565 * write domain
2566 */
8b0e378a
EA
2567 if (obj->write_domain &&
2568 obj->write_domain != obj->pending_read_domains) {
673a394b 2569 flush_domains |= obj->write_domain;
8b0e378a
EA
2570 invalidate_domains |=
2571 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2572 }
2573 /*
2574 * Invalidate any read caches which may have
2575 * stale data. That is, any new read domains.
2576 */
8b0e378a 2577 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2578 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2579#if WATCH_BUF
2580 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2581 __func__, flush_domains, invalidate_domains);
2582#endif
673a394b
EA
2583 i915_gem_clflush_object(obj);
2584 }
2585
efbeed96
EA
2586 /* The actual obj->write_domain will be updated with
2587 * pending_write_domain after we emit the accumulated flush for all
2588 * of our domain changes in execbuffers (which clears objects'
2589 * write_domains). So if we have a current write domain that we
2590 * aren't changing, set pending_write_domain to that.
2591 */
2592 if (flush_domains == 0 && obj->pending_write_domain == 0)
2593 obj->pending_write_domain = obj->write_domain;
8b0e378a 2594 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2595
2596 dev->invalidate_domains |= invalidate_domains;
2597 dev->flush_domains |= flush_domains;
2598#if WATCH_BUF
2599 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2600 __func__,
2601 obj->read_domains, obj->write_domain,
2602 dev->invalidate_domains, dev->flush_domains);
2603#endif
673a394b
EA
2604}
2605
2606/**
e47c68e9 2607 * Moves the object from a partially CPU read to a full one.
673a394b 2608 *
e47c68e9
EA
2609 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2610 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2611 */
e47c68e9
EA
2612static void
2613i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 2614{
e47c68e9 2615 struct drm_device *dev = obj->dev;
673a394b 2616 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2617
e47c68e9
EA
2618 if (!obj_priv->page_cpu_valid)
2619 return;
2620
2621 /* If we're partially in the CPU read domain, finish moving it in.
2622 */
2623 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2624 int i;
2625
2626 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2627 if (obj_priv->page_cpu_valid[i])
2628 continue;
856fa198 2629 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9
EA
2630 }
2631 drm_agp_chipset_flush(dev);
2632 }
2633
2634 /* Free the page_cpu_valid mappings which are now stale, whether
2635 * or not we've got I915_GEM_DOMAIN_CPU.
2636 */
2637 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2638 DRM_MEM_DRIVER);
2639 obj_priv->page_cpu_valid = NULL;
2640}
2641
2642/**
2643 * Set the CPU read domain on a range of the object.
2644 *
2645 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2646 * not entirely valid. The page_cpu_valid member of the object flags which
2647 * pages have been flushed, and will be respected by
2648 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2649 * of the whole object.
2650 *
2651 * This function returns when the move is complete, including waiting on
2652 * flushes to occur.
2653 */
2654static int
2655i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2656 uint64_t offset, uint64_t size)
2657{
2658 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2659 int i, ret;
673a394b 2660
e47c68e9
EA
2661 if (offset == 0 && size == obj->size)
2662 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2663
e47c68e9
EA
2664 i915_gem_object_flush_gpu_write_domain(obj);
2665 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2666 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2667 if (ret != 0)
6a47baa6 2668 return ret;
e47c68e9
EA
2669 i915_gem_object_flush_gtt_write_domain(obj);
2670
2671 /* If we're already fully in the CPU read domain, we're done. */
2672 if (obj_priv->page_cpu_valid == NULL &&
2673 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2674 return 0;
673a394b 2675
e47c68e9
EA
2676 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2677 * newly adding I915_GEM_DOMAIN_CPU
2678 */
673a394b
EA
2679 if (obj_priv->page_cpu_valid == NULL) {
2680 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2681 DRM_MEM_DRIVER);
e47c68e9
EA
2682 if (obj_priv->page_cpu_valid == NULL)
2683 return -ENOMEM;
2684 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2685 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2686
2687 /* Flush the cache on any pages that are still invalid from the CPU's
2688 * perspective.
2689 */
e47c68e9
EA
2690 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2691 i++) {
673a394b
EA
2692 if (obj_priv->page_cpu_valid[i])
2693 continue;
2694
856fa198 2695 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
2696
2697 obj_priv->page_cpu_valid[i] = 1;
2698 }
2699
e47c68e9
EA
2700 /* It should now be out of any other write domains, and we can update
2701 * the domain values for our changes.
2702 */
2703 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2704
2705 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2706
673a394b
EA
2707 return 0;
2708}
2709
673a394b
EA
2710/**
2711 * Pin an object to the GTT and evaluate the relocations landing in it.
2712 */
2713static int
2714i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2715 struct drm_file *file_priv,
2716 struct drm_i915_gem_exec_object *entry)
2717{
2718 struct drm_device *dev = obj->dev;
0839ccb8 2719 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2720 struct drm_i915_gem_relocation_entry reloc;
2721 struct drm_i915_gem_relocation_entry __user *relocs;
2722 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2723 int i, ret;
0839ccb8 2724 void __iomem *reloc_page;
673a394b
EA
2725
2726 /* Choose the GTT offset for our buffer and put it there. */
2727 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2728 if (ret)
2729 return ret;
2730
2731 entry->offset = obj_priv->gtt_offset;
2732
2733 relocs = (struct drm_i915_gem_relocation_entry __user *)
2734 (uintptr_t) entry->relocs_ptr;
2735 /* Apply the relocations, using the GTT aperture to avoid cache
2736 * flushing requirements.
2737 */
2738 for (i = 0; i < entry->relocation_count; i++) {
2739 struct drm_gem_object *target_obj;
2740 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2741 uint32_t reloc_val, reloc_offset;
2742 uint32_t __iomem *reloc_entry;
673a394b
EA
2743
2744 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2745 if (ret != 0) {
2746 i915_gem_object_unpin(obj);
2747 return ret;
2748 }
2749
2750 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2751 reloc.target_handle);
2752 if (target_obj == NULL) {
2753 i915_gem_object_unpin(obj);
2754 return -EBADF;
2755 }
2756 target_obj_priv = target_obj->driver_private;
2757
2758 /* The target buffer should have appeared before us in the
2759 * exec_object list, so it should have a GTT space bound by now.
2760 */
2761 if (target_obj_priv->gtt_space == NULL) {
2762 DRM_ERROR("No GTT space found for object %d\n",
2763 reloc.target_handle);
2764 drm_gem_object_unreference(target_obj);
2765 i915_gem_object_unpin(obj);
2766 return -EINVAL;
2767 }
2768
2769 if (reloc.offset > obj->size - 4) {
2770 DRM_ERROR("Relocation beyond object bounds: "
2771 "obj %p target %d offset %d size %d.\n",
2772 obj, reloc.target_handle,
2773 (int) reloc.offset, (int) obj->size);
2774 drm_gem_object_unreference(target_obj);
2775 i915_gem_object_unpin(obj);
2776 return -EINVAL;
2777 }
2778 if (reloc.offset & 3) {
2779 DRM_ERROR("Relocation not 4-byte aligned: "
2780 "obj %p target %d offset %d.\n",
2781 obj, reloc.target_handle,
2782 (int) reloc.offset);
2783 drm_gem_object_unreference(target_obj);
2784 i915_gem_object_unpin(obj);
2785 return -EINVAL;
2786 }
2787
e47c68e9
EA
2788 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2789 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2790 DRM_ERROR("reloc with read/write CPU domains: "
2791 "obj %p target %d offset %d "
2792 "read %08x write %08x",
2793 obj, reloc.target_handle,
2794 (int) reloc.offset,
2795 reloc.read_domains,
2796 reloc.write_domain);
491152b8
CW
2797 drm_gem_object_unreference(target_obj);
2798 i915_gem_object_unpin(obj);
e47c68e9
EA
2799 return -EINVAL;
2800 }
2801
673a394b
EA
2802 if (reloc.write_domain && target_obj->pending_write_domain &&
2803 reloc.write_domain != target_obj->pending_write_domain) {
2804 DRM_ERROR("Write domain conflict: "
2805 "obj %p target %d offset %d "
2806 "new %08x old %08x\n",
2807 obj, reloc.target_handle,
2808 (int) reloc.offset,
2809 reloc.write_domain,
2810 target_obj->pending_write_domain);
2811 drm_gem_object_unreference(target_obj);
2812 i915_gem_object_unpin(obj);
2813 return -EINVAL;
2814 }
2815
2816#if WATCH_RELOC
2817 DRM_INFO("%s: obj %p offset %08x target %d "
2818 "read %08x write %08x gtt %08x "
2819 "presumed %08x delta %08x\n",
2820 __func__,
2821 obj,
2822 (int) reloc.offset,
2823 (int) reloc.target_handle,
2824 (int) reloc.read_domains,
2825 (int) reloc.write_domain,
2826 (int) target_obj_priv->gtt_offset,
2827 (int) reloc.presumed_offset,
2828 reloc.delta);
2829#endif
2830
2831 target_obj->pending_read_domains |= reloc.read_domains;
2832 target_obj->pending_write_domain |= reloc.write_domain;
2833
2834 /* If the relocation already has the right value in it, no
2835 * more work needs to be done.
2836 */
2837 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2838 drm_gem_object_unreference(target_obj);
2839 continue;
2840 }
2841
2ef7eeaa
EA
2842 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2843 if (ret != 0) {
2844 drm_gem_object_unreference(target_obj);
2845 i915_gem_object_unpin(obj);
2846 return -EINVAL;
673a394b
EA
2847 }
2848
2849 /* Map the page containing the relocation we're going to
2850 * perform.
2851 */
2852 reloc_offset = obj_priv->gtt_offset + reloc.offset;
0839ccb8
KP
2853 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2854 (reloc_offset &
2855 ~(PAGE_SIZE - 1)));
3043c60c 2856 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 2857 (reloc_offset & (PAGE_SIZE - 1)));
673a394b
EA
2858 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2859
2860#if WATCH_BUF
2861 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2862 obj, (unsigned int) reloc.offset,
2863 readl(reloc_entry), reloc_val);
2864#endif
2865 writel(reloc_val, reloc_entry);
0839ccb8 2866 io_mapping_unmap_atomic(reloc_page);
673a394b
EA
2867
2868 /* Write the updated presumed offset for this entry back out
2869 * to the user.
2870 */
2871 reloc.presumed_offset = target_obj_priv->gtt_offset;
2872 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2873 if (ret != 0) {
2874 drm_gem_object_unreference(target_obj);
2875 i915_gem_object_unpin(obj);
2876 return ret;
2877 }
2878
2879 drm_gem_object_unreference(target_obj);
2880 }
2881
673a394b
EA
2882#if WATCH_BUF
2883 if (0)
2884 i915_gem_dump_object(obj, 128, __func__, ~0);
2885#endif
2886 return 0;
2887}
2888
2889/** Dispatch a batchbuffer to the ring
2890 */
2891static int
2892i915_dispatch_gem_execbuffer(struct drm_device *dev,
2893 struct drm_i915_gem_execbuffer *exec,
2894 uint64_t exec_offset)
2895{
2896 drm_i915_private_t *dev_priv = dev->dev_private;
2897 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2898 (uintptr_t) exec->cliprects_ptr;
2899 int nbox = exec->num_cliprects;
2900 int i = 0, count;
2901 uint32_t exec_start, exec_len;
2902 RING_LOCALS;
2903
2904 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2905 exec_len = (uint32_t) exec->batch_len;
2906
2907 if ((exec_start | exec_len) & 0x7) {
2908 DRM_ERROR("alignment\n");
2909 return -EINVAL;
2910 }
2911
2912 if (!exec_start)
2913 return -EINVAL;
2914
2915 count = nbox ? nbox : 1;
2916
2917 for (i = 0; i < count; i++) {
2918 if (i < nbox) {
2919 int ret = i915_emit_box(dev, boxes, i,
2920 exec->DR1, exec->DR4);
2921 if (ret)
2922 return ret;
2923 }
2924
2925 if (IS_I830(dev) || IS_845G(dev)) {
2926 BEGIN_LP_RING(4);
2927 OUT_RING(MI_BATCH_BUFFER);
2928 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2929 OUT_RING(exec_start + exec_len - 4);
2930 OUT_RING(0);
2931 ADVANCE_LP_RING();
2932 } else {
2933 BEGIN_LP_RING(2);
2934 if (IS_I965G(dev)) {
2935 OUT_RING(MI_BATCH_BUFFER_START |
2936 (2 << 6) |
2937 MI_BATCH_NON_SECURE_I965);
2938 OUT_RING(exec_start);
2939 } else {
2940 OUT_RING(MI_BATCH_BUFFER_START |
2941 (2 << 6));
2942 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2943 }
2944 ADVANCE_LP_RING();
2945 }
2946 }
2947
2948 /* XXX breadcrumb */
2949 return 0;
2950}
2951
2952/* Throttle our rendering by waiting until the ring has completed our requests
2953 * emitted over 20 msec ago.
2954 *
2955 * This should get us reasonable parallelism between CPU and GPU but also
2956 * relatively low latency when blocking on a particular request to finish.
2957 */
2958static int
2959i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2960{
2961 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2962 int ret = 0;
2963 uint32_t seqno;
2964
2965 mutex_lock(&dev->struct_mutex);
2966 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2967 i915_file_priv->mm.last_gem_throttle_seqno =
2968 i915_file_priv->mm.last_gem_seqno;
2969 if (seqno)
2970 ret = i915_wait_request(dev, seqno);
2971 mutex_unlock(&dev->struct_mutex);
2972 return ret;
2973}
2974
2975int
2976i915_gem_execbuffer(struct drm_device *dev, void *data,
2977 struct drm_file *file_priv)
2978{
2979 drm_i915_private_t *dev_priv = dev->dev_private;
2980 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2981 struct drm_i915_gem_execbuffer *args = data;
2982 struct drm_i915_gem_exec_object *exec_list = NULL;
2983 struct drm_gem_object **object_list = NULL;
2984 struct drm_gem_object *batch_obj;
b70d11da 2985 struct drm_i915_gem_object *obj_priv;
673a394b
EA
2986 int ret, i, pinned = 0;
2987 uint64_t exec_offset;
2988 uint32_t seqno, flush_domains;
ac94a962 2989 int pin_tries;
673a394b
EA
2990
2991#if WATCH_EXEC
2992 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2993 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2994#endif
2995
4f481ed2
EA
2996 if (args->buffer_count < 1) {
2997 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2998 return -EINVAL;
2999 }
673a394b
EA
3000 /* Copy in the exec list from userland */
3001 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3002 DRM_MEM_DRIVER);
3003 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3004 DRM_MEM_DRIVER);
3005 if (exec_list == NULL || object_list == NULL) {
3006 DRM_ERROR("Failed to allocate exec or object list "
3007 "for %d buffers\n",
3008 args->buffer_count);
3009 ret = -ENOMEM;
3010 goto pre_mutex_err;
3011 }
3012 ret = copy_from_user(exec_list,
3013 (struct drm_i915_relocation_entry __user *)
3014 (uintptr_t) args->buffers_ptr,
3015 sizeof(*exec_list) * args->buffer_count);
3016 if (ret != 0) {
3017 DRM_ERROR("copy %d exec entries failed %d\n",
3018 args->buffer_count, ret);
3019 goto pre_mutex_err;
3020 }
3021
3022 mutex_lock(&dev->struct_mutex);
3023
3024 i915_verify_inactive(dev, __FILE__, __LINE__);
3025
3026 if (dev_priv->mm.wedged) {
3027 DRM_ERROR("Execbuf while wedged\n");
3028 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3029 ret = -EIO;
3030 goto pre_mutex_err;
673a394b
EA
3031 }
3032
3033 if (dev_priv->mm.suspended) {
3034 DRM_ERROR("Execbuf while VT-switched.\n");
3035 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3036 ret = -EBUSY;
3037 goto pre_mutex_err;
673a394b
EA
3038 }
3039
ac94a962 3040 /* Look up object handles */
673a394b
EA
3041 for (i = 0; i < args->buffer_count; i++) {
3042 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3043 exec_list[i].handle);
3044 if (object_list[i] == NULL) {
3045 DRM_ERROR("Invalid object handle %d at index %d\n",
3046 exec_list[i].handle, i);
3047 ret = -EBADF;
3048 goto err;
3049 }
b70d11da
KH
3050
3051 obj_priv = object_list[i]->driver_private;
3052 if (obj_priv->in_execbuffer) {
3053 DRM_ERROR("Object %p appears more than once in object list\n",
3054 object_list[i]);
3055 ret = -EBADF;
3056 goto err;
3057 }
3058 obj_priv->in_execbuffer = true;
ac94a962 3059 }
673a394b 3060
ac94a962
KP
3061 /* Pin and relocate */
3062 for (pin_tries = 0; ; pin_tries++) {
3063 ret = 0;
3064 for (i = 0; i < args->buffer_count; i++) {
3065 object_list[i]->pending_read_domains = 0;
3066 object_list[i]->pending_write_domain = 0;
3067 ret = i915_gem_object_pin_and_relocate(object_list[i],
3068 file_priv,
3069 &exec_list[i]);
3070 if (ret)
3071 break;
3072 pinned = i + 1;
3073 }
3074 /* success */
3075 if (ret == 0)
3076 break;
3077
3078 /* error other than GTT full, or we've already tried again */
3079 if (ret != -ENOMEM || pin_tries >= 1) {
f1acec93
EA
3080 if (ret != -ERESTARTSYS)
3081 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
3082 goto err;
3083 }
ac94a962
KP
3084
3085 /* unpin all of our buffers */
3086 for (i = 0; i < pinned; i++)
3087 i915_gem_object_unpin(object_list[i]);
b1177636 3088 pinned = 0;
ac94a962
KP
3089
3090 /* evict everyone we can from the aperture */
3091 ret = i915_gem_evict_everything(dev);
3092 if (ret)
3093 goto err;
673a394b
EA
3094 }
3095
3096 /* Set the pending read domains for the batch buffer to COMMAND */
3097 batch_obj = object_list[args->buffer_count-1];
3098 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3099 batch_obj->pending_write_domain = 0;
3100
3101 i915_verify_inactive(dev, __FILE__, __LINE__);
3102
646f0f6e
KP
3103 /* Zero the global flush/invalidate flags. These
3104 * will be modified as new domains are computed
3105 * for each object
3106 */
3107 dev->invalidate_domains = 0;
3108 dev->flush_domains = 0;
3109
673a394b
EA
3110 for (i = 0; i < args->buffer_count; i++) {
3111 struct drm_gem_object *obj = object_list[i];
673a394b 3112
646f0f6e 3113 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3114 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3115 }
3116
3117 i915_verify_inactive(dev, __FILE__, __LINE__);
3118
646f0f6e
KP
3119 if (dev->invalidate_domains | dev->flush_domains) {
3120#if WATCH_EXEC
3121 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3122 __func__,
3123 dev->invalidate_domains,
3124 dev->flush_domains);
3125#endif
3126 i915_gem_flush(dev,
3127 dev->invalidate_domains,
3128 dev->flush_domains);
3129 if (dev->flush_domains)
3130 (void)i915_add_request(dev, dev->flush_domains);
3131 }
673a394b 3132
efbeed96
EA
3133 for (i = 0; i < args->buffer_count; i++) {
3134 struct drm_gem_object *obj = object_list[i];
3135
3136 obj->write_domain = obj->pending_write_domain;
3137 }
3138
673a394b
EA
3139 i915_verify_inactive(dev, __FILE__, __LINE__);
3140
3141#if WATCH_COHERENCY
3142 for (i = 0; i < args->buffer_count; i++) {
3143 i915_gem_object_check_coherency(object_list[i],
3144 exec_list[i].handle);
3145 }
3146#endif
3147
3148 exec_offset = exec_list[args->buffer_count - 1].offset;
3149
3150#if WATCH_EXEC
3151 i915_gem_dump_object(object_list[args->buffer_count - 1],
3152 args->batch_len,
3153 __func__,
3154 ~0);
3155#endif
3156
673a394b
EA
3157 /* Exec the batchbuffer */
3158 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
3159 if (ret) {
3160 DRM_ERROR("dispatch failed %d\n", ret);
3161 goto err;
3162 }
3163
3164 /*
3165 * Ensure that the commands in the batch buffer are
3166 * finished before the interrupt fires
3167 */
3168 flush_domains = i915_retire_commands(dev);
3169
3170 i915_verify_inactive(dev, __FILE__, __LINE__);
3171
3172 /*
3173 * Get a seqno representing the execution of the current buffer,
3174 * which we can wait on. We would like to mitigate these interrupts,
3175 * likely by only creating seqnos occasionally (so that we have
3176 * *some* interrupts representing completion of buffers that we can
3177 * wait on when trying to clear up gtt space).
3178 */
3179 seqno = i915_add_request(dev, flush_domains);
3180 BUG_ON(seqno == 0);
3181 i915_file_priv->mm.last_gem_seqno = seqno;
3182 for (i = 0; i < args->buffer_count; i++) {
3183 struct drm_gem_object *obj = object_list[i];
673a394b 3184
ce44b0ea 3185 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3186#if WATCH_LRU
3187 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3188#endif
3189 }
3190#if WATCH_LRU
3191 i915_dump_lru(dev, __func__);
3192#endif
3193
3194 i915_verify_inactive(dev, __FILE__, __LINE__);
3195
673a394b 3196err:
aad87dff
JL
3197 for (i = 0; i < pinned; i++)
3198 i915_gem_object_unpin(object_list[i]);
3199
b70d11da
KH
3200 for (i = 0; i < args->buffer_count; i++) {
3201 if (object_list[i]) {
3202 obj_priv = object_list[i]->driver_private;
3203 obj_priv->in_execbuffer = false;
3204 }
aad87dff 3205 drm_gem_object_unreference(object_list[i]);
b70d11da 3206 }
673a394b 3207
673a394b
EA
3208 mutex_unlock(&dev->struct_mutex);
3209
a35f2e2b
RD
3210 if (!ret) {
3211 /* Copy the new buffer offsets back to the user's exec list. */
3212 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3213 (uintptr_t) args->buffers_ptr,
3214 exec_list,
3215 sizeof(*exec_list) * args->buffer_count);
3216 if (ret)
3217 DRM_ERROR("failed to copy %d exec entries "
3218 "back to user (%d)\n",
3219 args->buffer_count, ret);
3220 }
3221
673a394b
EA
3222pre_mutex_err:
3223 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3224 DRM_MEM_DRIVER);
3225 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3226 DRM_MEM_DRIVER);
3227
3228 return ret;
3229}
3230
3231int
3232i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3233{
3234 struct drm_device *dev = obj->dev;
3235 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3236 int ret;
3237
3238 i915_verify_inactive(dev, __FILE__, __LINE__);
3239 if (obj_priv->gtt_space == NULL) {
3240 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3241 if (ret != 0) {
9bb2d6f9 3242 if (ret != -EBUSY && ret != -ERESTARTSYS)
0fce81e3 3243 DRM_ERROR("Failure to bind: %d\n", ret);
673a394b
EA
3244 return ret;
3245 }
22c344e9
CW
3246 }
3247 /*
3248 * Pre-965 chips need a fence register set up in order to
3249 * properly handle tiled surfaces.
3250 */
3251 if (!IS_I965G(dev) &&
3252 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3253 obj_priv->tiling_mode != I915_TILING_NONE) {
3254 ret = i915_gem_object_get_fence_reg(obj, true);
3255 if (ret != 0) {
3256 if (ret != -EBUSY && ret != -ERESTARTSYS)
3257 DRM_ERROR("Failure to install fence: %d\n",
3258 ret);
3259 return ret;
3260 }
673a394b
EA
3261 }
3262 obj_priv->pin_count++;
3263
3264 /* If the object is not active and not pending a flush,
3265 * remove it from the inactive list
3266 */
3267 if (obj_priv->pin_count == 1) {
3268 atomic_inc(&dev->pin_count);
3269 atomic_add(obj->size, &dev->pin_memory);
3270 if (!obj_priv->active &&
3271 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3272 I915_GEM_DOMAIN_GTT)) == 0 &&
3273 !list_empty(&obj_priv->list))
3274 list_del_init(&obj_priv->list);
3275 }
3276 i915_verify_inactive(dev, __FILE__, __LINE__);
3277
3278 return 0;
3279}
3280
3281void
3282i915_gem_object_unpin(struct drm_gem_object *obj)
3283{
3284 struct drm_device *dev = obj->dev;
3285 drm_i915_private_t *dev_priv = dev->dev_private;
3286 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3287
3288 i915_verify_inactive(dev, __FILE__, __LINE__);
3289 obj_priv->pin_count--;
3290 BUG_ON(obj_priv->pin_count < 0);
3291 BUG_ON(obj_priv->gtt_space == NULL);
3292
3293 /* If the object is no longer pinned, and is
3294 * neither active nor being flushed, then stick it on
3295 * the inactive list
3296 */
3297 if (obj_priv->pin_count == 0) {
3298 if (!obj_priv->active &&
3299 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3300 I915_GEM_DOMAIN_GTT)) == 0)
3301 list_move_tail(&obj_priv->list,
3302 &dev_priv->mm.inactive_list);
3303 atomic_dec(&dev->pin_count);
3304 atomic_sub(obj->size, &dev->pin_memory);
3305 }
3306 i915_verify_inactive(dev, __FILE__, __LINE__);
3307}
3308
3309int
3310i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3311 struct drm_file *file_priv)
3312{
3313 struct drm_i915_gem_pin *args = data;
3314 struct drm_gem_object *obj;
3315 struct drm_i915_gem_object *obj_priv;
3316 int ret;
3317
3318 mutex_lock(&dev->struct_mutex);
3319
3320 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3321 if (obj == NULL) {
3322 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3323 args->handle);
3324 mutex_unlock(&dev->struct_mutex);
3325 return -EBADF;
3326 }
3327 obj_priv = obj->driver_private;
3328
79e53945
JB
3329 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3330 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3331 args->handle);
96dec61d 3332 drm_gem_object_unreference(obj);
673a394b 3333 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3334 return -EINVAL;
3335 }
3336
3337 obj_priv->user_pin_count++;
3338 obj_priv->pin_filp = file_priv;
3339 if (obj_priv->user_pin_count == 1) {
3340 ret = i915_gem_object_pin(obj, args->alignment);
3341 if (ret != 0) {
3342 drm_gem_object_unreference(obj);
3343 mutex_unlock(&dev->struct_mutex);
3344 return ret;
3345 }
673a394b
EA
3346 }
3347
3348 /* XXX - flush the CPU caches for pinned objects
3349 * as the X server doesn't manage domains yet
3350 */
e47c68e9 3351 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
3352 args->offset = obj_priv->gtt_offset;
3353 drm_gem_object_unreference(obj);
3354 mutex_unlock(&dev->struct_mutex);
3355
3356 return 0;
3357}
3358
3359int
3360i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3361 struct drm_file *file_priv)
3362{
3363 struct drm_i915_gem_pin *args = data;
3364 struct drm_gem_object *obj;
79e53945 3365 struct drm_i915_gem_object *obj_priv;
673a394b
EA
3366
3367 mutex_lock(&dev->struct_mutex);
3368
3369 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3370 if (obj == NULL) {
3371 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3372 args->handle);
3373 mutex_unlock(&dev->struct_mutex);
3374 return -EBADF;
3375 }
3376
79e53945
JB
3377 obj_priv = obj->driver_private;
3378 if (obj_priv->pin_filp != file_priv) {
3379 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3380 args->handle);
3381 drm_gem_object_unreference(obj);
3382 mutex_unlock(&dev->struct_mutex);
3383 return -EINVAL;
3384 }
3385 obj_priv->user_pin_count--;
3386 if (obj_priv->user_pin_count == 0) {
3387 obj_priv->pin_filp = NULL;
3388 i915_gem_object_unpin(obj);
3389 }
673a394b
EA
3390
3391 drm_gem_object_unreference(obj);
3392 mutex_unlock(&dev->struct_mutex);
3393 return 0;
3394}
3395
3396int
3397i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3398 struct drm_file *file_priv)
3399{
3400 struct drm_i915_gem_busy *args = data;
3401 struct drm_gem_object *obj;
3402 struct drm_i915_gem_object *obj_priv;
3403
3404 mutex_lock(&dev->struct_mutex);
3405 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3406 if (obj == NULL) {
3407 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3408 args->handle);
3409 mutex_unlock(&dev->struct_mutex);
3410 return -EBADF;
3411 }
3412
f21289b3
EA
3413 /* Update the active list for the hardware's current position.
3414 * Otherwise this only updates on a delayed timer or when irqs are
3415 * actually unmasked, and our working set ends up being larger than
3416 * required.
3417 */
3418 i915_gem_retire_requests(dev);
3419
673a394b 3420 obj_priv = obj->driver_private;
c4de0a5d
EA
3421 /* Don't count being on the flushing list against the object being
3422 * done. Otherwise, a buffer left on the flushing list but not getting
3423 * flushed (because nobody's flushing that domain) won't ever return
3424 * unbusy and get reused by libdrm's bo cache. The other expected
3425 * consumer of this interface, OpenGL's occlusion queries, also specs
3426 * that the objects get unbusy "eventually" without any interference.
3427 */
3428 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
3429
3430 drm_gem_object_unreference(obj);
3431 mutex_unlock(&dev->struct_mutex);
3432 return 0;
3433}
3434
3435int
3436i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3437 struct drm_file *file_priv)
3438{
3439 return i915_gem_ring_throttle(dev, file_priv);
3440}
3441
3442int i915_gem_init_object(struct drm_gem_object *obj)
3443{
3444 struct drm_i915_gem_object *obj_priv;
3445
3446 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3447 if (obj_priv == NULL)
3448 return -ENOMEM;
3449
3450 /*
3451 * We've just allocated pages from the kernel,
3452 * so they've just been written by the CPU with
3453 * zeros. They'll need to be clflushed before we
3454 * use them with the GPU.
3455 */
3456 obj->write_domain = I915_GEM_DOMAIN_CPU;
3457 obj->read_domains = I915_GEM_DOMAIN_CPU;
3458
ba1eb1d8
KP
3459 obj_priv->agp_type = AGP_USER_MEMORY;
3460
673a394b
EA
3461 obj->driver_private = obj_priv;
3462 obj_priv->obj = obj;
de151cf6 3463 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 3464 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 3465
673a394b
EA
3466 return 0;
3467}
3468
3469void i915_gem_free_object(struct drm_gem_object *obj)
3470{
de151cf6 3471 struct drm_device *dev = obj->dev;
673a394b
EA
3472 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3473
3474 while (obj_priv->pin_count > 0)
3475 i915_gem_object_unpin(obj);
3476
71acb5eb
DA
3477 if (obj_priv->phys_obj)
3478 i915_gem_detach_phys_object(dev, obj);
3479
673a394b
EA
3480 i915_gem_object_unbind(obj);
3481
ab00b3e5 3482 i915_gem_free_mmap_offset(obj);
de151cf6 3483
673a394b
EA
3484 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3485 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3486}
3487
673a394b
EA
3488/** Unbinds all objects that are on the given buffer list. */
3489static int
3490i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3491{
3492 struct drm_gem_object *obj;
3493 struct drm_i915_gem_object *obj_priv;
3494 int ret;
3495
3496 while (!list_empty(head)) {
3497 obj_priv = list_first_entry(head,
3498 struct drm_i915_gem_object,
3499 list);
3500 obj = obj_priv->obj;
3501
3502 if (obj_priv->pin_count != 0) {
3503 DRM_ERROR("Pinned object in unbind list\n");
3504 mutex_unlock(&dev->struct_mutex);
3505 return -EINVAL;
3506 }
3507
3508 ret = i915_gem_object_unbind(obj);
3509 if (ret != 0) {
3510 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3511 ret);
3512 mutex_unlock(&dev->struct_mutex);
3513 return ret;
3514 }
3515 }
3516
3517
3518 return 0;
3519}
3520
5669fcac 3521int
673a394b
EA
3522i915_gem_idle(struct drm_device *dev)
3523{
3524 drm_i915_private_t *dev_priv = dev->dev_private;
3525 uint32_t seqno, cur_seqno, last_seqno;
3526 int stuck, ret;
3527
6dbe2772
KP
3528 mutex_lock(&dev->struct_mutex);
3529
3530 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3531 mutex_unlock(&dev->struct_mutex);
673a394b 3532 return 0;
6dbe2772 3533 }
673a394b
EA
3534
3535 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3536 * We need to replace this with a semaphore, or something.
3537 */
3538 dev_priv->mm.suspended = 1;
3539
6dbe2772
KP
3540 /* Cancel the retire work handler, wait for it to finish if running
3541 */
3542 mutex_unlock(&dev->struct_mutex);
3543 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3544 mutex_lock(&dev->struct_mutex);
3545
673a394b
EA
3546 i915_kernel_lost_context(dev);
3547
3548 /* Flush the GPU along with all non-CPU write domains
3549 */
3550 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3551 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
de151cf6 3552 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
3553
3554 if (seqno == 0) {
3555 mutex_unlock(&dev->struct_mutex);
3556 return -ENOMEM;
3557 }
3558
3559 dev_priv->mm.waiting_gem_seqno = seqno;
3560 last_seqno = 0;
3561 stuck = 0;
3562 for (;;) {
3563 cur_seqno = i915_get_gem_seqno(dev);
3564 if (i915_seqno_passed(cur_seqno, seqno))
3565 break;
3566 if (last_seqno == cur_seqno) {
3567 if (stuck++ > 100) {
3568 DRM_ERROR("hardware wedged\n");
3569 dev_priv->mm.wedged = 1;
3570 DRM_WAKEUP(&dev_priv->irq_queue);
3571 break;
3572 }
3573 }
3574 msleep(10);
3575 last_seqno = cur_seqno;
3576 }
3577 dev_priv->mm.waiting_gem_seqno = 0;
3578
3579 i915_gem_retire_requests(dev);
3580
28dfe52a
EA
3581 if (!dev_priv->mm.wedged) {
3582 /* Active and flushing should now be empty as we've
3583 * waited for a sequence higher than any pending execbuffer
3584 */
3585 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3586 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3587 /* Request should now be empty as we've also waited
3588 * for the last request in the list
3589 */
3590 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3591 }
673a394b 3592
28dfe52a
EA
3593 /* Empty the active and flushing lists to inactive. If there's
3594 * anything left at this point, it means that we're wedged and
3595 * nothing good's going to happen by leaving them there. So strip
3596 * the GPU domains and just stuff them onto inactive.
673a394b 3597 */
28dfe52a
EA
3598 while (!list_empty(&dev_priv->mm.active_list)) {
3599 struct drm_i915_gem_object *obj_priv;
673a394b 3600
28dfe52a
EA
3601 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3602 struct drm_i915_gem_object,
3603 list);
3604 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3605 i915_gem_object_move_to_inactive(obj_priv->obj);
3606 }
3607
3608 while (!list_empty(&dev_priv->mm.flushing_list)) {
3609 struct drm_i915_gem_object *obj_priv;
3610
151903d5 3611 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3612 struct drm_i915_gem_object,
3613 list);
3614 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3615 i915_gem_object_move_to_inactive(obj_priv->obj);
3616 }
3617
3618
3619 /* Move all inactive buffers out of the GTT. */
673a394b 3620 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3621 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3622 if (ret) {
3623 mutex_unlock(&dev->struct_mutex);
673a394b 3624 return ret;
6dbe2772 3625 }
673a394b 3626
6dbe2772
KP
3627 i915_gem_cleanup_ringbuffer(dev);
3628 mutex_unlock(&dev->struct_mutex);
3629
673a394b
EA
3630 return 0;
3631}
3632
3633static int
3634i915_gem_init_hws(struct drm_device *dev)
3635{
3636 drm_i915_private_t *dev_priv = dev->dev_private;
3637 struct drm_gem_object *obj;
3638 struct drm_i915_gem_object *obj_priv;
3639 int ret;
3640
3641 /* If we need a physical address for the status page, it's already
3642 * initialized at driver load time.
3643 */
3644 if (!I915_NEED_GFX_HWS(dev))
3645 return 0;
3646
3647 obj = drm_gem_object_alloc(dev, 4096);
3648 if (obj == NULL) {
3649 DRM_ERROR("Failed to allocate status page\n");
3650 return -ENOMEM;
3651 }
3652 obj_priv = obj->driver_private;
ba1eb1d8 3653 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3654
3655 ret = i915_gem_object_pin(obj, 4096);
3656 if (ret != 0) {
3657 drm_gem_object_unreference(obj);
3658 return ret;
3659 }
3660
3661 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3662
856fa198 3663 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 3664 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3665 DRM_ERROR("Failed to map status page.\n");
3666 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 3667 i915_gem_object_unpin(obj);
673a394b
EA
3668 drm_gem_object_unreference(obj);
3669 return -EINVAL;
3670 }
3671 dev_priv->hws_obj = obj;
673a394b
EA
3672 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3673 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3674 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3675 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3676
3677 return 0;
3678}
3679
85a7bb98
CW
3680static void
3681i915_gem_cleanup_hws(struct drm_device *dev)
3682{
3683 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
3684 struct drm_gem_object *obj;
3685 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
3686
3687 if (dev_priv->hws_obj == NULL)
3688 return;
3689
bab2d1f6
CW
3690 obj = dev_priv->hws_obj;
3691 obj_priv = obj->driver_private;
3692
856fa198 3693 kunmap(obj_priv->pages[0]);
85a7bb98
CW
3694 i915_gem_object_unpin(obj);
3695 drm_gem_object_unreference(obj);
3696 dev_priv->hws_obj = NULL;
bab2d1f6 3697
85a7bb98
CW
3698 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3699 dev_priv->hw_status_page = NULL;
3700
3701 /* Write high address into HWS_PGA when disabling. */
3702 I915_WRITE(HWS_PGA, 0x1ffff000);
3703}
3704
79e53945 3705int
673a394b
EA
3706i915_gem_init_ringbuffer(struct drm_device *dev)
3707{
3708 drm_i915_private_t *dev_priv = dev->dev_private;
3709 struct drm_gem_object *obj;
3710 struct drm_i915_gem_object *obj_priv;
79e53945 3711 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 3712 int ret;
50aa253d 3713 u32 head;
673a394b
EA
3714
3715 ret = i915_gem_init_hws(dev);
3716 if (ret != 0)
3717 return ret;
3718
3719 obj = drm_gem_object_alloc(dev, 128 * 1024);
3720 if (obj == NULL) {
3721 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 3722 i915_gem_cleanup_hws(dev);
673a394b
EA
3723 return -ENOMEM;
3724 }
3725 obj_priv = obj->driver_private;
3726
3727 ret = i915_gem_object_pin(obj, 4096);
3728 if (ret != 0) {
3729 drm_gem_object_unreference(obj);
85a7bb98 3730 i915_gem_cleanup_hws(dev);
673a394b
EA
3731 return ret;
3732 }
3733
3734 /* Set up the kernel mapping for the ring. */
79e53945
JB
3735 ring->Size = obj->size;
3736 ring->tail_mask = obj->size - 1;
673a394b 3737
79e53945
JB
3738 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3739 ring->map.size = obj->size;
3740 ring->map.type = 0;
3741 ring->map.flags = 0;
3742 ring->map.mtrr = 0;
673a394b 3743
79e53945
JB
3744 drm_core_ioremap_wc(&ring->map, dev);
3745 if (ring->map.handle == NULL) {
673a394b
EA
3746 DRM_ERROR("Failed to map ringbuffer.\n");
3747 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 3748 i915_gem_object_unpin(obj);
673a394b 3749 drm_gem_object_unreference(obj);
85a7bb98 3750 i915_gem_cleanup_hws(dev);
673a394b
EA
3751 return -EINVAL;
3752 }
79e53945
JB
3753 ring->ring_obj = obj;
3754 ring->virtual_start = ring->map.handle;
673a394b
EA
3755
3756 /* Stop the ring if it's running. */
3757 I915_WRITE(PRB0_CTL, 0);
673a394b 3758 I915_WRITE(PRB0_TAIL, 0);
50aa253d 3759 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
3760
3761 /* Initialize the ring. */
3762 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
3763 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3764
3765 /* G45 ring initialization fails to reset head to zero */
3766 if (head != 0) {
3767 DRM_ERROR("Ring head not reset to zero "
3768 "ctl %08x head %08x tail %08x start %08x\n",
3769 I915_READ(PRB0_CTL),
3770 I915_READ(PRB0_HEAD),
3771 I915_READ(PRB0_TAIL),
3772 I915_READ(PRB0_START));
3773 I915_WRITE(PRB0_HEAD, 0);
3774
3775 DRM_ERROR("Ring head forced to zero "
3776 "ctl %08x head %08x tail %08x start %08x\n",
3777 I915_READ(PRB0_CTL),
3778 I915_READ(PRB0_HEAD),
3779 I915_READ(PRB0_TAIL),
3780 I915_READ(PRB0_START));
3781 }
3782
673a394b
EA
3783 I915_WRITE(PRB0_CTL,
3784 ((obj->size - 4096) & RING_NR_PAGES) |
3785 RING_NO_REPORT |
3786 RING_VALID);
3787
50aa253d
KP
3788 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3789
3790 /* If the head is still not zero, the ring is dead */
3791 if (head != 0) {
3792 DRM_ERROR("Ring initialization failed "
3793 "ctl %08x head %08x tail %08x start %08x\n",
3794 I915_READ(PRB0_CTL),
3795 I915_READ(PRB0_HEAD),
3796 I915_READ(PRB0_TAIL),
3797 I915_READ(PRB0_START));
3798 return -EIO;
3799 }
3800
673a394b 3801 /* Update our cache of the ring state */
79e53945
JB
3802 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3803 i915_kernel_lost_context(dev);
3804 else {
3805 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3806 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3807 ring->space = ring->head - (ring->tail + 8);
3808 if (ring->space < 0)
3809 ring->space += ring->Size;
3810 }
673a394b
EA
3811
3812 return 0;
3813}
3814
79e53945 3815void
673a394b
EA
3816i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3817{
3818 drm_i915_private_t *dev_priv = dev->dev_private;
3819
3820 if (dev_priv->ring.ring_obj == NULL)
3821 return;
3822
3823 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3824
3825 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3826 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3827 dev_priv->ring.ring_obj = NULL;
3828 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3829
85a7bb98 3830 i915_gem_cleanup_hws(dev);
673a394b
EA
3831}
3832
3833int
3834i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3835 struct drm_file *file_priv)
3836{
3837 drm_i915_private_t *dev_priv = dev->dev_private;
3838 int ret;
3839
79e53945
JB
3840 if (drm_core_check_feature(dev, DRIVER_MODESET))
3841 return 0;
3842
673a394b
EA
3843 if (dev_priv->mm.wedged) {
3844 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3845 dev_priv->mm.wedged = 0;
3846 }
3847
673a394b 3848 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3849 dev_priv->mm.suspended = 0;
3850
3851 ret = i915_gem_init_ringbuffer(dev);
3852 if (ret != 0)
3853 return ret;
3854
673a394b
EA
3855 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3856 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3857 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3858 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 3859 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
3860
3861 drm_irq_install(dev);
3862
673a394b
EA
3863 return 0;
3864}
3865
3866int
3867i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3868 struct drm_file *file_priv)
3869{
3870 int ret;
3871
79e53945
JB
3872 if (drm_core_check_feature(dev, DRIVER_MODESET))
3873 return 0;
3874
673a394b 3875 ret = i915_gem_idle(dev);
dbb19d30
KH
3876 drm_irq_uninstall(dev);
3877
6dbe2772 3878 return ret;
673a394b
EA
3879}
3880
3881void
3882i915_gem_lastclose(struct drm_device *dev)
3883{
3884 int ret;
673a394b 3885
e806b495
EA
3886 if (drm_core_check_feature(dev, DRIVER_MODESET))
3887 return;
3888
6dbe2772
KP
3889 ret = i915_gem_idle(dev);
3890 if (ret)
3891 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3892}
3893
3894void
3895i915_gem_load(struct drm_device *dev)
3896{
3897 drm_i915_private_t *dev_priv = dev->dev_private;
3898
3899 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3900 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3901 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3902 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3903 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3904 i915_gem_retire_work_handler);
3905 dev_priv->mm.next_gem_seqno = 1;
3906
de151cf6
JB
3907 /* Old X drivers will take 0-2 for front, back, depth buffers */
3908 dev_priv->fence_reg_start = 3;
3909
0f973f27 3910 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3911 dev_priv->num_fence_regs = 16;
3912 else
3913 dev_priv->num_fence_regs = 8;
3914
673a394b
EA
3915 i915_gem_detect_bit_6_swizzle(dev);
3916}
71acb5eb
DA
3917
3918/*
3919 * Create a physically contiguous memory object for this object
3920 * e.g. for cursor + overlay regs
3921 */
3922int i915_gem_init_phys_object(struct drm_device *dev,
3923 int id, int size)
3924{
3925 drm_i915_private_t *dev_priv = dev->dev_private;
3926 struct drm_i915_gem_phys_object *phys_obj;
3927 int ret;
3928
3929 if (dev_priv->mm.phys_objs[id - 1] || !size)
3930 return 0;
3931
3932 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3933 if (!phys_obj)
3934 return -ENOMEM;
3935
3936 phys_obj->id = id;
3937
3938 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3939 if (!phys_obj->handle) {
3940 ret = -ENOMEM;
3941 goto kfree_obj;
3942 }
3943#ifdef CONFIG_X86
3944 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3945#endif
3946
3947 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3948
3949 return 0;
3950kfree_obj:
3951 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3952 return ret;
3953}
3954
3955void i915_gem_free_phys_object(struct drm_device *dev, int id)
3956{
3957 drm_i915_private_t *dev_priv = dev->dev_private;
3958 struct drm_i915_gem_phys_object *phys_obj;
3959
3960 if (!dev_priv->mm.phys_objs[id - 1])
3961 return;
3962
3963 phys_obj = dev_priv->mm.phys_objs[id - 1];
3964 if (phys_obj->cur_obj) {
3965 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3966 }
3967
3968#ifdef CONFIG_X86
3969 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3970#endif
3971 drm_pci_free(dev, phys_obj->handle);
3972 kfree(phys_obj);
3973 dev_priv->mm.phys_objs[id - 1] = NULL;
3974}
3975
3976void i915_gem_free_all_phys_object(struct drm_device *dev)
3977{
3978 int i;
3979
260883c8 3980 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3981 i915_gem_free_phys_object(dev, i);
3982}
3983
3984void i915_gem_detach_phys_object(struct drm_device *dev,
3985 struct drm_gem_object *obj)
3986{
3987 struct drm_i915_gem_object *obj_priv;
3988 int i;
3989 int ret;
3990 int page_count;
3991
3992 obj_priv = obj->driver_private;
3993 if (!obj_priv->phys_obj)
3994 return;
3995
856fa198 3996 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
3997 if (ret)
3998 goto out;
3999
4000 page_count = obj->size / PAGE_SIZE;
4001
4002 for (i = 0; i < page_count; i++) {
856fa198 4003 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4004 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4005
4006 memcpy(dst, src, PAGE_SIZE);
4007 kunmap_atomic(dst, KM_USER0);
4008 }
856fa198 4009 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb
DA
4010 drm_agp_chipset_flush(dev);
4011out:
4012 obj_priv->phys_obj->cur_obj = NULL;
4013 obj_priv->phys_obj = NULL;
4014}
4015
4016int
4017i915_gem_attach_phys_object(struct drm_device *dev,
4018 struct drm_gem_object *obj, int id)
4019{
4020 drm_i915_private_t *dev_priv = dev->dev_private;
4021 struct drm_i915_gem_object *obj_priv;
4022 int ret = 0;
4023 int page_count;
4024 int i;
4025
4026 if (id > I915_MAX_PHYS_OBJECT)
4027 return -EINVAL;
4028
4029 obj_priv = obj->driver_private;
4030
4031 if (obj_priv->phys_obj) {
4032 if (obj_priv->phys_obj->id == id)
4033 return 0;
4034 i915_gem_detach_phys_object(dev, obj);
4035 }
4036
4037
4038 /* create a new object */
4039 if (!dev_priv->mm.phys_objs[id - 1]) {
4040 ret = i915_gem_init_phys_object(dev, id,
4041 obj->size);
4042 if (ret) {
aeb565df 4043 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4044 goto out;
4045 }
4046 }
4047
4048 /* bind to the object */
4049 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4050 obj_priv->phys_obj->cur_obj = obj;
4051
856fa198 4052 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4053 if (ret) {
4054 DRM_ERROR("failed to get page list\n");
4055 goto out;
4056 }
4057
4058 page_count = obj->size / PAGE_SIZE;
4059
4060 for (i = 0; i < page_count; i++) {
856fa198 4061 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4062 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4063
4064 memcpy(dst, src, PAGE_SIZE);
4065 kunmap_atomic(src, KM_USER0);
4066 }
4067
4068 return 0;
4069out:
4070 return ret;
4071}
4072
4073static int
4074i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4075 struct drm_i915_gem_pwrite *args,
4076 struct drm_file *file_priv)
4077{
4078 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4079 void *obj_addr;
4080 int ret;
4081 char __user *user_data;
4082
4083 user_data = (char __user *) (uintptr_t) args->data_ptr;
4084 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4085
e08fb4f6 4086 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4087 ret = copy_from_user(obj_addr, user_data, args->size);
4088 if (ret)
4089 return -EFAULT;
4090
4091 drm_agp_chipset_flush(dev);
4092 return 0;
4093}